]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c
cxgb4/cxgb4vf/csiostor: Cleanup macros/register defines related to port and VI
[karo-tx-linux.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <asm/uaccess.h>
66
67 #include "cxgb4.h"
68 #include "t4_regs.h"
69 #include "t4_msg.h"
70 #include "t4fw_api.h"
71 #include "cxgb4_dcb.h"
72 #include "cxgb4_debugfs.h"
73 #include "l2t.h"
74
75 #ifdef DRV_VERSION
76 #undef DRV_VERSION
77 #endif
78 #define DRV_VERSION "2.0.0-ko"
79 #define DRV_DESC "Chelsio T4/T5 Network Driver"
80
81 /*
82  * Max interrupt hold-off timer value in us.  Queues fall back to this value
83  * under extreme memory pressure so it's largish to give the system time to
84  * recover.
85  */
86 #define MAX_SGE_TIMERVAL 200U
87
88 enum {
89         /*
90          * Physical Function provisioning constants.
91          */
92         PFRES_NVI = 4,                  /* # of Virtual Interfaces */
93         PFRES_NETHCTRL = 128,           /* # of EQs used for ETH or CTRL Qs */
94         PFRES_NIQFLINT = 128,           /* # of ingress Qs/w Free List(s)/intr
95                                          */
96         PFRES_NEQ = 256,                /* # of egress queues */
97         PFRES_NIQ = 0,                  /* # of ingress queues */
98         PFRES_TC = 0,                   /* PCI-E traffic class */
99         PFRES_NEXACTF = 128,            /* # of exact MPS filters */
100
101         PFRES_R_CAPS = FW_CMD_CAP_PF,
102         PFRES_WX_CAPS = FW_CMD_CAP_PF,
103
104 #ifdef CONFIG_PCI_IOV
105         /*
106          * Virtual Function provisioning constants.  We need two extra Ingress
107          * Queues with Interrupt capability to serve as the VF's Firmware
108          * Event Queue and Forwarded Interrupt Queue (when using MSI mode) --
109          * neither will have Free Lists associated with them).  For each
110          * Ethernet/Control Egress Queue and for each Free List, we need an
111          * Egress Context.
112          */
113         VFRES_NPORTS = 1,               /* # of "ports" per VF */
114         VFRES_NQSETS = 2,               /* # of "Queue Sets" per VF */
115
116         VFRES_NVI = VFRES_NPORTS,       /* # of Virtual Interfaces */
117         VFRES_NETHCTRL = VFRES_NQSETS,  /* # of EQs used for ETH or CTRL Qs */
118         VFRES_NIQFLINT = VFRES_NQSETS+2,/* # of ingress Qs/w Free List(s)/intr */
119         VFRES_NEQ = VFRES_NQSETS*2,     /* # of egress queues */
120         VFRES_NIQ = 0,                  /* # of non-fl/int ingress queues */
121         VFRES_TC = 0,                   /* PCI-E traffic class */
122         VFRES_NEXACTF = 16,             /* # of exact MPS filters */
123
124         VFRES_R_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF|FW_CMD_CAP_PORT,
125         VFRES_WX_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF,
126 #endif
127 };
128
129 /*
130  * Provide a Port Access Rights Mask for the specified PF/VF.  This is very
131  * static and likely not to be useful in the long run.  We really need to
132  * implement some form of persistent configuration which the firmware
133  * controls.
134  */
135 static unsigned int pfvfres_pmask(struct adapter *adapter,
136                                   unsigned int pf, unsigned int vf)
137 {
138         unsigned int portn, portvec;
139
140         /*
141          * Give PF's access to all of the ports.
142          */
143         if (vf == 0)
144                 return FW_PFVF_CMD_PMASK_M;
145
146         /*
147          * For VFs, we'll assign them access to the ports based purely on the
148          * PF.  We assign active ports in order, wrapping around if there are
149          * fewer active ports than PFs: e.g. active port[pf % nports].
150          * Unfortunately the adapter's port_info structs haven't been
151          * initialized yet so we have to compute this.
152          */
153         if (adapter->params.nports == 0)
154                 return 0;
155
156         portn = pf % adapter->params.nports;
157         portvec = adapter->params.portvec;
158         for (;;) {
159                 /*
160                  * Isolate the lowest set bit in the port vector.  If we're at
161                  * the port number that we want, return that as the pmask.
162                  * otherwise mask that bit out of the port vector and
163                  * decrement our port number ...
164                  */
165                 unsigned int pmask = portvec ^ (portvec & (portvec-1));
166                 if (portn == 0)
167                         return pmask;
168                 portn--;
169                 portvec &= ~pmask;
170         }
171         /*NOTREACHED*/
172 }
173
174 enum {
175         MAX_TXQ_ENTRIES      = 16384,
176         MAX_CTRL_TXQ_ENTRIES = 1024,
177         MAX_RSPQ_ENTRIES     = 16384,
178         MAX_RX_BUFFERS       = 16384,
179         MIN_TXQ_ENTRIES      = 32,
180         MIN_CTRL_TXQ_ENTRIES = 32,
181         MIN_RSPQ_ENTRIES     = 128,
182         MIN_FL_ENTRIES       = 16
183 };
184
185 /* Host shadow copy of ingress filter entry.  This is in host native format
186  * and doesn't match the ordering or bit order, etc. of the hardware of the
187  * firmware command.  The use of bit-field structure elements is purely to
188  * remind ourselves of the field size limitations and save memory in the case
189  * where the filter table is large.
190  */
191 struct filter_entry {
192         /* Administrative fields for filter.
193          */
194         u32 valid:1;            /* filter allocated and valid */
195         u32 locked:1;           /* filter is administratively locked */
196
197         u32 pending:1;          /* filter action is pending firmware reply */
198         u32 smtidx:8;           /* Source MAC Table index for smac */
199         struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
200
201         /* The filter itself.  Most of this is a straight copy of information
202          * provided by the extended ioctl().  Some fields are translated to
203          * internal forms -- for instance the Ingress Queue ID passed in from
204          * the ioctl() is translated into the Absolute Ingress Queue ID.
205          */
206         struct ch_filter_specification fs;
207 };
208
209 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
210                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
211                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
212
213 #define CH_DEVICE(devid, data) { PCI_VDEVICE(CHELSIO, devid), (data) }
214
215 static const struct pci_device_id cxgb4_pci_tbl[] = {
216         CH_DEVICE(0xa000, 0),  /* PE10K */
217         CH_DEVICE(0x4001, -1),
218         CH_DEVICE(0x4002, -1),
219         CH_DEVICE(0x4003, -1),
220         CH_DEVICE(0x4004, -1),
221         CH_DEVICE(0x4005, -1),
222         CH_DEVICE(0x4006, -1),
223         CH_DEVICE(0x4007, -1),
224         CH_DEVICE(0x4008, -1),
225         CH_DEVICE(0x4009, -1),
226         CH_DEVICE(0x400a, -1),
227         CH_DEVICE(0x400d, -1),
228         CH_DEVICE(0x400e, -1),
229         CH_DEVICE(0x4080, -1),
230         CH_DEVICE(0x4081, -1),
231         CH_DEVICE(0x4082, -1),
232         CH_DEVICE(0x4083, -1),
233         CH_DEVICE(0x4084, -1),
234         CH_DEVICE(0x4085, -1),
235         CH_DEVICE(0x4086, -1),
236         CH_DEVICE(0x4087, -1),
237         CH_DEVICE(0x4088, -1),
238         CH_DEVICE(0x4401, 4),
239         CH_DEVICE(0x4402, 4),
240         CH_DEVICE(0x4403, 4),
241         CH_DEVICE(0x4404, 4),
242         CH_DEVICE(0x4405, 4),
243         CH_DEVICE(0x4406, 4),
244         CH_DEVICE(0x4407, 4),
245         CH_DEVICE(0x4408, 4),
246         CH_DEVICE(0x4409, 4),
247         CH_DEVICE(0x440a, 4),
248         CH_DEVICE(0x440d, 4),
249         CH_DEVICE(0x440e, 4),
250         CH_DEVICE(0x4480, 4),
251         CH_DEVICE(0x4481, 4),
252         CH_DEVICE(0x4482, 4),
253         CH_DEVICE(0x4483, 4),
254         CH_DEVICE(0x4484, 4),
255         CH_DEVICE(0x4485, 4),
256         CH_DEVICE(0x4486, 4),
257         CH_DEVICE(0x4487, 4),
258         CH_DEVICE(0x4488, 4),
259         CH_DEVICE(0x5001, 4),
260         CH_DEVICE(0x5002, 4),
261         CH_DEVICE(0x5003, 4),
262         CH_DEVICE(0x5004, 4),
263         CH_DEVICE(0x5005, 4),
264         CH_DEVICE(0x5006, 4),
265         CH_DEVICE(0x5007, 4),
266         CH_DEVICE(0x5008, 4),
267         CH_DEVICE(0x5009, 4),
268         CH_DEVICE(0x500A, 4),
269         CH_DEVICE(0x500B, 4),
270         CH_DEVICE(0x500C, 4),
271         CH_DEVICE(0x500D, 4),
272         CH_DEVICE(0x500E, 4),
273         CH_DEVICE(0x500F, 4),
274         CH_DEVICE(0x5010, 4),
275         CH_DEVICE(0x5011, 4),
276         CH_DEVICE(0x5012, 4),
277         CH_DEVICE(0x5013, 4),
278         CH_DEVICE(0x5014, 4),
279         CH_DEVICE(0x5015, 4),
280         CH_DEVICE(0x5080, 4),
281         CH_DEVICE(0x5081, 4),
282         CH_DEVICE(0x5082, 4),
283         CH_DEVICE(0x5083, 4),
284         CH_DEVICE(0x5084, 4),
285         CH_DEVICE(0x5085, 4),
286         CH_DEVICE(0x5086, 4),
287         CH_DEVICE(0x5087, 4),
288         CH_DEVICE(0x5088, 4),
289         CH_DEVICE(0x5401, 4),
290         CH_DEVICE(0x5402, 4),
291         CH_DEVICE(0x5403, 4),
292         CH_DEVICE(0x5404, 4),
293         CH_DEVICE(0x5405, 4),
294         CH_DEVICE(0x5406, 4),
295         CH_DEVICE(0x5407, 4),
296         CH_DEVICE(0x5408, 4),
297         CH_DEVICE(0x5409, 4),
298         CH_DEVICE(0x540A, 4),
299         CH_DEVICE(0x540B, 4),
300         CH_DEVICE(0x540C, 4),
301         CH_DEVICE(0x540D, 4),
302         CH_DEVICE(0x540E, 4),
303         CH_DEVICE(0x540F, 4),
304         CH_DEVICE(0x5410, 4),
305         CH_DEVICE(0x5411, 4),
306         CH_DEVICE(0x5412, 4),
307         CH_DEVICE(0x5413, 4),
308         CH_DEVICE(0x5414, 4),
309         CH_DEVICE(0x5415, 4),
310         CH_DEVICE(0x5480, 4),
311         CH_DEVICE(0x5481, 4),
312         CH_DEVICE(0x5482, 4),
313         CH_DEVICE(0x5483, 4),
314         CH_DEVICE(0x5484, 4),
315         CH_DEVICE(0x5485, 4),
316         CH_DEVICE(0x5486, 4),
317         CH_DEVICE(0x5487, 4),
318         CH_DEVICE(0x5488, 4),
319         { 0, }
320 };
321
322 #define FW4_FNAME "cxgb4/t4fw.bin"
323 #define FW5_FNAME "cxgb4/t5fw.bin"
324 #define FW4_CFNAME "cxgb4/t4-config.txt"
325 #define FW5_CFNAME "cxgb4/t5-config.txt"
326
327 MODULE_DESCRIPTION(DRV_DESC);
328 MODULE_AUTHOR("Chelsio Communications");
329 MODULE_LICENSE("Dual BSD/GPL");
330 MODULE_VERSION(DRV_VERSION);
331 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
332 MODULE_FIRMWARE(FW4_FNAME);
333 MODULE_FIRMWARE(FW5_FNAME);
334
335 /*
336  * Normally we're willing to become the firmware's Master PF but will be happy
337  * if another PF has already become the Master and initialized the adapter.
338  * Setting "force_init" will cause this driver to forcibly establish itself as
339  * the Master PF and initialize the adapter.
340  */
341 static uint force_init;
342
343 module_param(force_init, uint, 0644);
344 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
345
346 /*
347  * Normally if the firmware we connect to has Configuration File support, we
348  * use that and only fall back to the old Driver-based initialization if the
349  * Configuration File fails for some reason.  If force_old_init is set, then
350  * we'll always use the old Driver-based initialization sequence.
351  */
352 static uint force_old_init;
353
354 module_param(force_old_init, uint, 0644);
355 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence");
356
357 static int dflt_msg_enable = DFLT_MSG_ENABLE;
358
359 module_param(dflt_msg_enable, int, 0644);
360 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
361
362 /*
363  * The driver uses the best interrupt scheme available on a platform in the
364  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
365  * of these schemes the driver may consider as follows:
366  *
367  * msi = 2: choose from among all three options
368  * msi = 1: only consider MSI and INTx interrupts
369  * msi = 0: force INTx interrupts
370  */
371 static int msi = 2;
372
373 module_param(msi, int, 0644);
374 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
375
376 /*
377  * Queue interrupt hold-off timer values.  Queues default to the first of these
378  * upon creation.
379  */
380 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
381
382 module_param_array(intr_holdoff, uint, NULL, 0644);
383 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
384                  "0..4 in microseconds");
385
386 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
387
388 module_param_array(intr_cnt, uint, NULL, 0644);
389 MODULE_PARM_DESC(intr_cnt,
390                  "thresholds 1..3 for queue interrupt packet counters");
391
392 /*
393  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
394  * offset by 2 bytes in order to have the IP headers line up on 4-byte
395  * boundaries.  This is a requirement for many architectures which will throw
396  * a machine check fault if an attempt is made to access one of the 4-byte IP
397  * header fields on a non-4-byte boundary.  And it's a major performance issue
398  * even on some architectures which allow it like some implementations of the
399  * x86 ISA.  However, some architectures don't mind this and for some very
400  * edge-case performance sensitive applications (like forwarding large volumes
401  * of small packets), setting this DMA offset to 0 will decrease the number of
402  * PCI-E Bus transfers enough to measurably affect performance.
403  */
404 static int rx_dma_offset = 2;
405
406 static bool vf_acls;
407
408 #ifdef CONFIG_PCI_IOV
409 module_param(vf_acls, bool, 0644);
410 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement");
411
412 /* Configure the number of PCI-E Virtual Function which are to be instantiated
413  * on SR-IOV Capable Physical Functions.
414  */
415 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
416
417 module_param_array(num_vf, uint, NULL, 0644);
418 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
419 #endif
420
421 /* TX Queue select used to determine what algorithm to use for selecting TX
422  * queue. Select between the kernel provided function (select_queue=0) or user
423  * cxgb_select_queue function (select_queue=1)
424  *
425  * Default: select_queue=0
426  */
427 static int select_queue;
428 module_param(select_queue, int, 0644);
429 MODULE_PARM_DESC(select_queue,
430                  "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
431
432 /*
433  * The filter TCAM has a fixed portion and a variable portion.  The fixed
434  * portion can match on source/destination IP IPv4/IPv6 addresses and TCP/UDP
435  * ports.  The variable portion is 36 bits which can include things like Exact
436  * Match MAC Index (9 bits), Ether Type (16 bits), IP Protocol (8 bits),
437  * [Inner] VLAN Tag (17 bits), etc. which, if all were somehow selected, would
438  * far exceed the 36-bit budget for this "compressed" header portion of the
439  * filter.  Thus, we have a scarce resource which must be carefully managed.
440  *
441  * By default we set this up to mostly match the set of filter matching
442  * capabilities of T3 but with accommodations for some of T4's more
443  * interesting features:
444  *
445  *   { IP Fragment (1), MPS Match Type (3), IP Protocol (8),
446  *     [Inner] VLAN (17), Port (3), FCoE (1) }
447  */
448 enum {
449         TP_VLAN_PRI_MAP_DEFAULT = HW_TPL_FR_MT_PR_IV_P_FC,
450         TP_VLAN_PRI_MAP_FIRST = FCOE_SHIFT,
451         TP_VLAN_PRI_MAP_LAST = FRAGMENTATION_SHIFT,
452 };
453
454 static unsigned int tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
455
456 module_param(tp_vlan_pri_map, uint, 0644);
457 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration");
458
459 static struct dentry *cxgb4_debugfs_root;
460
461 static LIST_HEAD(adapter_list);
462 static DEFINE_MUTEX(uld_mutex);
463 /* Adapter list to be accessed from atomic context */
464 static LIST_HEAD(adap_rcu_list);
465 static DEFINE_SPINLOCK(adap_rcu_lock);
466 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
467 static const char *uld_str[] = { "RDMA", "iSCSI" };
468
469 static void link_report(struct net_device *dev)
470 {
471         if (!netif_carrier_ok(dev))
472                 netdev_info(dev, "link down\n");
473         else {
474                 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
475
476                 const char *s = "10Mbps";
477                 const struct port_info *p = netdev_priv(dev);
478
479                 switch (p->link_cfg.speed) {
480                 case 10000:
481                         s = "10Gbps";
482                         break;
483                 case 1000:
484                         s = "1000Mbps";
485                         break;
486                 case 100:
487                         s = "100Mbps";
488                         break;
489                 case 40000:
490                         s = "40Gbps";
491                         break;
492                 }
493
494                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
495                             fc[p->link_cfg.fc]);
496         }
497 }
498
499 #ifdef CONFIG_CHELSIO_T4_DCB
500 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
501 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
502 {
503         struct port_info *pi = netdev_priv(dev);
504         struct adapter *adap = pi->adapter;
505         struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
506         int i;
507
508         /* We use a simple mapping of Port TX Queue Index to DCB
509          * Priority when we're enabling DCB.
510          */
511         for (i = 0; i < pi->nqsets; i++, txq++) {
512                 u32 name, value;
513                 int err;
514
515                 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
516                         FW_PARAMS_PARAM_X_V(
517                                 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
518                         FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
519                 value = enable ? i : 0xffffffff;
520
521                 /* Since we can be called while atomic (from "interrupt
522                  * level") we need to issue the Set Parameters Commannd
523                  * without sleeping (timeout < 0).
524                  */
525                 err = t4_set_params_nosleep(adap, adap->mbox, adap->fn, 0, 1,
526                                             &name, &value);
527
528                 if (err)
529                         dev_err(adap->pdev_dev,
530                                 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
531                                 enable ? "set" : "unset", pi->port_id, i, -err);
532                 else
533                         txq->dcb_prio = value;
534         }
535 }
536 #endif /* CONFIG_CHELSIO_T4_DCB */
537
538 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
539 {
540         struct net_device *dev = adapter->port[port_id];
541
542         /* Skip changes from disabled ports. */
543         if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
544                 if (link_stat)
545                         netif_carrier_on(dev);
546                 else {
547 #ifdef CONFIG_CHELSIO_T4_DCB
548                         cxgb4_dcb_state_init(dev);
549                         dcb_tx_queue_prio_enable(dev, false);
550 #endif /* CONFIG_CHELSIO_T4_DCB */
551                         netif_carrier_off(dev);
552                 }
553
554                 link_report(dev);
555         }
556 }
557
558 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
559 {
560         static const char *mod_str[] = {
561                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
562         };
563
564         const struct net_device *dev = adap->port[port_id];
565         const struct port_info *pi = netdev_priv(dev);
566
567         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
568                 netdev_info(dev, "port module unplugged\n");
569         else if (pi->mod_type < ARRAY_SIZE(mod_str))
570                 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
571 }
572
573 /*
574  * Configure the exact and hash address filters to handle a port's multicast
575  * and secondary unicast MAC addresses.
576  */
577 static int set_addr_filters(const struct net_device *dev, bool sleep)
578 {
579         u64 mhash = 0;
580         u64 uhash = 0;
581         bool free = true;
582         u16 filt_idx[7];
583         const u8 *addr[7];
584         int ret, naddr = 0;
585         const struct netdev_hw_addr *ha;
586         int uc_cnt = netdev_uc_count(dev);
587         int mc_cnt = netdev_mc_count(dev);
588         const struct port_info *pi = netdev_priv(dev);
589         unsigned int mb = pi->adapter->fn;
590
591         /* first do the secondary unicast addresses */
592         netdev_for_each_uc_addr(ha, dev) {
593                 addr[naddr++] = ha->addr;
594                 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
595                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
596                                         naddr, addr, filt_idx, &uhash, sleep);
597                         if (ret < 0)
598                                 return ret;
599
600                         free = false;
601                         naddr = 0;
602                 }
603         }
604
605         /* next set up the multicast addresses */
606         netdev_for_each_mc_addr(ha, dev) {
607                 addr[naddr++] = ha->addr;
608                 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
609                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
610                                         naddr, addr, filt_idx, &mhash, sleep);
611                         if (ret < 0)
612                                 return ret;
613
614                         free = false;
615                         naddr = 0;
616                 }
617         }
618
619         return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
620                                 uhash | mhash, sleep);
621 }
622
623 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
624 module_param(dbfifo_int_thresh, int, 0644);
625 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
626
627 /*
628  * usecs to sleep while draining the dbfifo
629  */
630 static int dbfifo_drain_delay = 1000;
631 module_param(dbfifo_drain_delay, int, 0644);
632 MODULE_PARM_DESC(dbfifo_drain_delay,
633                  "usecs to sleep while draining the dbfifo");
634
635 /*
636  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
637  * If @mtu is -1 it is left unchanged.
638  */
639 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
640 {
641         int ret;
642         struct port_info *pi = netdev_priv(dev);
643
644         ret = set_addr_filters(dev, sleep_ok);
645         if (ret == 0)
646                 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
647                                     (dev->flags & IFF_PROMISC) ? 1 : 0,
648                                     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
649                                     sleep_ok);
650         return ret;
651 }
652
653 /**
654  *      link_start - enable a port
655  *      @dev: the port to enable
656  *
657  *      Performs the MAC and PHY actions needed to enable a port.
658  */
659 static int link_start(struct net_device *dev)
660 {
661         int ret;
662         struct port_info *pi = netdev_priv(dev);
663         unsigned int mb = pi->adapter->fn;
664
665         /*
666          * We do not set address filters and promiscuity here, the stack does
667          * that step explicitly.
668          */
669         ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
670                             !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
671         if (ret == 0) {
672                 ret = t4_change_mac(pi->adapter, mb, pi->viid,
673                                     pi->xact_addr_filt, dev->dev_addr, true,
674                                     true);
675                 if (ret >= 0) {
676                         pi->xact_addr_filt = ret;
677                         ret = 0;
678                 }
679         }
680         if (ret == 0)
681                 ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
682                                     &pi->link_cfg);
683         if (ret == 0) {
684                 local_bh_disable();
685                 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
686                                           true, CXGB4_DCB_ENABLED);
687                 local_bh_enable();
688         }
689
690         return ret;
691 }
692
693 int cxgb4_dcb_enabled(const struct net_device *dev)
694 {
695 #ifdef CONFIG_CHELSIO_T4_DCB
696         struct port_info *pi = netdev_priv(dev);
697
698         if (!pi->dcb.enabled)
699                 return 0;
700
701         return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
702                 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
703 #else
704         return 0;
705 #endif
706 }
707 EXPORT_SYMBOL(cxgb4_dcb_enabled);
708
709 #ifdef CONFIG_CHELSIO_T4_DCB
710 /* Handle a Data Center Bridging update message from the firmware. */
711 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
712 {
713         int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
714         struct net_device *dev = adap->port[port];
715         int old_dcb_enabled = cxgb4_dcb_enabled(dev);
716         int new_dcb_enabled;
717
718         cxgb4_dcb_handle_fw_update(adap, pcmd);
719         new_dcb_enabled = cxgb4_dcb_enabled(dev);
720
721         /* If the DCB has become enabled or disabled on the port then we're
722          * going to need to set up/tear down DCB Priority parameters for the
723          * TX Queues associated with the port.
724          */
725         if (new_dcb_enabled != old_dcb_enabled)
726                 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
727 }
728 #endif /* CONFIG_CHELSIO_T4_DCB */
729
730 /* Clear a filter and release any of its resources that we own.  This also
731  * clears the filter's "pending" status.
732  */
733 static void clear_filter(struct adapter *adap, struct filter_entry *f)
734 {
735         /* If the new or old filter have loopback rewriteing rules then we'll
736          * need to free any existing Layer Two Table (L2T) entries of the old
737          * filter rule.  The firmware will handle freeing up any Source MAC
738          * Table (SMT) entries used for rewriting Source MAC Addresses in
739          * loopback rules.
740          */
741         if (f->l2t)
742                 cxgb4_l2t_release(f->l2t);
743
744         /* The zeroing of the filter rule below clears the filter valid,
745          * pending, locked flags, l2t pointer, etc. so it's all we need for
746          * this operation.
747          */
748         memset(f, 0, sizeof(*f));
749 }
750
751 /* Handle a filter write/deletion reply.
752  */
753 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
754 {
755         unsigned int idx = GET_TID(rpl);
756         unsigned int nidx = idx - adap->tids.ftid_base;
757         unsigned int ret;
758         struct filter_entry *f;
759
760         if (idx >= adap->tids.ftid_base && nidx <
761            (adap->tids.nftids + adap->tids.nsftids)) {
762                 idx = nidx;
763                 ret = GET_TCB_COOKIE(rpl->cookie);
764                 f = &adap->tids.ftid_tab[idx];
765
766                 if (ret == FW_FILTER_WR_FLT_DELETED) {
767                         /* Clear the filter when we get confirmation from the
768                          * hardware that the filter has been deleted.
769                          */
770                         clear_filter(adap, f);
771                 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
772                         dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
773                                 idx);
774                         clear_filter(adap, f);
775                 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
776                         f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
777                         f->pending = 0;  /* asynchronous setup completed */
778                         f->valid = 1;
779                 } else {
780                         /* Something went wrong.  Issue a warning about the
781                          * problem and clear everything out.
782                          */
783                         dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
784                                 idx, ret);
785                         clear_filter(adap, f);
786                 }
787         }
788 }
789
790 /* Response queue handler for the FW event queue.
791  */
792 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
793                           const struct pkt_gl *gl)
794 {
795         u8 opcode = ((const struct rss_header *)rsp)->opcode;
796
797         rsp++;                                          /* skip RSS header */
798
799         /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
800          */
801         if (unlikely(opcode == CPL_FW4_MSG &&
802            ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
803                 rsp++;
804                 opcode = ((const struct rss_header *)rsp)->opcode;
805                 rsp++;
806                 if (opcode != CPL_SGE_EGR_UPDATE) {
807                         dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
808                                 , opcode);
809                         goto out;
810                 }
811         }
812
813         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
814                 const struct cpl_sge_egr_update *p = (void *)rsp;
815                 unsigned int qid = EGR_QID(ntohl(p->opcode_qid));
816                 struct sge_txq *txq;
817
818                 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
819                 txq->restarts++;
820                 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
821                         struct sge_eth_txq *eq;
822
823                         eq = container_of(txq, struct sge_eth_txq, q);
824                         netif_tx_wake_queue(eq->txq);
825                 } else {
826                         struct sge_ofld_txq *oq;
827
828                         oq = container_of(txq, struct sge_ofld_txq, q);
829                         tasklet_schedule(&oq->qresume_tsk);
830                 }
831         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
832                 const struct cpl_fw6_msg *p = (void *)rsp;
833
834 #ifdef CONFIG_CHELSIO_T4_DCB
835                 const struct fw_port_cmd *pcmd = (const void *)p->data;
836                 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
837                 unsigned int action =
838                         FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
839
840                 if (cmd == FW_PORT_CMD &&
841                     action == FW_PORT_ACTION_GET_PORT_INFO) {
842                         int port = FW_PORT_CMD_PORTID_G(
843                                         be32_to_cpu(pcmd->op_to_portid));
844                         struct net_device *dev = q->adap->port[port];
845                         int state_input = ((pcmd->u.info.dcbxdis_pkd &
846                                             FW_PORT_CMD_DCBXDIS_F)
847                                            ? CXGB4_DCB_INPUT_FW_DISABLED
848                                            : CXGB4_DCB_INPUT_FW_ENABLED);
849
850                         cxgb4_dcb_state_fsm(dev, state_input);
851                 }
852
853                 if (cmd == FW_PORT_CMD &&
854                     action == FW_PORT_ACTION_L2_DCB_CFG)
855                         dcb_rpl(q->adap, pcmd);
856                 else
857 #endif
858                         if (p->type == 0)
859                                 t4_handle_fw_rpl(q->adap, p->data);
860         } else if (opcode == CPL_L2T_WRITE_RPL) {
861                 const struct cpl_l2t_write_rpl *p = (void *)rsp;
862
863                 do_l2t_write_rpl(q->adap, p);
864         } else if (opcode == CPL_SET_TCB_RPL) {
865                 const struct cpl_set_tcb_rpl *p = (void *)rsp;
866
867                 filter_rpl(q->adap, p);
868         } else
869                 dev_err(q->adap->pdev_dev,
870                         "unexpected CPL %#x on FW event queue\n", opcode);
871 out:
872         return 0;
873 }
874
875 /**
876  *      uldrx_handler - response queue handler for ULD queues
877  *      @q: the response queue that received the packet
878  *      @rsp: the response queue descriptor holding the offload message
879  *      @gl: the gather list of packet fragments
880  *
881  *      Deliver an ingress offload packet to a ULD.  All processing is done by
882  *      the ULD, we just maintain statistics.
883  */
884 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
885                          const struct pkt_gl *gl)
886 {
887         struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
888
889         /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
890          */
891         if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
892             ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
893                 rsp += 2;
894
895         if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
896                 rxq->stats.nomem++;
897                 return -1;
898         }
899         if (gl == NULL)
900                 rxq->stats.imm++;
901         else if (gl == CXGB4_MSG_AN)
902                 rxq->stats.an++;
903         else
904                 rxq->stats.pkts++;
905         return 0;
906 }
907
908 static void disable_msi(struct adapter *adapter)
909 {
910         if (adapter->flags & USING_MSIX) {
911                 pci_disable_msix(adapter->pdev);
912                 adapter->flags &= ~USING_MSIX;
913         } else if (adapter->flags & USING_MSI) {
914                 pci_disable_msi(adapter->pdev);
915                 adapter->flags &= ~USING_MSI;
916         }
917 }
918
919 /*
920  * Interrupt handler for non-data events used with MSI-X.
