]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c
Merge remote-tracking branch 'rdma/for-next'
[karo-tx-linux.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <asm/uaccess.h>
67
68 #include "cxgb4.h"
69 #include "t4_regs.h"
70 #include "t4_values.h"
71 #include "t4_msg.h"
72 #include "t4fw_api.h"
73 #include "t4fw_version.h"
74 #include "cxgb4_dcb.h"
75 #include "cxgb4_debugfs.h"
76 #include "clip_tbl.h"
77 #include "l2t.h"
78
79 char cxgb4_driver_name[] = KBUILD_MODNAME;
80
81 #ifdef DRV_VERSION
82 #undef DRV_VERSION
83 #endif
84 #define DRV_VERSION "2.0.0-ko"
85 const char cxgb4_driver_version[] = DRV_VERSION;
86 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
87
88 /* Host shadow copy of ingress filter entry.  This is in host native format
89  * and doesn't match the ordering or bit order, etc. of the hardware of the
90  * firmware command.  The use of bit-field structure elements is purely to
91  * remind ourselves of the field size limitations and save memory in the case
92  * where the filter table is large.
93  */
94 struct filter_entry {
95         /* Administrative fields for filter.
96          */
97         u32 valid:1;            /* filter allocated and valid */
98         u32 locked:1;           /* filter is administratively locked */
99
100         u32 pending:1;          /* filter action is pending firmware reply */
101         u32 smtidx:8;           /* Source MAC Table index for smac */
102         struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
103
104         /* The filter itself.  Most of this is a straight copy of information
105          * provided by the extended ioctl().  Some fields are translated to
106          * internal forms -- for instance the Ingress Queue ID passed in from
107          * the ioctl() is translated into the Absolute Ingress Queue ID.
108          */
109         struct ch_filter_specification fs;
110 };
111
112 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
113                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
114                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
115
116 /* Macros needed to support the PCI Device ID Table ...
117  */
118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
119         static const struct pci_device_id cxgb4_pci_tbl[] = {
120 #define CH_PCI_DEVICE_ID_FUNCTION 0x4
121
122 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
123  * called for both.
124  */
125 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
126
127 #define CH_PCI_ID_TABLE_ENTRY(devid) \
128                 {PCI_VDEVICE(CHELSIO, (devid)), 4}
129
130 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
131                 { 0, } \
132         }
133
134 #include "t4_pci_id_tbl.h"
135
136 #define FW4_FNAME "cxgb4/t4fw.bin"
137 #define FW5_FNAME "cxgb4/t5fw.bin"
138 #define FW6_FNAME "cxgb4/t6fw.bin"
139 #define FW4_CFNAME "cxgb4/t4-config.txt"
140 #define FW5_CFNAME "cxgb4/t5-config.txt"
141 #define FW6_CFNAME "cxgb4/t6-config.txt"
142 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
143 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
144 #define PHY_AQ1202_DEVICEID 0x4409
145 #define PHY_BCM84834_DEVICEID 0x4486
146
147 MODULE_DESCRIPTION(DRV_DESC);
148 MODULE_AUTHOR("Chelsio Communications");
149 MODULE_LICENSE("Dual BSD/GPL");
150 MODULE_VERSION(DRV_VERSION);
151 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
152 MODULE_FIRMWARE(FW4_FNAME);
153 MODULE_FIRMWARE(FW5_FNAME);
154 MODULE_FIRMWARE(FW6_FNAME);
155
156 /*
157  * Normally we're willing to become the firmware's Master PF but will be happy
158  * if another PF has already become the Master and initialized the adapter.
159  * Setting "force_init" will cause this driver to forcibly establish itself as
160  * the Master PF and initialize the adapter.
161  */
162 static uint force_init;
163
164 module_param(force_init, uint, 0644);
165 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
166
167 /*
168  * Normally if the firmware we connect to has Configuration File support, we
169  * use that and only fall back to the old Driver-based initialization if the
170  * Configuration File fails for some reason.  If force_old_init is set, then
171  * we'll always use the old Driver-based initialization sequence.
172  */
173 static uint force_old_init;
174
175 module_param(force_old_init, uint, 0644);
176 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence, deprecated"
177                  " parameter");
178
179 static int dflt_msg_enable = DFLT_MSG_ENABLE;
180
181 module_param(dflt_msg_enable, int, 0644);
182 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
183
184 /*
185  * The driver uses the best interrupt scheme available on a platform in the
186  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
187  * of these schemes the driver may consider as follows:
188  *
189  * msi = 2: choose from among all three options
190  * msi = 1: only consider MSI and INTx interrupts
191  * msi = 0: force INTx interrupts
192  */
193 static int msi = 2;
194
195 module_param(msi, int, 0644);
196 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
197
198 /*
199  * Queue interrupt hold-off timer values.  Queues default to the first of these
200  * upon creation.
201  */
202 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
203
204 module_param_array(intr_holdoff, uint, NULL, 0644);
205 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
206                  "0..4 in microseconds, deprecated parameter");
207
208 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
209
210 module_param_array(intr_cnt, uint, NULL, 0644);
211 MODULE_PARM_DESC(intr_cnt,
212                  "thresholds 1..3 for queue interrupt packet counters, "
213                  "deprecated parameter");
214
215 /*
216  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
217  * offset by 2 bytes in order to have the IP headers line up on 4-byte
218  * boundaries.  This is a requirement for many architectures which will throw
219  * a machine check fault if an attempt is made to access one of the 4-byte IP
220  * header fields on a non-4-byte boundary.  And it's a major performance issue
221  * even on some architectures which allow it like some implementations of the
222  * x86 ISA.  However, some architectures don't mind this and for some very
223  * edge-case performance sensitive applications (like forwarding large volumes
224  * of small packets), setting this DMA offset to 0 will decrease the number of
225  * PCI-E Bus transfers enough to measurably affect performance.
226  */
227 static int rx_dma_offset = 2;
228
229 static bool vf_acls;
230
231 #ifdef CONFIG_PCI_IOV
232 module_param(vf_acls, bool, 0644);
233 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement, "
234                  "deprecated parameter");
235
236 /* Configure the number of PCI-E Virtual Function which are to be instantiated
237  * on SR-IOV Capable Physical Functions.
238  */
239 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
240
241 module_param_array(num_vf, uint, NULL, 0644);
242 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
243 #endif
244
245 /* TX Queue select used to determine what algorithm to use for selecting TX
246  * queue. Select between the kernel provided function (select_queue=0) or user
247  * cxgb_select_queue function (select_queue=1)
248  *
249  * Default: select_queue=0
250  */
251 static int select_queue;
252 module_param(select_queue, int, 0644);
253 MODULE_PARM_DESC(select_queue,
254                  "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
255
256 static unsigned int tp_vlan_pri_map = HW_TPL_FR_MT_PR_IV_P_FC;
257
258 module_param(tp_vlan_pri_map, uint, 0644);
259 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration, "
260                  "deprecated parameter");
261
262 static struct dentry *cxgb4_debugfs_root;
263
264 static LIST_HEAD(adapter_list);
265 static DEFINE_MUTEX(uld_mutex);
266 /* Adapter list to be accessed from atomic context */
267 static LIST_HEAD(adap_rcu_list);
268 static DEFINE_SPINLOCK(adap_rcu_lock);
269 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
270 static const char *uld_str[] = { "RDMA", "iSCSI" };
271
272 static void link_report(struct net_device *dev)
273 {
274         if (!netif_carrier_ok(dev))
275                 netdev_info(dev, "link down\n");
276         else {
277                 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
278
279                 const char *s;
280                 const struct port_info *p = netdev_priv(dev);
281
282                 switch (p->link_cfg.speed) {
283                 case 10000:
284                         s = "10Gbps";
285                         break;
286                 case 1000:
287                         s = "1000Mbps";
288                         break;
289                 case 100:
290                         s = "100Mbps";
291                         break;
292                 case 40000:
293                         s = "40Gbps";
294                         break;
295                 default:
296                         pr_info("%s: unsupported speed: %d\n",
297                                 dev->name, p->link_cfg.speed);
298                         return;
299                 }
300
301                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
302                             fc[p->link_cfg.fc]);
303         }
304 }
305
306 #ifdef CONFIG_CHELSIO_T4_DCB
307 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
308 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
309 {
310         struct port_info *pi = netdev_priv(dev);
311         struct adapter *adap = pi->adapter;
312         struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
313         int i;
314
315         /* We use a simple mapping of Port TX Queue Index to DCB
316          * Priority when we're enabling DCB.
317          */
318         for (i = 0; i < pi->nqsets; i++, txq++) {
319                 u32 name, value;
320                 int err;
321
322                 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
323                         FW_PARAMS_PARAM_X_V(
324                                 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
325                         FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
326                 value = enable ? i : 0xffffffff;
327
328                 /* Since we can be called while atomic (from "interrupt
329                  * level") we need to issue the Set Parameters Commannd
330                  * without sleeping (timeout < 0).
331                  */
332                 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
333                                             &name, &value,
334                                             -FW_CMD_MAX_TIMEOUT);
335
336                 if (err)
337                         dev_err(adap->pdev_dev,
338                                 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
339                                 enable ? "set" : "unset", pi->port_id, i, -err);
340                 else
341                         txq->dcb_prio = value;
342         }
343 }
344 #endif /* CONFIG_CHELSIO_T4_DCB */
345
346 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
347 {
348         struct net_device *dev = adapter->port[port_id];
349
350         /* Skip changes from disabled ports. */
351         if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
352                 if (link_stat)
353                         netif_carrier_on(dev);
354                 else {
355 #ifdef CONFIG_CHELSIO_T4_DCB
356                         cxgb4_dcb_state_init(dev);
357                         dcb_tx_queue_prio_enable(dev, false);
358 #endif /* CONFIG_CHELSIO_T4_DCB */
359                         netif_carrier_off(dev);
360                 }
361
362                 link_report(dev);
363         }
364 }
365
366 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
367 {
368         static const char *mod_str[] = {
369                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
370         };
371
372         const struct net_device *dev = adap->port[port_id];
373         const struct port_info *pi = netdev_priv(dev);
374
375         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
376                 netdev_info(dev, "port module unplugged\n");
377         else if (pi->mod_type < ARRAY_SIZE(mod_str))
378                 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
379 }
380
381 /*
382  * Configure the exact and hash address filters to handle a port's multicast
383  * and secondary unicast MAC addresses.
384  */
385 static int set_addr_filters(const struct net_device *dev, bool sleep)
386 {
387         u64 mhash = 0;
388         u64 uhash = 0;
389         bool free = true;
390         u16 filt_idx[7];
391         const u8 *addr[7];
392         int ret, naddr = 0;
393         const struct netdev_hw_addr *ha;
394         int uc_cnt = netdev_uc_count(dev);
395         int mc_cnt = netdev_mc_count(dev);
396         const struct port_info *pi = netdev_priv(dev);
397         unsigned int mb = pi->adapter->pf;
398
399         /* first do the secondary unicast addresses */
400         netdev_for_each_uc_addr(ha, dev) {
401                 addr[naddr++] = ha->addr;
402                 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
403                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
404                                         naddr, addr, filt_idx, &uhash, sleep);
405                         if (ret < 0)
406                                 return ret;
407
408                         free = false;
409                         naddr = 0;
410                 }
411         }
412
413         /* next set up the multicast addresses */
414         netdev_for_each_mc_addr(ha, dev) {
415                 addr[naddr++] = ha->addr;
416                 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
417                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
418                                         naddr, addr, filt_idx, &mhash, sleep);
419                         if (ret < 0)
420                                 return ret;
421
422                         free = false;
423                         naddr = 0;
424                 }
425         }
426
427         return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
428                                 uhash | mhash, sleep);
429 }
430
431 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
432 module_param(dbfifo_int_thresh, int, 0644);
433 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
434
435 /*
436  * usecs to sleep while draining the dbfifo
437  */
438 static int dbfifo_drain_delay = 1000;
439 module_param(dbfifo_drain_delay, int, 0644);
440 MODULE_PARM_DESC(dbfifo_drain_delay,
441                  "usecs to sleep while draining the dbfifo");
442
443 /*
444  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
445  * If @mtu is -1 it is left unchanged.
446  */
447 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
448 {
449         int ret;
450         struct port_info *pi = netdev_priv(dev);
451
452         ret = set_addr_filters(dev, sleep_ok);
453         if (ret == 0)
454                 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, mtu,
455                                     (dev->flags & IFF_PROMISC) ? 1 : 0,
456                                     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
457                                     sleep_ok);
458         return ret;
459 }
460
461 /**
462  *      link_start - enable a port
463  *      @dev: the port to enable
464  *
465  *      Performs the MAC and PHY actions needed to enable a port.
466  */
467 static int link_start(struct net_device *dev)
468 {
469         int ret;
470         struct port_info *pi = netdev_priv(dev);
471         unsigned int mb = pi->adapter->pf;
472
473         /*
474          * We do not set address filters and promiscuity here, the stack does
475          * that step explicitly.
476          */
477         ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
478                             !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
479         if (ret == 0) {
480                 ret = t4_change_mac(pi->adapter, mb, pi->viid,
481                                     pi->xact_addr_filt, dev->dev_addr, true,
482                                     true);
483                 if (ret >= 0) {
484                         pi->xact_addr_filt = ret;
485                         ret = 0;
486                 }
487         }
488         if (ret == 0)
489                 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
490                                     &pi->link_cfg);
491         if (ret == 0) {
492                 local_bh_disable();
493                 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
494                                           true, CXGB4_DCB_ENABLED);
495                 local_bh_enable();
496         }
497
498         return ret;
499 }
500
501 int cxgb4_dcb_enabled(const struct net_device *dev)
502 {
503 #ifdef CONFIG_CHELSIO_T4_DCB
504         struct port_info *pi = netdev_priv(dev);
505
506         if (!pi->dcb.enabled)
507                 return 0;
508
509         return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
510                 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
511 #else
512         return 0;
513 #endif
514 }
515 EXPORT_SYMBOL(cxgb4_dcb_enabled);
516
517 #ifdef CONFIG_CHELSIO_T4_DCB
518 /* Handle a Data Center Bridging update message from the firmware. */
519 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
520 {
521         int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
522         struct net_device *dev = adap->port[port];
523         int old_dcb_enabled = cxgb4_dcb_enabled(dev);
524         int new_dcb_enabled;
525
526         cxgb4_dcb_handle_fw_update(adap, pcmd);
527         new_dcb_enabled = cxgb4_dcb_enabled(dev);
528
529         /* If the DCB has become enabled or disabled on the port then we're
530          * going to need to set up/tear down DCB Priority parameters for the
531          * TX Queues associated with the port.
532          */
533         if (new_dcb_enabled != old_dcb_enabled)
534                 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
535 }
536 #endif /* CONFIG_CHELSIO_T4_DCB */
537
538 /* Clear a filter and release any of its resources that we own.  This also
539  * clears the filter's "pending" status.
540  */
541 static void clear_filter(struct adapter *adap, struct filter_entry *f)
542 {
543         /* If the new or old filter have loopback rewriteing rules then we'll
544          * need to free any existing Layer Two Table (L2T) entries of the old
545          * filter rule.  The firmware will handle freeing up any Source MAC
546          * Table (SMT) entries used for rewriting Source MAC Addresses in
547          * loopback rules.
548          */
549         if (f->l2t)
550                 cxgb4_l2t_release(f->l2t);
551
552         /* The zeroing of the filter rule below clears the filter valid,
553          * pending, locked flags, l2t pointer, etc. so it's all we need for
554          * this operation.
555          */
556         memset(f, 0, sizeof(*f));
557 }
558
559 /* Handle a filter write/deletion reply.
560  */
561 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
562 {
563         unsigned int idx = GET_TID(rpl);
564         unsigned int nidx = idx - adap->tids.ftid_base;
565         unsigned int ret;
566         struct filter_entry *f;
567
568         if (idx >= adap->tids.ftid_base && nidx <
569            (adap->tids.nftids + adap->tids.nsftids)) {
570                 idx = nidx;
571                 ret = TCB_COOKIE_G(rpl->cookie);
572                 f = &adap->tids.ftid_tab[idx];
573
574                 if (ret == FW_FILTER_WR_FLT_DELETED) {
575                         /* Clear the filter when we get confirmation from the
576                          * hardware that the filter has been deleted.
577                          */
578                         clear_filter(adap, f);
579                 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
580                         dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
581                                 idx);
582                         clear_filter(adap, f);
583                 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
584                         f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
585                         f->pending = 0;  /* asynchronous setup completed */
586                         f->valid = 1;
587                 } else {
588                         /* Something went wrong.  Issue a warning about the
589                          * problem and clear everything out.
590                          */
591                         dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
592                                 idx, ret);
593                         clear_filter(adap, f);
594                 }
595         }
596 }
597
598 /* Response queue handler for the FW event queue.
599  */
600 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
601                           const struct pkt_gl *gl)
602 {
603         u8 opcode = ((const struct rss_header *)rsp)->opcode;
604
605         rsp++;                                          /* skip RSS header */
606
607         /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
608          */
609         if (unlikely(opcode == CPL_FW4_MSG &&
610            ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
611                 rsp++;
612                 opcode = ((const struct rss_header *)rsp)->opcode;
613                 rsp++;
614                 if (opcode != CPL_SGE_EGR_UPDATE) {
615                         dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
616                                 , opcode);
617                         goto out;
618                 }
619         }
620
621         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
622                 const struct cpl_sge_egr_update *p = (void *)rsp;
623                 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
624                 struct sge_txq *txq;
625
626                 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
627                 txq->restarts++;
628                 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
629                         struct sge_eth_txq *eq;
630
631                         eq = container_of(txq, struct sge_eth_txq, q);
632                         netif_tx_wake_queue(eq->txq);
633                 } else {
634                         struct sge_ofld_txq *oq;
635
636                         oq = container_of(txq, struct sge_ofld_txq, q);
637                         tasklet_schedule(&oq->qresume_tsk);
638                 }
639         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
640                 const struct cpl_fw6_msg *p = (void *)rsp;
641
642 #ifdef CONFIG_CHELSIO_T4_DCB
643                 const struct fw_port_cmd *pcmd = (const void *)p->data;
644                 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
645                 unsigned int action =
646                         FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
647
648                 if (cmd == FW_PORT_CMD &&
649                     action == FW_PORT_ACTION_GET_PORT_INFO) {
650                         int port = FW_PORT_CMD_PORTID_G(
651                                         be32_to_cpu(pcmd->op_to_portid));
652                         struct net_device *dev = q->adap->port[port];
653                         int state_input = ((pcmd->u.info.dcbxdis_pkd &
654                                             FW_PORT_CMD_DCBXDIS_F)
655                                            ? CXGB4_DCB_INPUT_FW_DISABLED
656                                            : CXGB4_DCB_INPUT_FW_ENABLED);
657
658                         cxgb4_dcb_state_fsm(dev, state_input);
659                 }
660
661                 if (cmd == FW_PORT_CMD &&
662                     action == FW_PORT_ACTION_L2_DCB_CFG)
663                         dcb_rpl(q->adap, pcmd);
664                 else
665 #endif
666                         if (p->type == 0)
667                                 t4_handle_fw_rpl(q->adap, p->data);
668         } else if (opcode == CPL_L2T_WRITE_RPL) {
669                 const struct cpl_l2t_write_rpl *p = (void *)rsp;
670
671                 do_l2t_write_rpl(q->adap, p);
672         } else if (opcode == CPL_SET_TCB_RPL) {
673                 const struct cpl_set_tcb_rpl *p = (void *)rsp;
674
675                 filter_rpl(q->adap, p);
676         } else
677                 dev_err(q->adap->pdev_dev,
678                         "unexpected CPL %#x on FW event queue\n", opcode);
679 out:
680         return 0;
681 }
682
683 /**
684  *      uldrx_handler - response queue handler for ULD queues
685  *      @q: the response queue that received the packet
686  *      @rsp: the response queue descriptor holding the offload message
687  *      @gl: the gather list of packet fragments
688  *
689  *      Deliver an ingress offload packet to a ULD.  All processing is done by
690  *      the ULD, we just maintain statistics.
