]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/chelsio/cxgb4/t4_hw.c
Merge remote-tracking branch 'input-current/for-linus'
[karo-tx-linux.git] / drivers / net / ethernet / chelsio / cxgb4 / t4_hw.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41
42 /**
43  *      t4_wait_op_done_val - wait until an operation is completed
44  *      @adapter: the adapter performing the operation
45  *      @reg: the register to check for completion
46  *      @mask: a single-bit field within @reg that indicates completion
47  *      @polarity: the value of the field when the operation is completed
48  *      @attempts: number of check iterations
49  *      @delay: delay in usecs between iterations
50  *      @valp: where to store the value of the register at completion time
51  *
52  *      Wait until an operation is completed by checking a bit in a register
53  *      up to @attempts times.  If @valp is not NULL the value of the register
54  *      at the time it indicated completion is stored there.  Returns 0 if the
55  *      operation completes and -EAGAIN otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58                                int polarity, int attempts, int delay, u32 *valp)
59 {
60         while (1) {
61                 u32 val = t4_read_reg(adapter, reg);
62
63                 if (!!(val & mask) == polarity) {
64                         if (valp)
65                                 *valp = val;
66                         return 0;
67                 }
68                 if (--attempts == 0)
69                         return -EAGAIN;
70                 if (delay)
71                         udelay(delay);
72         }
73 }
74
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76                                   int polarity, int attempts, int delay)
77 {
78         return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79                                    delay, NULL);
80 }
81
82 /**
83  *      t4_set_reg_field - set a register field to a value
84  *      @adapter: the adapter to program
85  *      @addr: the register address
86  *      @mask: specifies the portion of the register to modify
87  *      @val: the new value for the register field
88  *
89  *      Sets a register field specified by the supplied mask to the
90  *      given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93                       u32 val)
94 {
95         u32 v = t4_read_reg(adapter, addr) & ~mask;
96
97         t4_write_reg(adapter, addr, v | val);
98         (void) t4_read_reg(adapter, addr);      /* flush */
99 }
100
101 /**
102  *      t4_read_indirect - read indirectly addressed registers
103  *      @adap: the adapter
104  *      @addr_reg: register holding the indirect address
105  *      @data_reg: register holding the value of the indirect register
106  *      @vals: where the read register values are stored
107  *      @nregs: how many indirect registers to read
108  *      @start_idx: index of first indirect register to read
109  *
110  *      Reads registers that are accessed indirectly through an address/data
111  *      register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114                              unsigned int data_reg, u32 *vals,
115                              unsigned int nregs, unsigned int start_idx)
116 {
117         while (nregs--) {
118                 t4_write_reg(adap, addr_reg, start_idx);
119                 *vals++ = t4_read_reg(adap, data_reg);
120                 start_idx++;
121         }
122 }
123
124 /**
125  *      t4_write_indirect - write indirectly addressed registers
126  *      @adap: the adapter
127  *      @addr_reg: register holding the indirect addresses
128  *      @data_reg: register holding the value for the indirect registers
129  *      @vals: values to write
130  *      @nregs: how many indirect registers to write
131  *      @start_idx: address of first indirect register to write
132  *
133  *      Writes a sequential block of registers that are accessed indirectly
134  *      through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137                        unsigned int data_reg, const u32 *vals,
138                        unsigned int nregs, unsigned int start_idx)
139 {
140         while (nregs--) {
141                 t4_write_reg(adap, addr_reg, start_idx++);
142                 t4_write_reg(adap, data_reg, *vals++);
143         }
144 }
145
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154         u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155
156         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157                 req |= ENABLE_F;
158         else
159                 req |= T6_ENABLE_F;
160
161         if (is_t4(adap->params.chip))
162                 req |= LOCALCFG_F;
163
164         t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165         *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166
167         /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168          * Configuration Space read.  (None of the other fields matter when
169          * ENABLE is 0 so a simple register write is easier than a
170          * read-modify-write via t4_set_reg_field().)
171          */
172         t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185         static const char *const reason[] = {
186                 "Crash",                        /* PCIE_FW_EVAL_CRASH */
187                 "During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188                 "During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189                 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
190                 "Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191                 "Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192                 "Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193                 "Reserved",                     /* reserved */
194         };
195         u32 pcie_fw;
196
197         pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198         if (pcie_fw & PCIE_FW_ERR_F)
199                 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200                         reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 }
202
203 /*
204  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
205  */
206 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
207                          u32 mbox_addr)
208 {
209         for ( ; nflit; nflit--, mbox_addr += 8)
210                 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
211 }
212
213 /*
214  * Handle a FW assertion reported in a mailbox.
215  */
216 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
217 {
218         struct fw_debug_cmd asrt;
219
220         get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
221         dev_alert(adap->pdev_dev,
222                   "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
223                   asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
224                   be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
225 }
226
227 static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
228 {
229         dev_err(adap->pdev_dev,
230                 "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
231                 (unsigned long long)t4_read_reg64(adap, data_reg),
232                 (unsigned long long)t4_read_reg64(adap, data_reg + 8),
233                 (unsigned long long)t4_read_reg64(adap, data_reg + 16),
234                 (unsigned long long)t4_read_reg64(adap, data_reg + 24),
235                 (unsigned long long)t4_read_reg64(adap, data_reg + 32),
236                 (unsigned long long)t4_read_reg64(adap, data_reg + 40),
237                 (unsigned long long)t4_read_reg64(adap, data_reg + 48),
238                 (unsigned long long)t4_read_reg64(adap, data_reg + 56));
239 }
240
241 /**
242  *      t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
243  *      @adap: the adapter
244  *      @mbox: index of the mailbox to use
245  *      @cmd: the command to write
246  *      @size: command length in bytes
247  *      @rpl: where to optionally store the reply
248  *      @sleep_ok: if true we may sleep while awaiting command completion
249  *      @timeout: time to wait for command to finish before timing out
250  *
251  *      Sends the given command to FW through the selected mailbox and waits
252  *      for the FW to execute the command.  If @rpl is not %NULL it is used to
253  *      store the FW's reply to the command.  The command and its optional
254  *      reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
255  *      to respond.  @sleep_ok determines whether we may sleep while awaiting
256  *      the response.  If sleeping is allowed we use progressive backoff
257  *      otherwise we spin.
258  *
259  *      The return value is 0 on success or a negative errno on failure.  A
260  *      failure can happen either because we are not able to execute the
261  *      command or FW executes it but signals an error.  In the latter case
262  *      the return value is the error code indicated by FW (negated).
263  */
264 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
265                             int size, void *rpl, bool sleep_ok, int timeout)
266 {
267         static const int delay[] = {
268                 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
269         };
270
271         u32 v;
272         u64 res;
273         int i, ms, delay_idx;
274         const __be64 *p = cmd;
275         u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
276         u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
277
278         if ((size & 15) || size > MBOX_LEN)
279                 return -EINVAL;
280
281         /*
282          * If the device is off-line, as in EEH, commands will time out.
283          * Fail them early so we don't waste time waiting.
284          */
285         if (adap->pdev->error_state != pci_channel_io_normal)
286                 return -EIO;
287
288         v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
289         for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
290                 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
291
292         if (v != MBOX_OWNER_DRV)
293                 return v ? -EBUSY : -ETIMEDOUT;
294
295         for (i = 0; i < size; i += 8)
296                 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
297
298         t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
299         t4_read_reg(adap, ctl_reg);          /* flush write */
300
301         delay_idx = 0;
302         ms = delay[0];
303
304         for (i = 0; i < timeout; i += ms) {
305                 if (sleep_ok) {
306                         ms = delay[delay_idx];  /* last element may repeat */
307                         if (delay_idx < ARRAY_SIZE(delay) - 1)
308                                 delay_idx++;
309                         msleep(ms);
310                 } else
311                         mdelay(ms);
312
313                 v = t4_read_reg(adap, ctl_reg);
314                 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
315                         if (!(v & MBMSGVALID_F)) {
316                                 t4_write_reg(adap, ctl_reg, 0);
317                                 continue;
318                         }
319
320                         res = t4_read_reg64(adap, data_reg);
321                         if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
322                                 fw_asrt(adap, data_reg);
323                                 res = FW_CMD_RETVAL_V(EIO);
324                         } else if (rpl) {
325                                 get_mbox_rpl(adap, rpl, size / 8, data_reg);
326                         }
327
328                         if (FW_CMD_RETVAL_G((int)res))
329                                 dump_mbox(adap, mbox, data_reg);
330                         t4_write_reg(adap, ctl_reg, 0);
331                         return -FW_CMD_RETVAL_G((int)res);
332                 }
333         }
334
335         dump_mbox(adap, mbox, data_reg);
336         dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
337                 *(const u8 *)cmd, mbox);
338         t4_report_fw_error(adap);
339         return -ETIMEDOUT;
340 }
341
342 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
343                     void *rpl, bool sleep_ok)
344 {
345         return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
346                                        FW_CMD_MAX_TIMEOUT);
347 }
348
349 static int t4_edc_err_read(struct adapter *adap, int idx)
350 {
351         u32 edc_ecc_err_addr_reg;
352         u32 rdata_reg;
353
354         if (is_t4(adap->params.chip)) {
355                 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
356                 return 0;
357         }
358         if (idx != 0 && idx != 1) {
359                 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
360                 return 0;
361         }
362
363         edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
364         rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
365
366         CH_WARN(adap,
367                 "edc%d err addr 0x%x: 0x%x.\n",
368                 idx, edc_ecc_err_addr_reg,
369                 t4_read_reg(adap, edc_ecc_err_addr_reg));
370         CH_WARN(adap,
371                 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
372                 rdata_reg,
373                 (unsigned long long)t4_read_reg64(adap, rdata_reg),
374                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
375                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
376                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
377                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
378                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
379                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
380                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
381                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
382
383         return 0;
384 }
385
386 /**
387  *      t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
388  *      @adap: the adapter
389  *      @win: PCI-E Memory Window to use
390  *      @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
391  *      @addr: address within indicated memory type
392  *      @len: amount of memory to transfer
393  *      @hbuf: host memory buffer
394  *      @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
395  *
396  *      Reads/writes an [almost] arbitrary memory region in the firmware: the
397  *      firmware memory address and host buffer must be aligned on 32-bit
398  *      boudaries; the length may be arbitrary.  The memory is transferred as
399  *      a raw byte sequence from/to the firmware's memory.  If this memory
400  *      contains data structures which contain multi-byte integers, it's the
401  *      caller's responsibility to perform appropriate byte order conversions.