921  */
922 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
923 {
924         struct adapter *adap = cookie;
925
926         u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE));
927         if (v & PFSW) {
928                 adap->swintr = 1;
929                 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE), v);
930         }
931         t4_slow_intr_handler(adap);
932         return IRQ_HANDLED;
933 }
934
935 /*
936  * Name the MSI-X interrupts.
937  */
938 static void name_msix_vecs(struct adapter *adap)
939 {
940         int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
941
942         /* non-data interrupts */
943         snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
944
945         /* FW events */
946         snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
947                  adap->port[0]->name);
948
949         /* Ethernet queues */
950         for_each_port(adap, j) {
951                 struct net_device *d = adap->port[j];
952                 const struct port_info *pi = netdev_priv(d);
953
954                 for (i = 0; i < pi->nqsets; i++, msi_idx++)
955                         snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
956                                  d->name, i);
957         }
958
959         /* offload queues */
960         for_each_ofldrxq(&adap->sge, i)
961                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
962                          adap->port[0]->name, i);
963
964         for_each_rdmarxq(&adap->sge, i)
965                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
966                          adap->port[0]->name, i);
967
968         for_each_rdmaciq(&adap->sge, i)
969                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
970                          adap->port[0]->name, i);
971 }
972
973 static int request_msix_queue_irqs(struct adapter *adap)
974 {
975         struct sge *s = &adap->sge;
976         int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
977         int msi_index = 2;
978
979         err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
980                           adap->msix_info[1].desc, &s->fw_evtq);
981         if (err)
982                 return err;
983
984         for_each_ethrxq(s, ethqidx) {
985                 err = request_irq(adap->msix_info[msi_index].vec,
986                                   t4_sge_intr_msix, 0,
987                                   adap->msix_info[msi_index].desc,
988                                   &s->ethrxq[ethqidx].rspq);
989                 if (err)
990                         goto unwind;
991                 msi_index++;
992         }
993         for_each_ofldrxq(s, ofldqidx) {
994                 err = request_irq(adap->msix_info[msi_index].vec,
995                                   t4_sge_intr_msix, 0,
996                                   adap->msix_info[msi_index].desc,
997                                   &s->ofldrxq[ofldqidx].rspq);
998                 if (err)
999                         goto unwind;
1000                 msi_index++;
1001         }
1002         for_each_rdmarxq(s, rdmaqidx) {
1003                 err = request_irq(adap->msix_info[msi_index].vec,
1004                                   t4_sge_intr_msix, 0,
1005                                   adap->msix_info[msi_index].desc,
1006                                   &s->rdmarxq[rdmaqidx].rspq);
1007                 if (err)
1008                         goto unwind;
1009                 msi_index++;
1010         }
1011         for_each_rdmaciq(s, rdmaciqqidx) {
1012                 err = request_irq(adap->msix_info[msi_index].vec,
1013                                   t4_sge_intr_msix, 0,
1014                                   adap->msix_info[msi_index].desc,
1015                                   &s->rdmaciq[rdmaciqqidx].rspq);
1016                 if (err)
1017                         goto unwind;
1018                 msi_index++;
1019         }
1020         return 0;
1021
1022 unwind:
1023         while (--rdmaciqqidx >= 0)
1024                 free_irq(adap->msix_info[--msi_index].vec,
1025                          &s->rdmaciq[rdmaciqqidx].rspq);
1026         while (--rdmaqidx >= 0)
1027                 free_irq(adap->msix_info[--msi_index].vec,
1028                          &s->rdmarxq[rdmaqidx].rspq);
1029         while (--ofldqidx >= 0)
1030                 free_irq(adap->msix_info[--msi_index].vec,
1031                          &s->ofldrxq[ofldqidx].rspq);
1032         while (--ethqidx >= 0)
1033                 free_irq(adap->msix_info[--msi_index].vec,
1034                          &s->ethrxq[ethqidx].rspq);
1035         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
1036         return err;
1037 }
1038
1039 static void free_msix_queue_irqs(struct adapter *adap)
1040 {
1041         int i, msi_index = 2;
1042         struct sge *s = &adap->sge;
1043
1044         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
1045         for_each_ethrxq(s, i)
1046                 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
1047         for_each_ofldrxq(s, i)
1048                 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
1049         for_each_rdmarxq(s, i)
1050                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
1051         for_each_rdmaciq(s, i)
1052                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
1053 }
1054
1055 /**
1056  *      write_rss - write the RSS table for a given port
1057  *      @pi: the port
1058  *      @queues: array of queue indices for RSS
1059  *
1060  *      Sets up the portion of the HW RSS table for the port's VI to distribute
1061  *      packets to the Rx queues in @queues.
1062  */
1063 static int write_rss(const struct port_info *pi, const u16 *queues)
1064 {
1065         u16 *rss;
1066         int i, err;
1067         const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset];
1068
1069         rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
1070         if (!rss)
1071                 return -ENOMEM;
1072
1073         /* map the queue indices to queue ids */
1074         for (i = 0; i < pi->rss_size; i++, queues++)
1075                 rss[i] = q[*queues].rspq.abs_id;
1076
1077         err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0,
1078                                   pi->rss_size, rss, pi->rss_size);
1079         kfree(rss);
1080         return err;
1081 }
1082
1083 /**
1084  *      setup_rss - configure RSS
1085  *      @adap: the adapter
1086  *
1087  *      Sets up RSS for each port.
1088  */
1089 static int setup_rss(struct adapter *adap)
1090 {
1091         int i, err;
1092
1093         for_each_port(adap, i) {
1094                 const struct port_info *pi = adap2pinfo(adap, i);
1095
1096                 err = write_rss(pi, pi->rss);
1097                 if (err)
1098                         return err;
1099         }
1100         return 0;
1101 }
1102
1103 /*
1104  * Return the channel of the ingress queue with the given qid.
1105  */
1106 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
1107 {
1108         qid -= p->ingr_start;
1109         return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
1110 }
1111
1112 /*
1113  * Wait until all NAPI handlers are descheduled.
1114  */
1115 static void quiesce_rx(struct adapter *adap)
1116 {
1117         int i;
1118
1119         for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
1120                 struct sge_rspq *q = adap->sge.ingr_map[i];
1121
1122                 if (q && q->handler)
1123                         napi_disable(&q->napi);
1124         }
1125 }
1126
1127 /*
1128  * Enable NAPI scheduling and interrupt generation for all Rx queues.
1129  */
1130 static void enable_rx(struct adapter *adap)
1131 {
1132         int i;
1133
1134         for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
1135                 struct sge_rspq *q = adap->sge.ingr_map[i];
1136
1137                 if (!q)
1138                         continue;
1139                 if (q->handler)
1140                         napi_enable(&q->napi);
1141                 /* 0-increment GTS to start the timer and enable interrupts */
1142                 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS),
1143                              SEINTARM(q->intr_params) |
1144                              INGRESSQID(q->cntxt_id));
1145         }
1146 }
1147
1148 /**
1149  *      setup_sge_queues - configure SGE Tx/Rx/response queues
1150  *      @adap: the adapter
1151  *
1152  *      Determines how many sets of SGE queues to use and initializes them.
1153  *      We support multiple queue sets per port if we have MSI-X, otherwise
1154  *      just one queue set per port.
1155  */
1156 static int setup_sge_queues(struct adapter *adap)
1157 {
1158         int err, msi_idx, i, j;
1159         struct sge *s = &adap->sge;
1160
1161         bitmap_zero(s->starving_fl, MAX_EGRQ);
1162         bitmap_zero(s->txq_maperr, MAX_EGRQ);
1163
1164         if (adap->flags & USING_MSIX)
1165                 msi_idx = 1;         /* vector 0 is for non-queue interrupts */
1166         else {
1167                 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1168                                        NULL, NULL);
1169                 if (err)
1170                         return err;
1171                 msi_idx = -((int)s->intrq.abs_id + 1);
1172         }
1173
1174         err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1175                                msi_idx, NULL, fwevtq_handler);
1176         if (err) {
1177 freeout:        t4_free_sge_resources(adap);
1178                 return err;
1179         }
1180
1181         for_each_port(adap, i) {
1182                 struct net_device *dev = adap->port[i];
1183                 struct port_info *pi = netdev_priv(dev);
1184                 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1185                 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1186
1187                 for (j = 0; j < pi->nqsets; j++, q++) {
1188                         if (msi_idx > 0)
1189                                 msi_idx++;
1190                         err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1191                                                msi_idx, &q->fl,
1192                                                t4_ethrx_handler);
1193                         if (err)
1194                                 goto freeout;
1195                         q->rspq.idx = j;
1196                         memset(&q->stats, 0, sizeof(q->stats));
1197                 }
1198                 for (j = 0; j < pi->nqsets; j++, t++) {
1199                         err = t4_sge_alloc_eth_txq(adap, t, dev,
1200                                         netdev_get_tx_queue(dev, j),
1201                                         s->fw_evtq.cntxt_id);
1202                         if (err)
1203                                 goto freeout;
1204                 }
1205         }
1206
1207         j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1208         for_each_ofldrxq(s, i) {
1209                 struct sge_ofld_rxq *q = &s->ofldrxq[i];
1210                 struct net_device *dev = adap->port[i / j];
1211
1212                 if (msi_idx > 0)
1213                         msi_idx++;
1214                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, msi_idx,
1215                                        q->fl.size ? &q->fl : NULL,
1216                                        uldrx_handler);
1217                 if (err)
1218                         goto freeout;
1219                 memset(&q->stats, 0, sizeof(q->stats));
1220                 s->ofld_rxq[i] = q->rspq.abs_id;
1221                 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], dev,
1222                                             s->fw_evtq.cntxt_id);
1223                 if (err)
1224                         goto freeout;
1225         }
1226
1227         for_each_rdmarxq(s, i) {
1228                 struct sge_ofld_rxq *q = &s->rdmarxq[i];
1229
1230                 if (msi_idx > 0)
1231                         msi_idx++;
1232                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
1233                                        msi_idx, q->fl.size ? &q->fl : NULL,
1234                                        uldrx_handler);
1235                 if (err)
1236                         goto freeout;
1237                 memset(&q->stats, 0, sizeof(q->stats));
1238                 s->rdma_rxq[i] = q->rspq.abs_id;
1239         }
1240
1241         for_each_rdmaciq(s, i) {
1242                 struct sge_ofld_rxq *q = &s->rdmaciq[i];
1243
1244                 if (msi_idx > 0)
1245                         msi_idx++;
1246                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
1247                                        msi_idx, q->fl.size ? &q->fl : NULL,
1248                                        uldrx_handler);
1249                 if (err)
1250                         goto freeout;
1251                 memset(&q->stats, 0, sizeof(q->stats));
1252                 s->rdma_ciq[i] = q->rspq.abs_id;
1253         }
1254
1255         for_each_port(adap, i) {
1256                 /*
1257                  * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1258                  * have RDMA queues, and that's the right value.
1259                  */
1260                 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1261                                             s->fw_evtq.cntxt_id,
1262                                             s->rdmarxq[i].rspq.cntxt_id);
1263                 if (err)
1264                         goto freeout;
1265         }
1266
1267         t4_write_reg(adap, is_t4(adap->params.chip) ?
1268                                 MPS_TRC_RSS_CONTROL :
1269                                 MPS_T5_TRC_RSS_CONTROL,
1270                      RSSCONTROL(netdev2pinfo(adap->port[0])->tx_chan) |
1271                      QUEUENUMBER(s->ethrxq[0].rspq.abs_id));
1272         return 0;
1273 }
1274
1275 /*
1276  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1277  * The allocated memory is cleared.
1278  */
1279 void *t4_alloc_mem(size_t size)
1280 {
1281         void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1282
1283         if (!p)
1284                 p = vzalloc(size);
1285         return p;
1286 }
1287
1288 /*
1289  * Free memory allocated through alloc_mem().
1290  */
1291 void t4_free_mem(void *addr)
1292 {
1293         if (is_vmalloc_addr(addr))
1294                 vfree(addr);
1295         else
1296                 kfree(addr);
1297 }
1298
1299 /* Send a Work Request to write the filter at a specified index.  We construct
1300  * a Firmware Filter Work Request to have the work done and put the indicated
1301  * filter into "pending" mode which will prevent any further actions against
1302  * it till we get a reply from the firmware on the completion status of the
1303  * request.
1304  */
1305 static int set_filter_wr(struct adapter *adapter, int fidx)
1306 {
1307         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1308         struct sk_buff *skb;
1309         struct fw_filter_wr *fwr;
1310         unsigned int ftid;
1311
1312         /* If the new filter requires loopback Destination MAC and/or VLAN
1313          * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1314          * the filter.
1315          */
1316         if (f->fs.newdmac || f->fs.newvlan) {
1317                 /* allocate L2T entry for new filter */
1318                 f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1319                 if (f->l2t == NULL)
1320                         return -EAGAIN;
1321                 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1322                                         f->fs.eport, f->fs.dmac)) {
1323                         cxgb4_l2t_release(f->l2t);
1324                         f->l2t = NULL;
1325                         return -ENOMEM;
1326                 }
1327         }
1328
1329         ftid = adapter->tids.ftid_base + fidx;
1330
1331         skb = alloc_skb(sizeof(*fwr), GFP_KERNEL | __GFP_NOFAIL);
1332         fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1333         memset(fwr, 0, sizeof(*fwr));
1334
1335         /* It would be nice to put most of the following in t4_hw.c but most
1336          * of the work is translating the cxgbtool ch_filter_specification
1337          * into the Work Request and the definition of that structure is
1338          * currently in cxgbtool.h which isn't appropriate to pull into the
1339          * common code.  We may eventually try to come up with a more neutral
1340          * filter specification structure but for now it's easiest to simply
1341          * put this fairly direct code in line ...
1342          */
1343         fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
1344         fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
1345         fwr->tid_to_iq =
1346                 htonl(FW_FILTER_WR_TID_V(ftid) |
1347                       FW_FILTER_WR_RQTYPE_V(f->fs.type) |
1348                       FW_FILTER_WR_NOREPLY_V(0) |
1349                       FW_FILTER_WR_IQ_V(f->fs.iq));
1350         fwr->del_filter_to_l2tix =
1351                 htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
1352                       FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
1353                       FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
1354                       FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
1355                       FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
1356                       FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
1357                       FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
1358                       FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
1359                       FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
1360                                              f->fs.newvlan == VLAN_REWRITE) |
1361                       FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
1362                                             f->fs.newvlan == VLAN_REWRITE) |
1363                       FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
1364                       FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
1365                       FW_FILTER_WR_PRIO_V(f->fs.prio) |
1366                       FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
1367         fwr->ethtype = htons(f->fs.val.ethtype);
1368         fwr->ethtypem = htons(f->fs.mask.ethtype);
1369         fwr->frag_to_ovlan_vldm =
1370                 (FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
1371                  FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
1372                  FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
1373                  FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
1374                  FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
1375                  FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
1376         fwr->smac_sel = 0;
1377         fwr->rx_chan_rx_rpl_iq =
1378                 htons(FW_FILTER_WR_RX_CHAN_V(0) |
1379                       FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
1380         fwr->maci_to_matchtypem =
1381                 htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
1382                       FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
1383                       FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
1384                       FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
1385                       FW_FILTER_WR_PORT_V(f->fs.val.iport) |
1386                       FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
1387                       FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
1388                       FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
1389         fwr->ptcl = f->fs.val.proto;
1390         fwr->ptclm = f->fs.mask.proto;
1391         fwr->ttyp = f->fs.val.tos;
1392         fwr->ttypm = f->fs.mask.tos;
1393         fwr->ivlan = htons(f->fs.val.ivlan);
1394         fwr->ivlanm = htons(f->fs.mask.ivlan);
1395         fwr->ovlan = htons(f->fs.val.ovlan);
1396         fwr->ovlanm = htons(f->fs.mask.ovlan);
1397         memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1398         memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1399         memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1400         memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1401         fwr->lp = htons(f->fs.val.lport);
1402         fwr->lpm = htons(f->fs.mask.lport);
1403         fwr->fp = htons(f->fs.val.fport);
1404         fwr->fpm = htons(f->fs.mask.fport);
1405         if (f->fs.newsmac)
1406                 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1407
1408         /* Mark the filter as "pending" and ship off the Filter Work Request.
1409          * When we get the Work Request Reply we'll clear the pending status.
1410          */
1411         f->pending = 1;
1412         set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1413         t4_ofld_send(adapter, skb);
1414         return 0;
1415 }
1416
1417 /* Delete the filter at a specified index.
1418  */
1419 static int del_filter_wr(struct adapter *adapter, int fidx)
1420 {
1421         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1422         struct sk_buff *skb;
1423         struct fw_filter_wr *fwr;
1424         unsigned int len, ftid;
1425
1426         len = sizeof(*fwr);
1427         ftid = adapter->tids.ftid_base + fidx;
1428
1429         skb = alloc_skb(len, GFP_KERNEL | __GFP_NOFAIL);
1430         fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1431         t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1432
1433         /* Mark the filter as "pending" and ship off the Filter Work Request.
1434          * When we get the Work Request Reply we'll clear the pending status.
1435          */
1436         f->pending = 1;
1437         t4_mgmt_tx(adapter, skb);
1438         return 0;
1439 }
1440
1441 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1442                              void *accel_priv, select_queue_fallback_t fallback)
1443 {
1444         int txq;
1445
1446 #ifdef CONFIG_CHELSIO_T4_DCB
1447         /* If a Data Center Bridging has been successfully negotiated on this
1448          * link then we'll use the skb's priority to map it to a TX Queue.
1449          * The skb's priority is determined via the VLAN Tag Priority Code
1450          * Point field.
1451          */
1452         if (cxgb4_dcb_enabled(dev)) {
1453                 u16 vlan_tci;
1454                 int err;
1455
1456                 err = vlan_get_tag(skb, &vlan_tci);
1457                 if (unlikely(err)) {
1458                         if (net_ratelimit())
1459                                 netdev_warn(dev,
1460                                             "TX Packet without VLAN Tag on DCB Link\n");
1461                         txq = 0;
1462                 } else {
1463                         txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1464                 }
1465                 return txq;
1466         }
1467 #endif /* CONFIG_CHELSIO_T4_DCB */
1468
1469         if (select_queue) {
1470                 txq = (skb_rx_queue_recorded(skb)
1471                         ? skb_get_rx_queue(skb)
1472                         : smp_processor_id());
1473
1474                 while (unlikely(txq >= dev->real_num_tx_queues))
1475                         txq -= dev->real_num_tx_queues;
1476
1477                 return txq;
1478         }
1479
1480         return fallback(dev, skb) % dev->real_num_tx_queues;
1481 }
1482
1483 static inline int is_offload(const struct adapter *adap)
1484 {
1485         return adap->params.offload;
1486 }
1487
1488 /*
1489  * Implementation of ethtool operations.
1490  */
1491
1492 static u32 get_msglevel(struct net_device *dev)
1493 {
1494         return netdev2adap(dev)->msg_enable;
1495 }
1496
1497 static void set_msglevel(struct net_device *dev, u32 val)
1498 {
1499         netdev2adap(dev)->msg_enable = val;
1500 }
1501
1502 static char stats_strings[][ETH_GSTRING_LEN] = {
1503         "TxOctetsOK         ",
1504         "TxFramesOK         ",
1505         "TxBroadcastFrames  ",
1506         "TxMulticastFrames  ",
1507         "TxUnicastFrames    ",
1508         "TxErrorFrames      ",
1509
1510         "TxFrames64         ",
1511         "TxFrames65To127    ",
1512         "TxFrames128To255   ",
1513         "TxFrames256To511   ",
1514         "TxFrames512To1023  ",
1515         "TxFrames1024To1518 ",
1516         "TxFrames1519ToMax  ",
1517
1518         "TxFramesDropped    ",
1519         "TxPauseFrames      ",
1520         "TxPPP0Frames       ",
1521         "TxPPP1Frames       ",
1522         "TxPPP2Frames       ",
1523         "TxPPP3Frames       ",
1524         "TxPPP4Frames       ",
1525         "TxPPP5Frames       ",
1526         "TxPPP6Frames       ",
1527         "TxPPP7Frames       ",
1528
1529         "RxOctetsOK         ",
1530         "RxFramesOK         ",
1531         "RxBroadcastFrames  ",
1532         "RxMulticastFrames  ",
1533         "RxUnicastFrames    ",
1534
1535         "RxFramesTooLong    ",
1536         "RxJabberErrors     ",
1537         "RxFCSErrors        ",
1538         "RxLengthErrors     ",
1539         "RxSymbolErrors     ",
1540         "RxRuntFrames       ",
1541
1542         "RxFrames64         ",
1543         "RxFrames65To127    ",
1544         "RxFrames128To255   ",
1545         "RxFrames256To511   ",
1546         "RxFrames512To1023  ",
1547         "RxFrames1024To1518 ",
1548         "RxFrames1519ToMax  ",
1549
1550         "RxPauseFrames      ",
1551         "RxPPP0Frames       ",
1552         "RxPPP1Frames       ",
1553         "RxPPP2Frames       ",
1554         "RxPPP3Frames       ",
1555         "RxPPP4Frames       ",
1556         "RxPPP5Frames       ",
1557         "RxPPP6Frames       ",
1558         "RxPPP7Frames       ",
1559
1560         "RxBG0FramesDropped ",
1561         "RxBG1FramesDropped ",
1562         "RxBG2FramesDropped ",
1563         "RxBG3FramesDropped ",
1564         "RxBG0FramesTrunc   ",
1565         "RxBG1FramesTrunc   ",
1566         "RxBG2FramesTrunc   ",
1567         "RxBG3FramesTrunc   ",
1568
1569         "TSO                ",
1570         "TxCsumOffload      ",
1571         "RxCsumGood         ",
1572         "VLANextractions    ",
1573         "VLANinsertions     ",
1574         "GROpackets         ",
1575         "GROmerged          ",
1576         "WriteCoalSuccess   ",
1577         "WriteCoalFail      ",
1578 };
1579
1580 static int get_sset_count(struct net_device *dev, int sset)
1581 {
1582         switch (sset) {
1583         case ETH_SS_STATS:
1584                 return ARRAY_SIZE(stats_strings);
1585         default:
1586                 return -EOPNOTSUPP;
1587         }
1588 }
1589
1590 #define T4_REGMAP_SIZE (160 * 1024)
1591 #define T5_REGMAP_SIZE (332 * 1024)
1592
1593 static int get_regs_len(struct net_device *dev)
1594 {
1595         struct adapter *adap = netdev2adap(dev);
1596         if (is_t4(adap->params.chip))
1597                 return T4_REGMAP_SIZE;
1598         else
1599                 return T5_REGMAP_SIZE;
1600 }
1601
1602 static int get_eeprom_len(struct net_device *dev)
1603 {
1604         return EEPROMSIZE;
1605 }
1606
1607 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1608 {
1609         struct adapter *adapter = netdev2adap(dev);
1610
1611         strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
1612         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1613         strlcpy(info->bus_info, pci_name(adapter->pdev),
1614                 sizeof(info->bus_info));
1615
1616         if (adapter->params.fw_vers)
1617                 snprintf(info->fw_version, sizeof(info->fw_version),
1618                         "%u.%u.%u.%u, TP %u.%u.%u.%u",
1619                         FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers),
1620                         FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers),
1621                         FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers),
1622                         FW_HDR_FW_VER_BUILD_GET(adapter->params.fw_vers),
1623                         FW_HDR_FW_VER_MAJOR_GET(adapter->params.tp_vers),
1624                         FW_HDR_FW_VER_MINOR_GET(adapter->params.tp_vers),
1625                         FW_HDR_FW_VER_MICRO_GET(adapter->params.tp_vers),
1626                         FW_HDR_FW_VER_BUILD_GET(adapter->params.tp_vers));
1627 }
1628
1629 static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
1630 {
1631         if (stringset == ETH_SS_STATS)
1632                 memcpy(data, stats_strings, sizeof(stats_strings));
1633 }
1634
1635 /*
1636  * port stats maintained per queue of the port.  They should be in the same
1637  * order as in stats_strings above.
