]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/broadcom/genet/bcmgenet.c
Merge remote-tracking branch 'sound-current/for-linus'
[karo-tx-linux.git] / drivers / net / ethernet / broadcom / genet / bcmgenet.c
1 /*
2  * Broadcom GENET (Gigabit Ethernet) controller driver
3  *
4  * Copyright (c) 2014 Broadcom Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10
11 #define pr_fmt(fmt)                             "bcmgenet: " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/fcntl.h>
18 #include <linux/interrupt.h>
19 #include <linux/string.h>
20 #include <linux/if_ether.h>
21 #include <linux/init.h>
22 #include <linux/errno.h>
23 #include <linux/delay.h>
24 #include <linux/platform_device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/pm.h>
27 #include <linux/clk.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <net/arp.h>
34
35 #include <linux/mii.h>
36 #include <linux/ethtool.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/skbuff.h>
41 #include <linux/in.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/phy.h>
45 #include <linux/platform_data/bcmgenet.h>
46
47 #include <asm/unaligned.h>
48
49 #include "bcmgenet.h"
50
51 /* Maximum number of hardware queues, downsized if needed */
52 #define GENET_MAX_MQ_CNT        4
53
54 /* Default highest priority queue for multi queue support */
55 #define GENET_Q0_PRIORITY       0
56
57 #define GENET_Q16_RX_BD_CNT     \
58         (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
59 #define GENET_Q16_TX_BD_CNT     \
60         (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
61
62 #define RX_BUF_LENGTH           2048
63 #define SKB_ALIGNMENT           32
64
65 /* Tx/Rx DMA register offset, skip 256 descriptors */
66 #define WORDS_PER_BD(p)         (p->hw_params->words_per_bd)
67 #define DMA_DESC_SIZE           (WORDS_PER_BD(priv) * sizeof(u32))
68
69 #define GENET_TDMA_REG_OFF      (priv->hw_params->tdma_offset + \
70                                 TOTAL_DESC * DMA_DESC_SIZE)
71
72 #define GENET_RDMA_REG_OFF      (priv->hw_params->rdma_offset + \
73                                 TOTAL_DESC * DMA_DESC_SIZE)
74
75 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
76                                              void __iomem *d, u32 value)
77 {
78         __raw_writel(value, d + DMA_DESC_LENGTH_STATUS);
79 }
80
81 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
82                                             void __iomem *d)
83 {
84         return __raw_readl(d + DMA_DESC_LENGTH_STATUS);
85 }
86
87 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
88                                     void __iomem *d,
89                                     dma_addr_t addr)
90 {
91         __raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
92
93         /* Register writes to GISB bus can take couple hundred nanoseconds
94          * and are done for each packet, save these expensive writes unless
95          * the platform is explicitly configured for 64-bits/LPAE.
96          */
97 #ifdef CONFIG_PHYS_ADDR_T_64BIT
98         if (priv->hw_params->flags & GENET_HAS_40BITS)
99                 __raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
100 #endif
101 }
102
103 /* Combined address + length/status setter */
104 static inline void dmadesc_set(struct bcmgenet_priv *priv,
105                                void __iomem *d, dma_addr_t addr, u32 val)
106 {
107         dmadesc_set_length_status(priv, d, val);
108         dmadesc_set_addr(priv, d, addr);
109 }
110
111 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
112                                           void __iomem *d)
113 {
114         dma_addr_t addr;
115
116         addr = __raw_readl(d + DMA_DESC_ADDRESS_LO);
117
118         /* Register writes to GISB bus can take couple hundred nanoseconds
119          * and are done for each packet, save these expensive writes unless
120          * the platform is explicitly configured for 64-bits/LPAE.
121          */
122 #ifdef CONFIG_PHYS_ADDR_T_64BIT
123         if (priv->hw_params->flags & GENET_HAS_40BITS)
124                 addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32;
125 #endif
126         return addr;
127 }
128
129 #define GENET_VER_FMT   "%1d.%1d EPHY: 0x%04x"
130
131 #define GENET_MSG_DEFAULT       (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
132                                 NETIF_MSG_LINK)
133
134 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
135 {
136         if (GENET_IS_V1(priv))
137                 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
138         else
139                 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
140 }
141
142 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
143 {
144         if (GENET_IS_V1(priv))
145                 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
146         else
147                 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
148 }
149
150 /* These macros are defined to deal with register map change
151  * between GENET1.1 and GENET2. Only those currently being used
152  * by driver are defined.
153  */
154 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
155 {
156         if (GENET_IS_V1(priv))
157                 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
158         else
159                 return __raw_readl(priv->base +
160                                 priv->hw_params->tbuf_offset + TBUF_CTRL);
161 }
162
163 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
164 {
165         if (GENET_IS_V1(priv))
166                 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
167         else
168                 __raw_writel(val, priv->base +
169                                 priv->hw_params->tbuf_offset + TBUF_CTRL);
170 }
171
172 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
173 {
174         if (GENET_IS_V1(priv))
175                 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
176         else
177                 return __raw_readl(priv->base +
178                                 priv->hw_params->tbuf_offset + TBUF_BP_MC);
179 }
180
181 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
182 {
183         if (GENET_IS_V1(priv))
184                 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
185         else
186                 __raw_writel(val, priv->base +
187                                 priv->hw_params->tbuf_offset + TBUF_BP_MC);
188 }
189
190 /* RX/TX DMA register accessors */
191 enum dma_reg {
192         DMA_RING_CFG = 0,
193         DMA_CTRL,
194         DMA_STATUS,
195         DMA_SCB_BURST_SIZE,
196         DMA_ARB_CTRL,
197         DMA_PRIORITY_0,
198         DMA_PRIORITY_1,
199         DMA_PRIORITY_2,
200         DMA_INDEX2RING_0,
201         DMA_INDEX2RING_1,
202         DMA_INDEX2RING_2,
203         DMA_INDEX2RING_3,
204         DMA_INDEX2RING_4,
205         DMA_INDEX2RING_5,
206         DMA_INDEX2RING_6,
207         DMA_INDEX2RING_7,
208         DMA_RING0_TIMEOUT,
209         DMA_RING1_TIMEOUT,
210         DMA_RING2_TIMEOUT,
211         DMA_RING3_TIMEOUT,
212         DMA_RING4_TIMEOUT,
213         DMA_RING5_TIMEOUT,
214         DMA_RING6_TIMEOUT,
215         DMA_RING7_TIMEOUT,
216         DMA_RING8_TIMEOUT,
217         DMA_RING9_TIMEOUT,
218         DMA_RING10_TIMEOUT,
219         DMA_RING11_TIMEOUT,
220         DMA_RING12_TIMEOUT,
221         DMA_RING13_TIMEOUT,
222         DMA_RING14_TIMEOUT,
223         DMA_RING15_TIMEOUT,
224         DMA_RING16_TIMEOUT,
225 };
226
227 static const u8 bcmgenet_dma_regs_v3plus[] = {
228         [DMA_RING_CFG]          = 0x00,
229         [DMA_CTRL]              = 0x04,
230         [DMA_STATUS]            = 0x08,
231         [DMA_SCB_BURST_SIZE]    = 0x0C,
232         [DMA_ARB_CTRL]          = 0x2C,
233         [DMA_PRIORITY_0]        = 0x30,
234         [DMA_PRIORITY_1]        = 0x34,
235         [DMA_PRIORITY_2]        = 0x38,
236         [DMA_RING0_TIMEOUT]     = 0x2C,
237         [DMA_RING1_TIMEOUT]     = 0x30,
238         [DMA_RING2_TIMEOUT]     = 0x34,
239         [DMA_RING3_TIMEOUT]     = 0x38,
240         [DMA_RING4_TIMEOUT]     = 0x3c,
241         [DMA_RING5_TIMEOUT]     = 0x40,
242         [DMA_RING6_TIMEOUT]     = 0x44,
243         [DMA_RING7_TIMEOUT]     = 0x48,
244         [DMA_RING8_TIMEOUT]     = 0x4c,
245         [DMA_RING9_TIMEOUT]     = 0x50,
246         [DMA_RING10_TIMEOUT]    = 0x54,
247         [DMA_RING11_TIMEOUT]    = 0x58,
248         [DMA_RING12_TIMEOUT]    = 0x5c,
249         [DMA_RING13_TIMEOUT]    = 0x60,
250         [DMA_RING14_TIMEOUT]    = 0x64,
251         [DMA_RING15_TIMEOUT]    = 0x68,
252         [DMA_RING16_TIMEOUT]    = 0x6C,
253         [DMA_INDEX2RING_0]      = 0x70,
254         [DMA_INDEX2RING_1]      = 0x74,
255         [DMA_INDEX2RING_2]      = 0x78,
256         [DMA_INDEX2RING_3]      = 0x7C,
257         [DMA_INDEX2RING_4]      = 0x80,
258         [DMA_INDEX2RING_5]      = 0x84,
259         [DMA_INDEX2RING_6]      = 0x88,
260         [DMA_INDEX2RING_7]      = 0x8C,
261 };
262
263 static const u8 bcmgenet_dma_regs_v2[] = {
264         [DMA_RING_CFG]          = 0x00,
265         [DMA_CTRL]              = 0x04,
266         [DMA_STATUS]            = 0x08,
267         [DMA_SCB_BURST_SIZE]    = 0x0C,
268         [DMA_ARB_CTRL]          = 0x30,
269         [DMA_PRIORITY_0]        = 0x34,
270         [DMA_PRIORITY_1]        = 0x38,
271         [DMA_PRIORITY_2]        = 0x3C,
272         [DMA_RING0_TIMEOUT]     = 0x2C,
273         [DMA_RING1_TIMEOUT]     = 0x30,
274         [DMA_RING2_TIMEOUT]     = 0x34,
275         [DMA_RING3_TIMEOUT]     = 0x38,
276         [DMA_RING4_TIMEOUT]     = 0x3c,
277         [DMA_RING5_TIMEOUT]     = 0x40,
278         [DMA_RING6_TIMEOUT]     = 0x44,
279         [DMA_RING7_TIMEOUT]     = 0x48,
280         [DMA_RING8_TIMEOUT]     = 0x4c,
281         [DMA_RING9_TIMEOUT]     = 0x50,
282         [DMA_RING10_TIMEOUT]    = 0x54,
283         [DMA_RING11_TIMEOUT]    = 0x58,
284         [DMA_RING12_TIMEOUT]    = 0x5c,
285         [DMA_RING13_TIMEOUT]    = 0x60,
286         [DMA_RING14_TIMEOUT]    = 0x64,
287         [DMA_RING15_TIMEOUT]    = 0x68,
288         [DMA_RING16_TIMEOUT]    = 0x6C,
289 };
290
291 static const u8 bcmgenet_dma_regs_v1[] = {
292         [DMA_CTRL]              = 0x00,
293         [DMA_STATUS]            = 0x04,
294         [DMA_SCB_BURST_SIZE]    = 0x0C,
295         [DMA_ARB_CTRL]          = 0x30,
296         [DMA_PRIORITY_0]        = 0x34,
297         [DMA_PRIORITY_1]        = 0x38,
298         [DMA_PRIORITY_2]        = 0x3C,
299         [DMA_RING0_TIMEOUT]     = 0x2C,
300         [DMA_RING1_TIMEOUT]     = 0x30,
301         [DMA_RING2_TIMEOUT]     = 0x34,
302         [DMA_RING3_TIMEOUT]     = 0x38,
303         [DMA_RING4_TIMEOUT]     = 0x3c,
304         [DMA_RING5_TIMEOUT]     = 0x40,
305         [DMA_RING6_TIMEOUT]     = 0x44,
306         [DMA_RING7_TIMEOUT]     = 0x48,
307         [DMA_RING8_TIMEOUT]     = 0x4c,
308         [DMA_RING9_TIMEOUT]     = 0x50,
309         [DMA_RING10_TIMEOUT]    = 0x54,
310         [DMA_RING11_TIMEOUT]    = 0x58,
311         [DMA_RING12_TIMEOUT]    = 0x5c,
312         [DMA_RING13_TIMEOUT]    = 0x60,
313         [DMA_RING14_TIMEOUT]    = 0x64,
314         [DMA_RING15_TIMEOUT]    = 0x68,
315         [DMA_RING16_TIMEOUT]    = 0x6C,
316 };
317
318 /* Set at runtime once bcmgenet version is known */
319 static const u8 *bcmgenet_dma_regs;
320
321 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
322 {
323         return netdev_priv(dev_get_drvdata(dev));
324 }
325
326 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
327                                       enum dma_reg r)
328 {
329         return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
330                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
331 }
332
333 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
334                                         u32 val, enum dma_reg r)
335 {
336         __raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
337                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
338 }
339
340 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
341                                       enum dma_reg r)
342 {
343         return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
344                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
345 }
346
347 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
348                                         u32 val, enum dma_reg r)
349 {
350         __raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
351                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
352 }
353
354 /* RDMA/TDMA ring registers and accessors
355  * we merge the common fields and just prefix with T/D the registers
356  * having different meaning depending on the direction
357  */
358 enum dma_ring_reg {
359         TDMA_READ_PTR = 0,
360         RDMA_WRITE_PTR = TDMA_READ_PTR,
361         TDMA_READ_PTR_HI,
362         RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
363         TDMA_CONS_INDEX,
364         RDMA_PROD_INDEX = TDMA_CONS_INDEX,
365         TDMA_PROD_INDEX,
366         RDMA_CONS_INDEX = TDMA_PROD_INDEX,
367         DMA_RING_BUF_SIZE,
368         DMA_START_ADDR,
369         DMA_START_ADDR_HI,
370         DMA_END_ADDR,
371         DMA_END_ADDR_HI,
372         DMA_MBUF_DONE_THRESH,
373         TDMA_FLOW_PERIOD,
374         RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
375         TDMA_WRITE_PTR,
376         RDMA_READ_PTR = TDMA_WRITE_PTR,
377         TDMA_WRITE_PTR_HI,
378         RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
379 };
380
381 /* GENET v4 supports 40-bits pointer addressing
382  * for obvious reasons the LO and HI word parts
383  * are contiguous, but this offsets the other
384  * registers.