402  */
403 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
404                  u32 len, void *hbuf, int dir)
405 {
406         u32 pos, offset, resid, memoffset;
407         u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
408         u32 *buf;
409
410         /* Argument sanity checks ...
411          */
412         if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
413                 return -EINVAL;
414         buf = (u32 *)hbuf;
415
416         /* It's convenient to be able to handle lengths which aren't a
417          * multiple of 32-bits because we often end up transferring files to
418          * the firmware.  So we'll handle that by normalizing the length here
419          * and then handling any residual transfer at the end.
420          */
421         resid = len & 0x3;
422         len -= resid;
423
424         /* Offset into the region of memory which is being accessed
425          * MEM_EDC0 = 0
426          * MEM_EDC1 = 1
427          * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
428          * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
429          */
430         edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
431         if (mtype != MEM_MC1)
432                 memoffset = (mtype * (edc_size * 1024 * 1024));
433         else {
434                 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
435                                                       MA_EXT_MEMORY0_BAR_A));
436                 memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
437         }
438
439         /* Determine the PCIE_MEM_ACCESS_OFFSET */
440         addr = addr + memoffset;
441
442         /* Each PCI-E Memory Window is programmed with a window size -- or
443          * "aperture" -- which controls the granularity of its mapping onto
444          * adapter memory.  We need to grab that aperture in order to know
445          * how to use the specified window.  The window is also programmed
446          * with the base address of the Memory Window in BAR0's address
447          * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
448          * the address is relative to BAR0.
449          */
450         mem_reg = t4_read_reg(adap,
451                               PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
452                                                   win));
453         mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
454         mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
455         if (is_t4(adap->params.chip))
456                 mem_base -= adap->t4_bar0;
457         win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
458
459         /* Calculate our initial PCI-E Memory Window Position and Offset into
460          * that Window.
461          */
462         pos = addr & ~(mem_aperture-1);
463         offset = addr - pos;
464
465         /* Set up initial PCI-E Memory Window to cover the start of our
466          * transfer.  (Read it back to ensure that changes propagate before we
467          * attempt to use the new value.)
468          */
469         t4_write_reg(adap,
470                      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
471                      pos | win_pf);
472         t4_read_reg(adap,
473                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
474
475         /* Transfer data to/from the adapter as long as there's an integral
476          * number of 32-bit transfers to complete.
477          *
478          * A note on Endianness issues:
479          *
480          * The "register" reads and writes below from/to the PCI-E Memory
481          * Window invoke the standard adapter Big-Endian to PCI-E Link
482          * Little-Endian "swizzel."  As a result, if we have the following
483          * data in adapter memory:
484          *
485          *     Memory:  ... | b0 | b1 | b2 | b3 | ...
486          *     Address:      i+0  i+1  i+2  i+3
487          *
488          * Then a read of the adapter memory via the PCI-E Memory Window
489          * will yield:
490          *
491          *     x = readl(i)
492          *         31                  0
493          *         [ b3 | b2 | b1 | b0 ]
494          *
495          * If this value is stored into local memory on a Little-Endian system
496          * it will show up correctly in local memory as:
497          *
498          *     ( ..., b0, b1, b2, b3, ... )
499          *
500          * But on a Big-Endian system, the store will show up in memory
501          * incorrectly swizzled as:
502          *
503          *     ( ..., b3, b2, b1, b0, ... )
504          *
505          * So we need to account for this in the reads and writes to the
506          * PCI-E Memory Window below by undoing the register read/write
507          * swizzels.
508          */
509         while (len > 0) {
510                 if (dir == T4_MEMORY_READ)
511                         *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
512                                                 mem_base + offset));
513                 else
514                         t4_write_reg(adap, mem_base + offset,
515                                      (__force u32)cpu_to_le32(*buf++));
516                 offset += sizeof(__be32);
517                 len -= sizeof(__be32);
518
519                 /* If we've reached the end of our current window aperture,
520                  * move the PCI-E Memory Window on to the next.  Note that
521                  * doing this here after "len" may be 0 allows us to set up
522                  * the PCI-E Memory Window for a possible final residual
523                  * transfer below ...
524                  */
525                 if (offset == mem_aperture) {
526                         pos += mem_aperture;
527                         offset = 0;
528                         t4_write_reg(adap,
529                                 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
530                                                     win), pos | win_pf);
531                         t4_read_reg(adap,
532                                 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
533                                                     win));
534                 }
535         }
536
537         /* If the original transfer had a length which wasn't a multiple of
538          * 32-bits, now's where we need to finish off the transfer of the
539          * residual amount.  The PCI-E Memory Window has already been moved
540          * above (if necessary) to cover this final transfer.
541          */
542         if (resid) {
543                 union {
544                         u32 word;
545                         char byte[4];
546                 } last;
547                 unsigned char *bp;
548                 int i;
549
550                 if (dir == T4_MEMORY_READ) {
551                         last.word = le32_to_cpu(
552                                         (__force __le32)t4_read_reg(adap,
553                                                 mem_base + offset));
554                         for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
555                                 bp[i] = last.byte[i];
556                 } else {
557                         last.word = *buf;
558                         for (i = resid; i < 4; i++)
559                                 last.byte[i] = 0;
560                         t4_write_reg(adap, mem_base + offset,
561                                      (__force u32)cpu_to_le32(last.word));
562                 }
563         }
564
565         return 0;
566 }
567
568 /* Return the specified PCI-E Configuration Space register from our Physical
569  * Function.  We try first via a Firmware LDST Command since we prefer to let
570  * the firmware own all of these registers, but if that fails we go for it
571  * directly ourselves.
572  */
573 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
574 {
575         u32 val, ldst_addrspace;
576
577         /* If fw_attach != 0, construct and send the Firmware LDST Command to
578          * retrieve the specified PCI-E Configuration Space register.
579          */
580         struct fw_ldst_cmd ldst_cmd;
581         int ret;
582
583         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
584         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
585         ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
586                                                FW_CMD_REQUEST_F |
587                                                FW_CMD_READ_F |
588                                                ldst_addrspace);
589         ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
590         ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
591         ldst_cmd.u.pcie.ctrl_to_fn =
592                 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
593         ldst_cmd.u.pcie.r = reg;
594
595         /* If the LDST Command succeeds, return the result, otherwise
596          * fall through to reading it directly ourselves ...
597          */
598         ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
599                          &ldst_cmd);
600         if (ret == 0)
601                 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
602         else
603                 /* Read the desired Configuration Space register via the PCI-E
604                  * Backdoor mechanism.
605                  */
606                 t4_hw_pci_read_cfg4(adap, reg, &val);
607         return val;
608 }
609
610 /* Get the window based on base passed to it.
611  * Window aperture is currently unhandled, but there is no use case for it
612  * right now
613  */
614 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
615                          u32 memwin_base)
616 {
617         u32 ret;
618
619         if (is_t4(adap->params.chip)) {
620                 u32 bar0;
621
622                 /* Truncation intentional: we only read the bottom 32-bits of
623                  * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
624                  * mechanism to read BAR0 instead of using
625                  * pci_resource_start() because we could be operating from
626                  * within a Virtual Machine which is trapping our accesses to
627                  * our Configuration Space and we need to set up the PCI-E
628                  * Memory Window decoders with the actual addresses which will
629                  * be coming across the PCI-E link.
630                  */
631                 bar0 = t4_read_pcie_cfg4(adap, pci_base);
632                 bar0 &= pci_mask;
633                 adap->t4_bar0 = bar0;
634
635                 ret = bar0 + memwin_base;
636         } else {
637                 /* For T5, only relative offset inside the PCIe BAR is passed */
638                 ret = memwin_base;
639         }
640         return ret;
641 }
642
643 /* Get the default utility window (win0) used by everyone */
644 u32 t4_get_util_window(struct adapter *adap)
645 {
646         return t4_get_window(adap, PCI_BASE_ADDRESS_0,
647                              PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
648 }
649
650 /* Set up memory window for accessing adapter memory ranges.  (Read
651  * back MA register to ensure that changes propagate before we attempt
652  * to use the new values.)
653  */
654 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
655 {
656         t4_write_reg(adap,
657                      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
658                      memwin_base | BIR_V(0) |
659                      WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
660         t4_read_reg(adap,
661                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
662 }
663
664 /**
665  *      t4_get_regs_len - return the size of the chips register set
666  *      @adapter: the adapter
667  *
668  *      Returns the size of the chip's BAR0 register space.