1638  */
1639 struct queue_port_stats {
1640         u64 tso;
1641         u64 tx_csum;
1642         u64 rx_csum;
1643         u64 vlan_ex;
1644         u64 vlan_ins;
1645         u64 gro_pkts;
1646         u64 gro_merged;
1647 };
1648
1649 static void collect_sge_port_stats(const struct adapter *adap,
1650                 const struct port_info *p, struct queue_port_stats *s)
1651 {
1652         int i;
1653         const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset];
1654         const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset];
1655
1656         memset(s, 0, sizeof(*s));
1657         for (i = 0; i < p->nqsets; i++, rx++, tx++) {
1658                 s->tso += tx->tso;
1659                 s->tx_csum += tx->tx_cso;
1660                 s->rx_csum += rx->stats.rx_cso;
1661                 s->vlan_ex += rx->stats.vlan_ex;
1662                 s->vlan_ins += tx->vlan_ins;
1663                 s->gro_pkts += rx->stats.lro_pkts;
1664                 s->gro_merged += rx->stats.lro_merged;
1665         }
1666 }
1667
1668 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1669                       u64 *data)
1670 {
1671         struct port_info *pi = netdev_priv(dev);
1672         struct adapter *adapter = pi->adapter;
1673         u32 val1, val2;
1674
1675         t4_get_port_stats(adapter, pi->tx_chan, (struct port_stats *)data);
1676
1677         data += sizeof(struct port_stats) / sizeof(u64);
1678         collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1679         data += sizeof(struct queue_port_stats) / sizeof(u64);
1680         if (!is_t4(adapter->params.chip)) {
1681                 t4_write_reg(adapter, SGE_STAT_CFG, STATSOURCE_T5(7));
1682                 val1 = t4_read_reg(adapter, SGE_STAT_TOTAL);
1683                 val2 = t4_read_reg(adapter, SGE_STAT_MATCH);
1684                 *data = val1 - val2;
1685                 data++;
1686                 *data = val2;
1687                 data++;
1688         } else {
1689                 memset(data, 0, 2 * sizeof(u64));
1690                 *data += 2;
1691         }
1692 }
1693
1694 /*
1695  * Return a version number to identify the type of adapter.  The scheme is:
1696  * - bits 0..9: chip version
1697  * - bits 10..15: chip revision
1698  * - bits 16..23: register dump version
1699  */
1700 static inline unsigned int mk_adap_vers(const struct adapter *ap)
1701 {
1702         return CHELSIO_CHIP_VERSION(ap->params.chip) |
1703                 (CHELSIO_CHIP_RELEASE(ap->params.chip) << 10) | (1 << 16);
1704 }
1705
1706 static void reg_block_dump(struct adapter *ap, void *buf, unsigned int start,
1707                            unsigned int end)
1708 {
1709         u32 *p = buf + start;
1710
1711         for ( ; start <= end; start += sizeof(u32))
1712                 *p++ = t4_read_reg(ap, start);
1713 }
1714
1715 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1716                      void *buf)
1717 {
1718         static const unsigned int t4_reg_ranges[] = {
1719                 0x1008, 0x1108,
1720                 0x1180, 0x11b4,
1721                 0x11fc, 0x123c,
1722                 0x1300, 0x173c,
1723                 0x1800, 0x18fc,
1724                 0x3000, 0x30d8,
1725                 0x30e0, 0x5924,
1726                 0x5960, 0x59d4,
1727                 0x5a00, 0x5af8,
1728                 0x6000, 0x6098,
1729                 0x6100, 0x6150,
1730                 0x6200, 0x6208,
1731                 0x6240, 0x6248,
1732                 0x6280, 0x6338,
1733                 0x6370, 0x638c,
1734                 0x6400, 0x643c,
1735                 0x6500, 0x6524,
1736                 0x6a00, 0x6a38,
1737                 0x6a60, 0x6a78,
1738                 0x6b00, 0x6b84,
1739                 0x6bf0, 0x6c84,
1740                 0x6cf0, 0x6d84,
1741                 0x6df0, 0x6e84,
1742                 0x6ef0, 0x6f84,
1743                 0x6ff0, 0x7084,
1744                 0x70f0, 0x7184,
1745                 0x71f0, 0x7284,
1746                 0x72f0, 0x7384,
1747                 0x73f0, 0x7450,
1748                 0x7500, 0x7530,
1749                 0x7600, 0x761c,
1750                 0x7680, 0x76cc,
1751                 0x7700, 0x7798,
1752                 0x77c0, 0x77fc,
1753                 0x7900, 0x79fc,
1754                 0x7b00, 0x7c38,
1755                 0x7d00, 0x7efc,
1756                 0x8dc0, 0x8e1c,
1757                 0x8e30, 0x8e78,
1758                 0x8ea0, 0x8f6c,
1759                 0x8fc0, 0x9074,
1760                 0x90fc, 0x90fc,
1761                 0x9400, 0x9458,
1762                 0x9600, 0x96bc,
1763                 0x9800, 0x9808,
1764                 0x9820, 0x983c,
1765                 0x9850, 0x9864,
1766                 0x9c00, 0x9c6c,
1767                 0x9c80, 0x9cec,
1768                 0x9d00, 0x9d6c,
1769                 0x9d80, 0x9dec,
1770                 0x9e00, 0x9e6c,
1771                 0x9e80, 0x9eec,
1772                 0x9f00, 0x9f6c,
1773                 0x9f80, 0x9fec,
1774                 0xd004, 0xd03c,
1775                 0xdfc0, 0xdfe0,
1776                 0xe000, 0xea7c,
1777                 0xf000, 0x11110,
1778                 0x11118, 0x11190,
1779                 0x19040, 0x1906c,
1780                 0x19078, 0x19080,
1781                 0x1908c, 0x19124,
1782                 0x19150, 0x191b0,
1783                 0x191d0, 0x191e8,
1784                 0x19238, 0x1924c,
1785                 0x193f8, 0x19474,
1786                 0x19490, 0x194f8,
1787                 0x19800, 0x19f30,
1788                 0x1a000, 0x1a06c,
1789                 0x1a0b0, 0x1a120,
1790                 0x1a128, 0x1a138,
1791                 0x1a190, 0x1a1c4,
1792                 0x1a1fc, 0x1a1fc,
1793                 0x1e040, 0x1e04c,
1794                 0x1e284, 0x1e28c,
1795                 0x1e2c0, 0x1e2c0,
1796                 0x1e2e0, 0x1e2e0,
1797                 0x1e300, 0x1e384,
1798                 0x1e3c0, 0x1e3c8,
1799                 0x1e440, 0x1e44c,
1800                 0x1e684, 0x1e68c,
1801                 0x1e6c0, 0x1e6c0,
1802                 0x1e6e0, 0x1e6e0,
1803                 0x1e700, 0x1e784,
1804                 0x1e7c0, 0x1e7c8,
1805                 0x1e840, 0x1e84c,
1806                 0x1ea84, 0x1ea8c,
1807                 0x1eac0, 0x1eac0,
1808                 0x1eae0, 0x1eae0,
1809                 0x1eb00, 0x1eb84,
1810                 0x1ebc0, 0x1ebc8,
1811                 0x1ec40, 0x1ec4c,
1812                 0x1ee84, 0x1ee8c,
1813                 0x1eec0, 0x1eec0,
1814                 0x1eee0, 0x1eee0,
1815                 0x1ef00, 0x1ef84,
1816                 0x1efc0, 0x1efc8,
1817                 0x1f040, 0x1f04c,
1818                 0x1f284, 0x1f28c,
1819                 0x1f2c0, 0x1f2c0,
1820                 0x1f2e0, 0x1f2e0,
1821                 0x1f300, 0x1f384,
1822                 0x1f3c0, 0x1f3c8,
1823                 0x1f440, 0x1f44c,
1824                 0x1f684, 0x1f68c,
1825                 0x1f6c0, 0x1f6c0,
1826                 0x1f6e0, 0x1f6e0,
1827                 0x1f700, 0x1f784,
1828                 0x1f7c0, 0x1f7c8,
1829                 0x1f840, 0x1f84c,
1830                 0x1fa84, 0x1fa8c,
1831                 0x1fac0, 0x1fac0,
1832                 0x1fae0, 0x1fae0,
1833                 0x1fb00, 0x1fb84,
1834                 0x1fbc0, 0x1fbc8,
1835                 0x1fc40, 0x1fc4c,
1836                 0x1fe84, 0x1fe8c,
1837                 0x1fec0, 0x1fec0,
1838                 0x1fee0, 0x1fee0,
1839                 0x1ff00, 0x1ff84,
1840                 0x1ffc0, 0x1ffc8,
1841                 0x20000, 0x2002c,
1842                 0x20100, 0x2013c,
1843                 0x20190, 0x201c8,
1844                 0x20200, 0x20318,
1845                 0x20400, 0x20528,
1846                 0x20540, 0x20614,
1847                 0x21000, 0x21040,
1848                 0x2104c, 0x21060,
1849                 0x210c0, 0x210ec,
1850                 0x21200, 0x21268,
1851                 0x21270, 0x21284,
1852                 0x212fc, 0x21388,
1853                 0x21400, 0x21404,
1854                 0x21500, 0x21518,
1855                 0x2152c, 0x2153c,
1856                 0x21550, 0x21554,
1857                 0x21600, 0x21600,
1858                 0x21608, 0x21628,
1859                 0x21630, 0x2163c,
1860                 0x21700, 0x2171c,
1861                 0x21780, 0x2178c,
1862                 0x21800, 0x21c38,
1863                 0x21c80, 0x21d7c,
1864                 0x21e00, 0x21e04,
1865                 0x22000, 0x2202c,
1866                 0x22100, 0x2213c,
1867                 0x22190, 0x221c8,
1868                 0x22200, 0x22318,
1869                 0x22400, 0x22528,
1870                 0x22540, 0x22614,
1871                 0x23000, 0x23040,
1872                 0x2304c, 0x23060,
1873                 0x230c0, 0x230ec,
1874                 0x23200, 0x23268,
1875                 0x23270, 0x23284,
1876                 0x232fc, 0x23388,
1877                 0x23400, 0x23404,
1878                 0x23500, 0x23518,
1879                 0x2352c, 0x2353c,
1880                 0x23550, 0x23554,
1881                 0x23600, 0x23600,
1882                 0x23608, 0x23628,
1883                 0x23630, 0x2363c,
1884                 0x23700, 0x2371c,
1885                 0x23780, 0x2378c,
1886                 0x23800, 0x23c38,
1887                 0x23c80, 0x23d7c,
1888                 0x23e00, 0x23e04,
1889                 0x24000, 0x2402c,
1890                 0x24100, 0x2413c,
1891                 0x24190, 0x241c8,
1892                 0x24200, 0x24318,
1893                 0x24400, 0x24528,
1894                 0x24540, 0x24614,
1895                 0x25000, 0x25040,
1896                 0x2504c, 0x25060,
1897                 0x250c0, 0x250ec,
1898                 0x25200, 0x25268,
1899                 0x25270, 0x25284,
1900                 0x252fc, 0x25388,
1901                 0x25400, 0x25404,
1902                 0x25500, 0x25518,
1903                 0x2552c, 0x2553c,
1904                 0x25550, 0x25554,
1905                 0x25600, 0x25600,
1906                 0x25608, 0x25628,
1907                 0x25630, 0x2563c,
1908                 0x25700, 0x2571c,
1909                 0x25780, 0x2578c,
1910                 0x25800, 0x25c38,
1911                 0x25c80, 0x25d7c,
1912                 0x25e00, 0x25e04,
1913                 0x26000, 0x2602c,
1914                 0x26100, 0x2613c,
1915                 0x26190, 0x261c8,
1916                 0x26200, 0x26318,
1917                 0x26400, 0x26528,
1918                 0x26540, 0x26614,
1919                 0x27000, 0x27040,
1920                 0x2704c, 0x27060,
1921                 0x270c0, 0x270ec,
1922                 0x27200, 0x27268,
1923                 0x27270, 0x27284,
1924                 0x272fc, 0x27388,
1925                 0x27400, 0x27404,
1926                 0x27500, 0x27518,
1927                 0x2752c, 0x2753c,
1928                 0x27550, 0x27554,
1929                 0x27600, 0x27600,
1930                 0x27608, 0x27628,
1931                 0x27630, 0x2763c,
1932                 0x27700, 0x2771c,
1933                 0x27780, 0x2778c,
1934                 0x27800, 0x27c38,
1935                 0x27c80, 0x27d7c,
1936                 0x27e00, 0x27e04
1937         };
1938
1939         static const unsigned int t5_reg_ranges[] = {
1940                 0x1008, 0x1148,
1941                 0x1180, 0x11b4,
1942                 0x11fc, 0x123c,
1943                 0x1280, 0x173c,
1944                 0x1800, 0x18fc,
1945                 0x3000, 0x3028,
1946                 0x3060, 0x30d8,
1947                 0x30e0, 0x30fc,
1948                 0x3140, 0x357c,
1949                 0x35a8, 0x35cc,
1950                 0x35ec, 0x35ec,
1951                 0x3600, 0x5624,
1952                 0x56cc, 0x575c,
1953                 0x580c, 0x5814,
1954                 0x5890, 0x58bc,
1955                 0x5940, 0x59dc,
1956                 0x59fc, 0x5a18,
1957                 0x5a60, 0x5a9c,
1958                 0x5b9c, 0x5bfc,
1959                 0x6000, 0x6040,
1960                 0x6058, 0x614c,
1961                 0x7700, 0x7798,
1962                 0x77c0, 0x78fc,
1963                 0x7b00, 0x7c54,
1964                 0x7d00, 0x7efc,
1965                 0x8dc0, 0x8de0,
1966                 0x8df8, 0x8e84,
1967                 0x8ea0, 0x8f84,
1968                 0x8fc0, 0x90f8,
1969                 0x9400, 0x9470,
1970                 0x9600, 0x96f4,
1971                 0x9800, 0x9808,
1972                 0x9820, 0x983c,
1973                 0x9850, 0x9864,
1974                 0x9c00, 0x9c6c,
1975                 0x9c80, 0x9cec,
1976                 0x9d00, 0x9d6c,
1977                 0x9d80, 0x9dec,
1978                 0x9e00, 0x9e6c,
1979                 0x9e80, 0x9eec,
1980                 0x9f00, 0x9f6c,
1981                 0x9f80, 0xa020,
1982                 0xd004, 0xd03c,
1983                 0xdfc0, 0xdfe0,
1984                 0xe000, 0x11088,
1985                 0x1109c, 0x11110,
1986                 0x11118, 0x1117c,
1987                 0x11190, 0x11204,
1988                 0x19040, 0x1906c,
1989                 0x19078, 0x19080,
1990                 0x1908c, 0x19124,
1991                 0x19150, 0x191b0,
1992                 0x191d0, 0x191e8,
1993                 0x19238, 0x19290,
1994                 0x193f8, 0x19474,
1995                 0x19490, 0x194cc,
1996                 0x194f0, 0x194f8,
1997                 0x19c00, 0x19c60,
1998                 0x19c94, 0x19e10,
1999                 0x19e50, 0x19f34,
2000                 0x19f40, 0x19f50,
2001                 0x19f90, 0x19fe4,
2002                 0x1a000, 0x1a06c,
2003                 0x1a0b0, 0x1a120,
2004                 0x1a128, 0x1a138,
2005                 0x1a190, 0x1a1c4,
2006                 0x1a1fc, 0x1a1fc,
2007                 0x1e008, 0x1e00c,
2008                 0x1e040, 0x1e04c,
2009                 0x1e284, 0x1e290,
2010                 0x1e2c0, 0x1e2c0,
2011                 0x1e2e0, 0x1e2e0,
2012                 0x1e300, 0x1e384,
2013                 0x1e3c0, 0x1e3c8,
2014                 0x1e408, 0x1e40c,
2015                 0x1e440, 0x1e44c,
2016                 0x1e684, 0x1e690,
2017                 0x1e6c0, 0x1e6c0,
2018                 0x1e6e0, 0x1e6e0,
2019                 0x1e700, 0x1e784,
2020                 0x1e7c0, 0x1e7c8,
2021                 0x1e808, 0x1e80c,
2022                 0x1e840, 0x1e84c,
2023                 0x1ea84, 0x1ea90,
2024                 0x1eac0, 0x1eac0,
2025                 0x1eae0, 0x1eae0,
2026                 0x1eb00, 0x1eb84,
2027                 0x1ebc0, 0x1ebc8,
2028                 0x1ec08, 0x1ec0c,
2029                 0x1ec40, 0x1ec4c,
2030                 0x1ee84, 0x1ee90,
2031                 0x1eec0, 0x1eec0,
2032                 0x1eee0, 0x1eee0,
2033                 0x1ef00, 0x1ef84,
2034                 0x1efc0, 0x1efc8,
2035                 0x1f008, 0x1f00c,
2036                 0x1f040, 0x1f04c,
2037                 0x1f284, 0x1f290,
2038                 0x1f2c0, 0x1f2c0,
2039                 0x1f2e0, 0x1f2e0,
2040                 0x1f300, 0x1f384,
2041                 0x1f3c0, 0x1f3c8,
2042                 0x1f408, 0x1f40c,
2043                 0x1f440, 0x1f44c,
2044                 0x1f684, 0x1f690,
2045                 0x1f6c0, 0x1f6c0,
2046                 0x1f6e0, 0x1f6e0,
2047                 0x1f700, 0x1f784,
2048                 0x1f7c0, 0x1f7c8,
2049                 0x1f808, 0x1f80c,
2050                 0x1f840, 0x1f84c,
2051                 0x1fa84, 0x1fa90,
2052                 0x1fac0, 0x1fac0,
2053                 0x1fae0, 0x1fae0,
2054                 0x1fb00, 0x1fb84,
2055                 0x1fbc0, 0x1fbc8,
2056                 0x1fc08, 0x1fc0c,
2057                 0x1fc40, 0x1fc4c,
2058                 0x1fe84, 0x1fe90,
2059                 0x1fec0, 0x1fec0,
2060                 0x1fee0, 0x1fee0,
2061                 0x1ff00, 0x1ff84,
2062                 0x1ffc0, 0x1ffc8,
2063                 0x30000, 0x30030,
2064                 0x30100, 0x30144,
2065                 0x30190, 0x301d0,
2066                 0x30200, 0x30318,
2067                 0x30400, 0x3052c,
2068                 0x30540, 0x3061c,
2069                 0x30800, 0x30834,
2070                 0x308c0, 0x30908,
2071                 0x30910, 0x309ac,
2072                 0x30a00, 0x30a04,
2073                 0x30a0c, 0x30a2c,
2074                 0x30a44, 0x30a50,
2075                 0x30a74, 0x30c24,
2076                 0x30d08, 0x30d14,
2077                 0x30d1c, 0x30d20,
2078                 0x30d3c, 0x30d50,
2079                 0x31200, 0x3120c,
2080                 0x31220, 0x31220,
2081                 0x31240, 0x31240,
2082                 0x31600, 0x31600,
2083                 0x31608, 0x3160c,
2084                 0x31a00, 0x31a1c,
2085                 0x31e04, 0x31e20,
2086                 0x31e38, 0x31e3c,
2087                 0x31e80, 0x31e80,
2088                 0x31e88, 0x31ea8,
2089                 0x31eb0, 0x31eb4,
2090                 0x31ec8, 0x31ed4,
2091                 0x31fb8, 0x32004,
2092                 0x32208, 0x3223c,
2093                 0x32600, 0x32630,
2094                 0x32a00, 0x32abc,
2095                 0x32b00, 0x32b70,
2096                 0x33000, 0x33048,
2097                 0x33060, 0x3309c,
2098                 0x330f0, 0x33148,
2099                 0x33160, 0x3319c,
2100                 0x331f0, 0x332e4,
2101                 0x332f8, 0x333e4,
2102                 0x333f8, 0x33448,
2103                 0x33460, 0x3349c,
2104                 0x334f0, 0x33548,
2105                 0x33560, 0x3359c,
2106                 0x335f0, 0x336e4,
2107                 0x336f8, 0x337e4,
2108                 0x337f8, 0x337fc,
2109                 0x33814, 0x33814,
2110                 0x3382c, 0x3382c,
2111                 0x33880, 0x3388c,
2112                 0x338e8, 0x338ec,
2113                 0x33900, 0x33948,
2114                 0x33960, 0x3399c,
2115                 0x339f0, 0x33ae4,
2116                 0x33af8, 0x33b10,
2117                 0x33b28, 0x33b28,
2118                 0x33b3c, 0x33b50,
2119                 0x33bf0, 0x33c10,
2120                 0x33c28, 0x33c28,
2121                 0x33c3c, 0x33c50,
2122                 0x33cf0, 0x33cfc,
2123                 0x34000, 0x34030,
2124                 0x34100, 0x34144,
2125                 0x34190, 0x341d0,
2126                 0x34200, 0x34318,
2127                 0x34400, 0x3452c,
2128                 0x34540, 0x3461c,
2129                 0x34800, 0x34834,
2130                 0x348c0, 0x34908,
2131                 0x34910, 0x349ac,
2132                 0x34a00, 0x34a04,
2133                 0x34a0c, 0x34a2c,
2134                 0x34a44, 0x34a50,
2135                 0x34a74, 0x34c24,
2136                 0x34d08, 0x34d14,
2137                 0x34d1c, 0x34d20,
2138                 0x34d3c, 0x34d50,
2139                 0x35200, 0x3520c,
2140                 0x35220, 0x35220,
2141                 0x35240, 0x35240,
2142                 0x35600, 0x35600,
2143                 0x35608, 0x3560c,
2144                 0x35a00, 0x35a1c,
2145                 0x35e04, 0x35e20,
2146                 0x35e38, 0x35e3c,
2147                 0x35e80, 0x35e80,
2148                 0x35e88, 0x35ea8,
2149                 0x35eb0, 0x35eb4,
2150                 0x35ec8, 0x35ed4,
2151                 0x35fb8, 0x36004,
2152                 0x36208, 0x3623c,
2153                 0x36600, 0x36630,
2154                 0x36a00, 0x36abc,
2155                 0x36b00, 0x36b70,
2156                 0x37000, 0x37048,
2157                 0x37060, 0x3709c,
2158                 0x370f0, 0x37148,
2159                 0x37160, 0x3719c,
2160                 0x371f0, 0x372e4,
2161                 0x372f8, 0x373e4,
2162                 0x373f8, 0x37448,
2163                 0x37460, 0x3749c,
2164                 0x374f0, 0x37548,
2165                 0x37560, 0x3759c,
2166                 0x375f0, 0x376e4,
2167                 0x376f8, 0x377e4,
2168                 0x377f8, 0x377fc,
2169                 0x37814, 0x37814,
2170                 0x3782c, 0x3782c,
2171                 0x37880, 0x3788c,
2172                 0x378e8, 0x378ec,
2173                 0x37900, 0x37948,
2174                 0x37960, 0x3799c,
2175                 0x379f0, 0x37ae4,
2176                 0x37af8, 0x37b10,
2177                 0x37b28, 0x37b28,
2178                 0x37b3c, 0x37b50,
2179                 0x37bf0, 0x37c10,
2180                 0x37c28, 0x37c28,
2181                 0x37c3c, 0x37c50,
2182                 0x37cf0, 0x37cfc,
2183                 0x38000, 0x38030,
2184                 0x38100, 0x38144,
2185                 0x38190, 0x381d0,
2186                 0x38200, 0x38318,
2187                 0x38400, 0x3852c,
2188                 0x38540, 0x3861c,
2189                 0x38800, 0x38834,
2190                 0x388c0, 0x38908,
2191                 0x38910, 0x389ac,
2192                 0x38a00, 0x38a04,
2193                 0x38a0c, 0x38a2c,
2194                 0x38a44, 0x38a50,
2195                 0x38a74, 0x38c24,
2196                 0x38d08, 0x38d14,
2197                 0x38d1c, 0x38d20,
2198                 0x38d3c, 0x38d50,
2199                 0x39200, 0x3920c,
2200                 0x39220, 0x39220,
2201                 0x39240, 0x39240,
2202                 0x39600, 0x39600,
2203                 0x39608, 0x3960c,
2204                 0x39a00, 0x39a1c,
2205                 0x39e04, 0x39e20,
2206                 0x39e38, 0x39e3c,
2207                 0x39e80, 0x39e80,
2208                 0x39e88, 0x39ea8,
2209                 0x39eb0, 0x39eb4,
2210                 0x39ec8, 0x39ed4,
2211                 0x39fb8, 0x3a004,
2212                 0x3a208, 0x3a23c,
2213                 0x3a600, 0x3a630,
2214                 0x3aa00, 0x3aabc,
2215                 0x3ab00, 0x3ab70,
2216                 0x3b000, 0x3b048,
2217                 0x3b060, 0x3b09c,
2218                 0x3b0f0, 0x3b148,
2219                 0x3b160, 0x3b19c,
2220                 0x3b1f0, 0x3b2e4,
2221                 0x3b2f8, 0x3b3e4,
2222                 0x3b3f8, 0x3b448,
2223                 0x3b460, 0x3b49c,
2224                 0x3b4f0, 0x3b548,
2225                 0x3b560, 0x3b59c,
2226                 0x3b5f0, 0x3b6e4,
2227                 0x3b6f8, 0x3b7e4,
2228                 0x3b7f8, 0x3b7fc,
2229                 0x3b814, 0x3b814,
2230                 0x3b82c, 0x3b82c,
2231                 0x3b880, 0x3b88c,
2232                 0x3b8e8, 0x3b8ec,
2233                 0x3b900, 0x3b948,
2234                 0x3b960, 0x3b99c,
2235                 0x3b9f0, 0x3bae4,
2236                 0x3baf8, 0x3bb10,
2237                 0x3bb28, 0x3bb28,
2238                 0x3bb3c, 0x3bb50,
2239                 0x3bbf0, 0x3bc10,
2240                 0x3bc28, 0x3bc28,
2241                 0x3bc3c, 0x3bc50,
2242                 0x3bcf0, 0x3bcfc,
2243                 0x3c000, 0x3c030,
2244                 0x3c100, 0x3c144,
2245                 0x3c190, 0x3c1d0,
2246                 0x3c200, 0x3c318,
2247                 0x3c400, 0x3c52c,
2248                 0x3c540, 0x3c61c,
2249                 0x3c800, 0x3c834,
2250                 0x3c8c0, 0x3c908,
2251                 0x3c910, 0x3c9ac,
2252                 0x3ca00, 0x3ca04,
2253                 0x3ca0c, 0x3ca2c,
2254                 0x3ca44, 0x3ca50,
2255                 0x3ca74, 0x3cc24,
2256                 0x3cd08, 0x3cd14,
2257                 0x3cd1c, 0x3cd20,
2258                 0x3cd3c, 0x3cd50,
2259                 0x3d200, 0x3d20c,
2260                 0x3d220, 0x3d220,
2261                 0x3d240, 0x3d240,
2262                 0x3d600, 0x3d600,
2263                 0x3d608, 0x3d60c,
2264                 0x3da00, 0x3da1c,
2265                 0x3de04, 0x3de20,
2266                 0x3de38, 0x3de3c,
2267                 0x3de80, 0x3de80,
2268                 0x3de88, 0x3dea8,
2269                 0x3deb0, 0x3deb4,
2270                 0x3dec8, 0x3ded4,
2271                 0x3dfb8, 0x3e004,
2272                 0x3e208, 0x3e23c,
2273                 0x3e600, 0x3e630,
2274                 0x3ea00, 0x3eabc,
2275                 0x3eb00, 0x3eb70,
2276                 0x3f000, 0x3f048,
2277                 0x3f060, 0x3f09c,
2278                 0x3f0f0, 0x3f148,
2279                 0x3f160, 0x3f19c,
2280                 0x3f1f0, 0x3f2e4,
2281                 0x3f2f8, 0x3f3e4,
2282                 0x3f3f8, 0x3f448,
2283                 0x3f460, 0x3f49c,
2284                 0x3f4f0, 0x3f548,
2285                 0x3f560, 0x3f59c,
2286                 0x3f5f0, 0x3f6e4,
2287                 0x3f6f8, 0x3f7e4,
2288                 0x3f7f8, 0x3f7fc,
2289                 0x3f814, 0x3f814,
2290                 0x3f82c, 0x3f82c,
2291                 0x3f880, 0x3f88c,
2292                 0x3f8e8, 0x3f8ec,
2293                 0x3f900, 0x3f948,
2294                 0x3f960, 0x3f99c,
2295                 0x3f9f0, 0x3fae4,
2296                 0x3faf8, 0x3fb10,
2297                 0x3fb28, 0x3fb28,
2298                 0x3fb3c, 0x3fb50,
2299                 0x3fbf0, 0x3fc10,
2300                 0x3fc28, 0x3fc28,
2301                 0x3fc3c, 0x3fc50,
2302                 0x3fcf0, 0x3fcfc,
2303                 0x40000, 0x4000c,
2304                 0x40040, 0x40068,
2305                 0x40080, 0x40144,
2306                 0x40180, 0x4018c,
2307                 0x40200, 0x40298,
2308                 0x402ac, 0x4033c,
2309                 0x403f8, 0x403fc,
2310                 0x41304, 0x413c4,
2311                 0x41400, 0x4141c,
2312                 0x41480, 0x414d0,
2313                 0x44000, 0x44078,
2314                 0x440c0, 0x44278,
2315                 0x442c0, 0x44478,
2316                 0x444c0, 0x44678,
2317                 0x446c0, 0x44878,
2318                 0x448c0, 0x449fc,
2319                 0x45000, 0x45068,
2320                 0x45080, 0x45084,
2321                 0x450a0, 0x450b0,
2322                 0x45200, 0x45268,
2323                 0x45280, 0x45284,
2324                 0x452a0, 0x452b0,
2325                 0x460c0, 0x460e4,
2326                 0x47000, 0x4708c,
2327                 0x47200, 0x47250,
2328                 0x47400, 0x47420,
2329                 0x47600, 0x47618,
2330                 0x47800, 0x47814,
2331                 0x48000, 0x4800c,
2332                 0x48040, 0x48068,
2333                 0x48080, 0x48144,
2334                 0x48180, 0x4818c,
2335                 0x48200, 0x48298,
2336                 0x482ac, 0x4833c,
2337                 0x483f8, 0x483fc,
2338                 0x49304, 0x493c4,
2339                 0x49400, 0x4941c,
2340                 0x49480, 0x494d0,
2341                 0x4c000, 0x4c078,
2342                 0x4c0c0, 0x4c278,
2343                 0x4c2c0, 0x4c478,
2344                 0x4c4c0, 0x4c678,
2345                 0x4c6c0, 0x4c878,
2346                 0x4c8c0, 0x4c9fc,
2347                 0x4d000, 0x4d068,
2348                 0x4d080, 0x4d084,
2349                 0x4d0a0, 0x4d0b0,
2350                 0x4d200, 0x4d268,
2351                 0x4d280, 0x4d284,
2352                 0x4d2a0, 0x4d2b0,
2353                 0x4e0c0, 0x4e0e4,
2354                 0x4f000, 0x4f08c,
2355                 0x4f200, 0x4f250,
2356                 0x4f400, 0x4f420,
2357                 0x4f600, 0x4f618,
2358                 0x4f800, 0x4f814,
2359                 0x50000, 0x500cc,
2360                 0x50400, 0x50400,
2361                 0x50800, 0x508cc,
2362                 0x50c00, 0x50c00,
2363                 0x51000, 0x5101c,
2364                 0x51300, 0x51308,
2365         };
2366
2367         int i;
2368         struct adapter *ap = netdev2adap(dev);
2369         static const unsigned int *reg_ranges;
2370         int arr_size = 0, buf_size = 0;
2371
2372         if (is_t4(ap->params.chip)) {
2373                 reg_ranges = &t4_reg_ranges[0];
2374                 arr_size = ARRAY_SIZE(t4_reg_ranges);
2375                 buf_size = T4_REGMAP_SIZE;
2376         } else {
2377                 reg_ranges = &t5_reg_ranges[0];
2378                 arr_size = ARRAY_SIZE(t5_reg_ranges);
2379                 buf_size = T5_REGMAP_SIZE;
2380         }
2381
2382         regs->version = mk_adap_vers(ap);
2383
2384         memset(buf, 0, buf_size);
2385         for (i = 0; i < arr_size; i += 2)
2386                 reg_block_dump(ap, buf, reg_ranges[i], reg_ranges[i + 1]);
2387 }
2388
2389 static int restart_autoneg(struct net_device *dev)
2390 {
2391         struct port_info *p = netdev_priv(dev);
2392
2393         if (!netif_running(dev))
2394                 return -EAGAIN;
2395         if (p->link_cfg.autoneg != AUTONEG_ENABLE)
2396                 return -EINVAL;
2397         t4_restart_aneg(p->adapter, p->adapter->fn, p->tx_chan);
2398         return 0;
2399 }
2400
2401 static int identify_port(struct net_device *dev,
2402                          enum ethtool_phys_id_state state)
2403 {
2404         unsigned int val;
2405         struct adapter *adap = netdev2adap(dev);
2406
2407         if (state == ETHTOOL_ID_ACTIVE)
2408                 val = 0xffff;
2409         else if (state == ETHTOOL_ID_INACTIVE)
2410                 val = 0;
2411         else
2412                 return -EINVAL;
2413
2414         return t4_identify_port(adap, adap->fn, netdev2pinfo(dev)->viid, val);
2415 }
2416
2417 static unsigned int from_fw_linkcaps(unsigned int type, unsigned int caps)
2418 {
2419         unsigned int v = 0;
2420
2421         if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XFI ||
2422             type == FW_PORT_TYPE_BT_XAUI) {
2423                 v |= SUPPORTED_TP;
2424                 if (caps & FW_PORT_CAP_SPEED_100M)
2425                         v |= SUPPORTED_100baseT_Full;
2426                 if (caps & FW_PORT_CAP_SPEED_1G)
2427                         v |= SUPPORTED_1000baseT_Full;
2428                 if (caps & FW_PORT_CAP_SPEED_10G)
2429                         v |= SUPPORTED_10000baseT_Full;
2430         } else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) {
2431                 v |= SUPPORTED_Backplane;
2432                 if (caps & FW_PORT_CAP_SPEED_1G)
2433                         v |= SUPPORTED_1000baseKX_Full;
2434                 if (caps & FW_PORT_CAP_SPEED_10G)
2435                         v |= SUPPORTED_10000baseKX4_Full;
2436         } else if (type == FW_PORT_TYPE_KR)
2437                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full;
2438         else if (type == FW_PORT_TYPE_BP_AP)
2439                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2440                      SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full;
2441         else if (type == FW_PORT_TYPE_BP4_AP)
2442                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2443                      SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full |
2444                      SUPPORTED_10000baseKX4_Full;
2445         else if (type == FW_PORT_TYPE_FIBER_XFI ||
2446                  type == FW_PORT_TYPE_FIBER_XAUI || type == FW_PORT_TYPE_SFP)
2447                 v |= SUPPORTED_FIBRE;
2448         else if (type == FW_PORT_TYPE_BP40_BA)
2449                 v |= SUPPORTED_40000baseSR4_Full;
2450
2451         if (caps & FW_PORT_CAP_ANEG)
2452                 v |= SUPPORTED_Autoneg;
2453         return v;
2454 }
2455
2456 static unsigned int to_fw_linkcaps(unsigned int caps)
2457 {
2458         unsigned int v = 0;
2459
2460         if (caps & ADVERTISED_100baseT_Full)
2461                 v |= FW_PORT_CAP_SPEED_100M;
2462         if (caps & ADVERTISED_1000baseT_Full)
2463                 v |= FW_PORT_CAP_SPEED_1G;
2464         if (caps & ADVERTISED_10000baseT_Full)
2465                 v |= FW_PORT_CAP_SPEED_10G;
2466         if (caps & ADVERTISED_40000baseSR4_Full)
2467                 v |= FW_PORT_CAP_SPEED_40G;
2468         return v;
2469 }
2470
2471 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2472 {
2473         const struct port_info *p = netdev_priv(dev);
2474
2475         if (p->port_type == FW_PORT_TYPE_BT_SGMII ||
2476             p->port_type == FW_PORT_TYPE_BT_XFI ||
2477             p->port_type == FW_PORT_TYPE_BT_XAUI)
2478                 cmd->port = PORT_TP;
2479         else if (p->port_type == FW_PORT_TYPE_FIBER_XFI ||
2480                  p->port_type == FW_PORT_TYPE_FIBER_XAUI)
2481                 cmd->port = PORT_FIBRE;
2482         else if (p->port_type == FW_PORT_TYPE_SFP ||
2483                  p->port_type == FW_PORT_TYPE_QSFP_10G ||
2484                  p->port_type == FW_PORT_TYPE_QSFP) {
2485                 if (p->mod_type == FW_PORT_MOD_TYPE_LR ||
2486                     p->mod_type == FW_PORT_MOD_TYPE_SR ||
2487                     p->mod_type == FW_PORT_MOD_TYPE_ER ||
2488                     p->mod_type == FW_PORT_MOD_TYPE_LRM)
2489                         cmd->port = PORT_FIBRE;
2490                 else if (p->mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
2491                          p->mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
2492                         cmd->port = PORT_DA;
2493                 else
2494                         cmd->port = PORT_OTHER;
2495         } else
2496                 cmd->port = PORT_OTHER;
2497
2498         if (p->mdio_addr >= 0) {
2499                 cmd->phy_address = p->mdio_addr;
2500                 cmd->transceiver = XCVR_EXTERNAL;
2501                 cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ?