691  */
692 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
693                          const struct pkt_gl *gl)
694 {
695         struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
696
697         /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
698          */
699         if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
700             ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
701                 rsp += 2;
702
703         if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
704                 rxq->stats.nomem++;
705                 return -1;
706         }
707         if (gl == NULL)
708                 rxq->stats.imm++;
709         else if (gl == CXGB4_MSG_AN)
710                 rxq->stats.an++;
711         else
712                 rxq->stats.pkts++;
713         return 0;
714 }
715
716 static void disable_msi(struct adapter *adapter)
717 {
718         if (adapter->flags & USING_MSIX) {
719                 pci_disable_msix(adapter->pdev);
720                 adapter->flags &= ~USING_MSIX;
721         } else if (adapter->flags & USING_MSI) {
722                 pci_disable_msi(adapter->pdev);
723                 adapter->flags &= ~USING_MSI;
724         }
725 }
726
727 /*
728  * Interrupt handler for non-data events used with MSI-X.
729  */
730 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
731 {
732         struct adapter *adap = cookie;
733         u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
734
735         if (v & PFSW_F) {
736                 adap->swintr = 1;
737                 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
738         }
739         if (adap->flags & MASTER_PF)
740                 t4_slow_intr_handler(adap);
741         return IRQ_HANDLED;
742 }
743
744 /*
745  * Name the MSI-X interrupts.
746  */
747 static void name_msix_vecs(struct adapter *adap)
748 {
749         int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
750
751         /* non-data interrupts */
752         snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
753
754         /* FW events */
755         snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
756                  adap->port[0]->name);
757
758         /* Ethernet queues */
759         for_each_port(adap, j) {
760                 struct net_device *d = adap->port[j];
761                 const struct port_info *pi = netdev_priv(d);
762
763                 for (i = 0; i < pi->nqsets; i++, msi_idx++)
764                         snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
765                                  d->name, i);
766         }
767
768         /* offload queues */
769         for_each_ofldrxq(&adap->sge, i)
770                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
771                          adap->port[0]->name, i);
772
773         for_each_rdmarxq(&adap->sge, i)
774                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
775                          adap->port[0]->name, i);
776
777         for_each_rdmaciq(&adap->sge, i)
778                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
779                          adap->port[0]->name, i);
780 }
781
782 static int request_msix_queue_irqs(struct adapter *adap)
783 {
784         struct sge *s = &adap->sge;
785         int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
786         int msi_index = 2;
787
788         err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
789                           adap->msix_info[1].desc, &s->fw_evtq);
790         if (err)
791                 return err;
792
793         for_each_ethrxq(s, ethqidx) {
794                 err = request_irq(adap->msix_info[msi_index].vec,
795                                   t4_sge_intr_msix, 0,
796                                   adap->msix_info[msi_index].desc,
797                                   &s->ethrxq[ethqidx].rspq);
798                 if (err)
799                         goto unwind;
800                 msi_index++;
801         }
802         for_each_ofldrxq(s, ofldqidx) {
803                 err = request_irq(adap->msix_info[msi_index].vec,
804                                   t4_sge_intr_msix, 0,
805                                   adap->msix_info[msi_index].desc,
806                                   &s->ofldrxq[ofldqidx].rspq);
807                 if (err)
808                         goto unwind;
809                 msi_index++;
810         }
811         for_each_rdmarxq(s, rdmaqidx) {
812                 err = request_irq(adap->msix_info[msi_index].vec,
813                                   t4_sge_intr_msix, 0,
814                                   adap->msix_info[msi_index].desc,
815                                   &s->rdmarxq[rdmaqidx].rspq);
816                 if (err)
817                         goto unwind;
818                 msi_index++;
819         }
820         for_each_rdmaciq(s, rdmaciqqidx) {
821                 err = request_irq(adap->msix_info[msi_index].vec,
822                                   t4_sge_intr_msix, 0,
823                                   adap->msix_info[msi_index].desc,
824                                   &s->rdmaciq[rdmaciqqidx].rspq);
825                 if (err)
826                         goto unwind;
827                 msi_index++;
828         }
829         return 0;
830
831 unwind:
832         while (--rdmaciqqidx >= 0)
833                 free_irq(adap->msix_info[--msi_index].vec,
834                          &s->rdmaciq[rdmaciqqidx].rspq);
835         while (--rdmaqidx >= 0)
836                 free_irq(adap->msix_info[--msi_index].vec,
837                          &s->rdmarxq[rdmaqidx].rspq);
838         while (--ofldqidx >= 0)
839                 free_irq(adap->msix_info[--msi_index].vec,
840                          &s->ofldrxq[ofldqidx].rspq);
841         while (--ethqidx >= 0)
842                 free_irq(adap->msix_info[--msi_index].vec,
843                          &s->ethrxq[ethqidx].rspq);
844         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
845         return err;
846 }
847
848 static void free_msix_queue_irqs(struct adapter *adap)
849 {
850         int i, msi_index = 2;
851         struct sge *s = &adap->sge;
852
853         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
854         for_each_ethrxq(s, i)
855                 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
856         for_each_ofldrxq(s, i)
857                 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
858         for_each_rdmarxq(s, i)
859                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
860         for_each_rdmaciq(s, i)
861                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
862 }
863
864 /**
865  *      cxgb4_write_rss - write the RSS table for a given port
866  *      @pi: the port
867  *      @queues: array of queue indices for RSS
868  *
869  *      Sets up the portion of the HW RSS table for the port's VI to distribute
870  *      packets to the Rx queues in @queues.
871  *      Should never be called before setting up sge eth rx queues
872  */
873 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
874 {
875         u16 *rss;
876         int i, err;
877         struct adapter *adapter = pi->adapter;
878         const struct sge_eth_rxq *rxq;
879
880         rxq = &adapter->sge.ethrxq[pi->first_qset];
881         rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
882         if (!rss)
883                 return -ENOMEM;
884
885         /* map the queue indices to queue ids */
886         for (i = 0; i < pi->rss_size; i++, queues++)
887                 rss[i] = rxq[*queues].rspq.abs_id;
888
889         err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
890                                   pi->rss_size, rss, pi->rss_size);
891         /* If Tunnel All Lookup isn't specified in the global RSS
892          * Configuration, then we need to specify a default Ingress
893          * Queue for any ingress packets which aren't hashed.  We'll
894          * use our first ingress queue ...
895          */
896         if (!err)
897                 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
898                                        FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
899                                        FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
900                                        FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
901                                        FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
902                                        FW_RSS_VI_CONFIG_CMD_UDPEN_F,
903                                        rss[0]);
904         kfree(rss);
905         return err;
906 }
907
908 /**
909  *      setup_rss - configure RSS
910  *      @adap: the adapter
911  *
912  *      Sets up RSS for each port.
913  */
914 static int setup_rss(struct adapter *adap)
915 {
916         int i, j, err;
917
918         for_each_port(adap, i) {
919                 const struct port_info *pi = adap2pinfo(adap, i);
920
921                 /* Fill default values with equal distribution */
922                 for (j = 0; j < pi->rss_size; j++)
923                         pi->rss[j] = j % pi->nqsets;
924
925                 err = cxgb4_write_rss(pi, pi->rss);
926                 if (err)
927                         return err;
928         }
929         return 0;
930 }
931
932 /*
933  * Return the channel of the ingress queue with the given qid.
934  */
935 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
936 {
937         qid -= p->ingr_start;
938         return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
939 }
940
941 /*
942  * Wait until all NAPI handlers are descheduled.
943  */
944 static void quiesce_rx(struct adapter *adap)
945 {
946         int i;
947
948         for (i = 0; i < adap->sge.ingr_sz; i++) {
949                 struct sge_rspq *q = adap->sge.ingr_map[i];
950
951                 if (q && q->handler) {
952                         napi_disable(&q->napi);
953                         local_bh_disable();
954                         while (!cxgb_poll_lock_napi(q))
955                                 mdelay(1);
956                         local_bh_enable();
957                 }
958
959         }
960 }
961
962 /* Disable interrupt and napi handler */
963 static void disable_interrupts(struct adapter *adap)
964 {
965         if (adap->flags & FULL_INIT_DONE) {
966                 t4_intr_disable(adap);
967                 if (adap->flags & USING_MSIX) {
968                         free_msix_queue_irqs(adap);
969                         free_irq(adap->msix_info[0].vec, adap);
970                 } else {
971                         free_irq(adap->pdev->irq, adap);
972                 }
973                 quiesce_rx(adap);
974         }
975 }
976
977 /*
978  * Enable NAPI scheduling and interrupt generation for all Rx queues.
979  */
980 static void enable_rx(struct adapter *adap)
981 {
982         int i;
983
984         for (i = 0; i < adap->sge.ingr_sz; i++) {
985                 struct sge_rspq *q = adap->sge.ingr_map[i];
986
987                 if (!q)
988                         continue;
989                 if (q->handler) {
990                         cxgb_busy_poll_init_lock(q);
991                         napi_enable(&q->napi);
992                 }
993                 /* 0-increment GTS to start the timer and enable interrupts */
994                 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
995                              SEINTARM_V(q->intr_params) |
996                              INGRESSQID_V(q->cntxt_id));
997         }
998 }
999
1000 static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q,
1001                            unsigned int nq, unsigned int per_chan, int msi_idx,
1002                            u16 *ids)
1003 {
1004         int i, err;
1005
1006         for (i = 0; i < nq; i++, q++) {
1007                 if (msi_idx > 0)
1008                         msi_idx++;
1009                 err = t4_sge_alloc_rxq(adap, &q->rspq, false,
1010                                        adap->port[i / per_chan],
1011                                        msi_idx, q->fl.size ? &q->fl : NULL,
1012                                        uldrx_handler, 0);
1013                 if (err)
1014                         return err;
1015                 memset(&q->stats, 0, sizeof(q->stats));
1016                 if (ids)
1017                         ids[i] = q->rspq.abs_id;
1018         }
1019         return 0;
1020 }
1021
1022 /**
1023  *      setup_sge_queues - configure SGE Tx/Rx/response queues
1024  *      @adap: the adapter
1025  *
1026  *      Determines how many sets of SGE queues to use and initializes them.
1027  *      We support multiple queue sets per port if we have MSI-X, otherwise
1028  *      just one queue set per port.
1029  */
1030 static int setup_sge_queues(struct adapter *adap)
1031 {
1032         int err, msi_idx, i, j;
1033         struct sge *s = &adap->sge;
1034
1035         bitmap_zero(s->starving_fl, s->egr_sz);
1036         bitmap_zero(s->txq_maperr, s->egr_sz);
1037
1038         if (adap->flags & USING_MSIX)
1039                 msi_idx = 1;         /* vector 0 is for non-queue interrupts */
1040         else {
1041                 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1042                                        NULL, NULL, -1);
1043                 if (err)
1044                         return err;
1045                 msi_idx = -((int)s->intrq.abs_id + 1);
1046         }
1047
1048         /* NOTE: If you add/delete any Ingress/Egress Queue allocations in here,
1049          * don't forget to update the following which need to be
1050          * synchronized to and changes here.
1051          *
1052          * 1. The calculations of MAX_INGQ in cxgb4.h.
1053          *
1054          * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs
1055          *    to accommodate any new/deleted Ingress Queues
1056          *    which need MSI-X Vectors.
1057          *
1058          * 3. Update sge_qinfo_show() to include information on the
1059          *    new/deleted queues.
1060          */
1061         err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1062                                msi_idx, NULL, fwevtq_handler, -1);
1063         if (err) {
1064 freeout:        t4_free_sge_resources(adap);
1065                 return err;
1066         }
1067
1068         for_each_port(adap, i) {
1069                 struct net_device *dev = adap->port[i];
1070                 struct port_info *pi = netdev_priv(dev);
1071                 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1072                 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1073
1074                 for (j = 0; j < pi->nqsets; j++, q++) {
1075                         if (msi_idx > 0)
1076                                 msi_idx++;
1077                         err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1078                                                msi_idx, &q->fl,
1079                                                t4_ethrx_handler,
1080                                                t4_get_mps_bg_map(adap,
1081                                                                  pi->tx_chan));
1082                         if (err)
1083                                 goto freeout;
1084                         q->rspq.idx = j;
1085                         memset(&q->stats, 0, sizeof(q->stats));
1086                 }
1087                 for (j = 0; j < pi->nqsets; j++, t++) {
1088                         err = t4_sge_alloc_eth_txq(adap, t, dev,
1089                                         netdev_get_tx_queue(dev, j),
1090                                         s->fw_evtq.cntxt_id);
1091                         if (err)
1092                                 goto freeout;
1093                 }
1094         }
1095
1096         j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1097         for_each_ofldrxq(s, i) {
1098                 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
1099                                             adap->port[i / j],
1100                                             s->fw_evtq.cntxt_id);
1101                 if (err)
1102                         goto freeout;
1103         }
1104
1105 #define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids) do { \
1106         err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids); \
1107         if (err) \
1108                 goto freeout; \
1109         if (msi_idx > 0) \
1110                 msi_idx += nq; \
1111 } while (0)
1112
1113         ALLOC_OFLD_RXQS(s->ofldrxq, s->ofldqsets, j, s->ofld_rxq);
1114         ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq);
1115         j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */
1116         ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq);
1117
1118 #undef ALLOC_OFLD_RXQS
1119
1120         for_each_port(adap, i) {
1121                 /*
1122                  * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1123                  * have RDMA queues, and that's the right value.
1124                  */
1125                 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1126                                             s->fw_evtq.cntxt_id,
1127                                             s->rdmarxq[i].rspq.cntxt_id);
1128                 if (err)
1129                         goto freeout;
1130         }
1131
1132         t4_write_reg(adap, is_t4(adap->params.chip) ?
1133                                 MPS_TRC_RSS_CONTROL_A :
1134                                 MPS_T5_TRC_RSS_CONTROL_A,
1135                      RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1136                      QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1137         return 0;
1138 }
1139
1140 /*
1141  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1142  * The allocated memory is cleared.
1143  */
1144 void *t4_alloc_mem(size_t size)
1145 {
1146         void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1147
1148         if (!p)
1149                 p = vzalloc(size);
1150         return p;
1151 }
1152
1153 /*
1154  * Free memory allocated through alloc_mem().
1155  */
1156 void t4_free_mem(void *addr)
1157 {
1158         kvfree(addr);
1159 }
1160
1161 /* Send a Work Request to write the filter at a specified index.  We construct
1162  * a Firmware Filter Work Request to have the work done and put the indicated
1163  * filter into "pending" mode which will prevent any further actions against
1164  * it till we get a reply from the firmware on the completion status of the
1165  * request.
1166  */
1167 static int set_filter_wr(struct adapter *adapter, int fidx)
1168 {
1169         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1170         struct sk_buff *skb;
1171         struct fw_filter_wr *fwr;
1172         unsigned int ftid;
1173
1174         skb = alloc_skb(sizeof(*fwr), GFP_KERNEL);
1175         if (!skb)
1176                 return -ENOMEM;
1177
1178         /* If the new filter requires loopback Destination MAC and/or VLAN
1179          * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1180          * the filter.
1181          */
1182         if (f->fs.newdmac || f->fs.newvlan) {
1183                 /* allocate L2T entry for new filter */
1184                 f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1185                 if (f->l2t == NULL) {
1186                         kfree_skb(skb);
1187                         return -EAGAIN;
1188                 }
1189                 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1190                                         f->fs.eport, f->fs.dmac)) {
1191                         cxgb4_l2t_release(f->l2t);
1192                         f->l2t = NULL;
1193                         kfree_skb(skb);
1194                         return -ENOMEM;
1195                 }
1196         }
1197
1198         ftid = adapter->tids.ftid_base + fidx;
1199
1200         fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1201         memset(fwr, 0, sizeof(*fwr));
1202
1203         /* It would be nice to put most of the following in t4_hw.c but most
1204          * of the work is translating the cxgbtool ch_filter_specification
1205          * into the Work Request and the definition of that structure is
1206          * currently in cxgbtool.h which isn't appropriate to pull into the
1207          * common code.  We may eventually try to come up with a more neutral
1208          * filter specification structure but for now it's easiest to simply
1209          * put this fairly direct code in line ...
1210          */
1211         fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
1212         fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
1213         fwr->tid_to_iq =
1214                 htonl(FW_FILTER_WR_TID_V(ftid) |
1215                       FW_FILTER_WR_RQTYPE_V(f->fs.type) |
1216                       FW_FILTER_WR_NOREPLY_V(0) |
1217                       FW_FILTER_WR_IQ_V(f->fs.iq));
1218         fwr->del_filter_to_l2tix =
1219                 htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
1220                       FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
1221                       FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
1222                       FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
1223                       FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
1224                       FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
1225                       FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
1226                       FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
1227                       FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
1228                                              f->fs.newvlan == VLAN_REWRITE) |
1229                       FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
1230                                             f->fs.newvlan == VLAN_REWRITE) |
1231                       FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
1232                       FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
1233                       FW_FILTER_WR_PRIO_V(f->fs.prio) |
1234                       FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
1235         fwr->ethtype = htons(f->fs.val.ethtype);
1236         fwr->ethtypem = htons(f->fs.mask.ethtype);
1237         fwr->frag_to_ovlan_vldm =
1238                 (FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
1239                  FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
1240                  FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
1241                  FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
1242                  FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
1243                  FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
1244         fwr->smac_sel = 0;
1245         fwr->rx_chan_rx_rpl_iq =
1246                 htons(FW_FILTER_WR_RX_CHAN_V(0) |
1247                       FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
1248         fwr->maci_to_matchtypem =
1249                 htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
1250                       FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
1251                       FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
1252                       FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
1253                       FW_FILTER_WR_PORT_V(f->fs.val.iport) |
1254                       FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
1255                       FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
1256                       FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
1257         fwr->ptcl = f->fs.val.proto;
1258         fwr->ptclm = f->fs.mask.proto;
1259         fwr->ttyp = f->fs.val.tos;
1260         fwr->ttypm = f->fs.mask.tos;
1261         fwr->ivlan = htons(f->fs.val.ivlan);
1262         fwr->ivlanm = htons(f->fs.mask.ivlan);
1263         fwr->ovlan = htons(f->fs.val.ovlan);
1264         fwr->ovlanm = htons(f->fs.mask.ovlan);
1265         memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1266         memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1267         memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1268         memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1269         fwr->lp = htons(f->fs.val.lport);
1270         fwr->lpm = htons(f->fs.mask.lport);
1271         fwr->fp = htons(f->fs.val.fport);
1272         fwr->fpm = htons(f->fs.mask.fport);
1273         if (f->fs.newsmac)
1274                 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1275
1276         /* Mark the filter as "pending" and ship off the Filter Work Request.
1277          * When we get the Work Request Reply we'll clear the pending status.
1278          */
1279         f->pending = 1;
1280         set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1281         t4_ofld_send(adapter, skb);
1282         return 0;
1283 }
1284
1285 /* Delete the filter at a specified index.
1286  */
1287 static int del_filter_wr(struct adapter *adapter, int fidx)
1288 {
1289         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1290         struct sk_buff *skb;
1291         struct fw_filter_wr *fwr;
1292         unsigned int len, ftid;
1293
1294         len = sizeof(*fwr);
1295         ftid = adapter->tids.ftid_base + fidx;
1296
1297         skb = alloc_skb(len, GFP_KERNEL);
1298         if (!skb)
1299                 return -ENOMEM;
1300
1301         fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1302         t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1303
1304         /* Mark the filter as "pending" and ship off the Filter Work Request.
1305          * When we get the Work Request Reply we'll clear the pending status.
1306          */
1307         f->pending = 1;
1308         t4_mgmt_tx(adapter, skb);
1309         return 0;
1310 }
1311
1312 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1313                              void *accel_priv, select_queue_fallback_t fallback)
1314 {
1315         int txq;
1316
1317 #ifdef CONFIG_CHELSIO_T4_DCB
1318         /* If a Data Center Bridging has been successfully negotiated on this
1319          * link then we'll use the skb's priority to map it to a TX Queue.
1320          * The skb's priority is determined via the VLAN Tag Priority Code
1321          * Point field.