385  */
386 static const u8 genet_dma_ring_regs_v4[] = {
387         [TDMA_READ_PTR]                 = 0x00,
388         [TDMA_READ_PTR_HI]              = 0x04,
389         [TDMA_CONS_INDEX]               = 0x08,
390         [TDMA_PROD_INDEX]               = 0x0C,
391         [DMA_RING_BUF_SIZE]             = 0x10,
392         [DMA_START_ADDR]                = 0x14,
393         [DMA_START_ADDR_HI]             = 0x18,
394         [DMA_END_ADDR]                  = 0x1C,
395         [DMA_END_ADDR_HI]               = 0x20,
396         [DMA_MBUF_DONE_THRESH]          = 0x24,
397         [TDMA_FLOW_PERIOD]              = 0x28,
398         [TDMA_WRITE_PTR]                = 0x2C,
399         [TDMA_WRITE_PTR_HI]             = 0x30,
400 };
401
402 static const u8 genet_dma_ring_regs_v123[] = {
403         [TDMA_READ_PTR]                 = 0x00,
404         [TDMA_CONS_INDEX]               = 0x04,
405         [TDMA_PROD_INDEX]               = 0x08,
406         [DMA_RING_BUF_SIZE]             = 0x0C,
407         [DMA_START_ADDR]                = 0x10,
408         [DMA_END_ADDR]                  = 0x14,
409         [DMA_MBUF_DONE_THRESH]          = 0x18,
410         [TDMA_FLOW_PERIOD]              = 0x1C,
411         [TDMA_WRITE_PTR]                = 0x20,
412 };
413
414 /* Set at runtime once GENET version is known */
415 static const u8 *genet_dma_ring_regs;
416
417 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
418                                            unsigned int ring,
419                                            enum dma_ring_reg r)
420 {
421         return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
422                         (DMA_RING_SIZE * ring) +
423                         genet_dma_ring_regs[r]);
424 }
425
426 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
427                                              unsigned int ring, u32 val,
428                                              enum dma_ring_reg r)
429 {
430         __raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
431                         (DMA_RING_SIZE * ring) +
432                         genet_dma_ring_regs[r]);
433 }
434
435 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
436                                            unsigned int ring,
437                                            enum dma_ring_reg r)
438 {
439         return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
440                         (DMA_RING_SIZE * ring) +
441                         genet_dma_ring_regs[r]);
442 }
443
444 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
445                                              unsigned int ring, u32 val,
446                                              enum dma_ring_reg r)
447 {
448         __raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
449                         (DMA_RING_SIZE * ring) +
450                         genet_dma_ring_regs[r]);
451 }
452
453 static int bcmgenet_get_settings(struct net_device *dev,
454                                  struct ethtool_cmd *cmd)
455 {
456         struct bcmgenet_priv *priv = netdev_priv(dev);
457
458         if (!netif_running(dev))
459                 return -EINVAL;
460
461         if (!priv->phydev)
462                 return -ENODEV;
463
464         return phy_ethtool_gset(priv->phydev, cmd);
465 }
466
467 static int bcmgenet_set_settings(struct net_device *dev,
468                                  struct ethtool_cmd *cmd)
469 {
470         struct bcmgenet_priv *priv = netdev_priv(dev);
471
472         if (!netif_running(dev))
473                 return -EINVAL;
474
475         if (!priv->phydev)
476                 return -ENODEV;
477
478         return phy_ethtool_sset(priv->phydev, cmd);
479 }
480
481 static int bcmgenet_set_rx_csum(struct net_device *dev,
482                                 netdev_features_t wanted)
483 {
484         struct bcmgenet_priv *priv = netdev_priv(dev);
485         u32 rbuf_chk_ctrl;
486         bool rx_csum_en;
487
488         rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
489
490         rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
491
492         /* enable rx checksumming */
493         if (rx_csum_en)
494                 rbuf_chk_ctrl |= RBUF_RXCHK_EN;
495         else
496                 rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
497         priv->desc_rxchk_en = rx_csum_en;
498
499         /* If UniMAC forwards CRC, we need to skip over it to get
500          * a valid CHK bit to be set in the per-packet status word
501         */
502         if (rx_csum_en && priv->crc_fwd_en)
503                 rbuf_chk_ctrl |= RBUF_SKIP_FCS;
504         else
505                 rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
506
507         bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
508
509         return 0;
510 }
511
512 static int bcmgenet_set_tx_csum(struct net_device *dev,
513                                 netdev_features_t wanted)
514 {
515         struct bcmgenet_priv *priv = netdev_priv(dev);
516         bool desc_64b_en;
517         u32 tbuf_ctrl, rbuf_ctrl;
518
519         tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
520         rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
521
522         desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
523
524         /* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
525         if (desc_64b_en) {
526                 tbuf_ctrl |= RBUF_64B_EN;
527                 rbuf_ctrl |= RBUF_64B_EN;
528         } else {
529                 tbuf_ctrl &= ~RBUF_64B_EN;
530                 rbuf_ctrl &= ~RBUF_64B_EN;
531         }
532         priv->desc_64b_en = desc_64b_en;
533
534         bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
535         bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
536
537         return 0;
538 }
539
540 static int bcmgenet_set_features(struct net_device *dev,
541                                  netdev_features_t features)
542 {
543         netdev_features_t changed = features ^ dev->features;
544         netdev_features_t wanted = dev->wanted_features;
545         int ret = 0;
546
547         if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
548                 ret = bcmgenet_set_tx_csum(dev, wanted);
549         if (changed & (NETIF_F_RXCSUM))
550                 ret = bcmgenet_set_rx_csum(dev, wanted);
551
552         return ret;
553 }
554
555 static u32 bcmgenet_get_msglevel(struct net_device *dev)
556 {
557         struct bcmgenet_priv *priv = netdev_priv(dev);
558
559         return priv->msg_enable;
560 }
561
562 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
563 {
564         struct bcmgenet_priv *priv = netdev_priv(dev);
565
566         priv->msg_enable = level;
567 }
568
569 static int bcmgenet_get_coalesce(struct net_device *dev,
570                                  struct ethtool_coalesce *ec)
571 {
572         struct bcmgenet_priv *priv = netdev_priv(dev);
573
574         ec->tx_max_coalesced_frames =
575                 bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
576                                          DMA_MBUF_DONE_THRESH);
577         ec->rx_max_coalesced_frames =
578                 bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
579                                          DMA_MBUF_DONE_THRESH);
580         ec->rx_coalesce_usecs =
581                 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
582
583         return 0;
584 }
585
586 static int bcmgenet_set_coalesce(struct net_device *dev,
587                                  struct ethtool_coalesce *ec)
588 {
589         struct bcmgenet_priv *priv = netdev_priv(dev);
590         unsigned int i;
591         u32 reg;
592
593         /* Base system clock is 125Mhz, DMA timeout is this reference clock
594          * divided by 1024, which yields roughly 8.192us, our maximum value
595          * has to fit in the DMA_TIMEOUT_MASK (16 bits)
596          */
597         if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
598             ec->tx_max_coalesced_frames == 0 ||
599             ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
600             ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
601                 return -EINVAL;
602
603         if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
604                 return -EINVAL;
605
606         /* GENET TDMA hardware does not support a configurable timeout, but will
607          * always generate an interrupt either after MBDONE packets have been
608          * transmitted, or when the ring is emtpy.
609          */
610         if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
611             ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low)
612                 return -EOPNOTSUPP;
613
614         /* Program all TX queues with the same values, as there is no
615          * ethtool knob to do coalescing on a per-queue basis
616          */
617         for (i = 0; i < priv->hw_params->tx_queues; i++)
618                 bcmgenet_tdma_ring_writel(priv, i,
619                                           ec->tx_max_coalesced_frames,
620                                           DMA_MBUF_DONE_THRESH);
621         bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
622                                   ec->tx_max_coalesced_frames,
623                                   DMA_MBUF_DONE_THRESH);
624
625         for (i = 0; i < priv->hw_params->rx_queues; i++) {
626                 bcmgenet_rdma_ring_writel(priv, i,
627                                           ec->rx_max_coalesced_frames,
628                                           DMA_MBUF_DONE_THRESH);
629
630                 reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
631                 reg &= ~DMA_TIMEOUT_MASK;
632                 reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
633                 bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
634         }
635
636         bcmgenet_rdma_ring_writel(priv, DESC_INDEX,
637                                   ec->rx_max_coalesced_frames,
638                                   DMA_MBUF_DONE_THRESH);
639
640         reg = bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT);
641         reg &= ~DMA_TIMEOUT_MASK;
642         reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
643         bcmgenet_rdma_writel(priv, reg, DMA_RING16_TIMEOUT);
644
645         return 0;
646 }
647
648 /* standard ethtool support functions. */
649 enum bcmgenet_stat_type {
650         BCMGENET_STAT_NETDEV = -1,
651         BCMGENET_STAT_MIB_RX,
652         BCMGENET_STAT_MIB_TX,
653         BCMGENET_STAT_RUNT,
654         BCMGENET_STAT_MISC,
655         BCMGENET_STAT_SOFT,
656 };
657
658 struct bcmgenet_stats {
659         char stat_string[ETH_GSTRING_LEN];
660         int stat_sizeof;
661         int stat_offset;
662         enum bcmgenet_stat_type type;
663         /* reg offset from UMAC base for misc counters */
664         u16 reg_offset;
665 };
666
667 #define STAT_NETDEV(m) { \
668         .stat_string = __stringify(m), \
669         .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
670         .stat_offset = offsetof(struct net_device_stats, m), \
671         .type = BCMGENET_STAT_NETDEV, \
672 }
673
674 #define STAT_GENET_MIB(str, m, _type) { \
675         .stat_string = str, \
676         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
677         .stat_offset = offsetof(struct bcmgenet_priv, m), \
678         .type = _type, \
679 }
680
681 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
682 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
683 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
684 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
685
686 #define STAT_GENET_MISC(str, m, offset) { \
687         .stat_string = str, \
688         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
689         .stat_offset = offsetof(struct bcmgenet_priv, m), \
690         .type = BCMGENET_STAT_MISC, \
691         .reg_offset = offset, \
692 }
693
694
695 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
696  * between the end of TX stats and the beginning of the RX RUNT
697  */
698 #define BCMGENET_STAT_OFFSET    0xc
699
700 /* Hardware counters must be kept in sync because the order/offset
701  * is important here (order in structure declaration = order in hardware)
702  */
703 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
704         /* general stats */
705         STAT_NETDEV(rx_packets),
706         STAT_NETDEV(tx_packets),
707         STAT_NETDEV(rx_bytes),
708         STAT_NETDEV(tx_bytes),
709         STAT_NETDEV(rx_errors),
710         STAT_NETDEV(tx_errors),
711         STAT_NETDEV(rx_dropped),
712         STAT_NETDEV(tx_dropped),
713         STAT_NETDEV(multicast),
714         /* UniMAC RSV counters */
715         STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
716         STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
717         STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
718         STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
719         STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
720         STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
721         STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
722         STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
723         STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
724         STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
725         STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
726         STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
727         STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
728         STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
729         STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
730         STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
731         STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
732         STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
733         STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
734         STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
735         STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
736         STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
737         STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
738         STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
739         STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
740         STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
741         STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
742         STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
743         STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
744         /* UniMAC TSV counters */
745         STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
746         STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
747         STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
748         STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
749         STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
750         STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
751         STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
752         STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
753         STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
754         STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
755         STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
756         STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
757         STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
758         STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
759         STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
760         STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
761         STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
762         STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
763         STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
764         STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
765         STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
766         STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
767         STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
768         STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
769         STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
770         STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
771         STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
772         STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
773         STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
774         /* UniMAC RUNT counters */
775         STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
776         STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
777         STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
778         STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
779         /* Misc UniMAC counters */
780         STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
781                         UMAC_RBUF_OVFL_CNT),
782         STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt, UMAC_RBUF_ERR_CNT),
783         STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
784         STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
785         STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
786         STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
787 };
788
789 #define BCMGENET_STATS_LEN      ARRAY_SIZE(bcmgenet_gstrings_stats)
790
791 static void bcmgenet_get_drvinfo(struct net_device *dev,
792                                  struct ethtool_drvinfo *info)
793 {
794         strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
795         strlcpy(info->version, "v2.0", sizeof(info->version));
796 }
797
798 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
799 {
800         switch (string_set) {
801         case ETH_SS_STATS:
802                 return BCMGENET_STATS_LEN;
803         default:
804                 return -EOPNOTSUPP;
805         }
806 }
807
808 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
809                                  u8 *data)
810 {
811         int i;
812
813         switch (stringset) {
814         case ETH_SS_STATS:
815                 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
816                         memcpy(data + i * ETH_GSTRING_LEN,
817                                bcmgenet_gstrings_stats[i].stat_string,
818                                ETH_GSTRING_LEN);
819                 }
820                 break;
821         }
822 }
823
824 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
825 {
826         int i, j = 0;
827
828         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
829                 const struct bcmgenet_stats *s;
830                 u8 offset = 0;
831                 u32 val = 0;
832                 char *p;
833
834                 s = &bcmgenet_gstrings_stats[i];
835                 switch (s->type) {
836                 case BCMGENET_STAT_NETDEV:
837                 case BCMGENET_STAT_SOFT:
838                         continue;
839                 case BCMGENET_STAT_MIB_RX:
840                 case BCMGENET_STAT_MIB_TX:
841                 case BCMGENET_STAT_RUNT:
842                         if (s->type != BCMGENET_STAT_MIB_RX)
843                                 offset = BCMGENET_STAT_OFFSET;
844                         val = bcmgenet_umac_readl(priv,
845                                                   UMAC_MIB_START + j + offset);
846                         break;
847                 case BCMGENET_STAT_MISC:
848                         val = bcmgenet_umac_readl(priv, s->reg_offset);
849                         /* clear if overflowed */
850                         if (val == ~0)
851                                 bcmgenet_umac_writel(priv, 0, s->reg_offset);
852                         break;
853                 }
854
855                 j += s->stat_sizeof;
856                 p = (char *)priv + s->stat_offset;
857                 *(u32 *)p = val;
858         }
859 }
860
861 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
862                                        struct ethtool_stats *stats,
863                                        u64 *data)
864 {
865         struct bcmgenet_priv *priv = netdev_priv(dev);
866         int i;
867
868         if (netif_running(dev))
869                 bcmgenet_update_mib_counters(priv);
870
871         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
872                 const struct bcmgenet_stats *s;
873                 char *p;
874
875                 s = &bcmgenet_gstrings_stats[i];
876                 if (s->type == BCMGENET_STAT_NETDEV)
877                         p = (char *)&dev->stats;
878                 else
879                         p = (char *)priv;
880                 p += s->stat_offset;
881                 data[i] = *(u32 *)p;
882         }
883 }
884
885 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
886 {
887         struct bcmgenet_priv *priv = netdev_priv(dev);
888         u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
889         u32 reg;
890
891         if (enable && !priv->clk_eee_enabled) {
892                 clk_prepare_enable(priv->clk_eee);
893                 priv->clk_eee_enabled = true;
894         }
895
896         reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
897         if (enable)
898                 reg |= EEE_EN;
899         else
900                 reg &= ~EEE_EN;
901         bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
902
903         /* Enable EEE and switch to a 27Mhz clock automatically */
904         reg = __raw_readl(priv->base + off);
905         if (enable)
906                 reg |= TBUF_EEE_EN | TBUF_PM_EN;
907         else
908                 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
909         __raw_writel(reg, priv->base + off);
910
911         /* Do the same for thing for RBUF */
912         reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
913         if (enable)
914                 reg |= RBUF_EEE_EN | RBUF_PM_EN;
915         else
916                 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
917         bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
918
919         if (!enable && priv->clk_eee_enabled) {
920                 clk_disable_unprepare(priv->clk_eee);
921                 priv->clk_eee_enabled = false;
922         }
923
924         priv->eee.eee_enabled = enable;
925         priv->eee.eee_active = enable;
926 }
927
928 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
929 {
930         struct bcmgenet_priv *priv = netdev_priv(dev);
931         struct ethtool_eee *p = &priv->eee;
932
933         if (GENET_IS_V1(priv))
934                 return -EOPNOTSUPP;
935
936         e->eee_enabled = p->eee_enabled;
937         e->eee_active = p->eee_active;
938         e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
939
940         return phy_ethtool_get_eee(priv->phydev, e);
941 }
942
943 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
944 {
945         struct bcmgenet_priv *priv = netdev_priv(dev);
946         struct ethtool_eee *p = &priv->eee;
947         int ret = 0;
948
949         if (GENET_IS_V1(priv))
950                 return -EOPNOTSUPP;
951
952         p->eee_enabled = e->eee_enabled;
953
954         if (!p->eee_enabled) {
955                 bcmgenet_eee_enable_set(dev, false);
956         } else {
957                 ret = phy_init_eee(priv->phydev, 0);
958                 if (ret) {
959                         netif_err(priv, hw, dev, "EEE initialization failed\n");
960                         return ret;
961                 }
962
963                 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
964                 bcmgenet_eee_enable_set(dev, true);
965         }
966
967         return phy_ethtool_set_eee(priv->phydev, e);
968 }
969
970 static int bcmgenet_nway_reset(struct net_device *dev)
971 {
972         struct bcmgenet_priv *priv = netdev_priv(dev);
973
974         return genphy_restart_aneg(priv->phydev);
975 }
976
977 /* standard ethtool support functions. */
978 static struct ethtool_ops bcmgenet_ethtool_ops = {
979         .get_strings            = bcmgenet_get_strings,
980         .get_sset_count         = bcmgenet_get_sset_count,
981         .get_ethtool_stats      = bcmgenet_get_ethtool_stats,
982         .get_settings           = bcmgenet_get_settings,
983         .set_settings           = bcmgenet_set_settings,
984         .get_drvinfo            = bcmgenet_get_drvinfo,
985         .get_link               = ethtool_op_get_link,
986         .get_msglevel           = bcmgenet_get_msglevel,
987         .set_msglevel           = bcmgenet_set_msglevel,
988         .get_wol                = bcmgenet_get_wol,
989         .set_wol                = bcmgenet_set_wol,
990         .get_eee                = bcmgenet_get_eee,
991         .set_eee                = bcmgenet_set_eee,
992         .nway_reset             = bcmgenet_nway_reset,
993         .get_coalesce           = bcmgenet_get_coalesce,
994         .set_coalesce           = bcmgenet_set_coalesce,
995 };
996
997 /* Power down the unimac, based on mode. */
998 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
999                                 enum bcmgenet_power_mode mode)
1000 {
1001         int ret = 0;
1002         u32 reg;
1003
1004         switch (mode) {
1005         case GENET_POWER_CABLE_SENSE:
1006                 phy_detach(priv->phydev);
1007                 break;
1008
1009         case GENET_POWER_WOL_MAGIC:
1010                 ret = bcmgenet_wol_power_down_cfg(priv, mode);
1011                 break;
1012
1013         case GENET_POWER_PASSIVE:
1014                 /* Power down LED */
1015                 if (priv->hw_params->flags & GENET_HAS_EXT) {
1016                         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1017                         reg |= (EXT_PWR_DOWN_PHY |
1018                                 EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1019                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1020
1021                         bcmgenet_phy_power_set(priv->dev, false);
1022                 }
1023                 break;
1024         default:
1025                 break;
1026         }
1027
1028         return 0;
1029 }
1030
1031 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1032                               enum bcmgenet_power_mode mode)
1033 {
1034         u32 reg;
1035
1036         if (!(priv->hw_params->flags & GENET_HAS_EXT))
1037                 return;
1038
1039         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1040
1041         switch (mode) {
1042         case GENET_POWER_PASSIVE:
1043                 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_PHY |
1044                                 EXT_PWR_DOWN_BIAS);
1045                 /* fallthrough */
1046         case GENET_POWER_CABLE_SENSE:
1047                 /* enable APD */
1048                 reg |= EXT_PWR_DN_EN_LD;
1049                 break;
1050         case GENET_POWER_WOL_MAGIC:
1051                 bcmgenet_wol_power_up_cfg(priv, mode);
1052                 return;
1053         default:
1054                 break;
1055         }
1056
1057         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1058         if (mode == GENET_POWER_PASSIVE) {
1059                 bcmgenet_phy_power_set(priv->dev, true);
1060                 bcmgenet_mii_reset(priv->dev);
1061         }
1062 }
1063
1064 /* ioctl handle special commands that are not present in ethtool. */
1065 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1066 {
1067         struct bcmgenet_priv *priv = netdev_priv(dev);
1068         int val = 0;
1069
1070         if (!netif_running(dev))
1071                 return -EINVAL;
1072
1073         switch (cmd) {
1074         case SIOCGMIIPHY:
1075         case SIOCGMIIREG:
1076         case SIOCSMIIREG:
1077                 if (!priv->phydev)
1078                         val = -ENODEV;
1079                 else
1080                         val = phy_mii_ioctl(priv->phydev, rq, cmd);
1081                 break;
1082
1083         default:
1084                 val = -EINVAL;
1085                 break;
1086         }
1087
1088         return val;
1089 }
1090
1091 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1092                                          struct bcmgenet_tx_ring *ring)
1093 {
1094         struct enet_cb *tx_cb_ptr;
1095
1096         tx_cb_ptr = ring->cbs;
1097         tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1098
1099         /* Advancing local write pointer */
1100         if (ring->write_ptr == ring->end_ptr)
1101                 ring->write_ptr = ring->cb_ptr;
1102         else
1103                 ring->write_ptr++;
1104
1105         return tx_cb_ptr;
1106 }
1107
1108 /* Simple helper to free a control block's resources */
1109 static void bcmgenet_free_cb(struct enet_cb *cb)
1110 {
1111         dev_kfree_skb_any(cb->skb);
1112         cb->skb = NULL;
1113         dma_unmap_addr_set(cb, dma_addr, 0);
1114 }
1115
1116 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1117 {
1118         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1119                                  INTRL2_CPU_MASK_SET);
1120 }
1121
1122 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1123 {
1124         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1125                                  INTRL2_CPU_MASK_CLEAR);
1126 }
1127
1128 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1129 {
1130         bcmgenet_intrl2_1_writel(ring->priv,
1131                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1132                                  INTRL2_CPU_MASK_SET);
1133 }
1134
1135 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1136 {
1137         bcmgenet_intrl2_1_writel(ring->priv,
1138                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1139                                  INTRL2_CPU_MASK_CLEAR);
1140 }
1141
1142 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1143 {
1144         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1145                                  INTRL2_CPU_MASK_SET);
1146 }
1147
1148 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1149 {
1150         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1151                                  INTRL2_CPU_MASK_CLEAR);
1152 }
1153
1154 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1155 {
1156         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1157                                  INTRL2_CPU_MASK_CLEAR);
1158 }
1159
1160 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1161 {
1162         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1163                                  INTRL2_CPU_MASK_SET);
1164 }
1165
1166 /* Unlocked version of the reclaim routine */
1167 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1168                                           struct bcmgenet_tx_ring *ring)
1169 {
1170         struct bcmgenet_priv *priv = netdev_priv(dev);
1171         struct enet_cb *tx_cb_ptr;
1172         struct netdev_queue *txq;
1173         unsigned int pkts_compl = 0;
1174         unsigned int c_index;
1175         unsigned int txbds_ready;
1176         unsigned int txbds_processed = 0;
1177
1178         /* Compute how many buffers are transmitted since last xmit call */
1179         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
1180         c_index &= DMA_C_INDEX_MASK;
1181
1182         if (likely(c_index >= ring->c_index))
1183                 txbds_ready = c_index - ring->c_index;
1184         else
1185                 txbds_ready = (DMA_C_INDEX_MASK + 1) - ring->c_index + c_index;
1186
1187         netif_dbg(priv, tx_done, dev,
1188                   "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1189                   __func__, ring->index, ring->c_index, c_index, txbds_ready);
1190
1191         /* Reclaim transmitted buffers */
1192         while (txbds_processed < txbds_ready) {
1193                 tx_cb_ptr = &priv->tx_cbs[ring->clean_ptr];
1194                 if (tx_cb_ptr->skb) {
1195                         pkts_compl++;
1196                         dev->stats.tx_packets++;
1197                         dev->stats.tx_bytes += tx_cb_ptr->skb->len;
1198                         dma_unmap_single(&dev->dev,
1199                                          dma_unmap_addr(tx_cb_ptr, dma_addr),
1200                                          tx_cb_ptr->skb->len,
1201                                          DMA_TO_DEVICE);
1202                         bcmgenet_free_cb(tx_cb_ptr);
1203                 } else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) {
1204                         dev->stats.tx_bytes +=
1205                                 dma_unmap_len(tx_cb_ptr, dma_len);
1206                         dma_unmap_page(&dev->dev,
1207                                        dma_unmap_addr(tx_cb_ptr, dma_addr),
1208                                        dma_unmap_len(tx_cb_ptr, dma_len),
1209                                        DMA_TO_DEVICE);
1210                         dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0);
1211                 }
1212
1213                 txbds_processed++;
1214                 if (likely(ring->clean_ptr < ring->end_ptr))
1215                         ring->clean_ptr++;
1216                 else
1217                         ring->clean_ptr = ring->cb_ptr;
1218         }
1219
1220         ring->free_bds += txbds_processed;
1221         ring->c_index = (ring->c_index + txbds_processed) & DMA_C_INDEX_MASK;
1222
1223         if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1224                 txq = netdev_get_tx_queue(dev, ring->queue);
1225                 if (netif_tx_queue_stopped(txq))
1226                         netif_tx_wake_queue(txq);
1227         }
1228
1229         return pkts_compl;
1230 }
1231
1232 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1233                                 struct bcmgenet_tx_ring *ring)
1234 {
1235         unsigned int released;
1236         unsigned long flags;
1237
1238         spin_lock_irqsave(&ring->lock, flags);
1239         released = __bcmgenet_tx_reclaim(dev, ring);
1240         spin_unlock_irqrestore(&ring->lock, flags);
1241
1242         return released;
1243 }
1244
1245 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1246 {
1247         struct bcmgenet_tx_ring *ring =
1248                 container_of(napi, struct bcmgenet_tx_ring, napi);
1249         unsigned int work_done = 0;
1250
1251         work_done = bcmgenet_tx_reclaim(ring->priv->dev, ring);
1252
1253         if (work_done == 0) {
1254                 napi_complete(napi);
1255                 ring->int_enable(ring);
1256
1257                 return 0;
1258         }
1259
1260         return budget;
1261 }
1262
1263 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1264 {
1265         struct bcmgenet_priv *priv = netdev_priv(dev);
1266         int i;
1267
1268         if (netif_is_multiqueue(dev)) {
1269                 for (i = 0; i < priv->hw_params->tx_queues; i++)
1270                         bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1271         }
1272
1273         bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1274 }
1275
1276 /* Transmits a single SKB (either head of a fragment or a single SKB)
1277  * caller must hold priv->lock
1278  */
1279 static int bcmgenet_xmit_single(struct net_device *dev,
1280                                 struct sk_buff *skb,
1281                                 u16 dma_desc_flags,
1282                                 struct bcmgenet_tx_ring *ring)
1283 {
1284         struct bcmgenet_priv *priv = netdev_priv(dev);
1285         struct device *kdev = &priv->pdev->dev;
1286         struct enet_cb *tx_cb_ptr;
1287         unsigned int skb_len;
1288         dma_addr_t mapping;
1289         u32 length_status;
1290         int ret;
1291
1292         tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1293
1294         if (unlikely(!tx_cb_ptr))
1295                 BUG();
1296
1297         tx_cb_ptr->skb = skb;
1298
1299         skb_len = skb_headlen(skb) < ETH_ZLEN ? ETH_ZLEN : skb_headlen(skb);
1300
1301         mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
1302         ret = dma_mapping_error(kdev, mapping);
1303         if (ret) {
1304                 priv->mib.tx_dma_failed++;
1305                 netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1306                 dev_kfree_skb(skb);
1307                 return ret;
1308         }
1309
1310         dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1311         dma_unmap_len_set(tx_cb_ptr, dma_len, skb->len);
1312         length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1313                         (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) |
1314                         DMA_TX_APPEND_CRC;
1315
1316         if (skb->ip_summed == CHECKSUM_PARTIAL)
1317                 length_status |= DMA_TX_DO_CSUM;
1318
1319         dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status);
1320
1321         return 0;
1322 }
1323
1324 /* Transmit a SKB fragment */
1325 static int bcmgenet_xmit_frag(struct net_device *dev,
1326                               skb_frag_t *frag,
1327                               u16 dma_desc_flags,
1328                               struct bcmgenet_tx_ring *ring)
1329 {
1330         struct bcmgenet_priv *priv = netdev_priv(dev);
1331         struct device *kdev = &priv->pdev->dev;
1332         struct enet_cb *tx_cb_ptr;
1333         dma_addr_t mapping;
1334         int ret;
1335
1336         tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1337
1338         if (unlikely(!tx_cb_ptr))
1339                 BUG();
1340         tx_cb_ptr->skb = NULL;
1341
1342         mapping = skb_frag_dma_map(kdev, frag, 0,
1343                                    skb_frag_size(frag), DMA_TO_DEVICE);
1344         ret = dma_mapping_error(kdev, mapping);
1345         if (ret) {
1346                 priv->mib.tx_dma_failed++;
1347                 netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n",
1348                           __func__);
1349                 return ret;
1350         }
1351
1352         dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1353         dma_unmap_len_set(tx_cb_ptr, dma_len, frag->size);
1354
1355         dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping,
1356                     (frag->size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1357                     (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT));
1358
1359         return 0;
1360 }
1361
1362 /* Reallocate the SKB to put enough headroom in front of it and insert
1363  * the transmit checksum offsets in the descriptors
1364  */
1365 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1366                                             struct sk_buff *skb)
1367 {
1368         struct status_64 *status = NULL;
1369         struct sk_buff *new_skb;
1370         u16 offset;
1371         u8 ip_proto;
1372         u16 ip_ver;
1373         u32 tx_csum_info;
1374
1375         if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1376                 /* If 64 byte status block enabled, must make sure skb has
1377                  * enough headroom for us to insert 64B status block.