2502                         MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45;
2503         } else {
2504                 cmd->phy_address = 0;  /* not really, but no better option */
2505                 cmd->transceiver = XCVR_INTERNAL;
2506                 cmd->mdio_support = 0;
2507         }
2508
2509         cmd->supported = from_fw_linkcaps(p->port_type, p->link_cfg.supported);
2510         cmd->advertising = from_fw_linkcaps(p->port_type,
2511                                             p->link_cfg.advertising);
2512         ethtool_cmd_speed_set(cmd,
2513                               netif_carrier_ok(dev) ? p->link_cfg.speed : 0);
2514         cmd->duplex = DUPLEX_FULL;
2515         cmd->autoneg = p->link_cfg.autoneg;
2516         cmd->maxtxpkt = 0;
2517         cmd->maxrxpkt = 0;
2518         return 0;
2519 }
2520
2521 static unsigned int speed_to_caps(int speed)
2522 {
2523         if (speed == 100)
2524                 return FW_PORT_CAP_SPEED_100M;
2525         if (speed == 1000)
2526                 return FW_PORT_CAP_SPEED_1G;
2527         if (speed == 10000)
2528                 return FW_PORT_CAP_SPEED_10G;
2529         if (speed == 40000)
2530                 return FW_PORT_CAP_SPEED_40G;
2531         return 0;
2532 }
2533
2534 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2535 {
2536         unsigned int cap;
2537         struct port_info *p = netdev_priv(dev);
2538         struct link_config *lc = &p->link_cfg;
2539         u32 speed = ethtool_cmd_speed(cmd);
2540
2541         if (cmd->duplex != DUPLEX_FULL)     /* only full-duplex supported */
2542                 return -EINVAL;
2543
2544         if (!(lc->supported & FW_PORT_CAP_ANEG)) {
2545                 /*
2546                  * PHY offers a single speed.  See if that's what's
2547                  * being requested.
2548                  */
2549                 if (cmd->autoneg == AUTONEG_DISABLE &&
2550                     (lc->supported & speed_to_caps(speed)))
2551                         return 0;
2552                 return -EINVAL;
2553         }
2554
2555         if (cmd->autoneg == AUTONEG_DISABLE) {
2556                 cap = speed_to_caps(speed);
2557
2558                 if (!(lc->supported & cap) ||
2559                     (speed == 1000) ||
2560                     (speed == 10000) ||
2561                     (speed == 40000))
2562                         return -EINVAL;
2563                 lc->requested_speed = cap;
2564                 lc->advertising = 0;
2565         } else {
2566                 cap = to_fw_linkcaps(cmd->advertising);
2567                 if (!(lc->supported & cap))
2568                         return -EINVAL;
2569                 lc->requested_speed = 0;
2570                 lc->advertising = cap | FW_PORT_CAP_ANEG;
2571         }
2572         lc->autoneg = cmd->autoneg;
2573
2574         if (netif_running(dev))
2575                 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2576                                      lc);
2577         return 0;
2578 }
2579
2580 static void get_pauseparam(struct net_device *dev,
2581                            struct ethtool_pauseparam *epause)
2582 {
2583         struct port_info *p = netdev_priv(dev);
2584
2585         epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
2586         epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0;
2587         epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0;
2588 }
2589
2590 static int set_pauseparam(struct net_device *dev,
2591                           struct ethtool_pauseparam *epause)
2592 {
2593         struct port_info *p = netdev_priv(dev);
2594         struct link_config *lc = &p->link_cfg;
2595
2596         if (epause->autoneg == AUTONEG_DISABLE)
2597                 lc->requested_fc = 0;
2598         else if (lc->supported & FW_PORT_CAP_ANEG)
2599                 lc->requested_fc = PAUSE_AUTONEG;
2600         else
2601                 return -EINVAL;
2602
2603         if (epause->rx_pause)
2604                 lc->requested_fc |= PAUSE_RX;
2605         if (epause->tx_pause)
2606                 lc->requested_fc |= PAUSE_TX;
2607         if (netif_running(dev))
2608                 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2609                                      lc);
2610         return 0;
2611 }
2612
2613 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2614 {
2615         const struct port_info *pi = netdev_priv(dev);
2616         const struct sge *s = &pi->adapter->sge;
2617
2618         e->rx_max_pending = MAX_RX_BUFFERS;
2619         e->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
2620         e->rx_jumbo_max_pending = 0;
2621         e->tx_max_pending = MAX_TXQ_ENTRIES;
2622
2623         e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8;
2624         e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
2625         e->rx_jumbo_pending = 0;
2626         e->tx_pending = s->ethtxq[pi->first_qset].q.size;
2627 }
2628
2629 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2630 {
2631         int i;
2632         const struct port_info *pi = netdev_priv(dev);
2633         struct adapter *adapter = pi->adapter;
2634         struct sge *s = &adapter->sge;
2635
2636         if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending ||
2637             e->tx_pending > MAX_TXQ_ENTRIES ||
2638             e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
2639             e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
2640             e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES)
2641                 return -EINVAL;
2642
2643         if (adapter->flags & FULL_INIT_DONE)
2644                 return -EBUSY;
2645
2646         for (i = 0; i < pi->nqsets; ++i) {
2647                 s->ethtxq[pi->first_qset + i].q.size = e->tx_pending;
2648                 s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8;
2649                 s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending;
2650         }
2651         return 0;
2652 }
2653
2654 static int closest_timer(const struct sge *s, int time)
2655 {
2656         int i, delta, match = 0, min_delta = INT_MAX;
2657
2658         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
2659                 delta = time - s->timer_val[i];
2660                 if (delta < 0)
2661                         delta = -delta;
2662                 if (delta < min_delta) {
2663                         min_delta = delta;
2664                         match = i;
2665                 }
2666         }
2667         return match;
2668 }
2669
2670 static int closest_thres(const struct sge *s, int thres)
2671 {
2672         int i, delta, match = 0, min_delta = INT_MAX;
2673
2674         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
2675                 delta = thres - s->counter_val[i];
2676                 if (delta < 0)
2677                         delta = -delta;
2678                 if (delta < min_delta) {
2679                         min_delta = delta;
2680                         match = i;
2681                 }
2682         }
2683         return match;
2684 }
2685
2686 /*
2687  * Return a queue's interrupt hold-off time in us.  0 means no timer.
2688  */
2689 static unsigned int qtimer_val(const struct adapter *adap,
2690                                const struct sge_rspq *q)
2691 {
2692         unsigned int idx = q->intr_params >> 1;
2693
2694         return idx < SGE_NTIMERS ? adap->sge.timer_val[idx] : 0;
2695 }
2696
2697 /**
2698  *      set_rspq_intr_params - set a queue's interrupt holdoff parameters
2699  *      @q: the Rx queue
2700  *      @us: the hold-off time in us, or 0 to disable timer
2701  *      @cnt: the hold-off packet count, or 0 to disable counter
2702  *
2703  *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
2704  *      one of the two needs to be enabled for the queue to generate interrupts.
2705  */
2706 static int set_rspq_intr_params(struct sge_rspq *q,
2707                                 unsigned int us, unsigned int cnt)
2708 {
2709         struct adapter *adap = q->adap;
2710
2711         if ((us | cnt) == 0)
2712                 cnt = 1;
2713
2714         if (cnt) {
2715                 int err;
2716                 u32 v, new_idx;
2717
2718                 new_idx = closest_thres(&adap->sge, cnt);
2719                 if (q->desc && q->pktcnt_idx != new_idx) {
2720                         /* the queue has already been created, update it */
2721                         v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
2722                             FW_PARAMS_PARAM_X_V(
2723                                         FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
2724                             FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
2725                         err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
2726                                             &new_idx);
2727                         if (err)
2728                                 return err;
2729                 }
2730                 q->pktcnt_idx = new_idx;
2731         }
2732
2733         us = us == 0 ? 6 : closest_timer(&adap->sge, us);
2734         q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
2735         return 0;
2736 }
2737
2738 /**
2739  * set_rx_intr_params - set a net devices's RX interrupt holdoff paramete!
2740  * @dev: the network device
2741  * @us: the hold-off time in us, or 0 to disable timer
2742  * @cnt: the hold-off packet count, or 0 to disable counter
2743  *
2744  * Set the RX interrupt hold-off parameters for a network device.
2745  */
2746 static int set_rx_intr_params(struct net_device *dev,
2747                               unsigned int us, unsigned int cnt)
2748 {
2749         int i, err;
2750         struct port_info *pi = netdev_priv(dev);
2751         struct adapter *adap = pi->adapter;
2752         struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
2753
2754         for (i = 0; i < pi->nqsets; i++, q++) {
2755                 err = set_rspq_intr_params(&q->rspq, us, cnt);
2756                 if (err)
2757                         return err;
2758         }
2759         return 0;
2760 }
2761
2762 static int set_adaptive_rx_setting(struct net_device *dev, int adaptive_rx)
2763 {
2764         int i;
2765         struct port_info *pi = netdev_priv(dev);
2766         struct adapter *adap = pi->adapter;
2767         struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
2768
2769         for (i = 0; i < pi->nqsets; i++, q++)
2770                 q->rspq.adaptive_rx = adaptive_rx;
2771
2772         return 0;
2773 }
2774
2775 static int get_adaptive_rx_setting(struct net_device *dev)
2776 {
2777         struct port_info *pi = netdev_priv(dev);
2778         struct adapter *adap = pi->adapter;
2779         struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
2780
2781         return q->rspq.adaptive_rx;
2782 }
2783
2784 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2785 {
2786         set_adaptive_rx_setting(dev, c->use_adaptive_rx_coalesce);
2787         return set_rx_intr_params(dev, c->rx_coalesce_usecs,
2788                                   c->rx_max_coalesced_frames);
2789 }
2790
2791 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2792 {
2793         const struct port_info *pi = netdev_priv(dev);
2794         const struct adapter *adap = pi->adapter;
2795         const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq;
2796
2797         c->rx_coalesce_usecs = qtimer_val(adap, rq);
2798         c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN) ?
2799                 adap->sge.counter_val[rq->pktcnt_idx] : 0;
2800         c->use_adaptive_rx_coalesce = get_adaptive_rx_setting(dev);
2801         return 0;
2802 }
2803
2804 /**
2805  *      eeprom_ptov - translate a physical EEPROM address to virtual
2806  *      @phys_addr: the physical EEPROM address
2807  *      @fn: the PCI function number
2808  *      @sz: size of function-specific area
2809  *
2810  *      Translate a physical EEPROM address to virtual.  The first 1K is
2811  *      accessed through virtual addresses starting at 31K, the rest is
2812  *      accessed through virtual addresses starting at 0.
2813  *
2814  *      The mapping is as follows:
2815  *      [0..1K) -> [31K..32K)
2816  *      [1K..1K+A) -> [31K-A..31K)
2817  *      [1K+A..ES) -> [0..ES-A-1K)
2818  *
2819  *      where A = @fn * @sz, and ES = EEPROM size.
2820  */
2821 static int eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2822 {
2823         fn *= sz;
2824         if (phys_addr < 1024)
2825                 return phys_addr + (31 << 10);
2826         if (phys_addr < 1024 + fn)
2827                 return 31744 - fn + phys_addr - 1024;
2828         if (phys_addr < EEPROMSIZE)
2829                 return phys_addr - 1024 - fn;
2830         return -EINVAL;
2831 }
2832
2833 /*
2834  * The next two routines implement eeprom read/write from physical addresses.
2835  */
2836 static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v)
2837 {
2838         int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2839
2840         if (vaddr >= 0)
2841                 vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v);
2842         return vaddr < 0 ? vaddr : 0;
2843 }
2844
2845 static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v)
2846 {
2847         int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2848
2849         if (vaddr >= 0)
2850                 vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v);
2851         return vaddr < 0 ? vaddr : 0;
2852 }
2853
2854 #define EEPROM_MAGIC 0x38E2F10C
2855
2856 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2857                       u8 *data)
2858 {
2859         int i, err = 0;
2860         struct adapter *adapter = netdev2adap(dev);
2861
2862         u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2863         if (!buf)
2864                 return -ENOMEM;
2865
2866         e->magic = EEPROM_MAGIC;
2867         for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2868                 err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]);
2869
2870         if (!err)
2871                 memcpy(data, buf + e->offset, e->len);
2872         kfree(buf);
2873         return err;
2874 }
2875
2876 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2877                       u8 *data)
2878 {
2879         u8 *buf;
2880         int err = 0;
2881         u32 aligned_offset, aligned_len, *p;
2882         struct adapter *adapter = netdev2adap(dev);
2883
2884         if (eeprom->magic != EEPROM_MAGIC)
2885                 return -EINVAL;
2886
2887         aligned_offset = eeprom->offset & ~3;
2888         aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2889
2890         if (adapter->fn > 0) {
2891                 u32 start = 1024 + adapter->fn * EEPROMPFSIZE;
2892
2893                 if (aligned_offset < start ||
2894                     aligned_offset + aligned_len > start + EEPROMPFSIZE)
2895                         return -EPERM;
2896         }
2897
2898         if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2899                 /*
2900                  * RMW possibly needed for first or last words.
2901                  */
2902                 buf = kmalloc(aligned_len, GFP_KERNEL);
2903                 if (!buf)
2904                         return -ENOMEM;
2905                 err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf);
2906                 if (!err && aligned_len > 4)
2907                         err = eeprom_rd_phys(adapter,
2908                                              aligned_offset + aligned_len - 4,
2909                                              (u32 *)&buf[aligned_len - 4]);
2910                 if (err)
2911                         goto out;
2912                 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2913         } else
2914                 buf = data;
2915
2916         err = t4_seeprom_wp(adapter, false);
2917         if (err)
2918                 goto out;
2919
2920         for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) {
2921                 err = eeprom_wr_phys(adapter, aligned_offset, *p);
2922                 aligned_offset += 4;
2923         }
2924
2925         if (!err)
2926                 err = t4_seeprom_wp(adapter, true);
2927 out:
2928         if (buf != data)
2929                 kfree(buf);
2930         return err;
2931 }
2932
2933 static int set_flash(struct net_device *netdev, struct ethtool_flash *ef)
2934 {
2935         int ret;
2936         const struct firmware *fw;
2937         struct adapter *adap = netdev2adap(netdev);
2938         unsigned int mbox = FW_PCIE_FW_MASTER_MASK + 1;
2939
2940         ef->data[sizeof(ef->data) - 1] = '\0';
2941         ret = request_firmware(&fw, ef->data, adap->pdev_dev);
2942         if (ret < 0)
2943                 return ret;
2944
2945         /* If the adapter has been fully initialized then we'll go ahead and
2946          * try to get the firmware's cooperation in upgrading to the new
2947          * firmware image otherwise we'll try to do the entire job from the
2948          * host ... and we always "force" the operation in this path.
2949          */
2950         if (adap->flags & FULL_INIT_DONE)
2951                 mbox = adap->mbox;
2952
2953         ret = t4_fw_upgrade(adap, mbox, fw->data, fw->size, 1);
2954         release_firmware(fw);
2955         if (!ret)
2956                 dev_info(adap->pdev_dev, "loaded firmware %s,"
2957                          " reload cxgb4 driver\n", ef->data);
2958         return ret;
2959 }
2960
2961 #define WOL_SUPPORTED (WAKE_BCAST | WAKE_MAGIC)
2962 #define BCAST_CRC 0xa0ccc1a6
2963
2964 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2965 {
2966         wol->supported = WAKE_BCAST | WAKE_MAGIC;
2967         wol->wolopts = netdev2adap(dev)->wol;
2968         memset(&wol->sopass, 0, sizeof(wol->sopass));
2969 }
2970
2971 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2972 {
2973         int err = 0;
2974         struct port_info *pi = netdev_priv(dev);
2975
2976         if (wol->wolopts & ~WOL_SUPPORTED)
2977                 return -EINVAL;
2978         t4_wol_magic_enable(pi->adapter, pi->tx_chan,
2979                             (wol->wolopts & WAKE_MAGIC) ? dev->dev_addr : NULL);
2980         if (wol->wolopts & WAKE_BCAST) {
2981                 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0xfe, ~0ULL,
2982                                         ~0ULL, 0, false);
2983                 if (!err)
2984                         err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 1,
2985                                                 ~6ULL, ~0ULL, BCAST_CRC, true);
2986         } else
2987                 t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0, 0, 0, 0, false);
2988         return err;
2989 }
2990
2991 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
2992 {
2993         const struct port_info *pi = netdev_priv(dev);
2994         netdev_features_t changed = dev->features ^ features;
2995         int err;
2996
2997         if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
2998                 return 0;
2999
3000         err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
3001                             -1, -1, -1,
3002                             !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
3003         if (unlikely(err))
3004                 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
3005         return err;
3006 }
3007
3008 static u32 get_rss_table_size(struct net_device *dev)
3009 {
3010         const struct port_info *pi = netdev_priv(dev);
3011
3012         return pi->rss_size;
3013 }
3014
3015 static int get_rss_table(struct net_device *dev, u32 *p, u8 *key)
3016 {
3017         const struct port_info *pi = netdev_priv(dev);
3018         unsigned int n = pi->rss_size;
3019
3020         while (n--)
3021                 p[n] = pi->rss[n];
3022         return 0;
3023 }
3024
3025 static int set_rss_table(struct net_device *dev, const u32 *p, const u8 *key)
3026 {
3027         unsigned int i;
3028         struct port_info *pi = netdev_priv(dev);
3029
3030         for (i = 0; i < pi->rss_size; i++)
3031                 pi->rss[i] = p[i];
3032         if (pi->adapter->flags & FULL_INIT_DONE)
3033                 return write_rss(pi, pi->rss);
3034         return 0;
3035 }
3036
3037 static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
3038                      u32 *rules)
3039 {
3040         const struct port_info *pi = netdev_priv(dev);
3041
3042         switch (info->cmd) {
3043         case ETHTOOL_GRXFH: {
3044                 unsigned int v = pi->rss_mode;
3045
3046                 info->data = 0;
3047                 switch (info->flow_type) {
3048                 case TCP_V4_FLOW:
3049                         if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
3050                                 info->data = RXH_IP_SRC | RXH_IP_DST |
3051                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
3052                         else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3053                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3054                         break;
3055                 case UDP_V4_FLOW:
3056                         if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) &&
3057                             (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
3058                                 info->data = RXH_IP_SRC | RXH_IP_DST |
3059                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
3060                         else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3061                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3062                         break;
3063                 case SCTP_V4_FLOW:
3064                 case AH_ESP_V4_FLOW:
3065                 case IPV4_FLOW:
3066                         if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3067                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3068                         break;
3069                 case TCP_V6_FLOW:
3070                         if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
3071                                 info->data = RXH_IP_SRC | RXH_IP_DST |
3072                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
3073                         else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3074                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3075                         break;
3076                 case UDP_V6_FLOW:
3077                         if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) &&
3078                             (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
3079                                 info->data = RXH_IP_SRC | RXH_IP_DST |
3080                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
3081                         else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3082                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3083                         break;
3084                 case SCTP_V6_FLOW:
3085                 case AH_ESP_V6_FLOW:
3086                 case IPV6_FLOW:
3087                         if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3088                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3089                         break;
3090                 }
3091                 return 0;
3092         }
3093         case ETHTOOL_GRXRINGS:
3094                 info->data = pi->nqsets;
3095                 return 0;
3096         }
3097         return -EOPNOTSUPP;
3098 }
3099
3100 static const struct ethtool_ops cxgb_ethtool_ops = {
3101         .get_settings      = get_settings,
3102         .set_settings      = set_settings,
3103         .get_drvinfo       = get_drvinfo,
3104         .get_msglevel      = get_msglevel,
3105         .set_msglevel      = set_msglevel,
3106         .get_ringparam     = get_sge_param,
3107         .set_ringparam     = set_sge_param,
3108         .get_coalesce      = get_coalesce,
3109         .set_coalesce      = set_coalesce,
3110         .get_eeprom_len    = get_eeprom_len,
3111         .get_eeprom        = get_eeprom,
3112         .set_eeprom        = set_eeprom,
3113         .get_pauseparam    = get_pauseparam,
3114         .set_pauseparam    = set_pauseparam,
3115         .get_link          = ethtool_op_get_link,
3116         .get_strings       = get_strings,
3117         .set_phys_id       = identify_port,
3118         .nway_reset        = restart_autoneg,
3119         .get_sset_count    = get_sset_count,
3120         .get_ethtool_stats = get_stats,
3121         .get_regs_len      = get_regs_len,
3122         .get_regs          = get_regs,
3123         .get_wol           = get_wol,
3124         .set_wol           = set_wol,
3125         .get_rxnfc         = get_rxnfc,
3126         .get_rxfh_indir_size = get_rss_table_size,
3127         .get_rxfh          = get_rss_table,
3128         .set_rxfh          = set_rss_table,
3129         .flash_device      = set_flash,
3130 };
3131
3132 static int setup_debugfs(struct adapter *adap)
3133 {
3134         if (IS_ERR_OR_NULL(adap->debugfs_root))
3135                 return -1;
3136
3137 #ifdef CONFIG_DEBUG_FS
3138         t4_setup_debugfs(adap);
3139 #endif
3140         return 0;
3141 }
3142
3143 /*
3144  * upper-layer driver support
3145  */
3146
3147 /*
3148  * Allocate an active-open TID and set it to the supplied value.
3149  */
3150 int cxgb4_alloc_atid(struct tid_info *t, void *data)
3151 {
3152         int atid = -1;
3153
3154         spin_lock_bh(&t->atid_lock);
3155         if (t->afree) {
3156                 union aopen_entry *p = t->afree;
3157
3158                 atid = (p - t->atid_tab) + t->atid_base;
3159                 t->afree = p->next;
3160                 p->data = data;
3161                 t->atids_in_use++;
3162         }
3163         spin_unlock_bh(&t->atid_lock);
3164         return atid;
3165 }
3166 EXPORT_SYMBOL(cxgb4_alloc_atid);
3167
3168 /*
3169  * Release an active-open TID.
3170  */
3171 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
3172 {
3173         union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
3174
3175         spin_lock_bh(&t->atid_lock);
3176         p->next = t->afree;
3177         t->afree = p;
3178         t->atids_in_use--;
3179         spin_unlock_bh(&t->atid_lock);
3180 }
3181 EXPORT_SYMBOL(cxgb4_free_atid);
3182
3183 /*
3184  * Allocate a server TID and set it to the supplied value.
3185  */
3186 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
3187 {
3188         int stid;
3189
3190         spin_lock_bh(&t->stid_lock);
3191         if (family == PF_INET) {
3192                 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
3193                 if (stid < t->nstids)
3194                         __set_bit(stid, t->stid_bmap);
3195                 else
3196                         stid = -1;
3197         } else {
3198                 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
3199                 if (stid < 0)
3200                         stid = -1;
3201         }
3202         if (stid >= 0) {
3203                 t->stid_tab[stid].data = data;
3204                 stid += t->stid_base;
3205                 /* IPv6 requires max of 520 bits or 16 cells in TCAM
3206                  * This is equivalent to 4 TIDs. With CLIP enabled it
3207                  * needs 2 TIDs.
3208                  */
3209                 if (family == PF_INET)
3210                         t->stids_in_use++;
3211                 else
3212                         t->stids_in_use += 4;
3213         }
3214         spin_unlock_bh(&t->stid_lock);
3215         return stid;
3216 }
3217 EXPORT_SYMBOL(cxgb4_alloc_stid);
3218
3219 /* Allocate a server filter TID and set it to the supplied value.
3220  */
3221 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
3222 {
3223         int stid;
3224
3225         spin_lock_bh(&t->stid_lock);
3226         if (family == PF_INET) {
3227                 stid = find_next_zero_bit(t->stid_bmap,
3228                                 t->nstids + t->nsftids, t->nstids);
3229                 if (stid < (t->nstids + t->nsftids))
3230                         __set_bit(stid, t->stid_bmap);
3231                 else
3232                         stid = -1;
3233         } else {
3234                 stid = -1;
3235         }
3236         if (stid >= 0) {
3237                 t->stid_tab[stid].data = data;
3238                 stid -= t->nstids;
3239                 stid += t->sftid_base;
3240                 t->stids_in_use++;
3241         }
3242         spin_unlock_bh(&t->stid_lock);
3243         return stid;
3244 }
3245 EXPORT_SYMBOL(cxgb4_alloc_sftid);
3246
3247 /* Release a server TID.
3248  */
3249 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
3250 {
3251         /* Is it a server filter TID? */
3252         if (t->nsftids && (stid >= t->sftid_base)) {
3253                 stid -= t->sftid_base;
3254                 stid += t->nstids;
3255         } else {
3256                 stid -= t->stid_base;
3257         }
3258
3259         spin_lock_bh(&t->stid_lock);
3260         if (family == PF_INET)
3261                 __clear_bit(stid, t->stid_bmap);
3262         else
3263                 bitmap_release_region(t->stid_bmap, stid, 2);
3264         t->stid_tab[stid].data = NULL;
3265         if (family == PF_INET)
3266                 t->stids_in_use--;
3267         else
3268                 t->stids_in_use -= 4;
3269         spin_unlock_bh(&t->stid_lock);
3270 }
3271 EXPORT_SYMBOL(cxgb4_free_stid);
3272
3273 /*
3274  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
3275  */
3276 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
3277                            unsigned int tid)
3278 {
3279         struct cpl_tid_release *req;
3280
3281         set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
3282         req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
3283         INIT_TP_WR(req, tid);
3284         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
3285 }
3286
3287 /*
3288  * Queue a TID release request and if necessary schedule a work queue to
3289  * process it.
3290  */
3291 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
3292                                     unsigned int tid)
3293 {
3294         void **p = &t->tid_tab[tid];
3295         struct adapter *adap = container_of(t, struct adapter, tids);
3296
3297         spin_lock_bh(&adap->tid_release_lock);
3298         *p = adap->tid_release_head;
3299         /* Low 2 bits encode the Tx channel number */
3300         adap->tid_release_head = (void **)((uintptr_t)p | chan);
3301         if (!adap->tid_release_task_busy) {
3302                 adap->tid_release_task_busy = true;
3303                 queue_work(adap->workq, &adap->tid_release_task);
3304         }
3305         spin_unlock_bh(&adap->tid_release_lock);
3306 }
3307
3308 /*
3309  * Process the list of pending TID release requests.
3310  */
3311 static void process_tid_release_list(struct work_struct *work)
3312 {
3313         struct sk_buff *skb;
3314         struct adapter *adap;
3315
3316         adap = container_of(work, struct adapter, tid_release_task);
3317
3318         spin_lock_bh(&adap->tid_release_lock);
3319         while (adap->tid_release_head) {
3320                 void **p = adap->tid_release_head;
3321                 unsigned int chan = (uintptr_t)p & 3;
3322                 p = (void *)p - chan;
3323
3324                 adap->tid_release_head = *p;
3325                 *p = NULL;
3326                 spin_unlock_bh(&adap->tid_release_lock);
3327
3328                 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
3329                                          GFP_KERNEL)))
3330                         schedule_timeout_uninterruptible(1);
3331
3332                 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
3333                 t4_ofld_send(adap, skb);
3334                 spin_lock_bh(&adap->tid_release_lock);
3335         }
3336         adap->tid_release_task_busy = false;
3337         spin_unlock_bh(&adap->tid_release_lock);
3338 }
3339
3340 /*
3341  * Release a TID and inform HW.  If we are unable to allocate the release
3342  * message we defer to a work queue.
3343  */
3344 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
3345 {
3346         void *old;
3347         struct sk_buff *skb;
3348         struct adapter *adap = container_of(t, struct adapter, tids);
3349
3350         old = t->tid_tab[tid];
3351         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
3352         if (likely(skb)) {
3353                 t->tid_tab[tid] = NULL;
3354                 mk_tid_release(skb, chan, tid);
3355                 t4_ofld_send(adap, skb);
3356         } else
3357                 cxgb4_queue_tid_release(t, chan, tid);
3358         if (old)
3359                 atomic_dec(&t->tids_in_use);
3360 }
3361 EXPORT_SYMBOL(cxgb4_remove_tid);
3362
3363 /*
3364  * Allocate and initialize the TID tables.  Returns 0 on success.