1322          */
1323         if (cxgb4_dcb_enabled(dev)) {
1324                 u16 vlan_tci;
1325                 int err;
1326
1327                 err = vlan_get_tag(skb, &vlan_tci);
1328                 if (unlikely(err)) {
1329                         if (net_ratelimit())
1330                                 netdev_warn(dev,
1331                                             "TX Packet without VLAN Tag on DCB Link\n");
1332                         txq = 0;
1333                 } else {
1334                         txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1335 #ifdef CONFIG_CHELSIO_T4_FCOE
1336                         if (skb->protocol == htons(ETH_P_FCOE))
1337                                 txq = skb->priority & 0x7;
1338 #endif /* CONFIG_CHELSIO_T4_FCOE */
1339                 }
1340                 return txq;
1341         }
1342 #endif /* CONFIG_CHELSIO_T4_DCB */
1343
1344         if (select_queue) {
1345                 txq = (skb_rx_queue_recorded(skb)
1346                         ? skb_get_rx_queue(skb)
1347                         : smp_processor_id());
1348
1349                 while (unlikely(txq >= dev->real_num_tx_queues))
1350                         txq -= dev->real_num_tx_queues;
1351
1352                 return txq;
1353         }
1354
1355         return fallback(dev, skb) % dev->real_num_tx_queues;
1356 }
1357
1358 static int closest_timer(const struct sge *s, int time)
1359 {
1360         int i, delta, match = 0, min_delta = INT_MAX;
1361
1362         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1363                 delta = time - s->timer_val[i];
1364                 if (delta < 0)
1365                         delta = -delta;
1366                 if (delta < min_delta) {
1367                         min_delta = delta;
1368                         match = i;
1369                 }
1370         }
1371         return match;
1372 }
1373
1374 static int closest_thres(const struct sge *s, int thres)
1375 {
1376         int i, delta, match = 0, min_delta = INT_MAX;
1377
1378         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1379                 delta = thres - s->counter_val[i];
1380                 if (delta < 0)
1381                         delta = -delta;
1382                 if (delta < min_delta) {
1383                         min_delta = delta;
1384                         match = i;
1385                 }
1386         }
1387         return match;
1388 }
1389
1390 /**
1391  *      cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1392  *      @q: the Rx queue
1393  *      @us: the hold-off time in us, or 0 to disable timer
1394  *      @cnt: the hold-off packet count, or 0 to disable counter
1395  *
1396  *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
1397  *      one of the two needs to be enabled for the queue to generate interrupts.
1398  */
1399 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1400                                unsigned int us, unsigned int cnt)
1401 {
1402         struct adapter *adap = q->adap;
1403
1404         if ((us | cnt) == 0)
1405                 cnt = 1;
1406
1407         if (cnt) {
1408                 int err;
1409                 u32 v, new_idx;
1410
1411                 new_idx = closest_thres(&adap->sge, cnt);
1412                 if (q->desc && q->pktcnt_idx != new_idx) {
1413                         /* the queue has already been created, update it */
1414                         v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1415                             FW_PARAMS_PARAM_X_V(
1416                                         FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1417                             FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1418                         err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1419                                             &v, &new_idx);
1420                         if (err)
1421                                 return err;
1422                 }
1423                 q->pktcnt_idx = new_idx;
1424         }
1425
1426         us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1427         q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1428         return 0;
1429 }
1430
1431 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1432 {
1433         const struct port_info *pi = netdev_priv(dev);
1434         netdev_features_t changed = dev->features ^ features;
1435         int err;
1436
1437         if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1438                 return 0;
1439
1440         err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1441                             -1, -1, -1,
1442                             !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1443         if (unlikely(err))
1444                 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1445         return err;
1446 }
1447
1448 static int setup_debugfs(struct adapter *adap)
1449 {
1450         if (IS_ERR_OR_NULL(adap->debugfs_root))
1451                 return -1;
1452
1453 #ifdef CONFIG_DEBUG_FS
1454         t4_setup_debugfs(adap);
1455 #endif
1456         return 0;
1457 }
1458
1459 /*
1460  * upper-layer driver support
1461  */
1462
1463 /*
1464  * Allocate an active-open TID and set it to the supplied value.
1465  */
1466 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1467 {
1468         int atid = -1;
1469
1470         spin_lock_bh(&t->atid_lock);
1471         if (t->afree) {
1472                 union aopen_entry *p = t->afree;
1473
1474                 atid = (p - t->atid_tab) + t->atid_base;
1475                 t->afree = p->next;
1476                 p->data = data;
1477                 t->atids_in_use++;
1478         }
1479         spin_unlock_bh(&t->atid_lock);
1480         return atid;
1481 }
1482 EXPORT_SYMBOL(cxgb4_alloc_atid);
1483
1484 /*
1485  * Release an active-open TID.
1486  */
1487 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1488 {
1489         union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1490
1491         spin_lock_bh(&t->atid_lock);
1492         p->next = t->afree;
1493         t->afree = p;
1494         t->atids_in_use--;
1495         spin_unlock_bh(&t->atid_lock);
1496 }
1497 EXPORT_SYMBOL(cxgb4_free_atid);
1498
1499 /*
1500  * Allocate a server TID and set it to the supplied value.
1501  */
1502 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1503 {
1504         int stid;
1505
1506         spin_lock_bh(&t->stid_lock);
1507         if (family == PF_INET) {
1508                 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1509                 if (stid < t->nstids)
1510                         __set_bit(stid, t->stid_bmap);
1511                 else
1512                         stid = -1;
1513         } else {
1514                 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
1515                 if (stid < 0)
1516                         stid = -1;
1517         }
1518         if (stid >= 0) {
1519                 t->stid_tab[stid].data = data;
1520                 stid += t->stid_base;
1521                 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1522                  * This is equivalent to 4 TIDs. With CLIP enabled it
1523                  * needs 2 TIDs.
1524                  */
1525                 if (family == PF_INET)
1526                         t->stids_in_use++;
1527                 else
1528                         t->stids_in_use += 4;
1529         }
1530         spin_unlock_bh(&t->stid_lock);
1531         return stid;
1532 }
1533 EXPORT_SYMBOL(cxgb4_alloc_stid);
1534
1535 /* Allocate a server filter TID and set it to the supplied value.
1536  */
1537 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1538 {
1539         int stid;
1540
1541         spin_lock_bh(&t->stid_lock);
1542         if (family == PF_INET) {
1543                 stid = find_next_zero_bit(t->stid_bmap,
1544                                 t->nstids + t->nsftids, t->nstids);
1545                 if (stid < (t->nstids + t->nsftids))
1546                         __set_bit(stid, t->stid_bmap);
1547                 else
1548                         stid = -1;
1549         } else {
1550                 stid = -1;
1551         }
1552         if (stid >= 0) {
1553                 t->stid_tab[stid].data = data;
1554                 stid -= t->nstids;
1555                 stid += t->sftid_base;
1556                 t->sftids_in_use++;
1557         }
1558         spin_unlock_bh(&t->stid_lock);
1559         return stid;
1560 }
1561 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1562
1563 /* Release a server TID.
1564  */
1565 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1566 {
1567         /* Is it a server filter TID? */
1568         if (t->nsftids && (stid >= t->sftid_base)) {
1569                 stid -= t->sftid_base;
1570                 stid += t->nstids;
1571         } else {
1572                 stid -= t->stid_base;
1573         }
1574
1575         spin_lock_bh(&t->stid_lock);
1576         if (family == PF_INET)
1577                 __clear_bit(stid, t->stid_bmap);
1578         else
1579                 bitmap_release_region(t->stid_bmap, stid, 2);
1580         t->stid_tab[stid].data = NULL;
1581         if (stid < t->nstids) {
1582                 if (family == PF_INET)
1583                         t->stids_in_use--;
1584                 else
1585                         t->stids_in_use -= 4;
1586         } else {
1587                 t->sftids_in_use--;
1588         }
1589         spin_unlock_bh(&t->stid_lock);
1590 }
1591 EXPORT_SYMBOL(cxgb4_free_stid);
1592
1593 /*
1594  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1595  */
1596 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1597                            unsigned int tid)
1598 {
1599         struct cpl_tid_release *req;
1600
1601         set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1602         req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1603         INIT_TP_WR(req, tid);
1604         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1605 }
1606
1607 /*
1608  * Queue a TID release request and if necessary schedule a work queue to
1609  * process it.
1610  */
1611 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1612                                     unsigned int tid)
1613 {
1614         void **p = &t->tid_tab[tid];
1615         struct adapter *adap = container_of(t, struct adapter, tids);
1616
1617         spin_lock_bh(&adap->tid_release_lock);
1618         *p = adap->tid_release_head;
1619         /* Low 2 bits encode the Tx channel number */
1620         adap->tid_release_head = (void **)((uintptr_t)p | chan);
1621         if (!adap->tid_release_task_busy) {
1622                 adap->tid_release_task_busy = true;
1623                 queue_work(adap->workq, &adap->tid_release_task);
1624         }
1625         spin_unlock_bh(&adap->tid_release_lock);
1626 }
1627
1628 /*
1629  * Process the list of pending TID release requests.
1630  */
1631 static void process_tid_release_list(struct work_struct *work)
1632 {
1633         struct sk_buff *skb;
1634         struct adapter *adap;
1635
1636         adap = container_of(work, struct adapter, tid_release_task);
1637
1638         spin_lock_bh(&adap->tid_release_lock);
1639         while (adap->tid_release_head) {
1640                 void **p = adap->tid_release_head;
1641                 unsigned int chan = (uintptr_t)p & 3;
1642                 p = (void *)p - chan;
1643
1644                 adap->tid_release_head = *p;
1645                 *p = NULL;
1646                 spin_unlock_bh(&adap->tid_release_lock);
1647
1648                 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1649                                          GFP_KERNEL)))
1650                         schedule_timeout_uninterruptible(1);
1651
1652                 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1653                 t4_ofld_send(adap, skb);
1654                 spin_lock_bh(&adap->tid_release_lock);
1655         }
1656         adap->tid_release_task_busy = false;
1657         spin_unlock_bh(&adap->tid_release_lock);
1658 }
1659
1660 /*
1661  * Release a TID and inform HW.  If we are unable to allocate the release
1662  * message we defer to a work queue.
1663  */
1664 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1665 {
1666         struct sk_buff *skb;
1667         struct adapter *adap = container_of(t, struct adapter, tids);
1668
1669         WARN_ON(tid >= t->ntids);
1670
1671         if (t->tid_tab[tid]) {
1672                 t->tid_tab[tid] = NULL;
1673                 if (t->hash_base && (tid >= t->hash_base))
1674                         atomic_dec(&t->hash_tids_in_use);
1675                 else
1676                         atomic_dec(&t->tids_in_use);
1677         }
1678
1679         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1680         if (likely(skb)) {
1681                 mk_tid_release(skb, chan, tid);
1682                 t4_ofld_send(adap, skb);
1683         } else
1684                 cxgb4_queue_tid_release(t, chan, tid);
1685 }
1686 EXPORT_SYMBOL(cxgb4_remove_tid);
1687
1688 /*
1689  * Allocate and initialize the TID tables.  Returns 0 on success.
1690  */
1691 static int tid_init(struct tid_info *t)
1692 {
1693         size_t size;
1694         unsigned int stid_bmap_size;
1695         unsigned int natids = t->natids;
1696         struct adapter *adap = container_of(t, struct adapter, tids);
1697
1698         stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1699         size = t->ntids * sizeof(*t->tid_tab) +
1700                natids * sizeof(*t->atid_tab) +
1701                t->nstids * sizeof(*t->stid_tab) +
1702                t->nsftids * sizeof(*t->stid_tab) +
1703                stid_bmap_size * sizeof(long) +
1704                t->nftids * sizeof(*t->ftid_tab) +
1705                t->nsftids * sizeof(*t->ftid_tab);
1706
1707         t->tid_tab = t4_alloc_mem(size);
1708         if (!t->tid_tab)
1709                 return -ENOMEM;
1710
1711         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1712         t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1713         t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1714         t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1715         spin_lock_init(&t->stid_lock);
1716         spin_lock_init(&t->atid_lock);
1717
1718         t->stids_in_use = 0;
1719         t->sftids_in_use = 0;
1720         t->afree = NULL;
1721         t->atids_in_use = 0;
1722         atomic_set(&t->tids_in_use, 0);
1723         atomic_set(&t->hash_tids_in_use, 0);
1724
1725         /* Setup the free list for atid_tab and clear the stid bitmap. */
1726         if (natids) {
1727                 while (--natids)
1728                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1729                 t->afree = t->atid_tab;
1730         }
1731         bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1732         /* Reserve stid 0 for T4/T5 adapters */
1733         if (!t->stid_base &&
1734             (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
1735                 __set_bit(0, t->stid_bmap);
1736
1737         return 0;
1738 }
1739
1740 /**
1741  *      cxgb4_create_server - create an IP server
1742  *      @dev: the device
1743  *      @stid: the server TID
1744  *      @sip: local IP address to bind server to
1745  *      @sport: the server's TCP port
1746  *      @queue: queue to direct messages from this server to
1747  *
1748  *      Create an IP server for the given port and address.
1749  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1750  */
1751 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1752                         __be32 sip, __be16 sport, __be16 vlan,
1753                         unsigned int queue)
1754 {
1755         unsigned int chan;
1756         struct sk_buff *skb;
1757         struct adapter *adap;
1758         struct cpl_pass_open_req *req;
1759         int ret;
1760
1761         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1762         if (!skb)
1763                 return -ENOMEM;
1764
1765         adap = netdev2adap(dev);
1766         req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1767         INIT_TP_WR(req, 0);
1768         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1769         req->local_port = sport;
1770         req->peer_port = htons(0);
1771         req->local_ip = sip;
1772         req->peer_ip = htonl(0);
1773         chan = rxq_to_chan(&adap->sge, queue);
1774         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1775         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1776                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1777         ret = t4_mgmt_tx(adap, skb);
1778         return net_xmit_eval(ret);
1779 }
1780 EXPORT_SYMBOL(cxgb4_create_server);
1781
1782 /*      cxgb4_create_server6 - create an IPv6 server
1783  *      @dev: the device
1784  *      @stid: the server TID
1785  *      @sip: local IPv6 address to bind server to
1786  *      @sport: the server's TCP port
1787  *      @queue: queue to direct messages from this server to
1788  *
1789  *      Create an IPv6 server for the given port and address.
1790  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1791  */
1792 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1793                          const struct in6_addr *sip, __be16 sport,
1794                          unsigned int queue)
1795 {
1796         unsigned int chan;
1797         struct sk_buff *skb;
1798         struct adapter *adap;
1799         struct cpl_pass_open_req6 *req;
1800         int ret;
1801
1802         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1803         if (!skb)
1804                 return -ENOMEM;
1805
1806         adap = netdev2adap(dev);
1807         req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1808         INIT_TP_WR(req, 0);
1809         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1810         req->local_port = sport;
1811         req->peer_port = htons(0);
1812         req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1813         req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1814         req->peer_ip_hi = cpu_to_be64(0);
1815         req->peer_ip_lo = cpu_to_be64(0);
1816         chan = rxq_to_chan(&adap->sge, queue);
1817         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1818         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1819                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1820         ret = t4_mgmt_tx(adap, skb);
1821         return net_xmit_eval(ret);
1822 }
1823 EXPORT_SYMBOL(cxgb4_create_server6);
1824
1825 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1826                         unsigned int queue, bool ipv6)
1827 {
1828         struct sk_buff *skb;
1829         struct adapter *adap;
1830         struct cpl_close_listsvr_req *req;
1831         int ret;
1832
1833         adap = netdev2adap(dev);
1834
1835         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1836         if (!skb)
1837                 return -ENOMEM;
1838
1839         req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1840         INIT_TP_WR(req, 0);
1841         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1842         req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1843                                 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1844         ret = t4_mgmt_tx(adap, skb);
1845         return net_xmit_eval(ret);
1846 }
1847 EXPORT_SYMBOL(cxgb4_remove_server);
1848
1849 /**
1850  *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1851  *      @mtus: the HW MTU table
1852  *      @mtu: the target MTU
1853  *      @idx: index of selected entry in the MTU table
1854  *
1855  *      Returns the index and the value in the HW MTU table that is closest to
1856  *      but does not exceed @mtu, unless @mtu is smaller than any value in the
1857  *      table, in which case that smallest available value is selected.
1858  */
1859 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1860                             unsigned int *idx)
1861 {
1862         unsigned int i = 0;
1863
1864         while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1865                 ++i;
1866         if (idx)
1867                 *idx = i;
1868         return mtus[i];
1869 }
1870 EXPORT_SYMBOL(cxgb4_best_mtu);
1871
1872 /**
1873  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1874  *     @mtus: the HW MTU table
1875  *     @header_size: Header Size
1876  *     @data_size_max: maximum Data Segment Size
1877  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1878  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1879  *
1880  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1881  *     MTU Table based solely on a Maximum MTU parameter, we break that
1882  *     parameter up into a Header Size and Maximum Data Segment Size, and
1883  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1884  *     the Hardware MTU Table which will result in a Data Segment Size with
1885  *     the requested alignment _and_ that MTU isn't "too far" from the
1886  *     closest MTU, then we'll return that rather than the closest MTU.
1887  */
1888 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1889                                     unsigned short header_size,
1890                                     unsigned short data_size_max,
1891                                     unsigned short data_size_align,
1892                                     unsigned int *mtu_idxp)
1893 {
1894         unsigned short max_mtu = header_size + data_size_max;
1895         unsigned short data_size_align_mask = data_size_align - 1;
1896         int mtu_idx, aligned_mtu_idx;
1897
1898         /* Scan the MTU Table till we find an MTU which is larger than our
1899          * Maximum MTU or we reach the end of the table.  Along the way,
1900          * record the last MTU found, if any, which will result in a Data
1901          * Segment Length matching the requested alignment.
1902          */
1903         for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1904                 unsigned short data_size = mtus[mtu_idx] - header_size;
1905
1906                 /* If this MTU minus the Header Size would result in a
1907                  * Data Segment Size of the desired alignment, remember it.
1908                  */
1909                 if ((data_size & data_size_align_mask) == 0)
1910                         aligned_mtu_idx = mtu_idx;
1911
1912                 /* If we're not at the end of the Hardware MTU Table and the
1913                  * next element is larger than our Maximum MTU, drop out of
1914                  * the loop.
1915                  */
1916                 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1917                         break;
1918         }
1919
1920         /* If we fell out of the loop because we ran to the end of the table,
1921          * then we just have to use the last [largest] entry.
1922          */
1923         if (mtu_idx == NMTUS)
1924                 mtu_idx--;
1925
1926         /* If we found an MTU which resulted in the requested Data Segment
1927          * Length alignment and that's "not far" from the largest MTU which is
1928          * less than or equal to the maximum MTU, then use that.
1929          */
1930         if (aligned_mtu_idx >= 0 &&
1931             mtu_idx - aligned_mtu_idx <= 1)
1932                 mtu_idx = aligned_mtu_idx;
1933
1934         /* If the caller has passed in an MTU Index pointer, pass the
1935          * MTU Index back.  Return the MTU value.
1936          */
1937         if (mtu_idxp)
1938                 *mtu_idxp = mtu_idx;
1939         return mtus[mtu_idx];
1940 }
1941 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1942
1943 /**
1944  *      cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1945  *      @chip: chip type
1946  *      @viid: VI id of the given port
1947  *
1948  *      Return the SMT index for this VI.
1949  */
1950 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1951 {
1952         /* In T4/T5, SMT contains 256 SMAC entries organized in
1953          * 128 rows of 2 entries each.
1954          * In T6, SMT contains 256 SMAC entries in 256 rows.
1955          * TODO: The below code needs to be updated when we add support
1956          * for 256 VFs.
1957          */
1958         if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1959                 return ((viid & 0x7f) << 1);
1960         else
1961                 return (viid & 0x7f);
1962 }
1963 EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1964
1965 /**
1966  *      cxgb4_port_chan - get the HW channel of a port
1967  *      @dev: the net device for the port
1968  *
1969  *      Return the HW Tx channel of the given port.
1970  */
1971 unsigned int cxgb4_port_chan(const struct net_device *dev)
1972 {
1973         return netdev2pinfo(dev)->tx_chan;
1974 }
1975 EXPORT_SYMBOL(cxgb4_port_chan);
1976
1977 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1978 {
1979         struct adapter *adap = netdev2adap(dev);
1980         u32 v1, v2, lp_count, hp_count;
1981
1982         v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1983         v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1984         if (is_t4(adap->params.chip)) {
1985                 lp_count = LP_COUNT_G(v1);
1986                 hp_count = HP_COUNT_G(v1);
1987         } else {
1988                 lp_count = LP_COUNT_T5_G(v1);
1989                 hp_count = HP_COUNT_T5_G(v2);
1990         }
1991         return lpfifo ? lp_count : hp_count;
1992 }
1993 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1994
1995 /**
1996  *      cxgb4_port_viid - get the VI id of a port
1997  *      @dev: the net device for the port
1998  *
1999  *      Return the VI id of the given port.