669  */
670 unsigned int t4_get_regs_len(struct adapter *adapter)
671 {
672         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
673
674         switch (chip_version) {
675         case CHELSIO_T4:
676                 return T4_REGMAP_SIZE;
677
678         case CHELSIO_T5:
679         case CHELSIO_T6:
680                 return T5_REGMAP_SIZE;
681         }
682
683         dev_err(adapter->pdev_dev,
684                 "Unsupported chip version %d\n", chip_version);
685         return 0;
686 }
687
688 /**
689  *      t4_get_regs - read chip registers into provided buffer
690  *      @adap: the adapter
691  *      @buf: register buffer
692  *      @buf_size: size (in bytes) of register buffer
693  *
694  *      If the provided register buffer isn't large enough for the chip's
695  *      full register range, the register dump will be truncated to the
696  *      register buffer's size.
697  */
698 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
699 {
700         static const unsigned int t4_reg_ranges[] = {
701                 0x1008, 0x1108,
702                 0x1180, 0x1184,
703                 0x1190, 0x1194,
704                 0x11a0, 0x11a4,
705                 0x11b0, 0x11b4,
706                 0x11fc, 0x123c,
707                 0x1300, 0x173c,
708                 0x1800, 0x18fc,
709                 0x3000, 0x30d8,
710                 0x30e0, 0x30e4,
711                 0x30ec, 0x5910,
712                 0x5920, 0x5924,
713                 0x5960, 0x5960,
714                 0x5968, 0x5968,
715                 0x5970, 0x5970,
716                 0x5978, 0x5978,
717                 0x5980, 0x5980,
718                 0x5988, 0x5988,
719                 0x5990, 0x5990,
720                 0x5998, 0x5998,
721                 0x59a0, 0x59d4,
722                 0x5a00, 0x5ae0,
723                 0x5ae8, 0x5ae8,
724                 0x5af0, 0x5af0,
725                 0x5af8, 0x5af8,
726                 0x6000, 0x6098,
727                 0x6100, 0x6150,
728                 0x6200, 0x6208,
729                 0x6240, 0x6248,
730                 0x6280, 0x62b0,
731                 0x62c0, 0x6338,
732                 0x6370, 0x638c,
733                 0x6400, 0x643c,
734                 0x6500, 0x6524,
735                 0x6a00, 0x6a04,
736                 0x6a14, 0x6a38,
737                 0x6a60, 0x6a70,
738                 0x6a78, 0x6a78,
739                 0x6b00, 0x6b0c,
740                 0x6b1c, 0x6b84,
741                 0x6bf0, 0x6bf8,
742                 0x6c00, 0x6c0c,
743                 0x6c1c, 0x6c84,
744                 0x6cf0, 0x6cf8,
745                 0x6d00, 0x6d0c,
746                 0x6d1c, 0x6d84,
747                 0x6df0, 0x6df8,
748                 0x6e00, 0x6e0c,
749                 0x6e1c, 0x6e84,
750                 0x6ef0, 0x6ef8,
751                 0x6f00, 0x6f0c,
752                 0x6f1c, 0x6f84,
753                 0x6ff0, 0x6ff8,
754                 0x7000, 0x700c,
755                 0x701c, 0x7084,
756                 0x70f0, 0x70f8,
757                 0x7100, 0x710c,
758                 0x711c, 0x7184,
759                 0x71f0, 0x71f8,
760                 0x7200, 0x720c,
761                 0x721c, 0x7284,
762                 0x72f0, 0x72f8,
763                 0x7300, 0x730c,
764                 0x731c, 0x7384,
765                 0x73f0, 0x73f8,
766                 0x7400, 0x7450,
767                 0x7500, 0x7530,
768                 0x7600, 0x760c,
769                 0x7614, 0x761c,
770                 0x7680, 0x76cc,
771                 0x7700, 0x7798,
772                 0x77c0, 0x77fc,
773                 0x7900, 0x79fc,
774                 0x7b00, 0x7b58,
775                 0x7b60, 0x7b84,
776                 0x7b8c, 0x7c38,
777                 0x7d00, 0x7d38,
778                 0x7d40, 0x7d80,
779                 0x7d8c, 0x7ddc,
780                 0x7de4, 0x7e04,
781                 0x7e10, 0x7e1c,
782                 0x7e24, 0x7e38,
783                 0x7e40, 0x7e44,
784                 0x7e4c, 0x7e78,
785                 0x7e80, 0x7ea4,
786                 0x7eac, 0x7edc,
787                 0x7ee8, 0x7efc,
788                 0x8dc0, 0x8e04,
789                 0x8e10, 0x8e1c,
790                 0x8e30, 0x8e78,
791                 0x8ea0, 0x8eb8,
792                 0x8ec0, 0x8f6c,
793                 0x8fc0, 0x9008,
794                 0x9010, 0x9058,
795                 0x9060, 0x9060,
796                 0x9068, 0x9074,
797                 0x90fc, 0x90fc,
798                 0x9400, 0x9408,
799                 0x9410, 0x9458,
800                 0x9600, 0x9600,
801                 0x9608, 0x9638,
802                 0x9640, 0x96bc,
803                 0x9800, 0x9808,
804                 0x9820, 0x983c,
805                 0x9850, 0x9864,
806                 0x9c00, 0x9c6c,
807                 0x9c80, 0x9cec,
808                 0x9d00, 0x9d6c,
809                 0x9d80, 0x9dec,
810                 0x9e00, 0x9e6c,
811                 0x9e80, 0x9eec,
812                 0x9f00, 0x9f6c,
813                 0x9f80, 0x9fec,
814                 0xd004, 0xd004,
815                 0xd010, 0xd03c,
816                 0xdfc0, 0xdfe0,
817                 0xe000, 0xea7c,
818                 0xf000, 0x11190,
819                 0x19040, 0x1906c,
820                 0x19078, 0x19080,
821                 0x1908c, 0x190e4,
822                 0x190f0, 0x190f8,
823                 0x19100, 0x19110,
824                 0x19120, 0x19124,
825                 0x19150, 0x19194,
826                 0x1919c, 0x191b0,
827                 0x191d0, 0x191e8,
828                 0x19238, 0x1924c,
829                 0x193f8, 0x1943c,
830                 0x1944c, 0x19474,
831                 0x19490, 0x194e0,
832                 0x194f0, 0x194f8,
833                 0x19800, 0x19c08,
834                 0x19c10, 0x19c90,
835                 0x19ca0, 0x19ce4,
836                 0x19cf0, 0x19d40,
837                 0x19d50, 0x19d94,
838                 0x19da0, 0x19de8,
839                 0x19df0, 0x19e40,
840                 0x19e50, 0x19e90,
841                 0x19ea0, 0x19f4c,
842                 0x1a000, 0x1a004,
843                 0x1a010, 0x1a06c,
844                 0x1a0b0, 0x1a0e4,
845                 0x1a0ec, 0x1a0f4,
846                 0x1a100, 0x1a108,
847                 0x1a114, 0x1a120,
848                 0x1a128, 0x1a130,
849                 0x1a138, 0x1a138,
850                 0x1a190, 0x1a1c4,
851                 0x1a1fc, 0x1a1fc,
852                 0x1e040, 0x1e04c,
853                 0x1e284, 0x1e28c,
854                 0x1e2c0, 0x1e2c0,
855                 0x1e2e0, 0x1e2e0,
856                 0x1e300, 0x1e384,
857                 0x1e3c0, 0x1e3c8,
858                 0x1e440, 0x1e44c,
859                 0x1e684, 0x1e68c,
860                 0x1e6c0, 0x1e6c0,
861                 0x1e6e0, 0x1e6e0,
862                 0x1e700, 0x1e784,
863                 0x1e7c0, 0x1e7c8,
864                 0x1e840, 0x1e84c,
865                 0x1ea84, 0x1ea8c,
866                 0x1eac0, 0x1eac0,
867                 0x1eae0, 0x1eae0,
868                 0x1eb00, 0x1eb84,
869                 0x1ebc0, 0x1ebc8,
870                 0x1ec40, 0x1ec4c,
871                 0x1ee84, 0x1ee8c,
872                 0x1eec0, 0x1eec0,
873                 0x1eee0, 0x1eee0,
874                 0x1ef00, 0x1ef84,
875                 0x1efc0, 0x1efc8,
876                 0x1f040, 0x1f04c,
877                 0x1f284, 0x1f28c,
878                 0x1f2c0, 0x1f2c0,
879                 0x1f2e0, 0x1f2e0,
880                 0x1f300, 0x1f384,
881                 0x1f3c0, 0x1f3c8,
882                 0x1f440, 0x1f44c,
883                 0x1f684, 0x1f68c,
884                 0x1f6c0, 0x1f6c0,
885                 0x1f6e0, 0x1f6e0,
886                 0x1f700, 0x1f784,
887                 0x1f7c0, 0x1f7c8,
888                 0x1f840, 0x1f84c,
889                 0x1fa84, 0x1fa8c,
890                 0x1fac0, 0x1fac0,
891                 0x1fae0, 0x1fae0,
892                 0x1fb00, 0x1fb84,
893                 0x1fbc0, 0x1fbc8,
894                 0x1fc40, 0x1fc4c,
895                 0x1fe84, 0x1fe8c,
896                 0x1fec0, 0x1fec0,
897                 0x1fee0, 0x1fee0,
898                 0x1ff00, 0x1ff84,
899                 0x1ffc0, 0x1ffc8,
900                 0x20000, 0x2002c,
901                 0x20100, 0x2013c,
902                 0x20190, 0x201a0,