3365  */
3366 static int tid_init(struct tid_info *t)
3367 {
3368         size_t size;
3369         unsigned int stid_bmap_size;
3370         unsigned int natids = t->natids;
3371         struct adapter *adap = container_of(t, struct adapter, tids);
3372
3373         stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
3374         size = t->ntids * sizeof(*t->tid_tab) +
3375                natids * sizeof(*t->atid_tab) +
3376                t->nstids * sizeof(*t->stid_tab) +
3377                t->nsftids * sizeof(*t->stid_tab) +
3378                stid_bmap_size * sizeof(long) +
3379                t->nftids * sizeof(*t->ftid_tab) +
3380                t->nsftids * sizeof(*t->ftid_tab);
3381
3382         t->tid_tab = t4_alloc_mem(size);
3383         if (!t->tid_tab)
3384                 return -ENOMEM;
3385
3386         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
3387         t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
3388         t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
3389         t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
3390         spin_lock_init(&t->stid_lock);
3391         spin_lock_init(&t->atid_lock);
3392
3393         t->stids_in_use = 0;
3394         t->afree = NULL;
3395         t->atids_in_use = 0;
3396         atomic_set(&t->tids_in_use, 0);
3397
3398         /* Setup the free list for atid_tab and clear the stid bitmap. */
3399         if (natids) {
3400                 while (--natids)
3401                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
3402                 t->afree = t->atid_tab;
3403         }
3404         bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
3405         /* Reserve stid 0 for T4/T5 adapters */
3406         if (!t->stid_base &&
3407             (is_t4(adap->params.chip) || is_t5(adap->params.chip)))
3408                 __set_bit(0, t->stid_bmap);
3409
3410         return 0;
3411 }
3412
3413 int cxgb4_clip_get(const struct net_device *dev,
3414                    const struct in6_addr *lip)
3415 {
3416         struct adapter *adap;
3417         struct fw_clip_cmd c;
3418
3419         adap = netdev2adap(dev);
3420         memset(&c, 0, sizeof(c));
3421         c.op_to_write = htonl(FW_CMD_OP_V(FW_CLIP_CMD) |
3422                         FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3423         c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_ALLOC | FW_LEN16(c));
3424         c.ip_hi = *(__be64 *)(lip->s6_addr);
3425         c.ip_lo = *(__be64 *)(lip->s6_addr + 8);
3426         return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false);
3427 }
3428 EXPORT_SYMBOL(cxgb4_clip_get);
3429
3430 int cxgb4_clip_release(const struct net_device *dev,
3431                        const struct in6_addr *lip)
3432 {
3433         struct adapter *adap;
3434         struct fw_clip_cmd c;
3435
3436         adap = netdev2adap(dev);
3437         memset(&c, 0, sizeof(c));
3438         c.op_to_write = htonl(FW_CMD_OP_V(FW_CLIP_CMD) |
3439                         FW_CMD_REQUEST_F | FW_CMD_READ_F);
3440         c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_FREE | FW_LEN16(c));
3441         c.ip_hi = *(__be64 *)(lip->s6_addr);
3442         c.ip_lo = *(__be64 *)(lip->s6_addr + 8);
3443         return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false);
3444 }
3445 EXPORT_SYMBOL(cxgb4_clip_release);
3446
3447 /**
3448  *      cxgb4_create_server - create an IP server
3449  *      @dev: the device
3450  *      @stid: the server TID
3451  *      @sip: local IP address to bind server to
3452  *      @sport: the server's TCP port
3453  *      @queue: queue to direct messages from this server to
3454  *
3455  *      Create an IP server for the given port and address.
3456  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
3457  */
3458 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
3459                         __be32 sip, __be16 sport, __be16 vlan,
3460                         unsigned int queue)
3461 {
3462         unsigned int chan;
3463         struct sk_buff *skb;
3464         struct adapter *adap;
3465         struct cpl_pass_open_req *req;
3466         int ret;
3467
3468         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3469         if (!skb)
3470                 return -ENOMEM;
3471
3472         adap = netdev2adap(dev);
3473         req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
3474         INIT_TP_WR(req, 0);
3475         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
3476         req->local_port = sport;
3477         req->peer_port = htons(0);
3478         req->local_ip = sip;
3479         req->peer_ip = htonl(0);
3480         chan = rxq_to_chan(&adap->sge, queue);
3481         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
3482         req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3483                                 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
3484         ret = t4_mgmt_tx(adap, skb);
3485         return net_xmit_eval(ret);
3486 }
3487 EXPORT_SYMBOL(cxgb4_create_server);
3488
3489 /*      cxgb4_create_server6 - create an IPv6 server
3490  *      @dev: the device
3491  *      @stid: the server TID
3492  *      @sip: local IPv6 address to bind server to
3493  *      @sport: the server's TCP port
3494  *      @queue: queue to direct messages from this server to
3495  *
3496  *      Create an IPv6 server for the given port and address.
3497  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
3498  */
3499 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
3500                          const struct in6_addr *sip, __be16 sport,
3501                          unsigned int queue)
3502 {
3503         unsigned int chan;
3504         struct sk_buff *skb;
3505         struct adapter *adap;
3506         struct cpl_pass_open_req6 *req;
3507         int ret;
3508
3509         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3510         if (!skb)
3511                 return -ENOMEM;
3512
3513         adap = netdev2adap(dev);
3514         req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
3515         INIT_TP_WR(req, 0);
3516         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
3517         req->local_port = sport;
3518         req->peer_port = htons(0);
3519         req->local_ip_hi = *(__be64 *)(sip->s6_addr);
3520         req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
3521         req->peer_ip_hi = cpu_to_be64(0);
3522         req->peer_ip_lo = cpu_to_be64(0);
3523         chan = rxq_to_chan(&adap->sge, queue);
3524         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
3525         req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3526                                 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
3527         ret = t4_mgmt_tx(adap, skb);
3528         return net_xmit_eval(ret);
3529 }
3530 EXPORT_SYMBOL(cxgb4_create_server6);
3531
3532 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
3533                         unsigned int queue, bool ipv6)
3534 {
3535         struct sk_buff *skb;
3536         struct adapter *adap;
3537         struct cpl_close_listsvr_req *req;
3538         int ret;
3539
3540         adap = netdev2adap(dev);
3541
3542         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3543         if (!skb)
3544                 return -ENOMEM;
3545
3546         req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
3547         INIT_TP_WR(req, 0);
3548         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
3549         req->reply_ctrl = htons(NO_REPLY(0) | (ipv6 ? LISTSVR_IPV6(1) :
3550                                 LISTSVR_IPV6(0)) | QUEUENO(queue));
3551         ret = t4_mgmt_tx(adap, skb);
3552         return net_xmit_eval(ret);
3553 }
3554 EXPORT_SYMBOL(cxgb4_remove_server);
3555
3556 /**
3557  *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
3558  *      @mtus: the HW MTU table
3559  *      @mtu: the target MTU
3560  *      @idx: index of selected entry in the MTU table
3561  *
3562  *      Returns the index and the value in the HW MTU table that is closest to
3563  *      but does not exceed @mtu, unless @mtu is smaller than any value in the
3564  *      table, in which case that smallest available value is selected.
3565  */
3566 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
3567                             unsigned int *idx)
3568 {
3569         unsigned int i = 0;
3570
3571         while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
3572                 ++i;
3573         if (idx)
3574                 *idx = i;
3575         return mtus[i];
3576 }
3577 EXPORT_SYMBOL(cxgb4_best_mtu);
3578
3579 /**
3580  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
3581  *     @mtus: the HW MTU table
3582  *     @header_size: Header Size
3583  *     @data_size_max: maximum Data Segment Size
3584  *     @data_size_align: desired Data Segment Size Alignment (2^N)
3585  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
3586  *
3587  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
3588  *     MTU Table based solely on a Maximum MTU parameter, we break that
3589  *     parameter up into a Header Size and Maximum Data Segment Size, and
3590  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
3591  *     the Hardware MTU Table which will result in a Data Segment Size with
3592  *     the requested alignment _and_ that MTU isn't "too far" from the
3593  *     closest MTU, then we'll return that rather than the closest MTU.
3594  */
3595 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
3596                                     unsigned short header_size,
3597                                     unsigned short data_size_max,
3598                                     unsigned short data_size_align,
3599                                     unsigned int *mtu_idxp)
3600 {
3601         unsigned short max_mtu = header_size + data_size_max;
3602         unsigned short data_size_align_mask = data_size_align - 1;
3603         int mtu_idx, aligned_mtu_idx;
3604
3605         /* Scan the MTU Table till we find an MTU which is larger than our
3606          * Maximum MTU or we reach the end of the table.  Along the way,
3607          * record the last MTU found, if any, which will result in a Data
3608          * Segment Length matching the requested alignment.
3609          */
3610         for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
3611                 unsigned short data_size = mtus[mtu_idx] - header_size;
3612
3613                 /* If this MTU minus the Header Size would result in a
3614                  * Data Segment Size of the desired alignment, remember it.
3615                  */
3616                 if ((data_size & data_size_align_mask) == 0)
3617                         aligned_mtu_idx = mtu_idx;
3618
3619                 /* If we're not at the end of the Hardware MTU Table and the
3620                  * next element is larger than our Maximum MTU, drop out of
3621                  * the loop.
3622                  */
3623                 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
3624                         break;
3625         }
3626
3627         /* If we fell out of the loop because we ran to the end of the table,
3628          * then we just have to use the last [largest] entry.
3629          */
3630         if (mtu_idx == NMTUS)
3631                 mtu_idx--;
3632
3633         /* If we found an MTU which resulted in the requested Data Segment
3634          * Length alignment and that's "not far" from the largest MTU which is
3635          * less than or equal to the maximum MTU, then use that.
3636          */
3637         if (aligned_mtu_idx >= 0 &&
3638             mtu_idx - aligned_mtu_idx <= 1)
3639                 mtu_idx = aligned_mtu_idx;
3640
3641         /* If the caller has passed in an MTU Index pointer, pass the
3642          * MTU Index back.  Return the MTU value.
3643          */
3644         if (mtu_idxp)
3645                 *mtu_idxp = mtu_idx;
3646         return mtus[mtu_idx];
3647 }
3648 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
3649
3650 /**
3651  *      cxgb4_port_chan - get the HW channel of a port
3652  *      @dev: the net device for the port
3653  *
3654  *      Return the HW Tx channel of the given port.
3655  */
3656 unsigned int cxgb4_port_chan(const struct net_device *dev)
3657 {
3658         return netdev2pinfo(dev)->tx_chan;
3659 }
3660 EXPORT_SYMBOL(cxgb4_port_chan);
3661
3662 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
3663 {
3664         struct adapter *adap = netdev2adap(dev);
3665         u32 v1, v2, lp_count, hp_count;
3666
3667         v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3668         v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
3669         if (is_t4(adap->params.chip)) {
3670                 lp_count = G_LP_COUNT(v1);
3671                 hp_count = G_HP_COUNT(v1);
3672         } else {
3673                 lp_count = G_LP_COUNT_T5(v1);
3674                 hp_count = G_HP_COUNT_T5(v2);
3675         }
3676         return lpfifo ? lp_count : hp_count;
3677 }
3678 EXPORT_SYMBOL(cxgb4_dbfifo_count);
3679
3680 /**
3681  *      cxgb4_port_viid - get the VI id of a port
3682  *      @dev: the net device for the port
3683  *
3684  *      Return the VI id of the given port.
3685  */
3686 unsigned int cxgb4_port_viid(const struct net_device *dev)
3687 {
3688         return netdev2pinfo(dev)->viid;
3689 }
3690 EXPORT_SYMBOL(cxgb4_port_viid);
3691
3692 /**
3693  *      cxgb4_port_idx - get the index of a port
3694  *      @dev: the net device for the port
3695  *
3696  *      Return the index of the given port.
3697  */
3698 unsigned int cxgb4_port_idx(const struct net_device *dev)
3699 {
3700         return netdev2pinfo(dev)->port_id;
3701 }
3702 EXPORT_SYMBOL(cxgb4_port_idx);
3703
3704 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
3705                          struct tp_tcp_stats *v6)
3706 {
3707         struct adapter *adap = pci_get_drvdata(pdev);
3708
3709         spin_lock(&adap->stats_lock);
3710         t4_tp_get_tcp_stats(adap, v4, v6);
3711         spin_unlock(&adap->stats_lock);
3712 }
3713 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
3714
3715 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
3716                       const unsigned int *pgsz_order)
3717 {
3718         struct adapter *adap = netdev2adap(dev);
3719
3720         t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK, tag_mask);
3721         t4_write_reg(adap, ULP_RX_ISCSI_PSZ, HPZ0(pgsz_order[0]) |
3722                      HPZ1(pgsz_order[1]) | HPZ2(pgsz_order[2]) |
3723                      HPZ3(pgsz_order[3]));
3724 }
3725 EXPORT_SYMBOL(cxgb4_iscsi_init);
3726
3727 int cxgb4_flush_eq_cache(struct net_device *dev)
3728 {
3729         struct adapter *adap = netdev2adap(dev);
3730         int ret;
3731
3732         ret = t4_fwaddrspace_write(adap, adap->mbox,
3733                                    0xe1000000 + A_SGE_CTXT_CMD, 0x20000000);
3734         return ret;
3735 }
3736 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
3737
3738 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
3739 {
3740         u32 addr = t4_read_reg(adap, A_SGE_DBQ_CTXT_BADDR) + 24 * qid + 8;
3741         __be64 indices;
3742         int ret;
3743
3744         spin_lock(&adap->win0_lock);
3745         ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
3746                            sizeof(indices), (__be32 *)&indices,
3747                            T4_MEMORY_READ);
3748         spin_unlock(&adap->win0_lock);
3749         if (!ret) {
3750                 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
3751                 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
3752         }
3753         return ret;
3754 }
3755
3756 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
3757                         u16 size)
3758 {
3759         struct adapter *adap = netdev2adap(dev);
3760         u16 hw_pidx, hw_cidx;
3761         int ret;
3762
3763         ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
3764         if (ret)
3765                 goto out;
3766
3767         if (pidx != hw_pidx) {
3768                 u16 delta;
3769
3770                 if (pidx >= hw_pidx)
3771                         delta = pidx - hw_pidx;
3772                 else
3773                         delta = size - hw_pidx + pidx;
3774                 wmb();
3775                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3776                              QID(qid) | PIDX(delta));
3777         }
3778 out:
3779         return ret;
3780 }
3781 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
3782
3783 void cxgb4_disable_db_coalescing(struct net_device *dev)
3784 {
3785         struct adapter *adap;
3786
3787         adap = netdev2adap(dev);
3788         t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE,
3789                          F_NOCOALESCE);
3790 }
3791 EXPORT_SYMBOL(cxgb4_disable_db_coalescing);
3792
3793 void cxgb4_enable_db_coalescing(struct net_device *dev)
3794 {
3795         struct adapter *adap;
3796
3797         adap = netdev2adap(dev);
3798         t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE, 0);
3799 }
3800 EXPORT_SYMBOL(cxgb4_enable_db_coalescing);
3801
3802 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
3803 {
3804         struct adapter *adap;
3805         u32 offset, memtype, memaddr;
3806         u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
3807         u32 edc0_end, edc1_end, mc0_end, mc1_end;
3808         int ret;
3809
3810         adap = netdev2adap(dev);
3811
3812         offset = ((stag >> 8) * 32) + adap->vres.stag.start;
3813
3814         /* Figure out where the offset lands in the Memory Type/Address scheme.
3815          * This code assumes that the memory is laid out starting at offset 0
3816          * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
3817          * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
3818          * MC0, and some have both MC0 and MC1.
3819          */
3820         size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
3821         edc0_size = EDRAM0_SIZE_G(size) << 20;
3822         size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
3823         edc1_size = EDRAM1_SIZE_G(size) << 20;
3824         size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
3825         mc0_size = EXT_MEM0_SIZE_G(size) << 20;
3826
3827         edc0_end = edc0_size;
3828         edc1_end = edc0_end + edc1_size;
3829         mc0_end = edc1_end + mc0_size;
3830
3831         if (offset < edc0_end) {
3832                 memtype = MEM_EDC0;
3833                 memaddr = offset;
3834         } else if (offset < edc1_end) {
3835                 memtype = MEM_EDC1;
3836                 memaddr = offset - edc0_end;
3837         } else {
3838                 if (offset < mc0_end) {
3839                         memtype = MEM_MC0;
3840                         memaddr = offset - edc1_end;
3841                 } else if (is_t4(adap->params.chip)) {
3842                         /* T4 only has a single memory channel */
3843                         goto err;
3844                 } else {
3845                         size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
3846                         mc1_size = EXT_MEM1_SIZE_G(size) << 20;
3847                         mc1_end = mc0_end + mc1_size;
3848                         if (offset < mc1_end) {
3849                                 memtype = MEM_MC1;
3850                                 memaddr = offset - mc0_end;
3851                         } else {
3852                                 /* offset beyond the end of any memory */
3853                                 goto err;
3854                         }
3855                 }
3856         }
3857
3858         spin_lock(&adap->win0_lock);
3859         ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
3860         spin_unlock(&adap->win0_lock);
3861         return ret;
3862
3863 err:
3864         dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
3865                 stag, offset);
3866         return -EINVAL;
3867 }
3868 EXPORT_SYMBOL(cxgb4_read_tpte);
3869
3870 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
3871 {
3872         u32 hi, lo;
3873         struct adapter *adap;
3874
3875         adap = netdev2adap(dev);
3876         lo = t4_read_reg(adap, SGE_TIMESTAMP_LO);
3877         hi = GET_TSVAL(t4_read_reg(adap, SGE_TIMESTAMP_HI));
3878
3879         return ((u64)hi << 32) | (u64)lo;
3880 }
3881 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
3882
3883 static struct pci_driver cxgb4_driver;
3884
3885 static void check_neigh_update(struct neighbour *neigh)
3886 {
3887         const struct device *parent;
3888         const struct net_device *netdev = neigh->dev;
3889
3890         if (netdev->priv_flags & IFF_802_1Q_VLAN)
3891                 netdev = vlan_dev_real_dev(netdev);
3892         parent = netdev->dev.parent;
3893         if (parent && parent->driver == &cxgb4_driver.driver)
3894                 t4_l2t_update(dev_get_drvdata(parent), neigh);
3895 }
3896
3897 static int netevent_cb(struct notifier_block *nb, unsigned long event,
3898                        void *data)
3899 {
3900         switch (event) {
3901         case NETEVENT_NEIGH_UPDATE:
3902                 check_neigh_update(data);
3903                 break;
3904         case NETEVENT_REDIRECT:
3905         default:
3906                 break;
3907         }
3908         return 0;
3909 }
3910
3911 static bool netevent_registered;
3912 static struct notifier_block cxgb4_netevent_nb = {
3913         .notifier_call = netevent_cb
3914 };
3915
3916 static void drain_db_fifo(struct adapter *adap, int usecs)
3917 {
3918         u32 v1, v2, lp_count, hp_count;
3919
3920         do {
3921                 v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3922                 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
3923                 if (is_t4(adap->params.chip)) {
3924                         lp_count = G_LP_COUNT(v1);
3925                         hp_count = G_HP_COUNT(v1);
3926                 } else {
3927                         lp_count = G_LP_COUNT_T5(v1);
3928                         hp_count = G_HP_COUNT_T5(v2);
3929                 }
3930
3931                 if (lp_count == 0 && hp_count == 0)
3932                         break;
3933                 set_current_state(TASK_UNINTERRUPTIBLE);
3934                 schedule_timeout(usecs_to_jiffies(usecs));
3935         } while (1);
3936 }
3937
3938 static void disable_txq_db(struct sge_txq *q)
3939 {
3940         unsigned long flags;
3941
3942         spin_lock_irqsave(&q->db_lock, flags);
3943         q->db_disabled = 1;
3944         spin_unlock_irqrestore(&q->db_lock, flags);
3945 }
3946
3947 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
3948 {
3949         spin_lock_irq(&q->db_lock);
3950         if (q->db_pidx_inc) {
3951                 /* Make sure that all writes to the TX descriptors
3952                  * are committed before we tell HW about them.
3953                  */
3954                 wmb();
3955                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3956                              QID(q->cntxt_id) | PIDX(q->db_pidx_inc));
3957                 q->db_pidx_inc = 0;
3958         }
3959         q->db_disabled = 0;
3960         spin_unlock_irq(&q->db_lock);
3961 }
3962
3963 static void disable_dbs(struct adapter *adap)
3964 {
3965         int i;
3966
3967         for_each_ethrxq(&adap->sge, i)
3968                 disable_txq_db(&adap->sge.ethtxq[i].q);
3969         for_each_ofldrxq(&adap->sge, i)
3970                 disable_txq_db(&adap->sge.ofldtxq[i].q);
3971         for_each_port(adap, i)
3972                 disable_txq_db(&adap->sge.ctrlq[i].q);
3973 }
3974
3975 static void enable_dbs(struct adapter *adap)
3976 {
3977         int i;
3978
3979         for_each_ethrxq(&adap->sge, i)
3980                 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
3981         for_each_ofldrxq(&adap->sge, i)
3982                 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
3983         for_each_port(adap, i)
3984                 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
3985 }
3986
3987 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
3988 {
3989         if (adap->uld_handle[CXGB4_ULD_RDMA])
3990                 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
3991                                 cmd);
3992 }
3993
3994 static void process_db_full(struct work_struct *work)
3995 {
3996         struct adapter *adap;
3997
3998         adap = container_of(work, struct adapter, db_full_task);
3999
4000         drain_db_fifo(adap, dbfifo_drain_delay);
4001         enable_dbs(adap);
4002         notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
4003         t4_set_reg_field(adap, SGE_INT_ENABLE3,
4004                          DBFIFO_HP_INT | DBFIFO_LP_INT,
4005                          DBFIFO_HP_INT | DBFIFO_LP_INT);
4006 }
4007
4008 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
4009 {
4010         u16 hw_pidx, hw_cidx;
4011         int ret;
4012
4013         spin_lock_irq(&q->db_lock);
4014         ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
4015         if (ret)
4016                 goto out;
4017         if (q->db_pidx != hw_pidx) {
4018                 u16 delta;
4019
4020                 if (q->db_pidx >= hw_pidx)
4021                         delta = q->db_pidx - hw_pidx;
4022                 else
4023                         delta = q->size - hw_pidx + q->db_pidx;
4024                 wmb();
4025                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
4026                              QID(q->cntxt_id) | PIDX(delta));
4027         }
4028 out:
4029         q->db_disabled = 0;
4030         q->db_pidx_inc = 0;
4031         spin_unlock_irq(&q->db_lock);
4032         if (ret)
4033                 CH_WARN(adap, "DB drop recovery failed.\n");
4034 }
4035 static void recover_all_queues(struct adapter *adap)
4036 {
4037         int i;
4038
4039         for_each_ethrxq(&adap->sge, i)
4040                 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
4041         for_each_ofldrxq(&adap->sge, i)
4042                 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
4043         for_each_port(adap, i)
4044                 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
4045 }
4046
4047 static void process_db_drop(struct work_struct *work)
4048 {
4049         struct adapter *adap;
4050
4051         adap = container_of(work, struct adapter, db_drop_task);
4052
4053         if (is_t4(adap->params.chip)) {
4054                 drain_db_fifo(adap, dbfifo_drain_delay);
4055                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
4056                 drain_db_fifo(adap, dbfifo_drain_delay);
4057                 recover_all_queues(adap);
4058                 drain_db_fifo(adap, dbfifo_drain_delay);
4059                 enable_dbs(adap);
4060                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
4061         } else {
4062                 u32 dropped_db = t4_read_reg(adap, 0x010ac);
4063                 u16 qid = (dropped_db >> 15) & 0x1ffff;
4064                 u16 pidx_inc = dropped_db & 0x1fff;
4065                 unsigned int s_qpp;
4066                 unsigned short udb_density;
4067                 unsigned long qpshift;
4068                 int page;
4069                 u32 udb;
4070
4071                 dev_warn(adap->pdev_dev,
4072                          "Dropped DB 0x%x qid %d bar2 %d coalesce %d pidx %d\n",
4073                          dropped_db, qid,
4074                          (dropped_db >> 14) & 1,
4075                          (dropped_db >> 13) & 1,
4076                          pidx_inc);
4077
4078                 drain_db_fifo(adap, 1);
4079
4080                 s_qpp = QUEUESPERPAGEPF1 * adap->fn;
4081                 udb_density = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adap,
4082                                 SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
4083                 qpshift = PAGE_SHIFT - ilog2(udb_density);
4084                 udb = qid << qpshift;
4085                 udb &= PAGE_MASK;
4086                 page = udb / PAGE_SIZE;
4087                 udb += (qid - (page * udb_density)) * 128;
4088
4089                 writel(PIDX(pidx_inc),  adap->bar2 + udb + 8);
4090
4091                 /* Re-enable BAR2 WC */
4092                 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
4093         }
4094
4095         t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_DROPPED_DB, 0);
4096 }
4097
4098 void t4_db_full(struct adapter *adap)
4099 {
4100         if (is_t4(adap->params.chip)) {
4101                 disable_dbs(adap);
4102                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
4103                 t4_set_reg_field(adap, SGE_INT_ENABLE3,
4104                                  DBFIFO_HP_INT | DBFIFO_LP_INT, 0);
4105                 queue_work(adap->workq, &adap->db_full_task);
4106         }
4107 }
4108
4109 void t4_db_dropped(struct adapter *adap)
4110 {
4111         if (is_t4(adap->params.chip)) {
4112                 disable_dbs(adap);
4113                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
4114         }
4115         queue_work(adap->workq, &adap->db_drop_task);
4116 }
4117
4118 static void uld_attach(struct adapter *adap, unsigned int uld)
4119 {
4120         void *handle;
4121         struct cxgb4_lld_info lli;
4122         unsigned short i;
4123
4124         lli.pdev = adap->pdev;
4125         lli.pf = adap->fn;
4126         lli.l2t = adap->l2t;
4127         lli.tids = &adap->tids;
4128         lli.ports = adap->port;
4129         lli.vr = &adap->vres;
4130         lli.mtus = adap->params.mtus;
4131         if (uld == CXGB4_ULD_RDMA) {
4132                 lli.rxq_ids = adap->sge.rdma_rxq;
4133                 lli.ciq_ids = adap->sge.rdma_ciq;
4134                 lli.nrxq = adap->sge.rdmaqs;
4135                 lli.nciq = adap->sge.rdmaciqs;
4136         } else if (uld == CXGB4_ULD_ISCSI) {
4137                 lli.rxq_ids = adap->sge.ofld_rxq;
4138                 lli.nrxq = adap->sge.ofldqsets;
4139         }
4140         lli.ntxq = adap->sge.ofldqsets;
4141         lli.nchan = adap->params.nports;
4142         lli.nports = adap->params.nports;
4143         lli.wr_cred = adap->params.ofldq_wr_cred;
4144         lli.adapter_type = adap->params.chip;
4145         lli.iscsi_iolen = MAXRXDATA_GET(t4_read_reg(adap, TP_PARA_REG2));
4146         lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
4147         lli.udb_density = 1 << QUEUESPERPAGEPF0_GET(
4148                         t4_read_reg(adap, SGE_EGRESS_QUEUES_PER_PAGE_PF) >>
4149                         (adap->fn * 4));
4150         lli.ucq_density = 1 << QUEUESPERPAGEPF0_GET(
4151                         t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF) >>
4152                         (adap->fn * 4));
4153         lli.filt_mode = adap->params.tp.vlan_pri_map;
4154         /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
4155         for (i = 0; i < NCHAN; i++)
4156                 lli.tx_modq[i] = i;
4157         lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS);
4158         lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL);
4159         lli.fw_vers = adap->params.fw_vers;
4160         lli.dbfifo_int_thresh = dbfifo_int_thresh;
4161         lli.sge_ingpadboundary = adap->sge.fl_align;
4162         lli.sge_egrstatuspagesize = adap->sge.stat_len;
4163         lli.sge_pktshift = adap->sge.pktshift;
4164         lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
4165         lli.max_ordird_qp = adap->params.max_ordird_qp;
4166         lli.max_ird_adapter = adap->params.max_ird_adapter;
4167         lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
4168
4169         handle = ulds[uld].add(&lli);
4170         if (IS_ERR(handle)) {
4171                 dev_warn(adap->pdev_dev,
4172                          "could not attach to the %s driver, error %ld\n",
4173                          uld_str[uld], PTR_ERR(handle));
4174                 return;
4175         }
4176
4177         adap->uld_handle[uld] = handle;
4178
4179         if (!netevent_registered) {
4180                 register_netevent_notifier(&cxgb4_netevent_nb);
4181                 netevent_registered = true;
4182         }
4183
4184         if (adap->flags & FULL_INIT_DONE)
4185                 ulds[uld].state_change(handle, CXGB4_STATE_UP);
4186 }
4187
4188 static void attach_ulds(struct adapter *adap)
4189 {
4190         unsigned int i;
4191
4192         spin_lock(&adap_rcu_lock);
4193         list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
4194         spin_unlock(&adap_rcu_lock);
4195
4196         mutex_lock(&uld_mutex);
4197         list_add_tail(&adap->list_node, &adapter_list);
4198         for (i = 0; i < CXGB4_ULD_MAX; i++)
4199                 if (ulds[i].add)
4200                         uld_attach(adap, i);
4201         mutex_unlock(&uld_mutex);
4202 }
4203
4204 static void detach_ulds(struct adapter *adap)
4205 {
4206         unsigned int i;
4207
4208         mutex_lock(&uld_mutex);
4209         list_del(&adap->list_node);
4210         for (i = 0; i < CXGB4_ULD_MAX; i++)
4211                 if (adap->uld_handle[i]) {
4212                         ulds[i].state_change(adap->uld_handle[i],
4213                                              CXGB4_STATE_DETACH);
4214                         adap->uld_handle[i] = NULL;
4215                 }
4216         if (netevent_registered && list_empty(&adapter_list)) {
4217                 unregister_netevent_notifier(&cxgb4_netevent_nb);
4218                 netevent_registered = false;
4219         }
4220         mutex_unlock(&uld_mutex);
4221
4222         spin_lock(&adap_rcu_lock);
4223         list_del_rcu(&adap->rcu_node);
4224         spin_unlock(&adap_rcu_lock);
4225 }
4226
4227 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
4228 {
4229         unsigned int i;
4230
4231         mutex_lock(&uld_mutex);
4232         for (i = 0; i < CXGB4_ULD_MAX; i++)
4233                 if (adap->uld_handle[i])
4234                         ulds[i].state_change(adap->uld_handle[i], new_state);
4235         mutex_unlock(&uld_mutex);
4236 }
4237
4238 /**
4239  *      cxgb4_register_uld - register an upper-layer driver
4240  *      @type: the ULD type
4241  *      @p: the ULD methods
4242  *
4243  *      Registers an upper-layer driver with this driver and notifies the ULD
4244  *      about any presently available devices that support its type.  Returns
4245  *      %-EBUSY if a ULD of the same type is already registered.
