]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/broadcom/bnxt/bnxt.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
[karo-tx-linux.git] / drivers / net / ethernet / broadcom / bnxt / bnxt.c
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2015 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  */
9
10 #include <linux/module.h>
11
12 #include <linux/stringify.h>
13 #include <linux/kernel.h>
14 #include <linux/timer.h>
15 #include <linux/errno.h>
16 #include <linux/ioport.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19 #include <linux/interrupt.h>
20 #include <linux/pci.h>
21 #include <linux/netdevice.h>
22 #include <linux/etherdevice.h>
23 #include <linux/skbuff.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/bitops.h>
26 #include <linux/io.h>
27 #include <linux/irq.h>
28 #include <linux/delay.h>
29 #include <asm/byteorder.h>
30 #include <asm/page.h>
31 #include <linux/time.h>
32 #include <linux/mii.h>
33 #include <linux/if.h>
34 #include <linux/if_vlan.h>
35 #include <net/ip.h>
36 #include <net/tcp.h>
37 #include <net/udp.h>
38 #include <net/checksum.h>
39 #include <net/ip6_checksum.h>
40 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE)
41 #include <net/vxlan.h>
42 #endif
43 #ifdef CONFIG_NET_RX_BUSY_POLL
44 #include <net/busy_poll.h>
45 #endif
46 #include <linux/workqueue.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53
54 #include "bnxt_hsi.h"
55 #include "bnxt.h"
56 #include "bnxt_sriov.h"
57 #include "bnxt_ethtool.h"
58
59 #define BNXT_TX_TIMEOUT         (5 * HZ)
60
61 static const char version[] =
62         "Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
63
64 MODULE_LICENSE("GPL");
65 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
66 MODULE_VERSION(DRV_MODULE_VERSION);
67
68 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
69 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
70 #define BNXT_RX_COPY_THRESH 256
71
72 #define BNXT_TX_PUSH_THRESH 92
73
74 enum board_idx {
75         BCM57302,
76         BCM57304,
77         BCM57404,
78         BCM57406,
79         BCM57304_VF,
80         BCM57404_VF,
81 };
82
83 /* indexed by enum above */
84 static const struct {
85         char *name;
86 } board_info[] = {
87         { "Broadcom BCM57302 NetXtreme-C Single-port 10Gb/25Gb/40Gb/50Gb Ethernet" },
88         { "Broadcom BCM57304 NetXtreme-C Dual-port 10Gb/25Gb/40Gb/50Gb Ethernet" },
89         { "Broadcom BCM57404 NetXtreme-E Dual-port 10Gb/25Gb Ethernet" },
90         { "Broadcom BCM57406 NetXtreme-E Dual-port 10Gb Ethernet" },
91         { "Broadcom BCM57304 NetXtreme-C Ethernet Virtual Function" },
92         { "Broadcom BCM57404 NetXtreme-E Ethernet Virtual Function" },
93 };
94
95 static const struct pci_device_id bnxt_pci_tbl[] = {
96         { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
97         { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
98         { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
99         { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
100 #ifdef CONFIG_BNXT_SRIOV
101         { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = BCM57304_VF },
102         { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = BCM57404_VF },
103 #endif
104         { 0 }
105 };
106
107 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
108
109 static const u16 bnxt_vf_req_snif[] = {
110         HWRM_FUNC_CFG,
111         HWRM_PORT_PHY_QCFG,
112         HWRM_CFA_L2_FILTER_ALLOC,
113 };
114
115 static bool bnxt_vf_pciid(enum board_idx idx)
116 {
117         return (idx == BCM57304_VF || idx == BCM57404_VF);
118 }
119
120 #define DB_CP_REARM_FLAGS       (DB_KEY_CP | DB_IDX_VALID)
121 #define DB_CP_FLAGS             (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
122 #define DB_CP_IRQ_DIS_FLAGS     (DB_KEY_CP | DB_IRQ_DIS)
123
124 #define BNXT_CP_DB_REARM(db, raw_cons)                                  \
125                 writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
126
127 #define BNXT_CP_DB(db, raw_cons)                                        \
128                 writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
129
130 #define BNXT_CP_DB_IRQ_DIS(db)                                          \
131                 writel(DB_CP_IRQ_DIS_FLAGS, db)
132
133 static inline u32 bnxt_tx_avail(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
134 {
135         /* Tell compiler to fetch tx indices from memory. */
136         barrier();
137
138         return bp->tx_ring_size -
139                 ((txr->tx_prod - txr->tx_cons) & bp->tx_ring_mask);
140 }
141
142 static const u16 bnxt_lhint_arr[] = {
143         TX_BD_FLAGS_LHINT_512_AND_SMALLER,
144         TX_BD_FLAGS_LHINT_512_TO_1023,
145         TX_BD_FLAGS_LHINT_1024_TO_2047,
146         TX_BD_FLAGS_LHINT_1024_TO_2047,
147         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
148         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
149         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
150         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
151         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
152         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
153         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
154         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
155         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
156         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
157         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
158         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
159         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
160         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
161         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
162 };
163
164 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
165 {
166         struct bnxt *bp = netdev_priv(dev);
167         struct tx_bd *txbd;
168         struct tx_bd_ext *txbd1;
169         struct netdev_queue *txq;
170         int i;
171         dma_addr_t mapping;
172         unsigned int length, pad = 0;
173         u32 len, free_size, vlan_tag_flags, cfa_action, flags;
174         u16 prod, last_frag;
175         struct pci_dev *pdev = bp->pdev;
176         struct bnxt_napi *bnapi;
177         struct bnxt_tx_ring_info *txr;
178         struct bnxt_sw_tx_bd *tx_buf;
179
180         i = skb_get_queue_mapping(skb);
181         if (unlikely(i >= bp->tx_nr_rings)) {
182                 dev_kfree_skb_any(skb);
183                 return NETDEV_TX_OK;
184         }
185
186         bnapi = bp->bnapi[i];
187         txr = &bnapi->tx_ring;
188         txq = netdev_get_tx_queue(dev, i);
189         prod = txr->tx_prod;
190
191         free_size = bnxt_tx_avail(bp, txr);
192         if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
193                 netif_tx_stop_queue(txq);
194                 return NETDEV_TX_BUSY;
195         }
196
197         length = skb->len;
198         len = skb_headlen(skb);
199         last_frag = skb_shinfo(skb)->nr_frags;
200
201         txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
202
203         txbd->tx_bd_opaque = prod;
204
205         tx_buf = &txr->tx_buf_ring[prod];
206         tx_buf->skb = skb;
207         tx_buf->nr_frags = last_frag;
208
209         vlan_tag_flags = 0;
210         cfa_action = 0;
211         if (skb_vlan_tag_present(skb)) {
212                 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
213                                  skb_vlan_tag_get(skb);
214                 /* Currently supports 8021Q, 8021AD vlan offloads
215                  * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
216                  */
217                 if (skb->vlan_proto == htons(ETH_P_8021Q))
218                         vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
219         }
220
221         if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
222                 struct tx_push_bd *push = txr->tx_push;
223                 struct tx_bd *tx_push = &push->txbd1;
224                 struct tx_bd_ext *tx_push1 = &push->txbd2;
225                 void *pdata = tx_push1 + 1;
226                 int j;
227
228                 /* Set COAL_NOW to be ready quickly for the next push */
229                 tx_push->tx_bd_len_flags_type =
230                         cpu_to_le32((length << TX_BD_LEN_SHIFT) |
231                                         TX_BD_TYPE_LONG_TX_BD |
232                                         TX_BD_FLAGS_LHINT_512_AND_SMALLER |
233                                         TX_BD_FLAGS_COAL_NOW |
234                                         TX_BD_FLAGS_PACKET_END |
235                                         (2 << TX_BD_FLAGS_BD_CNT_SHIFT));
236
237                 if (skb->ip_summed == CHECKSUM_PARTIAL)
238                         tx_push1->tx_bd_hsize_lflags =
239                                         cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
240                 else
241                         tx_push1->tx_bd_hsize_lflags = 0;
242
243                 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
244                 tx_push1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
245
246                 skb_copy_from_linear_data(skb, pdata, len);
247                 pdata += len;
248                 for (j = 0; j < last_frag; j++) {
249                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
250                         void *fptr;
251
252                         fptr = skb_frag_address_safe(frag);
253                         if (!fptr)
254                                 goto normal_tx;
255
256                         memcpy(pdata, fptr, skb_frag_size(frag));
257                         pdata += skb_frag_size(frag);
258                 }
259
260                 memcpy(txbd, tx_push, sizeof(*txbd));
261                 prod = NEXT_TX(prod);
262                 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
263                 memcpy(txbd, tx_push1, sizeof(*txbd));
264                 prod = NEXT_TX(prod);
265                 push->doorbell =
266                         cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
267                 txr->tx_prod = prod;
268
269                 netdev_tx_sent_queue(txq, skb->len);
270
271                 __iowrite64_copy(txr->tx_doorbell, push,
272                                  (length + sizeof(*push) + 8) / 8);
273
274                 tx_buf->is_push = 1;
275
276                 goto tx_done;
277         }
278
279 normal_tx:
280         if (length < BNXT_MIN_PKT_SIZE) {
281                 pad = BNXT_MIN_PKT_SIZE - length;
282                 if (skb_pad(skb, pad)) {
283                         /* SKB already freed. */
284                         tx_buf->skb = NULL;
285                         return NETDEV_TX_OK;
286                 }
287                 length = BNXT_MIN_PKT_SIZE;
288         }
289
290         mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
291
292         if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
293                 dev_kfree_skb_any(skb);
294                 tx_buf->skb = NULL;
295                 return NETDEV_TX_OK;
296         }
297
298         dma_unmap_addr_set(tx_buf, mapping, mapping);
299         flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
300                 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
301
302         txbd->tx_bd_haddr = cpu_to_le64(mapping);
303
304         prod = NEXT_TX(prod);
305         txbd1 = (struct tx_bd_ext *)
306                 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
307
308         txbd1->tx_bd_hsize_lflags = 0;
309         if (skb_is_gso(skb)) {
310                 u32 hdr_len;
311
312                 if (skb->encapsulation)
313                         hdr_len = skb_inner_network_offset(skb) +
314                                 skb_inner_network_header_len(skb) +
315                                 inner_tcp_hdrlen(skb);
316                 else
317                         hdr_len = skb_transport_offset(skb) +
318                                 tcp_hdrlen(skb);
319
320                 txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
321                                         TX_BD_FLAGS_T_IPID |
322                                         (hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
323                 length = skb_shinfo(skb)->gso_size;
324                 txbd1->tx_bd_mss = cpu_to_le32(length);
325                 length += hdr_len;
326         } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
327                 txbd1->tx_bd_hsize_lflags =
328                         cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
329                 txbd1->tx_bd_mss = 0;
330         }
331
332         length >>= 9;
333         flags |= bnxt_lhint_arr[length];
334         txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
335
336         txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
337         txbd1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
338         for (i = 0; i < last_frag; i++) {
339                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
340
341                 prod = NEXT_TX(prod);
342                 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
343
344                 len = skb_frag_size(frag);
345                 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
346                                            DMA_TO_DEVICE);
347
348                 if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
349                         goto tx_dma_error;
350
351                 tx_buf = &txr->tx_buf_ring[prod];
352                 dma_unmap_addr_set(tx_buf, mapping, mapping);
353
354                 txbd->tx_bd_haddr = cpu_to_le64(mapping);
355
356                 flags = len << TX_BD_LEN_SHIFT;
357                 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
358         }
359
360         flags &= ~TX_BD_LEN;
361         txbd->tx_bd_len_flags_type =
362                 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
363                             TX_BD_FLAGS_PACKET_END);
364
365         netdev_tx_sent_queue(txq, skb->len);
366
367         /* Sync BD data before updating doorbell */
368         wmb();
369
370         prod = NEXT_TX(prod);
371         txr->tx_prod = prod;
372
373         writel(DB_KEY_TX | prod, txr->tx_doorbell);
374         writel(DB_KEY_TX | prod, txr->tx_doorbell);
375
376 tx_done:
377
378         mmiowb();
379
380         if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
381                 netif_tx_stop_queue(txq);
382
383                 /* netif_tx_stop_queue() must be done before checking
384                  * tx index in bnxt_tx_avail() below, because in
385                  * bnxt_tx_int(), we update tx index before checking for
386                  * netif_tx_queue_stopped().
387                  */
388                 smp_mb();
389                 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
390                         netif_tx_wake_queue(txq);
391         }
392         return NETDEV_TX_OK;
393
394 tx_dma_error:
395         last_frag = i;
396
397         /* start back at beginning and unmap skb */
398         prod = txr->tx_prod;
399         tx_buf = &txr->tx_buf_ring[prod];
400         tx_buf->skb = NULL;
401         dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
402                          skb_headlen(skb), PCI_DMA_TODEVICE);
403         prod = NEXT_TX(prod);
404
405         /* unmap remaining mapped pages */
406         for (i = 0; i < last_frag; i++) {
407                 prod = NEXT_TX(prod);
408                 tx_buf = &txr->tx_buf_ring[prod];
409                 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
410                                skb_frag_size(&skb_shinfo(skb)->frags[i]),
411                                PCI_DMA_TODEVICE);
412         }
413
414         dev_kfree_skb_any(skb);
415         return NETDEV_TX_OK;
416 }
417
418 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
419 {
420         struct bnxt_tx_ring_info *txr = &bnapi->tx_ring;
421         int index = bnapi->index;
422         struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, index);
423         u16 cons = txr->tx_cons;
424         struct pci_dev *pdev = bp->pdev;
425         int i;
426         unsigned int tx_bytes = 0;
427
428         for (i = 0; i < nr_pkts; i++) {
429                 struct bnxt_sw_tx_bd *tx_buf;
430                 struct sk_buff *skb;
431                 int j, last;
432
433                 tx_buf = &txr->tx_buf_ring[cons];
434                 cons = NEXT_TX(cons);
435                 skb = tx_buf->skb;
436                 tx_buf->skb = NULL;
437
438                 if (tx_buf->is_push) {
439                         tx_buf->is_push = 0;
440                         goto next_tx_int;
441                 }
442
443                 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
444                                  skb_headlen(skb), PCI_DMA_TODEVICE);
445                 last = tx_buf->nr_frags;
446
447                 for (j = 0; j < last; j++) {
448                         cons = NEXT_TX(cons);
449                         tx_buf = &txr->tx_buf_ring[cons];
450                         dma_unmap_page(
451                                 &pdev->dev,
452                                 dma_unmap_addr(tx_buf, mapping),
453                                 skb_frag_size(&skb_shinfo(skb)->frags[j]),
454                                 PCI_DMA_TODEVICE);
455                 }
456
457 next_tx_int:
458                 cons = NEXT_TX(cons);
459
460                 tx_bytes += skb->len;
461                 dev_kfree_skb_any(skb);
462         }
463
464         netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
465         txr->tx_cons = cons;
466
467         /* Need to make the tx_cons update visible to bnxt_start_xmit()
468          * before checking for netif_tx_queue_stopped().  Without the
469          * memory barrier, there is a small possibility that bnxt_start_xmit()
470          * will miss it and cause the queue to be stopped forever.
471          */
472         smp_mb();
473
474         if (unlikely(netif_tx_queue_stopped(txq)) &&
475             (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
476                 __netif_tx_lock(txq, smp_processor_id());
477                 if (netif_tx_queue_stopped(txq) &&
478                     bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
479                     txr->dev_state != BNXT_DEV_STATE_CLOSING)
480                         netif_tx_wake_queue(txq);
481                 __netif_tx_unlock(txq);
482         }
483 }
484
485 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
486                                        gfp_t gfp)
487 {
488         u8 *data;
489         struct pci_dev *pdev = bp->pdev;
490
491         data = kmalloc(bp->rx_buf_size, gfp);
492         if (!data)
493                 return NULL;
494
495         *mapping = dma_map_single(&pdev->dev, data + BNXT_RX_DMA_OFFSET,
496                                   bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
497
498         if (dma_mapping_error(&pdev->dev, *mapping)) {
499                 kfree(data);
500                 data = NULL;
501         }
502         return data;
503 }
504
505 static inline int bnxt_alloc_rx_data(struct bnxt *bp,
506                                      struct bnxt_rx_ring_info *rxr,
507                                      u16 prod, gfp_t gfp)
508 {
509         struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
510         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
511         u8 *data;
512         dma_addr_t mapping;
513
514         data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
515         if (!data)
516                 return -ENOMEM;
517
518         rx_buf->data = data;
519         dma_unmap_addr_set(rx_buf, mapping, mapping);
520
521         rxbd->rx_bd_haddr = cpu_to_le64(mapping);
522
523         return 0;
524 }
525
526 static void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons,
527                                u8 *data)
528 {
529         u16 prod = rxr->rx_prod;
530         struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
531         struct rx_bd *cons_bd, *prod_bd;
532
533         prod_rx_buf = &rxr->rx_buf_ring[prod];
534         cons_rx_buf = &rxr->rx_buf_ring[cons];
535
536         prod_rx_buf->data = data;
537
538         dma_unmap_addr_set(prod_rx_buf, mapping,
539                            dma_unmap_addr(cons_rx_buf, mapping));
540
541         prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
542         cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
543
544         prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
545 }
546
547 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
548 {
549         u16 next, max = rxr->rx_agg_bmap_size;
550
551         next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
552         if (next >= max)
553                 next = find_first_zero_bit(rxr->rx_agg_bmap, max);
554         return next;
555 }
556
557 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
558                                      struct bnxt_rx_ring_info *rxr,
559                                      u16 prod, gfp_t gfp)
560 {
561         struct rx_bd *rxbd =
562                 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
563         struct bnxt_sw_rx_agg_bd *rx_agg_buf;
564         struct pci_dev *pdev = bp->pdev;
565         struct page *page;
566         dma_addr_t mapping;
567         u16 sw_prod = rxr->rx_sw_agg_prod;
568
569         page = alloc_page(gfp);
570         if (!page)
571                 return -ENOMEM;
572
573         mapping = dma_map_page(&pdev->dev, page, 0, PAGE_SIZE,
574                                PCI_DMA_FROMDEVICE);
575         if (dma_mapping_error(&pdev->dev, mapping)) {
576                 __free_page(page);
577                 return -EIO;
578         }
579
580         if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
581                 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
582
583         __set_bit(sw_prod, rxr->rx_agg_bmap);
584         rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
585         rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
586
587         rx_agg_buf->page = page;
588         rx_agg_buf->mapping = mapping;
589         rxbd->rx_bd_haddr = cpu_to_le64(mapping);
590         rxbd->rx_bd_opaque = sw_prod;
591         return 0;
592 }
593
594 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
595                                    u32 agg_bufs)
596 {
597         struct bnxt *bp = bnapi->bp;
598         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
599         struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring;
600         u16 prod = rxr->rx_agg_prod;
601         u16 sw_prod = rxr->rx_sw_agg_prod;
602         u32 i;
603
604         for (i = 0; i < agg_bufs; i++) {
605                 u16 cons;
606                 struct rx_agg_cmp *agg;
607                 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
608                 struct rx_bd *prod_bd;
609                 struct page *page;
610
611                 agg = (struct rx_agg_cmp *)
612                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
613                 cons = agg->rx_agg_cmp_opaque;
614                 __clear_bit(cons, rxr->rx_agg_bmap);
615
616                 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
617                         sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
618
619                 __set_bit(sw_prod, rxr->rx_agg_bmap);
620                 prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
621                 cons_rx_buf = &rxr->rx_agg_ring[cons];
622
623                 /* It is possible for sw_prod to be equal to cons, so
624                  * set cons_rx_buf->page to NULL first.
625                  */
626                 page = cons_rx_buf->page;
627                 cons_rx_buf->page = NULL;
628                 prod_rx_buf->page = page;
629
630                 prod_rx_buf->mapping = cons_rx_buf->mapping;
631
632                 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
633
634                 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
635                 prod_bd->rx_bd_opaque = sw_prod;
636
637                 prod = NEXT_RX_AGG(prod);
638                 sw_prod = NEXT_RX_AGG(sw_prod);
639                 cp_cons = NEXT_CMP(cp_cons);
640         }
641         rxr->rx_agg_prod = prod;
642         rxr->rx_sw_agg_prod = sw_prod;
643 }
644
645 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
646                                    struct bnxt_rx_ring_info *rxr, u16 cons,
647                                    u16 prod, u8 *data, dma_addr_t dma_addr,
648                                    unsigned int len)
649 {
650         int err;
651         struct sk_buff *skb;
652
653         err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
654         if (unlikely(err)) {
655                 bnxt_reuse_rx_data(rxr, cons, data);
656                 return NULL;
657         }
658
659         skb = build_skb(data, 0);
660         dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
661                          PCI_DMA_FROMDEVICE);
662         if (!skb) {
663                 kfree(data);
664                 return NULL;
665         }
666
667         skb_reserve(skb, BNXT_RX_OFFSET);
668         skb_put(skb, len);
669         return skb;
670 }
671
672 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
673                                      struct sk_buff *skb, u16 cp_cons,
674                                      u32 agg_bufs)
675 {
676         struct pci_dev *pdev = bp->pdev;
677         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
678         struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring;
679         u16 prod = rxr->rx_agg_prod;
680         u32 i;
681
682         for (i = 0; i < agg_bufs; i++) {
683                 u16 cons, frag_len;
684                 struct rx_agg_cmp *agg;
685                 struct bnxt_sw_rx_agg_bd *cons_rx_buf;
686                 struct page *page;
687                 dma_addr_t mapping;
688
689                 agg = (struct rx_agg_cmp *)
690                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
691                 cons = agg->rx_agg_cmp_opaque;
692                 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
693                             RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
694
695                 cons_rx_buf = &rxr->rx_agg_ring[cons];
696                 skb_fill_page_desc(skb, i, cons_rx_buf->page, 0, frag_len);
697                 __clear_bit(cons, rxr->rx_agg_bmap);
698
699                 /* It is possible for bnxt_alloc_rx_page() to allocate
700                  * a sw_prod index that equals the cons index, so we
701                  * need to clear the cons entry now.
702                  */
703                 mapping = dma_unmap_addr(cons_rx_buf, mapping);
704                 page = cons_rx_buf->page;
705                 cons_rx_buf->page = NULL;
706
707                 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
708                         struct skb_shared_info *shinfo;
709                         unsigned int nr_frags;
710
711                         shinfo = skb_shinfo(skb);
712                         nr_frags = --shinfo->nr_frags;
713                         __skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
714
715                         dev_kfree_skb(skb);
716
717                         cons_rx_buf->page = page;
718
719                         /* Update prod since possibly some pages have been
720                          * allocated already.