1378                  */
1379                 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1380                 dev_kfree_skb(skb);
1381                 if (!new_skb) {
1382                         dev->stats.tx_dropped++;
1383                         return NULL;
1384                 }
1385                 skb = new_skb;
1386         }
1387
1388         skb_push(skb, sizeof(*status));
1389         status = (struct status_64 *)skb->data;
1390
1391         if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1392                 ip_ver = htons(skb->protocol);
1393                 switch (ip_ver) {
1394                 case ETH_P_IP:
1395                         ip_proto = ip_hdr(skb)->protocol;
1396                         break;
1397                 case ETH_P_IPV6:
1398                         ip_proto = ipv6_hdr(skb)->nexthdr;
1399                         break;
1400                 default:
1401                         return skb;
1402                 }
1403
1404                 offset = skb_checksum_start_offset(skb) - sizeof(*status);
1405                 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1406                                 (offset + skb->csum_offset);
1407
1408                 /* Set the length valid bit for TCP and UDP and just set
1409                  * the special UDP flag for IPv4, else just set to 0.
1410                  */
1411                 if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1412                         tx_csum_info |= STATUS_TX_CSUM_LV;
1413                         if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
1414                                 tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1415                 } else {
1416                         tx_csum_info = 0;
1417                 }
1418
1419                 status->tx_csum_info = tx_csum_info;
1420         }
1421
1422         return skb;
1423 }
1424
1425 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1426 {
1427         struct bcmgenet_priv *priv = netdev_priv(dev);
1428         struct bcmgenet_tx_ring *ring = NULL;
1429         struct netdev_queue *txq;
1430         unsigned long flags = 0;
1431         int nr_frags, index;
1432         u16 dma_desc_flags;
1433         int ret;
1434         int i;
1435
1436         index = skb_get_queue_mapping(skb);
1437         /* Mapping strategy:
1438          * queue_mapping = 0, unclassified, packet xmited through ring16
1439          * queue_mapping = 1, goes to ring 0. (highest priority queue
1440          * queue_mapping = 2, goes to ring 1.
1441          * queue_mapping = 3, goes to ring 2.
1442          * queue_mapping = 4, goes to ring 3.
1443          */
1444         if (index == 0)
1445                 index = DESC_INDEX;
1446         else
1447                 index -= 1;
1448
1449         nr_frags = skb_shinfo(skb)->nr_frags;
1450         ring = &priv->tx_rings[index];
1451         txq = netdev_get_tx_queue(dev, ring->queue);
1452
1453         spin_lock_irqsave(&ring->lock, flags);
1454         if (ring->free_bds <= nr_frags + 1) {
1455                 netif_tx_stop_queue(txq);
1456                 netdev_err(dev, "%s: tx ring %d full when queue %d awake\n",
1457                            __func__, index, ring->queue);
1458                 ret = NETDEV_TX_BUSY;
1459                 goto out;
1460         }
1461
1462         if (skb_padto(skb, ETH_ZLEN)) {
1463                 ret = NETDEV_TX_OK;
1464                 goto out;
1465         }
1466
1467         /* set the SKB transmit checksum */
1468         if (priv->desc_64b_en) {
1469                 skb = bcmgenet_put_tx_csum(dev, skb);
1470                 if (!skb) {
1471                         ret = NETDEV_TX_OK;
1472                         goto out;
1473                 }
1474         }
1475
1476         dma_desc_flags = DMA_SOP;
1477         if (nr_frags == 0)
1478                 dma_desc_flags |= DMA_EOP;
1479
1480         /* Transmit single SKB or head of fragment list */
1481         ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring);
1482         if (ret) {
1483                 ret = NETDEV_TX_OK;
1484                 goto out;
1485         }
1486
1487         /* xmit fragment */
1488         for (i = 0; i < nr_frags; i++) {
1489                 ret = bcmgenet_xmit_frag(dev,
1490                                          &skb_shinfo(skb)->frags[i],
1491                                          (i == nr_frags - 1) ? DMA_EOP : 0,
1492                                          ring);
1493                 if (ret) {
1494                         ret = NETDEV_TX_OK;
1495                         goto out;
1496                 }
1497         }
1498
1499         skb_tx_timestamp(skb);
1500
1501         /* Decrement total BD count and advance our write pointer */
1502         ring->free_bds -= nr_frags + 1;
1503         ring->prod_index += nr_frags + 1;
1504         ring->prod_index &= DMA_P_INDEX_MASK;
1505
1506         if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1507                 netif_tx_stop_queue(txq);
1508
1509         if (!skb->xmit_more || netif_xmit_stopped(txq))
1510                 /* Packets are ready, update producer index */
1511                 bcmgenet_tdma_ring_writel(priv, ring->index,
1512                                           ring->prod_index, TDMA_PROD_INDEX);
1513 out:
1514         spin_unlock_irqrestore(&ring->lock, flags);
1515
1516         return ret;
1517 }
1518
1519 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1520                                           struct enet_cb *cb)
1521 {
1522         struct device *kdev = &priv->pdev->dev;
1523         struct sk_buff *skb;
1524         struct sk_buff *rx_skb;
1525         dma_addr_t mapping;
1526
1527         /* Allocate a new Rx skb */
1528         skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1529         if (!skb) {
1530                 priv->mib.alloc_rx_buff_failed++;
1531                 netif_err(priv, rx_err, priv->dev,
1532                           "%s: Rx skb allocation failed\n", __func__);
1533                 return NULL;
1534         }
1535
1536         /* DMA-map the new Rx skb */
1537         mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1538                                  DMA_FROM_DEVICE);
1539         if (dma_mapping_error(kdev, mapping)) {
1540                 priv->mib.rx_dma_failed++;
1541                 dev_kfree_skb_any(skb);
1542                 netif_err(priv, rx_err, priv->dev,
1543                           "%s: Rx skb DMA mapping failed\n", __func__);
1544                 return NULL;
1545         }
1546
1547         /* Grab the current Rx skb from the ring and DMA-unmap it */
1548         rx_skb = cb->skb;
1549         if (likely(rx_skb))
1550                 dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
1551                                  priv->rx_buf_len, DMA_FROM_DEVICE);
1552
1553         /* Put the new Rx skb on the ring */
1554         cb->skb = skb;
1555         dma_unmap_addr_set(cb, dma_addr, mapping);
1556         dmadesc_set_addr(priv, cb->bd_addr, mapping);
1557
1558         /* Return the current Rx skb to caller */
1559         return rx_skb;
1560 }
1561
1562 /* bcmgenet_desc_rx - descriptor based rx process.
1563  * this could be called from bottom half, or from NAPI polling method.
1564  */
1565 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1566                                      unsigned int budget)
1567 {
1568         struct bcmgenet_priv *priv = ring->priv;
1569         struct net_device *dev = priv->dev;
1570         struct enet_cb *cb;
1571         struct sk_buff *skb;
1572         u32 dma_length_status;
1573         unsigned long dma_flag;
1574         int len;
1575         unsigned int rxpktprocessed = 0, rxpkttoprocess;
1576         unsigned int p_index;
1577         unsigned int discards;
1578         unsigned int chksum_ok = 0;
1579
1580         p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1581
1582         discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1583                    DMA_P_INDEX_DISCARD_CNT_MASK;
1584         if (discards > ring->old_discards) {
1585                 discards = discards - ring->old_discards;
1586                 dev->stats.rx_missed_errors += discards;
1587                 dev->stats.rx_errors += discards;
1588                 ring->old_discards += discards;
1589
1590                 /* Clear HW register when we reach 75% of maximum 0xFFFF */
1591                 if (ring->old_discards >= 0xC000) {
1592                         ring->old_discards = 0;
1593                         bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1594                                                   RDMA_PROD_INDEX);
1595                 }
1596         }
1597
1598         p_index &= DMA_P_INDEX_MASK;
1599
1600         if (likely(p_index >= ring->c_index))
1601                 rxpkttoprocess = p_index - ring->c_index;
1602         else
1603                 rxpkttoprocess = (DMA_C_INDEX_MASK + 1) - ring->c_index +
1604                                  p_index;
1605
1606         netif_dbg(priv, rx_status, dev,
1607                   "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1608
1609         while ((rxpktprocessed < rxpkttoprocess) &&
1610                (rxpktprocessed < budget)) {
1611                 cb = &priv->rx_cbs[ring->read_ptr];
1612                 skb = bcmgenet_rx_refill(priv, cb);
1613
1614                 if (unlikely(!skb)) {
1615                         dev->stats.rx_dropped++;
1616                         goto next;
1617                 }
1618
1619                 if (!priv->desc_64b_en) {
1620                         dma_length_status =
1621                                 dmadesc_get_length_status(priv, cb->bd_addr);
1622                 } else {
1623                         struct status_64 *status;
1624
1625                         status = (struct status_64 *)skb->data;
1626                         dma_length_status = status->length_status;
1627                 }
1628
1629                 /* DMA flags and length are still valid no matter how
1630                  * we got the Receive Status Vector (64B RSB or register)
1631                  */
1632                 dma_flag = dma_length_status & 0xffff;
1633                 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1634
1635                 netif_dbg(priv, rx_status, dev,
1636                           "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1637                           __func__, p_index, ring->c_index,
1638                           ring->read_ptr, dma_length_status);
1639
1640                 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1641                         netif_err(priv, rx_status, dev,
1642                                   "dropping fragmented packet!\n");
1643                         dev->stats.rx_errors++;
1644                         dev_kfree_skb_any(skb);
1645                         goto next;
1646                 }
1647
1648                 /* report errors */
1649                 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1650                                                 DMA_RX_OV |
1651                                                 DMA_RX_NO |
1652                                                 DMA_RX_LG |
1653                                                 DMA_RX_RXER))) {
1654                         netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1655                                   (unsigned int)dma_flag);
1656                         if (dma_flag & DMA_RX_CRC_ERROR)
1657                                 dev->stats.rx_crc_errors++;
1658                         if (dma_flag & DMA_RX_OV)
1659                                 dev->stats.rx_over_errors++;
1660                         if (dma_flag & DMA_RX_NO)
1661                                 dev->stats.rx_frame_errors++;
1662                         if (dma_flag & DMA_RX_LG)
1663                                 dev->stats.rx_length_errors++;
1664                         dev->stats.rx_errors++;
1665                         dev_kfree_skb_any(skb);
1666                         goto next;
1667                 } /* error packet */
1668
1669                 chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1670                              priv->desc_rxchk_en;
1671
1672                 skb_put(skb, len);
1673                 if (priv->desc_64b_en) {
1674                         skb_pull(skb, 64);
1675                         len -= 64;
1676                 }
1677
1678                 if (likely(chksum_ok))
1679                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1680
1681                 /* remove hardware 2bytes added for IP alignment */
1682                 skb_pull(skb, 2);
1683                 len -= 2;
1684
1685                 if (priv->crc_fwd_en) {
1686                         skb_trim(skb, len - ETH_FCS_LEN);
1687                         len -= ETH_FCS_LEN;
1688                 }
1689
1690                 /*Finish setting up the received SKB and send it to the kernel*/
1691                 skb->protocol = eth_type_trans(skb, priv->dev);
1692                 dev->stats.rx_packets++;
1693                 dev->stats.rx_bytes += len;
1694                 if (dma_flag & DMA_RX_MULT)
1695                         dev->stats.multicast++;
1696
1697                 /* Notify kernel */
1698                 napi_gro_receive(&ring->napi, skb);
1699                 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1700
1701 next:
1702                 rxpktprocessed++;
1703                 if (likely(ring->read_ptr < ring->end_ptr))
1704                         ring->read_ptr++;
1705                 else
1706                         ring->read_ptr = ring->cb_ptr;
1707
1708                 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1709                 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1710         }
1711
1712         return rxpktprocessed;
1713 }
1714
1715 /* Rx NAPI polling method */
1716 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1717 {
1718         struct bcmgenet_rx_ring *ring = container_of(napi,
1719                         struct bcmgenet_rx_ring, napi);
1720         unsigned int work_done;
1721
1722         work_done = bcmgenet_desc_rx(ring, budget);
1723
1724         if (work_done < budget) {
1725                 napi_complete(napi);
1726                 ring->int_enable(ring);
1727         }
1728
1729         return work_done;
1730 }
1731
1732 /* Assign skb to RX DMA descriptor. */
1733 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1734                                      struct bcmgenet_rx_ring *ring)
1735 {
1736         struct enet_cb *cb;
1737         struct sk_buff *skb;
1738         int i;
1739
1740         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1741
1742         /* loop here for each buffer needing assign */
1743         for (i = 0; i < ring->size; i++) {
1744                 cb = ring->cbs + i;
1745                 skb = bcmgenet_rx_refill(priv, cb);
1746                 if (skb)
1747                         dev_kfree_skb_any(skb);
1748                 if (!cb->skb)
1749                         return -ENOMEM;
1750         }
1751
1752         return 0;
1753 }
1754
1755 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1756 {
1757         struct enet_cb *cb;
1758         int i;
1759
1760         for (i = 0; i < priv->num_rx_bds; i++) {
1761                 cb = &priv->rx_cbs[i];
1762
1763                 if (dma_unmap_addr(cb, dma_addr)) {
1764                         dma_unmap_single(&priv->dev->dev,
1765                                          dma_unmap_addr(cb, dma_addr),
1766                                          priv->rx_buf_len, DMA_FROM_DEVICE);
1767                         dma_unmap_addr_set(cb, dma_addr, 0);
1768                 }
1769
1770                 if (cb->skb)
1771                         bcmgenet_free_cb(cb);
1772         }
1773 }
1774
1775 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1776 {
1777         u32 reg;
1778
1779         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1780         if (enable)
1781                 reg |= mask;
1782         else
1783                 reg &= ~mask;
1784         bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1785
1786         /* UniMAC stops on a packet boundary, wait for a full-size packet
1787          * to be processed
1788          */
1789         if (enable == 0)
1790                 usleep_range(1000, 2000);
1791 }
1792
1793 static int reset_umac(struct bcmgenet_priv *priv)
1794 {
1795         struct device *kdev = &priv->pdev->dev;
1796         unsigned int timeout = 0;
1797         u32 reg;
1798
1799         /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1800         bcmgenet_rbuf_ctrl_set(priv, 0);
1801         udelay(10);