903                 0x201a8, 0x201b8,
904                 0x201c4, 0x201c8,
905                 0x20200, 0x20318,
906                 0x20400, 0x204b4,
907                 0x204c0, 0x20528,
908                 0x20540, 0x20614,
909                 0x21000, 0x21040,
910                 0x2104c, 0x21060,
911                 0x210c0, 0x210ec,
912                 0x21200, 0x21268,
913                 0x21270, 0x21284,
914                 0x212fc, 0x21388,
915                 0x21400, 0x21404,
916                 0x21500, 0x21500,
917                 0x21510, 0x21518,
918                 0x2152c, 0x21530,
919                 0x2153c, 0x2153c,
920                 0x21550, 0x21554,
921                 0x21600, 0x21600,
922                 0x21608, 0x2161c,
923                 0x21624, 0x21628,
924                 0x21630, 0x21634,
925                 0x2163c, 0x2163c,
926                 0x21700, 0x2171c,
927                 0x21780, 0x2178c,
928                 0x21800, 0x21818,
929                 0x21820, 0x21828,
930                 0x21830, 0x21848,
931                 0x21850, 0x21854,
932                 0x21860, 0x21868,
933                 0x21870, 0x21870,
934                 0x21878, 0x21898,
935                 0x218a0, 0x218a8,
936                 0x218b0, 0x218c8,
937                 0x218d0, 0x218d4,
938                 0x218e0, 0x218e8,
939                 0x218f0, 0x218f0,
940                 0x218f8, 0x21a18,
941                 0x21a20, 0x21a28,
942                 0x21a30, 0x21a48,
943                 0x21a50, 0x21a54,
944                 0x21a60, 0x21a68,
945                 0x21a70, 0x21a70,
946                 0x21a78, 0x21a98,
947                 0x21aa0, 0x21aa8,
948                 0x21ab0, 0x21ac8,
949                 0x21ad0, 0x21ad4,
950                 0x21ae0, 0x21ae8,
951                 0x21af0, 0x21af0,
952                 0x21af8, 0x21c18,
953                 0x21c20, 0x21c20,
954                 0x21c28, 0x21c30,
955                 0x21c38, 0x21c38,
956                 0x21c80, 0x21c98,
957                 0x21ca0, 0x21ca8,
958                 0x21cb0, 0x21cc8,
959                 0x21cd0, 0x21cd4,
960                 0x21ce0, 0x21ce8,
961                 0x21cf0, 0x21cf0,
962                 0x21cf8, 0x21d7c,
963                 0x21e00, 0x21e04,
964                 0x22000, 0x2202c,
965                 0x22100, 0x2213c,
966                 0x22190, 0x221a0,
967                 0x221a8, 0x221b8,
968                 0x221c4, 0x221c8,
969                 0x22200, 0x22318,
970                 0x22400, 0x224b4,
971                 0x224c0, 0x22528,
972                 0x22540, 0x22614,
973                 0x23000, 0x23040,
974                 0x2304c, 0x23060,
975                 0x230c0, 0x230ec,
976                 0x23200, 0x23268,
977                 0x23270, 0x23284,
978                 0x232fc, 0x23388,
979                 0x23400, 0x23404,
980                 0x23500, 0x23500,
981                 0x23510, 0x23518,
982                 0x2352c, 0x23530,
983                 0x2353c, 0x2353c,
984                 0x23550, 0x23554,
985                 0x23600, 0x23600,
986                 0x23608, 0x2361c,
987                 0x23624, 0x23628,
988                 0x23630, 0x23634,
989                 0x2363c, 0x2363c,
990                 0x23700, 0x2371c,
991                 0x23780, 0x2378c,
992                 0x23800, 0x23818,
993                 0x23820, 0x23828,
994                 0x23830, 0x23848,
995                 0x23850, 0x23854,
996                 0x23860, 0x23868,
997                 0x23870, 0x23870,
998                 0x23878, 0x23898,
999                 0x238a0, 0x238a8,
1000                 0x238b0, 0x238c8,
1001                 0x238d0, 0x238d4,
1002                 0x238e0, 0x238e8,
1003                 0x238f0, 0x238f0,
1004                 0x238f8, 0x23a18,
1005                 0x23a20, 0x23a28,
1006                 0x23a30, 0x23a48,
1007                 0x23a50, 0x23a54,
1008                 0x23a60, 0x23a68,
1009                 0x23a70, 0x23a70,
1010                 0x23a78, 0x23a98,
1011                 0x23aa0, 0x23aa8,
1012                 0x23ab0, 0x23ac8,
1013                 0x23ad0, 0x23ad4,
1014                 0x23ae0, 0x23ae8,
1015                 0x23af0, 0x23af0,
1016                 0x23af8, 0x23c18,
1017                 0x23c20, 0x23c20,
1018                 0x23c28, 0x23c30,
1019                 0x23c38, 0x23c38,
1020                 0x23c80, 0x23c98,
1021                 0x23ca0, 0x23ca8,
1022                 0x23cb0, 0x23cc8,
1023                 0x23cd0, 0x23cd4,
1024                 0x23ce0, 0x23ce8,
1025                 0x23cf0, 0x23cf0,
1026                 0x23cf8, 0x23d7c,
1027                 0x23e00, 0x23e04,
1028                 0x24000, 0x2402c,
1029                 0x24100, 0x2413c,
1030                 0x24190, 0x241a0,
1031                 0x241a8, 0x241b8,
1032                 0x241c4, 0x241c8,
1033                 0x24200, 0x24318,
1034                 0x24400, 0x244b4,
1035                 0x244c0, 0x24528,
1036                 0x24540, 0x24614,
1037                 0x25000, 0x25040,
1038                 0x2504c, 0x25060,
1039                 0x250c0, 0x250ec,
1040                 0x25200, 0x25268,
1041                 0x25270, 0x25284,
1042                 0x252fc, 0x25388,
1043                 0x25400, 0x25404,
1044                 0x25500, 0x25500,
1045                 0x25510, 0x25518,
1046                 0x2552c, 0x25530,
1047                 0x2553c, 0x2553c,
1048                 0x25550, 0x25554,
1049                 0x25600, 0x25600,
1050                 0x25608, 0x2561c,
1051                 0x25624, 0x25628,
1052                 0x25630, 0x25634,
1053                 0x2563c, 0x2563c,
1054                 0x25700, 0x2571c,
1055                 0x25780, 0x2578c,
1056                 0x25800, 0x25818,
1057                 0x25820, 0x25828,
1058                 0x25830, 0x25848,
1059                 0x25850, 0x25854,
1060                 0x25860, 0x25868,
1061                 0x25870, 0x25870,
1062                 0x25878, 0x25898,
1063                 0x258a0, 0x258a8,
1064                 0x258b0, 0x258c8,
1065                 0x258d0, 0x258d4,
1066                 0x258e0, 0x258e8,
1067                 0x258f0, 0x258f0,
1068                 0x258f8, 0x25a18,
1069                 0x25a20, 0x25a28,
1070                 0x25a30, 0x25a48,
1071                 0x25a50, 0x25a54,
1072                 0x25a60, 0x25a68,
1073                 0x25a70, 0x25a70,
1074                 0x25a78, 0x25a98,
1075                 0x25aa0, 0x25aa8,
1076                 0x25ab0, 0x25ac8,
1077                 0x25ad0, 0x25ad4,
1078                 0x25ae0, 0x25ae8,
1079                 0x25af0, 0x25af0,
1080                 0x25af8, 0x25c18,
1081                 0x25c20, 0x25c20,
1082                 0x25c28, 0x25c30,
1083                 0x25c38, 0x25c38,
1084                 0x25c80, 0x25c98,
1085                 0x25ca0, 0x25ca8,
1086                 0x25cb0, 0x25cc8,
1087                 0x25cd0, 0x25cd4,
1088                 0x25ce0, 0x25ce8,
1089                 0x25cf0, 0x25cf0,
1090                 0x25cf8, 0x25d7c,
1091                 0x25e00, 0x25e04,
1092                 0x26000, 0x2602c,
1093                 0x26100, 0x2613c,
1094                 0x26190, 0x261a0,
1095                 0x261a8, 0x261b8,
1096                 0x261c4, 0x261c8,
1097                 0x26200, 0x26318,
1098                 0x26400, 0x264b4,
1099                 0x264c0, 0x26528,
1100                 0x26540, 0x26614,
1101                 0x27000, 0x27040,
1102                 0x2704c, 0x27060,
1103                 0x270c0, 0x270ec,
1104                 0x27200, 0x27268,
1105                 0x27270, 0x27284,
1106                 0x272fc, 0x27388,
1107                 0x27400, 0x27404,
1108                 0x27500, 0x27500,
1109                 0x27510, 0x27518,
1110                 0x2752c, 0x27530,
1111                 0x2753c, 0x2753c,
1112                 0x27550, 0x27554,
1113                 0x27600, 0x27600,
1114                 0x27608, 0x2761c,
1115                 0x27624, 0x27628,
1116                 0x27630, 0x27634,
1117                 0x2763c, 0x2763c,
1118                 0x27700, 0x2771c,
1119                 0x27780, 0x2778c,
1120                 0x27800, 0x27818,
1121                 0x27820, 0x27828,