2000  */
2001 unsigned int cxgb4_port_viid(const struct net_device *dev)
2002 {
2003         return netdev2pinfo(dev)->viid;
2004 }
2005 EXPORT_SYMBOL(cxgb4_port_viid);
2006
2007 /**
2008  *      cxgb4_port_idx - get the index of a port
2009  *      @dev: the net device for the port
2010  *
2011  *      Return the index of the given port.
2012  */
2013 unsigned int cxgb4_port_idx(const struct net_device *dev)
2014 {
2015         return netdev2pinfo(dev)->port_id;
2016 }
2017 EXPORT_SYMBOL(cxgb4_port_idx);
2018
2019 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
2020                          struct tp_tcp_stats *v6)
2021 {
2022         struct adapter *adap = pci_get_drvdata(pdev);
2023
2024         spin_lock(&adap->stats_lock);
2025         t4_tp_get_tcp_stats(adap, v4, v6);
2026         spin_unlock(&adap->stats_lock);
2027 }
2028 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2029
2030 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
2031                       const unsigned int *pgsz_order)
2032 {
2033         struct adapter *adap = netdev2adap(dev);
2034
2035         t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
2036         t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
2037                      HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
2038                      HPZ3_V(pgsz_order[3]));
2039 }
2040 EXPORT_SYMBOL(cxgb4_iscsi_init);
2041
2042 int cxgb4_flush_eq_cache(struct net_device *dev)
2043 {
2044         struct adapter *adap = netdev2adap(dev);
2045
2046         return t4_sge_ctxt_flush(adap, adap->mbox);
2047 }
2048 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2049
2050 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2051 {
2052         u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
2053         __be64 indices;
2054         int ret;
2055
2056         spin_lock(&adap->win0_lock);
2057         ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2058                            sizeof(indices), (__be32 *)&indices,
2059                            T4_MEMORY_READ);
2060         spin_unlock(&adap->win0_lock);
2061         if (!ret) {
2062                 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2063                 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2064         }
2065         return ret;
2066 }
2067
2068 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2069                         u16 size)
2070 {
2071         struct adapter *adap = netdev2adap(dev);
2072         u16 hw_pidx, hw_cidx;
2073         int ret;
2074
2075         ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2076         if (ret)
2077                 goto out;
2078
2079         if (pidx != hw_pidx) {
2080                 u16 delta;
2081                 u32 val;
2082
2083                 if (pidx >= hw_pidx)
2084                         delta = pidx - hw_pidx;
2085                 else
2086                         delta = size - hw_pidx + pidx;
2087
2088                 if (is_t4(adap->params.chip))
2089                         val = PIDX_V(delta);
2090                 else
2091                         val = PIDX_T5_V(delta);
2092                 wmb();
2093                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2094                              QID_V(qid) | val);
2095         }
2096 out:
2097         return ret;
2098 }
2099 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2100
2101 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2102 {
2103         struct adapter *adap;
2104         u32 offset, memtype, memaddr;
2105         u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2106         u32 edc0_end, edc1_end, mc0_end, mc1_end;
2107         int ret;
2108
2109         adap = netdev2adap(dev);
2110
2111         offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2112
2113         /* Figure out where the offset lands in the Memory Type/Address scheme.
2114          * This code assumes that the memory is laid out starting at offset 0
2115          * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2116          * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
2117          * MC0, and some have both MC0 and MC1.
2118          */
2119         size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2120         edc0_size = EDRAM0_SIZE_G(size) << 20;
2121         size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2122         edc1_size = EDRAM1_SIZE_G(size) << 20;
2123         size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2124         mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2125
2126         edc0_end = edc0_size;
2127         edc1_end = edc0_end + edc1_size;
2128         mc0_end = edc1_end + mc0_size;
2129
2130         if (offset < edc0_end) {
2131                 memtype = MEM_EDC0;
2132                 memaddr = offset;
2133         } else if (offset < edc1_end) {
2134                 memtype = MEM_EDC1;
2135                 memaddr = offset - edc0_end;
2136         } else {
2137                 if (offset < mc0_end) {
2138                         memtype = MEM_MC0;
2139                         memaddr = offset - edc1_end;
2140                 } else if (is_t5(adap->params.chip)) {
2141                         size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2142                         mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2143                         mc1_end = mc0_end + mc1_size;
2144                         if (offset < mc1_end) {
2145                                 memtype = MEM_MC1;
2146                                 memaddr = offset - mc0_end;
2147                         } else {
2148                                 /* offset beyond the end of any memory */
2149                                 goto err;
2150                         }
2151                 } else {
2152                         /* T4/T6 only has a single memory channel */
2153                         goto err;
2154                 }
2155         }
2156
2157         spin_lock(&adap->win0_lock);
2158         ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2159         spin_unlock(&adap->win0_lock);
2160         return ret;
2161
2162 err:
2163         dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2164                 stag, offset);
2165         return -EINVAL;
2166 }
2167 EXPORT_SYMBOL(cxgb4_read_tpte);
2168
2169 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2170 {
2171         u32 hi, lo;
2172         struct adapter *adap;
2173
2174         adap = netdev2adap(dev);
2175         lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2176         hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2177
2178         return ((u64)hi << 32) | (u64)lo;
2179 }
2180 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2181
2182 int cxgb4_bar2_sge_qregs(struct net_device *dev,
2183                          unsigned int qid,
2184                          enum cxgb4_bar2_qtype qtype,
2185                          int user,
2186                          u64 *pbar2_qoffset,
2187                          unsigned int *pbar2_qid)
2188 {
2189         return t4_bar2_sge_qregs(netdev2adap(dev),
2190                                  qid,
2191                                  (qtype == CXGB4_BAR2_QTYPE_EGRESS
2192                                   ? T4_BAR2_QTYPE_EGRESS
2193                                   : T4_BAR2_QTYPE_INGRESS),
2194                                  user,
2195                                  pbar2_qoffset,
2196                                  pbar2_qid);
2197 }
2198 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2199
2200 static struct pci_driver cxgb4_driver;
2201
2202 static void check_neigh_update(struct neighbour *neigh)
2203 {
2204         const struct device *parent;
2205         const struct net_device *netdev = neigh->dev;
2206
2207         if (netdev->priv_flags & IFF_802_1Q_VLAN)
2208                 netdev = vlan_dev_real_dev(netdev);
2209         parent = netdev->dev.parent;
2210         if (parent && parent->driver == &cxgb4_driver.driver)
2211                 t4_l2t_update(dev_get_drvdata(parent), neigh);
2212 }
2213
2214 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2215                        void *data)
2216 {
2217         switch (event) {
2218         case NETEVENT_NEIGH_UPDATE:
2219                 check_neigh_update(data);
2220                 break;
2221         case NETEVENT_REDIRECT:
2222         default:
2223                 break;
2224         }
2225         return 0;
2226 }
2227
2228 static bool netevent_registered;
2229 static struct notifier_block cxgb4_netevent_nb = {
2230         .notifier_call = netevent_cb
2231 };
2232
2233 static void drain_db_fifo(struct adapter *adap, int usecs)
2234 {
2235         u32 v1, v2, lp_count, hp_count;
2236
2237         do {
2238                 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2239                 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2240                 if (is_t4(adap->params.chip)) {
2241                         lp_count = LP_COUNT_G(v1);
2242                         hp_count = HP_COUNT_G(v1);
2243                 } else {
2244                         lp_count = LP_COUNT_T5_G(v1);
2245                         hp_count = HP_COUNT_T5_G(v2);
2246                 }
2247
2248                 if (lp_count == 0 && hp_count == 0)
2249                         break;
2250                 set_current_state(TASK_UNINTERRUPTIBLE);
2251                 schedule_timeout(usecs_to_jiffies(usecs));
2252         } while (1);
2253 }
2254
2255 static void disable_txq_db(struct sge_txq *q)
2256 {
2257         unsigned long flags;
2258
2259         spin_lock_irqsave(&q->db_lock, flags);
2260         q->db_disabled = 1;
2261         spin_unlock_irqrestore(&q->db_lock, flags);
2262 }
2263
2264 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2265 {
2266         spin_lock_irq(&q->db_lock);
2267         if (q->db_pidx_inc) {
2268                 /* Make sure that all writes to the TX descriptors
2269                  * are committed before we tell HW about them.
2270                  */
2271                 wmb();
2272                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2273                              QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2274                 q->db_pidx_inc = 0;
2275         }
2276         q->db_disabled = 0;
2277         spin_unlock_irq(&q->db_lock);
2278 }
2279
2280 static void disable_dbs(struct adapter *adap)
2281 {
2282         int i;
2283
2284         for_each_ethrxq(&adap->sge, i)
2285                 disable_txq_db(&adap->sge.ethtxq[i].q);
2286         for_each_ofldrxq(&adap->sge, i)
2287                 disable_txq_db(&adap->sge.ofldtxq[i].q);
2288         for_each_port(adap, i)
2289                 disable_txq_db(&adap->sge.ctrlq[i].q);
2290 }
2291
2292 static void enable_dbs(struct adapter *adap)
2293 {
2294         int i;
2295
2296         for_each_ethrxq(&adap->sge, i)
2297                 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2298         for_each_ofldrxq(&adap->sge, i)
2299                 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
2300         for_each_port(adap, i)
2301                 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2302 }
2303
2304 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2305 {
2306         if (adap->uld_handle[CXGB4_ULD_RDMA])
2307                 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
2308                                 cmd);
2309 }
2310
2311 static void process_db_full(struct work_struct *work)
2312 {
2313         struct adapter *adap;
2314
2315         adap = container_of(work, struct adapter, db_full_task);
2316
2317         drain_db_fifo(adap, dbfifo_drain_delay);
2318         enable_dbs(adap);
2319         notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2320         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2321                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2322                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2323                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2324         else
2325                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2326                                  DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2327 }
2328
2329 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2330 {
2331         u16 hw_pidx, hw_cidx;
2332         int ret;
2333
2334         spin_lock_irq(&q->db_lock);
2335         ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2336         if (ret)
2337                 goto out;
2338         if (q->db_pidx != hw_pidx) {
2339                 u16 delta;
2340                 u32 val;
2341
2342                 if (q->db_pidx >= hw_pidx)
2343                         delta = q->db_pidx - hw_pidx;
2344                 else
2345                         delta = q->size - hw_pidx + q->db_pidx;
2346
2347                 if (is_t4(adap->params.chip))
2348                         val = PIDX_V(delta);
2349                 else
2350                         val = PIDX_T5_V(delta);
2351                 wmb();
2352                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2353                              QID_V(q->cntxt_id) | val);
2354         }
2355 out:
2356         q->db_disabled = 0;
2357         q->db_pidx_inc = 0;
2358         spin_unlock_irq(&q->db_lock);
2359         if (ret)
2360                 CH_WARN(adap, "DB drop recovery failed.\n");
2361 }
2362 static void recover_all_queues(struct adapter *adap)
2363 {
2364         int i;
2365
2366         for_each_ethrxq(&adap->sge, i)
2367                 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2368         for_each_ofldrxq(&adap->sge, i)
2369                 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2370         for_each_port(adap, i)
2371                 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2372 }
2373
2374 static void process_db_drop(struct work_struct *work)
2375 {
2376         struct adapter *adap;
2377
2378         adap = container_of(work, struct adapter, db_drop_task);
2379
2380         if (is_t4(adap->params.chip)) {
2381                 drain_db_fifo(adap, dbfifo_drain_delay);
2382                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2383                 drain_db_fifo(adap, dbfifo_drain_delay);
2384                 recover_all_queues(adap);
2385                 drain_db_fifo(adap, dbfifo_drain_delay);
2386                 enable_dbs(adap);
2387                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2388         } else if (is_t5(adap->params.chip)) {
2389                 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2390                 u16 qid = (dropped_db >> 15) & 0x1ffff;
2391                 u16 pidx_inc = dropped_db & 0x1fff;
2392                 u64 bar2_qoffset;
2393                 unsigned int bar2_qid;
2394                 int ret;
2395
2396                 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2397                                         0, &bar2_qoffset, &bar2_qid);
2398                 if (ret)
2399                         dev_err(adap->pdev_dev, "doorbell drop recovery: "
2400                                 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2401                 else
2402                         writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2403                                adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2404
2405                 /* Re-enable BAR2 WC */
2406                 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2407         }
2408
2409         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2410                 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2411 }
2412
2413 void t4_db_full(struct adapter *adap)
2414 {
2415         if (is_t4(adap->params.chip)) {
2416                 disable_dbs(adap);
2417                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2418                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2419                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2420                 queue_work(adap->workq, &adap->db_full_task);
2421         }
2422 }
2423
2424 void t4_db_dropped(struct adapter *adap)
2425 {
2426         if (is_t4(adap->params.chip)) {
2427                 disable_dbs(adap);
2428                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2429         }
2430         queue_work(adap->workq, &adap->db_drop_task);
2431 }
2432
2433 static void uld_attach(struct adapter *adap, unsigned int uld)
2434 {
2435         void *handle;
2436         struct cxgb4_lld_info lli;
2437         unsigned short i;
2438
2439         lli.pdev = adap->pdev;
2440         lli.pf = adap->pf;
2441         lli.l2t = adap->l2t;
2442         lli.tids = &adap->tids;
2443         lli.ports = adap->port;
2444         lli.vr = &adap->vres;
2445         lli.mtus = adap->params.mtus;
2446         if (uld == CXGB4_ULD_RDMA) {
2447                 lli.rxq_ids = adap->sge.rdma_rxq;
2448                 lli.ciq_ids = adap->sge.rdma_ciq;
2449                 lli.nrxq = adap->sge.rdmaqs;
2450                 lli.nciq = adap->sge.rdmaciqs;
2451         } else if (uld == CXGB4_ULD_ISCSI) {
2452                 lli.rxq_ids = adap->sge.ofld_rxq;
2453                 lli.nrxq = adap->sge.ofldqsets;
2454         }
2455         lli.ntxq = adap->sge.ofldqsets;
2456         lli.nchan = adap->params.nports;
2457         lli.nports = adap->params.nports;
2458         lli.wr_cred = adap->params.ofldq_wr_cred;
2459         lli.adapter_type = adap->params.chip;
2460         lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A));
2461         lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
2462         lli.udb_density = 1 << adap->params.sge.eq_qpp;
2463         lli.ucq_density = 1 << adap->params.sge.iq_qpp;
2464         lli.filt_mode = adap->params.tp.vlan_pri_map;
2465         /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
2466         for (i = 0; i < NCHAN; i++)
2467                 lli.tx_modq[i] = i;
2468         lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A);
2469         lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A);
2470         lli.fw_vers = adap->params.fw_vers;
2471         lli.dbfifo_int_thresh = dbfifo_int_thresh;
2472         lli.sge_ingpadboundary = adap->sge.fl_align;
2473         lli.sge_egrstatuspagesize = adap->sge.stat_len;
2474         lli.sge_pktshift = adap->sge.pktshift;
2475         lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
2476         lli.max_ordird_qp = adap->params.max_ordird_qp;
2477         lli.max_ird_adapter = adap->params.max_ird_adapter;
2478         lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
2479         lli.nodeid = dev_to_node(adap->pdev_dev);
2480
2481         handle = ulds[uld].add(&lli);
2482         if (IS_ERR(handle)) {
2483                 dev_warn(adap->pdev_dev,
2484                          "could not attach to the %s driver, error %ld\n",
2485                          uld_str[uld], PTR_ERR(handle));
2486                 return;
2487         }
2488
2489         adap->uld_handle[uld] = handle;
2490
2491         if (!netevent_registered) {
2492                 register_netevent_notifier(&cxgb4_netevent_nb);
2493                 netevent_registered = true;
2494         }
2495
2496         if (adap->flags & FULL_INIT_DONE)
2497                 ulds[uld].state_change(handle, CXGB4_STATE_UP);
2498 }
2499
2500 static void attach_ulds(struct adapter *adap)
2501 {
2502         unsigned int i;
2503
2504         spin_lock(&adap_rcu_lock);
2505         list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
2506         spin_unlock(&adap_rcu_lock);
2507
2508         mutex_lock(&uld_mutex);
2509         list_add_tail(&adap->list_node, &adapter_list);
2510         for (i = 0; i < CXGB4_ULD_MAX; i++)
2511                 if (ulds[i].add)
2512                         uld_attach(adap, i);
2513         mutex_unlock(&uld_mutex);
2514 }
2515
2516 static void detach_ulds(struct adapter *adap)
2517 {
2518         unsigned int i;
2519
2520         mutex_lock(&uld_mutex);
2521         list_del(&adap->list_node);
2522         for (i = 0; i < CXGB4_ULD_MAX; i++)
2523                 if (adap->uld_handle[i]) {
2524                         ulds[i].state_change(adap->uld_handle[i],
2525                                              CXGB4_STATE_DETACH);
2526                         adap->uld_handle[i] = NULL;
2527                 }
2528         if (netevent_registered && list_empty(&adapter_list)) {
2529                 unregister_netevent_notifier(&cxgb4_netevent_nb);
2530                 netevent_registered = false;
2531         }
2532         mutex_unlock(&uld_mutex);
2533
2534         spin_lock(&adap_rcu_lock);
2535         list_del_rcu(&adap->rcu_node);
2536         spin_unlock(&adap_rcu_lock);
2537 }
2538
2539 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2540 {
2541         unsigned int i;
2542
2543         mutex_lock(&uld_mutex);
2544         for (i = 0; i < CXGB4_ULD_MAX; i++)
2545                 if (adap->uld_handle[i])
2546                         ulds[i].state_change(adap->uld_handle[i], new_state);
2547         mutex_unlock(&uld_mutex);
2548 }
2549
2550 /**
2551  *      cxgb4_register_uld - register an upper-layer driver
2552  *      @type: the ULD type
2553  *      @p: the ULD methods
2554  *
2555  *      Registers an upper-layer driver with this driver and notifies the ULD
2556  *      about any presently available devices that support its type.  Returns
2557  *      %-EBUSY if a ULD of the same type is already registered.
2558  */
2559 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2560 {
2561         int ret = 0;
2562         struct adapter *adap;
2563
2564         if (type >= CXGB4_ULD_MAX)
2565                 return -EINVAL;
2566         mutex_lock(&uld_mutex);
2567         if (ulds[type].add) {
2568                 ret = -EBUSY;
2569                 goto out;
2570         }
2571         ulds[type] = *p;
2572         list_for_each_entry(adap, &adapter_list, list_node)
2573                 uld_attach(adap, type);
2574 out:    mutex_unlock(&uld_mutex);
2575         return ret;
2576 }
2577 EXPORT_SYMBOL(cxgb4_register_uld);
2578
2579 /**
2580  *      cxgb4_unregister_uld - unregister an upper-layer driver
2581  *      @type: the ULD type
2582  *
2583  *      Unregisters an existing upper-layer driver.
2584  */
2585 int cxgb4_unregister_uld(enum cxgb4_uld type)
2586 {
2587         struct adapter *adap;
2588
2589         if (type >= CXGB4_ULD_MAX)
2590                 return -EINVAL;
2591         mutex_lock(&uld_mutex);
2592         list_for_each_entry(adap, &adapter_list, list_node)
2593                 adap->uld_handle[type] = NULL;
2594         ulds[type].add = NULL;
2595         mutex_unlock(&uld_mutex);
2596         return 0;
2597 }
2598 EXPORT_SYMBOL(cxgb4_unregister_uld);
2599
2600 #if IS_ENABLED(CONFIG_IPV6)
2601 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2602                                    unsigned long event, void *data)
2603 {
2604         struct inet6_ifaddr *ifa = data;
2605         struct net_device *event_dev = ifa->idev->dev;
2606         const struct device *parent = NULL;
2607 #if IS_ENABLED(CONFIG_BONDING)
2608         struct adapter *adap;
2609 #endif
2610         if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2611                 event_dev = vlan_dev_real_dev(event_dev);
2612 #if IS_ENABLED(CONFIG_BONDING)
2613         if (event_dev->flags & IFF_MASTER) {
2614                 list_for_each_entry(adap, &adapter_list, list_node) {
2615                         switch (event) {
2616                         case NETDEV_UP:
2617                                 cxgb4_clip_get(adap->port[0],
2618                                                (const u32 *)ifa, 1);
2619                                 break;
2620                         case NETDEV_DOWN:
2621                                 cxgb4_clip_release(adap->port[0],
2622                                                    (const u32 *)ifa, 1);
2623                                 break;
2624                         default:
2625                                 break;
2626                         }
2627                 }
2628                 return NOTIFY_OK;
2629         }
2630 #endif
2631
2632         if (event_dev)
2633                 parent = event_dev->dev.parent;
2634
2635         if (parent && parent->driver == &cxgb4_driver.driver) {
2636                 switch (event) {
2637                 case NETDEV_UP:
2638                         cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2639                         break;
2640                 case NETDEV_DOWN:
2641                         cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2642                         break;
2643                 default:
2644                         break;
2645                 }
2646         }
2647         return NOTIFY_OK;
2648 }
2649
2650 static bool inet6addr_registered;
2651 static struct notifier_block cxgb4_inet6addr_notifier = {
2652         .notifier_call = cxgb4_inet6addr_handler
2653 };
2654
2655 static void update_clip(const struct adapter *adap)
2656 {
2657         int i;
2658         struct net_device *dev;
2659         int ret;
2660
2661         rcu_read_lock();
2662
2663         for (i = 0; i < MAX_NPORTS; i++) {
2664                 dev = adap->port[i];
2665                 ret = 0;
2666
2667                 if (dev)
2668                         ret = cxgb4_update_root_dev_clip(dev);
2669
2670                 if (ret < 0)
2671                         break;
2672         }
2673         rcu_read_unlock();
2674 }
2675 #endif /* IS_ENABLED(CONFIG_IPV6) */
2676
2677 /**
2678  *      cxgb_up - enable the adapter
2679  *      @adap: adapter being enabled
2680  *
2681  *      Called when the first port is enabled, this function performs the
2682  *      actions necessary to make an adapter operational, such as completing
2683  *      the initialization of HW modules, and enabling interrupts.