1802
1803         /* disable MAC while updating its registers */
1804         bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1805
1806         /* issue soft reset, wait for it to complete */
1807         bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1808         while (timeout++ < 1000) {
1809                 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1810                 if (!(reg & CMD_SW_RESET))
1811                         return 0;
1812
1813                 udelay(1);
1814         }
1815
1816         if (timeout == 1000) {
1817                 dev_err(kdev,
1818                         "timeout waiting for MAC to come out of reset\n");
1819                 return -ETIMEDOUT;
1820         }
1821
1822         return 0;
1823 }
1824
1825 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1826 {
1827         /* Mask all interrupts.*/
1828         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1829         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1830         bcmgenet_intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1831         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1832         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1833         bcmgenet_intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1834 }
1835
1836 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
1837 {
1838         u32 int0_enable = 0;
1839
1840         /* Monitor cable plug/unplugged event for internal PHY, external PHY
1841          * and MoCA PHY
1842          */
1843         if (priv->internal_phy) {
1844                 int0_enable |= UMAC_IRQ_LINK_EVENT;
1845         } else if (priv->ext_phy) {
1846                 int0_enable |= UMAC_IRQ_LINK_EVENT;
1847         } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1848                 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
1849                         int0_enable |= UMAC_IRQ_LINK_EVENT;
1850         }
1851         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1852 }
1853
1854 static int init_umac(struct bcmgenet_priv *priv)
1855 {
1856         struct device *kdev = &priv->pdev->dev;
1857         int ret;
1858         u32 reg;
1859         u32 int0_enable = 0;
1860         u32 int1_enable = 0;
1861         int i;
1862
1863         dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1864
1865         ret = reset_umac(priv);
1866         if (ret)
1867                 return ret;
1868
1869         bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1870         /* clear tx/rx counter */
1871         bcmgenet_umac_writel(priv,
1872                              MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1873                              UMAC_MIB_CTRL);
1874         bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1875
1876         bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1877
1878         /* init rx registers, enable ip header optimization */
1879         reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
1880         reg |= RBUF_ALIGN_2B;
1881         bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
1882
1883         if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
1884                 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
1885
1886         bcmgenet_intr_disable(priv);
1887
1888         /* Enable Rx default queue 16 interrupts */
1889         int0_enable |= UMAC_IRQ_RXDMA_DONE;
1890
1891         /* Enable Tx default queue 16 interrupts */
1892         int0_enable |= UMAC_IRQ_TXDMA_DONE;
1893
1894         /* Configure backpressure vectors for MoCA */
1895         if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1896                 reg = bcmgenet_bp_mc_get(priv);
1897                 reg |= BIT(priv->hw_params->bp_in_en_shift);
1898
1899                 /* bp_mask: back pressure mask */
1900                 if (netif_is_multiqueue(priv->dev))
1901                         reg |= priv->hw_params->bp_in_mask;
1902                 else
1903                         reg &= ~priv->hw_params->bp_in_mask;
1904                 bcmgenet_bp_mc_set(priv, reg);
1905         }
1906
1907         /* Enable MDIO interrupts on GENET v3+ */
1908         if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
1909                 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
1910
1911         /* Enable Rx priority queue interrupts */
1912         for (i = 0; i < priv->hw_params->rx_queues; ++i)
1913                 int1_enable |= (1 << (UMAC_IRQ1_RX_INTR_SHIFT + i));
1914
1915         /* Enable Tx priority queue interrupts */
1916         for (i = 0; i < priv->hw_params->tx_queues; ++i)
1917                 int1_enable |= (1 << i);
1918
1919         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1920         bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
1921
1922         /* Enable rx/tx engine.*/
1923         dev_dbg(kdev, "done init umac\n");
1924
1925         return 0;
1926 }
1927
1928 /* Initialize a Tx ring along with corresponding hardware registers */
1929 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
1930                                   unsigned int index, unsigned int size,
1931                                   unsigned int start_ptr, unsigned int end_ptr)
1932 {
1933         struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
1934         u32 words_per_bd = WORDS_PER_BD(priv);
1935         u32 flow_period_val = 0;
1936
1937         spin_lock_init(&ring->lock);
1938         ring->priv = priv;
1939         ring->index = index;
1940         if (index == DESC_INDEX) {
1941                 ring->queue = 0;
1942                 ring->int_enable = bcmgenet_tx_ring16_int_enable;
1943                 ring->int_disable = bcmgenet_tx_ring16_int_disable;
1944         } else {
1945                 ring->queue = index + 1;
1946                 ring->int_enable = bcmgenet_tx_ring_int_enable;
1947                 ring->int_disable = bcmgenet_tx_ring_int_disable;
1948         }
1949         ring->cbs = priv->tx_cbs + start_ptr;
1950         ring->size = size;
1951         ring->clean_ptr = start_ptr;
1952         ring->c_index = 0;
1953         ring->free_bds = size;
1954         ring->write_ptr = start_ptr;
1955         ring->cb_ptr = start_ptr;
1956         ring->end_ptr = end_ptr - 1;
1957         ring->prod_index = 0;
1958
1959         /* Set flow period for ring != 16 */
1960         if (index != DESC_INDEX)
1961                 flow_period_val = ENET_MAX_MTU_SIZE << 16;
1962
1963         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
1964         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
1965         bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
1966         /* Disable rate control for now */
1967         bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
1968                                   TDMA_FLOW_PERIOD);
1969         bcmgenet_tdma_ring_writel(priv, index,
1970                                   ((size << DMA_RING_SIZE_SHIFT) |
1971                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
1972
1973         /* Set start and end address, read and write pointers */
1974         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1975                                   DMA_START_ADDR);
1976         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1977                                   TDMA_READ_PTR);
1978         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1979                                   TDMA_WRITE_PTR);
1980         bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
1981                                   DMA_END_ADDR);
1982 }
1983
1984 /* Initialize a RDMA ring */
1985 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
1986                                  unsigned int index, unsigned int size,
1987                                  unsigned int start_ptr, unsigned int end_ptr)
1988 {
1989         struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
1990         u32 words_per_bd = WORDS_PER_BD(priv);
1991         int ret;
1992
1993         ring->priv = priv;
1994         ring->index = index;
1995         if (index == DESC_INDEX) {
1996                 ring->int_enable = bcmgenet_rx_ring16_int_enable;
1997                 ring->int_disable = bcmgenet_rx_ring16_int_disable;
1998         } else {
1999                 ring->int_enable = bcmgenet_rx_ring_int_enable;
2000                 ring->int_disable = bcmgenet_rx_ring_int_disable;
2001         }
2002         ring->cbs = priv->rx_cbs + start_ptr;
2003         ring->size = size;
2004         ring->c_index = 0;
2005         ring->read_ptr = start_ptr;
2006         ring->cb_ptr = start_ptr;
2007         ring->end_ptr = end_ptr - 1;
2008
2009         ret = bcmgenet_alloc_rx_buffers(priv, ring);
2010         if (ret)
2011                 return ret;
2012
2013         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2014         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2015         bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2016         bcmgenet_rdma_ring_writel(priv, index,
2017                                   ((size << DMA_RING_SIZE_SHIFT) |
2018                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2019         bcmgenet_rdma_ring_writel(priv, index,
2020                                   (DMA_FC_THRESH_LO <<
2021                                    DMA_XOFF_THRESHOLD_SHIFT) |
2022                                    DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2023
2024         /* Set start and end address, read and write pointers */
2025         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2026                                   DMA_START_ADDR);
2027         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2028                                   RDMA_READ_PTR);
2029         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2030                                   RDMA_WRITE_PTR);
2031         bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2032                                   DMA_END_ADDR);
2033
2034         return ret;
2035 }
2036
2037 static void bcmgenet_init_tx_napi(struct bcmgenet_priv *priv)
2038 {
2039         unsigned int i;
2040         struct bcmgenet_tx_ring *ring;
2041
2042         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2043                 ring = &priv->tx_rings[i];
2044                 netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2045         }
2046
2047         ring = &priv->tx_rings[DESC_INDEX];
2048         netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2049 }
2050
2051 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2052 {
2053         unsigned int i;
2054         struct bcmgenet_tx_ring *ring;
2055
2056         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2057                 ring = &priv->tx_rings[i];
2058                 napi_enable(&ring->napi);
2059         }
2060
2061         ring = &priv->tx_rings[DESC_INDEX];
2062         napi_enable(&ring->napi);
2063 }
2064
2065 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2066 {
2067         unsigned int i;
2068         struct bcmgenet_tx_ring *ring;
2069
2070         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2071                 ring = &priv->tx_rings[i];
2072                 napi_disable(&ring->napi);
2073         }
2074
2075         ring = &priv->tx_rings[DESC_INDEX];
2076         napi_disable(&ring->napi);
2077 }
2078
2079 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2080 {
2081         unsigned int i;
2082         struct bcmgenet_tx_ring *ring;
2083
2084         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2085                 ring = &priv->tx_rings[i];
2086                 netif_napi_del(&ring->napi);
2087         }
2088
2089         ring = &priv->tx_rings[DESC_INDEX];
2090         netif_napi_del(&ring->napi);
2091 }
2092
2093 /* Initialize Tx queues
2094  *
2095  * Queues 0-3 are priority-based, each one has 32 descriptors,
2096  * with queue 0 being the highest priority queue.
2097  *
2098  * Queue 16 is the default Tx queue with
2099  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2100  *
2101  * The transmit control block pool is then partitioned as follows:
2102  * - Tx queue 0 uses tx_cbs[0..31]
2103  * - Tx queue 1 uses tx_cbs[32..63]
2104  * - Tx queue 2 uses tx_cbs[64..95]
2105  * - Tx queue 3 uses tx_cbs[96..127]
2106  * - Tx queue 16 uses tx_cbs[128..255]
2107  */
2108 static void bcmgenet_init_tx_queues(struct net_device *dev)
2109 {
2110         struct bcmgenet_priv *priv = netdev_priv(dev);
2111         u32 i, dma_enable;
2112         u32 dma_ctrl, ring_cfg;
2113         u32 dma_priority[3] = {0, 0, 0};
2114
2115         dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2116         dma_enable = dma_ctrl & DMA_EN;
2117         dma_ctrl &= ~DMA_EN;
2118         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2119
2120         dma_ctrl = 0;
2121         ring_cfg = 0;
2122
2123         /* Enable strict priority arbiter mode */
2124         bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2125
2126         /* Initialize Tx priority queues */
2127         for (i = 0; i < priv->hw_params->tx_queues; i++) {
2128                 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2129                                       i * priv->hw_params->tx_bds_per_q,
2130                                       (i + 1) * priv->hw_params->tx_bds_per_q);
2131                 ring_cfg |= (1 << i);
2132                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2133                 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2134                         ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2135         }
2136
2137         /* Initialize Tx default queue 16 */
2138         bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2139                               priv->hw_params->tx_queues *
2140                               priv->hw_params->tx_bds_per_q,
2141                               TOTAL_DESC);
2142         ring_cfg |= (1 << DESC_INDEX);
2143         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2144         dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2145                 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2146                  DMA_PRIO_REG_SHIFT(DESC_INDEX));
2147
2148         /* Set Tx queue priorities */
2149         bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2150         bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2151         bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2152
2153         /* Initialize Tx NAPI */
2154         bcmgenet_init_tx_napi(priv);
2155
2156         /* Enable Tx queues */
2157         bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2158
2159         /* Enable Tx DMA */
2160         if (dma_enable)
2161                 dma_ctrl |= DMA_EN;
2162         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2163 }
2164
2165 static void bcmgenet_init_rx_napi(struct bcmgenet_priv *priv)
2166 {
2167         unsigned int i;
2168         struct bcmgenet_rx_ring *ring;
2169
2170         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2171                 ring = &priv->rx_rings[i];
2172                 netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2173         }
2174
2175         ring = &priv->rx_rings[DESC_INDEX];
2176         netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2177 }
2178
2179 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2180 {
2181         unsigned int i;
2182         struct bcmgenet_rx_ring *ring;
2183
2184         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2185                 ring = &priv->rx_rings[i];
2186                 napi_enable(&ring->napi);
2187         }
2188
2189         ring = &priv->rx_rings[DESC_INDEX];
2190         napi_enable(&ring->napi);
2191 }
2192
2193 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2194 {
2195         unsigned int i;
2196         struct bcmgenet_rx_ring *ring;
2197
2198         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2199                 ring = &priv->rx_rings[i];
2200                 napi_disable(&ring->napi);
2201         }
2202
2203         ring = &priv->rx_rings[DESC_INDEX];
2204         napi_disable(&ring->napi);
2205 }
2206
2207 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2208 {
2209         unsigned int i;
2210         struct bcmgenet_rx_ring *ring;
2211
2212         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2213                 ring = &priv->rx_rings[i];
2214                 netif_napi_del(&ring->napi);
2215         }
2216
2217         ring = &priv->rx_rings[DESC_INDEX];
2218         netif_napi_del(&ring->napi);
2219 }
2220
2221 /* Initialize Rx queues
2222  *
2223  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2224  * used to direct traffic to these queues.