1122                 0x27830, 0x27848,
1123                 0x27850, 0x27854,
1124                 0x27860, 0x27868,
1125                 0x27870, 0x27870,
1126                 0x27878, 0x27898,
1127                 0x278a0, 0x278a8,
1128                 0x278b0, 0x278c8,
1129                 0x278d0, 0x278d4,
1130                 0x278e0, 0x278e8,
1131                 0x278f0, 0x278f0,
1132                 0x278f8, 0x27a18,
1133                 0x27a20, 0x27a28,
1134                 0x27a30, 0x27a48,
1135                 0x27a50, 0x27a54,
1136                 0x27a60, 0x27a68,
1137                 0x27a70, 0x27a70,
1138                 0x27a78, 0x27a98,
1139                 0x27aa0, 0x27aa8,
1140                 0x27ab0, 0x27ac8,
1141                 0x27ad0, 0x27ad4,
1142                 0x27ae0, 0x27ae8,
1143                 0x27af0, 0x27af0,
1144                 0x27af8, 0x27c18,
1145                 0x27c20, 0x27c20,
1146                 0x27c28, 0x27c30,
1147                 0x27c38, 0x27c38,
1148                 0x27c80, 0x27c98,
1149                 0x27ca0, 0x27ca8,
1150                 0x27cb0, 0x27cc8,
1151                 0x27cd0, 0x27cd4,
1152                 0x27ce0, 0x27ce8,
1153                 0x27cf0, 0x27cf0,
1154                 0x27cf8, 0x27d7c,
1155                 0x27e00, 0x27e04,
1156         };
1157
1158         static const unsigned int t5_reg_ranges[] = {
1159                 0x1008, 0x10c0,
1160                 0x10cc, 0x10f8,
1161                 0x1100, 0x1100,
1162                 0x110c, 0x1148,
1163                 0x1180, 0x1184,
1164                 0x1190, 0x1194,
1165                 0x11a0, 0x11a4,
1166                 0x11b0, 0x11b4,
1167                 0x11fc, 0x123c,
1168                 0x1280, 0x173c,
1169                 0x1800, 0x18fc,
1170                 0x3000, 0x3028,
1171                 0x3060, 0x30b0,
1172                 0x30b8, 0x30d8,
1173                 0x30e0, 0x30fc,
1174                 0x3140, 0x357c,
1175                 0x35a8, 0x35cc,
1176                 0x35ec, 0x35ec,
1177                 0x3600, 0x5624,
1178                 0x56cc, 0x56ec,
1179                 0x56f4, 0x5720,
1180                 0x5728, 0x575c,
1181                 0x580c, 0x5814,
1182                 0x5890, 0x589c,
1183                 0x58a4, 0x58ac,
1184                 0x58b8, 0x58bc,
1185                 0x5940, 0x59c8,
1186                 0x59d0, 0x59dc,
1187                 0x59fc, 0x5a18,
1188                 0x5a60, 0x5a70,
1189                 0x5a80, 0x5a9c,
1190                 0x5b94, 0x5bfc,
1191                 0x6000, 0x6020,
1192                 0x6028, 0x6040,
1193                 0x6058, 0x609c,
1194                 0x60a8, 0x614c,
1195                 0x7700, 0x7798,
1196                 0x77c0, 0x78fc,
1197                 0x7b00, 0x7b58,
1198                 0x7b60, 0x7b84,
1199                 0x7b8c, 0x7c54,
1200                 0x7d00, 0x7d38,
1201                 0x7d40, 0x7d80,
1202                 0x7d8c, 0x7ddc,
1203                 0x7de4, 0x7e04,
1204                 0x7e10, 0x7e1c,
1205                 0x7e24, 0x7e38,
1206                 0x7e40, 0x7e44,
1207                 0x7e4c, 0x7e78,
1208                 0x7e80, 0x7edc,
1209                 0x7ee8, 0x7efc,
1210                 0x8dc0, 0x8de0,
1211                 0x8df8, 0x8e04,
1212                 0x8e10, 0x8e84,
1213                 0x8ea0, 0x8f84,
1214                 0x8fc0, 0x9058,
1215                 0x9060, 0x9060,
1216                 0x9068, 0x90f8,
1217                 0x9400, 0x9408,
1218                 0x9410, 0x9470,
1219                 0x9600, 0x9600,
1220                 0x9608, 0x9638,
1221                 0x9640, 0x96f4,
1222                 0x9800, 0x9808,
1223                 0x9820, 0x983c,
1224                 0x9850, 0x9864,
1225                 0x9c00, 0x9c6c,
1226                 0x9c80, 0x9cec,
1227                 0x9d00, 0x9d6c,
1228                 0x9d80, 0x9dec,
1229                 0x9e00, 0x9e6c,
1230                 0x9e80, 0x9eec,
1231                 0x9f00, 0x9f6c,
1232                 0x9f80, 0xa020,
1233                 0xd004, 0xd004,
1234                 0xd010, 0xd03c,
1235                 0xdfc0, 0xdfe0,
1236                 0xe000, 0x1106c,
1237                 0x11074, 0x11088,
1238                 0x1109c, 0x1117c,
1239                 0x11190, 0x11204,
1240                 0x19040, 0x1906c,
1241                 0x19078, 0x19080,
1242                 0x1908c, 0x190e8,
1243                 0x190f0, 0x190f8,
1244                 0x19100, 0x19110,
1245                 0x19120, 0x19124,
1246                 0x19150, 0x19194,
1247                 0x1919c, 0x191b0,
1248                 0x191d0, 0x191e8,
1249                 0x19238, 0x19290,
1250                 0x193f8, 0x19428,
1251                 0x19430, 0x19444,
1252                 0x1944c, 0x1946c,
1253                 0x19474, 0x19474,
1254                 0x19490, 0x194cc,
1255                 0x194f0, 0x194f8,
1256                 0x19c00, 0x19c08,
1257                 0x19c10, 0x19c60,
1258                 0x19c94, 0x19ce4,
1259                 0x19cf0, 0x19d40,
1260                 0x19d50, 0x19d94,
1261                 0x19da0, 0x19de8,
1262                 0x19df0, 0x19e10,
1263                 0x19e50, 0x19e90,
1264                 0x19ea0, 0x19f24,
1265                 0x19f34, 0x19f34,
1266                 0x19f40, 0x19f50,
1267                 0x19f90, 0x19fb4,
1268                 0x19fc4, 0x19fe4,
1269                 0x1a000, 0x1a004,
1270                 0x1a010, 0x1a06c,
1271                 0x1a0b0, 0x1a0e4,
1272                 0x1a0ec, 0x1a0f8,
1273                 0x1a100, 0x1a108,
1274                 0x1a114, 0x1a120,
1275                 0x1a128, 0x1a130,
1276                 0x1a138, 0x1a138,
1277                 0x1a190, 0x1a1c4,
1278                 0x1a1fc, 0x1a1fc,
1279                 0x1e008, 0x1e00c,
1280                 0x1e040, 0x1e044,
1281                 0x1e04c, 0x1e04c,
1282                 0x1e284, 0x1e290,
1283                 0x1e2c0, 0x1e2c0,
1284                 0x1e2e0, 0x1e2e0,
1285                 0x1e300, 0x1e384,
1286                 0x1e3c0, 0x1e3c8,
1287                 0x1e408, 0x1e40c,
1288                 0x1e440, 0x1e444,
1289                 0x1e44c, 0x1e44c,
1290                 0x1e684, 0x1e690,
1291                 0x1e6c0, 0x1e6c0,
1292                 0x1e6e0, 0x1e6e0,
1293                 0x1e700, 0x1e784,
1294                 0x1e7c0, 0x1e7c8,
1295                 0x1e808, 0x1e80c,
1296                 0x1e840, 0x1e844,
1297                 0x1e84c, 0x1e84c,
1298                 0x1ea84, 0x1ea90,
1299                 0x1eac0, 0x1eac0,
1300                 0x1eae0, 0x1eae0,
1301                 0x1eb00, 0x1eb84,
1302                 0x1ebc0, 0x1ebc8,
1303                 0x1ec08, 0x1ec0c,
1304                 0x1ec40, 0x1ec44,
1305                 0x1ec4c, 0x1ec4c,
1306                 0x1ee84, 0x1ee90,
1307                 0x1eec0, 0x1eec0,
1308                 0x1eee0, 0x1eee0,
1309                 0x1ef00, 0x1ef84,
1310                 0x1efc0, 0x1efc8,
1311                 0x1f008, 0x1f00c,
1312                 0x1f040, 0x1f044,
1313                 0x1f04c, 0x1f04c,
1314                 0x1f284, 0x1f290,
1315                 0x1f2c0, 0x1f2c0,
1316                 0x1f2e0, 0x1f2e0,
1317                 0x1f300, 0x1f384,
1318                 0x1f3c0, 0x1f3c8,
1319                 0x1f408, 0x1f40c,
1320                 0x1f440, 0x1f444,
1321                 0x1f44c, 0x1f44c,
1322                 0x1f684, 0x1f690,
1323                 0x1f6c0, 0x1f6c0,
1324                 0x1f6e0, 0x1f6e0,
1325                 0x1f700, 0x1f784,
1326                 0x1f7c0, 0x1f7c8,
1327                 0x1f808, 0x1f80c,
1328                 0x1f840, 0x1f844,
1329                 0x1f84c, 0x1f84c,
1330                 0x1fa84, 0x1fa90,
1331                 0x1fac0, 0x1fac0,
1332                 0x1fae0, 0x1fae0,
1333                 0x1fb00, 0x1fb84,
1334                 0x1fbc0, 0x1fbc8,
1335                 0x1fc08, 0x1fc0c,
1336                 0x1fc40, 0x1fc44,
1337                 0x1fc4c, 0x1fc4c,
1338                 0x1fe84, 0x1fe90,
1339                 0x1fec0, 0x1fec0,
1340                 0x1fee0, 0x1fee0,
1341                 0x1ff00, 0x1ff84,
1342                 0x1ffc0, 0x1ffc8,
1343                 0x30000, 0x30030,