721                          */
722                         rxr->rx_agg_prod = prod;
723                         bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
724                         return NULL;
725                 }
726
727                 dma_unmap_page(&pdev->dev, mapping, PAGE_SIZE,
728                                PCI_DMA_FROMDEVICE);
729
730                 skb->data_len += frag_len;
731                 skb->len += frag_len;
732                 skb->truesize += PAGE_SIZE;
733
734                 prod = NEXT_RX_AGG(prod);
735                 cp_cons = NEXT_CMP(cp_cons);
736         }
737         rxr->rx_agg_prod = prod;
738         return skb;
739 }
740
741 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
742                                u8 agg_bufs, u32 *raw_cons)
743 {
744         u16 last;
745         struct rx_agg_cmp *agg;
746
747         *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
748         last = RING_CMP(*raw_cons);
749         agg = (struct rx_agg_cmp *)
750                 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
751         return RX_AGG_CMP_VALID(agg, *raw_cons);
752 }
753
754 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
755                                             unsigned int len,
756                                             dma_addr_t mapping)
757 {
758         struct bnxt *bp = bnapi->bp;
759         struct pci_dev *pdev = bp->pdev;
760         struct sk_buff *skb;
761
762         skb = napi_alloc_skb(&bnapi->napi, len);
763         if (!skb)
764                 return NULL;
765
766         dma_sync_single_for_cpu(&pdev->dev, mapping,
767                                 bp->rx_copy_thresh, PCI_DMA_FROMDEVICE);
768
769         memcpy(skb->data - BNXT_RX_OFFSET, data, len + BNXT_RX_OFFSET);
770
771         dma_sync_single_for_device(&pdev->dev, mapping,
772                                    bp->rx_copy_thresh,
773                                    PCI_DMA_FROMDEVICE);
774
775         skb_put(skb, len);
776         return skb;
777 }
778
779 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
780                            struct rx_tpa_start_cmp *tpa_start,
781                            struct rx_tpa_start_cmp_ext *tpa_start1)
782 {
783         u8 agg_id = TPA_START_AGG_ID(tpa_start);
784         u16 cons, prod;
785         struct bnxt_tpa_info *tpa_info;
786         struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
787         struct rx_bd *prod_bd;
788         dma_addr_t mapping;
789
790         cons = tpa_start->rx_tpa_start_cmp_opaque;
791         prod = rxr->rx_prod;
792         cons_rx_buf = &rxr->rx_buf_ring[cons];
793         prod_rx_buf = &rxr->rx_buf_ring[prod];
794         tpa_info = &rxr->rx_tpa[agg_id];
795
796         prod_rx_buf->data = tpa_info->data;
797
798         mapping = tpa_info->mapping;
799         dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
800
801         prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
802
803         prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
804
805         tpa_info->data = cons_rx_buf->data;
806         cons_rx_buf->data = NULL;
807         tpa_info->mapping = dma_unmap_addr(cons_rx_buf, mapping);
808
809         tpa_info->len =
810                 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
811                                 RX_TPA_START_CMP_LEN_SHIFT;
812         if (likely(TPA_START_HASH_VALID(tpa_start))) {
813                 u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
814
815                 tpa_info->hash_type = PKT_HASH_TYPE_L4;
816                 tpa_info->gso_type = SKB_GSO_TCPV4;
817                 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
818                 if (hash_type == 3)
819                         tpa_info->gso_type = SKB_GSO_TCPV6;
820                 tpa_info->rss_hash =
821                         le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
822         } else {
823                 tpa_info->hash_type = PKT_HASH_TYPE_NONE;
824                 tpa_info->gso_type = 0;
825                 if (netif_msg_rx_err(bp))
826                         netdev_warn(bp->dev, "TPA packet without valid hash\n");
827         }
828         tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
829         tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
830
831         rxr->rx_prod = NEXT_RX(prod);
832         cons = NEXT_RX(cons);
833         cons_rx_buf = &rxr->rx_buf_ring[cons];
834
835         bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
836         rxr->rx_prod = NEXT_RX(rxr->rx_prod);
837         cons_rx_buf->data = NULL;
838 }
839
840 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
841                            u16 cp_cons, u32 agg_bufs)
842 {
843         if (agg_bufs)
844                 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
845 }
846
847 #define BNXT_IPV4_HDR_SIZE      (sizeof(struct iphdr) + sizeof(struct tcphdr))
848 #define BNXT_IPV6_HDR_SIZE      (sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
849
850 static inline struct sk_buff *bnxt_gro_skb(struct bnxt_tpa_info *tpa_info,
851                                            struct rx_tpa_end_cmp *tpa_end,
852                                            struct rx_tpa_end_cmp_ext *tpa_end1,
853                                            struct sk_buff *skb)
854 {
855 #ifdef CONFIG_INET
856         struct tcphdr *th;
857         int payload_off, tcp_opt_len = 0;
858         int len, nw_off;
859
860         NAPI_GRO_CB(skb)->count = TPA_END_TPA_SEGS(tpa_end);
861         skb_shinfo(skb)->gso_size =
862                 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
863         skb_shinfo(skb)->gso_type = tpa_info->gso_type;
864         payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
865                        RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
866                       RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
867         if (TPA_END_GRO_TS(tpa_end))
868                 tcp_opt_len = 12;
869
870         if (tpa_info->gso_type == SKB_GSO_TCPV4) {
871                 struct iphdr *iph;
872
873                 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
874                          ETH_HLEN;
875                 skb_set_network_header(skb, nw_off);
876                 iph = ip_hdr(skb);
877                 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
878                 len = skb->len - skb_transport_offset(skb);
879                 th = tcp_hdr(skb);
880                 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
881         } else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
882                 struct ipv6hdr *iph;
883
884                 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
885                          ETH_HLEN;
886                 skb_set_network_header(skb, nw_off);
887                 iph = ipv6_hdr(skb);
888                 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
889                 len = skb->len - skb_transport_offset(skb);
890                 th = tcp_hdr(skb);
891                 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
892         } else {
893                 dev_kfree_skb_any(skb);
894                 return NULL;
895         }
896         tcp_gro_complete(skb);
897
898         if (nw_off) { /* tunnel */
899                 struct udphdr *uh = NULL;
900
901                 if (skb->protocol == htons(ETH_P_IP)) {
902                         struct iphdr *iph = (struct iphdr *)skb->data;
903
904                         if (iph->protocol == IPPROTO_UDP)
905                                 uh = (struct udphdr *)(iph + 1);
906                 } else {
907                         struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
908
909                         if (iph->nexthdr == IPPROTO_UDP)
910                                 uh = (struct udphdr *)(iph + 1);
911                 }
912                 if (uh) {
913                         if (uh->check)
914                                 skb_shinfo(skb)->gso_type |=
915                                         SKB_GSO_UDP_TUNNEL_CSUM;
916                         else
917                                 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
918                 }
919         }
920 #endif
921         return skb;
922 }
923
924 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
925                                            struct bnxt_napi *bnapi,
926                                            u32 *raw_cons,
927                                            struct rx_tpa_end_cmp *tpa_end,
928                                            struct rx_tpa_end_cmp_ext *tpa_end1,
929                                            bool *agg_event)
930 {
931         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
932         struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring;
933         u8 agg_id = TPA_END_AGG_ID(tpa_end);
934         u8 *data, agg_bufs;
935         u16 cp_cons = RING_CMP(*raw_cons);
936         unsigned int len;
937         struct bnxt_tpa_info *tpa_info;
938         dma_addr_t mapping;
939         struct sk_buff *skb;
940
941         tpa_info = &rxr->rx_tpa[agg_id];
942         data = tpa_info->data;
943         prefetch(data);
944         len = tpa_info->len;
945         mapping = tpa_info->mapping;
946
947         agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
948                     RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
949
950         if (agg_bufs) {
951                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
952                         return ERR_PTR(-EBUSY);
953
954                 *agg_event = true;
955                 cp_cons = NEXT_CMP(cp_cons);
956         }
957
958         if (unlikely(agg_bufs > MAX_SKB_FRAGS)) {
959                 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
960                 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
961                             agg_bufs, (int)MAX_SKB_FRAGS);
962                 return NULL;
963         }
964
965         if (len <= bp->rx_copy_thresh) {
966                 skb = bnxt_copy_skb(bnapi, data, len, mapping);
967                 if (!skb) {
968                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
969                         return NULL;
970                 }
971         } else {
972                 u8 *new_data;
973                 dma_addr_t new_mapping;
974
975                 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
976                 if (!new_data) {
977                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
978                         return NULL;
979                 }
980
981                 tpa_info->data = new_data;
982                 tpa_info->mapping = new_mapping;
983
984                 skb = build_skb(data, 0);
985                 dma_unmap_single(&bp->pdev->dev, mapping, bp->rx_buf_use_size,
986                                  PCI_DMA_FROMDEVICE);
987
988                 if (!skb) {
989                         kfree(data);
990                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
991                         return NULL;
992                 }
993                 skb_reserve(skb, BNXT_RX_OFFSET);
994                 skb_put(skb, len);
995         }
996
997         if (agg_bufs) {
998                 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
999                 if (!skb) {
1000                         /* Page reuse already handled by bnxt_rx_pages(). */
1001                         return NULL;
1002                 }
1003         }
1004         skb->protocol = eth_type_trans(skb, bp->dev);
1005
1006         if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1007                 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1008
1009         if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) {
1010                 netdev_features_t features = skb->dev->features;
1011                 u16 vlan_proto = tpa_info->metadata >>
1012                         RX_CMP_FLAGS2_METADATA_TPID_SFT;
1013
1014                 if (((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1015                      vlan_proto == ETH_P_8021Q) ||
1016                     ((features & NETIF_F_HW_VLAN_STAG_RX) &&
1017                      vlan_proto == ETH_P_8021AD)) {
1018                         __vlan_hwaccel_put_tag(skb, htons(vlan_proto),
1019                                                tpa_info->metadata &
1020                                                RX_CMP_FLAGS2_METADATA_VID_MASK);
1021                 }
1022         }
1023
1024         skb_checksum_none_assert(skb);
1025         if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1026                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1027                 skb->csum_level =
1028                         (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1029         }
1030
1031         if (TPA_END_GRO(tpa_end))
1032                 skb = bnxt_gro_skb(tpa_info, tpa_end, tpa_end1, skb);
1033
1034         return skb;
1035 }
1036
1037 /* returns the following:
1038  * 1       - 1 packet successfully received
1039  * 0       - successful TPA_START, packet not completed yet
1040  * -EBUSY  - completion ring does not have all the agg buffers yet
1041  * -ENOMEM - packet aborted due to out of memory
1042  * -EIO    - packet aborted due to hw error indicated in BD
1043  */
1044 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1045                        bool *agg_event)
1046 {
1047         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1048         struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring;
1049         struct net_device *dev = bp->dev;
1050         struct rx_cmp *rxcmp;
1051         struct rx_cmp_ext *rxcmp1;
1052         u32 tmp_raw_cons = *raw_cons;
1053         u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1054         struct bnxt_sw_rx_bd *rx_buf;
1055         unsigned int len;
1056         u8 *data, agg_bufs, cmp_type;
1057         dma_addr_t dma_addr;
1058         struct sk_buff *skb;
1059         int rc = 0;
1060
1061         rxcmp = (struct rx_cmp *)
1062                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1063
1064         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1065         cp_cons = RING_CMP(tmp_raw_cons);
1066         rxcmp1 = (struct rx_cmp_ext *)
1067                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1068
1069         if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1070                 return -EBUSY;
1071
1072         cmp_type = RX_CMP_TYPE(rxcmp);
1073
1074         prod = rxr->rx_prod;
1075
1076         if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1077                 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1078                                (struct rx_tpa_start_cmp_ext *)rxcmp1);
1079
1080                 goto next_rx_no_prod;
1081
1082         } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1083                 skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1084                                    (struct rx_tpa_end_cmp *)rxcmp,
1085                                    (struct rx_tpa_end_cmp_ext *)rxcmp1,
1086                                    agg_event);
1087
1088                 if (unlikely(IS_ERR(skb)))
1089                         return -EBUSY;
1090
1091                 rc = -ENOMEM;
1092                 if (likely(skb)) {
1093                         skb_record_rx_queue(skb, bnapi->index);
1094                         skb_mark_napi_id(skb, &bnapi->napi);
1095                         if (bnxt_busy_polling(bnapi))
1096                                 netif_receive_skb(skb);
1097                         else
1098                                 napi_gro_receive(&bnapi->napi, skb);
1099                         rc = 1;
1100                 }
1101                 goto next_rx_no_prod;
1102         }
1103
1104         cons = rxcmp->rx_cmp_opaque;
1105         rx_buf = &rxr->rx_buf_ring[cons];
1106         data = rx_buf->data;
1107         prefetch(data);
1108
1109         agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & RX_CMP_AGG_BUFS) >>
1110                                 RX_CMP_AGG_BUFS_SHIFT;
1111
1112         if (agg_bufs) {
1113                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1114                         return -EBUSY;
1115
1116                 cp_cons = NEXT_CMP(cp_cons);
1117                 *agg_event = true;
1118         }
1119
1120         rx_buf->data = NULL;
1121         if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1122                 bnxt_reuse_rx_data(rxr, cons, data);
1123                 if (agg_bufs)
1124                         bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1125
1126                 rc = -EIO;
1127                 goto next_rx;
1128         }
1129
1130         len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1131         dma_addr = dma_unmap_addr(rx_buf, mapping);
1132
1133         if (len <= bp->rx_copy_thresh) {
1134                 skb = bnxt_copy_skb(bnapi, data, len, dma_addr);
1135                 bnxt_reuse_rx_data(rxr, cons, data);
1136                 if (!skb) {
1137                         rc = -ENOMEM;
1138                         goto next_rx;
1139                 }
1140         } else {
1141                 skb = bnxt_rx_skb(bp, rxr, cons, prod, data, dma_addr, len);
1142                 if (!skb) {
1143                         rc = -ENOMEM;
1144                         goto next_rx;
1145                 }
1146         }
1147
1148         if (agg_bufs) {
1149                 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1150                 if (!skb) {
1151                         rc = -ENOMEM;
1152                         goto next_rx;
1153                 }
1154         }
1155
1156         if (RX_CMP_HASH_VALID(rxcmp)) {
1157                 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1158                 enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1159
1160                 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1161                 if (hash_type != 1 && hash_type != 3)
1162                         type = PKT_HASH_TYPE_L3;
1163                 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1164         }
1165
1166         skb->protocol = eth_type_trans(skb, dev);
1167
1168         if (rxcmp1->rx_cmp_flags2 &
1169             cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) {
1170                 netdev_features_t features = skb->dev->features;
1171                 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1172                 u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1173
1174                 if (((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1175                      vlan_proto == ETH_P_8021Q) ||
1176                     ((features & NETIF_F_HW_VLAN_STAG_RX) &&
1177                      vlan_proto == ETH_P_8021AD))
1178                         __vlan_hwaccel_put_tag(skb, htons(vlan_proto),
1179                                                meta_data &
1180                                                RX_CMP_FLAGS2_METADATA_VID_MASK);
1181         }
1182
1183         skb_checksum_none_assert(skb);
1184         if (RX_CMP_L4_CS_OK(rxcmp1)) {
1185                 if (dev->features & NETIF_F_RXCSUM) {
1186                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1187                         skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1188                 }
1189         } else {
1190                 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS)
1191                         cpr->rx_l4_csum_errors++;
1192         }
1193
1194         skb_record_rx_queue(skb, bnapi->index);
1195         skb_mark_napi_id(skb, &bnapi->napi);
1196         if (bnxt_busy_polling(bnapi))
1197                 netif_receive_skb(skb);
1198         else
1199                 napi_gro_receive(&bnapi->napi, skb);
1200         rc = 1;
1201
1202 next_rx:
1203         rxr->rx_prod = NEXT_RX(prod);
1204
1205 next_rx_no_prod:
1206         *raw_cons = tmp_raw_cons;
1207
1208         return rc;
1209 }
1210
1211 static int bnxt_async_event_process(struct bnxt *bp,
1212                                     struct hwrm_async_event_cmpl *cmpl)
1213 {
1214         u16 event_id = le16_to_cpu(cmpl->event_id);
1215
1216         /* TODO CHIMP_FW: Define event id's for link change, error etc */
1217         switch (event_id) {
1218         case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1219                 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1220                 schedule_work(&bp->sp_task);
1221                 break;
1222         default:
1223                 netdev_err(bp->dev, "unhandled ASYNC event (id 0x%x)\n",
1224                            event_id);
1225                 break;
1226         }
1227         return 0;
1228 }
1229
1230 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1231 {
1232         u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1233         struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1234         struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1235                                 (struct hwrm_fwd_req_cmpl *)txcmp;
1236
1237         switch (cmpl_type) {
1238         case CMPL_BASE_TYPE_HWRM_DONE:
1239                 seq_id = le16_to_cpu(h_cmpl->sequence_id);
1240                 if (seq_id == bp->hwrm_intr_seq_id)
1241                         bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1242                 else
1243                         netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1244                 break;
1245
1246         case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1247                 vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1248
1249                 if ((vf_id < bp->pf.first_vf_id) ||
1250                     (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1251                         netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1252                                    vf_id);
1253                         return -EINVAL;
1254                 }
1255
1256                 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1257                 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1258                 schedule_work(&bp->sp_task);
1259                 break;
1260
1261         case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1262                 bnxt_async_event_process(bp,
1263                                          (struct hwrm_async_event_cmpl *)txcmp);
1264
1265         default:
1266                 break;
1267         }
1268
1269         return 0;
1270 }
1271
1272 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1273 {
1274         struct bnxt_napi *bnapi = dev_instance;
1275         struct bnxt *bp = bnapi->bp;
1276         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1277         u32 cons = RING_CMP(cpr->cp_raw_cons);
1278
1279         prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1280         napi_schedule(&bnapi->napi);
1281         return IRQ_HANDLED;
1282 }
1283
1284 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1285 {
1286         u32 raw_cons = cpr->cp_raw_cons;
1287         u16 cons = RING_CMP(raw_cons);
1288         struct tx_cmp *txcmp;
1289
1290         txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1291
1292         return TX_CMP_VALID(txcmp, raw_cons);
1293 }
1294
1295 #define CAG_LEGACY_INT_STATUS   0x2014
1296
1297 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1298 {
1299         struct bnxt_napi *bnapi = dev_instance;
1300         struct bnxt *bp = bnapi->bp;
1301         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1302         u32 cons = RING_CMP(cpr->cp_raw_cons);
1303         u32 int_status;
1304
1305         prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1306
1307         if (!bnxt_has_work(bp, cpr)) {
1308                 int_status = readl(bp->bar0 + CAG_LEGACY_INT_STATUS);
1309                 /* return if erroneous interrupt */
1310                 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1311                         return IRQ_NONE;
1312         }
1313
1314         /* disable ring IRQ */
1315         BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1316
1317         /* Return here if interrupt is shared and is disabled. */
1318         if (unlikely(atomic_read(&bp->intr_sem) != 0))
1319                 return IRQ_HANDLED;
1320
1321         napi_schedule(&bnapi->napi);
1322         return IRQ_HANDLED;
1323 }
1324
1325 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1326 {
1327         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1328         u32 raw_cons = cpr->cp_raw_cons;
1329         u32 cons;
1330         int tx_pkts = 0;
1331         int rx_pkts = 0;
1332         bool rx_event = false;
1333         bool agg_event = false;
1334         struct tx_cmp *txcmp;
1335
1336         while (1) {
1337                 int rc;
1338
1339                 cons = RING_CMP(raw_cons);
1340                 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1341
1342                 if (!TX_CMP_VALID(txcmp, raw_cons))
1343                         break;
1344
1345                 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1346                         tx_pkts++;
1347                         /* return full budget so NAPI will complete. */
1348                         if (unlikely(tx_pkts > bp->tx_wake_thresh))
1349                                 rx_pkts = budget;
1350                 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1351                         rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &agg_event);
1352                         if (likely(rc >= 0))
1353                                 rx_pkts += rc;
1354                         else if (rc == -EBUSY)  /* partial completion */
1355                                 break;
1356                         rx_event = true;
1357                 } else if (unlikely((TX_CMP_TYPE(txcmp) ==
1358                                      CMPL_BASE_TYPE_HWRM_DONE) ||
1359                                     (TX_CMP_TYPE(txcmp) ==
1360                                      CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1361                                     (TX_CMP_TYPE(txcmp) ==
1362                                      CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1363                         bnxt_hwrm_handler(bp, txcmp);
1364                 }
1365                 raw_cons = NEXT_RAW_CMP(raw_cons);
1366
1367                 if (rx_pkts == budget)
1368                         break;
1369         }
1370
1371         cpr->cp_raw_cons = raw_cons;
1372         /* ACK completion ring before freeing tx ring and producing new
1373          * buffers in rx/agg rings to prevent overflowing the completion
1374          * ring.