2225  *
2226  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2227  */
2228 static int bcmgenet_init_rx_queues(struct net_device *dev)
2229 {
2230         struct bcmgenet_priv *priv = netdev_priv(dev);
2231         u32 i;
2232         u32 dma_enable;
2233         u32 dma_ctrl;
2234         u32 ring_cfg;
2235         int ret;
2236
2237         dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2238         dma_enable = dma_ctrl & DMA_EN;
2239         dma_ctrl &= ~DMA_EN;
2240         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2241
2242         dma_ctrl = 0;
2243         ring_cfg = 0;
2244
2245         /* Initialize Rx priority queues */
2246         for (i = 0; i < priv->hw_params->rx_queues; i++) {
2247                 ret = bcmgenet_init_rx_ring(priv, i,
2248                                             priv->hw_params->rx_bds_per_q,
2249                                             i * priv->hw_params->rx_bds_per_q,
2250                                             (i + 1) *
2251                                             priv->hw_params->rx_bds_per_q);
2252                 if (ret)
2253                         return ret;
2254
2255                 ring_cfg |= (1 << i);
2256                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2257         }
2258
2259         /* Initialize Rx default queue 16 */
2260         ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2261                                     priv->hw_params->rx_queues *
2262                                     priv->hw_params->rx_bds_per_q,
2263                                     TOTAL_DESC);
2264         if (ret)
2265                 return ret;
2266
2267         ring_cfg |= (1 << DESC_INDEX);
2268         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2269
2270         /* Initialize Rx NAPI */
2271         bcmgenet_init_rx_napi(priv);
2272
2273         /* Enable rings */
2274         bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2275
2276         /* Configure ring as descriptor ring and re-enable DMA if enabled */
2277         if (dma_enable)
2278                 dma_ctrl |= DMA_EN;
2279         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2280
2281         return 0;
2282 }
2283
2284 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2285 {
2286         int ret = 0;
2287         int timeout = 0;
2288         u32 reg;
2289         u32 dma_ctrl;
2290         int i;
2291
2292         /* Disable TDMA to stop add more frames in TX DMA */
2293         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2294         reg &= ~DMA_EN;
2295         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2296
2297         /* Check TDMA status register to confirm TDMA is disabled */
2298         while (timeout++ < DMA_TIMEOUT_VAL) {
2299                 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2300                 if (reg & DMA_DISABLED)
2301                         break;
2302
2303                 udelay(1);
2304         }
2305
2306         if (timeout == DMA_TIMEOUT_VAL) {
2307                 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2308                 ret = -ETIMEDOUT;
2309         }
2310
2311         /* Wait 10ms for packet drain in both tx and rx dma */
2312         usleep_range(10000, 20000);
2313
2314         /* Disable RDMA */
2315         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2316         reg &= ~DMA_EN;
2317         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2318
2319         timeout = 0;
2320         /* Check RDMA status register to confirm RDMA is disabled */
2321         while (timeout++ < DMA_TIMEOUT_VAL) {
2322                 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2323                 if (reg & DMA_DISABLED)
2324                         break;
2325
2326                 udelay(1);
2327         }
2328
2329         if (timeout == DMA_TIMEOUT_VAL) {
2330                 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2331                 ret = -ETIMEDOUT;
2332         }
2333
2334         dma_ctrl = 0;
2335         for (i = 0; i < priv->hw_params->rx_queues; i++)
2336                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2337         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2338         reg &= ~dma_ctrl;
2339         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2340
2341         dma_ctrl = 0;
2342         for (i = 0; i < priv->hw_params->tx_queues; i++)
2343                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2344         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2345         reg &= ~dma_ctrl;
2346         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2347
2348         return ret;
2349 }
2350
2351 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2352 {
2353         int i;
2354
2355         bcmgenet_fini_rx_napi(priv);
2356         bcmgenet_fini_tx_napi(priv);
2357
2358         /* disable DMA */
2359         bcmgenet_dma_teardown(priv);
2360
2361         for (i = 0; i < priv->num_tx_bds; i++) {
2362                 if (priv->tx_cbs[i].skb != NULL) {
2363                         dev_kfree_skb(priv->tx_cbs[i].skb);
2364                         priv->tx_cbs[i].skb = NULL;
2365                 }
2366         }
2367
2368         bcmgenet_free_rx_buffers(priv);
2369         kfree(priv->rx_cbs);
2370         kfree(priv->tx_cbs);
2371 }
2372
2373 /* init_edma: Initialize DMA control register */
2374 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2375 {
2376         int ret;
2377         unsigned int i;
2378         struct enet_cb *cb;
2379
2380         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2381
2382         /* Initialize common Rx ring structures */
2383         priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2384         priv->num_rx_bds = TOTAL_DESC;
2385         priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2386                                GFP_KERNEL);
2387         if (!priv->rx_cbs)
2388                 return -ENOMEM;
2389
2390         for (i = 0; i < priv->num_rx_bds; i++) {
2391                 cb = priv->rx_cbs + i;
2392                 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2393         }
2394
2395         /* Initialize common TX ring structures */
2396         priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2397         priv->num_tx_bds = TOTAL_DESC;
2398         priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2399                                GFP_KERNEL);
2400         if (!priv->tx_cbs) {
2401                 kfree(priv->rx_cbs);
2402                 return -ENOMEM;
2403         }
2404
2405         for (i = 0; i < priv->num_tx_bds; i++) {
2406                 cb = priv->tx_cbs + i;
2407                 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2408         }
2409
2410         /* Init rDma */
2411         bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2412
2413         /* Initialize Rx queues */
2414         ret = bcmgenet_init_rx_queues(priv->dev);
2415         if (ret) {
2416                 netdev_err(priv->dev, "failed to initialize Rx queues\n");
2417                 bcmgenet_free_rx_buffers(priv);
2418                 kfree(priv->rx_cbs);
2419                 kfree(priv->tx_cbs);
2420                 return ret;
2421         }
2422
2423         /* Init tDma */
2424         bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2425
2426         /* Initialize Tx queues */
2427         bcmgenet_init_tx_queues(priv->dev);
2428
2429         return 0;
2430 }
2431
2432 /* Interrupt bottom half */
2433 static void bcmgenet_irq_task(struct work_struct *work)
2434 {
2435         struct bcmgenet_priv *priv = container_of(
2436                         work, struct bcmgenet_priv, bcmgenet_irq_work);
2437
2438         netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2439
2440         if (priv->irq0_stat & UMAC_IRQ_MPD_R) {
2441                 priv->irq0_stat &= ~UMAC_IRQ_MPD_R;
2442                 netif_dbg(priv, wol, priv->dev,
2443                           "magic packet detected, waking up\n");
2444                 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2445         }
2446
2447         /* Link UP/DOWN event */
2448         if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2449             (priv->irq0_stat & UMAC_IRQ_LINK_EVENT)) {
2450                 phy_mac_interrupt(priv->phydev,
2451                                   !!(priv->irq0_stat & UMAC_IRQ_LINK_UP));
2452                 priv->irq0_stat &= ~UMAC_IRQ_LINK_EVENT;
2453         }
2454 }
2455
2456 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2457 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2458 {
2459         struct bcmgenet_priv *priv = dev_id;
2460         struct bcmgenet_rx_ring *rx_ring;
2461         struct bcmgenet_tx_ring *tx_ring;
2462         unsigned int index;
2463
2464         /* Save irq status for bottom-half processing. */
2465         priv->irq1_stat =
2466                 bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2467                 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2468
2469         /* clear interrupts */
2470         bcmgenet_intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);
2471
2472         netif_dbg(priv, intr, priv->dev,
2473                   "%s: IRQ=0x%x\n", __func__, priv->irq1_stat);
2474
2475         /* Check Rx priority queue interrupts */
2476         for (index = 0; index < priv->hw_params->rx_queues; index++) {
2477                 if (!(priv->irq1_stat & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2478                         continue;
2479
2480                 rx_ring = &priv->rx_rings[index];
2481
2482                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2483                         rx_ring->int_disable(rx_ring);
2484                         __napi_schedule(&rx_ring->napi);
2485                 }
2486         }
2487
2488         /* Check Tx priority queue interrupts */
2489         for (index = 0; index < priv->hw_params->tx_queues; index++) {
2490                 if (!(priv->irq1_stat & BIT(index)))
2491                         continue;
2492
2493                 tx_ring = &priv->tx_rings[index];
2494
2495                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2496                         tx_ring->int_disable(tx_ring);
2497                         __napi_schedule(&tx_ring->napi);
2498                 }
2499         }
2500
2501         return IRQ_HANDLED;
2502 }
2503
2504 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2505 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2506 {
2507         struct bcmgenet_priv *priv = dev_id;
2508         struct bcmgenet_rx_ring *rx_ring;
2509         struct bcmgenet_tx_ring *tx_ring;
2510
2511         /* Save irq status for bottom-half processing. */
2512         priv->irq0_stat =
2513                 bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2514                 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2515
2516         /* clear interrupts */
2517         bcmgenet_intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
2518
2519         netif_dbg(priv, intr, priv->dev,
2520                   "IRQ=0x%x\n", priv->irq0_stat);
2521
2522         if (priv->irq0_stat & UMAC_IRQ_RXDMA_DONE) {
2523                 rx_ring = &priv->rx_rings[DESC_INDEX];
2524
2525                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2526                         rx_ring->int_disable(rx_ring);
2527                         __napi_schedule(&rx_ring->napi);
2528                 }
2529         }
2530
2531         if (priv->irq0_stat & UMAC_IRQ_TXDMA_DONE) {
2532                 tx_ring = &priv->tx_rings[DESC_INDEX];
2533
2534                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2535                         tx_ring->int_disable(tx_ring);
2536                         __napi_schedule(&tx_ring->napi);
2537                 }
2538         }
2539
2540         if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R |
2541                                 UMAC_IRQ_PHY_DET_F |
2542                                 UMAC_IRQ_LINK_EVENT |
2543                                 UMAC_IRQ_HFB_SM |
2544                                 UMAC_IRQ_HFB_MM |
2545                                 UMAC_IRQ_MPD_R)) {
2546                 /* all other interested interrupts handled in bottom half */
2547                 schedule_work(&priv->bcmgenet_irq_work);
2548         }
2549
2550         if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2551             priv->irq0_stat & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2552                 priv->irq0_stat &= ~(UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2553                 wake_up(&priv->wq);
2554         }
2555
2556         return IRQ_HANDLED;
2557 }
2558
2559 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2560 {
2561         struct bcmgenet_priv *priv = dev_id;
2562
2563         pm_wakeup_event(&priv->pdev->dev, 0);
2564
2565         return IRQ_HANDLED;
2566 }
2567
2568 #ifdef CONFIG_NET_POLL_CONTROLLER
2569 static void bcmgenet_poll_controller(struct net_device *dev)
2570 {
2571         struct bcmgenet_priv *priv = netdev_priv(dev);
2572
2573         /* Invoke the main RX/TX interrupt handler */
2574         disable_irq(priv->irq0);
2575         bcmgenet_isr0(priv->irq0, priv);
2576         enable_irq(priv->irq0);
2577
2578         /* And the interrupt handler for RX/TX priority queues */
2579         disable_irq(priv->irq1);
2580         bcmgenet_isr1(priv->irq1, priv);
2581         enable_irq(priv->irq1);
2582 }
2583 #endif
2584
2585 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2586 {
2587         u32 reg;
2588
2589         reg = bcmgenet_rbuf_ctrl_get(priv);
2590         reg |= BIT(1);
2591         bcmgenet_rbuf_ctrl_set(priv, reg);
2592         udelay(10);
2593
2594         reg &= ~BIT(1);
2595         bcmgenet_rbuf_ctrl_set(priv, reg);
2596         udelay(10);
2597 }
2598
2599 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2600                                  unsigned char *addr)
2601 {
2602         bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2603                         (addr[2] << 8) | addr[3], UMAC_MAC0);
2604         bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2605 }
2606
2607 /* Returns a reusable dma control register value */
2608 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2609 {
2610         u32 reg;
2611         u32 dma_ctrl;
2612
2613         /* disable DMA */
2614         dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2615         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2616         reg &= ~dma_ctrl;
2617         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2618
2619         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2620         reg &= ~dma_ctrl;
2621         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2622
2623         bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2624         udelay(10);
2625         bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2626
2627         return dma_ctrl;
2628 }
2629
2630 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2631 {
2632         u32 reg;
2633
2634         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2635         reg |= dma_ctrl;
2636         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2637
2638         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2639         reg |= dma_ctrl;
2640         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2641 }
2642
2643 static bool bcmgenet_hfb_is_filter_enabled(struct bcmgenet_priv *priv,
2644                                            u32 f_index)
2645 {
2646         u32 offset;
2647         u32 reg;
2648
2649         offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
2650         reg = bcmgenet_hfb_reg_readl(priv, offset);
2651         return !!(reg & (1 << (f_index % 32)));
2652 }
2653
2654 static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
2655 {
2656         u32 offset;
2657         u32 reg;
2658
2659         offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
2660         reg = bcmgenet_hfb_reg_readl(priv, offset);
2661         reg |= (1 << (f_index % 32));
2662         bcmgenet_hfb_reg_writel(priv, reg, offset);
2663 }
2664
2665 static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
2666                                                      u32 f_index, u32 rx_queue)
2667 {
2668         u32 offset;
2669         u32 reg;
2670
2671         offset = f_index / 8;
2672         reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
2673         reg &= ~(0xF << (4 * (f_index % 8)));
2674         reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
2675         bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
2676 }
2677
2678 static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
2679                                            u32 f_index, u32 f_length)
2680 {
2681         u32 offset;
2682         u32 reg;
2683
2684         offset = HFB_FLT_LEN_V3PLUS +
2685                  ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
2686                  sizeof(u32);
2687         reg = bcmgenet_hfb_reg_readl(priv, offset);
2688         reg &= ~(0xFF << (8 * (f_index % 4)));
2689         reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
2690         bcmgenet_hfb_reg_writel(priv, reg, offset);
2691 }
2692
2693 static int bcmgenet_hfb_find_unused_filter(struct bcmgenet_priv *priv)
2694 {
2695         u32 f_index;
2696
2697         for (f_index = 0; f_index < priv->hw_params->hfb_filter_cnt; f_index++)
2698                 if (!bcmgenet_hfb_is_filter_enabled(priv, f_index))
2699                         return f_index;
2700
2701         return -ENOMEM;
2702 }
2703
2704 /* bcmgenet_hfb_add_filter
2705  *
2706  * Add new filter to Hardware Filter Block to match and direct Rx traffic to
2707  * desired Rx queue.