2684  *
2685  *      Must be called with the rtnl lock held.
2686  */
2687 static int cxgb_up(struct adapter *adap)
2688 {
2689         int err;
2690
2691         err = setup_sge_queues(adap);
2692         if (err)
2693                 goto out;
2694         err = setup_rss(adap);
2695         if (err)
2696                 goto freeq;
2697
2698         if (adap->flags & USING_MSIX) {
2699                 name_msix_vecs(adap);
2700                 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2701                                   adap->msix_info[0].desc, adap);
2702                 if (err)
2703                         goto irq_err;
2704
2705                 err = request_msix_queue_irqs(adap);
2706                 if (err) {
2707                         free_irq(adap->msix_info[0].vec, adap);
2708                         goto irq_err;
2709                 }
2710         } else {
2711                 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2712                                   (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2713                                   adap->port[0]->name, adap);
2714                 if (err)
2715                         goto irq_err;
2716         }
2717         enable_rx(adap);
2718         t4_sge_start(adap);
2719         t4_intr_enable(adap);
2720         adap->flags |= FULL_INIT_DONE;
2721         notify_ulds(adap, CXGB4_STATE_UP);
2722 #if IS_ENABLED(CONFIG_IPV6)
2723         update_clip(adap);
2724 #endif
2725  out:
2726         return err;
2727  irq_err:
2728         dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2729  freeq:
2730         t4_free_sge_resources(adap);
2731         goto out;
2732 }
2733
2734 static void cxgb_down(struct adapter *adapter)
2735 {
2736         cancel_work_sync(&adapter->tid_release_task);
2737         cancel_work_sync(&adapter->db_full_task);
2738         cancel_work_sync(&adapter->db_drop_task);
2739         adapter->tid_release_task_busy = false;
2740         adapter->tid_release_head = NULL;
2741
2742         t4_sge_stop(adapter);
2743         t4_free_sge_resources(adapter);
2744         adapter->flags &= ~FULL_INIT_DONE;
2745 }
2746
2747 /*
2748  * net_device operations
2749  */
2750 static int cxgb_open(struct net_device *dev)
2751 {
2752         int err;
2753         struct port_info *pi = netdev_priv(dev);
2754         struct adapter *adapter = pi->adapter;
2755
2756         netif_carrier_off(dev);
2757
2758         if (!(adapter->flags & FULL_INIT_DONE)) {
2759                 err = cxgb_up(adapter);
2760                 if (err < 0)
2761                         return err;
2762         }
2763
2764         err = link_start(dev);
2765         if (!err)
2766                 netif_tx_start_all_queues(dev);
2767         return err;
2768 }
2769
2770 static int cxgb_close(struct net_device *dev)
2771 {
2772         struct port_info *pi = netdev_priv(dev);
2773         struct adapter *adapter = pi->adapter;
2774
2775         netif_tx_stop_all_queues(dev);
2776         netif_carrier_off(dev);
2777         return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2778 }
2779
2780 /* Return an error number if the indicated filter isn't writable ...
2781  */
2782 static int writable_filter(struct filter_entry *f)
2783 {
2784         if (f->locked)
2785                 return -EPERM;
2786         if (f->pending)
2787                 return -EBUSY;
2788
2789         return 0;
2790 }
2791
2792 /* Delete the filter at the specified index (if valid).  The checks for all
2793  * the common problems with doing this like the filter being locked, currently
2794  * pending in another operation, etc.
2795  */
2796 static int delete_filter(struct adapter *adapter, unsigned int fidx)
2797 {
2798         struct filter_entry *f;
2799         int ret;
2800
2801         if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
2802                 return -EINVAL;
2803
2804         f = &adapter->tids.ftid_tab[fidx];
2805         ret = writable_filter(f);
2806         if (ret)
2807                 return ret;
2808         if (f->valid)
2809                 return del_filter_wr(adapter, fidx);
2810
2811         return 0;
2812 }
2813
2814 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2815                 __be32 sip, __be16 sport, __be16 vlan,
2816                 unsigned int queue, unsigned char port, unsigned char mask)
2817 {
2818         int ret;
2819         struct filter_entry *f;
2820         struct adapter *adap;
2821         int i;
2822         u8 *val;
2823
2824         adap = netdev2adap(dev);
2825
2826         /* Adjust stid to correct filter index */
2827         stid -= adap->tids.sftid_base;
2828         stid += adap->tids.nftids;
2829
2830         /* Check to make sure the filter requested is writable ...
2831          */
2832         f = &adap->tids.ftid_tab[stid];
2833         ret = writable_filter(f);
2834         if (ret)
2835                 return ret;
2836
2837         /* Clear out any old resources being used by the filter before
2838          * we start constructing the new filter.
2839          */
2840         if (f->valid)
2841                 clear_filter(adap, f);
2842
2843         /* Clear out filter specifications */
2844         memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2845         f->fs.val.lport = cpu_to_be16(sport);
2846         f->fs.mask.lport  = ~0;
2847         val = (u8 *)&sip;
2848         if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2849                 for (i = 0; i < 4; i++) {
2850                         f->fs.val.lip[i] = val[i];
2851                         f->fs.mask.lip[i] = ~0;
2852                 }
2853                 if (adap->params.tp.vlan_pri_map & PORT_F) {
2854                         f->fs.val.iport = port;
2855                         f->fs.mask.iport = mask;
2856                 }
2857         }
2858
2859         if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2860                 f->fs.val.proto = IPPROTO_TCP;
2861                 f->fs.mask.proto = ~0;
2862         }
2863
2864         f->fs.dirsteer = 1;
2865         f->fs.iq = queue;
2866         /* Mark filter as locked */
2867         f->locked = 1;
2868         f->fs.rpttid = 1;
2869
2870         ret = set_filter_wr(adap, stid);
2871         if (ret) {
2872                 clear_filter(adap, f);
2873                 return ret;
2874         }
2875
2876         return 0;
2877 }
2878 EXPORT_SYMBOL(cxgb4_create_server_filter);
2879
2880 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2881                 unsigned int queue, bool ipv6)
2882 {
2883         int ret;
2884         struct filter_entry *f;
2885         struct adapter *adap;
2886
2887         adap = netdev2adap(dev);
2888
2889         /* Adjust stid to correct filter index */
2890         stid -= adap->tids.sftid_base;
2891         stid += adap->tids.nftids;
2892
2893         f = &adap->tids.ftid_tab[stid];
2894         /* Unlock the filter */
2895         f->locked = 0;
2896
2897         ret = delete_filter(adap, stid);
2898         if (ret)
2899                 return ret;
2900
2901         return 0;
2902 }
2903 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2904
2905 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2906                                                 struct rtnl_link_stats64 *ns)
2907 {
2908         struct port_stats stats;
2909         struct port_info *p = netdev_priv(dev);
2910         struct adapter *adapter = p->adapter;
2911
2912         /* Block retrieving statistics during EEH error
2913          * recovery. Otherwise, the recovery might fail
2914          * and the PCI device will be removed permanently
2915          */
2916         spin_lock(&adapter->stats_lock);
2917         if (!netif_device_present(dev)) {
2918                 spin_unlock(&adapter->stats_lock);
2919                 return ns;
2920         }
2921         t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2922                                  &p->stats_base);
2923         spin_unlock(&adapter->stats_lock);
2924
2925         ns->tx_bytes   = stats.tx_octets;
2926         ns->tx_packets = stats.tx_frames;
2927         ns->rx_bytes   = stats.rx_octets;
2928         ns->rx_packets = stats.rx_frames;
2929         ns->multicast  = stats.rx_mcast_frames;
2930
2931         /* detailed rx_errors */
2932         ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2933                                stats.rx_runt;
2934         ns->rx_over_errors   = 0;
2935         ns->rx_crc_errors    = stats.rx_fcs_err;
2936         ns->rx_frame_errors  = stats.rx_symbol_err;
2937         ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
2938                                stats.rx_ovflow2 + stats.rx_ovflow3 +
2939                                stats.rx_trunc0 + stats.rx_trunc1 +
2940                                stats.rx_trunc2 + stats.rx_trunc3;
2941         ns->rx_missed_errors = 0;
2942
2943         /* detailed tx_errors */
2944         ns->tx_aborted_errors   = 0;
2945         ns->tx_carrier_errors   = 0;
2946         ns->tx_fifo_errors      = 0;
2947         ns->tx_heartbeat_errors = 0;
2948         ns->tx_window_errors    = 0;
2949
2950         ns->tx_errors = stats.tx_error_frames;
2951         ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2952                 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2953         return ns;
2954 }
2955
2956 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2957 {
2958         unsigned int mbox;
2959         int ret = 0, prtad, devad;
2960         struct port_info *pi = netdev_priv(dev);
2961         struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2962
2963         switch (cmd) {
2964         case SIOCGMIIPHY:
2965                 if (pi->mdio_addr < 0)
2966                         return -EOPNOTSUPP;
2967                 data->phy_id = pi->mdio_addr;
2968                 break;
2969         case SIOCGMIIREG:
2970         case SIOCSMIIREG:
2971                 if (mdio_phy_id_is_c45(data->phy_id)) {
2972                         prtad = mdio_phy_id_prtad(data->phy_id);
2973                         devad = mdio_phy_id_devad(data->phy_id);
2974                 } else if (data->phy_id < 32) {
2975                         prtad = data->phy_id;
2976                         devad = 0;
2977                         data->reg_num &= 0x1f;
2978                 } else
2979                         return -EINVAL;
2980
2981                 mbox = pi->adapter->pf;
2982                 if (cmd == SIOCGMIIREG)
2983                         ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2984                                          data->reg_num, &data->val_out);
2985                 else
2986                         ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2987                                          data->reg_num, data->val_in);
2988                 break;
2989         case SIOCGHWTSTAMP:
2990                 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2991                                     sizeof(pi->tstamp_config)) ?
2992                         -EFAULT : 0;
2993         case SIOCSHWTSTAMP:
2994                 if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2995                                    sizeof(pi->tstamp_config)))
2996                         return -EFAULT;
2997
2998                 switch (pi->tstamp_config.rx_filter) {
2999                 case HWTSTAMP_FILTER_NONE:
3000                         pi->rxtstamp = false;
3001                         break;
3002                 case HWTSTAMP_FILTER_ALL:
3003                         pi->rxtstamp = true;
3004                         break;
3005                 default:
3006                         pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
3007                         return -ERANGE;
3008                 }
3009
3010                 return copy_to_user(req->ifr_data, &pi->tstamp_config,
3011                                     sizeof(pi->tstamp_config)) ?
3012                         -EFAULT : 0;
3013         default:
3014                 return -EOPNOTSUPP;
3015         }
3016         return ret;
3017 }
3018
3019 static void cxgb_set_rxmode(struct net_device *dev)
3020 {
3021         /* unfortunately we can't return errors to the stack */
3022         set_rxmode(dev, -1, false);
3023 }
3024
3025 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
3026 {
3027         int ret;
3028         struct port_info *pi = netdev_priv(dev);
3029
3030         if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
3031                 return -EINVAL;
3032         ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
3033                             -1, -1, -1, true);
3034         if (!ret)
3035                 dev->mtu = new_mtu;
3036         return ret;
3037 }
3038
3039 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3040 {
3041         int ret;
3042         struct sockaddr *addr = p;
3043         struct port_info *pi = netdev_priv(dev);
3044
3045         if (!is_valid_ether_addr(addr->sa_data))
3046                 return -EADDRNOTAVAIL;
3047
3048         ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
3049                             pi->xact_addr_filt, addr->sa_data, true, true);
3050         if (ret < 0)
3051                 return ret;
3052
3053         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3054         pi->xact_addr_filt = ret;
3055         return 0;
3056 }
3057
3058 #ifdef CONFIG_NET_POLL_CONTROLLER
3059 static void cxgb_netpoll(struct net_device *dev)
3060 {
3061         struct port_info *pi = netdev_priv(dev);
3062         struct adapter *adap = pi->adapter;
3063
3064         if (adap->flags & USING_MSIX) {
3065                 int i;
3066                 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3067
3068                 for (i = pi->nqsets; i; i--, rx++)
3069                         t4_sge_intr_msix(0, &rx->rspq);
3070         } else
3071                 t4_intr_handler(adap)(0, adap);
3072 }
3073 #endif
3074
3075 static const struct net_device_ops cxgb4_netdev_ops = {
3076         .ndo_open             = cxgb_open,
3077         .ndo_stop             = cxgb_close,
3078         .ndo_start_xmit       = t4_eth_xmit,
3079         .ndo_select_queue     = cxgb_select_queue,
3080         .ndo_get_stats64      = cxgb_get_stats,
3081         .ndo_set_rx_mode      = cxgb_set_rxmode,
3082         .ndo_set_mac_address  = cxgb_set_mac_addr,
3083         .ndo_set_features     = cxgb_set_features,
3084         .ndo_validate_addr    = eth_validate_addr,
3085         .ndo_do_ioctl         = cxgb_ioctl,
3086         .ndo_change_mtu       = cxgb_change_mtu,
3087 #ifdef CONFIG_NET_POLL_CONTROLLER
3088         .ndo_poll_controller  = cxgb_netpoll,
3089 #endif
3090 #ifdef CONFIG_CHELSIO_T4_FCOE
3091         .ndo_fcoe_enable      = cxgb_fcoe_enable,
3092         .ndo_fcoe_disable     = cxgb_fcoe_disable,
3093 #endif /* CONFIG_CHELSIO_T4_FCOE */
3094 #ifdef CONFIG_NET_RX_BUSY_POLL
3095         .ndo_busy_poll        = cxgb_busy_poll,
3096 #endif
3097
3098 };
3099
3100 void t4_fatal_err(struct adapter *adap)
3101 {
3102         t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
3103         t4_intr_disable(adap);
3104         dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3105 }
3106
3107 static void setup_memwin(struct adapter *adap)
3108 {
3109         u32 nic_win_base = t4_get_util_window(adap);
3110
3111         t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3112 }
3113
3114 static void setup_memwin_rdma(struct adapter *adap)
3115 {
3116         if (adap->vres.ocq.size) {
3117                 u32 start;
3118                 unsigned int sz_kb;
3119
3120                 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3121                 start &= PCI_BASE_ADDRESS_MEM_MASK;
3122                 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3123                 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3124                 t4_write_reg(adap,
3125                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3126                              start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3127                 t4_write_reg(adap,
3128                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3129                              adap->vres.ocq.start);
3130                 t4_read_reg(adap,
3131                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3132         }
3133 }
3134
3135 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3136 {
3137         u32 v;
3138         int ret;
3139
3140         /* get device capabilities */
3141         memset(c, 0, sizeof(*c));
3142         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3143                                FW_CMD_REQUEST_F | FW_CMD_READ_F);
3144         c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3145         ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3146         if (ret < 0)
3147                 return ret;
3148
3149         /* select capabilities we'll be using */
3150         if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
3151                 if (!vf_acls)
3152                         c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
3153                 else
3154                         c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
3155         } else if (vf_acls) {
3156                 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
3157                 return ret;
3158         }
3159         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3160                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3161         ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3162         if (ret < 0)
3163                 return ret;
3164
3165         ret = t4_config_glbl_rss(adap, adap->pf,
3166                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3167                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3168                                  FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3169         if (ret < 0)
3170                 return ret;
3171
3172         ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3173                           MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3174                           FW_CMD_CAP_PF);
3175         if (ret < 0)
3176                 return ret;
3177
3178         t4_sge_init(adap);
3179
3180         /* tweak some settings */
3181         t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3182         t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3183         t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3184         v = t4_read_reg(adap, TP_PIO_DATA_A);
3185         t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3186
3187         /* first 4 Tx modulation queues point to consecutive Tx channels */
3188         adap->params.tp.tx_modq_map = 0xE4;
3189         t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3190                      TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3191
3192         /* associate each Tx modulation queue with consecutive Tx channels */
3193         v = 0x84218421;
3194         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3195                           &v, 1, TP_TX_SCHED_HDR_A);
3196         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3197                           &v, 1, TP_TX_SCHED_FIFO_A);
3198         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3199                           &v, 1, TP_TX_SCHED_PCMD_A);
3200
3201 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3202         if (is_offload(adap)) {
3203                 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3204                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3205                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3206                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3207                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3208                 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3209                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3210                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3211                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3212                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3213         }
3214
3215         /* get basic stuff going */
3216         return t4_early_init(adap, adap->pf);
3217 }
3218
3219 /*
3220  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3221  */
3222 #define MAX_ATIDS 8192U
3223
3224 /*
3225  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3226  *
3227  * If the firmware we're dealing with has Configuration File support, then
3228  * we use that to perform all configuration
3229  */
3230
3231 /*
3232  * Tweak configuration based on module parameters, etc.  Most of these have
3233  * defaults assigned to them by Firmware Configuration Files (if we're using
3234  * them) but need to be explicitly set if we're using hard-coded
3235  * initialization.  But even in the case of using Firmware Configuration
3236  * Files, we'd like to expose the ability to change these via module
3237  * parameters so these are essentially common tweaks/settings for
3238  * Configuration Files and hard-coded initialization ...
3239  */
3240 static int adap_init0_tweaks(struct adapter *adapter)
3241 {
3242         /*
3243          * Fix up various Host-Dependent Parameters like Page Size, Cache
3244          * Line Size, etc.  The firmware default is for a 4KB Page Size and
3245          * 64B Cache Line Size ...
3246          */
3247         t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3248
3249         /*
3250          * Process module parameters which affect early initialization.
3251          */
3252         if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3253                 dev_err(&adapter->pdev->dev,
3254                         "Ignoring illegal rx_dma_offset=%d, using 2\n",
3255                         rx_dma_offset);
3256                 rx_dma_offset = 2;
3257         }
3258         t4_set_reg_field(adapter, SGE_CONTROL_A,
3259                          PKTSHIFT_V(PKTSHIFT_M),
3260                          PKTSHIFT_V(rx_dma_offset));
3261
3262         /*
3263          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3264          * adds the pseudo header itself.
3265          */
3266         t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3267                                CSUM_HAS_PSEUDO_HDR_F, 0);
3268
3269         return 0;
3270 }
3271
3272 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3273  * unto themselves and they contain their own firmware to perform their
3274  * tasks ...
3275  */
3276 static int phy_aq1202_version(const u8 *phy_fw_data,
3277                               size_t phy_fw_size)
3278 {
3279         int offset;
3280
3281         /* At offset 0x8 you're looking for the primary image's
3282          * starting offset which is 3 Bytes wide
3283          *
3284          * At offset 0xa of the primary image, you look for the offset
3285          * of the DRAM segment which is 3 Bytes wide.