1375          */
1376         BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1377
1378         if (tx_pkts)
1379                 bnxt_tx_int(bp, bnapi, tx_pkts);
1380
1381         if (rx_event) {
1382                 struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring;
1383
1384                 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1385                 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1386                 if (agg_event) {
1387                         writel(DB_KEY_RX | rxr->rx_agg_prod,
1388                                rxr->rx_agg_doorbell);
1389                         writel(DB_KEY_RX | rxr->rx_agg_prod,
1390                                rxr->rx_agg_doorbell);
1391                 }
1392         }
1393         return rx_pkts;
1394 }
1395
1396 static int bnxt_poll(struct napi_struct *napi, int budget)
1397 {
1398         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1399         struct bnxt *bp = bnapi->bp;
1400         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1401         int work_done = 0;
1402
1403         if (!bnxt_lock_napi(bnapi))
1404                 return budget;
1405
1406         while (1) {
1407                 work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
1408
1409                 if (work_done >= budget)
1410                         break;
1411
1412                 if (!bnxt_has_work(bp, cpr)) {
1413                         napi_complete(napi);
1414                         BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1415                         break;
1416                 }
1417         }
1418         mmiowb();
1419         bnxt_unlock_napi(bnapi);
1420         return work_done;
1421 }
1422
1423 #ifdef CONFIG_NET_RX_BUSY_POLL
1424 static int bnxt_busy_poll(struct napi_struct *napi)
1425 {
1426         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1427         struct bnxt *bp = bnapi->bp;
1428         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1429         int rx_work, budget = 4;
1430
1431         if (atomic_read(&bp->intr_sem) != 0)
1432                 return LL_FLUSH_FAILED;
1433
1434         if (!bnxt_lock_poll(bnapi))
1435                 return LL_FLUSH_BUSY;
1436
1437         rx_work = bnxt_poll_work(bp, bnapi, budget);
1438
1439         BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1440
1441         bnxt_unlock_poll(bnapi);
1442         return rx_work;
1443 }
1444 #endif
1445
1446 static void bnxt_free_tx_skbs(struct bnxt *bp)
1447 {
1448         int i, max_idx;
1449         struct pci_dev *pdev = bp->pdev;
1450
1451         if (!bp->bnapi)
1452                 return;
1453
1454         max_idx = bp->tx_nr_pages * TX_DESC_CNT;
1455         for (i = 0; i < bp->tx_nr_rings; i++) {
1456                 struct bnxt_napi *bnapi = bp->bnapi[i];
1457                 struct bnxt_tx_ring_info *txr;
1458                 int j;
1459
1460                 if (!bnapi)
1461                         continue;
1462
1463                 txr = &bnapi->tx_ring;
1464                 for (j = 0; j < max_idx;) {
1465                         struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
1466                         struct sk_buff *skb = tx_buf->skb;
1467                         int k, last;
1468
1469                         if (!skb) {
1470                                 j++;
1471                                 continue;
1472                         }
1473
1474                         tx_buf->skb = NULL;
1475
1476                         if (tx_buf->is_push) {
1477                                 dev_kfree_skb(skb);
1478                                 j += 2;
1479                                 continue;
1480                         }
1481
1482                         dma_unmap_single(&pdev->dev,
1483                                          dma_unmap_addr(tx_buf, mapping),
1484                                          skb_headlen(skb),
1485                                          PCI_DMA_TODEVICE);
1486
1487                         last = tx_buf->nr_frags;
1488                         j += 2;
1489                         for (k = 0; k < last; k++, j = NEXT_TX(j)) {
1490                                 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
1491
1492                                 tx_buf = &txr->tx_buf_ring[j];
1493                                 dma_unmap_page(
1494                                         &pdev->dev,
1495                                         dma_unmap_addr(tx_buf, mapping),
1496                                         skb_frag_size(frag), PCI_DMA_TODEVICE);
1497                         }
1498                         dev_kfree_skb(skb);
1499                 }
1500                 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
1501         }
1502 }
1503
1504 static void bnxt_free_rx_skbs(struct bnxt *bp)
1505 {
1506         int i, max_idx, max_agg_idx;
1507         struct pci_dev *pdev = bp->pdev;
1508
1509         if (!bp->bnapi)
1510                 return;
1511
1512         max_idx = bp->rx_nr_pages * RX_DESC_CNT;
1513         max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
1514         for (i = 0; i < bp->rx_nr_rings; i++) {
1515                 struct bnxt_napi *bnapi = bp->bnapi[i];
1516                 struct bnxt_rx_ring_info *rxr;
1517                 int j;
1518
1519                 if (!bnapi)
1520                         continue;
1521
1522                 rxr = &bnapi->rx_ring;
1523
1524                 if (rxr->rx_tpa) {
1525                         for (j = 0; j < MAX_TPA; j++) {
1526                                 struct bnxt_tpa_info *tpa_info =
1527                                                         &rxr->rx_tpa[j];
1528                                 u8 *data = tpa_info->data;
1529
1530                                 if (!data)
1531                                         continue;
1532
1533                                 dma_unmap_single(
1534                                         &pdev->dev,
1535                                         dma_unmap_addr(tpa_info, mapping),
1536                                         bp->rx_buf_use_size,
1537                                         PCI_DMA_FROMDEVICE);
1538
1539                                 tpa_info->data = NULL;
1540
1541                                 kfree(data);
1542                         }
1543                 }
1544
1545                 for (j = 0; j < max_idx; j++) {
1546                         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
1547                         u8 *data = rx_buf->data;
1548
1549                         if (!data)
1550                                 continue;
1551
1552                         dma_unmap_single(&pdev->dev,
1553                                          dma_unmap_addr(rx_buf, mapping),
1554                                          bp->rx_buf_use_size,
1555                                          PCI_DMA_FROMDEVICE);
1556
1557                         rx_buf->data = NULL;
1558
1559                         kfree(data);
1560                 }
1561
1562                 for (j = 0; j < max_agg_idx; j++) {
1563                         struct bnxt_sw_rx_agg_bd *rx_agg_buf =
1564                                 &rxr->rx_agg_ring[j];
1565                         struct page *page = rx_agg_buf->page;
1566
1567                         if (!page)
1568                                 continue;
1569
1570                         dma_unmap_page(&pdev->dev,
1571                                        dma_unmap_addr(rx_agg_buf, mapping),
1572                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
1573
1574                         rx_agg_buf->page = NULL;
1575                         __clear_bit(j, rxr->rx_agg_bmap);
1576
1577                         __free_page(page);
1578                 }
1579         }
1580 }
1581
1582 static void bnxt_free_skbs(struct bnxt *bp)
1583 {
1584         bnxt_free_tx_skbs(bp);
1585         bnxt_free_rx_skbs(bp);
1586 }
1587
1588 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1589 {
1590         struct pci_dev *pdev = bp->pdev;
1591         int i;
1592
1593         for (i = 0; i < ring->nr_pages; i++) {
1594                 if (!ring->pg_arr[i])
1595                         continue;
1596
1597                 dma_free_coherent(&pdev->dev, ring->page_size,
1598                                   ring->pg_arr[i], ring->dma_arr[i]);
1599
1600                 ring->pg_arr[i] = NULL;
1601         }
1602         if (ring->pg_tbl) {
1603                 dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
1604                                   ring->pg_tbl, ring->pg_tbl_map);
1605                 ring->pg_tbl = NULL;
1606         }
1607         if (ring->vmem_size && *ring->vmem) {
1608                 vfree(*ring->vmem);
1609                 *ring->vmem = NULL;
1610         }
1611 }
1612
1613 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1614 {
1615         int i;
1616         struct pci_dev *pdev = bp->pdev;
1617
1618         if (ring->nr_pages > 1) {
1619                 ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
1620                                                   ring->nr_pages * 8,
1621                                                   &ring->pg_tbl_map,
1622                                                   GFP_KERNEL);
1623                 if (!ring->pg_tbl)
1624                         return -ENOMEM;
1625         }
1626
1627         for (i = 0; i < ring->nr_pages; i++) {
1628                 ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
1629                                                      ring->page_size,
1630                                                      &ring->dma_arr[i],
1631                                                      GFP_KERNEL);
1632                 if (!ring->pg_arr[i])
1633                         return -ENOMEM;
1634
1635                 if (ring->nr_pages > 1)
1636                         ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
1637         }
1638
1639         if (ring->vmem_size) {
1640                 *ring->vmem = vzalloc(ring->vmem_size);
1641                 if (!(*ring->vmem))
1642                         return -ENOMEM;
1643         }
1644         return 0;
1645 }
1646
1647 static void bnxt_free_rx_rings(struct bnxt *bp)
1648 {
1649         int i;
1650
1651         if (!bp->bnapi)
1652                 return;
1653
1654         for (i = 0; i < bp->rx_nr_rings; i++) {
1655                 struct bnxt_napi *bnapi = bp->bnapi[i];
1656                 struct bnxt_rx_ring_info *rxr;
1657                 struct bnxt_ring_struct *ring;
1658
1659                 if (!bnapi)
1660                         continue;
1661
1662                 rxr = &bnapi->rx_ring;
1663
1664                 kfree(rxr->rx_tpa);
1665                 rxr->rx_tpa = NULL;
1666
1667                 kfree(rxr->rx_agg_bmap);
1668                 rxr->rx_agg_bmap = NULL;
1669
1670                 ring = &rxr->rx_ring_struct;
1671                 bnxt_free_ring(bp, ring);
1672
1673                 ring = &rxr->rx_agg_ring_struct;
1674                 bnxt_free_ring(bp, ring);
1675         }
1676 }
1677
1678 static int bnxt_alloc_rx_rings(struct bnxt *bp)
1679 {
1680         int i, rc, agg_rings = 0, tpa_rings = 0;
1681
1682         if (bp->flags & BNXT_FLAG_AGG_RINGS)
1683                 agg_rings = 1;
1684
1685         if (bp->flags & BNXT_FLAG_TPA)
1686                 tpa_rings = 1;
1687
1688         for (i = 0; i < bp->rx_nr_rings; i++) {
1689                 struct bnxt_napi *bnapi = bp->bnapi[i];
1690                 struct bnxt_rx_ring_info *rxr;
1691                 struct bnxt_ring_struct *ring;
1692
1693                 if (!bnapi)
1694                         continue;
1695
1696                 rxr = &bnapi->rx_ring;
1697                 ring = &rxr->rx_ring_struct;
1698
1699                 rc = bnxt_alloc_ring(bp, ring);
1700                 if (rc)
1701                         return rc;
1702
1703                 if (agg_rings) {
1704                         u16 mem_size;
1705
1706                         ring = &rxr->rx_agg_ring_struct;
1707                         rc = bnxt_alloc_ring(bp, ring);
1708                         if (rc)
1709                                 return rc;
1710
1711                         rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
1712                         mem_size = rxr->rx_agg_bmap_size / 8;
1713                         rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
1714                         if (!rxr->rx_agg_bmap)
1715                                 return -ENOMEM;
1716
1717                         if (tpa_rings) {
1718                                 rxr->rx_tpa = kcalloc(MAX_TPA,
1719                                                 sizeof(struct bnxt_tpa_info),
1720                                                 GFP_KERNEL);
1721                                 if (!rxr->rx_tpa)
1722                                         return -ENOMEM;
1723                         }
1724                 }
1725         }
1726         return 0;
1727 }
1728
1729 static void bnxt_free_tx_rings(struct bnxt *bp)
1730 {
1731         int i;
1732         struct pci_dev *pdev = bp->pdev;
1733
1734         if (!bp->bnapi)
1735                 return;
1736
1737         for (i = 0; i < bp->tx_nr_rings; i++) {
1738                 struct bnxt_napi *bnapi = bp->bnapi[i];
1739                 struct bnxt_tx_ring_info *txr;
1740                 struct bnxt_ring_struct *ring;
1741
1742                 if (!bnapi)
1743                         continue;
1744
1745                 txr = &bnapi->tx_ring;
1746
1747                 if (txr->tx_push) {
1748                         dma_free_coherent(&pdev->dev, bp->tx_push_size,
1749                                           txr->tx_push, txr->tx_push_mapping);
1750                         txr->tx_push = NULL;
1751                 }
1752
1753                 ring = &txr->tx_ring_struct;
1754
1755                 bnxt_free_ring(bp, ring);
1756         }
1757 }
1758
1759 static int bnxt_alloc_tx_rings(struct bnxt *bp)
1760 {
1761         int i, j, rc;
1762         struct pci_dev *pdev = bp->pdev;
1763
1764         bp->tx_push_size = 0;
1765         if (bp->tx_push_thresh) {
1766                 int push_size;
1767
1768                 push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
1769                                         bp->tx_push_thresh);
1770
1771                 if (push_size > 128) {
1772                         push_size = 0;
1773                         bp->tx_push_thresh = 0;
1774                 }
1775
1776                 bp->tx_push_size = push_size;
1777         }
1778
1779         for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
1780                 struct bnxt_napi *bnapi = bp->bnapi[i];
1781                 struct bnxt_tx_ring_info *txr;
1782                 struct bnxt_ring_struct *ring;
1783
1784                 if (!bnapi)
1785                         continue;
1786
1787                 txr = &bnapi->tx_ring;
1788                 ring = &txr->tx_ring_struct;
1789
1790                 rc = bnxt_alloc_ring(bp, ring);
1791                 if (rc)
1792                         return rc;
1793
1794                 if (bp->tx_push_size) {
1795                         struct tx_bd *txbd;
1796                         dma_addr_t mapping;
1797
1798                         /* One pre-allocated DMA buffer to backup
1799                          * TX push operation
1800                          */
1801                         txr->tx_push = dma_alloc_coherent(&pdev->dev,
1802                                                 bp->tx_push_size,
1803                                                 &txr->tx_push_mapping,
1804                                                 GFP_KERNEL);
1805
1806                         if (!txr->tx_push)
1807                                 return -ENOMEM;
1808
1809                         txbd = &txr->tx_push->txbd1;
1810
1811                         mapping = txr->tx_push_mapping +
1812                                 sizeof(struct tx_push_bd);
1813                         txbd->tx_bd_haddr = cpu_to_le64(mapping);
1814
1815                         memset(txbd + 1, 0, sizeof(struct tx_bd_ext));
1816                 }
1817                 ring->queue_id = bp->q_info[j].queue_id;
1818                 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
1819                         j++;
1820         }
1821         return 0;
1822 }
1823
1824 static void bnxt_free_cp_rings(struct bnxt *bp)
1825 {
1826         int i;
1827
1828         if (!bp->bnapi)
1829                 return;
1830
1831         for (i = 0; i < bp->cp_nr_rings; i++) {
1832                 struct bnxt_napi *bnapi = bp->bnapi[i];
1833                 struct bnxt_cp_ring_info *cpr;
1834                 struct bnxt_ring_struct *ring;
1835
1836                 if (!bnapi)
1837                         continue;
1838
1839                 cpr = &bnapi->cp_ring;
1840                 ring = &cpr->cp_ring_struct;
1841
1842                 bnxt_free_ring(bp, ring);
1843         }
1844 }
1845
1846 static int bnxt_alloc_cp_rings(struct bnxt *bp)
1847 {
1848         int i, rc;
1849
1850         for (i = 0; i < bp->cp_nr_rings; i++) {
1851                 struct bnxt_napi *bnapi = bp->bnapi[i];
1852                 struct bnxt_cp_ring_info *cpr;
1853                 struct bnxt_ring_struct *ring;
1854
1855                 if (!bnapi)
1856                         continue;
1857
1858                 cpr = &bnapi->cp_ring;
1859                 ring = &cpr->cp_ring_struct;
1860
1861                 rc = bnxt_alloc_ring(bp, ring);
1862                 if (rc)
1863                         return rc;
1864         }
1865         return 0;
1866 }
1867
1868 static void bnxt_init_ring_struct(struct bnxt *bp)
1869 {
1870         int i;
1871
1872         for (i = 0; i < bp->cp_nr_rings; i++) {
1873                 struct bnxt_napi *bnapi = bp->bnapi[i];
1874                 struct bnxt_cp_ring_info *cpr;
1875                 struct bnxt_rx_ring_info *rxr;
1876                 struct bnxt_tx_ring_info *txr;
1877                 struct bnxt_ring_struct *ring;
1878
1879                 if (!bnapi)
1880                         continue;
1881
1882                 cpr = &bnapi->cp_ring;
1883                 ring = &cpr->cp_ring_struct;
1884                 ring->nr_pages = bp->cp_nr_pages;
1885                 ring->page_size = HW_CMPD_RING_SIZE;
1886                 ring->pg_arr = (void **)cpr->cp_desc_ring;
1887                 ring->dma_arr = cpr->cp_desc_mapping;
1888                 ring->vmem_size = 0;
1889
1890                 rxr = &bnapi->rx_ring;
1891                 ring = &rxr->rx_ring_struct;
1892                 ring->nr_pages = bp->rx_nr_pages;
1893                 ring->page_size = HW_RXBD_RING_SIZE;
1894                 ring->pg_arr = (void **)rxr->rx_desc_ring;
1895                 ring->dma_arr = rxr->rx_desc_mapping;
1896                 ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
1897                 ring->vmem = (void **)&rxr->rx_buf_ring;
1898
1899                 ring = &rxr->rx_agg_ring_struct;
1900                 ring->nr_pages = bp->rx_agg_nr_pages;
1901                 ring->page_size = HW_RXBD_RING_SIZE;
1902                 ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
1903                 ring->dma_arr = rxr->rx_agg_desc_mapping;
1904                 ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
1905                 ring->vmem = (void **)&rxr->rx_agg_ring;
1906
1907                 txr = &bnapi->tx_ring;
1908                 ring = &txr->tx_ring_struct;
1909                 ring->nr_pages = bp->tx_nr_pages;
1910                 ring->page_size = HW_RXBD_RING_SIZE;
1911                 ring->pg_arr = (void **)txr->tx_desc_ring;
1912                 ring->dma_arr = txr->tx_desc_mapping;
1913                 ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
1914                 ring->vmem = (void **)&txr->tx_buf_ring;
1915         }
1916 }
1917
1918 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
1919 {
1920         int i;
1921         u32 prod;
1922         struct rx_bd **rx_buf_ring;
1923
1924         rx_buf_ring = (struct rx_bd **)ring->pg_arr;
1925         for (i = 0, prod = 0; i < ring->nr_pages; i++) {
1926                 int j;
1927                 struct rx_bd *rxbd;
1928
1929                 rxbd = rx_buf_ring[i];
1930                 if (!rxbd)
1931                         continue;
1932
1933                 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
1934                         rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
1935                         rxbd->rx_bd_opaque = prod;
1936                 }
1937         }
1938 }
1939
1940 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
1941 {
1942         struct net_device *dev = bp->dev;
1943         struct bnxt_napi *bnapi = bp->bnapi[ring_nr];
1944         struct bnxt_rx_ring_info *rxr;
1945         struct bnxt_ring_struct *ring;
1946         u32 prod, type;
1947         int i;
1948
1949         if (!bnapi)
1950                 return -EINVAL;
1951
1952         type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
1953                 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
1954
1955         if (NET_IP_ALIGN == 2)
1956                 type |= RX_BD_FLAGS_SOP;
1957
1958         rxr = &bnapi->rx_ring;
1959         ring = &rxr->rx_ring_struct;
1960         bnxt_init_rxbd_pages(ring, type);
1961
1962         prod = rxr->rx_prod;
1963         for (i = 0; i < bp->rx_ring_size; i++) {
1964                 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
1965                         netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
1966                                     ring_nr, i, bp->rx_ring_size);
1967                         break;
1968                 }
1969                 prod = NEXT_RX(prod);
1970         }
1971         rxr->rx_prod = prod;
1972         ring->fw_ring_id = INVALID_HW_RING_ID;
1973
1974         if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
1975                 return 0;
1976
1977         ring = &rxr->rx_agg_ring_struct;
1978
1979         type = ((u32)PAGE_SIZE << RX_BD_LEN_SHIFT) |
1980                 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
1981
1982         bnxt_init_rxbd_pages(ring, type);
1983
1984         prod = rxr->rx_agg_prod;
1985         for (i = 0; i < bp->rx_agg_ring_size; i++) {
1986                 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
1987                         netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
1988                                     ring_nr, i, bp->rx_ring_size);
1989                         break;
1990                 }
1991                 prod = NEXT_RX_AGG(prod);
1992         }
1993         rxr->rx_agg_prod = prod;
1994         ring->fw_ring_id = INVALID_HW_RING_ID;
1995
1996         if (bp->flags & BNXT_FLAG_TPA) {
1997                 if (rxr->rx_tpa) {
1998                         u8 *data;
1999                         dma_addr_t mapping;
2000
2001                         for (i = 0; i < MAX_TPA; i++) {
2002                                 data = __bnxt_alloc_rx_data(bp, &mapping,
2003                                                             GFP_KERNEL);
2004                                 if (!data)
2005                                         return -ENOMEM;
2006
2007                                 rxr->rx_tpa[i].data = data;
2008                                 rxr->rx_tpa[i].mapping = mapping;
2009                         }
2010                 } else {
2011                         netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2012                         return -ENOMEM;
2013                 }
2014         }
2015
2016         return 0;
2017 }
2018
2019 static int bnxt_init_rx_rings(struct bnxt *bp)
2020 {
2021         int i, rc = 0;
2022
2023         for (i = 0; i < bp->rx_nr_rings; i++) {
2024                 rc = bnxt_init_one_rx_ring(bp, i);
2025                 if (rc)
2026                         break;
2027         }
2028
2029         return rc;
2030 }
2031
2032 static int bnxt_init_tx_rings(struct bnxt *bp)
2033 {
2034         u16 i;
2035
2036         bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2037                                    MAX_SKB_FRAGS + 1);
2038
2039         for (i = 0; i < bp->tx_nr_rings; i++) {
2040                 struct bnxt_napi *bnapi = bp->bnapi[i];
2041                 struct bnxt_tx_ring_info *txr = &bnapi->tx_ring;
2042                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2043
2044                 ring->fw_ring_id = INVALID_HW_RING_ID;
2045         }
2046
2047         return 0;
2048 }
2049
2050 static void bnxt_free_ring_grps(struct bnxt *bp)
2051 {
2052         kfree(bp->grp_info);
2053         bp->grp_info = NULL;
2054 }
2055
2056 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2057 {
2058         int i;
2059
2060         if (irq_re_init) {
2061                 bp->grp_info = kcalloc(bp->cp_nr_rings,
2062                                        sizeof(struct bnxt_ring_grp_info),
2063                                        GFP_KERNEL);
2064                 if (!bp->grp_info)
2065                         return -ENOMEM;
2066         }
2067         for (i = 0; i < bp->cp_nr_rings; i++) {
2068                 if (irq_re_init)
2069                         bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2070                 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2071                 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2072                 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2073                 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2074         }
2075         return 0;
2076 }
2077
2078 static void bnxt_free_vnics(struct bnxt *bp)
2079 {
2080         kfree(bp->vnic_info);
2081         bp->vnic_info = NULL;
2082         bp->nr_vnics = 0;
2083 }
2084
2085 static int bnxt_alloc_vnics(struct bnxt *bp)
2086 {
2087         int num_vnics = 1;
2088
2089 #ifdef CONFIG_RFS_ACCEL
2090         if (bp->flags & BNXT_FLAG_RFS)
2091                 num_vnics += bp->rx_nr_rings;
2092 #endif
2093
2094         bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2095                                 GFP_KERNEL);
2096         if (!bp->vnic_info)
2097                 return -ENOMEM;
2098
2099         bp->nr_vnics = num_vnics;
2100         return 0;
2101 }
2102
2103 static void bnxt_init_vnics(struct bnxt *bp)
2104 {
2105         int i;
2106
2107         for (i = 0; i < bp->nr_vnics; i++) {
2108                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2109
2110                 vnic->fw_vnic_id = INVALID_HW_RING_ID;
2111                 vnic->fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
2112                 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2113
2114                 if (bp->vnic_info[i].rss_hash_key) {
2115                         if (i == 0)
2116                                 prandom_bytes(vnic->rss_hash_key,
2117                                               HW_HASH_KEY_SIZE);
2118                         else
2119                                 memcpy(vnic->rss_hash_key,
2120                                        bp->vnic_info[0].rss_hash_key,
2121                                        HW_HASH_KEY_SIZE);
2122                 }
2123         }
2124 }
2125
2126 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2127 {
2128         int pages;
2129
2130         pages = ring_size / desc_per_pg;
2131
2132         if (!pages)
2133                 return 1;
2134
2135         pages++;
2136
2137         while (pages & (pages - 1))
2138                 pages++;
2139
2140         return pages;
2141 }
2142
2143 static void bnxt_set_tpa_flags(struct bnxt *bp)
2144 {
2145         bp->flags &= ~BNXT_FLAG_TPA;
2146         if (bp->dev->features & NETIF_F_LRO)
2147                 bp->flags |= BNXT_FLAG_LRO;
2148         if ((bp->dev->features & NETIF_F_GRO) && (bp->pdev->revision > 0))
2149                 bp->flags |= BNXT_FLAG_GRO;
2150 }
2151
2152 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2153  * be set on entry.