1344                 0x30038, 0x30038,
1345                 0x30040, 0x30040,
1346                 0x30100, 0x30144,
1347                 0x30190, 0x301a0,
1348                 0x301a8, 0x301b8,
1349                 0x301c4, 0x301c8,
1350                 0x301d0, 0x301d0,
1351                 0x30200, 0x30318,
1352                 0x30400, 0x304b4,
1353                 0x304c0, 0x3052c,
1354                 0x30540, 0x3061c,
1355                 0x30800, 0x30828,
1356                 0x30834, 0x30834,
1357                 0x308c0, 0x30908,
1358                 0x30910, 0x309ac,
1359                 0x30a00, 0x30a14,
1360                 0x30a1c, 0x30a2c,
1361                 0x30a44, 0x30a50,
1362                 0x30a74, 0x30a74,
1363                 0x30a7c, 0x30afc,
1364                 0x30b08, 0x30c24,
1365                 0x30d00, 0x30d00,
1366                 0x30d08, 0x30d14,
1367                 0x30d1c, 0x30d20,
1368                 0x30d3c, 0x30d3c,
1369                 0x30d48, 0x30d50,
1370                 0x31200, 0x3120c,
1371                 0x31220, 0x31220,
1372                 0x31240, 0x31240,
1373                 0x31600, 0x3160c,
1374                 0x31a00, 0x31a1c,
1375                 0x31e00, 0x31e20,
1376                 0x31e38, 0x31e3c,
1377                 0x31e80, 0x31e80,
1378                 0x31e88, 0x31ea8,
1379                 0x31eb0, 0x31eb4,
1380                 0x31ec8, 0x31ed4,
1381                 0x31fb8, 0x32004,
1382                 0x32200, 0x32200,
1383                 0x32208, 0x32240,
1384                 0x32248, 0x32280,
1385                 0x32288, 0x322c0,
1386                 0x322c8, 0x322fc,
1387                 0x32600, 0x32630,
1388                 0x32a00, 0x32abc,
1389                 0x32b00, 0x32b10,
1390                 0x32b20, 0x32b30,
1391                 0x32b40, 0x32b50,
1392                 0x32b60, 0x32b70,
1393                 0x33000, 0x33028,
1394                 0x33030, 0x33048,
1395                 0x33060, 0x33068,
1396                 0x33070, 0x3309c,
1397                 0x330f0, 0x33128,
1398                 0x33130, 0x33148,
1399                 0x33160, 0x33168,
1400                 0x33170, 0x3319c,
1401                 0x331f0, 0x33238,
1402                 0x33240, 0x33240,
1403                 0x33248, 0x33250,
1404                 0x3325c, 0x33264,
1405                 0x33270, 0x332b8,
1406                 0x332c0, 0x332e4,
1407                 0x332f8, 0x33338,
1408                 0x33340, 0x33340,
1409                 0x33348, 0x33350,
1410                 0x3335c, 0x33364,
1411                 0x33370, 0x333b8,
1412                 0x333c0, 0x333e4,
1413                 0x333f8, 0x33428,
1414                 0x33430, 0x33448,
1415                 0x33460, 0x33468,
1416                 0x33470, 0x3349c,
1417                 0x334f0, 0x33528,
1418                 0x33530, 0x33548,
1419                 0x33560, 0x33568,
1420                 0x33570, 0x3359c,
1421                 0x335f0, 0x33638,
1422                 0x33640, 0x33640,
1423                 0x33648, 0x33650,
1424                 0x3365c, 0x33664,
1425                 0x33670, 0x336b8,
1426                 0x336c0, 0x336e4,
1427                 0x336f8, 0x33738,
1428                 0x33740, 0x33740,
1429                 0x33748, 0x33750,
1430                 0x3375c, 0x33764,
1431                 0x33770, 0x337b8,
1432                 0x337c0, 0x337e4,
1433                 0x337f8, 0x337fc,
1434                 0x33814, 0x33814,
1435                 0x3382c, 0x3382c,
1436                 0x33880, 0x3388c,
1437                 0x338e8, 0x338ec,
1438                 0x33900, 0x33928,
1439                 0x33930, 0x33948,
1440                 0x33960, 0x33968,
1441                 0x33970, 0x3399c,
1442                 0x339f0, 0x33a38,
1443                 0x33a40, 0x33a40,
1444                 0x33a48, 0x33a50,
1445                 0x33a5c, 0x33a64,
1446                 0x33a70, 0x33ab8,
1447                 0x33ac0, 0x33ae4,
1448                 0x33af8, 0x33b10,
1449                 0x33b28, 0x33b28,
1450                 0x33b3c, 0x33b50,
1451                 0x33bf0, 0x33c10,
1452                 0x33c28, 0x33c28,
1453                 0x33c3c, 0x33c50,
1454                 0x33cf0, 0x33cfc,
1455                 0x34000, 0x34030,
1456                 0x34038, 0x34038,
1457                 0x34040, 0x34040,
1458                 0x34100, 0x34144,
1459                 0x34190, 0x341a0,
1460                 0x341a8, 0x341b8,
1461                 0x341c4, 0x341c8,
1462                 0x341d0, 0x341d0,
1463                 0x34200, 0x34318,
1464                 0x34400, 0x344b4,
1465                 0x344c0, 0x3452c,
1466                 0x34540, 0x3461c,
1467                 0x34800, 0x34828,
1468                 0x34834, 0x34834,
1469                 0x348c0, 0x34908,
1470                 0x34910, 0x349ac,
1471                 0x34a00, 0x34a14,
1472                 0x34a1c, 0x34a2c,
1473                 0x34a44, 0x34a50,
1474                 0x34a74, 0x34a74,
1475                 0x34a7c, 0x34afc,
1476                 0x34b08, 0x34c24,
1477                 0x34d00, 0x34d00,
1478                 0x34d08, 0x34d14,
1479                 0x34d1c, 0x34d20,
1480                 0x34d3c, 0x34d3c,
1481                 0x34d48, 0x34d50,
1482                 0x35200, 0x3520c,
1483                 0x35220, 0x35220,
1484                 0x35240, 0x35240,
1485                 0x35600, 0x3560c,
1486                 0x35a00, 0x35a1c,
1487                 0x35e00, 0x35e20,
1488                 0x35e38, 0x35e3c,
1489                 0x35e80, 0x35e80,
1490                 0x35e88, 0x35ea8,
1491                 0x35eb0, 0x35eb4,
1492                 0x35ec8, 0x35ed4,
1493                 0x35fb8, 0x36004,
1494                 0x36200, 0x36200,
1495                 0x36208, 0x36240,
1496                 0x36248, 0x36280,
1497                 0x36288, 0x362c0,
1498                 0x362c8, 0x362fc,
1499                 0x36600, 0x36630,
1500                 0x36a00, 0x36abc,
1501                 0x36b00, 0x36b10,
1502                 0x36b20, 0x36b30,
1503                 0x36b40, 0x36b50,
1504                 0x36b60, 0x36b70,
1505                 0x37000, 0x37028,
1506                 0x37030, 0x37048,
1507                 0x37060, 0x37068,
1508                 0x37070, 0x3709c,
1509                 0x370f0, 0x37128,
1510                 0x37130, 0x37148,
1511                 0x37160, 0x37168,
1512                 0x37170, 0x3719c,
1513                 0x371f0, 0x37238,
1514                 0x37240, 0x37240,
1515                 0x37248, 0x37250,
1516                 0x3725c, 0x37264,
1517                 0x37270, 0x372b8,
1518                 0x372c0, 0x372e4,
1519                 0x372f8, 0x37338,
1520                 0x37340, 0x37340,
1521                 0x37348, 0x37350,
1522                 0x3735c, 0x37364,
1523                 0x37370, 0x373b8,
1524                 0x373c0, 0x373e4,
1525                 0x373f8, 0x37428,
1526                 0x37430, 0x37448,
1527                 0x37460, 0x37468,
1528                 0x37470, 0x3749c,
1529                 0x374f0, 0x37528,
1530                 0x37530, 0x37548,
1531                 0x37560, 0x37568,
1532                 0x37570, 0x3759c,
1533                 0x375f0, 0x37638,
1534                 0x37640, 0x37640,
1535                 0x37648, 0x37650,
1536                 0x3765c, 0x37664,
1537                 0x37670, 0x376b8,
1538                 0x376c0, 0x376e4,
1539                 0x376f8, 0x37738,
1540                 0x37740, 0x37740,
1541                 0x37748, 0x37750,
1542                 0x3775c, 0x37764,
1543                 0x37770, 0x377b8,
1544                 0x377c0, 0x377e4,
1545                 0x377f8, 0x377fc,
1546                 0x37814, 0x37814,
1547                 0x3782c, 0x3782c,
1548                 0x37880, 0x3788c,
1549                 0x378e8, 0x378ec,
1550                 0x37900, 0x37928,
1551                 0x37930, 0x37948,
1552                 0x37960, 0x37968,
1553                 0x37970, 0x3799c,
1554                 0x379f0, 0x37a38,
1555                 0x37a40, 0x37a40,
1556                 0x37a48, 0x37a50,
1557                 0x37a5c, 0x37a64,
1558                 0x37a70, 0x37ab8,
1559                 0x37ac0, 0x37ae4,
1560                 0x37af8, 0x37b10,