4246  */
4247 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
4248 {
4249         int ret = 0;
4250         struct adapter *adap;
4251
4252         if (type >= CXGB4_ULD_MAX)
4253                 return -EINVAL;
4254         mutex_lock(&uld_mutex);
4255         if (ulds[type].add) {
4256                 ret = -EBUSY;
4257                 goto out;
4258         }
4259         ulds[type] = *p;
4260         list_for_each_entry(adap, &adapter_list, list_node)
4261                 uld_attach(adap, type);
4262 out:    mutex_unlock(&uld_mutex);
4263         return ret;
4264 }
4265 EXPORT_SYMBOL(cxgb4_register_uld);
4266
4267 /**
4268  *      cxgb4_unregister_uld - unregister an upper-layer driver
4269  *      @type: the ULD type
4270  *
4271  *      Unregisters an existing upper-layer driver.
4272  */
4273 int cxgb4_unregister_uld(enum cxgb4_uld type)
4274 {
4275         struct adapter *adap;
4276
4277         if (type >= CXGB4_ULD_MAX)
4278                 return -EINVAL;
4279         mutex_lock(&uld_mutex);
4280         list_for_each_entry(adap, &adapter_list, list_node)
4281                 adap->uld_handle[type] = NULL;
4282         ulds[type].add = NULL;
4283         mutex_unlock(&uld_mutex);
4284         return 0;
4285 }
4286 EXPORT_SYMBOL(cxgb4_unregister_uld);
4287
4288 /* Check if netdev on which event is occured belongs to us or not. Return
4289  * success (true) if it belongs otherwise failure (false).
4290  * Called with rcu_read_lock() held.
4291  */
4292 #if IS_ENABLED(CONFIG_IPV6)
4293 static bool cxgb4_netdev(const struct net_device *netdev)
4294 {
4295         struct adapter *adap;
4296         int i;
4297
4298         list_for_each_entry_rcu(adap, &adap_rcu_list, rcu_node)
4299                 for (i = 0; i < MAX_NPORTS; i++)
4300                         if (adap->port[i] == netdev)
4301                                 return true;
4302         return false;
4303 }
4304
4305 static int clip_add(struct net_device *event_dev, struct inet6_ifaddr *ifa,
4306                     unsigned long event)
4307 {
4308         int ret = NOTIFY_DONE;
4309
4310         rcu_read_lock();
4311         if (cxgb4_netdev(event_dev)) {
4312                 switch (event) {
4313                 case NETDEV_UP:
4314                         ret = cxgb4_clip_get(event_dev, &ifa->addr);
4315                         if (ret < 0) {
4316                                 rcu_read_unlock();
4317                                 return ret;
4318                         }
4319                         ret = NOTIFY_OK;
4320                         break;
4321                 case NETDEV_DOWN:
4322                         cxgb4_clip_release(event_dev, &ifa->addr);
4323                         ret = NOTIFY_OK;
4324                         break;
4325                 default:
4326                         break;
4327                 }
4328         }
4329         rcu_read_unlock();
4330         return ret;
4331 }
4332
4333 static int cxgb4_inet6addr_handler(struct notifier_block *this,
4334                 unsigned long event, void *data)
4335 {
4336         struct inet6_ifaddr *ifa = data;
4337         struct net_device *event_dev;
4338         int ret = NOTIFY_DONE;
4339         struct bonding *bond = netdev_priv(ifa->idev->dev);
4340         struct list_head *iter;
4341         struct slave *slave;
4342         struct pci_dev *first_pdev = NULL;
4343
4344         if (ifa->idev->dev->priv_flags & IFF_802_1Q_VLAN) {
4345                 event_dev = vlan_dev_real_dev(ifa->idev->dev);
4346                 ret = clip_add(event_dev, ifa, event);
4347         } else if (ifa->idev->dev->flags & IFF_MASTER) {
4348                 /* It is possible that two different adapters are bonded in one
4349                  * bond. We need to find such different adapters and add clip
4350                  * in all of them only once.
4351                  */
4352                 bond_for_each_slave(bond, slave, iter) {
4353                         if (!first_pdev) {
4354                                 ret = clip_add(slave->dev, ifa, event);
4355                                 /* If clip_add is success then only initialize
4356                                  * first_pdev since it means it is our device
4357                                  */
4358                                 if (ret == NOTIFY_OK)
4359                                         first_pdev = to_pci_dev(
4360                                                         slave->dev->dev.parent);
4361                         } else if (first_pdev !=
4362                                    to_pci_dev(slave->dev->dev.parent))
4363                                         ret = clip_add(slave->dev, ifa, event);
4364                 }
4365         } else
4366                 ret = clip_add(ifa->idev->dev, ifa, event);
4367
4368         return ret;
4369 }
4370
4371 static struct notifier_block cxgb4_inet6addr_notifier = {
4372         .notifier_call = cxgb4_inet6addr_handler
4373 };
4374
4375 /* Retrieves IPv6 addresses from a root device (bond, vlan) associated with
4376  * a physical device.
4377  * The physical device reference is needed to send the actul CLIP command.
4378  */
4379 static int update_dev_clip(struct net_device *root_dev, struct net_device *dev)
4380 {
4381         struct inet6_dev *idev = NULL;
4382         struct inet6_ifaddr *ifa;
4383         int ret = 0;
4384
4385         idev = __in6_dev_get(root_dev);
4386         if (!idev)
4387                 return ret;
4388
4389         read_lock_bh(&idev->lock);
4390         list_for_each_entry(ifa, &idev->addr_list, if_list) {
4391                 ret = cxgb4_clip_get(dev, &ifa->addr);
4392                 if (ret < 0)
4393                         break;
4394         }
4395         read_unlock_bh(&idev->lock);
4396
4397         return ret;
4398 }
4399
4400 static int update_root_dev_clip(struct net_device *dev)
4401 {
4402         struct net_device *root_dev = NULL;
4403         int i, ret = 0;
4404
4405         /* First populate the real net device's IPv6 addresses */
4406         ret = update_dev_clip(dev, dev);
4407         if (ret)
4408                 return ret;
4409
4410         /* Parse all bond and vlan devices layered on top of the physical dev */
4411         root_dev = netdev_master_upper_dev_get_rcu(dev);
4412         if (root_dev) {
4413                 ret = update_dev_clip(root_dev, dev);
4414                 if (ret)
4415                         return ret;
4416         }
4417
4418         for (i = 0; i < VLAN_N_VID; i++) {
4419                 root_dev = __vlan_find_dev_deep_rcu(dev, htons(ETH_P_8021Q), i);
4420                 if (!root_dev)
4421                         continue;
4422
4423                 ret = update_dev_clip(root_dev, dev);
4424                 if (ret)
4425                         break;
4426         }
4427         return ret;
4428 }
4429
4430 static void update_clip(const struct adapter *adap)
4431 {
4432         int i;
4433         struct net_device *dev;
4434         int ret;
4435
4436         rcu_read_lock();
4437
4438         for (i = 0; i < MAX_NPORTS; i++) {
4439                 dev = adap->port[i];
4440                 ret = 0;
4441
4442                 if (dev)
4443                         ret = update_root_dev_clip(dev);
4444
4445                 if (ret < 0)
4446                         break;
4447         }
4448         rcu_read_unlock();
4449 }
4450 #endif /* IS_ENABLED(CONFIG_IPV6) */
4451
4452 /**
4453  *      cxgb_up - enable the adapter
4454  *      @adap: adapter being enabled
4455  *
4456  *      Called when the first port is enabled, this function performs the
4457  *      actions necessary to make an adapter operational, such as completing
4458  *      the initialization of HW modules, and enabling interrupts.
4459  *
4460  *      Must be called with the rtnl lock held.
4461  */
4462 static int cxgb_up(struct adapter *adap)
4463 {
4464         int err;
4465
4466         err = setup_sge_queues(adap);
4467         if (err)
4468                 goto out;
4469         err = setup_rss(adap);
4470         if (err)
4471                 goto freeq;
4472
4473         if (adap->flags & USING_MSIX) {
4474                 name_msix_vecs(adap);
4475                 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
4476                                   adap->msix_info[0].desc, adap);
4477                 if (err)
4478                         goto irq_err;
4479
4480                 err = request_msix_queue_irqs(adap);
4481                 if (err) {
4482                         free_irq(adap->msix_info[0].vec, adap);
4483                         goto irq_err;
4484                 }
4485         } else {
4486                 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
4487                                   (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
4488                                   adap->port[0]->name, adap);
4489                 if (err)
4490                         goto irq_err;
4491         }
4492         enable_rx(adap);
4493         t4_sge_start(adap);
4494         t4_intr_enable(adap);
4495         adap->flags |= FULL_INIT_DONE;
4496         notify_ulds(adap, CXGB4_STATE_UP);
4497 #if IS_ENABLED(CONFIG_IPV6)
4498         update_clip(adap);
4499 #endif
4500  out:
4501         return err;
4502  irq_err:
4503         dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
4504  freeq:
4505         t4_free_sge_resources(adap);
4506         goto out;
4507 }
4508
4509 static void cxgb_down(struct adapter *adapter)
4510 {
4511         t4_intr_disable(adapter);
4512         cancel_work_sync(&adapter->tid_release_task);
4513         cancel_work_sync(&adapter->db_full_task);
4514         cancel_work_sync(&adapter->db_drop_task);
4515         adapter->tid_release_task_busy = false;
4516         adapter->tid_release_head = NULL;
4517
4518         if (adapter->flags & USING_MSIX) {
4519                 free_msix_queue_irqs(adapter);
4520                 free_irq(adapter->msix_info[0].vec, adapter);
4521         } else
4522                 free_irq(adapter->pdev->irq, adapter);
4523         quiesce_rx(adapter);
4524         t4_sge_stop(adapter);
4525         t4_free_sge_resources(adapter);
4526         adapter->flags &= ~FULL_INIT_DONE;
4527 }
4528
4529 /*
4530  * net_device operations
4531  */
4532 static int cxgb_open(struct net_device *dev)
4533 {
4534         int err;
4535         struct port_info *pi = netdev_priv(dev);
4536         struct adapter *adapter = pi->adapter;
4537
4538         netif_carrier_off(dev);
4539
4540         if (!(adapter->flags & FULL_INIT_DONE)) {
4541                 err = cxgb_up(adapter);
4542                 if (err < 0)
4543                         return err;
4544         }
4545
4546         err = link_start(dev);
4547         if (!err)
4548                 netif_tx_start_all_queues(dev);
4549         return err;
4550 }
4551
4552 static int cxgb_close(struct net_device *dev)
4553 {
4554         struct port_info *pi = netdev_priv(dev);
4555         struct adapter *adapter = pi->adapter;
4556
4557         netif_tx_stop_all_queues(dev);
4558         netif_carrier_off(dev);
4559         return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
4560 }
4561
4562 /* Return an error number if the indicated filter isn't writable ...
4563  */
4564 static int writable_filter(struct filter_entry *f)
4565 {
4566         if (f->locked)
4567                 return -EPERM;
4568         if (f->pending)
4569                 return -EBUSY;
4570
4571         return 0;
4572 }
4573
4574 /* Delete the filter at the specified index (if valid).  The checks for all
4575  * the common problems with doing this like the filter being locked, currently
4576  * pending in another operation, etc.
4577  */
4578 static int delete_filter(struct adapter *adapter, unsigned int fidx)
4579 {
4580         struct filter_entry *f;
4581         int ret;
4582
4583         if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
4584                 return -EINVAL;
4585
4586         f = &adapter->tids.ftid_tab[fidx];
4587         ret = writable_filter(f);
4588         if (ret)
4589                 return ret;
4590         if (f->valid)
4591                 return del_filter_wr(adapter, fidx);
4592
4593         return 0;
4594 }
4595
4596 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
4597                 __be32 sip, __be16 sport, __be16 vlan,
4598                 unsigned int queue, unsigned char port, unsigned char mask)
4599 {
4600         int ret;
4601         struct filter_entry *f;
4602         struct adapter *adap;
4603         int i;
4604         u8 *val;
4605
4606         adap = netdev2adap(dev);
4607
4608         /* Adjust stid to correct filter index */
4609         stid -= adap->tids.sftid_base;
4610         stid += adap->tids.nftids;
4611
4612         /* Check to make sure the filter requested is writable ...
4613          */
4614         f = &adap->tids.ftid_tab[stid];
4615         ret = writable_filter(f);
4616         if (ret)
4617                 return ret;
4618
4619         /* Clear out any old resources being used by the filter before
4620          * we start constructing the new filter.
4621          */
4622         if (f->valid)
4623                 clear_filter(adap, f);
4624
4625         /* Clear out filter specifications */
4626         memset(&f->fs, 0, sizeof(struct ch_filter_specification));
4627         f->fs.val.lport = cpu_to_be16(sport);
4628         f->fs.mask.lport  = ~0;
4629         val = (u8 *)&sip;
4630         if ((val[0] | val[1] | val[2] | val[3]) != 0) {
4631                 for (i = 0; i < 4; i++) {
4632                         f->fs.val.lip[i] = val[i];
4633                         f->fs.mask.lip[i] = ~0;
4634                 }
4635                 if (adap->params.tp.vlan_pri_map & F_PORT) {
4636                         f->fs.val.iport = port;
4637                         f->fs.mask.iport = mask;
4638                 }
4639         }
4640
4641         if (adap->params.tp.vlan_pri_map & F_PROTOCOL) {
4642                 f->fs.val.proto = IPPROTO_TCP;
4643                 f->fs.mask.proto = ~0;
4644         }
4645
4646         f->fs.dirsteer = 1;
4647         f->fs.iq = queue;
4648         /* Mark filter as locked */
4649         f->locked = 1;
4650         f->fs.rpttid = 1;
4651
4652         ret = set_filter_wr(adap, stid);
4653         if (ret) {
4654                 clear_filter(adap, f);
4655                 return ret;
4656         }
4657
4658         return 0;
4659 }
4660 EXPORT_SYMBOL(cxgb4_create_server_filter);
4661
4662 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
4663                 unsigned int queue, bool ipv6)
4664 {
4665         int ret;
4666         struct filter_entry *f;
4667         struct adapter *adap;
4668
4669         adap = netdev2adap(dev);
4670
4671         /* Adjust stid to correct filter index */
4672         stid -= adap->tids.sftid_base;
4673         stid += adap->tids.nftids;
4674
4675         f = &adap->tids.ftid_tab[stid];
4676         /* Unlock the filter */
4677         f->locked = 0;
4678
4679         ret = delete_filter(adap, stid);
4680         if (ret)
4681                 return ret;
4682
4683         return 0;
4684 }
4685 EXPORT_SYMBOL(cxgb4_remove_server_filter);
4686
4687 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
4688                                                 struct rtnl_link_stats64 *ns)
4689 {
4690         struct port_stats stats;
4691         struct port_info *p = netdev_priv(dev);
4692         struct adapter *adapter = p->adapter;
4693
4694         /* Block retrieving statistics during EEH error
4695          * recovery. Otherwise, the recovery might fail
4696          * and the PCI device will be removed permanently
4697          */
4698         spin_lock(&adapter->stats_lock);
4699         if (!netif_device_present(dev)) {
4700                 spin_unlock(&adapter->stats_lock);
4701                 return ns;
4702         }
4703         t4_get_port_stats(adapter, p->tx_chan, &stats);
4704         spin_unlock(&adapter->stats_lock);
4705
4706         ns->tx_bytes   = stats.tx_octets;
4707         ns->tx_packets = stats.tx_frames;
4708         ns->rx_bytes   = stats.rx_octets;
4709         ns->rx_packets = stats.rx_frames;
4710         ns->multicast  = stats.rx_mcast_frames;
4711
4712         /* detailed rx_errors */
4713         ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
4714                                stats.rx_runt;
4715         ns->rx_over_errors   = 0;
4716         ns->rx_crc_errors    = stats.rx_fcs_err;
4717         ns->rx_frame_errors  = stats.rx_symbol_err;
4718         ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
4719                                stats.rx_ovflow2 + stats.rx_ovflow3 +
4720                                stats.rx_trunc0 + stats.rx_trunc1 +
4721                                stats.rx_trunc2 + stats.rx_trunc3;
4722         ns->rx_missed_errors = 0;
4723
4724         /* detailed tx_errors */
4725         ns->tx_aborted_errors   = 0;
4726         ns->tx_carrier_errors   = 0;
4727         ns->tx_fifo_errors      = 0;
4728         ns->tx_heartbeat_errors = 0;
4729         ns->tx_window_errors    = 0;
4730
4731         ns->tx_errors = stats.tx_error_frames;
4732         ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
4733                 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
4734         return ns;
4735 }
4736
4737 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
4738 {
4739         unsigned int mbox;
4740         int ret = 0, prtad, devad;
4741         struct port_info *pi = netdev_priv(dev);
4742         struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
4743
4744         switch (cmd) {
4745         case SIOCGMIIPHY:
4746                 if (pi->mdio_addr < 0)
4747                         return -EOPNOTSUPP;
4748                 data->phy_id = pi->mdio_addr;
4749                 break;
4750         case SIOCGMIIREG:
4751         case SIOCSMIIREG:
4752                 if (mdio_phy_id_is_c45(data->phy_id)) {
4753                         prtad = mdio_phy_id_prtad(data->phy_id);
4754                         devad = mdio_phy_id_devad(data->phy_id);
4755                 } else if (data->phy_id < 32) {
4756                         prtad = data->phy_id;
4757                         devad = 0;
4758                         data->reg_num &= 0x1f;
4759                 } else
4760                         return -EINVAL;
4761
4762                 mbox = pi->adapter->fn;
4763                 if (cmd == SIOCGMIIREG)
4764                         ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
4765                                          data->reg_num, &data->val_out);
4766                 else
4767                         ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
4768                                          data->reg_num, data->val_in);
4769                 break;
4770         default:
4771                 return -EOPNOTSUPP;
4772         }
4773         return ret;
4774 }
4775
4776 static void cxgb_set_rxmode(struct net_device *dev)
4777 {
4778         /* unfortunately we can't return errors to the stack */
4779         set_rxmode(dev, -1, false);
4780 }
4781
4782 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
4783 {
4784         int ret;
4785         struct port_info *pi = netdev_priv(dev);
4786
4787         if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
4788                 return -EINVAL;
4789         ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
4790                             -1, -1, -1, true);
4791         if (!ret)
4792                 dev->mtu = new_mtu;
4793         return ret;
4794 }
4795
4796 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
4797 {
4798         int ret;
4799         struct sockaddr *addr = p;
4800         struct port_info *pi = netdev_priv(dev);
4801
4802         if (!is_valid_ether_addr(addr->sa_data))
4803                 return -EADDRNOTAVAIL;
4804
4805         ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
4806                             pi->xact_addr_filt, addr->sa_data, true, true);
4807         if (ret < 0)
4808                 return ret;
4809
4810         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4811         pi->xact_addr_filt = ret;
4812         return 0;
4813 }
4814
4815 #ifdef CONFIG_NET_POLL_CONTROLLER
4816 static void cxgb_netpoll(struct net_device *dev)
4817 {
4818         struct port_info *pi = netdev_priv(dev);
4819         struct adapter *adap = pi->adapter;
4820
4821         if (adap->flags & USING_MSIX) {
4822                 int i;
4823                 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
4824
4825                 for (i = pi->nqsets; i; i--, rx++)
4826                         t4_sge_intr_msix(0, &rx->rspq);
4827         } else
4828                 t4_intr_handler(adap)(0, adap);
4829 }
4830 #endif
4831
4832 static const struct net_device_ops cxgb4_netdev_ops = {
4833         .ndo_open             = cxgb_open,
4834         .ndo_stop             = cxgb_close,
4835         .ndo_start_xmit       = t4_eth_xmit,
4836         .ndo_select_queue     = cxgb_select_queue,
4837         .ndo_get_stats64      = cxgb_get_stats,
4838         .ndo_set_rx_mode      = cxgb_set_rxmode,
4839         .ndo_set_mac_address  = cxgb_set_mac_addr,
4840         .ndo_set_features     = cxgb_set_features,
4841         .ndo_validate_addr    = eth_validate_addr,
4842         .ndo_do_ioctl         = cxgb_ioctl,
4843         .ndo_change_mtu       = cxgb_change_mtu,
4844 #ifdef CONFIG_NET_POLL_CONTROLLER
4845         .ndo_poll_controller  = cxgb_netpoll,
4846 #endif
4847 };
4848
4849 void t4_fatal_err(struct adapter *adap)
4850 {
4851         t4_set_reg_field(adap, SGE_CONTROL, GLOBALENABLE, 0);
4852         t4_intr_disable(adap);
4853         dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
4854 }
4855
4856 /* Return the specified PCI-E Configuration Space register from our Physical
4857  * Function.  We try first via a Firmware LDST Command since we prefer to let
4858  * the firmware own all of these registers, but if that fails we go for it
4859  * directly ourselves.
4860  */
4861 static u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
4862 {
4863         struct fw_ldst_cmd ldst_cmd;
4864         u32 val;
4865         int ret;
4866
4867         /* Construct and send the Firmware LDST Command to retrieve the
4868          * specified PCI-E Configuration Space register.
4869          */
4870         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
4871         ldst_cmd.op_to_addrspace =
4872                 htonl(FW_CMD_OP_V(FW_LDST_CMD) |
4873                       FW_CMD_REQUEST_F |
4874                       FW_CMD_READ_F |
4875                       FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE));
4876         ldst_cmd.cycles_to_len16 = htonl(FW_LEN16(ldst_cmd));
4877         ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
4878         ldst_cmd.u.pcie.ctrl_to_fn =
4879                 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->fn));
4880         ldst_cmd.u.pcie.r = reg;
4881         ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
4882                          &ldst_cmd);
4883
4884         /* If the LDST Command suucceeded, exctract the returned register
4885          * value.  Otherwise read it directly ourself.
4886          */
4887         if (ret == 0)
4888                 val = ntohl(ldst_cmd.u.pcie.data[0]);
4889         else
4890                 t4_hw_pci_read_cfg4(adap, reg, &val);
4891
4892         return val;
4893 }
4894
4895 static void setup_memwin(struct adapter *adap)
4896 {
4897         u32 mem_win0_base, mem_win1_base, mem_win2_base, mem_win2_aperture;
4898
4899         if (is_t4(adap->params.chip)) {
4900                 u32 bar0;
4901
4902                 /* Truncation intentional: we only read the bottom 32-bits of
4903                  * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
4904                  * mechanism to read BAR0 instead of using
4905                  * pci_resource_start() because we could be operating from
4906                  * within a Virtual Machine which is trapping our accesses to
4907                  * our Configuration Space and we need to set up the PCI-E
4908                  * Memory Window decoders with the actual addresses which will
4909                  * be coming across the PCI-E link.
4910                  */
4911                 bar0 = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_0);
4912                 bar0 &= PCI_BASE_ADDRESS_MEM_MASK;
4913                 adap->t4_bar0 = bar0;
4914
4915                 mem_win0_base = bar0 + MEMWIN0_BASE;
4916                 mem_win1_base = bar0 + MEMWIN1_BASE;
4917                 mem_win2_base = bar0 + MEMWIN2_BASE;
4918                 mem_win2_aperture = MEMWIN2_APERTURE;
4919         } else {
4920                 /* For T5, only relative offset inside the PCIe BAR is passed */
4921                 mem_win0_base = MEMWIN0_BASE;
4922                 mem_win1_base = MEMWIN1_BASE;
4923                 mem_win2_base = MEMWIN2_BASE_T5;
4924                 mem_win2_aperture = MEMWIN2_APERTURE_T5;
4925         }
4926         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 0),
4927                      mem_win0_base | BIR(0) |
4928                      WINDOW(ilog2(MEMWIN0_APERTURE) - 10));
4929         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 1),
4930                      mem_win1_base | BIR(0) |
4931                      WINDOW(ilog2(MEMWIN1_APERTURE) - 10));
4932         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2),
4933                      mem_win2_base | BIR(0) |
4934                      WINDOW(ilog2(mem_win2_aperture) - 10));
4935         t4_read_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2));
4936 }
4937
4938 static void setup_memwin_rdma(struct adapter *adap)
4939 {
4940         if (adap->vres.ocq.size) {
4941                 u32 start;
4942                 unsigned int sz_kb;
4943
4944                 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
4945                 start &= PCI_BASE_ADDRESS_MEM_MASK;
4946                 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
4947                 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
4948                 t4_write_reg(adap,
4949                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 3),
4950                              start | BIR(1) | WINDOW(ilog2(sz_kb)));
4951                 t4_write_reg(adap,
4952                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3),
4953                              adap->vres.ocq.start);
4954                 t4_read_reg(adap,
4955                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3));
4956         }
4957 }
4958
4959 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
4960 {
4961         u32 v;
4962         int ret;
4963
4964         /* get device capabilities */
4965         memset(c, 0, sizeof(*c));
4966         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4967                                FW_CMD_REQUEST_F | FW_CMD_READ_F);
4968         c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
4969         ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
4970         if (ret < 0)
4971                 return ret;
4972
4973         /* select capabilities we'll be using */
4974         if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
4975                 if (!vf_acls)
4976                         c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
4977                 else
4978                         c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
4979         } else if (vf_acls) {
4980                 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
4981                 return ret;
4982         }
4983         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4984                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4985         ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
4986         if (ret < 0)
4987                 return ret;
4988
4989         ret = t4_config_glbl_rss(adap, adap->fn,
4990                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
4991                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
4992                                  FW_RSS_GLB_CONFIG_CMD_TNLALLLKP);
4993         if (ret < 0)
4994                 return ret;
4995
4996         ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, MAX_EGRQ, 64, MAX_INGQ,
4997                           0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, FW_CMD_CAP_PF);
4998         if (ret < 0)
4999                 return ret;
5000
5001         t4_sge_init(adap);
5002
5003         /* tweak some settings */
5004         t4_write_reg(adap, TP_SHIFT_CNT, 0x64f8849);
5005         t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(PAGE_SHIFT - 12));
5006         t4_write_reg(adap, TP_PIO_ADDR, TP_INGRESS_CONFIG);
5007         v = t4_read_reg(adap, TP_PIO_DATA);
5008         t4_write_reg(adap, TP_PIO_DATA, v & ~CSUM_HAS_PSEUDO_HDR);
5009
5010         /* first 4 Tx modulation queues point to consecutive Tx channels */
5011         adap->params.tp.tx_modq_map = 0xE4;
5012         t4_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
5013                      V_TX_MOD_QUEUE_REQ_MAP(adap->params.tp.tx_modq_map));
5014
5015         /* associate each Tx modulation queue with consecutive Tx channels */
5016         v = 0x84218421;
5017         t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5018                           &v, 1, A_TP_TX_SCHED_HDR);
5019         t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5020                           &v, 1, A_TP_TX_SCHED_FIFO);
5021         t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5022                           &v, 1, A_TP_TX_SCHED_PCMD);
5023
5024 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
5025         if (is_offload(adap)) {
5026                 t4_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0,
5027                              V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5028                              V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5029                              V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5030                              V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
5031                 t4_write_reg(adap, A_TP_TX_MOD_CHANNEL_WEIGHT,
5032                              V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5033                              V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5034                              V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5035                              V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
5036         }
5037
5038         /* get basic stuff going */
5039         return t4_early_init(adap, adap->fn);
5040 }
5041
5042 /*
5043  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
5044  */
5045 #define MAX_ATIDS 8192U
5046
5047 /*
5048  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
5049  *
5050  * If the firmware we're dealing with has Configuration File support, then
5051  * we use that to perform all configuration
5052  */
5053
5054 /*
5055  * Tweak configuration based on module parameters, etc.  Most of these have
5056  * defaults assigned to them by Firmware Configuration Files (if we're using
5057  * them) but need to be explicitly set if we're using hard-coded
5058  * initialization.  But even in the case of using Firmware Configuration
5059  * Files, we'd like to expose the ability to change these via module
5060  * parameters so these are essentially common tweaks/settings for
5061  * Configuration Files and hard-coded initialization ...
5062  */
5063 static int adap_init0_tweaks(struct adapter *adapter)
5064 {
5065         /*
5066          * Fix up various Host-Dependent Parameters like Page Size, Cache
5067          * Line Size, etc.  The firmware default is for a 4KB Page Size and
5068          * 64B Cache Line Size ...
5069          */
5070         t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
5071
5072         /*
5073          * Process module parameters which affect early initialization.
5074          */
5075         if (rx_dma_offset != 2 && rx_dma_offset != 0) {
5076                 dev_err(&adapter->pdev->dev,
5077                         "Ignoring illegal rx_dma_offset=%d, using 2\n",
5078                         rx_dma_offset);
5079                 rx_dma_offset = 2;
5080         }
5081         t4_set_reg_field(adapter, SGE_CONTROL,
5082                          PKTSHIFT_MASK,
5083                          PKTSHIFT(rx_dma_offset));
5084
5085         /*
5086          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
5087          * adds the pseudo header itself.
5088          */
5089         t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG,
5090                                CSUM_HAS_PSEUDO_HDR, 0);
5091
5092         return 0;
5093 }
5094
5095 /*
5096  * Attempt to initialize the adapter via a Firmware Configuration File.
5097  */
5098 static int adap_init0_config(struct adapter *adapter, int reset)
5099 {
5100         struct fw_caps_config_cmd caps_cmd;
5101         const struct firmware *cf;
5102         unsigned long mtype = 0, maddr = 0;
5103         u32 finiver, finicsum, cfcsum;
5104         int ret;
5105         int config_issued = 0;
5106         char *fw_config_file, fw_config_file_path[256];
5107         char *config_name = NULL;
5108
5109         /*
5110          * Reset device if necessary.