2154  */
2155 void bnxt_set_ring_params(struct bnxt *bp)
2156 {
2157         u32 ring_size, rx_size, rx_space;
2158         u32 agg_factor = 0, agg_ring_size = 0;
2159
2160         /* 8 for CRC and VLAN */
2161         rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2162
2163         rx_space = rx_size + NET_SKB_PAD +
2164                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2165
2166         bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2167         ring_size = bp->rx_ring_size;
2168         bp->rx_agg_ring_size = 0;
2169         bp->rx_agg_nr_pages = 0;
2170
2171         if (bp->flags & BNXT_FLAG_TPA)
2172                 agg_factor = 4;
2173
2174         bp->flags &= ~BNXT_FLAG_JUMBO;
2175         if (rx_space > PAGE_SIZE) {
2176                 u32 jumbo_factor;
2177
2178                 bp->flags |= BNXT_FLAG_JUMBO;
2179                 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2180                 if (jumbo_factor > agg_factor)
2181                         agg_factor = jumbo_factor;
2182         }
2183         agg_ring_size = ring_size * agg_factor;
2184
2185         if (agg_ring_size) {
2186                 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2187                                                         RX_DESC_CNT);
2188                 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2189                         u32 tmp = agg_ring_size;
2190
2191                         bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2192                         agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2193                         netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2194                                     tmp, agg_ring_size);
2195                 }
2196                 bp->rx_agg_ring_size = agg_ring_size;
2197                 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2198                 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2199                 rx_space = rx_size + NET_SKB_PAD +
2200                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2201         }
2202
2203         bp->rx_buf_use_size = rx_size;
2204         bp->rx_buf_size = rx_space;
2205
2206         bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2207         bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2208
2209         ring_size = bp->tx_ring_size;
2210         bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2211         bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2212
2213         ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2214         bp->cp_ring_size = ring_size;
2215
2216         bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2217         if (bp->cp_nr_pages > MAX_CP_PAGES) {
2218                 bp->cp_nr_pages = MAX_CP_PAGES;
2219                 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2220                 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2221                             ring_size, bp->cp_ring_size);
2222         }
2223         bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2224         bp->cp_ring_mask = bp->cp_bit - 1;
2225 }
2226
2227 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2228 {
2229         int i;
2230         struct bnxt_vnic_info *vnic;
2231         struct pci_dev *pdev = bp->pdev;
2232
2233         if (!bp->vnic_info)
2234                 return;
2235
2236         for (i = 0; i < bp->nr_vnics; i++) {
2237                 vnic = &bp->vnic_info[i];
2238
2239                 kfree(vnic->fw_grp_ids);
2240                 vnic->fw_grp_ids = NULL;
2241
2242                 kfree(vnic->uc_list);
2243                 vnic->uc_list = NULL;
2244
2245                 if (vnic->mc_list) {
2246                         dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2247                                           vnic->mc_list, vnic->mc_list_mapping);
2248                         vnic->mc_list = NULL;
2249                 }
2250
2251                 if (vnic->rss_table) {
2252                         dma_free_coherent(&pdev->dev, PAGE_SIZE,
2253                                           vnic->rss_table,
2254                                           vnic->rss_table_dma_addr);
2255                         vnic->rss_table = NULL;
2256                 }
2257
2258                 vnic->rss_hash_key = NULL;
2259                 vnic->flags = 0;
2260         }
2261 }
2262
2263 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2264 {
2265         int i, rc = 0, size;
2266         struct bnxt_vnic_info *vnic;
2267         struct pci_dev *pdev = bp->pdev;
2268         int max_rings;
2269
2270         for (i = 0; i < bp->nr_vnics; i++) {
2271                 vnic = &bp->vnic_info[i];
2272
2273                 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2274                         int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2275
2276                         if (mem_size > 0) {
2277                                 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2278                                 if (!vnic->uc_list) {
2279                                         rc = -ENOMEM;
2280                                         goto out;
2281                                 }
2282                         }
2283                 }
2284
2285                 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2286                         vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2287                         vnic->mc_list =
2288                                 dma_alloc_coherent(&pdev->dev,
2289                                                    vnic->mc_list_size,
2290                                                    &vnic->mc_list_mapping,
2291                                                    GFP_KERNEL);
2292                         if (!vnic->mc_list) {
2293                                 rc = -ENOMEM;
2294                                 goto out;
2295                         }
2296                 }
2297
2298                 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2299                         max_rings = bp->rx_nr_rings;
2300                 else
2301                         max_rings = 1;
2302
2303                 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2304                 if (!vnic->fw_grp_ids) {
2305                         rc = -ENOMEM;
2306                         goto out;
2307                 }
2308
2309                 /* Allocate rss table and hash key */
2310                 vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2311                                                      &vnic->rss_table_dma_addr,
2312                                                      GFP_KERNEL);
2313                 if (!vnic->rss_table) {
2314                         rc = -ENOMEM;
2315                         goto out;
2316                 }
2317
2318                 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2319
2320                 vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
2321                 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
2322         }
2323         return 0;
2324
2325 out:
2326         return rc;
2327 }
2328
2329 static void bnxt_free_hwrm_resources(struct bnxt *bp)
2330 {
2331         struct pci_dev *pdev = bp->pdev;
2332
2333         dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
2334                           bp->hwrm_cmd_resp_dma_addr);
2335
2336         bp->hwrm_cmd_resp_addr = NULL;
2337         if (bp->hwrm_dbg_resp_addr) {
2338                 dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
2339                                   bp->hwrm_dbg_resp_addr,
2340                                   bp->hwrm_dbg_resp_dma_addr);
2341
2342                 bp->hwrm_dbg_resp_addr = NULL;
2343         }
2344 }
2345
2346 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
2347 {
2348         struct pci_dev *pdev = bp->pdev;
2349
2350         bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2351                                                    &bp->hwrm_cmd_resp_dma_addr,
2352                                                    GFP_KERNEL);
2353         if (!bp->hwrm_cmd_resp_addr)
2354                 return -ENOMEM;
2355         bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
2356                                                     HWRM_DBG_REG_BUF_SIZE,
2357                                                     &bp->hwrm_dbg_resp_dma_addr,
2358                                                     GFP_KERNEL);
2359         if (!bp->hwrm_dbg_resp_addr)
2360                 netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
2361
2362         return 0;
2363 }
2364
2365 static void bnxt_free_stats(struct bnxt *bp)
2366 {
2367         u32 size, i;
2368         struct pci_dev *pdev = bp->pdev;
2369
2370         if (!bp->bnapi)
2371                 return;
2372
2373         size = sizeof(struct ctx_hw_stats);
2374
2375         for (i = 0; i < bp->cp_nr_rings; i++) {
2376                 struct bnxt_napi *bnapi = bp->bnapi[i];
2377                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2378
2379                 if (cpr->hw_stats) {
2380                         dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
2381                                           cpr->hw_stats_map);
2382                         cpr->hw_stats = NULL;
2383                 }
2384         }
2385 }
2386
2387 static int bnxt_alloc_stats(struct bnxt *bp)
2388 {
2389         u32 size, i;
2390         struct pci_dev *pdev = bp->pdev;
2391
2392         size = sizeof(struct ctx_hw_stats);
2393
2394         for (i = 0; i < bp->cp_nr_rings; i++) {
2395                 struct bnxt_napi *bnapi = bp->bnapi[i];
2396                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2397
2398                 cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
2399                                                    &cpr->hw_stats_map,
2400                                                    GFP_KERNEL);
2401                 if (!cpr->hw_stats)
2402                         return -ENOMEM;
2403
2404                 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
2405         }
2406         return 0;
2407 }
2408
2409 static void bnxt_clear_ring_indices(struct bnxt *bp)
2410 {
2411         int i;
2412
2413         if (!bp->bnapi)
2414                 return;
2415
2416         for (i = 0; i < bp->cp_nr_rings; i++) {
2417                 struct bnxt_napi *bnapi = bp->bnapi[i];
2418                 struct bnxt_cp_ring_info *cpr;
2419                 struct bnxt_rx_ring_info *rxr;
2420                 struct bnxt_tx_ring_info *txr;
2421
2422                 if (!bnapi)
2423                         continue;
2424
2425                 cpr = &bnapi->cp_ring;
2426                 cpr->cp_raw_cons = 0;
2427
2428                 txr = &bnapi->tx_ring;
2429                 txr->tx_prod = 0;
2430                 txr->tx_cons = 0;
2431
2432                 rxr = &bnapi->rx_ring;
2433                 rxr->rx_prod = 0;
2434                 rxr->rx_agg_prod = 0;
2435                 rxr->rx_sw_agg_prod = 0;
2436         }
2437 }
2438
2439 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
2440 {
2441 #ifdef CONFIG_RFS_ACCEL
2442         int i;
2443
2444         /* Under rtnl_lock and all our NAPIs have been disabled.  It's
2445          * safe to delete the hash table.
2446          */
2447         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
2448                 struct hlist_head *head;
2449                 struct hlist_node *tmp;
2450                 struct bnxt_ntuple_filter *fltr;
2451
2452                 head = &bp->ntp_fltr_hash_tbl[i];
2453                 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
2454                         hlist_del(&fltr->hash);
2455                         kfree(fltr);
2456                 }
2457         }
2458         if (irq_reinit) {
2459                 kfree(bp->ntp_fltr_bmap);
2460                 bp->ntp_fltr_bmap = NULL;
2461         }
2462         bp->ntp_fltr_count = 0;
2463 #endif
2464 }
2465
2466 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
2467 {
2468 #ifdef CONFIG_RFS_ACCEL
2469         int i, rc = 0;
2470
2471         if (!(bp->flags & BNXT_FLAG_RFS))
2472                 return 0;
2473
2474         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
2475                 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
2476
2477         bp->ntp_fltr_count = 0;
2478         bp->ntp_fltr_bmap = kzalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
2479                                     GFP_KERNEL);
2480
2481         if (!bp->ntp_fltr_bmap)
2482                 rc = -ENOMEM;
2483
2484         return rc;
2485 #else
2486         return 0;
2487 #endif
2488 }
2489
2490 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
2491 {
2492         bnxt_free_vnic_attributes(bp);
2493         bnxt_free_tx_rings(bp);
2494         bnxt_free_rx_rings(bp);
2495         bnxt_free_cp_rings(bp);
2496         bnxt_free_ntp_fltrs(bp, irq_re_init);
2497         if (irq_re_init) {
2498                 bnxt_free_stats(bp);
2499                 bnxt_free_ring_grps(bp);
2500                 bnxt_free_vnics(bp);
2501                 kfree(bp->bnapi);
2502                 bp->bnapi = NULL;
2503         } else {
2504                 bnxt_clear_ring_indices(bp);
2505         }
2506 }
2507
2508 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
2509 {
2510         int i, rc, size, arr_size;
2511         void *bnapi;
2512
2513         if (irq_re_init) {
2514                 /* Allocate bnapi mem pointer array and mem block for
2515                  * all queues
2516                  */
2517                 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
2518                                 bp->cp_nr_rings);
2519                 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
2520                 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
2521                 if (!bnapi)
2522                         return -ENOMEM;
2523
2524                 bp->bnapi = bnapi;
2525                 bnapi += arr_size;
2526                 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
2527                         bp->bnapi[i] = bnapi;
2528                         bp->bnapi[i]->index = i;
2529                         bp->bnapi[i]->bp = bp;
2530                 }
2531
2532                 rc = bnxt_alloc_stats(bp);
2533                 if (rc)
2534                         goto alloc_mem_err;
2535
2536                 rc = bnxt_alloc_ntp_fltrs(bp);
2537                 if (rc)
2538                         goto alloc_mem_err;
2539
2540                 rc = bnxt_alloc_vnics(bp);
2541                 if (rc)
2542                         goto alloc_mem_err;
2543         }
2544
2545         bnxt_init_ring_struct(bp);
2546
2547         rc = bnxt_alloc_rx_rings(bp);
2548         if (rc)
2549                 goto alloc_mem_err;
2550
2551         rc = bnxt_alloc_tx_rings(bp);
2552         if (rc)
2553                 goto alloc_mem_err;
2554
2555         rc = bnxt_alloc_cp_rings(bp);
2556         if (rc)
2557                 goto alloc_mem_err;
2558
2559         bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
2560                                   BNXT_VNIC_UCAST_FLAG;
2561         rc = bnxt_alloc_vnic_attributes(bp);
2562         if (rc)
2563                 goto alloc_mem_err;
2564         return 0;
2565
2566 alloc_mem_err:
2567         bnxt_free_mem(bp, true);
2568         return rc;
2569 }
2570
2571 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
2572                             u16 cmpl_ring, u16 target_id)
2573 {
2574         struct hwrm_cmd_req_hdr *req = request;
2575
2576         req->cmpl_ring_req_type =
2577                 cpu_to_le32(req_type | (cmpl_ring << HWRM_CMPL_RING_SFT));
2578         req->target_id_seq_id = cpu_to_le32(target_id << HWRM_TARGET_FID_SFT);
2579         req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
2580 }
2581
2582 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
2583 {
2584         int i, intr_process, rc;
2585         struct hwrm_cmd_req_hdr *req = msg;
2586         u32 *data = msg;
2587         __le32 *resp_len, *valid;
2588         u16 cp_ring_id, len = 0;
2589         struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
2590
2591         req->target_id_seq_id |= cpu_to_le32(bp->hwrm_cmd_seq++);
2592         memset(resp, 0, PAGE_SIZE);
2593         cp_ring_id = (le32_to_cpu(req->cmpl_ring_req_type) &
2594                       HWRM_CMPL_RING_MASK) >>
2595                      HWRM_CMPL_RING_SFT;
2596         intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
2597
2598         /* Write request msg to hwrm channel */
2599         __iowrite32_copy(bp->bar0, data, msg_len / 4);
2600
2601         /* currently supports only one outstanding message */
2602         if (intr_process)
2603                 bp->hwrm_intr_seq_id = le32_to_cpu(req->target_id_seq_id) &
2604                                        HWRM_SEQ_ID_MASK;
2605
2606         /* Ring channel doorbell */
2607         writel(1, bp->bar0 + 0x100);
2608
2609         i = 0;
2610         if (intr_process) {
2611                 /* Wait until hwrm response cmpl interrupt is processed */
2612                 while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
2613                        i++ < timeout) {
2614                         usleep_range(600, 800);
2615                 }
2616
2617                 if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
2618                         netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
2619                                    req->cmpl_ring_req_type);
2620                         return -1;
2621                 }
2622         } else {
2623                 /* Check if response len is updated */
2624                 resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
2625                 for (i = 0; i < timeout; i++) {
2626                         len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
2627                               HWRM_RESP_LEN_SFT;
2628                         if (len)
2629                                 break;
2630                         usleep_range(600, 800);
2631                 }
2632
2633                 if (i >= timeout) {
2634                         netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
2635                                    timeout, req->cmpl_ring_req_type,
2636                                    req->target_id_seq_id, *resp_len);
2637                         return -1;
2638                 }
2639
2640                 /* Last word of resp contains valid bit */
2641                 valid = bp->hwrm_cmd_resp_addr + len - 4;
2642                 for (i = 0; i < timeout; i++) {
2643                         if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK)
2644                                 break;
2645                         usleep_range(600, 800);
2646                 }
2647
2648                 if (i >= timeout) {
2649                         netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
2650                                    timeout, req->cmpl_ring_req_type,
2651                                    req->target_id_seq_id, len, *valid);
2652                         return -1;
2653                 }
2654         }
2655
2656         rc = le16_to_cpu(resp->error_code);
2657         if (rc) {
2658                 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
2659                            le16_to_cpu(resp->req_type),
2660                            le16_to_cpu(resp->seq_id), rc);
2661                 return rc;
2662         }
2663         return 0;
2664 }
2665
2666 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
2667 {
2668         int rc;
2669
2670         mutex_lock(&bp->hwrm_cmd_lock);
2671         rc = _hwrm_send_message(bp, msg, msg_len, timeout);
2672         mutex_unlock(&bp->hwrm_cmd_lock);
2673         return rc;
2674 }
2675
2676 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
2677 {
2678         struct hwrm_func_drv_rgtr_input req = {0};
2679         int i;
2680
2681         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
2682
2683         req.enables =
2684                 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
2685                             FUNC_DRV_RGTR_REQ_ENABLES_VER |
2686                             FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
2687
2688         /* TODO: current async event fwd bits are not defined and the firmware
2689          * only checks if it is non-zero to enable async event forwarding
2690          */
2691         req.async_event_fwd[0] |= cpu_to_le32(1);
2692         req.os_type = cpu_to_le16(1);
2693         req.ver_maj = DRV_VER_MAJ;
2694         req.ver_min = DRV_VER_MIN;
2695         req.ver_upd = DRV_VER_UPD;
2696
2697         if (BNXT_PF(bp)) {
2698                 unsigned long vf_req_snif_bmap[4];
2699                 u32 *data = (u32 *)vf_req_snif_bmap;
2700
2701                 memset(vf_req_snif_bmap, 0, 32);
2702                 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++)
2703                         __set_bit(bnxt_vf_req_snif[i], vf_req_snif_bmap);
2704
2705                 for (i = 0; i < 8; i++) {
2706                         req.vf_req_fwd[i] = cpu_to_le32(*data);
2707                         data++;
2708                 }
2709                 req.enables |=
2710                         cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
2711         }
2712
2713         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2714 }
2715
2716 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
2717 {
2718         u32 rc = 0;
2719         struct hwrm_tunnel_dst_port_free_input req = {0};
2720
2721         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
2722         req.tunnel_type = tunnel_type;
2723
2724         switch (tunnel_type) {
2725         case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
2726                 req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
2727                 break;
2728         case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
2729                 req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
2730                 break;
2731         default:
2732                 break;
2733         }
2734
2735         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2736         if (rc)
2737                 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
2738                            rc);
2739         return rc;
2740 }
2741
2742 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
2743                                            u8 tunnel_type)
2744 {
2745         u32 rc = 0;
2746         struct hwrm_tunnel_dst_port_alloc_input req = {0};
2747         struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
2748
2749         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
2750
2751         req.tunnel_type = tunnel_type;
2752         req.tunnel_dst_port_val = port;
2753
2754         mutex_lock(&bp->hwrm_cmd_lock);
2755         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2756         if (rc) {
2757                 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
2758                            rc);
2759                 goto err_out;
2760         }
2761
2762         if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN)
2763                 bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
2764
2765         else if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE)
2766                 bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
2767 err_out:
2768         mutex_unlock(&bp->hwrm_cmd_lock);
2769         return rc;
2770 }
2771
2772 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
2773 {
2774         struct hwrm_cfa_l2_set_rx_mask_input req = {0};
2775         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2776
2777         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
2778         req.dflt_vnic_id = cpu_to_le32(vnic->fw_vnic_id);
2779
2780         req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
2781         req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
2782         req.mask = cpu_to_le32(vnic->rx_mask);
2783         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2784 }
2785
2786 #ifdef CONFIG_RFS_ACCEL
2787 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
2788                                             struct bnxt_ntuple_filter *fltr)
2789 {
2790         struct hwrm_cfa_ntuple_filter_free_input req = {0};
2791
2792         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
2793         req.ntuple_filter_id = fltr->filter_id;
2794         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2795 }
2796
2797 #define BNXT_NTP_FLTR_FLAGS                                     \
2798         (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |     \
2799          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |        \
2800          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |      \
2801          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |      \
2802          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |       \
2803          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |  \
2804          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |       \
2805          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |  \
2806          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |      \
2807          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |         \
2808          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |    \
2809          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |         \
2810          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |    \
2811          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_VNIC_ID)
2812
2813 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
2814                                              struct bnxt_ntuple_filter *fltr)
2815 {
2816         int rc = 0;
2817         struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
2818         struct hwrm_cfa_ntuple_filter_alloc_output *resp =
2819                 bp->hwrm_cmd_resp_addr;
2820         struct flow_keys *keys = &fltr->fkeys;
2821         struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
2822
2823         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
2824         req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[0];
2825
2826         req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
2827
2828         req.ethertype = htons(ETH_P_IP);
2829         memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
2830         req.ipaddr_type = 4;
2831         req.ip_protocol = keys->basic.ip_proto;
2832
2833         req.src_ipaddr[0] = keys->addrs.v4addrs.src;
2834         req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
2835         req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
2836         req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
2837
2838         req.src_port = keys->ports.src;
2839         req.src_port_mask = cpu_to_be16(0xffff);
2840         req.dst_port = keys->ports.dst;
2841         req.dst_port_mask = cpu_to_be16(0xffff);
2842
2843         req.dst_vnic_id = cpu_to_le16(vnic->fw_vnic_id);
2844         mutex_lock(&bp->hwrm_cmd_lock);
2845         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2846         if (!rc)
2847                 fltr->filter_id = resp->ntuple_filter_id;
2848         mutex_unlock(&bp->hwrm_cmd_lock);
2849         return rc;
2850 }
2851 #endif
2852
2853 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
2854                                      u8 *mac_addr)
2855 {
2856         u32 rc = 0;
2857         struct hwrm_cfa_l2_filter_alloc_input req = {0};
2858         struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
2859
2860         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
2861         req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX |
2862                                 CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
2863         req.dst_vnic_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
2864         req.enables =
2865                 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
2866                             CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_VNIC_ID |
2867                             CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
2868         memcpy(req.l2_addr, mac_addr, ETH_ALEN);
2869         req.l2_addr_mask[0] = 0xff;
2870         req.l2_addr_mask[1] = 0xff;
2871         req.l2_addr_mask[2] = 0xff;
2872         req.l2_addr_mask[3] = 0xff;
2873         req.l2_addr_mask[4] = 0xff;
2874         req.l2_addr_mask[5] = 0xff;
2875
2876         mutex_lock(&bp->hwrm_cmd_lock);
2877         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2878         if (!rc)
2879                 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
2880                                                         resp->l2_filter_id;
2881         mutex_unlock(&bp->hwrm_cmd_lock);
2882         return rc;
2883 }
2884
2885 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
2886 {
2887         u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
2888         int rc = 0;
2889
2890         /* Any associated ntuple filters will also be cleared by firmware. */
2891         mutex_lock(&bp->hwrm_cmd_lock);
2892         for (i = 0; i < num_of_vnics; i++) {
2893                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2894
2895                 for (j = 0; j < vnic->uc_filter_count; j++) {
2896                         struct hwrm_cfa_l2_filter_free_input req = {0};
2897
2898                         bnxt_hwrm_cmd_hdr_init(bp, &req,
2899                                                HWRM_CFA_L2_FILTER_FREE, -1, -1);
2900
2901                         req.l2_filter_id = vnic->fw_l2_filter_id[j];
2902
2903                         rc = _hwrm_send_message(bp, &req, sizeof(req),
2904                                                 HWRM_CMD_TIMEOUT);
2905                 }
2906                 vnic->uc_filter_count = 0;
2907         }
2908         mutex_unlock(&bp->hwrm_cmd_lock);
2909
2910         return rc;
2911 }
2912
2913 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
2914 {
2915         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2916         struct hwrm_vnic_tpa_cfg_input req = {0};
2917
2918         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
2919
2920         if (tpa_flags) {
2921                 u16 mss = bp->dev->mtu - 40;
2922                 u32 nsegs, n, segs = 0, flags;
2923
2924                 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
2925                         VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
2926                         VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
2927                         VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
2928                         VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
2929                 if (tpa_flags & BNXT_FLAG_GRO)
2930                         flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
2931
2932                 req.flags = cpu_to_le32(flags);
2933
2934                 req.enables =
2935                         cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
2936                                     VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS);
2937
2938                 /* Number of segs are log2 units, and first packet is not
2939                  * included as part of this units.