1561                 0x37b28, 0x37b28,
1562                 0x37b3c, 0x37b50,
1563                 0x37bf0, 0x37c10,
1564                 0x37c28, 0x37c28,
1565                 0x37c3c, 0x37c50,
1566                 0x37cf0, 0x37cfc,
1567                 0x38000, 0x38030,
1568                 0x38038, 0x38038,
1569                 0x38040, 0x38040,
1570                 0x38100, 0x38144,
1571                 0x38190, 0x381a0,
1572                 0x381a8, 0x381b8,
1573                 0x381c4, 0x381c8,
1574                 0x381d0, 0x381d0,
1575                 0x38200, 0x38318,
1576                 0x38400, 0x384b4,
1577                 0x384c0, 0x3852c,
1578                 0x38540, 0x3861c,
1579                 0x38800, 0x38828,
1580                 0x38834, 0x38834,
1581                 0x388c0, 0x38908,
1582                 0x38910, 0x389ac,
1583                 0x38a00, 0x38a14,
1584                 0x38a1c, 0x38a2c,
1585                 0x38a44, 0x38a50,
1586                 0x38a74, 0x38a74,
1587                 0x38a7c, 0x38afc,
1588                 0x38b08, 0x38c24,
1589                 0x38d00, 0x38d00,
1590                 0x38d08, 0x38d14,
1591                 0x38d1c, 0x38d20,
1592                 0x38d3c, 0x38d3c,
1593                 0x38d48, 0x38d50,
1594                 0x39200, 0x3920c,
1595                 0x39220, 0x39220,
1596                 0x39240, 0x39240,
1597                 0x39600, 0x3960c,
1598                 0x39a00, 0x39a1c,
1599                 0x39e00, 0x39e20,
1600                 0x39e38, 0x39e3c,
1601                 0x39e80, 0x39e80,
1602                 0x39e88, 0x39ea8,
1603                 0x39eb0, 0x39eb4,
1604                 0x39ec8, 0x39ed4,
1605                 0x39fb8, 0x3a004,
1606                 0x3a200, 0x3a200,
1607                 0x3a208, 0x3a240,
1608                 0x3a248, 0x3a280,
1609                 0x3a288, 0x3a2c0,
1610                 0x3a2c8, 0x3a2fc,
1611                 0x3a600, 0x3a630,
1612                 0x3aa00, 0x3aabc,
1613                 0x3ab00, 0x3ab10,
1614                 0x3ab20, 0x3ab30,
1615                 0x3ab40, 0x3ab50,
1616                 0x3ab60, 0x3ab70,
1617                 0x3b000, 0x3b028,
1618                 0x3b030, 0x3b048,
1619                 0x3b060, 0x3b068,
1620                 0x3b070, 0x3b09c,
1621                 0x3b0f0, 0x3b128,
1622                 0x3b130, 0x3b148,
1623                 0x3b160, 0x3b168,
1624                 0x3b170, 0x3b19c,
1625                 0x3b1f0, 0x3b238,
1626                 0x3b240, 0x3b240,
1627                 0x3b248, 0x3b250,
1628                 0x3b25c, 0x3b264,
1629                 0x3b270, 0x3b2b8,
1630                 0x3b2c0, 0x3b2e4,
1631                 0x3b2f8, 0x3b338,
1632                 0x3b340, 0x3b340,
1633                 0x3b348, 0x3b350,
1634                 0x3b35c, 0x3b364,
1635                 0x3b370, 0x3b3b8,
1636                 0x3b3c0, 0x3b3e4,
1637                 0x3b3f8, 0x3b428,
1638                 0x3b430, 0x3b448,
1639                 0x3b460, 0x3b468,
1640                 0x3b470, 0x3b49c,
1641                 0x3b4f0, 0x3b528,
1642                 0x3b530, 0x3b548,
1643                 0x3b560, 0x3b568,
1644                 0x3b570, 0x3b59c,
1645                 0x3b5f0, 0x3b638,
1646                 0x3b640, 0x3b640,
1647                 0x3b648, 0x3b650,
1648                 0x3b65c, 0x3b664,
1649                 0x3b670, 0x3b6b8,
1650                 0x3b6c0, 0x3b6e4,
1651                 0x3b6f8, 0x3b738,
1652                 0x3b740, 0x3b740,
1653                 0x3b748, 0x3b750,
1654                 0x3b75c, 0x3b764,
1655                 0x3b770, 0x3b7b8,
1656                 0x3b7c0, 0x3b7e4,
1657                 0x3b7f8, 0x3b7fc,
1658                 0x3b814, 0x3b814,
1659                 0x3b82c, 0x3b82c,
1660                 0x3b880, 0x3b88c,
1661                 0x3b8e8, 0x3b8ec,
1662                 0x3b900, 0x3b928,
1663                 0x3b930, 0x3b948,
1664                 0x3b960, 0x3b968,
1665                 0x3b970, 0x3b99c,
1666                 0x3b9f0, 0x3ba38,
1667                 0x3ba40, 0x3ba40,
1668                 0x3ba48, 0x3ba50,
1669                 0x3ba5c, 0x3ba64,
1670                 0x3ba70, 0x3bab8,
1671                 0x3bac0, 0x3bae4,
1672                 0x3baf8, 0x3bb10,
1673                 0x3bb28, 0x3bb28,
1674                 0x3bb3c, 0x3bb50,
1675                 0x3bbf0, 0x3bc10,
1676                 0x3bc28, 0x3bc28,
1677                 0x3bc3c, 0x3bc50,
1678                 0x3bcf0, 0x3bcfc,
1679                 0x3c000, 0x3c030,
1680                 0x3c038, 0x3c038,
1681                 0x3c040, 0x3c040,
1682                 0x3c100, 0x3c144,
1683                 0x3c190, 0x3c1a0,
1684                 0x3c1a8, 0x3c1b8,
1685                 0x3c1c4, 0x3c1c8,
1686                 0x3c1d0, 0x3c1d0,
1687                 0x3c200, 0x3c318,
1688                 0x3c400, 0x3c4b4,
1689                 0x3c4c0, 0x3c52c,
1690                 0x3c540, 0x3c61c,
1691                 0x3c800, 0x3c828,
1692                 0x3c834, 0x3c834,
1693                 0x3c8c0, 0x3c908,
1694                 0x3c910, 0x3c9ac,
1695                 0x3ca00, 0x3ca14,
1696                 0x3ca1c, 0x3ca2c,
1697                 0x3ca44, 0x3ca50,
1698                 0x3ca74, 0x3ca74,
1699                 0x3ca7c, 0x3cafc,
1700                 0x3cb08, 0x3cc24,
1701                 0x3cd00, 0x3cd00,
1702                 0x3cd08, 0x3cd14,
1703                 0x3cd1c, 0x3cd20,
1704                 0x3cd3c, 0x3cd3c,
1705                 0x3cd48, 0x3cd50,
1706                 0x3d200, 0x3d20c,
1707                 0x3d220, 0x3d220,
1708                 0x3d240, 0x3d240,
1709                 0x3d600, 0x3d60c,
1710                 0x3da00, 0x3da1c,
1711                 0x3de00, 0x3de20,
1712                 0x3de38, 0x3de3c,
1713                 0x3de80, 0x3de80,
1714                 0x3de88, 0x3dea8,
1715                 0x3deb0, 0x3deb4,
1716                 0x3dec8, 0x3ded4,
1717                 0x3dfb8, 0x3e004,
1718                 0x3e200, 0x3e200,
1719                 0x3e208, 0x3e240,
1720                 0x3e248, 0x3e280,
1721                 0x3e288, 0x3e2c0,
1722                 0x3e2c8, 0x3e2fc,
1723                 0x3e600, 0x3e630,
1724                 0x3ea00, 0x3eabc,
1725                 0x3eb00, 0x3eb10,
1726                 0x3eb20, 0x3eb30,
1727                 0x3eb40, 0x3eb50,
1728                 0x3eb60, 0x3eb70,
1729                 0x3f000, 0x3f028,
1730                 0x3f030, 0x3f048,
1731                 0x3f060, 0x3f068,
1732                 0x3f070, 0x3f09c,
1733                 0x3f0f0, 0x3f128,
1734                 0x3f130, 0x3f148,
1735                 0x3f160, 0x3f168,
1736                 0x3f170, 0x3f19c,
1737                 0x3f1f0, 0x3f238,
1738                 0x3f240, 0x3f240,
1739                 0x3f248, 0x3f250,
1740                 0x3f25c, 0x3f264,
1741                 0x3f270, 0x3f2b8,
1742                 0x3f2c0, 0x3f2e4,
1743                 0x3f2f8, 0x3f338,
1744                 0x3f340, 0x3f340,
1745                 0x3f348, 0x3f350,
1746                 0x3f35c, 0x3f364,
1747                 0x3f370, 0x3f3b8,
1748                 0x3f3c0, 0x3f3e4,
1749                 0x3f3f8, 0x3f428,
1750                 0x3f430, 0x3f448,
1751                 0x3f460, 0x3f468,
1752                 0x3f470, 0x3f49c,
1753                 0x3f4f0, 0x3f528,
1754                 0x3f530, 0x3f548,
1755                 0x3f560, 0x3f568,
1756                 0x3f570, 0x3f59c,
1757                 0x3f5f0, 0x3f638,
1758                 0x3f640, 0x3f640,
1759                 0x3f648, 0x3f650,
1760                 0x3f65c, 0x3f664,
1761                 0x3f670, 0x3f6b8,
1762                 0x3f6c0, 0x3f6e4,
1763                 0x3f6f8, 0x3f738,
1764                 0x3f740, 0x3f740,
1765                 0x3f748, 0x3f750,
1766                 0x3f75c, 0x3f764,
1767                 0x3f770, 0x3f7b8,
1768                 0x3f7c0, 0x3f7e4,
1769                 0x3f7f8, 0x3f7fc,
1770                 0x3f814, 0x3f814,
1771                 0x3f82c, 0x3f82c,
1772                 0x3f880, 0x3f88c,
1773                 0x3f8e8, 0x3f8ec,
1774                 0x3f900, 0x3f928,
1775                 0x3f930, 0x3f948,
1776                 0x3f960, 0x3f968,
1777                 0x3f970, 0x3f99c,