5111          */
5112         if (reset) {
5113                 ret = t4_fw_reset(adapter, adapter->mbox,
5114                                   PIORSTMODE | PIORST);
5115                 if (ret < 0)
5116                         goto bye;
5117         }
5118
5119         /*
5120          * If we have a T4 configuration file under /lib/firmware/cxgb4/,
5121          * then use that.  Otherwise, use the configuration file stored
5122          * in the adapter flash ...
5123          */
5124         switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
5125         case CHELSIO_T4:
5126                 fw_config_file = FW4_CFNAME;
5127                 break;
5128         case CHELSIO_T5:
5129                 fw_config_file = FW5_CFNAME;
5130                 break;
5131         default:
5132                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
5133                        adapter->pdev->device);
5134                 ret = -EINVAL;
5135                 goto bye;
5136         }
5137
5138         ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
5139         if (ret < 0) {
5140                 config_name = "On FLASH";
5141                 mtype = FW_MEMTYPE_CF_FLASH;
5142                 maddr = t4_flash_cfg_addr(adapter);
5143         } else {
5144                 u32 params[7], val[7];
5145
5146                 sprintf(fw_config_file_path,
5147                         "/lib/firmware/%s", fw_config_file);
5148                 config_name = fw_config_file_path;
5149
5150                 if (cf->size >= FLASH_CFG_MAX_SIZE)
5151                         ret = -ENOMEM;
5152                 else {
5153                         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
5154                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
5155                         ret = t4_query_params(adapter, adapter->mbox,
5156                                               adapter->fn, 0, 1, params, val);
5157                         if (ret == 0) {
5158                                 /*
5159                                  * For t4_memory_rw() below addresses and
5160                                  * sizes have to be in terms of multiples of 4
5161                                  * bytes.  So, if the Configuration File isn't
5162                                  * a multiple of 4 bytes in length we'll have
5163                                  * to write that out separately since we can't
5164                                  * guarantee that the bytes following the
5165                                  * residual byte in the buffer returned by
5166                                  * request_firmware() are zeroed out ...
5167                                  */
5168                                 size_t resid = cf->size & 0x3;
5169                                 size_t size = cf->size & ~0x3;
5170                                 __be32 *data = (__be32 *)cf->data;
5171
5172                                 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
5173                                 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
5174
5175                                 spin_lock(&adapter->win0_lock);
5176                                 ret = t4_memory_rw(adapter, 0, mtype, maddr,
5177                                                    size, data, T4_MEMORY_WRITE);
5178                                 if (ret == 0 && resid != 0) {
5179                                         union {
5180                                                 __be32 word;
5181                                                 char buf[4];
5182                                         } last;
5183                                         int i;
5184
5185                                         last.word = data[size >> 2];
5186                                         for (i = resid; i < 4; i++)
5187                                                 last.buf[i] = 0;
5188                                         ret = t4_memory_rw(adapter, 0, mtype,
5189                                                            maddr + size,
5190                                                            4, &last.word,
5191                                                            T4_MEMORY_WRITE);
5192                                 }
5193                                 spin_unlock(&adapter->win0_lock);
5194                         }
5195                 }
5196
5197                 release_firmware(cf);
5198                 if (ret)
5199                         goto bye;
5200         }
5201
5202         /*
5203          * Issue a Capability Configuration command to the firmware to get it
5204          * to parse the Configuration File.  We don't use t4_fw_config_file()
5205          * because we want the ability to modify various features after we've
5206          * processed the configuration file ...
5207          */
5208         memset(&caps_cmd, 0, sizeof(caps_cmd));
5209         caps_cmd.op_to_write =
5210                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
5211                       FW_CMD_REQUEST_F |
5212                       FW_CMD_READ_F);
5213         caps_cmd.cfvalid_to_len16 =
5214                 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
5215                       FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
5216                       FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
5217                       FW_LEN16(caps_cmd));
5218         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5219                          &caps_cmd);
5220
5221         /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
5222          * Configuration File in FLASH), our last gasp effort is to use the
5223          * Firmware Configuration File which is embedded in the firmware.  A
5224          * very few early versions of the firmware didn't have one embedded
5225          * but we can ignore those.
5226          */
5227         if (ret == -ENOENT) {
5228                 memset(&caps_cmd, 0, sizeof(caps_cmd));
5229                 caps_cmd.op_to_write =
5230                         htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
5231                                         FW_CMD_REQUEST_F |
5232                                         FW_CMD_READ_F);
5233                 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5234                 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
5235                                 sizeof(caps_cmd), &caps_cmd);
5236                 config_name = "Firmware Default";
5237         }
5238
5239         config_issued = 1;
5240         if (ret < 0)
5241                 goto bye;
5242
5243         finiver = ntohl(caps_cmd.finiver);
5244         finicsum = ntohl(caps_cmd.finicsum);
5245         cfcsum = ntohl(caps_cmd.cfcsum);
5246         if (finicsum != cfcsum)
5247                 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
5248                          "mismatch: [fini] csum=%#x, computed csum=%#x\n",
5249                          finicsum, cfcsum);
5250
5251         /*
5252          * And now tell the firmware to use the configuration we just loaded.
5253          */
5254         caps_cmd.op_to_write =
5255                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
5256                       FW_CMD_REQUEST_F |
5257                       FW_CMD_WRITE_F);
5258         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5259         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5260                          NULL);
5261         if (ret < 0)
5262                 goto bye;
5263
5264         /*
5265          * Tweak configuration based on system architecture, module
5266          * parameters, etc.
5267          */
5268         ret = adap_init0_tweaks(adapter);
5269         if (ret < 0)
5270                 goto bye;
5271
5272         /*
5273          * And finally tell the firmware to initialize itself using the
5274          * parameters from the Configuration File.
5275          */
5276         ret = t4_fw_initialize(adapter, adapter->mbox);
5277         if (ret < 0)
5278                 goto bye;
5279
5280         /*
5281          * Return successfully and note that we're operating with parameters
5282          * not supplied by the driver, rather than from hard-wired
5283          * initialization constants burried in the driver.
5284          */
5285         adapter->flags |= USING_SOFT_PARAMS;
5286         dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
5287                  "Configuration File \"%s\", version %#x, computed checksum %#x\n",
5288                  config_name, finiver, cfcsum);
5289         return 0;
5290
5291         /*
5292          * Something bad happened.  Return the error ...  (If the "error"
5293          * is that there's no Configuration File on the adapter we don't
5294          * want to issue a warning since this is fairly common.)
5295          */
5296 bye:
5297         if (config_issued && ret != -ENOENT)
5298                 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
5299                          config_name, -ret);
5300         return ret;
5301 }
5302
5303 /*
5304  * Attempt to initialize the adapter via hard-coded, driver supplied
5305  * parameters ...
5306  */
5307 static int adap_init0_no_config(struct adapter *adapter, int reset)
5308 {
5309         struct sge *s = &adapter->sge;
5310         struct fw_caps_config_cmd caps_cmd;
5311         u32 v;
5312         int i, ret;
5313
5314         /*
5315          * Reset device if necessary
5316          */
5317         if (reset) {
5318                 ret = t4_fw_reset(adapter, adapter->mbox,
5319                                   PIORSTMODE | PIORST);
5320                 if (ret < 0)
5321                         goto bye;
5322         }
5323
5324         /*
5325          * Get device capabilities and select which we'll be using.
5326          */
5327         memset(&caps_cmd, 0, sizeof(caps_cmd));
5328         caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
5329                                      FW_CMD_REQUEST_F | FW_CMD_READ_F);
5330         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5331         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5332                          &caps_cmd);
5333         if (ret < 0)
5334                 goto bye;
5335
5336         if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
5337                 if (!vf_acls)
5338                         caps_cmd.niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
5339                 else
5340                         caps_cmd.niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
5341         } else if (vf_acls) {
5342                 dev_err(adapter->pdev_dev, "virtualization ACLs not supported");
5343                 goto bye;
5344         }
5345         caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
5346                               FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5347         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5348                          NULL);
5349         if (ret < 0)
5350                 goto bye;
5351
5352         /*
5353          * Tweak configuration based on system architecture, module
5354          * parameters, etc.
5355          */
5356         ret = adap_init0_tweaks(adapter);
5357         if (ret < 0)
5358                 goto bye;
5359
5360         /*
5361          * Select RSS Global Mode we want to use.  We use "Basic Virtual"
5362          * mode which maps each Virtual Interface to its own section of
5363          * the RSS Table and we turn on all map and hash enables ...
5364          */
5365         adapter->flags |= RSS_TNLALLLOOKUP;
5366         ret = t4_config_glbl_rss(adapter, adapter->mbox,
5367                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
5368                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
5369                                  FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ |
5370                                  ((adapter->flags & RSS_TNLALLLOOKUP) ?
5371                                         FW_RSS_GLB_CONFIG_CMD_TNLALLLKP : 0));
5372         if (ret < 0)
5373                 goto bye;
5374
5375         /*
5376          * Set up our own fundamental resource provisioning ...
5377          */
5378         ret = t4_cfg_pfvf(adapter, adapter->mbox, adapter->fn, 0,
5379                           PFRES_NEQ, PFRES_NETHCTRL,
5380                           PFRES_NIQFLINT, PFRES_NIQ,
5381                           PFRES_TC, PFRES_NVI,
5382                           FW_PFVF_CMD_CMASK_M,
5383                           pfvfres_pmask(adapter, adapter->fn, 0),
5384                           PFRES_NEXACTF,
5385                           PFRES_R_CAPS, PFRES_WX_CAPS);
5386         if (ret < 0)
5387                 goto bye;
5388
5389         /*
5390          * Perform low level SGE initialization.  We need to do this before we
5391          * send the firmware the INITIALIZE command because that will cause
5392          * any other PF Drivers which are waiting for the Master
5393          * Initialization to proceed forward.
5394          */
5395         for (i = 0; i < SGE_NTIMERS - 1; i++)
5396                 s->timer_val[i] = min(intr_holdoff[i], MAX_SGE_TIMERVAL);
5397         s->timer_val[SGE_NTIMERS - 1] = MAX_SGE_TIMERVAL;
5398         s->counter_val[0] = 1;
5399         for (i = 1; i < SGE_NCOUNTERS; i++)
5400                 s->counter_val[i] = min(intr_cnt[i - 1],
5401                                         THRESHOLD_0_GET(THRESHOLD_0_MASK));
5402         t4_sge_init(adapter);
5403
5404 #ifdef CONFIG_PCI_IOV
5405         /*
5406          * Provision resource limits for Virtual Functions.  We currently
5407          * grant them all the same static resource limits except for the Port
5408          * Access Rights Mask which we're assigning based on the PF.  All of
5409          * the static provisioning stuff for both the PF and VF really needs
5410          * to be managed in a persistent manner for each device which the
5411          * firmware controls.
5412          */
5413         {
5414                 int pf, vf;
5415
5416                 for (pf = 0; pf < ARRAY_SIZE(num_vf); pf++) {
5417                         if (num_vf[pf] <= 0)
5418                                 continue;
5419
5420                         /* VF numbering starts at 1! */
5421                         for (vf = 1; vf <= num_vf[pf]; vf++) {
5422                                 ret = t4_cfg_pfvf(adapter, adapter->mbox,
5423                                                   pf, vf,
5424                                                   VFRES_NEQ, VFRES_NETHCTRL,
5425                                                   VFRES_NIQFLINT, VFRES_NIQ,
5426                                                   VFRES_TC, VFRES_NVI,
5427                                                   FW_PFVF_CMD_CMASK_M,
5428                                                   pfvfres_pmask(
5429                                                   adapter, pf, vf),
5430                                                   VFRES_NEXACTF,
5431                                                   VFRES_R_CAPS, VFRES_WX_CAPS);
5432                                 if (ret < 0)
5433                                         dev_warn(adapter->pdev_dev,
5434                                                  "failed to "\
5435                                                  "provision pf/vf=%d/%d; "
5436                                                  "err=%d\n", pf, vf, ret);
5437                         }
5438                 }
5439         }
5440 #endif
5441
5442         /*
5443          * Set up the default filter mode.  Later we'll want to implement this
5444          * via a firmware command, etc. ...  This needs to be done before the
5445          * firmare initialization command ...  If the selected set of fields
5446          * isn't equal to the default value, we'll need to make sure that the
5447          * field selections will fit in the 36-bit budget.
5448          */
5449         if (tp_vlan_pri_map != TP_VLAN_PRI_MAP_DEFAULT) {
5450                 int j, bits = 0;
5451
5452                 for (j = TP_VLAN_PRI_MAP_FIRST; j <= TP_VLAN_PRI_MAP_LAST; j++)
5453                         switch (tp_vlan_pri_map & (1 << j)) {
5454                         case 0:
5455                                 /* compressed filter field not enabled */
5456                                 break;
5457                         case FCOE_MASK:
5458                                 bits +=  1;
5459                                 break;
5460                         case PORT_MASK:
5461                                 bits +=  3;
5462                                 break;
5463                         case VNIC_ID_MASK:
5464                                 bits += 17;
5465                                 break;
5466                         case VLAN_MASK:
5467                                 bits += 17;
5468                                 break;
5469                         case TOS_MASK:
5470                                 bits +=  8;
5471                                 break;
5472                         case PROTOCOL_MASK:
5473                                 bits +=  8;
5474                                 break;
5475                         case ETHERTYPE_MASK:
5476                                 bits += 16;
5477                                 break;
5478                         case MACMATCH_MASK:
5479                                 bits +=  9;
5480                                 break;
5481                         case MPSHITTYPE_MASK:
5482                                 bits +=  3;
5483                                 break;
5484                         case FRAGMENTATION_MASK:
5485                                 bits +=  1;
5486                                 break;
5487                         }
5488
5489                 if (bits > 36) {
5490                         dev_err(adapter->pdev_dev,
5491                                 "tp_vlan_pri_map=%#x needs %d bits > 36;"\
5492                                 " using %#x\n", tp_vlan_pri_map, bits,
5493                                 TP_VLAN_PRI_MAP_DEFAULT);
5494                         tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
5495                 }
5496         }
5497         v = tp_vlan_pri_map;
5498         t4_write_indirect(adapter, TP_PIO_ADDR, TP_PIO_DATA,
5499                           &v, 1, TP_VLAN_PRI_MAP);
5500
5501         /*
5502          * We need Five Tuple Lookup mode to be set in TP_GLOBAL_CONFIG order
5503          * to support any of the compressed filter fields above.  Newer
5504          * versions of the firmware do this automatically but it doesn't hurt
5505          * to set it here.  Meanwhile, we do _not_ need to set Lookup Every
5506          * Packet in TP_INGRESS_CONFIG to support matching non-TCP packets
5507          * since the firmware automatically turns this on and off when we have
5508          * a non-zero number of filters active (since it does have a
5509          * performance impact).
5510          */
5511         if (tp_vlan_pri_map)
5512                 t4_set_reg_field(adapter, TP_GLOBAL_CONFIG,
5513                                  FIVETUPLELOOKUP_MASK,
5514                                  FIVETUPLELOOKUP_MASK);
5515
5516         /*
5517          * Tweak some settings.
5518          */
5519         t4_write_reg(adapter, TP_SHIFT_CNT, SYNSHIFTMAX(6) |
5520                      RXTSHIFTMAXR1(4) | RXTSHIFTMAXR2(15) |
5521                      PERSHIFTBACKOFFMAX(8) | PERSHIFTMAX(8) |
5522                      KEEPALIVEMAXR1(4) | KEEPALIVEMAXR2(9));
5523
5524         /*
5525          * Get basic stuff going by issuing the Firmware Initialize command.
5526          * Note that this _must_ be after all PFVF commands ...
5527          */
5528         ret = t4_fw_initialize(adapter, adapter->mbox);
5529         if (ret < 0)
5530                 goto bye;
5531
5532         /*
5533          * Return successfully!
5534          */
5535         dev_info(adapter->pdev_dev, "Successfully configured using built-in "\
5536                  "driver parameters\n");
5537         return 0;
5538
5539         /*
5540          * Something bad happened.  Return the error ...
5541          */
5542 bye:
5543         return ret;
5544 }
5545
5546 static struct fw_info fw_info_array[] = {
5547         {
5548                 .chip = CHELSIO_T4,
5549                 .fs_name = FW4_CFNAME,
5550                 .fw_mod_name = FW4_FNAME,
5551                 .fw_hdr = {
5552                         .chip = FW_HDR_CHIP_T4,
5553                         .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
5554                         .intfver_nic = FW_INTFVER(T4, NIC),
5555                         .intfver_vnic = FW_INTFVER(T4, VNIC),
5556                         .intfver_ri = FW_INTFVER(T4, RI),
5557                         .intfver_iscsi = FW_INTFVER(T4, ISCSI),
5558                         .intfver_fcoe = FW_INTFVER(T4, FCOE),
5559                 },
5560         }, {
5561                 .chip = CHELSIO_T5,
5562                 .fs_name = FW5_CFNAME,
5563                 .fw_mod_name = FW5_FNAME,
5564                 .fw_hdr = {
5565                         .chip = FW_HDR_CHIP_T5,
5566                         .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
5567                         .intfver_nic = FW_INTFVER(T5, NIC),
5568                         .intfver_vnic = FW_INTFVER(T5, VNIC),
5569                         .intfver_ri = FW_INTFVER(T5, RI),
5570                         .intfver_iscsi = FW_INTFVER(T5, ISCSI),
5571                         .intfver_fcoe = FW_INTFVER(T5, FCOE),
5572                 },
5573         }
5574 };
5575
5576 static struct fw_info *find_fw_info(int chip)
5577 {
5578         int i;
5579
5580         for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
5581                 if (fw_info_array[i].chip == chip)
5582                         return &fw_info_array[i];
5583         }
5584         return NULL;
5585 }
5586
5587 /*
5588  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
5589  */
5590 static int adap_init0(struct adapter *adap)
5591 {
5592         int ret;
5593         u32 v, port_vec;
5594         enum dev_state state;
5595         u32 params[7], val[7];
5596         struct fw_caps_config_cmd caps_cmd;
5597         int reset = 1;
5598
5599         /*
5600          * Contact FW, advertising Master capability (and potentially forcing
5601          * ourselves as the Master PF if our module parameter force_init is
5602          * set).
5603          */
5604         ret = t4_fw_hello(adap, adap->mbox, adap->fn,
5605                           force_init ? MASTER_MUST : MASTER_MAY,
5606                           &state);
5607         if (ret < 0) {
5608                 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
5609                         ret);
5610                 return ret;
5611         }
5612         if (ret == adap->mbox)
5613                 adap->flags |= MASTER_PF;
5614         if (force_init && state == DEV_STATE_INIT)
5615                 state = DEV_STATE_UNINIT;
5616
5617         /*
5618          * If we're the Master PF Driver and the device is uninitialized,
5619          * then let's consider upgrading the firmware ...  (We always want
5620          * to check the firmware version number in order to A. get it for
5621          * later reporting and B. to warn if the currently loaded firmware
5622          * is excessively mismatched relative to the driver.)
5623          */
5624         t4_get_fw_version(adap, &adap->params.fw_vers);
5625         t4_get_tp_version(adap, &adap->params.tp_vers);
5626         if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
5627                 struct fw_info *fw_info;
5628                 struct fw_hdr *card_fw;
5629                 const struct firmware *fw;
5630                 const u8 *fw_data = NULL;
5631                 unsigned int fw_size = 0;
5632
5633                 /* This is the firmware whose headers the driver was compiled
5634                  * against
5635                  */
5636                 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
5637                 if (fw_info == NULL) {
5638                         dev_err(adap->pdev_dev,
5639                                 "unable to get firmware info for chip %d.\n",
5640                                 CHELSIO_CHIP_VERSION(adap->params.chip));
5641                         return -EINVAL;
5642                 }
5643
5644                 /* allocate memory to read the header of the firmware on the
5645                  * card
5646                  */
5647                 card_fw = t4_alloc_mem(sizeof(*card_fw));
5648
5649                 /* Get FW from from /lib/firmware/ */
5650                 ret = request_firmware(&fw, fw_info->fw_mod_name,
5651                                        adap->pdev_dev);
5652                 if (ret < 0) {
5653                         dev_err(adap->pdev_dev,
5654                                 "unable to load firmware image %s, error %d\n",
5655                                 fw_info->fw_mod_name, ret);
5656                 } else {
5657                         fw_data = fw->data;
5658                         fw_size = fw->size;
5659                 }
5660
5661                 /* upgrade FW logic */
5662                 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
5663                                  state, &reset);
5664
5665                 /* Cleaning up */
5666                 if (fw != NULL)
5667                         release_firmware(fw);
5668                 t4_free_mem(card_fw);
5669
5670                 if (ret < 0)
5671                         goto bye;
5672         }
5673
5674         /*
5675          * Grab VPD parameters.  This should be done after we establish a
5676          * connection to the firmware since some of the VPD parameters
5677          * (notably the Core Clock frequency) are retrieved via requests to
5678          * the firmware.  On the other hand, we need these fairly early on
5679          * so we do this right after getting ahold of the firmware.
5680          */
5681         ret = get_vpd_params(adap, &adap->params.vpd);
5682         if (ret < 0)
5683                 goto bye;
5684
5685         /*
5686          * Find out what ports are available to us.  Note that we need to do
5687          * this before calling adap_init0_no_config() since it needs nports
5688          * and portvec ...
5689          */
5690         v =
5691             FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
5692             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
5693         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec);
5694         if (ret < 0)
5695                 goto bye;
5696
5697         adap->params.nports = hweight32(port_vec);
5698         adap->params.portvec = port_vec;
5699
5700         /*
5701          * If the firmware is initialized already (and we're not forcing a
5702          * master initialization), note that we're living with existing
5703          * adapter parameters.  Otherwise, it's time to try initializing the
5704          * adapter ...
5705          */
5706         if (state == DEV_STATE_INIT) {
5707                 dev_info(adap->pdev_dev, "Coming up as %s: "\
5708                          "Adapter already initialized\n",
5709                          adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
5710                 adap->flags |= USING_SOFT_PARAMS;
5711         } else {
5712                 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
5713                          "Initializing adapter\n");
5714                 /*
5715                  * If the firmware doesn't support Configuration
5716                  * Files warn user and exit,
5717                  */
5718                 if (ret < 0)
5719                         dev_warn(adap->pdev_dev, "Firmware doesn't support "
5720                                  "configuration file.\n");
5721                 if (force_old_init)
5722                         ret = adap_init0_no_config(adap, reset);
5723                 else {
5724                         /*
5725                          * Find out whether we're dealing with a version of
5726                          * the firmware which has configuration file support.
5727                          */
5728                         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
5729                                      FW_PARAMS_PARAM_X_V(
5730                                              FW_PARAMS_PARAM_DEV_CF));
5731                         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1,
5732                                               params, val);
5733
5734                         /*
5735                          * If the firmware doesn't support Configuration
5736                          * Files, use the old Driver-based, hard-wired
5737                          * initialization.  Otherwise, try using the
5738                          * Configuration File support and fall back to the
5739                          * Driver-based initialization if there's no
5740                          * Configuration File found.
5741                          */
5742                         if (ret < 0)
5743                                 ret = adap_init0_no_config(adap, reset);
5744                         else {
5745                                 /*
5746                                  * The firmware provides us with a memory
5747                                  * buffer where we can load a Configuration
5748                                  * File from the host if we want to override
5749                                  * the Configuration File in flash.
5750                                  */
5751
5752                                 ret = adap_init0_config(adap, reset);
5753                                 if (ret == -ENOENT) {
5754                                         dev_info(adap->pdev_dev,
5755                                             "No Configuration File present "
5756                                             "on adapter. Using hard-wired "
5757                                             "configuration parameters.\n");
5758                                         ret = adap_init0_no_config(adap, reset);
5759                                 }
5760                         }
5761                 }
5762                 if (ret < 0) {
5763                         dev_err(adap->pdev_dev,
5764                                 "could not initialize adapter, error %d\n",
5765                                 -ret);
5766                         goto bye;
5767                 }
5768         }
5769
5770         /*
5771          * If we're living with non-hard-coded parameters (either from a
5772          * Firmware Configuration File or values programmed by a different PF
5773          * Driver), give the SGE code a chance to pull in anything that it
5774          * needs ...  Note that this must be called after we retrieve our VPD
5775          * parameters in order to know how to convert core ticks to seconds.
5776          */
5777         if (adap->flags & USING_SOFT_PARAMS) {
5778                 ret = t4_sge_init(adap);
5779                 if (ret < 0)
5780                         goto bye;
5781         }
5782
5783         if (is_bypass_device(adap->pdev->device))
5784                 adap->params.bypass = 1;
5785
5786         /*
5787          * Grab some of our basic fundamental operating parameters.
5788          */
5789 #define FW_PARAM_DEV(param) \
5790         (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
5791         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
5792
5793 #define FW_PARAM_PFVF(param) \
5794         FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
5795         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
5796         FW_PARAMS_PARAM_Y_V(0) | \
5797         FW_PARAMS_PARAM_Z_V(0)
5798
5799         params[0] = FW_PARAM_PFVF(EQ_START);
5800         params[1] = FW_PARAM_PFVF(L2T_START);
5801         params[2] = FW_PARAM_PFVF(L2T_END);
5802         params[3] = FW_PARAM_PFVF(FILTER_START);
5803         params[4] = FW_PARAM_PFVF(FILTER_END);
5804         params[5] = FW_PARAM_PFVF(IQFLINT_START);
5805         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val);
5806         if (ret < 0)
5807                 goto bye;
5808         adap->sge.egr_start = val[0];
5809         adap->l2t_start = val[1];
5810         adap->l2t_end = val[2];
5811         adap->tids.ftid_base = val[3];
5812         adap->tids.nftids = val[4] - val[3] + 1;
5813         adap->sge.ingr_start = val[5];
5814
5815         /* query params related to active filter region */
5816         params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
5817         params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
5818         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
5819         /* If Active filter size is set we enable establishing
5820          * offload connection through firmware work request
5821          */
5822         if ((val[0] != val[1]) && (ret >= 0)) {
5823                 adap->flags |= FW_OFLD_CONN;
5824                 adap->tids.aftid_base = val[0];
5825                 adap->tids.aftid_end = val[1];
5826         }
5827
5828         /* If we're running on newer firmware, let it know that we're
5829          * prepared to deal with encapsulated CPL messages.  Older
5830          * firmware won't understand this and we'll just get
5831          * unencapsulated messages ...
5832          */
5833         params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5834         val[0] = 1;
5835         (void) t4_set_params(adap, adap->mbox, adap->fn, 0, 1, params, val);
5836
5837         /*
5838          * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
5839          * capability.  Earlier versions of the firmware didn't have the
5840          * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
5841          * permission to use ULPTX MEMWRITE DSGL.
5842          */
5843         if (is_t4(adap->params.chip)) {
5844                 adap->params.ulptx_memwrite_dsgl = false;
5845         } else {
5846                 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5847                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0,
5848                                       1, params, val);
5849                 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
5850         }
5851
5852         /*
5853          * Get device capabilities so we can determine what resources we need
5854          * to manage.
5855          */
5856         memset(&caps_cmd, 0, sizeof(caps_cmd));
5857         caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
5858                                      FW_CMD_REQUEST_F | FW_CMD_READ_F);
5859         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5860         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
5861                          &caps_cmd);
5862         if (ret < 0)
5863                 goto bye;
5864
5865         if (caps_cmd.ofldcaps) {
5866                 /* query offload-related parameters */
5867                 params[0] = FW_PARAM_DEV(NTID);
5868                 params[1] = FW_PARAM_PFVF(SERVER_START);
5869                 params[2] = FW_PARAM_PFVF(SERVER_END);
5870                 params[3] = FW_PARAM_PFVF(TDDP_START);
5871                 params[4] = FW_PARAM_PFVF(TDDP_END);
5872                 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5873                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5874                                       params, val);
5875                 if (ret < 0)
5876                         goto bye;
5877                 adap->tids.ntids = val[0];
5878                 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
5879                 adap->tids.stid_base = val[1];
5880                 adap->tids.nstids = val[2] - val[1] + 1;
5881                 /*
5882                  * Setup server filter region. Divide the availble filter
5883                  * region into two parts. Regular filters get 1/3rd and server
5884                  * filters get 2/3rd part. This is only enabled if workarond
5885                  * path is enabled.
5886                  * 1. For regular filters.
5887                  * 2. Server filter: This are special filters which are used
5888                  * to redirect SYN packets to offload queue.