2940                  */
2941                 if (mss <= PAGE_SIZE) {
2942                         n = PAGE_SIZE / mss;
2943                         nsegs = (MAX_SKB_FRAGS - 1) * n;
2944                 } else {
2945                         n = mss / PAGE_SIZE;
2946                         if (mss & (PAGE_SIZE - 1))
2947                                 n++;
2948                         nsegs = (MAX_SKB_FRAGS - n) / n;
2949                 }
2950
2951                 segs = ilog2(nsegs);
2952                 req.max_agg_segs = cpu_to_le16(segs);
2953                 req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
2954         }
2955         req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
2956
2957         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2958 }
2959
2960 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
2961 {
2962         u32 i, j, max_rings;
2963         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2964         struct hwrm_vnic_rss_cfg_input req = {0};
2965
2966         if (vnic->fw_rss_cos_lb_ctx == INVALID_HW_RING_ID)
2967                 return 0;
2968
2969         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
2970         if (set_rss) {
2971                 vnic->hash_type = BNXT_RSS_HASH_TYPE_FLAG_IPV4 |
2972                                  BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV4 |
2973                                  BNXT_RSS_HASH_TYPE_FLAG_IPV6 |
2974                                  BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV6;
2975
2976                 req.hash_type = cpu_to_le32(vnic->hash_type);
2977
2978                 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2979                         max_rings = bp->rx_nr_rings;
2980                 else
2981                         max_rings = 1;
2982
2983                 /* Fill the RSS indirection table with ring group ids */
2984                 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
2985                         if (j == max_rings)
2986                                 j = 0;
2987                         vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
2988                 }
2989
2990                 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
2991                 req.hash_key_tbl_addr =
2992                         cpu_to_le64(vnic->rss_hash_key_dma_addr);
2993         }
2994         req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx);
2995         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2996 }
2997
2998 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
2999 {
3000         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3001         struct hwrm_vnic_plcmodes_cfg_input req = {0};
3002
3003         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
3004         req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
3005                                 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
3006                                 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
3007         req.enables =
3008                 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
3009                             VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
3010         /* thresholds not implemented in firmware yet */
3011         req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
3012         req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
3013         req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3014         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3015 }
3016
3017 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id)
3018 {
3019         struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
3020
3021         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
3022         req.rss_cos_lb_ctx_id =
3023                 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx);
3024
3025         hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3026         bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
3027 }
3028
3029 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
3030 {
3031         int i;
3032
3033         for (i = 0; i < bp->nr_vnics; i++) {
3034                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3035
3036                 if (vnic->fw_rss_cos_lb_ctx != INVALID_HW_RING_ID)
3037                         bnxt_hwrm_vnic_ctx_free_one(bp, i);
3038         }
3039         bp->rsscos_nr_ctxs = 0;
3040 }
3041
3042 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id)
3043 {
3044         int rc;
3045         struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
3046         struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
3047                                                 bp->hwrm_cmd_resp_addr;
3048
3049         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
3050                                -1);
3051
3052         mutex_lock(&bp->hwrm_cmd_lock);
3053         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3054         if (!rc)
3055                 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx =
3056                         le16_to_cpu(resp->rss_cos_lb_ctx_id);
3057         mutex_unlock(&bp->hwrm_cmd_lock);
3058
3059         return rc;
3060 }
3061
3062 static int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
3063 {
3064         int grp_idx = 0;
3065         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3066         struct hwrm_vnic_cfg_input req = {0};
3067
3068         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
3069         /* Only RSS support for now TBD: COS & LB */
3070         req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP |
3071                                   VNIC_CFG_REQ_ENABLES_RSS_RULE);
3072         req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx);
3073         req.cos_rule = cpu_to_le16(0xffff);
3074         if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3075                 grp_idx = 0;
3076         else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
3077                 grp_idx = vnic_id - 1;
3078
3079         req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3080         req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
3081
3082         req.lb_rule = cpu_to_le16(0xffff);
3083         req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
3084                               VLAN_HLEN);
3085
3086         if (bp->flags & BNXT_FLAG_STRIP_VLAN)
3087                 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
3088
3089         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3090 }
3091
3092 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
3093 {
3094         u32 rc = 0;
3095
3096         if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
3097                 struct hwrm_vnic_free_input req = {0};
3098
3099                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
3100                 req.vnic_id =
3101                         cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
3102
3103                 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3104                 if (rc)
3105                         return rc;
3106                 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
3107         }
3108         return rc;
3109 }
3110
3111 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
3112 {
3113         u16 i;
3114
3115         for (i = 0; i < bp->nr_vnics; i++)
3116                 bnxt_hwrm_vnic_free_one(bp, i);
3117 }
3118
3119 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id, u16 start_grp_id,
3120                                 u16 end_grp_id)
3121 {
3122         u32 rc = 0, i, j;
3123         struct hwrm_vnic_alloc_input req = {0};
3124         struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3125
3126         /* map ring groups to this vnic */
3127         for (i = start_grp_id, j = 0; i < end_grp_id; i++, j++) {
3128                 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) {
3129                         netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
3130                                    j, (end_grp_id - start_grp_id));
3131                         break;
3132                 }
3133                 bp->vnic_info[vnic_id].fw_grp_ids[j] =
3134                                         bp->grp_info[i].fw_grp_id;
3135         }
3136
3137         bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
3138         if (vnic_id == 0)
3139                 req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
3140
3141         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
3142
3143         mutex_lock(&bp->hwrm_cmd_lock);
3144         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3145         if (!rc)
3146                 bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
3147         mutex_unlock(&bp->hwrm_cmd_lock);
3148         return rc;
3149 }
3150
3151 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
3152 {
3153         u16 i;
3154         u32 rc = 0;
3155
3156         mutex_lock(&bp->hwrm_cmd_lock);
3157         for (i = 0; i < bp->rx_nr_rings; i++) {
3158                 struct hwrm_ring_grp_alloc_input req = {0};
3159                 struct hwrm_ring_grp_alloc_output *resp =
3160                                         bp->hwrm_cmd_resp_addr;
3161
3162                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
3163
3164                 req.cr = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
3165                 req.rr = cpu_to_le16(bp->grp_info[i].rx_fw_ring_id);
3166                 req.ar = cpu_to_le16(bp->grp_info[i].agg_fw_ring_id);
3167                 req.sc = cpu_to_le16(bp->grp_info[i].fw_stats_ctx);
3168
3169                 rc = _hwrm_send_message(bp, &req, sizeof(req),
3170                                         HWRM_CMD_TIMEOUT);
3171                 if (rc)
3172                         break;
3173
3174                 bp->grp_info[i].fw_grp_id = le32_to_cpu(resp->ring_group_id);
3175         }
3176         mutex_unlock(&bp->hwrm_cmd_lock);
3177         return rc;
3178 }
3179
3180 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
3181 {
3182         u16 i;
3183         u32 rc = 0;
3184         struct hwrm_ring_grp_free_input req = {0};
3185
3186         if (!bp->grp_info)
3187                 return 0;
3188
3189         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
3190
3191         mutex_lock(&bp->hwrm_cmd_lock);
3192         for (i = 0; i < bp->cp_nr_rings; i++) {
3193                 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
3194                         continue;
3195                 req.ring_group_id =
3196                         cpu_to_le32(bp->grp_info[i].fw_grp_id);
3197
3198                 rc = _hwrm_send_message(bp, &req, sizeof(req),
3199                                         HWRM_CMD_TIMEOUT);
3200                 if (rc)
3201                         break;
3202                 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3203         }
3204         mutex_unlock(&bp->hwrm_cmd_lock);
3205         return rc;
3206 }
3207
3208 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
3209                                     struct bnxt_ring_struct *ring,
3210                                     u32 ring_type, u32 map_index,
3211                                     u32 stats_ctx_id)
3212 {
3213         int rc = 0, err = 0;
3214         struct hwrm_ring_alloc_input req = {0};
3215         struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3216         u16 ring_id;
3217
3218         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
3219
3220         req.enables = 0;
3221         if (ring->nr_pages > 1) {
3222                 req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
3223                 /* Page size is in log2 units */
3224                 req.page_size = BNXT_PAGE_SHIFT;
3225                 req.page_tbl_depth = 1;
3226         } else {
3227                 req.page_tbl_addr =  cpu_to_le64(ring->dma_arr[0]);
3228         }
3229         req.fbo = 0;
3230         /* Association of ring index with doorbell index and MSIX number */
3231         req.logical_id = cpu_to_le16(map_index);
3232
3233         switch (ring_type) {
3234         case HWRM_RING_ALLOC_TX:
3235                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
3236                 /* Association of transmit ring with completion ring */
3237                 req.cmpl_ring_id =
3238                         cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id);
3239                 req.length = cpu_to_le32(bp->tx_ring_mask + 1);
3240                 req.stat_ctx_id = cpu_to_le32(stats_ctx_id);
3241                 req.queue_id = cpu_to_le16(ring->queue_id);
3242                 break;
3243         case HWRM_RING_ALLOC_RX:
3244                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3245                 req.length = cpu_to_le32(bp->rx_ring_mask + 1);
3246                 break;
3247         case HWRM_RING_ALLOC_AGG:
3248                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3249                 req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
3250                 break;
3251         case HWRM_RING_ALLOC_CMPL:
3252                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_CMPL;
3253                 req.length = cpu_to_le32(bp->cp_ring_mask + 1);
3254                 if (bp->flags & BNXT_FLAG_USING_MSIX)
3255                         req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
3256                 break;
3257         default:
3258                 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
3259                            ring_type);
3260                 return -1;
3261         }
3262
3263         mutex_lock(&bp->hwrm_cmd_lock);
3264         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3265         err = le16_to_cpu(resp->error_code);
3266         ring_id = le16_to_cpu(resp->ring_id);
3267         mutex_unlock(&bp->hwrm_cmd_lock);
3268
3269         if (rc || err) {
3270                 switch (ring_type) {
3271                 case RING_FREE_REQ_RING_TYPE_CMPL:
3272                         netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n",
3273                                    rc, err);
3274                         return -1;
3275
3276                 case RING_FREE_REQ_RING_TYPE_RX:
3277                         netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n",
3278                                    rc, err);
3279                         return -1;
3280
3281                 case RING_FREE_REQ_RING_TYPE_TX:
3282                         netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n",
3283                                    rc, err);
3284                         return -1;
3285
3286                 default:
3287                         netdev_err(bp->dev, "Invalid ring\n");
3288                         return -1;
3289                 }
3290         }
3291         ring->fw_ring_id = ring_id;
3292         return rc;
3293 }
3294
3295 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
3296 {
3297         int i, rc = 0;
3298
3299         if (bp->cp_nr_rings) {
3300                 for (i = 0; i < bp->cp_nr_rings; i++) {
3301                         struct bnxt_napi *bnapi = bp->bnapi[i];
3302                         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3303                         struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3304
3305                         rc = hwrm_ring_alloc_send_msg(bp, ring,
3306                                                       HWRM_RING_ALLOC_CMPL, i,
3307                                                       INVALID_STATS_CTX_ID);
3308                         if (rc)
3309                                 goto err_out;
3310                         cpr->cp_doorbell = bp->bar1 + i * 0x80;
3311                         BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3312                         bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
3313                 }
3314         }
3315
3316         if (bp->tx_nr_rings) {
3317                 for (i = 0; i < bp->tx_nr_rings; i++) {
3318                         struct bnxt_napi *bnapi = bp->bnapi[i];
3319                         struct bnxt_tx_ring_info *txr = &bnapi->tx_ring;
3320                         struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3321                         u16 fw_stats_ctx = bp->grp_info[i].fw_stats_ctx;
3322
3323                         rc = hwrm_ring_alloc_send_msg(bp, ring,
3324                                                       HWRM_RING_ALLOC_TX, i,
3325                                                       fw_stats_ctx);
3326                         if (rc)
3327                                 goto err_out;
3328                         txr->tx_doorbell = bp->bar1 + i * 0x80;
3329                 }
3330         }
3331
3332         if (bp->rx_nr_rings) {
3333                 for (i = 0; i < bp->rx_nr_rings; i++) {
3334                         struct bnxt_napi *bnapi = bp->bnapi[i];
3335                         struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring;
3336                         struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3337
3338                         rc = hwrm_ring_alloc_send_msg(bp, ring,
3339                                                       HWRM_RING_ALLOC_RX, i,
3340                                                       INVALID_STATS_CTX_ID);
3341                         if (rc)
3342                                 goto err_out;
3343                         rxr->rx_doorbell = bp->bar1 + i * 0x80;
3344                         writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
3345                         bp->grp_info[i].rx_fw_ring_id = ring->fw_ring_id;
3346                 }
3347         }
3348
3349         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
3350                 for (i = 0; i < bp->rx_nr_rings; i++) {
3351                         struct bnxt_napi *bnapi = bp->bnapi[i];
3352                         struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring;
3353                         struct bnxt_ring_struct *ring =
3354                                                 &rxr->rx_agg_ring_struct;
3355
3356                         rc = hwrm_ring_alloc_send_msg(bp, ring,
3357                                                       HWRM_RING_ALLOC_AGG,
3358                                                       bp->rx_nr_rings + i,
3359                                                       INVALID_STATS_CTX_ID);
3360                         if (rc)
3361                                 goto err_out;
3362
3363                         rxr->rx_agg_doorbell =
3364                                 bp->bar1 + (bp->rx_nr_rings + i) * 0x80;
3365                         writel(DB_KEY_RX | rxr->rx_agg_prod,
3366                                rxr->rx_agg_doorbell);
3367                         bp->grp_info[i].agg_fw_ring_id = ring->fw_ring_id;
3368                 }
3369         }
3370 err_out:
3371         return rc;
3372 }
3373
3374 static int hwrm_ring_free_send_msg(struct bnxt *bp,
3375                                    struct bnxt_ring_struct *ring,
3376                                    u32 ring_type, int cmpl_ring_id)
3377 {
3378         int rc;
3379         struct hwrm_ring_free_input req = {0};
3380         struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
3381         u16 error_code;
3382
3383         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, -1, -1);
3384         req.ring_type = ring_type;
3385         req.ring_id = cpu_to_le16(ring->fw_ring_id);
3386
3387         mutex_lock(&bp->hwrm_cmd_lock);
3388         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3389         error_code = le16_to_cpu(resp->error_code);
3390         mutex_unlock(&bp->hwrm_cmd_lock);
3391
3392         if (rc || error_code) {
3393                 switch (ring_type) {
3394                 case RING_FREE_REQ_RING_TYPE_CMPL:
3395                         netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n",
3396                                    rc);
3397                         return rc;
3398                 case RING_FREE_REQ_RING_TYPE_RX:
3399                         netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n",
3400                                    rc);
3401                         return rc;
3402                 case RING_FREE_REQ_RING_TYPE_TX:
3403                         netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n",
3404                                    rc);
3405                         return rc;
3406                 default:
3407                         netdev_err(bp->dev, "Invalid ring\n");
3408                         return -1;
3409                 }
3410         }
3411         return 0;
3412 }
3413
3414 static int bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
3415 {
3416         int i, rc = 0;
3417
3418         if (!bp->bnapi)
3419                 return 0;
3420
3421         if (bp->tx_nr_rings) {
3422                 for (i = 0; i < bp->tx_nr_rings; i++) {
3423                         struct bnxt_napi *bnapi = bp->bnapi[i];
3424                         struct bnxt_tx_ring_info *txr = &bnapi->tx_ring;
3425                         struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3426                         u32 cmpl_ring_id = bp->grp_info[i].cp_fw_ring_id;
3427
3428                         if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3429                                 hwrm_ring_free_send_msg(
3430                                         bp, ring,
3431                                         RING_FREE_REQ_RING_TYPE_TX,
3432                                         close_path ? cmpl_ring_id :
3433                                         INVALID_HW_RING_ID);
3434                                 ring->fw_ring_id = INVALID_HW_RING_ID;
3435                         }
3436                 }
3437         }
3438
3439         if (bp->rx_nr_rings) {
3440                 for (i = 0; i < bp->rx_nr_rings; i++) {
3441                         struct bnxt_napi *bnapi = bp->bnapi[i];
3442                         struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring;
3443                         struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3444                         u32 cmpl_ring_id = bp->grp_info[i].cp_fw_ring_id;
3445
3446                         if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3447                                 hwrm_ring_free_send_msg(
3448                                         bp, ring,
3449                                         RING_FREE_REQ_RING_TYPE_RX,
3450                                         close_path ? cmpl_ring_id :
3451                                         INVALID_HW_RING_ID);
3452                                 ring->fw_ring_id = INVALID_HW_RING_ID;
3453                                 bp->grp_info[i].rx_fw_ring_id =
3454                                         INVALID_HW_RING_ID;
3455                         }
3456                 }
3457         }
3458
3459         if (bp->rx_agg_nr_pages) {
3460                 for (i = 0; i < bp->rx_nr_rings; i++) {
3461                         struct bnxt_napi *bnapi = bp->bnapi[i];
3462                         struct bnxt_rx_ring_info *rxr = &bnapi->rx_ring;
3463                         struct bnxt_ring_struct *ring =
3464                                                 &rxr->rx_agg_ring_struct;
3465                         u32 cmpl_ring_id = bp->grp_info[i].cp_fw_ring_id;
3466
3467                         if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3468                                 hwrm_ring_free_send_msg(
3469                                         bp, ring,
3470                                         RING_FREE_REQ_RING_TYPE_RX,
3471                                         close_path ? cmpl_ring_id :
3472                                         INVALID_HW_RING_ID);
3473                                 ring->fw_ring_id = INVALID_HW_RING_ID;
3474                                 bp->grp_info[i].agg_fw_ring_id =
3475                                         INVALID_HW_RING_ID;
3476                         }
3477                 }
3478         }
3479
3480         if (bp->cp_nr_rings) {
3481                 for (i = 0; i < bp->cp_nr_rings; i++) {
3482                         struct bnxt_napi *bnapi = bp->bnapi[i];
3483                         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3484                         struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3485
3486                         if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3487                                 hwrm_ring_free_send_msg(
3488                                         bp, ring,
3489                                         RING_FREE_REQ_RING_TYPE_CMPL,
3490                                         INVALID_HW_RING_ID);
3491                                 ring->fw_ring_id = INVALID_HW_RING_ID;
3492                                 bp->grp_info[i].cp_fw_ring_id =
3493                                                         INVALID_HW_RING_ID;
3494                         }
3495                 }
3496         }
3497
3498         return rc;
3499 }
3500
3501 int bnxt_hwrm_set_coal(struct bnxt *bp)
3502 {
3503         int i, rc = 0;
3504         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req = {0};
3505         u16 max_buf, max_buf_irq;
3506         u16 buf_tmr, buf_tmr_irq;
3507         u32 flags;
3508
3509         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS,
3510                                -1, -1);
3511
3512         /* Each rx completion (2 records) should be DMAed immediately */
3513         max_buf = min_t(u16, bp->coal_bufs / 4, 2);
3514         /* max_buf must not be zero */
3515         max_buf = clamp_t(u16, max_buf, 1, 63);
3516         max_buf_irq = clamp_t(u16, bp->coal_bufs_irq, 1, 63);
3517         buf_tmr = max_t(u16, bp->coal_ticks / 4, 1);
3518         buf_tmr_irq = max_t(u16, bp->coal_ticks_irq, 1);
3519
3520         flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
3521
3522         /* RING_IDLE generates more IRQs for lower latency.  Enable it only
3523          * if coal_ticks is less than 25 us.