3286          *
3287          * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3288          * wide
3289          */
3290         #define be16(__p) (((__p)[0] << 8) | (__p)[1])
3291         #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3292         #define le24(__p) (le16(__p) | ((__p)[2] << 16))
3293
3294         offset = le24(phy_fw_data + 0x8) << 12;
3295         offset = le24(phy_fw_data + offset + 0xa);
3296         return be16(phy_fw_data + offset + 0x27e);
3297
3298         #undef be16
3299         #undef le16
3300         #undef le24
3301 }
3302
3303 static struct info_10gbt_phy_fw {
3304         unsigned int phy_fw_id;         /* PCI Device ID */
3305         char *phy_fw_file;              /* /lib/firmware/ PHY Firmware file */
3306         int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3307         int phy_flash;                  /* Has FLASH for PHY Firmware */
3308 } phy_info_array[] = {
3309         {
3310                 PHY_AQ1202_DEVICEID,
3311                 PHY_AQ1202_FIRMWARE,
3312                 phy_aq1202_version,
3313                 1,
3314         },
3315         {
3316                 PHY_BCM84834_DEVICEID,
3317                 PHY_BCM84834_FIRMWARE,
3318                 NULL,
3319                 0,
3320         },
3321         { 0, NULL, NULL },
3322 };
3323
3324 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3325 {
3326         int i;
3327
3328         for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3329                 if (phy_info_array[i].phy_fw_id == devid)
3330                         return &phy_info_array[i];
3331         }
3332         return NULL;
3333 }
3334
3335 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3336  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3337  * we return a negative error number.  If we transfer new firmware we return 1
3338  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3339  */
3340 static int adap_init0_phy(struct adapter *adap)
3341 {
3342         const struct firmware *phyf;
3343         int ret;
3344         struct info_10gbt_phy_fw *phy_info;
3345
3346         /* Use the device ID to determine which PHY file to flash.
3347          */
3348         phy_info = find_phy_info(adap->pdev->device);
3349         if (!phy_info) {
3350                 dev_warn(adap->pdev_dev,
3351                          "No PHY Firmware file found for this PHY\n");
3352                 return -EOPNOTSUPP;
3353         }
3354
3355         /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3356          * use that. The adapter firmware provides us with a memory buffer
3357          * where we can load a PHY firmware file from the host if we want to
3358          * override the PHY firmware File in flash.
3359          */
3360         ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3361                                       adap->pdev_dev);
3362         if (ret < 0) {
3363                 /* For adapters without FLASH attached to PHY for their
3364                  * firmware, it's obviously a fatal error if we can't get the
3365                  * firmware to the adapter.  For adapters with PHY firmware
3366                  * FLASH storage, it's worth a warning if we can't find the
3367                  * PHY Firmware but we'll neuter the error ...
3368                  */
3369                 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3370                         "/lib/firmware/%s, error %d\n",
3371                         phy_info->phy_fw_file, -ret);
3372                 if (phy_info->phy_flash) {
3373                         int cur_phy_fw_ver = 0;
3374
3375                         t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3376                         dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3377                                  "FLASH copy, version %#x\n", cur_phy_fw_ver);
3378                         ret = 0;
3379                 }
3380
3381                 return ret;
3382         }
3383
3384         /* Load PHY Firmware onto adapter.
3385          */
3386         ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3387                              phy_info->phy_fw_version,
3388                              (u8 *)phyf->data, phyf->size);
3389         if (ret < 0)
3390                 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3391                         -ret);
3392         else if (ret > 0) {
3393                 int new_phy_fw_ver = 0;
3394
3395                 if (phy_info->phy_fw_version)
3396                         new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3397                                                                   phyf->size);
3398                 dev_info(adap->pdev_dev, "Successfully transferred PHY "
3399                          "Firmware /lib/firmware/%s, version %#x\n",
3400                          phy_info->phy_fw_file, new_phy_fw_ver);
3401         }
3402
3403         release_firmware(phyf);
3404
3405         return ret;
3406 }
3407
3408 /*
3409  * Attempt to initialize the adapter via a Firmware Configuration File.
3410  */
3411 static int adap_init0_config(struct adapter *adapter, int reset)
3412 {
3413         struct fw_caps_config_cmd caps_cmd;
3414         const struct firmware *cf;
3415         unsigned long mtype = 0, maddr = 0;
3416         u32 finiver, finicsum, cfcsum;
3417         int ret;
3418         int config_issued = 0;
3419         char *fw_config_file, fw_config_file_path[256];
3420         char *config_name = NULL;
3421
3422         /*
3423          * Reset device if necessary.
3424          */
3425         if (reset) {
3426                 ret = t4_fw_reset(adapter, adapter->mbox,
3427                                   PIORSTMODE_F | PIORST_F);
3428                 if (ret < 0)
3429                         goto bye;
3430         }
3431
3432         /* If this is a 10Gb/s-BT adapter make sure the chip-external
3433          * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
3434          * to be performed after any global adapter RESET above since some
3435          * PHYs only have local RAM copies of the PHY firmware.
3436          */
3437         if (is_10gbt_device(adapter->pdev->device)) {
3438                 ret = adap_init0_phy(adapter);
3439                 if (ret < 0)
3440                         goto bye;
3441         }
3442         /*
3443          * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3444          * then use that.  Otherwise, use the configuration file stored
3445          * in the adapter flash ...
3446          */
3447         switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3448         case CHELSIO_T4:
3449                 fw_config_file = FW4_CFNAME;
3450                 break;
3451         case CHELSIO_T5:
3452                 fw_config_file = FW5_CFNAME;
3453                 break;
3454         case CHELSIO_T6:
3455                 fw_config_file = FW6_CFNAME;
3456                 break;
3457         default:
3458                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3459                        adapter->pdev->device);
3460                 ret = -EINVAL;
3461                 goto bye;
3462         }
3463
3464         ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3465         if (ret < 0) {
3466                 config_name = "On FLASH";
3467                 mtype = FW_MEMTYPE_CF_FLASH;
3468                 maddr = t4_flash_cfg_addr(adapter);
3469         } else {
3470                 u32 params[7], val[7];
3471
3472                 sprintf(fw_config_file_path,
3473                         "/lib/firmware/%s", fw_config_file);
3474                 config_name = fw_config_file_path;
3475
3476                 if (cf->size >= FLASH_CFG_MAX_SIZE)
3477                         ret = -ENOMEM;
3478                 else {
3479                         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3480                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3481                         ret = t4_query_params(adapter, adapter->mbox,
3482                                               adapter->pf, 0, 1, params, val);
3483                         if (ret == 0) {
3484                                 /*
3485                                  * For t4_memory_rw() below addresses and
3486                                  * sizes have to be in terms of multiples of 4
3487                                  * bytes.  So, if the Configuration File isn't
3488                                  * a multiple of 4 bytes in length we'll have
3489                                  * to write that out separately since we can't
3490                                  * guarantee that the bytes following the
3491                                  * residual byte in the buffer returned by
3492                                  * request_firmware() are zeroed out ...
3493                                  */
3494                                 size_t resid = cf->size & 0x3;
3495                                 size_t size = cf->size & ~0x3;
3496                                 __be32 *data = (__be32 *)cf->data;
3497
3498                                 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3499                                 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3500
3501                                 spin_lock(&adapter->win0_lock);
3502                                 ret = t4_memory_rw(adapter, 0, mtype, maddr,
3503                                                    size, data, T4_MEMORY_WRITE);
3504                                 if (ret == 0 && resid != 0) {
3505                                         union {
3506                                                 __be32 word;
3507                                                 char buf[4];
3508                                         } last;
3509                                         int i;
3510
3511                                         last.word = data[size >> 2];
3512                                         for (i = resid; i < 4; i++)
3513                                                 last.buf[i] = 0;
3514                                         ret = t4_memory_rw(adapter, 0, mtype,
3515                                                            maddr + size,
3516                                                            4, &last.word,
3517                                                            T4_MEMORY_WRITE);
3518                                 }
3519                                 spin_unlock(&adapter->win0_lock);
3520                         }
3521                 }
3522
3523                 release_firmware(cf);
3524                 if (ret)
3525                         goto bye;
3526         }
3527
3528         /*
3529          * Issue a Capability Configuration command to the firmware to get it
3530          * to parse the Configuration File.  We don't use t4_fw_config_file()
3531          * because we want the ability to modify various features after we've
3532          * processed the configuration file ...
3533          */
3534         memset(&caps_cmd, 0, sizeof(caps_cmd));
3535         caps_cmd.op_to_write =
3536                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3537                       FW_CMD_REQUEST_F |
3538                       FW_CMD_READ_F);
3539         caps_cmd.cfvalid_to_len16 =
3540                 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3541                       FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3542                       FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3543                       FW_LEN16(caps_cmd));
3544         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3545                          &caps_cmd);
3546
3547         /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3548          * Configuration File in FLASH), our last gasp effort is to use the
3549          * Firmware Configuration File which is embedded in the firmware.  A
3550          * very few early versions of the firmware didn't have one embedded
3551          * but we can ignore those.
3552          */
3553         if (ret == -ENOENT) {
3554                 memset(&caps_cmd, 0, sizeof(caps_cmd));
3555                 caps_cmd.op_to_write =
3556                         htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3557                                         FW_CMD_REQUEST_F |
3558                                         FW_CMD_READ_F);
3559                 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3560                 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3561                                 sizeof(caps_cmd), &caps_cmd);
3562                 config_name = "Firmware Default";
3563         }
3564
3565         config_issued = 1;
3566         if (ret < 0)
3567                 goto bye;
3568
3569         finiver = ntohl(caps_cmd.finiver);
3570         finicsum = ntohl(caps_cmd.finicsum);
3571         cfcsum = ntohl(caps_cmd.cfcsum);
3572         if (finicsum != cfcsum)
3573                 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3574                          "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3575                          finicsum, cfcsum);
3576
3577         /*
3578          * And now tell the firmware to use the configuration we just loaded.
3579          */
3580         caps_cmd.op_to_write =
3581                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3582                       FW_CMD_REQUEST_F |
3583                       FW_CMD_WRITE_F);
3584         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3585         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3586                          NULL);
3587         if (ret < 0)
3588                 goto bye;
3589
3590         /*
3591          * Tweak configuration based on system architecture, module
3592          * parameters, etc.
3593          */
3594         ret = adap_init0_tweaks(adapter);
3595         if (ret < 0)
3596                 goto bye;
3597
3598         /*
3599          * And finally tell the firmware to initialize itself using the
3600          * parameters from the Configuration File.
3601          */
3602         ret = t4_fw_initialize(adapter, adapter->mbox);
3603         if (ret < 0)
3604                 goto bye;
3605
3606         /* Emit Firmware Configuration File information and return
3607          * successfully.
3608          */
3609         dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3610                  "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3611                  config_name, finiver, cfcsum);
3612         return 0;
3613
3614         /*
3615          * Something bad happened.  Return the error ...  (If the "error"
3616          * is that there's no Configuration File on the adapter we don't
3617          * want to issue a warning since this is fairly common.)
3618          */
3619 bye:
3620         if (config_issued && ret != -ENOENT)
3621                 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3622                          config_name, -ret);
3623         return ret;
3624 }
3625
3626 static struct fw_info fw_info_array[] = {
3627         {
3628                 .chip = CHELSIO_T4,
3629                 .fs_name = FW4_CFNAME,
3630                 .fw_mod_name = FW4_FNAME,
3631                 .fw_hdr = {
3632                         .chip = FW_HDR_CHIP_T4,
3633                         .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3634                         .intfver_nic = FW_INTFVER(T4, NIC),
3635                         .intfver_vnic = FW_INTFVER(T4, VNIC),
3636                         .intfver_ri = FW_INTFVER(T4, RI),
3637                         .intfver_iscsi = FW_INTFVER(T4, ISCSI),
3638                         .intfver_fcoe = FW_INTFVER(T4, FCOE),
3639                 },
3640         }, {
3641                 .chip = CHELSIO_T5,
3642                 .fs_name = FW5_CFNAME,
3643                 .fw_mod_name = FW5_FNAME,
3644                 .fw_hdr = {
3645                         .chip = FW_HDR_CHIP_T5,
3646                         .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3647                         .intfver_nic = FW_INTFVER(T5, NIC),
3648                         .intfver_vnic = FW_INTFVER(T5, VNIC),
3649                         .intfver_ri = FW_INTFVER(T5, RI),
3650                         .intfver_iscsi = FW_INTFVER(T5, ISCSI),
3651                         .intfver_fcoe = FW_INTFVER(T5, FCOE),
3652                 },
3653         }, {
3654                 .chip = CHELSIO_T6,
3655                 .fs_name = FW6_CFNAME,
3656                 .fw_mod_name = FW6_FNAME,
3657                 .fw_hdr = {
3658                         .chip = FW_HDR_CHIP_T6,
3659                         .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3660                         .intfver_nic = FW_INTFVER(T6, NIC),
3661                         .intfver_vnic = FW_INTFVER(T6, VNIC),
3662                         .intfver_ofld = FW_INTFVER(T6, OFLD),
3663                         .intfver_ri = FW_INTFVER(T6, RI),
3664                         .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3665                         .intfver_iscsi = FW_INTFVER(T6, ISCSI),
3666                         .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3667                         .intfver_fcoe = FW_INTFVER(T6, FCOE),
3668                 },
3669         }
3670
3671 };
3672
3673 static struct fw_info *find_fw_info(int chip)
3674 {
3675         int i;
3676
3677         for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3678                 if (fw_info_array[i].chip == chip)
3679                         return &fw_info_array[i];
3680         }
3681         return NULL;
3682 }
3683
3684 /*
3685  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3686  */
3687 static int adap_init0(struct adapter *adap)
3688 {
3689         int ret;
3690         u32 v, port_vec;
3691         enum dev_state state;
3692         u32 params[7], val[7];
3693         struct fw_caps_config_cmd caps_cmd;
3694         int reset = 1;
3695
3696         /* Grab Firmware Device Log parameters as early as possible so we have
3697          * access to it for debugging, etc.
3698          */
3699         ret = t4_init_devlog_params(adap);
3700         if (ret < 0)
3701                 return ret;
3702
3703         /* Contact FW, advertising Master capability */
3704         ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
3705         if (ret < 0) {
3706                 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3707                         ret);
3708                 return ret;
3709         }
3710         if (ret == adap->mbox)
3711                 adap->flags |= MASTER_PF;
3712
3713         /*
3714          * If we're the Master PF Driver and the device is uninitialized,
3715          * then let's consider upgrading the firmware ...  (We always want
3716          * to check the firmware version number in order to A. get it for
3717          * later reporting and B. to warn if the currently loaded firmware
3718          * is excessively mismatched relative to the driver.)
3719          */
3720         t4_get_fw_version(adap, &adap->params.fw_vers);
3721         t4_get_tp_version(adap, &adap->params.tp_vers);
3722         ret = t4_check_fw_version(adap);
3723         /* If firmware is too old (not supported by driver) force an update. */
3724         if (ret)
3725                 state = DEV_STATE_UNINIT;
3726         if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3727                 struct fw_info *fw_info;
3728                 struct fw_hdr *card_fw;
3729                 const struct firmware *fw;
3730                 const u8 *fw_data = NULL;
3731                 unsigned int fw_size = 0;
3732
3733                 /* This is the firmware whose headers the driver was compiled
3734                  * against
3735                  */
3736                 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3737                 if (fw_info == NULL) {
3738                         dev_err(adap->pdev_dev,
3739                                 "unable to get firmware info for chip %d.\n",
3740                                 CHELSIO_CHIP_VERSION(adap->params.chip));
3741                         return -EINVAL;
3742                 }
3743
3744                 /* allocate memory to read the header of the firmware on the
3745                  * card
3746                  */
3747                 card_fw = t4_alloc_mem(sizeof(*card_fw));
3748
3749                 /* Get FW from from /lib/firmware/ */
3750                 ret = request_firmware(&fw, fw_info->fw_mod_name,
3751                                        adap->pdev_dev);
3752                 if (ret < 0) {
3753                         dev_err(adap->pdev_dev,
3754                                 "unable to load firmware image %s, error %d\n",
3755                                 fw_info->fw_mod_name, ret);
3756                 } else {
3757                         fw_data = fw->data;
3758                         fw_size = fw->size;
3759                 }
3760
3761                 /* upgrade FW logic */
3762                 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3763                                  state, &reset);
3764
3765                 /* Cleaning up */
3766                 release_firmware(fw);
3767                 t4_free_mem(card_fw);
3768
3769                 if (ret < 0)
3770                         goto bye;
3771         }
3772
3773         /*
3774          * Grab VPD parameters.  This should be done after we establish a
3775          * connection to the firmware since some of the VPD parameters
3776          * (notably the Core Clock frequency) are retrieved via requests to
3777          * the firmware.  On the other hand, we need these fairly early on
3778          * so we do this right after getting ahold of the firmware.
3779          */
3780         ret = t4_get_vpd_params(adap, &adap->params.vpd);
3781         if (ret < 0)
3782                 goto bye;
3783
3784         /*
3785          * Find out what ports are available to us.  Note that we need to do
3786          * this before calling adap_init0_no_config() since it needs nports
3787          * and portvec ...
3788          */
3789         v =
3790             FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3791             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3792         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3793         if (ret < 0)
3794                 goto bye;
3795
3796         adap->params.nports = hweight32(port_vec);
3797         adap->params.portvec = port_vec;
3798
3799         /* If the firmware is initialized already, emit a simply note to that
3800          * effect. Otherwise, it's time to try initializing the adapter.
3801          */
3802         if (state == DEV_STATE_INIT) {
3803                 dev_info(adap->pdev_dev, "Coming up as %s: "\
3804                          "Adapter already initialized\n",
3805                          adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3806         } else {
3807                 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3808                          "Initializing adapter\n");
3809
3810                 /* Find out whether we're dealing with a version of the
3811                  * firmware which has configuration file support.
3812                  */
3813                 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3814                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3815                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3816                                       params, val);
3817
3818                 /* If the firmware doesn't support Configuration Files,
3819                  * return an error.
3820                  */
3821                 if (ret < 0) {
3822                         dev_err(adap->pdev_dev, "firmware doesn't support "
3823                                 "Firmware Configuration Files\n");
3824                         goto bye;
3825                 }
3826
3827                 /* The firmware provides us with a memory buffer where we can
3828                  * load a Configuration File from the host if we want to
3829                  * override the Configuration File in flash.
3830                  */
3831                 ret = adap_init0_config(adap, reset);
3832                 if (ret == -ENOENT) {
3833                         dev_err(adap->pdev_dev, "no Configuration File "
3834                                 "present on adapter.\n");
3835                         goto bye;
3836                 }
3837                 if (ret < 0) {
3838                         dev_err(adap->pdev_dev, "could not initialize "
3839                                 "adapter, error %d\n", -ret);
3840                         goto bye;
3841                 }
3842         }
3843
3844         /* Give the SGE code a chance to pull in anything that it needs ...
3845          * Note that this must be called after we retrieve our VPD parameters
3846          * in order to know how to convert core ticks to seconds, etc.
3847          */
3848         ret = t4_sge_init(adap);
3849         if (ret < 0)
3850                 goto bye;
3851
3852         if (is_bypass_device(adap->pdev->device))
3853                 adap->params.bypass = 1;
3854
3855         /*
3856          * Grab some of our basic fundamental operating parameters.
3857          */
3858 #define FW_PARAM_DEV(param) \
3859         (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3860         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3861
3862 #define FW_PARAM_PFVF(param) \
3863         FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3864         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
3865         FW_PARAMS_PARAM_Y_V(0) | \
3866         FW_PARAMS_PARAM_Z_V(0)
3867
3868         params[0] = FW_PARAM_PFVF(EQ_START);
3869         params[1] = FW_PARAM_PFVF(L2T_START);
3870         params[2] = FW_PARAM_PFVF(L2T_END);
3871         params[3] = FW_PARAM_PFVF(FILTER_START);
3872         params[4] = FW_PARAM_PFVF(FILTER_END);
3873         params[5] = FW_PARAM_PFVF(IQFLINT_START);
3874         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
3875         if (ret < 0)
3876                 goto bye;
3877         adap->sge.egr_start = val[0];
3878         adap->l2t_start = val[1];
3879         adap->l2t_end = val[2];
3880         adap->tids.ftid_base = val[3];
3881         adap->tids.nftids = val[4] - val[3] + 1;
3882         adap->sge.ingr_start = val[5];
3883
3884         /* qids (ingress/egress) returned from firmware can be anywhere
3885          * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3886          * Hence driver needs to allocate memory for this range to
3887          * store the queue info. Get the highest IQFLINT/EQ index returned
3888          * in FW_EQ_*_CMD.alloc command.