5889                  */
5890                 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
5891                         adap->tids.sftid_base = adap->tids.ftid_base +
5892                                         DIV_ROUND_UP(adap->tids.nftids, 3);
5893                         adap->tids.nsftids = adap->tids.nftids -
5894                                          DIV_ROUND_UP(adap->tids.nftids, 3);
5895                         adap->tids.nftids = adap->tids.sftid_base -
5896                                                 adap->tids.ftid_base;
5897                 }
5898                 adap->vres.ddp.start = val[3];
5899                 adap->vres.ddp.size = val[4] - val[3] + 1;
5900                 adap->params.ofldq_wr_cred = val[5];
5901
5902                 adap->params.offload = 1;
5903         }
5904         if (caps_cmd.rdmacaps) {
5905                 params[0] = FW_PARAM_PFVF(STAG_START);
5906                 params[1] = FW_PARAM_PFVF(STAG_END);
5907                 params[2] = FW_PARAM_PFVF(RQ_START);
5908                 params[3] = FW_PARAM_PFVF(RQ_END);
5909                 params[4] = FW_PARAM_PFVF(PBL_START);
5910                 params[5] = FW_PARAM_PFVF(PBL_END);
5911                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5912                                       params, val);
5913                 if (ret < 0)
5914                         goto bye;
5915                 adap->vres.stag.start = val[0];
5916                 adap->vres.stag.size = val[1] - val[0] + 1;
5917                 adap->vres.rq.start = val[2];
5918                 adap->vres.rq.size = val[3] - val[2] + 1;
5919                 adap->vres.pbl.start = val[4];
5920                 adap->vres.pbl.size = val[5] - val[4] + 1;
5921
5922                 params[0] = FW_PARAM_PFVF(SQRQ_START);
5923                 params[1] = FW_PARAM_PFVF(SQRQ_END);
5924                 params[2] = FW_PARAM_PFVF(CQ_START);
5925                 params[3] = FW_PARAM_PFVF(CQ_END);
5926                 params[4] = FW_PARAM_PFVF(OCQ_START);
5927                 params[5] = FW_PARAM_PFVF(OCQ_END);
5928                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params,
5929                                       val);
5930                 if (ret < 0)
5931                         goto bye;
5932                 adap->vres.qp.start = val[0];
5933                 adap->vres.qp.size = val[1] - val[0] + 1;
5934                 adap->vres.cq.start = val[2];
5935                 adap->vres.cq.size = val[3] - val[2] + 1;
5936                 adap->vres.ocq.start = val[4];
5937                 adap->vres.ocq.size = val[5] - val[4] + 1;
5938
5939                 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
5940                 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5941                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params,
5942                                       val);
5943                 if (ret < 0) {
5944                         adap->params.max_ordird_qp = 8;
5945                         adap->params.max_ird_adapter = 32 * adap->tids.ntids;
5946                         ret = 0;
5947                 } else {
5948                         adap->params.max_ordird_qp = val[0];
5949                         adap->params.max_ird_adapter = val[1];
5950                 }
5951                 dev_info(adap->pdev_dev,
5952                          "max_ordird_qp %d max_ird_adapter %d\n",
5953                          adap->params.max_ordird_qp,
5954                          adap->params.max_ird_adapter);
5955         }
5956         if (caps_cmd.iscsicaps) {
5957                 params[0] = FW_PARAM_PFVF(ISCSI_START);
5958                 params[1] = FW_PARAM_PFVF(ISCSI_END);
5959                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2,
5960                                       params, val);
5961                 if (ret < 0)
5962                         goto bye;
5963                 adap->vres.iscsi.start = val[0];
5964                 adap->vres.iscsi.size = val[1] - val[0] + 1;
5965         }
5966 #undef FW_PARAM_PFVF
5967 #undef FW_PARAM_DEV
5968
5969         /* The MTU/MSS Table is initialized by now, so load their values.  If
5970          * we're initializing the adapter, then we'll make any modifications
5971          * we want to the MTU/MSS Table and also initialize the congestion
5972          * parameters.
5973          */
5974         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
5975         if (state != DEV_STATE_INIT) {
5976                 int i;
5977
5978                 /* The default MTU Table contains values 1492 and 1500.
5979                  * However, for TCP, it's better to have two values which are
5980                  * a multiple of 8 +/- 4 bytes apart near this popular MTU.
5981                  * This allows us to have a TCP Data Payload which is a
5982                  * multiple of 8 regardless of what combination of TCP Options
5983                  * are in use (always a multiple of 4 bytes) which is
5984                  * important for performance reasons.  For instance, if no
5985                  * options are in use, then we have a 20-byte IP header and a
5986                  * 20-byte TCP header.  In this case, a 1500-byte MSS would
5987                  * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
5988                  * which is not a multiple of 8.  So using an MSS of 1488 in
5989                  * this case results in a TCP Data Payload of 1448 bytes which
5990                  * is a multiple of 8.  On the other hand, if 12-byte TCP Time
5991                  * Stamps have been negotiated, then an MTU of 1500 bytes
5992                  * results in a TCP Data Payload of 1448 bytes which, as
5993                  * above, is a multiple of 8 bytes ...
5994                  */
5995                 for (i = 0; i < NMTUS; i++)
5996                         if (adap->params.mtus[i] == 1492) {
5997                                 adap->params.mtus[i] = 1488;
5998                                 break;
5999                         }
6000
6001                 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
6002                              adap->params.b_wnd);
6003         }
6004         t4_init_tp_params(adap);
6005         adap->flags |= FW_OK;
6006         return 0;
6007
6008         /*
6009          * Something bad happened.  If a command timed out or failed with EIO
6010          * FW does not operate within its spec or something catastrophic
6011          * happened to HW/FW, stop issuing commands.
6012          */
6013 bye:
6014         if (ret != -ETIMEDOUT && ret != -EIO)
6015                 t4_fw_bye(adap, adap->mbox);
6016         return ret;
6017 }
6018
6019 /* EEH callbacks */
6020
6021 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
6022                                          pci_channel_state_t state)
6023 {
6024         int i;
6025         struct adapter *adap = pci_get_drvdata(pdev);
6026
6027         if (!adap)
6028                 goto out;
6029
6030         rtnl_lock();
6031         adap->flags &= ~FW_OK;
6032         notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
6033         spin_lock(&adap->stats_lock);
6034         for_each_port(adap, i) {
6035                 struct net_device *dev = adap->port[i];
6036
6037                 netif_device_detach(dev);
6038                 netif_carrier_off(dev);
6039         }
6040         spin_unlock(&adap->stats_lock);
6041         if (adap->flags & FULL_INIT_DONE)
6042                 cxgb_down(adap);
6043         rtnl_unlock();
6044         if ((adap->flags & DEV_ENABLED)) {
6045                 pci_disable_device(pdev);
6046                 adap->flags &= ~DEV_ENABLED;
6047         }
6048 out:    return state == pci_channel_io_perm_failure ?
6049                 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
6050 }
6051
6052 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
6053 {
6054         int i, ret;
6055         struct fw_caps_config_cmd c;
6056         struct adapter *adap = pci_get_drvdata(pdev);
6057
6058         if (!adap) {
6059                 pci_restore_state(pdev);
6060                 pci_save_state(pdev);
6061                 return PCI_ERS_RESULT_RECOVERED;
6062         }
6063
6064         if (!(adap->flags & DEV_ENABLED)) {
6065                 if (pci_enable_device(pdev)) {
6066                         dev_err(&pdev->dev, "Cannot reenable PCI "
6067                                             "device after reset\n");
6068                         return PCI_ERS_RESULT_DISCONNECT;
6069                 }
6070                 adap->flags |= DEV_ENABLED;
6071         }
6072
6073         pci_set_master(pdev);
6074         pci_restore_state(pdev);
6075         pci_save_state(pdev);
6076         pci_cleanup_aer_uncorrect_error_status(pdev);
6077
6078         if (t4_wait_dev_ready(adap->regs) < 0)
6079                 return PCI_ERS_RESULT_DISCONNECT;
6080         if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL) < 0)
6081                 return PCI_ERS_RESULT_DISCONNECT;
6082         adap->flags |= FW_OK;
6083         if (adap_init1(adap, &c))
6084                 return PCI_ERS_RESULT_DISCONNECT;
6085
6086         for_each_port(adap, i) {
6087                 struct port_info *p = adap2pinfo(adap, i);
6088
6089                 ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
6090                                   NULL, NULL);
6091                 if (ret < 0)
6092                         return PCI_ERS_RESULT_DISCONNECT;
6093                 p->viid = ret;
6094                 p->xact_addr_filt = -1;
6095         }
6096
6097         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
6098                      adap->params.b_wnd);
6099         setup_memwin(adap);
6100         if (cxgb_up(adap))
6101                 return PCI_ERS_RESULT_DISCONNECT;
6102         return PCI_ERS_RESULT_RECOVERED;
6103 }
6104
6105 static void eeh_resume(struct pci_dev *pdev)
6106 {
6107         int i;
6108         struct adapter *adap = pci_get_drvdata(pdev);
6109
6110         if (!adap)
6111                 return;
6112
6113         rtnl_lock();
6114         for_each_port(adap, i) {
6115                 struct net_device *dev = adap->port[i];
6116
6117                 if (netif_running(dev)) {
6118                         link_start(dev);
6119                         cxgb_set_rxmode(dev);
6120                 }
6121                 netif_device_attach(dev);
6122         }
6123         rtnl_unlock();
6124 }
6125
6126 static const struct pci_error_handlers cxgb4_eeh = {
6127         .error_detected = eeh_err_detected,
6128         .slot_reset     = eeh_slot_reset,
6129         .resume         = eeh_resume,
6130 };
6131
6132 static inline bool is_x_10g_port(const struct link_config *lc)
6133 {
6134         return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
6135                (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
6136 }
6137
6138 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
6139                              unsigned int us, unsigned int cnt,
6140                              unsigned int size, unsigned int iqe_size)
6141 {
6142         q->adap = adap;
6143         set_rspq_intr_params(q, us, cnt);
6144         q->iqe_len = iqe_size;
6145         q->size = size;
6146 }
6147
6148 /*
6149  * Perform default configuration of DMA queues depending on the number and type
6150  * of ports we found and the number of available CPUs.  Most settings can be
6151  * modified by the admin prior to actual use.
6152  */
6153 static void cfg_queues(struct adapter *adap)
6154 {
6155         struct sge *s = &adap->sge;
6156         int i, n10g = 0, qidx = 0;
6157 #ifndef CONFIG_CHELSIO_T4_DCB
6158         int q10g = 0;
6159 #endif
6160         int ciq_size;
6161
6162         for_each_port(adap, i)
6163                 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
6164 #ifdef CONFIG_CHELSIO_T4_DCB
6165         /* For Data Center Bridging support we need to be able to support up
6166          * to 8 Traffic Priorities; each of which will be assigned to its
6167          * own TX Queue in order to prevent Head-Of-Line Blocking.
6168          */
6169         if (adap->params.nports * 8 > MAX_ETH_QSETS) {
6170                 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
6171                         MAX_ETH_QSETS, adap->params.nports * 8);
6172                 BUG_ON(1);
6173         }
6174
6175         for_each_port(adap, i) {
6176                 struct port_info *pi = adap2pinfo(adap, i);
6177
6178                 pi->first_qset = qidx;
6179                 pi->nqsets = 8;
6180                 qidx += pi->nqsets;
6181         }
6182 #else /* !CONFIG_CHELSIO_T4_DCB */
6183         /*
6184          * We default to 1 queue per non-10G port and up to # of cores queues
6185          * per 10G port.
6186          */
6187         if (n10g)
6188                 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
6189         if (q10g > netif_get_num_default_rss_queues())
6190                 q10g = netif_get_num_default_rss_queues();
6191
6192         for_each_port(adap, i) {
6193                 struct port_info *pi = adap2pinfo(adap, i);
6194
6195                 pi->first_qset = qidx;
6196                 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
6197                 qidx += pi->nqsets;
6198         }
6199 #endif /* !CONFIG_CHELSIO_T4_DCB */
6200
6201         s->ethqsets = qidx;
6202         s->max_ethqsets = qidx;   /* MSI-X may lower it later */
6203
6204         if (is_offload(adap)) {
6205                 /*
6206                  * For offload we use 1 queue/channel if all ports are up to 1G,
6207                  * otherwise we divide all available queues amongst the channels
6208                  * capped by the number of available cores.
6209                  */
6210                 if (n10g) {
6211                         i = min_t(int, ARRAY_SIZE(s->ofldrxq),
6212                                   num_online_cpus());
6213                         s->ofldqsets = roundup(i, adap->params.nports);
6214                 } else
6215                         s->ofldqsets = adap->params.nports;
6216                 /* For RDMA one Rx queue per channel suffices */
6217                 s->rdmaqs = adap->params.nports;
6218                 s->rdmaciqs = adap->params.nports;
6219         }
6220
6221         for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
6222                 struct sge_eth_rxq *r = &s->ethrxq[i];
6223
6224                 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
6225                 r->fl.size = 72;
6226         }
6227
6228         for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
6229                 s->ethtxq[i].q.size = 1024;
6230
6231         for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
6232                 s->ctrlq[i].q.size = 512;
6233
6234         for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
6235                 s->ofldtxq[i].q.size = 1024;
6236
6237         for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
6238                 struct sge_ofld_rxq *r = &s->ofldrxq[i];
6239
6240                 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
6241                 r->rspq.uld = CXGB4_ULD_ISCSI;
6242                 r->fl.size = 72;
6243         }
6244
6245         for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
6246                 struct sge_ofld_rxq *r = &s->rdmarxq[i];
6247
6248                 init_rspq(adap, &r->rspq, 5, 1, 511, 64);
6249                 r->rspq.uld = CXGB4_ULD_RDMA;
6250                 r->fl.size = 72;
6251         }
6252
6253         ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
6254         if (ciq_size > SGE_MAX_IQ_SIZE) {
6255                 CH_WARN(adap, "CIQ size too small for available IQs\n");
6256                 ciq_size = SGE_MAX_IQ_SIZE;
6257         }
6258
6259         for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
6260                 struct sge_ofld_rxq *r = &s->rdmaciq[i];
6261
6262                 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
6263                 r->rspq.uld = CXGB4_ULD_RDMA;
6264         }
6265
6266         init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
6267         init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
6268 }
6269
6270 /*
6271  * Reduce the number of Ethernet queues across all ports to at most n.
6272  * n provides at least one queue per port.
6273  */
6274 static void reduce_ethqs(struct adapter *adap, int n)
6275 {
6276         int i;
6277         struct port_info *pi;
6278
6279         while (n < adap->sge.ethqsets)
6280                 for_each_port(adap, i) {
6281                         pi = adap2pinfo(adap, i);
6282                         if (pi->nqsets > 1) {
6283                                 pi->nqsets--;
6284                                 adap->sge.ethqsets--;
6285                                 if (adap->sge.ethqsets <= n)
6286                                         break;
6287                         }
6288                 }
6289
6290         n = 0;
6291         for_each_port(adap, i) {
6292                 pi = adap2pinfo(adap, i);
6293                 pi->first_qset = n;
6294                 n += pi->nqsets;
6295         }
6296 }
6297
6298 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
6299 #define EXTRA_VECS 2
6300
6301 static int enable_msix(struct adapter *adap)
6302 {
6303         int ofld_need = 0;
6304         int i, want, need;
6305         struct sge *s = &adap->sge;
6306         unsigned int nchan = adap->params.nports;
6307         struct msix_entry entries[MAX_INGQ + 1];
6308
6309         for (i = 0; i < ARRAY_SIZE(entries); ++i)
6310                 entries[i].entry = i;
6311
6312         want = s->max_ethqsets + EXTRA_VECS;
6313         if (is_offload(adap)) {
6314                 want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
6315                 /* need nchan for each possible ULD */
6316                 ofld_need = 3 * nchan;
6317         }
6318 #ifdef CONFIG_CHELSIO_T4_DCB
6319         /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
6320          * each port.
6321          */
6322         need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
6323 #else
6324         need = adap->params.nports + EXTRA_VECS + ofld_need;
6325 #endif
6326         want = pci_enable_msix_range(adap->pdev, entries, need, want);
6327         if (want < 0)
6328                 return want;
6329
6330         /*
6331          * Distribute available vectors to the various queue groups.
6332          * Every group gets its minimum requirement and NIC gets top
6333          * priority for leftovers.
6334          */
6335         i = want - EXTRA_VECS - ofld_need;
6336         if (i < s->max_ethqsets) {
6337                 s->max_ethqsets = i;
6338                 if (i < s->ethqsets)
6339                         reduce_ethqs(adap, i);
6340         }
6341         if (is_offload(adap)) {
6342                 i = want - EXTRA_VECS - s->max_ethqsets;
6343                 i -= ofld_need - nchan;
6344                 s->ofldqsets = (i / nchan) * nchan;  /* round down */
6345         }
6346         for (i = 0; i < want; ++i)
6347                 adap->msix_info[i].vec = entries[i].vector;
6348
6349         return 0;
6350 }
6351
6352 #undef EXTRA_VECS
6353
6354 static int init_rss(struct adapter *adap)
6355 {
6356         unsigned int i, j;
6357
6358         for_each_port(adap, i) {
6359                 struct port_info *pi = adap2pinfo(adap, i);
6360
6361                 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
6362                 if (!pi->rss)
6363                         return -ENOMEM;
6364                 for (j = 0; j < pi->rss_size; j++)
6365                         pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets);
6366         }
6367         return 0;
6368 }
6369
6370 static void print_port_info(const struct net_device *dev)
6371 {
6372         char buf[80];
6373         char *bufp = buf;
6374         const char *spd = "";
6375         const struct port_info *pi = netdev_priv(dev);
6376         const struct adapter *adap = pi->adapter;
6377
6378         if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
6379                 spd = " 2.5 GT/s";
6380         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
6381                 spd = " 5 GT/s";
6382         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
6383                 spd = " 8 GT/s";
6384
6385         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
6386                 bufp += sprintf(bufp, "100/");
6387         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
6388                 bufp += sprintf(bufp, "1000/");
6389         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
6390                 bufp += sprintf(bufp, "10G/");
6391         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
6392                 bufp += sprintf(bufp, "40G/");
6393         if (bufp != buf)
6394                 --bufp;
6395         sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
6396
6397         netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
6398                     adap->params.vpd.id,
6399                     CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
6400                     is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
6401                     (adap->flags & USING_MSIX) ? " MSI-X" :
6402                     (adap->flags & USING_MSI) ? " MSI" : "");
6403         netdev_info(dev, "S/N: %s, P/N: %s\n",
6404                     adap->params.vpd.sn, adap->params.vpd.pn);
6405 }
6406
6407 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
6408 {
6409         pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
6410 }
6411
6412 /*
6413  * Free the following resources:
6414  * - memory used for tables
6415  * - MSI/MSI-X
6416  * - net devices
6417  * - resources FW is holding for us
6418  */
6419 static void free_some_resources(struct adapter *adapter)
6420 {
6421         unsigned int i;
6422
6423         t4_free_mem(adapter->l2t);
6424         t4_free_mem(adapter->tids.tid_tab);
6425         disable_msi(adapter);
6426
6427         for_each_port(adapter, i)
6428                 if (adapter->port[i]) {
6429                         kfree(adap2pinfo(adapter, i)->rss);
6430                         free_netdev(adapter->port[i]);
6431                 }
6432         if (adapter->flags & FW_OK)
6433                 t4_fw_bye(adapter, adapter->fn);
6434 }
6435
6436 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
6437 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
6438                    NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
6439 #define SEGMENT_SIZE 128
6440
6441 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6442 {
6443         int func, i, err, s_qpp, qpp, num_seg;
6444         struct port_info *pi;
6445         bool highdma = false;
6446         struct adapter *adapter = NULL;
6447         void __iomem *regs;
6448
6449         printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
6450
6451         err = pci_request_regions(pdev, KBUILD_MODNAME);
6452         if (err) {
6453                 /* Just info, some other driver may have claimed the device. */
6454                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
6455                 return err;
6456         }
6457
6458         err = pci_enable_device(pdev);
6459         if (err) {
6460                 dev_err(&pdev->dev, "cannot enable PCI device\n");
6461                 goto out_release_regions;
6462         }
6463
6464         regs = pci_ioremap_bar(pdev, 0);
6465         if (!regs) {
6466                 dev_err(&pdev->dev, "cannot map device registers\n");
6467                 err = -ENOMEM;
6468                 goto out_disable_device;
6469         }
6470
6471         err = t4_wait_dev_ready(regs);
6472         if (err < 0)
6473                 goto out_unmap_bar0;
6474
6475         /* We control everything through one PF */
6476         func = SOURCEPF_GET(readl(regs + PL_WHOAMI));
6477         if (func != ent->driver_data) {
6478                 iounmap(regs);
6479                 pci_disable_device(pdev);
6480                 pci_save_state(pdev);        /* to restore SR-IOV later */
6481                 goto sriov;
6482         }
6483
6484         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
6485                 highdma = true;
6486                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
6487                 if (err) {
6488                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
6489                                 "coherent allocations\n");
6490                         goto out_unmap_bar0;
6491                 }
6492         } else {
6493                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6494                 if (err) {
6495                         dev_err(&pdev->dev, "no usable DMA configuration\n");
6496                         goto out_unmap_bar0;
6497                 }
6498         }
6499
6500         pci_enable_pcie_error_reporting(pdev);
6501         enable_pcie_relaxed_ordering(pdev);
6502         pci_set_master(pdev);
6503         pci_save_state(pdev);
6504
6505         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
6506         if (!adapter) {
6507                 err = -ENOMEM;
6508                 goto out_unmap_bar0;
6509         }
6510
6511         adapter->workq = create_singlethread_workqueue("cxgb4");
6512         if (!adapter->workq) {
6513                 err = -ENOMEM;
6514                 goto out_free_adapter;
6515         }
6516
6517         /* PCI device has been enabled */
6518         adapter->flags |= DEV_ENABLED;
6519
6520         adapter->regs = regs;
6521         adapter->pdev = pdev;
6522         adapter->pdev_dev = &pdev->dev;
6523         adapter->mbox = func;
6524         adapter->fn = func;
6525         adapter->msg_enable = dflt_msg_enable;
6526         memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
6527
6528         spin_lock_init(&adapter->stats_lock);
6529         spin_lock_init(&adapter->tid_release_lock);
6530         spin_lock_init(&adapter->win0_lock);
6531
6532         INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
6533         INIT_WORK(&adapter->db_full_task, process_db_full);
6534         INIT_WORK(&adapter->db_drop_task, process_db_drop);
6535
6536         err = t4_prep_adapter(adapter);
6537         if (err)
6538                 goto out_free_adapter;
6539
6540
6541         if (!is_t4(adapter->params.chip)) {
6542                 s_qpp = QUEUESPERPAGEPF1 * adapter->fn;
6543                 qpp = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adapter,
6544                       SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
6545                 num_seg = PAGE_SIZE / SEGMENT_SIZE;
6546
6547                 /* Each segment size is 128B. Write coalescing is enabled only
6548                  * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
6549                  * queue is less no of segments that can be accommodated in
6550                  * a page size.
6551                  */
6552                 if (qpp > num_seg) {
6553                         dev_err(&pdev->dev,
6554                                 "Incorrect number of egress queues per page\n");
6555                         err = -EINVAL;
6556                         goto out_free_adapter;
6557                 }
6558                 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
6559                 pci_resource_len(pdev, 2));
6560                 if (!adapter->bar2) {
6561                         dev_err(&pdev->dev, "cannot map device bar2 region\n");
6562                         err = -ENOMEM;
6563                         goto out_free_adapter;
6564                 }
6565         }
6566
6567         setup_memwin(adapter);
6568         err = adap_init0(adapter);
6569         setup_memwin_rdma(adapter);
6570         if (err)
6571                 goto out_unmap_bar;
6572
6573         for_each_port(adapter, i) {
6574                 struct net_device *netdev;
6575
6576                 netdev = alloc_etherdev_mq(sizeof(struct port_info),
6577                                            MAX_ETH_QSETS);
6578                 if (!netdev) {
6579                         err = -ENOMEM;
6580                         goto out_free_dev;
6581                 }
6582
6583                 SET_NETDEV_DEV(netdev, &pdev->dev);
6584
6585                 adapter->port[i] = netdev;
6586                 pi = netdev_priv(netdev);
6587                 pi->adapter = adapter;
6588                 pi->xact_addr_filt = -1;
6589                 pi->port_id = i;
6590                 netdev->irq = pdev->irq;
6591
6592                 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
6593                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6594                         NETIF_F_RXCSUM | NETIF_F_RXHASH |
6595                         NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
6596                 if (highdma)
6597                         netdev->hw_features |= NETIF_F_HIGHDMA;
6598                 netdev->features |= netdev->hw_features;
6599                 netdev->vlan_features = netdev->features & VLAN_FEAT;
6600
6601                 netdev->priv_flags |= IFF_UNICAST_FLT;
6602
6603                 netdev->netdev_ops = &cxgb4_netdev_ops;
6604 #ifdef CONFIG_CHELSIO_T4_DCB
6605                 netdev->dcbnl_ops = &cxgb4_dcb_ops;
6606                 cxgb4_dcb_state_init(netdev);
6607 #endif
6608                 netdev->ethtool_ops = &cxgb_ethtool_ops;
6609         }
6610
6611         pci_set_drvdata(pdev, adapter);
6612
6613         if (adapter->flags & FW_OK) {
6614                 err = t4_port_init(adapter, func, func, 0);
6615                 if (err)
6616                         goto out_free_dev;
6617         }
6618
6619         /*
6620          * Configure queues and allocate tables now, they can be needed as
6621          * soon as the first register_netdev completes.
6622          */
6623         cfg_queues(adapter);
6624
6625         adapter->l2t = t4_init_l2t();
6626         if (!adapter->l2t) {
6627                 /* We tolerate a lack of L2T, giving up some functionality */
6628                 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
6629                 adapter->params.offload = 0;
6630         }
6631
6632         if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
6633                 dev_warn(&pdev->dev, "could not allocate TID table, "
6634                          "continuing\n");
6635                 adapter->params.offload = 0;
6636         }
6637
6638         /* See what interrupts we'll be using */
6639         if (msi > 1 && enable_msix(adapter) == 0)
6640                 adapter->flags |= USING_MSIX;
6641         else if (msi > 0 && pci_enable_msi(pdev) == 0)
6642                 adapter->flags |= USING_MSI;
6643
6644         err = init_rss(adapter);
6645         if (err)
6646                 goto out_free_dev;
6647
6648         /*
6649          * The card is now ready to go.  If any errors occur during device
6650          * registration we do not fail the whole card but rather proceed only
6651          * with the ports we manage to register successfully.  However we must
6652          * register at least one net device.
6653          */
6654         for_each_port(adapter, i) {
6655                 pi = adap2pinfo(adapter, i);
6656                 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
6657                 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
6658
6659                 err = register_netdev(adapter->port[i]);
6660                 if (err)
6661                         break;
6662                 adapter->chan_map[pi->tx_chan] = i;
6663                 print_port_info(adapter->port[i]);
6664         }
6665         if (i == 0) {
6666                 dev_err(&pdev->dev, "could not register any net devices\n");
6667                 goto out_free_dev;
6668         }
6669         if (err) {
6670                 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
6671                 err = 0;
6672         }
6673
6674         if (cxgb4_debugfs_root) {
6675                 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
6676                                                            cxgb4_debugfs_root);
6677                 setup_debugfs(adapter);
6678         }
6679
6680         /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
6681         pdev->needs_freset = 1;
6682
6683         if (is_offload(adapter))
6684                 attach_ulds(adapter);
6685
6686 sriov:
6687 #ifdef CONFIG_PCI_IOV
6688         if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
6689                 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
6690                         dev_info(&pdev->dev,
6691                                  "instantiated %u virtual functions\n",
6692                                  num_vf[func]);
6693 #endif
6694         return 0;
6695
6696  out_free_dev:
6697         free_some_resources(adapter);
6698  out_unmap_bar:
6699         if (!is_t4(adapter->params.chip))
6700                 iounmap(adapter->bar2);
6701  out_free_adapter:
6702         if (adapter->workq)
6703                 destroy_workqueue(adapter->workq);
6704
6705         kfree(adapter);
6706  out_unmap_bar0:
6707         iounmap(regs);
6708  out_disable_device:
6709         pci_disable_pcie_error_reporting(pdev);
6710         pci_disable_device(pdev);
6711  out_release_regions:
6712         pci_release_regions(pdev);
6713         return err;
6714 }
6715
6716 static void remove_one(struct pci_dev *pdev)
6717 {
6718         struct adapter *adapter = pci_get_drvdata(pdev);
6719
6720 #ifdef CONFIG_PCI_IOV
6721         pci_disable_sriov(pdev);
6722
6723 #endif
6724
6725         if (adapter) {
6726                 int i;
6727
6728                 /* Tear down per-adapter Work Queue first since it can contain
6729                  * references to our adapter data structure.
6730                  */
6731                 destroy_workqueue(adapter->workq);
6732
6733                 if (is_offload(adapter))
6734                         detach_ulds(adapter);
6735
6736                 for_each_port(adapter, i)
6737                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
6738                                 unregister_netdev(adapter->port[i]);
6739
6740                 debugfs_remove_recursive(adapter->debugfs_root);
6741
6742                 /* If we allocated filters, free up state associated with any
6743                  * valid filters ...
6744                  */
6745                 if (adapter->tids.ftid_tab) {
6746                         struct filter_entry *f = &adapter->tids.ftid_tab[0];
6747                         for (i = 0; i < (adapter->tids.nftids +
6748                                         adapter->tids.nsftids); i++, f++)
6749                                 if (f->valid)
6750                                         clear_filter(adapter, f);
6751                 }
6752
6753                 if (adapter->flags & FULL_INIT_DONE)
6754                         cxgb_down(adapter);
6755
6756                 free_some_resources(adapter);
6757                 iounmap(adapter->regs);
6758                 if (!is_t4(adapter->params.chip))
6759                         iounmap(adapter->bar2);
6760                 pci_disable_pcie_error_reporting(pdev);
6761                 if ((adapter->flags & DEV_ENABLED)) {
6762                         pci_disable_device(pdev);
6763                         adapter->flags &= ~DEV_ENABLED;
6764                 }
6765                 pci_release_regions(pdev);
6766                 synchronize_rcu();
6767                 kfree(adapter);
6768         } else
6769                 pci_release_regions(pdev);
6770 }
6771
6772 static struct pci_driver cxgb4_driver = {
6773         .name     = KBUILD_MODNAME,
6774         .id_table = cxgb4_pci_tbl,
6775         .probe    = init_one,
6776         .remove   = remove_one,
6777         .shutdown = remove_one,
6778         .err_handler = &cxgb4_eeh,
6779 };
6780
6781 static int __init cxgb4_init_module(void)
6782 {
6783         int ret;
6784
6785         /* Debugfs support is optional, just warn if this fails */
6786         cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
6787         if (!cxgb4_debugfs_root)
6788                 pr_warn("could not create debugfs entry, continuing\n");
6789
6790         ret = pci_register_driver(&cxgb4_driver);
6791         if (ret < 0)
6792                 debugfs_remove(cxgb4_debugfs_root);
6793
6794 #if IS_ENABLED(CONFIG_IPV6)
6795         register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6796 #endif
6797
6798         return ret;
6799 }
6800
6801 static void __exit cxgb4_cleanup_module(void)
6802 {
6803 #if IS_ENABLED(CONFIG_IPV6)
6804         unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6805 #endif
6806         pci_unregister_driver(&cxgb4_driver);
6807         debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
6808 }
6809
6810 module_init(cxgb4_init_module);
6811 module_exit(cxgb4_cleanup_module);