3524          */
3525         if (BNXT_COAL_TIMER_TO_USEC(bp->coal_ticks) < 25)
3526                 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
3527
3528         req.flags = cpu_to_le16(flags);
3529         req.num_cmpl_dma_aggr = cpu_to_le16(max_buf);
3530         req.num_cmpl_dma_aggr_during_int = cpu_to_le16(max_buf_irq);
3531         req.cmpl_aggr_dma_tmr = cpu_to_le16(buf_tmr);
3532         req.cmpl_aggr_dma_tmr_during_int = cpu_to_le16(buf_tmr_irq);
3533         req.int_lat_tmr_min = cpu_to_le16(buf_tmr);
3534         req.int_lat_tmr_max = cpu_to_le16(bp->coal_ticks);
3535         req.num_cmpl_aggr_int = cpu_to_le16(bp->coal_bufs);
3536
3537         mutex_lock(&bp->hwrm_cmd_lock);
3538         for (i = 0; i < bp->cp_nr_rings; i++) {
3539                 req.ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
3540
3541                 rc = _hwrm_send_message(bp, &req, sizeof(req),
3542                                         HWRM_CMD_TIMEOUT);
3543                 if (rc)
3544                         break;
3545         }
3546         mutex_unlock(&bp->hwrm_cmd_lock);
3547         return rc;
3548 }
3549
3550 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
3551 {
3552         int rc = 0, i;
3553         struct hwrm_stat_ctx_free_input req = {0};
3554
3555         if (!bp->bnapi)
3556                 return 0;
3557
3558         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
3559
3560         mutex_lock(&bp->hwrm_cmd_lock);
3561         for (i = 0; i < bp->cp_nr_rings; i++) {
3562                 struct bnxt_napi *bnapi = bp->bnapi[i];
3563                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3564
3565                 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
3566                         req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
3567
3568                         rc = _hwrm_send_message(bp, &req, sizeof(req),
3569                                                 HWRM_CMD_TIMEOUT);
3570                         if (rc)
3571                                 break;
3572
3573                         cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3574                 }
3575         }
3576         mutex_unlock(&bp->hwrm_cmd_lock);
3577         return rc;
3578 }
3579
3580 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
3581 {
3582         int rc = 0, i;
3583         struct hwrm_stat_ctx_alloc_input req = {0};
3584         struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3585
3586         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
3587
3588         req.update_period_ms = cpu_to_le32(1000);
3589
3590         mutex_lock(&bp->hwrm_cmd_lock);
3591         for (i = 0; i < bp->cp_nr_rings; i++) {
3592                 struct bnxt_napi *bnapi = bp->bnapi[i];
3593                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3594
3595                 req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
3596
3597                 rc = _hwrm_send_message(bp, &req, sizeof(req),
3598                                         HWRM_CMD_TIMEOUT);
3599                 if (rc)
3600                         break;
3601
3602                 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
3603
3604                 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
3605         }
3606         mutex_unlock(&bp->hwrm_cmd_lock);
3607         return 0;
3608 }
3609
3610 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
3611 {
3612         int rc = 0;
3613         struct hwrm_func_qcaps_input req = {0};
3614         struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
3615
3616         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
3617         req.fid = cpu_to_le16(0xffff);
3618
3619         mutex_lock(&bp->hwrm_cmd_lock);
3620         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3621         if (rc)
3622                 goto hwrm_func_qcaps_exit;
3623
3624         if (BNXT_PF(bp)) {
3625                 struct bnxt_pf_info *pf = &bp->pf;
3626
3627                 pf->fw_fid = le16_to_cpu(resp->fid);
3628                 pf->port_id = le16_to_cpu(resp->port_id);
3629                 memcpy(pf->mac_addr, resp->perm_mac_address, ETH_ALEN);
3630                 pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
3631                 pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
3632                 pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
3633                 pf->max_pf_tx_rings = pf->max_tx_rings;
3634                 pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
3635                 pf->max_pf_rx_rings = pf->max_rx_rings;
3636                 pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
3637                 pf->max_vnics = le16_to_cpu(resp->max_vnics);
3638                 pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
3639                 pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
3640                 pf->max_vfs = le16_to_cpu(resp->max_vfs);
3641                 pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
3642                 pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
3643                 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
3644                 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
3645                 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
3646                 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
3647         } else {
3648 #ifdef CONFIG_BNXT_SRIOV
3649                 struct bnxt_vf_info *vf = &bp->vf;
3650
3651                 vf->fw_fid = le16_to_cpu(resp->fid);
3652                 memcpy(vf->mac_addr, resp->perm_mac_address, ETH_ALEN);
3653                 if (!is_valid_ether_addr(vf->mac_addr))
3654                         random_ether_addr(vf->mac_addr);
3655
3656                 vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
3657                 vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
3658                 vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
3659                 vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
3660                 vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
3661                 vf->max_vnics = le16_to_cpu(resp->max_vnics);
3662                 vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
3663 #endif
3664         }
3665
3666         bp->tx_push_thresh = 0;
3667         if (resp->flags &
3668             cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED))
3669                 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
3670
3671 hwrm_func_qcaps_exit:
3672         mutex_unlock(&bp->hwrm_cmd_lock);
3673         return rc;
3674 }
3675
3676 static int bnxt_hwrm_func_reset(struct bnxt *bp)
3677 {
3678         struct hwrm_func_reset_input req = {0};
3679
3680         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
3681         req.enables = 0;
3682
3683         return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
3684 }
3685
3686 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
3687 {
3688         int rc = 0;
3689         struct hwrm_queue_qportcfg_input req = {0};
3690         struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
3691         u8 i, *qptr;
3692
3693         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
3694
3695         mutex_lock(&bp->hwrm_cmd_lock);
3696         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3697         if (rc)
3698                 goto qportcfg_exit;
3699
3700         if (!resp->max_configurable_queues) {
3701                 rc = -EINVAL;
3702                 goto qportcfg_exit;
3703         }
3704         bp->max_tc = resp->max_configurable_queues;
3705         if (bp->max_tc > BNXT_MAX_QUEUE)
3706                 bp->max_tc = BNXT_MAX_QUEUE;
3707
3708         qptr = &resp->queue_id0;
3709         for (i = 0; i < bp->max_tc; i++) {
3710                 bp->q_info[i].queue_id = *qptr++;
3711                 bp->q_info[i].queue_profile = *qptr++;
3712         }
3713
3714 qportcfg_exit:
3715         mutex_unlock(&bp->hwrm_cmd_lock);
3716         return rc;
3717 }
3718
3719 static int bnxt_hwrm_ver_get(struct bnxt *bp)
3720 {
3721         int rc;
3722         struct hwrm_ver_get_input req = {0};
3723         struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
3724
3725         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
3726         req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
3727         req.hwrm_intf_min = HWRM_VERSION_MINOR;
3728         req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
3729         mutex_lock(&bp->hwrm_cmd_lock);
3730         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3731         if (rc)
3732                 goto hwrm_ver_get_exit;
3733
3734         memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
3735
3736         if (req.hwrm_intf_maj != resp->hwrm_intf_maj ||
3737             req.hwrm_intf_min != resp->hwrm_intf_min ||
3738             req.hwrm_intf_upd != resp->hwrm_intf_upd) {
3739                 netdev_warn(bp->dev, "HWRM interface %d.%d.%d does not match driver interface %d.%d.%d.\n",
3740                             resp->hwrm_intf_maj, resp->hwrm_intf_min,
3741                             resp->hwrm_intf_upd, req.hwrm_intf_maj,
3742                             req.hwrm_intf_min, req.hwrm_intf_upd);
3743                 netdev_warn(bp->dev, "Please update driver or firmware with matching interface versions.\n");
3744         }
3745         snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "bc %d.%d.%d rm %d.%d.%d",
3746                  resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld,
3747                  resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd);
3748
3749 hwrm_ver_get_exit:
3750         mutex_unlock(&bp->hwrm_cmd_lock);
3751         return rc;
3752 }
3753
3754 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
3755 {
3756         if (bp->vxlan_port_cnt) {
3757                 bnxt_hwrm_tunnel_dst_port_free(
3758                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
3759         }
3760         bp->vxlan_port_cnt = 0;
3761         if (bp->nge_port_cnt) {
3762                 bnxt_hwrm_tunnel_dst_port_free(
3763                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
3764         }
3765         bp->nge_port_cnt = 0;
3766 }
3767
3768 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
3769 {
3770         int rc, i;
3771         u32 tpa_flags = 0;
3772
3773         if (set_tpa)
3774                 tpa_flags = bp->flags & BNXT_FLAG_TPA;
3775         for (i = 0; i < bp->nr_vnics; i++) {
3776                 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
3777                 if (rc) {
3778                         netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
3779                                    rc, i);
3780                         return rc;
3781                 }
3782         }
3783         return 0;
3784 }
3785
3786 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
3787 {
3788         int i;
3789
3790         for (i = 0; i < bp->nr_vnics; i++)
3791                 bnxt_hwrm_vnic_set_rss(bp, i, false);
3792 }
3793
3794 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
3795                                     bool irq_re_init)
3796 {
3797         if (bp->vnic_info) {
3798                 bnxt_hwrm_clear_vnic_filter(bp);
3799                 /* clear all RSS setting before free vnic ctx */
3800                 bnxt_hwrm_clear_vnic_rss(bp);
3801                 bnxt_hwrm_vnic_ctx_free(bp);
3802                 /* before free the vnic, undo the vnic tpa settings */
3803                 if (bp->flags & BNXT_FLAG_TPA)
3804                         bnxt_set_tpa(bp, false);
3805                 bnxt_hwrm_vnic_free(bp);
3806         }
3807         bnxt_hwrm_ring_free(bp, close_path);
3808         bnxt_hwrm_ring_grp_free(bp);
3809         if (irq_re_init) {
3810                 bnxt_hwrm_stat_ctx_free(bp);
3811                 bnxt_hwrm_free_tunnel_ports(bp);
3812         }
3813 }
3814
3815 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
3816 {
3817         int rc;
3818
3819         /* allocate context for vnic */
3820         rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id);
3821         if (rc) {
3822                 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
3823                            vnic_id, rc);
3824                 goto vnic_setup_err;
3825         }
3826         bp->rsscos_nr_ctxs++;
3827
3828         /* configure default vnic, ring grp */
3829         rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
3830         if (rc) {
3831                 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
3832                            vnic_id, rc);
3833                 goto vnic_setup_err;
3834         }
3835
3836         /* Enable RSS hashing on vnic */
3837         rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
3838         if (rc) {
3839                 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
3840                            vnic_id, rc);
3841                 goto vnic_setup_err;
3842         }
3843
3844         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
3845                 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
3846                 if (rc) {
3847                         netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
3848                                    vnic_id, rc);
3849                 }
3850         }
3851
3852 vnic_setup_err:
3853         return rc;
3854 }
3855
3856 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
3857 {
3858 #ifdef CONFIG_RFS_ACCEL
3859         int i, rc = 0;
3860
3861         for (i = 0; i < bp->rx_nr_rings; i++) {
3862                 u16 vnic_id = i + 1;
3863                 u16 ring_id = i;
3864
3865                 if (vnic_id >= bp->nr_vnics)
3866                         break;
3867
3868                 bp->vnic_info[vnic_id].flags |= BNXT_VNIC_RFS_FLAG;
3869                 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, ring_id + 1);
3870                 if (rc) {
3871                         netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
3872                                    vnic_id, rc);
3873                         break;
3874                 }
3875                 rc = bnxt_setup_vnic(bp, vnic_id);
3876                 if (rc)
3877                         break;
3878         }
3879         return rc;
3880 #else
3881         return 0;
3882 #endif
3883 }
3884
3885 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
3886 {
3887         int rc = 0;
3888
3889         if (irq_re_init) {
3890                 rc = bnxt_hwrm_stat_ctx_alloc(bp);
3891                 if (rc) {
3892                         netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
3893                                    rc);
3894                         goto err_out;
3895                 }
3896         }
3897
3898         rc = bnxt_hwrm_ring_alloc(bp);
3899         if (rc) {
3900                 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
3901                 goto err_out;
3902         }
3903
3904         rc = bnxt_hwrm_ring_grp_alloc(bp);
3905         if (rc) {
3906                 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
3907                 goto err_out;
3908         }
3909
3910         /* default vnic 0 */
3911         rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, bp->rx_nr_rings);
3912         if (rc) {
3913                 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
3914                 goto err_out;
3915         }
3916
3917         rc = bnxt_setup_vnic(bp, 0);
3918         if (rc)
3919                 goto err_out;
3920
3921         if (bp->flags & BNXT_FLAG_RFS) {
3922                 rc = bnxt_alloc_rfs_vnics(bp);
3923                 if (rc)
3924                         goto err_out;
3925         }
3926
3927         if (bp->flags & BNXT_FLAG_TPA) {
3928                 rc = bnxt_set_tpa(bp, true);
3929                 if (rc)
3930                         goto err_out;
3931         }
3932
3933         if (BNXT_VF(bp))
3934                 bnxt_update_vf_mac(bp);
3935
3936         /* Filter for default vnic 0 */
3937         rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
3938         if (rc) {
3939                 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
3940                 goto err_out;
3941         }
3942         bp->vnic_info[0].uc_filter_count = 1;
3943
3944         bp->vnic_info[0].rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_UNICAST |
3945                                    CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
3946
3947         if ((bp->dev->flags & IFF_PROMISC) && BNXT_PF(bp))
3948                 bp->vnic_info[0].rx_mask |=
3949                                 CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
3950
3951         rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
3952         if (rc) {
3953                 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n", rc);
3954                 goto err_out;
3955         }
3956
3957         rc = bnxt_hwrm_set_coal(bp);
3958         if (rc)
3959                 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
3960                             rc);
3961
3962         return 0;
3963
3964 err_out:
3965         bnxt_hwrm_resource_free(bp, 0, true);
3966
3967         return rc;
3968 }
3969
3970 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
3971 {
3972         bnxt_hwrm_resource_free(bp, 1, irq_re_init);
3973         return 0;
3974 }
3975
3976 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
3977 {
3978         bnxt_init_rx_rings(bp);
3979         bnxt_init_tx_rings(bp);
3980         bnxt_init_ring_grps(bp, irq_re_init);
3981         bnxt_init_vnics(bp);
3982
3983         return bnxt_init_chip(bp, irq_re_init);
3984 }
3985
3986 static void bnxt_disable_int(struct bnxt *bp)
3987 {
3988         int i;
3989
3990         if (!bp->bnapi)
3991                 return;
3992
3993         for (i = 0; i < bp->cp_nr_rings; i++) {
3994                 struct bnxt_napi *bnapi = bp->bnapi[i];
3995                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3996
3997                 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3998         }
3999 }
4000
4001 static void bnxt_enable_int(struct bnxt *bp)
4002 {
4003         int i;
4004
4005         atomic_set(&bp->intr_sem, 0);
4006         for (i = 0; i < bp->cp_nr_rings; i++) {
4007                 struct bnxt_napi *bnapi = bp->bnapi[i];
4008                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4009
4010                 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
4011         }
4012 }
4013
4014 static int bnxt_set_real_num_queues(struct bnxt *bp)
4015 {
4016         int rc;
4017         struct net_device *dev = bp->dev;
4018
4019         rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings);
4020         if (rc)
4021                 return rc;
4022
4023         rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
4024         if (rc)
4025                 return rc;
4026
4027 #ifdef CONFIG_RFS_ACCEL
4028         if (bp->rx_nr_rings)
4029                 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
4030         if (!dev->rx_cpu_rmap)
4031                 rc = -ENOMEM;
4032 #endif
4033
4034         return rc;
4035 }
4036
4037 static int bnxt_setup_msix(struct bnxt *bp)
4038 {
4039         struct msix_entry *msix_ent;
4040         struct net_device *dev = bp->dev;
4041         int i, total_vecs, rc = 0;
4042         const int len = sizeof(bp->irq_tbl[0].name);
4043
4044         bp->flags &= ~BNXT_FLAG_USING_MSIX;
4045         total_vecs = bp->cp_nr_rings;
4046
4047         msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
4048         if (!msix_ent)
4049                 return -ENOMEM;
4050
4051         for (i = 0; i < total_vecs; i++) {
4052                 msix_ent[i].entry = i;
4053                 msix_ent[i].vector = 0;
4054         }
4055
4056         total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, 1, total_vecs);
4057         if (total_vecs < 0) {
4058                 rc = -ENODEV;
4059                 goto msix_setup_exit;
4060         }
4061
4062         bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
4063         if (bp->irq_tbl) {
4064                 int tcs;
4065
4066                 /* Trim rings based upon num of vectors allocated */
4067                 bp->rx_nr_rings = min_t(int, total_vecs, bp->rx_nr_rings);
4068                 bp->tx_nr_rings = min_t(int, total_vecs, bp->tx_nr_rings);
4069                 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4070                 tcs = netdev_get_num_tc(dev);
4071                 if (tcs > 1) {
4072                         bp->tx_nr_rings_per_tc = bp->tx_nr_rings / tcs;
4073                         if (bp->tx_nr_rings_per_tc == 0) {
4074                                 netdev_reset_tc(dev);
4075                                 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4076                         } else {
4077                                 int i, off, count;
4078
4079                                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tcs;
4080                                 for (i = 0; i < tcs; i++) {
4081                                         count = bp->tx_nr_rings_per_tc;
4082                                         off = i * count;
4083                                         netdev_set_tc_queue(dev, i, count, off);
4084                                 }
4085                         }
4086                 }
4087                 bp->cp_nr_rings = max_t(int, bp->rx_nr_rings, bp->tx_nr_rings);
4088
4089                 for (i = 0; i < bp->cp_nr_rings; i++) {
4090                         bp->irq_tbl[i].vector = msix_ent[i].vector;
4091                         snprintf(bp->irq_tbl[i].name, len,
4092                                  "%s-%s-%d", dev->name, "TxRx", i);
4093                         bp->irq_tbl[i].handler = bnxt_msix;
4094                 }
4095                 rc = bnxt_set_real_num_queues(bp);
4096                 if (rc)
4097                         goto msix_setup_exit;
4098         } else {
4099                 rc = -ENOMEM;
4100                 goto msix_setup_exit;
4101         }
4102         bp->flags |= BNXT_FLAG_USING_MSIX;
4103         kfree(msix_ent);
4104         return 0;
4105
4106 msix_setup_exit:
4107         netdev_err(bp->dev, "bnxt_setup_msix err: %x\n", rc);
4108         pci_disable_msix(bp->pdev);
4109         kfree(msix_ent);
4110         return rc;
4111 }
4112
4113 static int bnxt_setup_inta(struct bnxt *bp)
4114 {
4115         int rc;
4116         const int len = sizeof(bp->irq_tbl[0].name);
4117
4118         if (netdev_get_num_tc(bp->dev))
4119                 netdev_reset_tc(bp->dev);
4120
4121         bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
4122         if (!bp->irq_tbl) {
4123                 rc = -ENOMEM;
4124                 return rc;
4125         }
4126         bp->rx_nr_rings = 1;
4127         bp->tx_nr_rings = 1;
4128         bp->cp_nr_rings = 1;
4129         bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4130         bp->irq_tbl[0].vector = bp->pdev->irq;
4131         snprintf(bp->irq_tbl[0].name, len,
4132                  "%s-%s-%d", bp->dev->name, "TxRx", 0);
4133         bp->irq_tbl[0].handler = bnxt_inta;
4134         rc = bnxt_set_real_num_queues(bp);
4135         return rc;
4136 }
4137
4138 static int bnxt_setup_int_mode(struct bnxt *bp)
4139 {
4140         int rc = 0;
4141
4142         if (bp->flags & BNXT_FLAG_MSIX_CAP)
4143                 rc = bnxt_setup_msix(bp);
4144
4145         if (!(bp->flags & BNXT_FLAG_USING_MSIX)) {
4146                 /* fallback to INTA */
4147                 rc = bnxt_setup_inta(bp);
4148         }
4149         return rc;
4150 }
4151
4152 static void bnxt_free_irq(struct bnxt *bp)
4153 {
4154         struct bnxt_irq *irq;
4155         int i;
4156
4157 #ifdef CONFIG_RFS_ACCEL
4158         free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
4159         bp->dev->rx_cpu_rmap = NULL;
4160 #endif
4161         if (!bp->irq_tbl)
4162                 return;
4163
4164         for (i = 0; i < bp->cp_nr_rings; i++) {
4165                 irq = &bp->irq_tbl[i];
4166                 if (irq->requested)
4167                         free_irq(irq->vector, bp->bnapi[i]);
4168                 irq->requested = 0;
4169         }
4170         if (bp->flags & BNXT_FLAG_USING_MSIX)
4171                 pci_disable_msix(bp->pdev);
4172         kfree(bp->irq_tbl);
4173         bp->irq_tbl = NULL;
4174 }
4175
4176 static int bnxt_request_irq(struct bnxt *bp)
4177 {
4178         int i, rc = 0;
4179         unsigned long flags = 0;
4180 #ifdef CONFIG_RFS_ACCEL
4181         struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap;
4182 #endif
4183
4184         if (!(bp->flags & BNXT_FLAG_USING_MSIX))
4185                 flags = IRQF_SHARED;
4186
4187         for (i = 0; i < bp->cp_nr_rings; i++) {
4188                 struct bnxt_irq *irq = &bp->irq_tbl[i];
4189 #ifdef CONFIG_RFS_ACCEL
4190                 if (rmap && (i < bp->rx_nr_rings)) {
4191                         rc = irq_cpu_rmap_add(rmap, irq->vector);
4192                         if (rc)
4193                                 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
4194                                             i);
4195                 }
4196 #endif
4197                 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
4198                                  bp->bnapi[i]);
4199                 if (rc)
4200                         break;
4201
4202                 irq->requested = 1;
4203         }
4204         return rc;
4205 }
4206
4207 static void bnxt_del_napi(struct bnxt *bp)
4208 {
4209         int i;
4210
4211         if (!bp->bnapi)
4212                 return;
4213
4214         for (i = 0; i < bp->cp_nr_rings; i++) {
4215                 struct bnxt_napi *bnapi = bp->bnapi[i];
4216
4217                 napi_hash_del(&bnapi->napi);
4218                 netif_napi_del(&bnapi->napi);
4219         }
4220 }
4221
4222 static void bnxt_init_napi(struct bnxt *bp)
4223 {
4224         int i;
4225         struct bnxt_napi *bnapi;
4226
4227         if (bp->flags & BNXT_FLAG_USING_MSIX) {
4228                 for (i = 0; i < bp->cp_nr_rings; i++) {
4229                         bnapi = bp->bnapi[i];
4230                         netif_napi_add(bp->dev, &bnapi->napi,
4231                                        bnxt_poll, 64);
4232                         napi_hash_add(&bnapi->napi);
4233                 }
4234         } else {
4235                 bnapi = bp->bnapi[0];
4236                 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
4237                 napi_hash_add(&bnapi->napi);
4238         }
4239 }
4240
4241 static void bnxt_disable_napi(struct bnxt *bp)
4242 {
4243         int i;
4244
4245         if (!bp->bnapi)
4246                 return;
4247
4248         for (i = 0; i < bp->cp_nr_rings; i++) {
4249                 napi_disable(&bp->bnapi[i]->napi);
4250                 bnxt_disable_poll(bp->bnapi[i]);
4251         }
4252 }
4253
4254 static void bnxt_enable_napi(struct bnxt *bp)
4255 {
4256         int i;
4257
4258         for (i = 0; i < bp->cp_nr_rings; i++) {
4259                 bnxt_enable_poll(bp->bnapi[i]);
4260                 napi_enable(&bp->bnapi[i]->napi);