2708  *
2709  * f_data is an array of unsigned 32-bit integers where each 32-bit integer
2710  * provides filter data for 2 bytes (4 nibbles) of Rx frame:
2711  *
2712  * bits 31:20 - unused
2713  * bit  19    - nibble 0 match enable
2714  * bit  18    - nibble 1 match enable
2715  * bit  17    - nibble 2 match enable
2716  * bit  16    - nibble 3 match enable
2717  * bits 15:12 - nibble 0 data
2718  * bits 11:8  - nibble 1 data
2719  * bits 7:4   - nibble 2 data
2720  * bits 3:0   - nibble 3 data
2721  *
2722  * Example:
2723  * In order to match:
2724  * - Ethernet frame type = 0x0800 (IP)
2725  * - IP version field = 4
2726  * - IP protocol field = 0x11 (UDP)
2727  *
2728  * The following filter is needed:
2729  * u32 hfb_filter_ipv4_udp[] = {
2730  *   Rx frame offset 0x00: 0x00000000, 0x00000000, 0x00000000, 0x00000000,
2731  *   Rx frame offset 0x08: 0x00000000, 0x00000000, 0x000F0800, 0x00084000,
2732  *   Rx frame offset 0x10: 0x00000000, 0x00000000, 0x00000000, 0x00030011,
2733  * };
2734  *
2735  * To add the filter to HFB and direct the traffic to Rx queue 0, call:
2736  * bcmgenet_hfb_add_filter(priv, hfb_filter_ipv4_udp,
2737  *                         ARRAY_SIZE(hfb_filter_ipv4_udp), 0);
2738  */
2739 int bcmgenet_hfb_add_filter(struct bcmgenet_priv *priv, u32 *f_data,
2740                             u32 f_length, u32 rx_queue)
2741 {
2742         int f_index;
2743         u32 i;
2744
2745         f_index = bcmgenet_hfb_find_unused_filter(priv);
2746         if (f_index < 0)
2747                 return -ENOMEM;
2748
2749         if (f_length > priv->hw_params->hfb_filter_size)
2750                 return -EINVAL;
2751
2752         for (i = 0; i < f_length; i++)
2753                 bcmgenet_hfb_writel(priv, f_data[i],
2754                         (f_index * priv->hw_params->hfb_filter_size + i) *
2755                         sizeof(u32));
2756
2757         bcmgenet_hfb_set_filter_length(priv, f_index, 2 * f_length);
2758         bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f_index, rx_queue);
2759         bcmgenet_hfb_enable_filter(priv, f_index);
2760         bcmgenet_hfb_reg_writel(priv, 0x1, HFB_CTRL);
2761
2762         return 0;
2763 }
2764
2765 /* bcmgenet_hfb_clear
2766  *
2767  * Clear Hardware Filter Block and disable all filtering.
2768  */
2769 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2770 {
2771         u32 i;
2772
2773         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2774         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2775         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2776
2777         for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2778                 bcmgenet_rdma_writel(priv, 0x0, i);
2779
2780         for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2781                 bcmgenet_hfb_reg_writel(priv, 0x0,
2782                                         HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2783
2784         for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2785                         priv->hw_params->hfb_filter_size; i++)
2786                 bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2787 }
2788
2789 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2790 {
2791         if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2792                 return;
2793
2794         bcmgenet_hfb_clear(priv);
2795 }
2796
2797 static void bcmgenet_netif_start(struct net_device *dev)
2798 {
2799         struct bcmgenet_priv *priv = netdev_priv(dev);
2800
2801         /* Start the network engine */
2802         bcmgenet_enable_rx_napi(priv);
2803         bcmgenet_enable_tx_napi(priv);
2804
2805         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2806
2807         netif_tx_start_all_queues(dev);
2808
2809         /* Monitor link interrupts now */
2810         bcmgenet_link_intr_enable(priv);
2811
2812         phy_start(priv->phydev);
2813 }
2814
2815 static int bcmgenet_open(struct net_device *dev)
2816 {
2817         struct bcmgenet_priv *priv = netdev_priv(dev);
2818         unsigned long dma_ctrl;
2819         u32 reg;
2820         int ret;
2821
2822         netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2823
2824         /* Turn on the clock */
2825         clk_prepare_enable(priv->clk);
2826
2827         /* If this is an internal GPHY, power it back on now, before UniMAC is
2828          * brought out of reset as absolutely no UniMAC activity is allowed
2829          */
2830         if (priv->internal_phy)
2831                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2832
2833         /* take MAC out of reset */
2834         bcmgenet_umac_reset(priv);
2835
2836         ret = init_umac(priv);
2837         if (ret)
2838                 goto err_clk_disable;
2839
2840         /* disable ethernet MAC while updating its registers */
2841         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2842
2843         /* Make sure we reflect the value of CRC_CMD_FWD */
2844         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2845         priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2846
2847         bcmgenet_set_hw_addr(priv, dev->dev_addr);
2848
2849         if (priv->internal_phy) {
2850                 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2851                 reg |= EXT_ENERGY_DET_MASK;
2852                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2853         }
2854
2855         /* Disable RX/TX DMA and flush TX queues */
2856         dma_ctrl = bcmgenet_dma_disable(priv);
2857
2858         /* Reinitialize TDMA and RDMA and SW housekeeping */
2859         ret = bcmgenet_init_dma(priv);
2860         if (ret) {
2861                 netdev_err(dev, "failed to initialize DMA\n");
2862                 goto err_clk_disable;
2863         }
2864
2865         /* Always enable ring 16 - descriptor ring */
2866         bcmgenet_enable_dma(priv, dma_ctrl);
2867
2868         /* HFB init */
2869         bcmgenet_hfb_init(priv);
2870
2871         ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2872                           dev->name, priv);
2873         if (ret < 0) {
2874                 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2875                 goto err_fini_dma;
2876         }
2877
2878         ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2879                           dev->name, priv);
2880         if (ret < 0) {
2881                 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2882                 goto err_irq0;
2883         }
2884
2885         ret = bcmgenet_mii_probe(dev);
2886         if (ret) {
2887                 netdev_err(dev, "failed to connect to PHY\n");
2888                 goto err_irq1;
2889         }
2890
2891         bcmgenet_netif_start(dev);
2892
2893         return 0;
2894
2895 err_irq1:
2896         free_irq(priv->irq1, priv);
2897 err_irq0:
2898         free_irq(priv->irq0, priv);
2899 err_fini_dma:
2900         bcmgenet_fini_dma(priv);
2901 err_clk_disable:
2902         clk_disable_unprepare(priv->clk);
2903         return ret;
2904 }
2905
2906 static void bcmgenet_netif_stop(struct net_device *dev)
2907 {
2908         struct bcmgenet_priv *priv = netdev_priv(dev);
2909
2910         netif_tx_stop_all_queues(dev);
2911         phy_stop(priv->phydev);
2912         bcmgenet_intr_disable(priv);
2913         bcmgenet_disable_rx_napi(priv);
2914         bcmgenet_disable_tx_napi(priv);
2915
2916         /* Wait for pending work items to complete. Since interrupts are
2917          * disabled no new work will be scheduled.
2918          */
2919         cancel_work_sync(&priv->bcmgenet_irq_work);
2920
2921         priv->old_link = -1;
2922         priv->old_speed = -1;
2923         priv->old_duplex = -1;
2924         priv->old_pause = -1;
2925 }
2926
2927 static int bcmgenet_close(struct net_device *dev)
2928 {
2929         struct bcmgenet_priv *priv = netdev_priv(dev);
2930         int ret;
2931
2932         netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2933
2934         bcmgenet_netif_stop(dev);
2935
2936         /* Really kill the PHY state machine and disconnect from it */
2937         phy_disconnect(priv->phydev);
2938
2939         /* Disable MAC receive */
2940         umac_enable_set(priv, CMD_RX_EN, false);
2941
2942         ret = bcmgenet_dma_teardown(priv);
2943         if (ret)
2944                 return ret;
2945
2946         /* Disable MAC transmit. TX DMA disabled have to done before this */
2947         umac_enable_set(priv, CMD_TX_EN, false);
2948
2949         /* tx reclaim */
2950         bcmgenet_tx_reclaim_all(dev);
2951         bcmgenet_fini_dma(priv);
2952
2953         free_irq(priv->irq0, priv);
2954         free_irq(priv->irq1, priv);
2955
2956         if (priv->internal_phy)
2957                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2958
2959         clk_disable_unprepare(priv->clk);
2960
2961         return ret;
2962 }
2963
2964 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
2965 {
2966         struct bcmgenet_priv *priv = ring->priv;
2967         u32 p_index, c_index, intsts, intmsk;
2968         struct netdev_queue *txq;
2969         unsigned int free_bds;
2970         unsigned long flags;
2971         bool txq_stopped;
2972
2973         if (!netif_msg_tx_err(priv))
2974                 return;
2975
2976         txq = netdev_get_tx_queue(priv->dev, ring->queue);
2977
2978         spin_lock_irqsave(&ring->lock, flags);
2979         if (ring->index == DESC_INDEX) {
2980                 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2981                 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
2982         } else {
2983                 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2984                 intmsk = 1 << ring->index;
2985         }
2986         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
2987         p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
2988         txq_stopped = netif_tx_queue_stopped(txq);
2989         free_bds = ring->free_bds;
2990         spin_unlock_irqrestore(&ring->lock, flags);
2991
2992         netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
2993                   "TX queue status: %s, interrupts: %s\n"
2994                   "(sw)free_bds: %d (sw)size: %d\n"
2995                   "(sw)p_index: %d (hw)p_index: %d\n"
2996                   "(sw)c_index: %d (hw)c_index: %d\n"
2997                   "(sw)clean_p: %d (sw)write_p: %d\n"
2998                   "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
2999                   ring->index, ring->queue,
3000                   txq_stopped ? "stopped" : "active",
3001                   intsts & intmsk ? "enabled" : "disabled",
3002                   free_bds, ring->size,
3003                   ring->prod_index, p_index & DMA_P_INDEX_MASK,
3004                   ring->c_index, c_index & DMA_C_INDEX_MASK,
3005                   ring->clean_ptr, ring->write_ptr,
3006                   ring->cb_ptr, ring->end_ptr);
3007 }
3008
3009 static void bcmgenet_timeout(struct net_device *dev)
3010 {
3011         struct bcmgenet_priv *priv = netdev_priv(dev);
3012         u32 int0_enable = 0;
3013         u32 int1_enable = 0;
3014         unsigned int q;
3015
3016         netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3017
3018         for (q = 0; q < priv->hw_params->tx_queues; q++)
3019                 bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3020         bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3021
3022         bcmgenet_tx_reclaim_all(dev);
3023
3024         for (q = 0; q < priv->hw_params->tx_queues; q++)
3025                 int1_enable |= (1 << q);
3026
3027         int0_enable = UMAC_IRQ_TXDMA_DONE;
3028
3029         /* Re-enable TX interrupts if disabled */
3030         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3031         bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3032
3033         dev->trans_start = jiffies;
3034
3035         dev->stats.tx_errors++;
3036
3037         netif_tx_wake_all_queues(dev);
3038 }
3039
3040 #define MAX_MC_COUNT    16
3041
3042 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3043                                          unsigned char *addr,
3044                                          int *i,
3045                                          int *mc)
3046 {
3047         u32 reg;
3048
3049         bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3050                              UMAC_MDF_ADDR + (*i * 4));
3051         bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3052                              addr[4] << 8 | addr[5],
3053                              UMAC_MDF_ADDR + ((*i + 1) * 4));
3054         reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
3055         reg |= (1 << (MAX_MC_COUNT - *mc));
3056         bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3057         *i += 2;
3058         (*mc)++;
3059 }
3060
3061 static void bcmgenet_set_rx_mode(struct net_device *dev)
3062 {
3063         struct bcmgenet_priv *priv = netdev_priv(dev);
3064         struct netdev_hw_addr *ha;
3065         int i, mc;
3066         u32 reg;
3067
3068         netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3069
3070         /* Promiscuous mode */
3071         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3072         if (dev->flags & IFF_PROMISC) {
3073                 reg |= CMD_PROMISC;
3074                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3075                 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3076                 return;
3077         } else {
3078                 reg &= ~CMD_PROMISC;
3079                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3080         }
3081
3082         /* UniMac doesn't support ALLMULTI */
3083         if (dev->flags & IFF_ALLMULTI) {
3084                 netdev_warn(dev, "ALLMULTI is not supported\n");
3085                 return;
3086         }
3087
3088         /* update MDF filter */
3089         i = 0;
3090         mc = 0;
3091         /* Broadcast */
3092         bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
3093         /* my own address.*/
3094         bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
3095         /* Unicast list*/
3096         if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
3097                 return;
3098
3099         if (!netdev_uc_empty(dev))
3100                 netdev_for_each_uc_addr(ha, dev)
3101                         bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3102         /* Multicast */
3103         if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
3104                 return;
3105
3106         netdev_for_each_mc_addr(ha, dev)
3107                 bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3108 }
3109
3110 /* Set the hardware MAC address. */
3111 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3112 {
3113         struct sockaddr *addr = p;
3114
3115         /* Setting the MAC address at the hardware level is not possible
3116          * without disabling the UniMAC RX/TX enable bits.