3889          */
3890         params[0] = FW_PARAM_PFVF(EQ_END);
3891         params[1] = FW_PARAM_PFVF(IQFLINT_END);
3892         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3893         if (ret < 0)
3894                 goto bye;
3895         adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3896         adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3897
3898         adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3899                                     sizeof(*adap->sge.egr_map), GFP_KERNEL);
3900         if (!adap->sge.egr_map) {
3901                 ret = -ENOMEM;
3902                 goto bye;
3903         }
3904
3905         adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3906                                      sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3907         if (!adap->sge.ingr_map) {
3908                 ret = -ENOMEM;
3909                 goto bye;
3910         }
3911
3912         /* Allocate the memory for the vaious egress queue bitmaps
3913          * ie starving_fl, txq_maperr and blocked_fl.
3914          */
3915         adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3916                                         sizeof(long), GFP_KERNEL);
3917         if (!adap->sge.starving_fl) {
3918                 ret = -ENOMEM;
3919                 goto bye;
3920         }
3921
3922         adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3923                                        sizeof(long), GFP_KERNEL);
3924         if (!adap->sge.txq_maperr) {
3925                 ret = -ENOMEM;
3926                 goto bye;
3927         }
3928
3929 #ifdef CONFIG_DEBUG_FS
3930         adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3931                                        sizeof(long), GFP_KERNEL);
3932         if (!adap->sge.blocked_fl) {
3933                 ret = -ENOMEM;
3934                 goto bye;
3935         }
3936 #endif
3937
3938         params[0] = FW_PARAM_PFVF(CLIP_START);
3939         params[1] = FW_PARAM_PFVF(CLIP_END);
3940         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3941         if (ret < 0)
3942                 goto bye;
3943         adap->clipt_start = val[0];
3944         adap->clipt_end = val[1];
3945
3946         /* query params related to active filter region */
3947         params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3948         params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3949         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3950         /* If Active filter size is set we enable establishing
3951          * offload connection through firmware work request
3952          */
3953         if ((val[0] != val[1]) && (ret >= 0)) {
3954                 adap->flags |= FW_OFLD_CONN;
3955                 adap->tids.aftid_base = val[0];
3956                 adap->tids.aftid_end = val[1];
3957         }
3958
3959         /* If we're running on newer firmware, let it know that we're
3960          * prepared to deal with encapsulated CPL messages.  Older
3961          * firmware won't understand this and we'll just get
3962          * unencapsulated messages ...
3963          */
3964         params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3965         val[0] = 1;
3966         (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
3967
3968         /*
3969          * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3970          * capability.  Earlier versions of the firmware didn't have the
3971          * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3972          * permission to use ULPTX MEMWRITE DSGL.
3973          */
3974         if (is_t4(adap->params.chip)) {
3975                 adap->params.ulptx_memwrite_dsgl = false;
3976         } else {
3977                 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3978                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3979                                       1, params, val);
3980                 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3981         }
3982
3983         /*
3984          * Get device capabilities so we can determine what resources we need
3985          * to manage.
3986          */
3987         memset(&caps_cmd, 0, sizeof(caps_cmd));
3988         caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3989                                      FW_CMD_REQUEST_F | FW_CMD_READ_F);
3990         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3991         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3992                          &caps_cmd);
3993         if (ret < 0)
3994                 goto bye;
3995
3996         if (caps_cmd.ofldcaps) {
3997                 /* query offload-related parameters */
3998                 params[0] = FW_PARAM_DEV(NTID);
3999                 params[1] = FW_PARAM_PFVF(SERVER_START);
4000                 params[2] = FW_PARAM_PFVF(SERVER_END);
4001                 params[3] = FW_PARAM_PFVF(TDDP_START);
4002                 params[4] = FW_PARAM_PFVF(TDDP_END);
4003                 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4004                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4005                                       params, val);
4006                 if (ret < 0)
4007                         goto bye;
4008                 adap->tids.ntids = val[0];
4009                 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
4010                 adap->tids.stid_base = val[1];
4011                 adap->tids.nstids = val[2] - val[1] + 1;
4012                 /*
4013                  * Setup server filter region. Divide the available filter
4014                  * region into two parts. Regular filters get 1/3rd and server
4015                  * filters get 2/3rd part. This is only enabled if workarond
4016                  * path is enabled.
4017                  * 1. For regular filters.
4018                  * 2. Server filter: This are special filters which are used
4019                  * to redirect SYN packets to offload queue.
4020                  */
4021                 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
4022                         adap->tids.sftid_base = adap->tids.ftid_base +
4023                                         DIV_ROUND_UP(adap->tids.nftids, 3);
4024                         adap->tids.nsftids = adap->tids.nftids -
4025                                          DIV_ROUND_UP(adap->tids.nftids, 3);
4026                         adap->tids.nftids = adap->tids.sftid_base -
4027                                                 adap->tids.ftid_base;
4028                 }
4029                 adap->vres.ddp.start = val[3];
4030                 adap->vres.ddp.size = val[4] - val[3] + 1;
4031                 adap->params.ofldq_wr_cred = val[5];
4032
4033                 adap->params.offload = 1;
4034         }
4035         if (caps_cmd.rdmacaps) {
4036                 params[0] = FW_PARAM_PFVF(STAG_START);
4037                 params[1] = FW_PARAM_PFVF(STAG_END);
4038                 params[2] = FW_PARAM_PFVF(RQ_START);
4039                 params[3] = FW_PARAM_PFVF(RQ_END);
4040                 params[4] = FW_PARAM_PFVF(PBL_START);
4041                 params[5] = FW_PARAM_PFVF(PBL_END);
4042                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4043                                       params, val);
4044                 if (ret < 0)
4045                         goto bye;
4046                 adap->vres.stag.start = val[0];
4047                 adap->vres.stag.size = val[1] - val[0] + 1;
4048                 adap->vres.rq.start = val[2];
4049                 adap->vres.rq.size = val[3] - val[2] + 1;
4050                 adap->vres.pbl.start = val[4];
4051                 adap->vres.pbl.size = val[5] - val[4] + 1;
4052
4053                 params[0] = FW_PARAM_PFVF(SQRQ_START);
4054                 params[1] = FW_PARAM_PFVF(SQRQ_END);
4055                 params[2] = FW_PARAM_PFVF(CQ_START);
4056                 params[3] = FW_PARAM_PFVF(CQ_END);
4057                 params[4] = FW_PARAM_PFVF(OCQ_START);
4058                 params[5] = FW_PARAM_PFVF(OCQ_END);
4059                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4060                                       val);
4061                 if (ret < 0)
4062                         goto bye;
4063                 adap->vres.qp.start = val[0];
4064                 adap->vres.qp.size = val[1] - val[0] + 1;
4065                 adap->vres.cq.start = val[2];
4066                 adap->vres.cq.size = val[3] - val[2] + 1;
4067                 adap->vres.ocq.start = val[4];
4068                 adap->vres.ocq.size = val[5] - val[4] + 1;
4069
4070                 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4071                 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4072                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
4073                                       val);
4074                 if (ret < 0) {
4075                         adap->params.max_ordird_qp = 8;
4076                         adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4077                         ret = 0;
4078                 } else {
4079                         adap->params.max_ordird_qp = val[0];
4080                         adap->params.max_ird_adapter = val[1];
4081                 }
4082                 dev_info(adap->pdev_dev,
4083                          "max_ordird_qp %d max_ird_adapter %d\n",
4084                          adap->params.max_ordird_qp,
4085                          adap->params.max_ird_adapter);
4086         }
4087         if (caps_cmd.iscsicaps) {
4088                 params[0] = FW_PARAM_PFVF(ISCSI_START);
4089                 params[1] = FW_PARAM_PFVF(ISCSI_END);
4090                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4091                                       params, val);
4092                 if (ret < 0)
4093                         goto bye;
4094                 adap->vres.iscsi.start = val[0];
4095                 adap->vres.iscsi.size = val[1] - val[0] + 1;
4096         }
4097 #undef FW_PARAM_PFVF
4098 #undef FW_PARAM_DEV
4099
4100         /* The MTU/MSS Table is initialized by now, so load their values.  If
4101          * we're initializing the adapter, then we'll make any modifications
4102          * we want to the MTU/MSS Table and also initialize the congestion
4103          * parameters.
4104          */
4105         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4106         if (state != DEV_STATE_INIT) {
4107                 int i;
4108
4109                 /* The default MTU Table contains values 1492 and 1500.
4110                  * However, for TCP, it's better to have two values which are
4111                  * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4112                  * This allows us to have a TCP Data Payload which is a
4113                  * multiple of 8 regardless of what combination of TCP Options
4114                  * are in use (always a multiple of 4 bytes) which is
4115                  * important for performance reasons.  For instance, if no
4116                  * options are in use, then we have a 20-byte IP header and a
4117                  * 20-byte TCP header.  In this case, a 1500-byte MSS would
4118                  * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4119                  * which is not a multiple of 8.  So using an MSS of 1488 in
4120                  * this case results in a TCP Data Payload of 1448 bytes which
4121                  * is a multiple of 8.  On the other hand, if 12-byte TCP Time
4122                  * Stamps have been negotiated, then an MTU of 1500 bytes
4123                  * results in a TCP Data Payload of 1448 bytes which, as
4124                  * above, is a multiple of 8 bytes ...
4125                  */
4126                 for (i = 0; i < NMTUS; i++)
4127                         if (adap->params.mtus[i] == 1492) {
4128                                 adap->params.mtus[i] = 1488;
4129                                 break;
4130                         }
4131
4132                 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4133                              adap->params.b_wnd);
4134         }
4135         t4_init_sge_params(adap);
4136         adap->flags |= FW_OK;
4137         t4_init_tp_params(adap);
4138         return 0;
4139
4140         /*
4141          * Something bad happened.  If a command timed out or failed with EIO
4142          * FW does not operate within its spec or something catastrophic
4143          * happened to HW/FW, stop issuing commands.
4144          */
4145 bye:
4146         kfree(adap->sge.egr_map);
4147         kfree(adap->sge.ingr_map);
4148         kfree(adap->sge.starving_fl);
4149         kfree(adap->sge.txq_maperr);
4150 #ifdef CONFIG_DEBUG_FS
4151         kfree(adap->sge.blocked_fl);
4152 #endif
4153         if (ret != -ETIMEDOUT && ret != -EIO)
4154                 t4_fw_bye(adap, adap->mbox);
4155         return ret;
4156 }
4157
4158 /* EEH callbacks */
4159
4160 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4161                                          pci_channel_state_t state)
4162 {
4163         int i;
4164         struct adapter *adap = pci_get_drvdata(pdev);
4165
4166         if (!adap)
4167                 goto out;
4168
4169         rtnl_lock();
4170         adap->flags &= ~FW_OK;
4171         notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4172         spin_lock(&adap->stats_lock);
4173         for_each_port(adap, i) {
4174                 struct net_device *dev = adap->port[i];
4175
4176                 netif_device_detach(dev);
4177                 netif_carrier_off(dev);
4178         }
4179         spin_unlock(&adap->stats_lock);
4180         disable_interrupts(adap);
4181         if (adap->flags & FULL_INIT_DONE)
4182                 cxgb_down(adap);
4183         rtnl_unlock();
4184         if ((adap->flags & DEV_ENABLED)) {
4185                 pci_disable_device(pdev);
4186                 adap->flags &= ~DEV_ENABLED;
4187         }
4188 out:    return state == pci_channel_io_perm_failure ?
4189                 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4190 }
4191
4192 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4193 {
4194         int i, ret;
4195         struct fw_caps_config_cmd c;
4196         struct adapter *adap = pci_get_drvdata(pdev);
4197
4198         if (!adap) {
4199                 pci_restore_state(pdev);
4200                 pci_save_state(pdev);
4201                 return PCI_ERS_RESULT_RECOVERED;
4202         }
4203
4204         if (!(adap->flags & DEV_ENABLED)) {
4205                 if (pci_enable_device(pdev)) {
4206                         dev_err(&pdev->dev, "Cannot reenable PCI "
4207                                             "device after reset\n");
4208                         return PCI_ERS_RESULT_DISCONNECT;
4209                 }
4210                 adap->flags |= DEV_ENABLED;
4211         }
4212
4213         pci_set_master(pdev);
4214         pci_restore_state(pdev);
4215         pci_save_state(pdev);
4216         pci_cleanup_aer_uncorrect_error_status(pdev);
4217
4218         if (t4_wait_dev_ready(adap->regs) < 0)
4219                 return PCI_ERS_RESULT_DISCONNECT;
4220         if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
4221                 return PCI_ERS_RESULT_DISCONNECT;
4222         adap->flags |= FW_OK;
4223         if (adap_init1(adap, &c))
4224                 return PCI_ERS_RESULT_DISCONNECT;
4225
4226         for_each_port(adap, i) {
4227                 struct port_info *p = adap2pinfo(adap, i);
4228
4229                 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
4230                                   NULL, NULL);
4231                 if (ret < 0)
4232                         return PCI_ERS_RESULT_DISCONNECT;
4233                 p->viid = ret;
4234                 p->xact_addr_filt = -1;
4235         }
4236
4237         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4238                      adap->params.b_wnd);
4239         setup_memwin(adap);
4240         if (cxgb_up(adap))
4241                 return PCI_ERS_RESULT_DISCONNECT;
4242         return PCI_ERS_RESULT_RECOVERED;
4243 }
4244
4245 static void eeh_resume(struct pci_dev *pdev)
4246 {
4247         int i;
4248         struct adapter *adap = pci_get_drvdata(pdev);
4249
4250         if (!adap)
4251                 return;
4252
4253         rtnl_lock();
4254         for_each_port(adap, i) {
4255                 struct net_device *dev = adap->port[i];
4256
4257                 if (netif_running(dev)) {
4258                         link_start(dev);
4259                         cxgb_set_rxmode(dev);
4260                 }
4261                 netif_device_attach(dev);
4262         }
4263         rtnl_unlock();
4264 }
4265
4266 static const struct pci_error_handlers cxgb4_eeh = {
4267         .error_detected = eeh_err_detected,
4268         .slot_reset     = eeh_slot_reset,
4269         .resume         = eeh_resume,
4270 };
4271
4272 static inline bool is_x_10g_port(const struct link_config *lc)
4273 {
4274         return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
4275                (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
4276 }
4277
4278 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
4279                              unsigned int us, unsigned int cnt,
4280                              unsigned int size, unsigned int iqe_size)
4281 {
4282         q->adap = adap;
4283         cxgb4_set_rspq_intr_params(q, us, cnt);
4284         q->iqe_len = iqe_size;
4285         q->size = size;
4286 }
4287
4288 /*
4289  * Perform default configuration of DMA queues depending on the number and type
4290  * of ports we found and the number of available CPUs.  Most settings can be
4291  * modified by the admin prior to actual use.
4292  */
4293 static void cfg_queues(struct adapter *adap)
4294 {
4295         struct sge *s = &adap->sge;
4296         int i, n10g = 0, qidx = 0;
4297 #ifndef CONFIG_CHELSIO_T4_DCB
4298         int q10g = 0;
4299 #endif
4300         int ciq_size;
4301
4302         for_each_port(adap, i)
4303                 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4304 #ifdef CONFIG_CHELSIO_T4_DCB
4305         /* For Data Center Bridging support we need to be able to support up
4306          * to 8 Traffic Priorities; each of which will be assigned to its
4307          * own TX Queue in order to prevent Head-Of-Line Blocking.
4308          */
4309         if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4310                 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4311                         MAX_ETH_QSETS, adap->params.nports * 8);
4312                 BUG_ON(1);
4313         }
4314
4315         for_each_port(adap, i) {
4316                 struct port_info *pi = adap2pinfo(adap, i);
4317
4318                 pi->first_qset = qidx;
4319                 pi->nqsets = 8;
4320                 qidx += pi->nqsets;
4321         }
4322 #else /* !CONFIG_CHELSIO_T4_DCB */
4323         /*
4324          * We default to 1 queue per non-10G port and up to # of cores queues
4325          * per 10G port.
4326          */
4327         if (n10g)
4328                 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4329         if (q10g > netif_get_num_default_rss_queues())
4330                 q10g = netif_get_num_default_rss_queues();
4331
4332         for_each_port(adap, i) {
4333                 struct port_info *pi = adap2pinfo(adap, i);
4334
4335                 pi->first_qset = qidx;
4336                 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4337                 qidx += pi->nqsets;
4338         }
4339 #endif /* !CONFIG_CHELSIO_T4_DCB */
4340
4341         s->ethqsets = qidx;
4342         s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4343
4344         if (is_offload(adap)) {
4345                 /*
4346                  * For offload we use 1 queue/channel if all ports are up to 1G,
4347                  * otherwise we divide all available queues amongst the channels
4348                  * capped by the number of available cores.
4349                  */
4350                 if (n10g) {
4351                         i = min_t(int, ARRAY_SIZE(s->ofldrxq),
4352                                   num_online_cpus());
4353                         s->ofldqsets = roundup(i, adap->params.nports);
4354                 } else
4355                         s->ofldqsets = adap->params.nports;
4356                 /* For RDMA one Rx queue per channel suffices */
4357                 s->rdmaqs = adap->params.nports;
4358                 /* Try and allow at least 1 CIQ per cpu rounding down
4359                  * to the number of ports, with a minimum of 1 per port.
4360                  * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port.
4361                  * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port.
4362                  * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port.
4363                  */
4364                 s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus());
4365                 s->rdmaciqs = (s->rdmaciqs / adap->params.nports) *
4366                                 adap->params.nports;
4367                 s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports);
4368         }
4369
4370         for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4371                 struct sge_eth_rxq *r = &s->ethrxq[i];
4372
4373                 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4374                 r->fl.size = 72;
4375         }
4376
4377         for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4378                 s->ethtxq[i].q.size = 1024;
4379
4380         for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4381                 s->ctrlq[i].q.size = 512;
4382
4383         for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4384                 s->ofldtxq[i].q.size = 1024;
4385
4386         for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
4387                 struct sge_ofld_rxq *r = &s->ofldrxq[i];
4388
4389                 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4390                 r->rspq.uld = CXGB4_ULD_ISCSI;
4391                 r->fl.size = 72;
4392         }
4393
4394         for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
4395                 struct sge_ofld_rxq *r = &s->rdmarxq[i];
4396
4397                 init_rspq(adap, &r->rspq, 5, 1, 511, 64);
4398                 r->rspq.uld = CXGB4_ULD_RDMA;
4399                 r->fl.size = 72;
4400         }
4401
4402         ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
4403         if (ciq_size > SGE_MAX_IQ_SIZE) {
4404                 CH_WARN(adap, "CIQ size too small for available IQs\n");
4405                 ciq_size = SGE_MAX_IQ_SIZE;
4406         }
4407
4408         for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
4409                 struct sge_ofld_rxq *r = &s->rdmaciq[i];
4410
4411                 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
4412                 r->rspq.uld = CXGB4_ULD_RDMA;
4413         }
4414
4415         init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4416         init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
4417 }
4418
4419 /*
4420  * Reduce the number of Ethernet queues across all ports to at most n.
4421  * n provides at least one queue per port.
4422  */
4423 static void reduce_ethqs(struct adapter *adap, int n)
4424 {
4425         int i;
4426         struct port_info *pi;
4427
4428         while (n < adap->sge.ethqsets)
4429                 for_each_port(adap, i) {
4430                         pi = adap2pinfo(adap, i);
4431                         if (pi->nqsets > 1) {
4432                                 pi->nqsets--;
4433                                 adap->sge.ethqsets--;
4434                                 if (adap->sge.ethqsets <= n)
4435                                         break;
4436                         }
4437                 }
4438
4439         n = 0;
4440         for_each_port(adap, i) {
4441                 pi = adap2pinfo(adap, i);
4442                 pi->first_qset = n;
4443                 n += pi->nqsets;
4444         }
4445 }
4446
4447 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4448 #define EXTRA_VECS 2
4449
4450 static int enable_msix(struct adapter *adap)
4451 {
4452         int ofld_need = 0;
4453         int i, want, need, allocated;
4454         struct sge *s = &adap->sge;
4455         unsigned int nchan = adap->params.nports;
4456         struct msix_entry *entries;
4457
4458         entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1),
4459                           GFP_KERNEL);
4460         if (!entries)
4461                 return -ENOMEM;
4462
4463         for (i = 0; i < MAX_INGQ + 1; ++i)
4464                 entries[i].entry = i;
4465
4466         want = s->max_ethqsets + EXTRA_VECS;
4467         if (is_offload(adap)) {
4468                 want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
4469                 /* need nchan for each possible ULD */
4470                 ofld_need = 3 * nchan;
4471         }
4472 #ifdef CONFIG_CHELSIO_T4_DCB
4473         /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4474          * each port.