4261         }
4262 }
4263
4264 static void bnxt_tx_disable(struct bnxt *bp)
4265 {
4266         int i;
4267         struct bnxt_napi *bnapi;
4268         struct bnxt_tx_ring_info *txr;
4269         struct netdev_queue *txq;
4270
4271         if (bp->bnapi) {
4272                 for (i = 0; i < bp->tx_nr_rings; i++) {
4273                         bnapi = bp->bnapi[i];
4274                         txr = &bnapi->tx_ring;
4275                         txq = netdev_get_tx_queue(bp->dev, i);
4276                         __netif_tx_lock(txq, smp_processor_id());
4277                         txr->dev_state = BNXT_DEV_STATE_CLOSING;
4278                         __netif_tx_unlock(txq);
4279                 }
4280         }
4281         /* Stop all TX queues */
4282         netif_tx_disable(bp->dev);
4283         netif_carrier_off(bp->dev);
4284 }
4285
4286 static void bnxt_tx_enable(struct bnxt *bp)
4287 {
4288         int i;
4289         struct bnxt_napi *bnapi;
4290         struct bnxt_tx_ring_info *txr;
4291         struct netdev_queue *txq;
4292
4293         for (i = 0; i < bp->tx_nr_rings; i++) {
4294                 bnapi = bp->bnapi[i];
4295                 txr = &bnapi->tx_ring;
4296                 txq = netdev_get_tx_queue(bp->dev, i);
4297                 txr->dev_state = 0;
4298         }
4299         netif_tx_wake_all_queues(bp->dev);
4300         if (bp->link_info.link_up)
4301                 netif_carrier_on(bp->dev);
4302 }
4303
4304 static void bnxt_report_link(struct bnxt *bp)
4305 {
4306         if (bp->link_info.link_up) {
4307                 const char *duplex;
4308                 const char *flow_ctrl;
4309                 u16 speed;
4310
4311                 netif_carrier_on(bp->dev);
4312                 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
4313                         duplex = "full";
4314                 else
4315                         duplex = "half";
4316                 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
4317                         flow_ctrl = "ON - receive & transmit";
4318                 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
4319                         flow_ctrl = "ON - transmit";
4320                 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
4321                         flow_ctrl = "ON - receive";
4322                 else
4323                         flow_ctrl = "none";
4324                 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
4325                 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
4326                             speed, duplex, flow_ctrl);
4327         } else {
4328                 netif_carrier_off(bp->dev);
4329                 netdev_err(bp->dev, "NIC Link is Down\n");
4330         }
4331 }
4332
4333 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
4334 {
4335         int rc = 0;
4336         struct bnxt_link_info *link_info = &bp->link_info;
4337         struct hwrm_port_phy_qcfg_input req = {0};
4338         struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4339         u8 link_up = link_info->link_up;
4340
4341         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
4342
4343         mutex_lock(&bp->hwrm_cmd_lock);
4344         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4345         if (rc) {
4346                 mutex_unlock(&bp->hwrm_cmd_lock);
4347                 return rc;
4348         }
4349
4350         memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
4351         link_info->phy_link_status = resp->link;
4352         link_info->duplex =  resp->duplex;
4353         link_info->pause = resp->pause;
4354         link_info->auto_mode = resp->auto_mode;
4355         link_info->auto_pause_setting = resp->auto_pause;
4356         link_info->force_pause_setting = resp->force_pause;
4357         link_info->duplex_setting = resp->duplex_setting;
4358         if (link_info->phy_link_status == BNXT_LINK_LINK)
4359                 link_info->link_speed = le16_to_cpu(resp->link_speed);
4360         else
4361                 link_info->link_speed = 0;
4362         link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
4363         link_info->auto_link_speed = le16_to_cpu(resp->auto_link_speed);
4364         link_info->support_speeds = le16_to_cpu(resp->support_speeds);
4365         link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
4366         link_info->preemphasis = le32_to_cpu(resp->preemphasis);
4367         link_info->phy_ver[0] = resp->phy_maj;
4368         link_info->phy_ver[1] = resp->phy_min;
4369         link_info->phy_ver[2] = resp->phy_bld;
4370         link_info->media_type = resp->media_type;
4371         link_info->transceiver = resp->transceiver_type;
4372         link_info->phy_addr = resp->phy_addr;
4373
4374         /* TODO: need to add more logic to report VF link */
4375         if (chng_link_state) {
4376                 if (link_info->phy_link_status == BNXT_LINK_LINK)
4377                         link_info->link_up = 1;
4378                 else
4379                         link_info->link_up = 0;
4380                 if (link_up != link_info->link_up)
4381                         bnxt_report_link(bp);
4382         } else {
4383                 /* alwasy link down if not require to update link state */
4384                 link_info->link_up = 0;
4385         }
4386         mutex_unlock(&bp->hwrm_cmd_lock);
4387         return 0;
4388 }
4389
4390 static void
4391 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
4392 {
4393         if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
4394                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
4395                         req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
4396                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
4397                         req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
4398                 req->enables |=
4399                         cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
4400         } else {
4401                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
4402                         req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
4403                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
4404                         req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
4405                 req->enables |=
4406                         cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
4407         }
4408 }
4409
4410 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
4411                                       struct hwrm_port_phy_cfg_input *req)
4412 {
4413         u8 autoneg = bp->link_info.autoneg;
4414         u16 fw_link_speed = bp->link_info.req_link_speed;
4415         u32 advertising = bp->link_info.advertising;
4416
4417         if (autoneg & BNXT_AUTONEG_SPEED) {
4418                 req->auto_mode |=
4419                         PORT_PHY_CFG_REQ_AUTO_MODE_MASK;
4420
4421                 req->enables |= cpu_to_le32(
4422                         PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
4423                 req->auto_link_speed_mask = cpu_to_le16(advertising);
4424
4425                 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
4426                 req->flags |=
4427                         cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
4428         } else {
4429                 req->force_link_speed = cpu_to_le16(fw_link_speed);
4430                 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
4431         }
4432
4433         /* currently don't support half duplex */
4434         req->auto_duplex = PORT_PHY_CFG_REQ_AUTO_DUPLEX_FULL;
4435         req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_DUPLEX);
4436         /* tell chimp that the setting takes effect immediately */
4437         req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
4438 }
4439
4440 int bnxt_hwrm_set_pause(struct bnxt *bp)
4441 {
4442         struct hwrm_port_phy_cfg_input req = {0};
4443         int rc;
4444
4445         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
4446         bnxt_hwrm_set_pause_common(bp, &req);
4447
4448         if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
4449             bp->link_info.force_link_chng)
4450                 bnxt_hwrm_set_link_common(bp, &req);
4451
4452         mutex_lock(&bp->hwrm_cmd_lock);
4453         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4454         if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
4455                 /* since changing of pause setting doesn't trigger any link
4456                  * change event, the driver needs to update the current pause
4457                  * result upon successfully return of the phy_cfg command
4458                  */
4459                 bp->link_info.pause =
4460                 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
4461                 bp->link_info.auto_pause_setting = 0;
4462                 if (!bp->link_info.force_link_chng)
4463                         bnxt_report_link(bp);
4464         }
4465         bp->link_info.force_link_chng = false;
4466         mutex_unlock(&bp->hwrm_cmd_lock);
4467         return rc;
4468 }
4469
4470 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause)
4471 {
4472         struct hwrm_port_phy_cfg_input req = {0};
4473
4474         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
4475         if (set_pause)
4476                 bnxt_hwrm_set_pause_common(bp, &req);
4477
4478         bnxt_hwrm_set_link_common(bp, &req);
4479         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4480 }
4481
4482 static int bnxt_update_phy_setting(struct bnxt *bp)
4483 {
4484         int rc;
4485         bool update_link = false;
4486         bool update_pause = false;
4487         struct bnxt_link_info *link_info = &bp->link_info;
4488
4489         rc = bnxt_update_link(bp, true);
4490         if (rc) {
4491                 netdev_err(bp->dev, "failed to update link (rc: %x)\n",
4492                            rc);
4493                 return rc;
4494         }
4495         if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
4496             link_info->auto_pause_setting != link_info->req_flow_ctrl)
4497                 update_pause = true;
4498         if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
4499             link_info->force_pause_setting != link_info->req_flow_ctrl)
4500                 update_pause = true;
4501         if (link_info->req_duplex != link_info->duplex_setting)
4502                 update_link = true;
4503         if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
4504                 if (BNXT_AUTO_MODE(link_info->auto_mode))
4505                         update_link = true;
4506                 if (link_info->req_link_speed != link_info->force_link_speed)
4507                         update_link = true;
4508         } else {
4509                 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
4510                         update_link = true;
4511                 if (link_info->advertising != link_info->auto_link_speeds)
4512                         update_link = true;
4513                 if (link_info->req_link_speed != link_info->auto_link_speed)
4514                         update_link = true;
4515         }
4516
4517         if (update_link)
4518                 rc = bnxt_hwrm_set_link_setting(bp, update_pause);
4519         else if (update_pause)
4520                 rc = bnxt_hwrm_set_pause(bp);
4521         if (rc) {
4522                 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
4523                            rc);
4524                 return rc;
4525         }
4526
4527         return rc;
4528 }
4529
4530 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4531 {
4532         int rc = 0;
4533
4534         netif_carrier_off(bp->dev);
4535         if (irq_re_init) {
4536                 rc = bnxt_setup_int_mode(bp);
4537                 if (rc) {
4538                         netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
4539                                    rc);
4540                         return rc;
4541                 }
4542         }
4543         if ((bp->flags & BNXT_FLAG_RFS) &&
4544             !(bp->flags & BNXT_FLAG_USING_MSIX)) {
4545                 /* disable RFS if falling back to INTA */
4546                 bp->dev->hw_features &= ~NETIF_F_NTUPLE;
4547                 bp->flags &= ~BNXT_FLAG_RFS;
4548         }
4549
4550         rc = bnxt_alloc_mem(bp, irq_re_init);
4551         if (rc) {
4552                 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
4553                 goto open_err_free_mem;
4554         }
4555
4556         if (irq_re_init) {
4557                 bnxt_init_napi(bp);
4558                 rc = bnxt_request_irq(bp);
4559                 if (rc) {
4560                         netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
4561                         goto open_err;
4562                 }
4563         }
4564
4565         bnxt_enable_napi(bp);
4566
4567         rc = bnxt_init_nic(bp, irq_re_init);
4568         if (rc) {
4569                 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
4570                 goto open_err;
4571         }
4572
4573         if (link_re_init) {
4574                 rc = bnxt_update_phy_setting(bp);
4575                 if (rc)
4576                         goto open_err;
4577         }
4578
4579         if (irq_re_init) {
4580 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE)
4581                 vxlan_get_rx_port(bp->dev);
4582 #endif
4583                 if (!bnxt_hwrm_tunnel_dst_port_alloc(
4584                                 bp, htons(0x17c1),
4585                                 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE))
4586                         bp->nge_port_cnt = 1;
4587         }
4588
4589         bp->state = BNXT_STATE_OPEN;
4590         bnxt_enable_int(bp);
4591         /* Enable TX queues */
4592         bnxt_tx_enable(bp);
4593         mod_timer(&bp->timer, jiffies + bp->current_interval);
4594
4595         return 0;
4596
4597 open_err:
4598         bnxt_disable_napi(bp);
4599         bnxt_del_napi(bp);
4600
4601 open_err_free_mem:
4602         bnxt_free_skbs(bp);
4603         bnxt_free_irq(bp);
4604         bnxt_free_mem(bp, true);
4605         return rc;
4606 }
4607
4608 /* rtnl_lock held */
4609 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4610 {
4611         int rc = 0;
4612
4613         rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
4614         if (rc) {
4615                 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
4616                 dev_close(bp->dev);
4617         }
4618         return rc;
4619 }
4620
4621 static int bnxt_open(struct net_device *dev)
4622 {
4623         struct bnxt *bp = netdev_priv(dev);
4624         int rc = 0;
4625
4626         rc = bnxt_hwrm_func_reset(bp);
4627         if (rc) {
4628                 netdev_err(bp->dev, "hwrm chip reset failure rc: %x\n",
4629                            rc);
4630                 rc = -1;
4631                 return rc;
4632         }
4633         return __bnxt_open_nic(bp, true, true);
4634 }
4635
4636 static void bnxt_disable_int_sync(struct bnxt *bp)
4637 {
4638         int i;
4639
4640         atomic_inc(&bp->intr_sem);
4641         if (!netif_running(bp->dev))
4642                 return;
4643
4644         bnxt_disable_int(bp);
4645         for (i = 0; i < bp->cp_nr_rings; i++)
4646                 synchronize_irq(bp->irq_tbl[i].vector);
4647 }
4648
4649 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4650 {
4651         int rc = 0;
4652
4653 #ifdef CONFIG_BNXT_SRIOV
4654         if (bp->sriov_cfg) {
4655                 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
4656                                                       !bp->sriov_cfg,
4657                                                       BNXT_SRIOV_CFG_WAIT_TMO);
4658                 if (rc)
4659                         netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
4660         }
4661 #endif
4662         /* Change device state to avoid TX queue wake up's */
4663         bnxt_tx_disable(bp);
4664
4665         bp->state = BNXT_STATE_CLOSED;
4666         cancel_work_sync(&bp->sp_task);
4667
4668         /* Flush rings before disabling interrupts */
4669         bnxt_shutdown_nic(bp, irq_re_init);
4670
4671         /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
4672
4673         bnxt_disable_napi(bp);
4674         bnxt_disable_int_sync(bp);
4675         del_timer_sync(&bp->timer);
4676         bnxt_free_skbs(bp);
4677
4678         if (irq_re_init) {
4679                 bnxt_free_irq(bp);
4680                 bnxt_del_napi(bp);
4681         }
4682         bnxt_free_mem(bp, irq_re_init);
4683         return rc;
4684 }
4685
4686 static int bnxt_close(struct net_device *dev)
4687 {
4688         struct bnxt *bp = netdev_priv(dev);
4689
4690         bnxt_close_nic(bp, true, true);
4691         return 0;
4692 }
4693
4694 /* rtnl_lock held */
4695 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4696 {
4697         switch (cmd) {
4698         case SIOCGMIIPHY:
4699                 /* fallthru */
4700         case SIOCGMIIREG: {
4701                 if (!netif_running(dev))
4702                         return -EAGAIN;
4703
4704                 return 0;
4705         }
4706
4707         case SIOCSMIIREG:
4708                 if (!netif_running(dev))
4709                         return -EAGAIN;
4710
4711                 return 0;
4712
4713         default:
4714                 /* do nothing */
4715                 break;
4716         }
4717         return -EOPNOTSUPP;
4718 }
4719
4720 static struct rtnl_link_stats64 *
4721 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
4722 {
4723         u32 i;
4724         struct bnxt *bp = netdev_priv(dev);
4725
4726         memset(stats, 0, sizeof(struct rtnl_link_stats64));
4727
4728         if (!bp->bnapi)
4729                 return stats;
4730
4731         /* TODO check if we need to synchronize with bnxt_close path */
4732         for (i = 0; i < bp->cp_nr_rings; i++) {
4733                 struct bnxt_napi *bnapi = bp->bnapi[i];
4734                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4735                 struct ctx_hw_stats *hw_stats = cpr->hw_stats;
4736
4737                 stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
4738                 stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
4739                 stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
4740
4741                 stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
4742                 stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
4743                 stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
4744
4745                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
4746                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
4747                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
4748
4749                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
4750                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
4751                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
4752
4753                 stats->rx_missed_errors +=
4754                         le64_to_cpu(hw_stats->rx_discard_pkts);
4755
4756                 stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
4757
4758                 stats->rx_dropped += le64_to_cpu(hw_stats->rx_drop_pkts);
4759
4760                 stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
4761         }
4762
4763         return stats;
4764 }
4765
4766 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
4767 {
4768         struct net_device *dev = bp->dev;
4769         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4770         struct netdev_hw_addr *ha;
4771         u8 *haddr;
4772         int mc_count = 0;
4773         bool update = false;
4774         int off = 0;
4775
4776         netdev_for_each_mc_addr(ha, dev) {
4777                 if (mc_count >= BNXT_MAX_MC_ADDRS) {
4778                         *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4779                         vnic->mc_list_count = 0;
4780                         return false;
4781                 }
4782                 haddr = ha->addr;
4783                 if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
4784                         memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
4785                         update = true;
4786                 }
4787                 off += ETH_ALEN;
4788                 mc_count++;
4789         }
4790         if (mc_count)
4791                 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
4792
4793         if (mc_count != vnic->mc_list_count) {
4794                 vnic->mc_list_count = mc_count;
4795                 update = true;
4796         }
4797         return update;
4798 }
4799
4800 static bool bnxt_uc_list_updated(struct bnxt *bp)
4801 {
4802         struct net_device *dev = bp->dev;
4803         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4804         struct netdev_hw_addr *ha;
4805         int off = 0;
4806
4807         if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
4808                 return true;
4809
4810         netdev_for_each_uc_addr(ha, dev) {
4811                 if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
4812                         return true;
4813
4814                 off += ETH_ALEN;
4815         }
4816         return false;
4817 }
4818
4819 static void bnxt_set_rx_mode(struct net_device *dev)
4820 {
4821         struct bnxt *bp = netdev_priv(dev);
4822         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4823         u32 mask = vnic->rx_mask;
4824         bool mc_update = false;
4825         bool uc_update;
4826
4827         if (!netif_running(dev))
4828                 return;
4829
4830         mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
4831                   CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
4832                   CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
4833
4834         /* Only allow PF to be in promiscuous mode */
4835         if ((dev->flags & IFF_PROMISC) && BNXT_PF(bp))
4836                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
4837
4838         uc_update = bnxt_uc_list_updated(bp);
4839
4840         if (dev->flags & IFF_ALLMULTI) {
4841                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4842                 vnic->mc_list_count = 0;
4843         } else {
4844                 mc_update = bnxt_mc_list_updated(bp, &mask);
4845         }
4846
4847         if (mask != vnic->rx_mask || uc_update || mc_update) {
4848                 vnic->rx_mask = mask;
4849
4850                 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
4851                 schedule_work(&bp->sp_task);
4852         }
4853 }
4854
4855 static void bnxt_cfg_rx_mode(struct bnxt *bp)
4856 {
4857         struct net_device *dev = bp->dev;
4858         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4859         struct netdev_hw_addr *ha;
4860         int i, off = 0, rc;
4861         bool uc_update;
4862
4863         netif_addr_lock_bh(dev);
4864         uc_update = bnxt_uc_list_updated(bp);
4865         netif_addr_unlock_bh(dev);
4866
4867         if (!uc_update)
4868                 goto skip_uc;
4869
4870         mutex_lock(&bp->hwrm_cmd_lock);
4871         for (i = 1; i < vnic->uc_filter_count; i++) {
4872                 struct hwrm_cfa_l2_filter_free_input req = {0};
4873
4874                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
4875                                        -1);
4876
4877                 req.l2_filter_id = vnic->fw_l2_filter_id[i];
4878
4879                 rc = _hwrm_send_message(bp, &req, sizeof(req),
4880                                         HWRM_CMD_TIMEOUT);
4881         }
4882         mutex_unlock(&bp->hwrm_cmd_lock);
4883
4884         vnic->uc_filter_count = 1;
4885
4886         netif_addr_lock_bh(dev);
4887         if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
4888                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
4889         } else {
4890                 netdev_for_each_uc_addr(ha, dev) {
4891                         memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
4892                         off += ETH_ALEN;
4893                         vnic->uc_filter_count++;
4894                 }
4895         }
4896         netif_addr_unlock_bh(dev);
4897
4898         for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
4899                 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
4900                 if (rc) {
4901                         netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
4902                                    rc);
4903                         vnic->uc_filter_count = i;
4904                 }
4905         }
4906
4907 skip_uc:
4908         rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
4909         if (rc)
4910                 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
4911                            rc);
4912 }
4913
4914 static netdev_features_t bnxt_fix_features(struct net_device *dev,
4915                                            netdev_features_t features)
4916 {
4917         return features;
4918 }
4919
4920 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
4921 {
4922         struct bnxt *bp = netdev_priv(dev);
4923         u32 flags = bp->flags;
4924         u32 changes;
4925         int rc = 0;
4926         bool re_init = false;
4927         bool update_tpa = false;
4928
4929         flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
4930         if ((features & NETIF_F_GRO) && (bp->pdev->revision > 0))
4931                 flags |= BNXT_FLAG_GRO;
4932         if (features & NETIF_F_LRO)
4933                 flags |= BNXT_FLAG_LRO;
4934
4935         if (features & NETIF_F_HW_VLAN_CTAG_RX)
4936                 flags |= BNXT_FLAG_STRIP_VLAN;
4937
4938         if (features & NETIF_F_NTUPLE)
4939                 flags |= BNXT_FLAG_RFS;
4940
4941         changes = flags ^ bp->flags;
4942         if (changes & BNXT_FLAG_TPA) {
4943                 update_tpa = true;
4944                 if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
4945                     (flags & BNXT_FLAG_TPA) == 0)
4946                         re_init = true;
4947         }
4948
4949         if (changes & ~BNXT_FLAG_TPA)
4950                 re_init = true;
4951
4952         if (flags != bp->flags) {
4953                 u32 old_flags = bp->flags;
4954
4955                 bp->flags = flags;
4956
4957                 if (!netif_running(dev)) {
4958                         if (update_tpa)
4959                                 bnxt_set_ring_params(bp);
4960                         return rc;
4961                 }
4962
4963                 if (re_init) {
4964                         bnxt_close_nic(bp, false, false);
4965                         if (update_tpa)
4966                                 bnxt_set_ring_params(bp);
4967
4968                         return bnxt_open_nic(bp, false, false);
4969                 }
4970                 if (update_tpa) {
4971                         rc = bnxt_set_tpa(bp,
4972                                           (flags & BNXT_FLAG_TPA) ?