3117          */
3118         if (netif_running(dev))
3119                 return -EBUSY;
3120
3121         ether_addr_copy(dev->dev_addr, addr->sa_data);
3122
3123         return 0;
3124 }
3125
3126 static const struct net_device_ops bcmgenet_netdev_ops = {
3127         .ndo_open               = bcmgenet_open,
3128         .ndo_stop               = bcmgenet_close,
3129         .ndo_start_xmit         = bcmgenet_xmit,
3130         .ndo_tx_timeout         = bcmgenet_timeout,
3131         .ndo_set_rx_mode        = bcmgenet_set_rx_mode,
3132         .ndo_set_mac_address    = bcmgenet_set_mac_addr,
3133         .ndo_do_ioctl           = bcmgenet_ioctl,
3134         .ndo_set_features       = bcmgenet_set_features,
3135 #ifdef CONFIG_NET_POLL_CONTROLLER
3136         .ndo_poll_controller    = bcmgenet_poll_controller,
3137 #endif
3138 };
3139
3140 /* Array of GENET hardware parameters/characteristics */
3141 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3142         [GENET_V1] = {
3143                 .tx_queues = 0,
3144                 .tx_bds_per_q = 0,
3145                 .rx_queues = 0,
3146                 .rx_bds_per_q = 0,
3147                 .bp_in_en_shift = 16,
3148                 .bp_in_mask = 0xffff,
3149                 .hfb_filter_cnt = 16,
3150                 .qtag_mask = 0x1F,
3151                 .hfb_offset = 0x1000,
3152                 .rdma_offset = 0x2000,
3153                 .tdma_offset = 0x3000,
3154                 .words_per_bd = 2,
3155         },
3156         [GENET_V2] = {
3157                 .tx_queues = 4,
3158                 .tx_bds_per_q = 32,
3159                 .rx_queues = 0,
3160                 .rx_bds_per_q = 0,
3161                 .bp_in_en_shift = 16,
3162                 .bp_in_mask = 0xffff,
3163                 .hfb_filter_cnt = 16,
3164                 .qtag_mask = 0x1F,
3165                 .tbuf_offset = 0x0600,
3166                 .hfb_offset = 0x1000,
3167                 .hfb_reg_offset = 0x2000,
3168                 .rdma_offset = 0x3000,
3169                 .tdma_offset = 0x4000,
3170                 .words_per_bd = 2,
3171                 .flags = GENET_HAS_EXT,
3172         },
3173         [GENET_V3] = {
3174                 .tx_queues = 4,
3175                 .tx_bds_per_q = 32,
3176                 .rx_queues = 0,
3177                 .rx_bds_per_q = 0,
3178                 .bp_in_en_shift = 17,
3179                 .bp_in_mask = 0x1ffff,
3180                 .hfb_filter_cnt = 48,
3181                 .hfb_filter_size = 128,
3182                 .qtag_mask = 0x3F,
3183                 .tbuf_offset = 0x0600,
3184                 .hfb_offset = 0x8000,
3185                 .hfb_reg_offset = 0xfc00,
3186                 .rdma_offset = 0x10000,
3187                 .tdma_offset = 0x11000,
3188                 .words_per_bd = 2,
3189                 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3190                          GENET_HAS_MOCA_LINK_DET,
3191         },
3192         [GENET_V4] = {
3193                 .tx_queues = 4,
3194                 .tx_bds_per_q = 32,
3195                 .rx_queues = 0,
3196                 .rx_bds_per_q = 0,
3197                 .bp_in_en_shift = 17,
3198                 .bp_in_mask = 0x1ffff,
3199                 .hfb_filter_cnt = 48,
3200                 .hfb_filter_size = 128,
3201                 .qtag_mask = 0x3F,
3202                 .tbuf_offset = 0x0600,
3203                 .hfb_offset = 0x8000,
3204                 .hfb_reg_offset = 0xfc00,
3205                 .rdma_offset = 0x2000,
3206                 .tdma_offset = 0x4000,
3207                 .words_per_bd = 3,
3208                 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3209                          GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3210         },
3211 };
3212
3213 /* Infer hardware parameters from the detected GENET version */
3214 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3215 {
3216         struct bcmgenet_hw_params *params;
3217         u32 reg;
3218         u8 major;
3219         u16 gphy_rev;
3220
3221         if (GENET_IS_V4(priv)) {
3222                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3223                 genet_dma_ring_regs = genet_dma_ring_regs_v4;
3224                 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3225                 priv->version = GENET_V4;
3226         } else if (GENET_IS_V3(priv)) {
3227                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3228                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3229                 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3230                 priv->version = GENET_V3;
3231         } else if (GENET_IS_V2(priv)) {
3232                 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3233                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3234                 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3235                 priv->version = GENET_V2;
3236         } else if (GENET_IS_V1(priv)) {
3237                 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3238                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3239                 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3240                 priv->version = GENET_V1;
3241         }
3242
3243         /* enum genet_version starts at 1 */
3244         priv->hw_params = &bcmgenet_hw_params[priv->version];
3245         params = priv->hw_params;
3246
3247         /* Read GENET HW version */
3248         reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3249         major = (reg >> 24 & 0x0f);
3250         if (major == 5)
3251                 major = 4;
3252         else if (major == 0)
3253                 major = 1;
3254         if (major != priv->version) {
3255                 dev_err(&priv->pdev->dev,
3256                         "GENET version mismatch, got: %d, configured for: %d\n",
3257                         major, priv->version);
3258         }
3259
3260         /* Print the GENET core version */
3261         dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3262                  major, (reg >> 16) & 0x0f, reg & 0xffff);
3263
3264         /* Store the integrated PHY revision for the MDIO probing function
3265          * to pass this information to the PHY driver. The PHY driver expects
3266          * to find the PHY major revision in bits 15:8 while the GENET register
3267          * stores that information in bits 7:0, account for that.
3268          *
3269          * On newer chips, starting with PHY revision G0, a new scheme is
3270          * deployed similar to the Starfighter 2 switch with GPHY major
3271          * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3272          * is reserved as well as special value 0x01ff, we have a small
3273          * heuristic to check for the new GPHY revision and re-arrange things
3274          * so the GPHY driver is happy.
3275          */
3276         gphy_rev = reg & 0xffff;
3277
3278         /* This is the good old scheme, just GPHY major, no minor nor patch */
3279         if ((gphy_rev & 0xf0) != 0)
3280                 priv->gphy_rev = gphy_rev << 8;
3281
3282         /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3283         else if ((gphy_rev & 0xff00) != 0)
3284                 priv->gphy_rev = gphy_rev;
3285
3286         /* This is reserved so should require special treatment */
3287         else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3288                 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3289                 return;
3290         }
3291
3292 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3293         if (!(params->flags & GENET_HAS_40BITS))
3294                 pr_warn("GENET does not support 40-bits PA\n");
3295 #endif
3296
3297         pr_debug("Configuration for version: %d\n"
3298                 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3299                 "BP << en: %2d, BP msk: 0x%05x\n"
3300                 "HFB count: %2d, QTAQ msk: 0x%05x\n"
3301                 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3302                 "RDMA: 0x%05x, TDMA: 0x%05x\n"
3303                 "Words/BD: %d\n",
3304                 priv->version,
3305                 params->tx_queues, params->tx_bds_per_q,
3306                 params->rx_queues, params->rx_bds_per_q,
3307                 params->bp_in_en_shift, params->bp_in_mask,
3308                 params->hfb_filter_cnt, params->qtag_mask,
3309                 params->tbuf_offset, params->hfb_offset,
3310                 params->hfb_reg_offset,
3311                 params->rdma_offset, params->tdma_offset,
3312                 params->words_per_bd);
3313 }
3314
3315 static const struct of_device_id bcmgenet_match[] = {
3316         { .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
3317         { .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
3318         { .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
3319         { .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3320         { },
3321 };
3322 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3323
3324 static int bcmgenet_probe(struct platform_device *pdev)
3325 {
3326         struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3327         struct device_node *dn = pdev->dev.of_node;
3328         const struct of_device_id *of_id = NULL;
3329         struct bcmgenet_priv *priv;
3330         struct net_device *dev;
3331         const void *macaddr;
3332         struct resource *r;
3333         int err = -EIO;
3334
3335         /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3336         dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3337                                  GENET_MAX_MQ_CNT + 1);
3338         if (!dev) {
3339                 dev_err(&pdev->dev, "can't allocate net device\n");
3340                 return -ENOMEM;
3341         }
3342
3343         if (dn) {
3344                 of_id = of_match_node(bcmgenet_match, dn);
3345                 if (!of_id)
3346                         return -EINVAL;
3347         }
3348
3349         priv = netdev_priv(dev);
3350         priv->irq0 = platform_get_irq(pdev, 0);
3351         priv->irq1 = platform_get_irq(pdev, 1);
3352         priv->wol_irq = platform_get_irq(pdev, 2);
3353         if (!priv->irq0 || !priv->irq1) {
3354                 dev_err(&pdev->dev, "can't find IRQs\n");
3355                 err = -EINVAL;
3356                 goto err;
3357         }
3358
3359         if (dn) {
3360                 macaddr = of_get_mac_address(dn);
3361                 if (!macaddr) {
3362                         dev_err(&pdev->dev, "can't find MAC address\n");
3363                         err = -EINVAL;
3364                         goto err;
3365                 }
3366         } else {
3367                 macaddr = pd->mac_address;
3368         }
3369
3370         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3371         priv->base = devm_ioremap_resource(&pdev->dev, r);
3372         if (IS_ERR(priv->base)) {
3373                 err = PTR_ERR(priv->base);
3374                 goto err;
3375         }
3376
3377         SET_NETDEV_DEV(dev, &pdev->dev);
3378         dev_set_drvdata(&pdev->dev, dev);
3379         ether_addr_copy(dev->dev_addr, macaddr);
3380         dev->watchdog_timeo = 2 * HZ;
3381         dev->ethtool_ops = &bcmgenet_ethtool_ops;
3382         dev->netdev_ops = &bcmgenet_netdev_ops;
3383
3384         priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3385
3386         /* Set hardware features */
3387         dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
3388                 NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
3389
3390         /* Request the WOL interrupt and advertise suspend if available */
3391         priv->wol_irq_disabled = true;
3392         err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3393                                dev->name, priv);
3394         if (!err)
3395                 device_set_wakeup_capable(&pdev->dev, 1);
3396
3397         /* Set the needed headroom to account for any possible
3398          * features enabling/disabling at runtime
3399          */
3400         dev->needed_headroom += 64;
3401
3402         netdev_boot_setup_check(dev);
3403
3404         priv->dev = dev;
3405         priv->pdev = pdev;
3406         if (of_id)
3407                 priv->version = (enum bcmgenet_version)of_id->data;
3408         else
3409                 priv->version = pd->genet_version;
3410
3411         priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3412         if (IS_ERR(priv->clk)) {
3413                 dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3414                 priv->clk = NULL;
3415         }
3416
3417         clk_prepare_enable(priv->clk);
3418
3419         bcmgenet_set_hw_params(priv);
3420
3421         /* Mii wait queue */
3422         init_waitqueue_head(&priv->wq);
3423         /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3424         priv->rx_buf_len = RX_BUF_LENGTH;
3425         INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3426
3427         priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3428         if (IS_ERR(priv->clk_wol)) {
3429                 dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3430                 priv->clk_wol = NULL;
3431         }
3432
3433         priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3434         if (IS_ERR(priv->clk_eee)) {
3435                 dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3436                 priv->clk_eee = NULL;
3437         }
3438
3439         err = reset_umac(priv);
3440         if (err)
3441                 goto err_clk_disable;
3442
3443         err = bcmgenet_mii_init(dev);
3444         if (err)
3445                 goto err_clk_disable;
3446
3447         /* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
3448          * just the ring 16 descriptor based TX
3449          */
3450         netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3451         netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3452
3453         /* libphy will determine the link state */
3454         netif_carrier_off(dev);
3455
3456         /* Turn off the main clock, WOL clock is handled separately */
3457         clk_disable_unprepare(priv->clk);
3458
3459         err = register_netdev(dev);
3460         if (err)
3461                 goto err;
3462
3463         return err;
3464
3465 err_clk_disable:
3466         clk_disable_unprepare(priv->clk);
3467 err:
3468         free_netdev(dev);
3469         return err;
3470 }
3471
3472 static int bcmgenet_remove(struct platform_device *pdev)
3473 {
3474         struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3475
3476         dev_set_drvdata(&pdev->dev, NULL);
3477         unregister_netdev(priv->dev);
3478         bcmgenet_mii_exit(priv->dev);
3479         free_netdev(priv->dev);
3480
3481         return 0;
3482 }
3483
3484 #ifdef CONFIG_PM_SLEEP
3485 static int bcmgenet_suspend(struct device *d)
3486 {
3487         struct net_device *dev = dev_get_drvdata(d);
3488         struct bcmgenet_priv *priv = netdev_priv(dev);
3489         int ret;
3490
3491         if (!netif_running(dev))
3492                 return 0;
3493
3494         bcmgenet_netif_stop(dev);
3495
3496         phy_suspend(priv->phydev);
3497
3498         netif_device_detach(dev);
3499
3500         /* Disable MAC receive */
3501         umac_enable_set(priv, CMD_RX_EN, false);
3502
3503         ret = bcmgenet_dma_teardown(priv);
3504         if (ret)
3505                 return ret;
3506
3507         /* Disable MAC transmit. TX DMA disabled have to done before this */
3508         umac_enable_set(priv, CMD_TX_EN, false);
3509
3510         /* tx reclaim */
3511         bcmgenet_tx_reclaim_all(dev);
3512         bcmgenet_fini_dma(priv);
3513
3514         /* Prepare the device for Wake-on-LAN and switch to the slow clock */
3515         if (device_may_wakeup(d) && priv->wolopts) {
3516                 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3517                 clk_prepare_enable(priv->clk_wol);
3518         } else if (priv->internal_phy) {
3519                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3520         }
3521
3522         /* Turn off the clocks */
3523         clk_disable_unprepare(priv->clk);
3524
3525         return ret;
3526 }
3527
3528 static int bcmgenet_resume(struct device *d)
3529 {
3530         struct net_device *dev = dev_get_drvdata(d);
3531         struct bcmgenet_priv *priv = netdev_priv(dev);
3532         unsigned long dma_ctrl;
3533         int ret;
3534         u32 reg;
3535
3536         if (!netif_running(dev))
3537                 return 0;
3538
3539         /* Turn on the clock */
3540         ret = clk_prepare_enable(priv->clk);
3541         if (ret)
3542                 return ret;
3543
3544         /* If this is an internal GPHY, power it back on now, before UniMAC is
3545          * brought out of reset as absolutely no UniMAC activity is allowed
3546          */
3547         if (priv->internal_phy)
3548                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3549
3550         bcmgenet_umac_reset(priv);
3551
3552         ret = init_umac(priv);
3553         if (ret)
3554                 goto out_clk_disable;
3555
3556         /* From WOL-enabled suspend, switch to regular clock */
3557         if (priv->wolopts)
3558                 clk_disable_unprepare(priv->clk_wol);
3559
3560         phy_init_hw(priv->phydev);
3561         /* Speed settings must be restored */
3562         bcmgenet_mii_config(priv->dev);
3563
3564         /* disable ethernet MAC while updating its registers */
3565         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
3566
3567         bcmgenet_set_hw_addr(priv, dev->dev_addr);
3568
3569         if (priv->internal_phy) {
3570                 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3571                 reg |= EXT_ENERGY_DET_MASK;
3572                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3573         }
3574
3575         if (priv->wolopts)
3576                 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3577
3578         /* Disable RX/TX DMA and flush TX queues */
3579         dma_ctrl = bcmgenet_dma_disable(priv);
3580
3581         /* Reinitialize TDMA and RDMA and SW housekeeping */
3582         ret = bcmgenet_init_dma(priv);
3583         if (ret) {
3584                 netdev_err(dev, "failed to initialize DMA\n");
3585                 goto out_clk_disable;
3586         }
3587
3588         /* Always enable ring 16 - descriptor ring */
3589         bcmgenet_enable_dma(priv, dma_ctrl);
3590
3591         netif_device_attach(dev);
3592
3593         phy_resume(priv->phydev);
3594
3595         if (priv->eee.eee_enabled)
3596                 bcmgenet_eee_enable_set(dev, true);
3597
3598         bcmgenet_netif_start(dev);
3599
3600         return 0;
3601
3602 out_clk_disable:
3603         clk_disable_unprepare(priv->clk);
3604         return ret;
3605 }
3606 #endif /* CONFIG_PM_SLEEP */
3607
3608 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3609
3610 static struct platform_driver bcmgenet_driver = {
3611         .probe  = bcmgenet_probe,
3612         .remove = bcmgenet_remove,
3613         .driver = {
3614                 .name   = "bcmgenet",
3615                 .of_match_table = bcmgenet_match,
3616                 .pm     = &bcmgenet_pm_ops,
3617         },
3618 };
3619 module_platform_driver(bcmgenet_driver);
3620
3621 MODULE_AUTHOR("Broadcom Corporation");
3622 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3623 MODULE_ALIAS("platform:bcmgenet");
3624 MODULE_LICENSE("GPL");