4475          */
4476         need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
4477 #else
4478         need = adap->params.nports + EXTRA_VECS + ofld_need;
4479 #endif
4480         allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4481         if (allocated < 0) {
4482                 dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4483                          " not using MSI-X\n");
4484                 kfree(entries);
4485                 return allocated;
4486         }
4487
4488         /* Distribute available vectors to the various queue groups.
4489          * Every group gets its minimum requirement and NIC gets top
4490          * priority for leftovers.
4491          */
4492         i = allocated - EXTRA_VECS - ofld_need;
4493         if (i < s->max_ethqsets) {
4494                 s->max_ethqsets = i;
4495                 if (i < s->ethqsets)
4496                         reduce_ethqs(adap, i);
4497         }
4498         if (is_offload(adap)) {
4499                 if (allocated < want) {
4500                         s->rdmaqs = nchan;
4501                         s->rdmaciqs = nchan;
4502                 }
4503
4504                 /* leftovers go to OFLD */
4505                 i = allocated - EXTRA_VECS - s->max_ethqsets -
4506                     s->rdmaqs - s->rdmaciqs;
4507                 s->ofldqsets = (i / nchan) * nchan;  /* round down */
4508         }
4509         for (i = 0; i < allocated; ++i)
4510                 adap->msix_info[i].vec = entries[i].vector;
4511         dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
4512                  "nic %d iscsi %d rdma cpl %d rdma ciq %d\n",
4513                  allocated, s->max_ethqsets, s->ofldqsets, s->rdmaqs,
4514                  s->rdmaciqs);
4515
4516         kfree(entries);
4517         return 0;
4518 }
4519
4520 #undef EXTRA_VECS
4521
4522 static int init_rss(struct adapter *adap)
4523 {
4524         unsigned int i;
4525         int err;
4526
4527         err = t4_init_rss_mode(adap, adap->mbox);
4528         if (err)
4529                 return err;
4530
4531         for_each_port(adap, i) {
4532                 struct port_info *pi = adap2pinfo(adap, i);
4533
4534                 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4535                 if (!pi->rss)
4536                         return -ENOMEM;
4537         }
4538         return 0;
4539 }
4540
4541 static void print_port_info(const struct net_device *dev)
4542 {
4543         char buf[80];
4544         char *bufp = buf;
4545         const char *spd = "";
4546         const struct port_info *pi = netdev_priv(dev);
4547         const struct adapter *adap = pi->adapter;
4548
4549         if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4550                 spd = " 2.5 GT/s";
4551         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4552                 spd = " 5 GT/s";
4553         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4554                 spd = " 8 GT/s";
4555
4556         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4557                 bufp += sprintf(bufp, "100/");
4558         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4559                 bufp += sprintf(bufp, "1000/");
4560         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4561                 bufp += sprintf(bufp, "10G/");
4562         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4563                 bufp += sprintf(bufp, "40G/");
4564         if (bufp != buf)
4565                 --bufp;
4566         sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4567
4568         netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
4569                     adap->params.vpd.id,
4570                     CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
4571                     is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
4572                     (adap->flags & USING_MSIX) ? " MSI-X" :
4573                     (adap->flags & USING_MSI) ? " MSI" : "");
4574         netdev_info(dev, "S/N: %s, P/N: %s\n",
4575                     adap->params.vpd.sn, adap->params.vpd.pn);
4576 }
4577
4578 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4579 {
4580         pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4581 }
4582
4583 /*
4584  * Free the following resources:
4585  * - memory used for tables
4586  * - MSI/MSI-X
4587  * - net devices
4588  * - resources FW is holding for us
4589  */
4590 static void free_some_resources(struct adapter *adapter)
4591 {
4592         unsigned int i;
4593
4594         t4_free_mem(adapter->l2t);
4595         t4_free_mem(adapter->tids.tid_tab);
4596         kfree(adapter->sge.egr_map);
4597         kfree(adapter->sge.ingr_map);
4598         kfree(adapter->sge.starving_fl);
4599         kfree(adapter->sge.txq_maperr);
4600 #ifdef CONFIG_DEBUG_FS
4601         kfree(adapter->sge.blocked_fl);
4602 #endif
4603         disable_msi(adapter);
4604
4605         for_each_port(adapter, i)
4606                 if (adapter->port[i]) {
4607                         struct port_info *pi = adap2pinfo(adapter, i);
4608
4609                         if (pi->viid != 0)
4610                                 t4_free_vi(adapter, adapter->mbox, adapter->pf,
4611                                            0, pi->viid);
4612                         kfree(adap2pinfo(adapter, i)->rss);
4613                         free_netdev(adapter->port[i]);
4614                 }
4615         if (adapter->flags & FW_OK)
4616                 t4_fw_bye(adapter, adapter->pf);
4617 }
4618
4619 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4620 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4621                    NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4622 #define SEGMENT_SIZE 128
4623
4624 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
4625 {
4626         u16 device_id;
4627
4628         /* Retrieve adapter's device ID */
4629         pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
4630
4631         switch (device_id >> 12) {
4632         case CHELSIO_T4:
4633                 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4634         case CHELSIO_T5:
4635                 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4636         case CHELSIO_T6:
4637                 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4638         default:
4639                 dev_err(&pdev->dev, "Device %d is not supported\n",
4640                         device_id);
4641         }
4642         return -EINVAL;
4643 }
4644
4645 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4646 {
4647         int func, i, err, s_qpp, qpp, num_seg;
4648         struct port_info *pi;
4649         bool highdma = false;
4650         struct adapter *adapter = NULL;
4651         void __iomem *regs;
4652         u32 whoami, pl_rev;
4653         enum chip_type chip;
4654
4655         printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4656
4657         err = pci_request_regions(pdev, KBUILD_MODNAME);
4658         if (err) {
4659                 /* Just info, some other driver may have claimed the device. */
4660                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4661                 return err;
4662         }
4663
4664         err = pci_enable_device(pdev);
4665         if (err) {
4666                 dev_err(&pdev->dev, "cannot enable PCI device\n");
4667                 goto out_release_regions;
4668         }
4669
4670         regs = pci_ioremap_bar(pdev, 0);
4671         if (!regs) {
4672                 dev_err(&pdev->dev, "cannot map device registers\n");
4673                 err = -ENOMEM;
4674                 goto out_disable_device;
4675         }
4676
4677         err = t4_wait_dev_ready(regs);
4678         if (err < 0)
4679                 goto out_unmap_bar0;
4680
4681         /* We control everything through one PF */
4682         whoami = readl(regs + PL_WHOAMI_A);
4683         pl_rev = REV_G(readl(regs + PL_REV_A));
4684         chip = get_chip_type(pdev, pl_rev);
4685         func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
4686                 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4687         if (func != ent->driver_data) {
4688                 iounmap(regs);
4689                 pci_disable_device(pdev);
4690                 pci_save_state(pdev);        /* to restore SR-IOV later */
4691                 goto sriov;
4692         }
4693
4694         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4695                 highdma = true;
4696                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4697                 if (err) {
4698                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4699                                 "coherent allocations\n");
4700                         goto out_unmap_bar0;
4701                 }
4702         } else {
4703                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4704                 if (err) {
4705                         dev_err(&pdev->dev, "no usable DMA configuration\n");
4706                         goto out_unmap_bar0;
4707                 }
4708         }
4709
4710         pci_enable_pcie_error_reporting(pdev);
4711         enable_pcie_relaxed_ordering(pdev);
4712         pci_set_master(pdev);
4713         pci_save_state(pdev);
4714
4715         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4716         if (!adapter) {
4717                 err = -ENOMEM;
4718                 goto out_unmap_bar0;
4719         }
4720
4721         adapter->workq = create_singlethread_workqueue("cxgb4");
4722         if (!adapter->workq) {
4723                 err = -ENOMEM;
4724                 goto out_free_adapter;
4725         }
4726
4727         /* PCI device has been enabled */
4728         adapter->flags |= DEV_ENABLED;
4729
4730         adapter->regs = regs;
4731         adapter->pdev = pdev;
4732         adapter->pdev_dev = &pdev->dev;
4733         adapter->mbox = func;
4734         adapter->pf = func;
4735         adapter->msg_enable = dflt_msg_enable;
4736         memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4737
4738         spin_lock_init(&adapter->stats_lock);
4739         spin_lock_init(&adapter->tid_release_lock);
4740         spin_lock_init(&adapter->win0_lock);
4741
4742         INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4743         INIT_WORK(&adapter->db_full_task, process_db_full);
4744         INIT_WORK(&adapter->db_drop_task, process_db_drop);
4745
4746         err = t4_prep_adapter(adapter);
4747         if (err)
4748                 goto out_free_adapter;
4749
4750
4751         if (!is_t4(adapter->params.chip)) {
4752                 s_qpp = (QUEUESPERPAGEPF0_S +
4753                         (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4754                         adapter->pf);
4755                 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4756                       SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4757                 num_seg = PAGE_SIZE / SEGMENT_SIZE;
4758
4759                 /* Each segment size is 128B. Write coalescing is enabled only
4760                  * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4761                  * queue is less no of segments that can be accommodated in
4762                  * a page size.
4763                  */
4764                 if (qpp > num_seg) {
4765                         dev_err(&pdev->dev,
4766                                 "Incorrect number of egress queues per page\n");
4767                         err = -EINVAL;
4768                         goto out_free_adapter;
4769                 }
4770                 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4771                 pci_resource_len(pdev, 2));
4772                 if (!adapter->bar2) {
4773                         dev_err(&pdev->dev, "cannot map device bar2 region\n");
4774                         err = -ENOMEM;
4775                         goto out_free_adapter;
4776                 }
4777         }
4778
4779         setup_memwin(adapter);
4780         err = adap_init0(adapter);
4781 #ifdef CONFIG_DEBUG_FS
4782         bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
4783 #endif
4784         setup_memwin_rdma(adapter);
4785         if (err)
4786                 goto out_unmap_bar;
4787
4788         /* configure SGE_STAT_CFG_A to read WC stats */
4789         if (!is_t4(adapter->params.chip))
4790                 t4_write_reg(adapter, SGE_STAT_CFG_A,
4791                              STATSOURCE_T5_V(7) | STATMODE_V(0));
4792
4793         for_each_port(adapter, i) {
4794                 struct net_device *netdev;
4795
4796                 netdev = alloc_etherdev_mq(sizeof(struct port_info),
4797                                            MAX_ETH_QSETS);
4798                 if (!netdev) {
4799                         err = -ENOMEM;
4800                         goto out_free_dev;
4801                 }
4802
4803                 SET_NETDEV_DEV(netdev, &pdev->dev);
4804
4805                 adapter->port[i] = netdev;
4806                 pi = netdev_priv(netdev);
4807                 pi->adapter = adapter;
4808                 pi->xact_addr_filt = -1;
4809                 pi->port_id = i;
4810                 netdev->irq = pdev->irq;
4811
4812                 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4813                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4814                         NETIF_F_RXCSUM | NETIF_F_RXHASH |
4815                         NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
4816                 if (highdma)
4817                         netdev->hw_features |= NETIF_F_HIGHDMA;
4818                 netdev->features |= netdev->hw_features;
4819                 netdev->vlan_features = netdev->features & VLAN_FEAT;
4820
4821                 netdev->priv_flags |= IFF_UNICAST_FLT;
4822
4823                 netdev->netdev_ops = &cxgb4_netdev_ops;
4824 #ifdef CONFIG_CHELSIO_T4_DCB
4825                 netdev->dcbnl_ops = &cxgb4_dcb_ops;
4826                 cxgb4_dcb_state_init(netdev);
4827 #endif
4828                 cxgb4_set_ethtool_ops(netdev);
4829         }
4830
4831         pci_set_drvdata(pdev, adapter);
4832
4833         if (adapter->flags & FW_OK) {
4834                 err = t4_port_init(adapter, func, func, 0);
4835                 if (err)
4836                         goto out_free_dev;
4837         } else if (adapter->params.nports == 1) {
4838                 /* If we don't have a connection to the firmware -- possibly
4839                  * because of an error -- grab the raw VPD parameters so we
4840                  * can set the proper MAC Address on the debug network
4841                  * interface that we've created.
4842                  */
4843                 u8 hw_addr[ETH_ALEN];
4844                 u8 *na = adapter->params.vpd.na;
4845
4846                 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
4847                 if (!err) {
4848                         for (i = 0; i < ETH_ALEN; i++)
4849                                 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
4850                                               hex2val(na[2 * i + 1]));
4851                         t4_set_hw_addr(adapter, 0, hw_addr);
4852                 }
4853         }
4854
4855         /* Configure queues and allocate tables now, they can be needed as
4856          * soon as the first register_netdev completes.
4857          */
4858         cfg_queues(adapter);
4859
4860         adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
4861         if (!adapter->l2t) {
4862                 /* We tolerate a lack of L2T, giving up some functionality */
4863                 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
4864                 adapter->params.offload = 0;
4865         }
4866
4867 #if IS_ENABLED(CONFIG_IPV6)
4868         adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
4869                                           adapter->clipt_end);
4870         if (!adapter->clipt) {
4871                 /* We tolerate a lack of clip_table, giving up
4872                  * some functionality
4873                  */
4874                 dev_warn(&pdev->dev,
4875                          "could not allocate Clip table, continuing\n");
4876                 adapter->params.offload = 0;
4877         }
4878 #endif
4879         if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
4880                 dev_warn(&pdev->dev, "could not allocate TID table, "
4881                          "continuing\n");
4882                 adapter->params.offload = 0;
4883         }
4884
4885         if (is_offload(adapter)) {
4886                 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
4887                         u32 hash_base, hash_reg;
4888
4889                         if (chip <= CHELSIO_T5) {
4890                                 hash_reg = LE_DB_TID_HASHBASE_A;
4891                                 hash_base = t4_read_reg(adapter, hash_reg);
4892                                 adapter->tids.hash_base = hash_base / 4;
4893                         } else {
4894                                 hash_reg = T6_LE_DB_HASH_TID_BASE_A;
4895                                 hash_base = t4_read_reg(adapter, hash_reg);
4896                                 adapter->tids.hash_base = hash_base;
4897                         }
4898                 }
4899         }
4900
4901         /* See what interrupts we'll be using */
4902         if (msi > 1 && enable_msix(adapter) == 0)
4903                 adapter->flags |= USING_MSIX;
4904         else if (msi > 0 && pci_enable_msi(pdev) == 0)
4905                 adapter->flags |= USING_MSI;
4906
4907         err = init_rss(adapter);
4908         if (err)
4909                 goto out_free_dev;
4910
4911         /*
4912          * The card is now ready to go.  If any errors occur during device
4913          * registration we do not fail the whole card but rather proceed only
4914          * with the ports we manage to register successfully.  However we must
4915          * register at least one net device.
4916          */
4917         for_each_port(adapter, i) {
4918                 pi = adap2pinfo(adapter, i);
4919                 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
4920                 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
4921
4922                 err = register_netdev(adapter->port[i]);
4923                 if (err)
4924                         break;
4925                 adapter->chan_map[pi->tx_chan] = i;
4926                 print_port_info(adapter->port[i]);
4927         }
4928         if (i == 0) {
4929                 dev_err(&pdev->dev, "could not register any net devices\n");
4930                 goto out_free_dev;
4931         }
4932         if (err) {
4933                 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
4934                 err = 0;
4935         }
4936
4937         if (cxgb4_debugfs_root) {
4938                 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
4939                                                            cxgb4_debugfs_root);
4940                 setup_debugfs(adapter);
4941         }
4942
4943         /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
4944         pdev->needs_freset = 1;
4945
4946         if (is_offload(adapter))
4947                 attach_ulds(adapter);
4948
4949 sriov:
4950 #ifdef CONFIG_PCI_IOV
4951         if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
4952                 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
4953                         dev_info(&pdev->dev,
4954                                  "instantiated %u virtual functions\n",
4955                                  num_vf[func]);
4956 #endif
4957         return 0;
4958
4959  out_free_dev:
4960         free_some_resources(adapter);
4961  out_unmap_bar:
4962         if (!is_t4(adapter->params.chip))
4963                 iounmap(adapter->bar2);
4964  out_free_adapter:
4965         if (adapter->workq)
4966                 destroy_workqueue(adapter->workq);
4967
4968         kfree(adapter);
4969  out_unmap_bar0:
4970         iounmap(regs);
4971  out_disable_device:
4972         pci_disable_pcie_error_reporting(pdev);
4973         pci_disable_device(pdev);
4974  out_release_regions:
4975         pci_release_regions(pdev);
4976         return err;
4977 }
4978
4979 static void remove_one(struct pci_dev *pdev)
4980 {
4981         struct adapter *adapter = pci_get_drvdata(pdev);
4982
4983 #ifdef CONFIG_PCI_IOV
4984         pci_disable_sriov(pdev);
4985
4986 #endif
4987
4988         if (adapter) {
4989                 int i;
4990
4991                 /* Tear down per-adapter Work Queue first since it can contain
4992                  * references to our adapter data structure.
4993                  */
4994                 destroy_workqueue(adapter->workq);
4995
4996                 if (is_offload(adapter))
4997                         detach_ulds(adapter);
4998
4999                 disable_interrupts(adapter);
5000
5001                 for_each_port(adapter, i)
5002                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5003                                 unregister_netdev(adapter->port[i]);
5004
5005                 debugfs_remove_recursive(adapter->debugfs_root);
5006
5007                 /* If we allocated filters, free up state associated with any
5008                  * valid filters ...
5009                  */
5010                 if (adapter->tids.ftid_tab) {
5011                         struct filter_entry *f = &adapter->tids.ftid_tab[0];
5012                         for (i = 0; i < (adapter->tids.nftids +
5013                                         adapter->tids.nsftids); i++, f++)
5014                                 if (f->valid)
5015                                         clear_filter(adapter, f);
5016                 }
5017
5018                 if (adapter->flags & FULL_INIT_DONE)
5019                         cxgb_down(adapter);
5020
5021                 free_some_resources(adapter);
5022 #if IS_ENABLED(CONFIG_IPV6)
5023                 t4_cleanup_clip_tbl(adapter);
5024 #endif
5025                 iounmap(adapter->regs);
5026                 if (!is_t4(adapter->params.chip))
5027                         iounmap(adapter->bar2);
5028                 pci_disable_pcie_error_reporting(pdev);
5029                 if ((adapter->flags & DEV_ENABLED)) {
5030                         pci_disable_device(pdev);
5031                         adapter->flags &= ~DEV_ENABLED;
5032                 }
5033                 pci_release_regions(pdev);
5034                 synchronize_rcu();
5035                 kfree(adapter);
5036         } else
5037                 pci_release_regions(pdev);
5038 }
5039
5040 static struct pci_driver cxgb4_driver = {
5041         .name     = KBUILD_MODNAME,
5042         .id_table = cxgb4_pci_tbl,
5043         .probe    = init_one,
5044         .remove   = remove_one,
5045         .shutdown = remove_one,
5046         .err_handler = &cxgb4_eeh,
5047 };
5048
5049 static int __init cxgb4_init_module(void)
5050 {
5051         int ret;
5052
5053         /* Debugfs support is optional, just warn if this fails */
5054         cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5055         if (!cxgb4_debugfs_root)
5056                 pr_warn("could not create debugfs entry, continuing\n");
5057
5058         ret = pci_register_driver(&cxgb4_driver);
5059         if (ret < 0)
5060                 debugfs_remove(cxgb4_debugfs_root);
5061
5062 #if IS_ENABLED(CONFIG_IPV6)
5063         if (!inet6addr_registered) {
5064                 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5065                 inet6addr_registered = true;
5066         }
5067 #endif
5068
5069         return ret;
5070 }
5071
5072 static void __exit cxgb4_cleanup_module(void)
5073 {
5074 #if IS_ENABLED(CONFIG_IPV6)
5075         if (inet6addr_registered) {
5076                 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5077                 inet6addr_registered = false;
5078         }
5079 #endif
5080         pci_unregister_driver(&cxgb4_driver);
5081         debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
5082 }
5083
5084 module_init(cxgb4_init_module);
5085 module_exit(cxgb4_cleanup_module);