4973                                           true : false);
4974                         if (rc)
4975                                 bp->flags = old_flags;
4976                 }
4977         }
4978         return rc;
4979 }
4980
4981 static void bnxt_dbg_dump_states(struct bnxt *bp)
4982 {
4983         int i;
4984         struct bnxt_napi *bnapi;
4985         struct bnxt_tx_ring_info *txr;
4986         struct bnxt_rx_ring_info *rxr;
4987         struct bnxt_cp_ring_info *cpr;
4988
4989         for (i = 0; i < bp->cp_nr_rings; i++) {
4990                 bnapi = bp->bnapi[i];
4991                 txr = &bnapi->tx_ring;
4992                 rxr = &bnapi->rx_ring;
4993                 cpr = &bnapi->cp_ring;
4994                 if (netif_msg_drv(bp)) {
4995                         netdev_info(bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
4996                                     i, txr->tx_ring_struct.fw_ring_id,
4997                                     txr->tx_prod, txr->tx_cons);
4998                         netdev_info(bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
4999                                     i, rxr->rx_ring_struct.fw_ring_id,
5000                                     rxr->rx_prod,
5001                                     rxr->rx_agg_ring_struct.fw_ring_id,
5002                                     rxr->rx_agg_prod, rxr->rx_sw_agg_prod);
5003                         netdev_info(bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
5004                                     i, cpr->cp_ring_struct.fw_ring_id,
5005                                     cpr->cp_raw_cons);
5006                 }
5007         }
5008 }
5009
5010 static void bnxt_reset_task(struct bnxt *bp)
5011 {
5012         bnxt_dbg_dump_states(bp);
5013         if (netif_running(bp->dev))
5014                 bnxt_tx_disable(bp); /* prevent tx timout again */
5015 }
5016
5017 static void bnxt_tx_timeout(struct net_device *dev)
5018 {
5019         struct bnxt *bp = netdev_priv(dev);
5020
5021         netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
5022         set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
5023         schedule_work(&bp->sp_task);
5024 }
5025
5026 #ifdef CONFIG_NET_POLL_CONTROLLER
5027 static void bnxt_poll_controller(struct net_device *dev)
5028 {
5029         struct bnxt *bp = netdev_priv(dev);
5030         int i;
5031
5032         for (i = 0; i < bp->cp_nr_rings; i++) {
5033                 struct bnxt_irq *irq = &bp->irq_tbl[i];
5034
5035                 disable_irq(irq->vector);
5036                 irq->handler(irq->vector, bp->bnapi[i]);
5037                 enable_irq(irq->vector);
5038         }
5039 }
5040 #endif
5041
5042 static void bnxt_timer(unsigned long data)
5043 {
5044         struct bnxt *bp = (struct bnxt *)data;
5045         struct net_device *dev = bp->dev;
5046
5047         if (!netif_running(dev))
5048                 return;
5049
5050         if (atomic_read(&bp->intr_sem) != 0)
5051                 goto bnxt_restart_timer;
5052
5053 bnxt_restart_timer:
5054         mod_timer(&bp->timer, jiffies + bp->current_interval);
5055 }
5056
5057 static void bnxt_cfg_ntp_filters(struct bnxt *);
5058
5059 static void bnxt_sp_task(struct work_struct *work)
5060 {
5061         struct bnxt *bp = container_of(work, struct bnxt, sp_task);
5062         int rc;
5063
5064         if (bp->state != BNXT_STATE_OPEN)
5065                 return;
5066
5067         if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
5068                 bnxt_cfg_rx_mode(bp);
5069
5070         if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
5071                 bnxt_cfg_ntp_filters(bp);
5072         if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
5073                 rc = bnxt_update_link(bp, true);
5074                 if (rc)
5075                         netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
5076                                    rc);
5077         }
5078         if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
5079                 bnxt_hwrm_exec_fwd_req(bp);
5080         if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
5081                 bnxt_hwrm_tunnel_dst_port_alloc(
5082                         bp, bp->vxlan_port,
5083                         TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5084         }
5085         if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
5086                 bnxt_hwrm_tunnel_dst_port_free(
5087                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5088         }
5089         if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
5090                 bnxt_reset_task(bp);
5091 }
5092
5093 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
5094 {
5095         int rc;
5096         struct bnxt *bp = netdev_priv(dev);
5097
5098         SET_NETDEV_DEV(dev, &pdev->dev);
5099
5100         /* enable device (incl. PCI PM wakeup), and bus-mastering */
5101         rc = pci_enable_device(pdev);
5102         if (rc) {
5103                 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
5104                 goto init_err;
5105         }
5106
5107         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
5108                 dev_err(&pdev->dev,
5109                         "Cannot find PCI device base address, aborting\n");
5110                 rc = -ENODEV;
5111                 goto init_err_disable;
5112         }
5113
5114         rc = pci_request_regions(pdev, DRV_MODULE_NAME);
5115         if (rc) {
5116                 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
5117                 goto init_err_disable;
5118         }
5119
5120         if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
5121             dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
5122                 dev_err(&pdev->dev, "System does not support DMA, aborting\n");
5123                 goto init_err_disable;
5124         }
5125
5126         pci_set_master(pdev);
5127
5128         bp->dev = dev;
5129         bp->pdev = pdev;
5130
5131         bp->bar0 = pci_ioremap_bar(pdev, 0);
5132         if (!bp->bar0) {
5133                 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5134                 rc = -ENOMEM;
5135                 goto init_err_release;
5136         }
5137
5138         bp->bar1 = pci_ioremap_bar(pdev, 2);
5139         if (!bp->bar1) {
5140                 dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
5141                 rc = -ENOMEM;
5142                 goto init_err_release;
5143         }
5144
5145         bp->bar2 = pci_ioremap_bar(pdev, 4);
5146         if (!bp->bar2) {
5147                 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
5148                 rc = -ENOMEM;
5149                 goto init_err_release;
5150         }
5151
5152         INIT_WORK(&bp->sp_task, bnxt_sp_task);
5153
5154         spin_lock_init(&bp->ntp_fltr_lock);
5155
5156         bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
5157         bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
5158
5159         bp->coal_ticks = BNXT_USEC_TO_COAL_TIMER(4);
5160         bp->coal_bufs = 20;
5161         bp->coal_ticks_irq = BNXT_USEC_TO_COAL_TIMER(1);
5162         bp->coal_bufs_irq = 2;
5163
5164         init_timer(&bp->timer);
5165         bp->timer.data = (unsigned long)bp;
5166         bp->timer.function = bnxt_timer;
5167         bp->current_interval = BNXT_TIMER_INTERVAL;
5168
5169         bp->state = BNXT_STATE_CLOSED;
5170
5171         return 0;
5172
5173 init_err_release:
5174         if (bp->bar2) {
5175                 pci_iounmap(pdev, bp->bar2);
5176                 bp->bar2 = NULL;
5177         }
5178
5179         if (bp->bar1) {
5180                 pci_iounmap(pdev, bp->bar1);
5181                 bp->bar1 = NULL;
5182         }
5183
5184         if (bp->bar0) {
5185                 pci_iounmap(pdev, bp->bar0);
5186                 bp->bar0 = NULL;
5187         }
5188
5189         pci_release_regions(pdev);
5190
5191 init_err_disable:
5192         pci_disable_device(pdev);
5193
5194 init_err:
5195         return rc;
5196 }
5197
5198 /* rtnl_lock held */
5199 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
5200 {
5201         struct sockaddr *addr = p;
5202
5203         if (!is_valid_ether_addr(addr->sa_data))
5204                 return -EADDRNOTAVAIL;
5205
5206         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5207
5208         return 0;
5209 }
5210
5211 /* rtnl_lock held */
5212 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
5213 {
5214         struct bnxt *bp = netdev_priv(dev);
5215
5216         if (new_mtu < 60 || new_mtu > 9000)
5217                 return -EINVAL;
5218
5219         if (netif_running(dev))
5220                 bnxt_close_nic(bp, false, false);
5221
5222         dev->mtu = new_mtu;
5223         bnxt_set_ring_params(bp);
5224
5225         if (netif_running(dev))
5226                 return bnxt_open_nic(bp, false, false);
5227
5228         return 0;
5229 }
5230
5231 static int bnxt_setup_tc(struct net_device *dev, u8 tc)
5232 {
5233         struct bnxt *bp = netdev_priv(dev);
5234
5235         if (tc > bp->max_tc) {
5236                 netdev_err(dev, "too many traffic classes requested: %d Max supported is %d\n",
5237                            tc, bp->max_tc);
5238                 return -EINVAL;
5239         }
5240
5241         if (netdev_get_num_tc(dev) == tc)
5242                 return 0;
5243
5244         if (tc) {
5245                 int max_rx_rings, max_tx_rings;
5246
5247                 bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings);
5248                 if (bp->tx_nr_rings_per_tc * tc > max_tx_rings)
5249                         return -ENOMEM;
5250         }
5251
5252         /* Needs to close the device and do hw resource re-allocations */
5253         if (netif_running(bp->dev))
5254                 bnxt_close_nic(bp, true, false);
5255
5256         if (tc) {
5257                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
5258                 netdev_set_num_tc(dev, tc);
5259         } else {
5260                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
5261                 netdev_reset_tc(dev);
5262         }
5263         bp->cp_nr_rings = max_t(int, bp->tx_nr_rings, bp->rx_nr_rings);
5264         bp->num_stat_ctxs = bp->cp_nr_rings;
5265
5266         if (netif_running(bp->dev))
5267                 return bnxt_open_nic(bp, true, false);
5268
5269         return 0;
5270 }
5271
5272 #ifdef CONFIG_RFS_ACCEL
5273 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
5274                             struct bnxt_ntuple_filter *f2)
5275 {
5276         struct flow_keys *keys1 = &f1->fkeys;
5277         struct flow_keys *keys2 = &f2->fkeys;
5278
5279         if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
5280             keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
5281             keys1->ports.ports == keys2->ports.ports &&
5282             keys1->basic.ip_proto == keys2->basic.ip_proto &&
5283             keys1->basic.n_proto == keys2->basic.n_proto &&
5284             ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr))
5285                 return true;
5286
5287         return false;
5288 }
5289
5290 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
5291                               u16 rxq_index, u32 flow_id)
5292 {
5293         struct bnxt *bp = netdev_priv(dev);
5294         struct bnxt_ntuple_filter *fltr, *new_fltr;
5295         struct flow_keys *fkeys;
5296         struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
5297         int rc = 0, idx;
5298         struct hlist_head *head;
5299
5300         if (skb->encapsulation)
5301                 return -EPROTONOSUPPORT;
5302
5303         new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
5304         if (!new_fltr)
5305                 return -ENOMEM;
5306
5307         fkeys = &new_fltr->fkeys;
5308         if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
5309                 rc = -EPROTONOSUPPORT;
5310                 goto err_free;
5311         }
5312
5313         if ((fkeys->basic.n_proto != htons(ETH_P_IP)) ||
5314             ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
5315              (fkeys->basic.ip_proto != IPPROTO_UDP))) {
5316                 rc = -EPROTONOSUPPORT;
5317                 goto err_free;
5318         }
5319
5320         memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
5321
5322         idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
5323         head = &bp->ntp_fltr_hash_tbl[idx];
5324         rcu_read_lock();
5325         hlist_for_each_entry_rcu(fltr, head, hash) {
5326                 if (bnxt_fltr_match(fltr, new_fltr)) {
5327                         rcu_read_unlock();
5328                         rc = 0;
5329                         goto err_free;
5330                 }
5331         }
5332         rcu_read_unlock();
5333
5334         spin_lock_bh(&bp->ntp_fltr_lock);
5335         new_fltr->sw_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
5336                                                   BNXT_NTP_FLTR_MAX_FLTR, 0);
5337         if (new_fltr->sw_id < 0) {
5338                 spin_unlock_bh(&bp->ntp_fltr_lock);
5339                 rc = -ENOMEM;
5340                 goto err_free;
5341         }
5342
5343         new_fltr->flow_id = flow_id;
5344         new_fltr->rxq = rxq_index;
5345         hlist_add_head_rcu(&new_fltr->hash, head);
5346         bp->ntp_fltr_count++;
5347         spin_unlock_bh(&bp->ntp_fltr_lock);
5348
5349         set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
5350         schedule_work(&bp->sp_task);
5351
5352         return new_fltr->sw_id;
5353
5354 err_free:
5355         kfree(new_fltr);
5356         return rc;
5357 }
5358
5359 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
5360 {
5361         int i;
5362
5363         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
5364                 struct hlist_head *head;
5365                 struct hlist_node *tmp;
5366                 struct bnxt_ntuple_filter *fltr;
5367                 int rc;
5368
5369                 head = &bp->ntp_fltr_hash_tbl[i];
5370                 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
5371                         bool del = false;
5372
5373                         if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
5374                                 if (rps_may_expire_flow(bp->dev, fltr->rxq,
5375                                                         fltr->flow_id,
5376                                                         fltr->sw_id)) {
5377                                         bnxt_hwrm_cfa_ntuple_filter_free(bp,
5378                                                                          fltr);
5379                                         del = true;
5380                                 }
5381                         } else {
5382                                 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
5383                                                                        fltr);
5384                                 if (rc)
5385                                         del = true;
5386                                 else
5387                                         set_bit(BNXT_FLTR_VALID, &fltr->state);
5388                         }
5389
5390                         if (del) {
5391                                 spin_lock_bh(&bp->ntp_fltr_lock);
5392                                 hlist_del_rcu(&fltr->hash);
5393                                 bp->ntp_fltr_count--;
5394                                 spin_unlock_bh(&bp->ntp_fltr_lock);
5395                                 synchronize_rcu();
5396                                 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
5397                                 kfree(fltr);
5398                         }
5399                 }
5400         }
5401 }
5402
5403 #else
5404
5405 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
5406 {
5407 }
5408
5409 #endif /* CONFIG_RFS_ACCEL */
5410
5411 static void bnxt_add_vxlan_port(struct net_device *dev, sa_family_t sa_family,
5412                                 __be16 port)
5413 {
5414         struct bnxt *bp = netdev_priv(dev);
5415
5416         if (!netif_running(dev))
5417                 return;
5418
5419         if (sa_family != AF_INET6 && sa_family != AF_INET)
5420                 return;
5421
5422         if (bp->vxlan_port_cnt && bp->vxlan_port != port)
5423                 return;
5424
5425         bp->vxlan_port_cnt++;
5426         if (bp->vxlan_port_cnt == 1) {
5427                 bp->vxlan_port = port;
5428                 set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
5429                 schedule_work(&bp->sp_task);
5430         }
5431 }
5432
5433 static void bnxt_del_vxlan_port(struct net_device *dev, sa_family_t sa_family,
5434                                 __be16 port)
5435 {
5436         struct bnxt *bp = netdev_priv(dev);
5437
5438         if (!netif_running(dev))
5439                 return;
5440
5441         if (sa_family != AF_INET6 && sa_family != AF_INET)
5442                 return;
5443
5444         if (bp->vxlan_port_cnt && bp->vxlan_port == port) {
5445                 bp->vxlan_port_cnt--;
5446
5447                 if (bp->vxlan_port_cnt == 0) {
5448                         set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
5449                         schedule_work(&bp->sp_task);
5450                 }
5451         }
5452 }
5453
5454 static const struct net_device_ops bnxt_netdev_ops = {
5455         .ndo_open               = bnxt_open,
5456         .ndo_start_xmit         = bnxt_start_xmit,
5457         .ndo_stop               = bnxt_close,
5458         .ndo_get_stats64        = bnxt_get_stats64,
5459         .ndo_set_rx_mode        = bnxt_set_rx_mode,
5460         .ndo_do_ioctl           = bnxt_ioctl,
5461         .ndo_validate_addr      = eth_validate_addr,
5462         .ndo_set_mac_address    = bnxt_change_mac_addr,
5463         .ndo_change_mtu         = bnxt_change_mtu,
5464         .ndo_fix_features       = bnxt_fix_features,
5465         .ndo_set_features       = bnxt_set_features,
5466         .ndo_tx_timeout         = bnxt_tx_timeout,
5467 #ifdef CONFIG_BNXT_SRIOV
5468         .ndo_get_vf_config      = bnxt_get_vf_config,
5469         .ndo_set_vf_mac         = bnxt_set_vf_mac,
5470         .ndo_set_vf_vlan        = bnxt_set_vf_vlan,
5471         .ndo_set_vf_rate        = bnxt_set_vf_bw,
5472         .ndo_set_vf_link_state  = bnxt_set_vf_link_state,
5473         .ndo_set_vf_spoofchk    = bnxt_set_vf_spoofchk,
5474 #endif
5475 #ifdef CONFIG_NET_POLL_CONTROLLER
5476         .ndo_poll_controller    = bnxt_poll_controller,
5477 #endif
5478         .ndo_setup_tc           = bnxt_setup_tc,
5479 #ifdef CONFIG_RFS_ACCEL
5480         .ndo_rx_flow_steer      = bnxt_rx_flow_steer,
5481 #endif
5482         .ndo_add_vxlan_port     = bnxt_add_vxlan_port,
5483         .ndo_del_vxlan_port     = bnxt_del_vxlan_port,
5484 #ifdef CONFIG_NET_RX_BUSY_POLL
5485         .ndo_busy_poll          = bnxt_busy_poll,
5486 #endif
5487 };
5488
5489 static void bnxt_remove_one(struct pci_dev *pdev)
5490 {
5491         struct net_device *dev = pci_get_drvdata(pdev);
5492         struct bnxt *bp = netdev_priv(dev);
5493
5494         if (BNXT_PF(bp))
5495                 bnxt_sriov_disable(bp);
5496
5497         unregister_netdev(dev);
5498         cancel_work_sync(&bp->sp_task);
5499         bp->sp_event = 0;
5500
5501         bnxt_free_hwrm_resources(bp);
5502         pci_iounmap(pdev, bp->bar2);
5503         pci_iounmap(pdev, bp->bar1);
5504         pci_iounmap(pdev, bp->bar0);
5505         free_netdev(dev);
5506
5507         pci_release_regions(pdev);
5508         pci_disable_device(pdev);
5509 }
5510
5511 static int bnxt_probe_phy(struct bnxt *bp)
5512 {
5513         int rc = 0;
5514         struct bnxt_link_info *link_info = &bp->link_info;
5515         char phy_ver[PHY_VER_STR_LEN];
5516
5517         rc = bnxt_update_link(bp, false);
5518         if (rc) {
5519                 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
5520                            rc);
5521                 return rc;
5522         }
5523
5524         /*initialize the ethool setting copy with NVM settings */
5525         if (BNXT_AUTO_MODE(link_info->auto_mode))
5526                 link_info->autoneg |= BNXT_AUTONEG_SPEED;
5527
5528         if (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) {
5529                 if (link_info->auto_pause_setting == BNXT_LINK_PAUSE_BOTH)
5530                         link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
5531                 link_info->req_flow_ctrl = link_info->auto_pause_setting;
5532         } else if (link_info->force_pause_setting & BNXT_LINK_PAUSE_BOTH) {
5533                 link_info->req_flow_ctrl = link_info->force_pause_setting;
5534         }
5535         link_info->req_duplex = link_info->duplex_setting;
5536         if (link_info->autoneg & BNXT_AUTONEG_SPEED)
5537                 link_info->req_link_speed = link_info->auto_link_speed;
5538         else
5539                 link_info->req_link_speed = link_info->force_link_speed;
5540         link_info->advertising = link_info->auto_link_speeds;
5541         snprintf(phy_ver, PHY_VER_STR_LEN, " ph %d.%d.%d",
5542                  link_info->phy_ver[0],
5543                  link_info->phy_ver[1],
5544                  link_info->phy_ver[2]);
5545         strcat(bp->fw_ver_str, phy_ver);
5546         return rc;
5547 }
5548
5549 static int bnxt_get_max_irq(struct pci_dev *pdev)
5550 {
5551         u16 ctrl;
5552
5553         if (!pdev->msix_cap)
5554                 return 1;
5555
5556         pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
5557         return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
5558 }
5559
5560 void bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx)
5561 {
5562         int max_rings = 0;
5563
5564         if (BNXT_PF(bp)) {
5565                 *max_tx = bp->pf.max_pf_tx_rings;
5566                 *max_rx = bp->pf.max_pf_rx_rings;
5567                 max_rings = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings);
5568                 max_rings = min_t(int, max_rings, bp->pf.max_stat_ctxs);
5569         } else {
5570 #ifdef CONFIG_BNXT_SRIOV
5571                 *max_tx = bp->vf.max_tx_rings;
5572                 *max_rx = bp->vf.max_rx_rings;
5573                 max_rings = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings);
5574                 max_rings = min_t(int, max_rings, bp->vf.max_stat_ctxs);
5575 #endif
5576         }
5577         if (bp->flags & BNXT_FLAG_AGG_RINGS)
5578                 *max_rx >>= 1;
5579
5580         *max_rx = min_t(int, *max_rx, max_rings);
5581         *max_tx = min_t(int, *max_tx, max_rings);
5582 }
5583
5584 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
5585 {
5586         static int version_printed;
5587         struct net_device *dev;
5588         struct bnxt *bp;
5589         int rc, max_rx_rings, max_tx_rings, max_irqs, dflt_rings;
5590
5591         if (version_printed++ == 0)
5592                 pr_info("%s", version);
5593
5594         max_irqs = bnxt_get_max_irq(pdev);
5595         dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
5596         if (!dev)
5597                 return -ENOMEM;
5598
5599         bp = netdev_priv(dev);
5600
5601         if (bnxt_vf_pciid(ent->driver_data))
5602                 bp->flags |= BNXT_FLAG_VF;
5603
5604         if (pdev->msix_cap) {
5605                 bp->flags |= BNXT_FLAG_MSIX_CAP;
5606                 if (BNXT_PF(bp))
5607                         bp->flags |= BNXT_FLAG_RFS;
5608         }
5609
5610         rc = bnxt_init_board(pdev, dev);
5611         if (rc < 0)
5612                 goto init_err_free;
5613
5614         dev->netdev_ops = &bnxt_netdev_ops;
5615         dev->watchdog_timeo = BNXT_TX_TIMEOUT;
5616         dev->ethtool_ops = &bnxt_ethtool_ops;
5617
5618         pci_set_drvdata(pdev, dev);
5619
5620         dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
5621                            NETIF_F_TSO | NETIF_F_TSO6 |
5622                            NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
5623                            NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT |
5624                            NETIF_F_RXHASH |
5625                            NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO;
5626
5627         if (bp->flags & BNXT_FLAG_RFS)
5628                 dev->hw_features |= NETIF_F_NTUPLE;
5629
5630         dev->hw_enc_features =
5631                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
5632                         NETIF_F_TSO | NETIF_F_TSO6 |
5633                         NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
5634                         NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
5635         dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
5636         dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
5637                             NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
5638         dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
5639         dev->priv_flags |= IFF_UNICAST_FLT;
5640
5641 #ifdef CONFIG_BNXT_SRIOV
5642         init_waitqueue_head(&bp->sriov_cfg_wait);
5643 #endif
5644         rc = bnxt_alloc_hwrm_resources(bp);
5645         if (rc)
5646                 goto init_err;
5647
5648         mutex_init(&bp->hwrm_cmd_lock);
5649         bnxt_hwrm_ver_get(bp);
5650
5651         rc = bnxt_hwrm_func_drv_rgtr(bp);
5652         if (rc)
5653                 goto init_err;
5654
5655         /* Get the MAX capabilities for this function */
5656         rc = bnxt_hwrm_func_qcaps(bp);
5657         if (rc) {
5658                 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
5659                            rc);
5660                 rc = -1;
5661                 goto init_err;
5662         }
5663
5664         rc = bnxt_hwrm_queue_qportcfg(bp);
5665         if (rc) {
5666                 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
5667                            rc);
5668                 rc = -1;
5669                 goto init_err;
5670         }
5671
5672         bnxt_set_tpa_flags(bp);
5673         bnxt_set_ring_params(bp);
5674         dflt_rings = netif_get_num_default_rss_queues();
5675         if (BNXT_PF(bp)) {
5676                 memcpy(dev->dev_addr, bp->pf.mac_addr, ETH_ALEN);
5677                 bp->pf.max_irqs = max_irqs;
5678         } else {
5679 #if defined(CONFIG_BNXT_SRIOV)
5680                 memcpy(dev->dev_addr, bp->vf.mac_addr, ETH_ALEN);
5681                 bp->vf.max_irqs = max_irqs;
5682 #endif
5683         }
5684         bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings);
5685         bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
5686         bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
5687         bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
5688         bp->cp_nr_rings = max_t(int, bp->rx_nr_rings, bp->tx_nr_rings);
5689         bp->num_stat_ctxs = bp->cp_nr_rings;
5690
5691         if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
5692                 bp->flags |= BNXT_FLAG_STRIP_VLAN;
5693
5694         rc = bnxt_probe_phy(bp);
5695         if (rc)
5696                 goto init_err;
5697
5698         rc = register_netdev(dev);
5699         if (rc)
5700                 goto init_err;
5701
5702         netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
5703                     board_info[ent->driver_data].name,
5704                     (long)pci_resource_start(pdev, 0), dev->dev_addr);
5705
5706         return 0;
5707
5708 init_err:
5709         pci_iounmap(pdev, bp->bar0);
5710         pci_release_regions(pdev);
5711         pci_disable_device(pdev);
5712
5713 init_err_free:
5714         free_netdev(dev);
5715         return rc;
5716 }
5717
5718 static struct pci_driver bnxt_pci_driver = {
5719         .name           = DRV_MODULE_NAME,
5720         .id_table       = bnxt_pci_tbl,
5721         .probe          = bnxt_init_one,
5722         .remove         = bnxt_remove_one,
5723 #if defined(CONFIG_BNXT_SRIOV)
5724         .sriov_configure = bnxt_sriov_configure,
5725 #endif
5726 };
5727
5728 module_pci_driver(bnxt_pci_driver);