1778                 0x3f9f0, 0x3fa38,
1779                 0x3fa40, 0x3fa40,
1780                 0x3fa48, 0x3fa50,
1781                 0x3fa5c, 0x3fa64,
1782                 0x3fa70, 0x3fab8,
1783                 0x3fac0, 0x3fae4,
1784                 0x3faf8, 0x3fb10,
1785                 0x3fb28, 0x3fb28,
1786                 0x3fb3c, 0x3fb50,
1787                 0x3fbf0, 0x3fc10,
1788                 0x3fc28, 0x3fc28,
1789                 0x3fc3c, 0x3fc50,
1790                 0x3fcf0, 0x3fcfc,
1791                 0x40000, 0x4000c,
1792                 0x40040, 0x40050,
1793                 0x40060, 0x40068,
1794                 0x4007c, 0x4008c,
1795                 0x40094, 0x400b0,
1796                 0x400c0, 0x40144,
1797                 0x40180, 0x4018c,
1798                 0x40200, 0x40254,
1799                 0x40260, 0x40264,
1800                 0x40270, 0x40288,
1801                 0x40290, 0x40298,
1802                 0x402ac, 0x402c8,
1803                 0x402d0, 0x402e0,
1804                 0x402f0, 0x402f0,
1805                 0x40300, 0x4033c,
1806                 0x403f8, 0x403fc,
1807                 0x41304, 0x413c4,
1808                 0x41400, 0x4140c,
1809                 0x41414, 0x4141c,
1810                 0x41480, 0x414d0,
1811                 0x44000, 0x44054,
1812                 0x4405c, 0x44078,
1813                 0x440c0, 0x44174,
1814                 0x44180, 0x441ac,
1815                 0x441b4, 0x441b8,
1816                 0x441c0, 0x44254,
1817                 0x4425c, 0x44278,
1818                 0x442c0, 0x44374,
1819                 0x44380, 0x443ac,
1820                 0x443b4, 0x443b8,
1821                 0x443c0, 0x44454,
1822                 0x4445c, 0x44478,
1823                 0x444c0, 0x44574,
1824                 0x44580, 0x445ac,
1825                 0x445b4, 0x445b8,
1826                 0x445c0, 0x44654,
1827                 0x4465c, 0x44678,
1828                 0x446c0, 0x44774,
1829                 0x44780, 0x447ac,
1830                 0x447b4, 0x447b8,
1831                 0x447c0, 0x44854,
1832                 0x4485c, 0x44878,
1833                 0x448c0, 0x44974,
1834                 0x44980, 0x449ac,
1835                 0x449b4, 0x449b8,
1836                 0x449c0, 0x449fc,
1837                 0x45000, 0x45004,
1838                 0x45010, 0x45030,
1839                 0x45040, 0x45060,
1840                 0x45068, 0x45068,
1841                 0x45080, 0x45084,
1842                 0x450a0, 0x450b0,
1843                 0x45200, 0x45204,
1844                 0x45210, 0x45230,
1845                 0x45240, 0x45260,
1846                 0x45268, 0x45268,
1847                 0x45280, 0x45284,
1848                 0x452a0, 0x452b0,
1849                 0x460c0, 0x460e4,
1850                 0x47000, 0x4703c,
1851                 0x47044, 0x4708c,
1852                 0x47200, 0x47250,
1853                 0x47400, 0x47408,
1854                 0x47414, 0x47420,
1855                 0x47600, 0x47618,
1856                 0x47800, 0x47814,
1857                 0x48000, 0x4800c,
1858                 0x48040, 0x48050,
1859                 0x48060, 0x48068,
1860                 0x4807c, 0x4808c,
1861                 0x48094, 0x480b0,
1862                 0x480c0, 0x48144,
1863                 0x48180, 0x4818c,
1864                 0x48200, 0x48254,
1865                 0x48260, 0x48264,
1866                 0x48270, 0x48288,
1867                 0x48290, 0x48298,
1868                 0x482ac, 0x482c8,
1869                 0x482d0, 0x482e0,
1870                 0x482f0, 0x482f0,
1871                 0x48300, 0x4833c,
1872                 0x483f8, 0x483fc,
1873                 0x49304, 0x493c4,
1874                 0x49400, 0x4940c,
1875                 0x49414, 0x4941c,
1876                 0x49480, 0x494d0,
1877                 0x4c000, 0x4c054,
1878                 0x4c05c, 0x4c078,
1879                 0x4c0c0, 0x4c174,
1880                 0x4c180, 0x4c1ac,
1881                 0x4c1b4, 0x4c1b8,
1882                 0x4c1c0, 0x4c254,
1883                 0x4c25c, 0x4c278,
1884                 0x4c2c0, 0x4c374,
1885                 0x4c380, 0x4c3ac,
1886                 0x4c3b4, 0x4c3b8,
1887                 0x4c3c0, 0x4c454,
1888                 0x4c45c, 0x4c478,
1889                 0x4c4c0, 0x4c574,
1890                 0x4c580, 0x4c5ac,
1891                 0x4c5b4, 0x4c5b8,
1892                 0x4c5c0, 0x4c654,
1893                 0x4c65c, 0x4c678,
1894                 0x4c6c0, 0x4c774,
1895                 0x4c780, 0x4c7ac,
1896                 0x4c7b4, 0x4c7b8,
1897                 0x4c7c0, 0x4c854,
1898                 0x4c85c, 0x4c878,
1899                 0x4c8c0, 0x4c974,
1900                 0x4c980, 0x4c9ac,
1901                 0x4c9b4, 0x4c9b8,
1902                 0x4c9c0, 0x4c9fc,
1903                 0x4d000, 0x4d004,
1904                 0x4d010, 0x4d030,
1905                 0x4d040, 0x4d060,
1906                 0x4d068, 0x4d068,
1907                 0x4d080, 0x4d084,
1908                 0x4d0a0, 0x4d0b0,
1909                 0x4d200, 0x4d204,
1910                 0x4d210, 0x4d230,
1911                 0x4d240, 0x4d260,
1912                 0x4d268, 0x4d268,
1913                 0x4d280, 0x4d284,
1914                 0x4d2a0, 0x4d2b0,
1915                 0x4e0c0, 0x4e0e4,
1916                 0x4f000, 0x4f03c,
1917                 0x4f044, 0x4f08c,
1918                 0x4f200, 0x4f250,
1919                 0x4f400, 0x4f408,
1920                 0x4f414, 0x4f420,
1921                 0x4f600, 0x4f618,
1922                 0x4f800, 0x4f814,
1923                 0x50000, 0x50084,
1924                 0x50090, 0x500cc,
1925                 0x50400, 0x50400,
1926                 0x50800, 0x50884,
1927                 0x50890, 0x508cc,
1928                 0x50c00, 0x50c00,
1929                 0x51000, 0x5101c,
1930                 0x51300, 0x51308,
1931         };
1932
1933         static const unsigned int t6_reg_ranges[] = {
1934                 0x1008, 0x101c,
1935                 0x1024, 0x10a8,
1936                 0x10b4, 0x10f8,
1937                 0x1100, 0x1114,
1938                 0x111c, 0x112c,
1939                 0x1138, 0x113c,
1940                 0x1144, 0x114c,
1941                 0x1180, 0x1184,
1942                 0x1190, 0x1194,
1943                 0x11a0, 0x11a4,
1944                 0x11b0, 0x11b4,
1945                 0x11fc, 0x1254,
1946                 0x1280, 0x133c,
1947                 0x1800, 0x18fc,
1948                 0x3000, 0x302c,
1949                 0x3060, 0x30b0,
1950                 0x30b8, 0x30d8,
1951                 0x30e0, 0x30fc,
1952                 0x3140, 0x357c,
1953                 0x35a8, 0x35cc,
1954                 0x35ec, 0x35ec,
1955                 0x3600, 0x5624,
1956                 0x56cc, 0x56ec,
1957                 0x56f4, 0x5720,
1958                 0x5728, 0x575c,
1959                 0x580c, 0x5814,
1960                 0x5890, 0x589c,
1961                 0x58a4, 0x58ac,
1962                 0x58b8, 0x58bc,
1963                 0x5940, 0x595c,
1964                 0x5980, 0x598c,
1965                 0x59b0, 0x59c8,
1966                 0x59d0, 0x59dc,
1967                 0x59fc, 0x5a18,
1968                 0x5a60, 0x5a6c,
1969                 0x5a80, 0x5a8c,
1970                 0x5a94, 0x5a9c,
1971                 0x5b94, 0x5bfc,
1972                 0x5c10, 0x5e48,
1973                 0x5e50, 0x5e94,
1974                 0x5ea0, 0x5eb0,
1975                 0x5ec0, 0x5ec0,
1976                 0x5ec8, 0x5ecc,
1977                 0x6000, 0x6020,
1978                 0x6028, 0x6040,
1979                 0x6058, 0x609c,
1980                 0x60a8, 0x619c,
1981                 0x7700, 0x7798,
1982                 0x77c0, 0x7880,
1983                 0x78cc, 0x78fc,
1984                 0x7b00, 0x7b58,
1985                 0x7b60, 0x7b84,
1986                 0x7b8c, 0x7c54,
1987                 0x7d00, 0x7d38,
1988                 0x7d40, 0x7d84,
1989                 0x7d8c, 0x7ddc,
1990                 0x7de4, 0x7e04,
1991                 0x7e10, 0x7e1c,
1992                 0x7e24, 0x7e38,
1993                 0x7e40, 0x7e44,
1994                 0x7e4c, 0x7e78,
1995                 0x7e80, 0x7edc,
1996                 0x7ee8, 0x7efc,
1997                 0x8dc0, 0x8de4,
1998                 0x8df8, 0x8e04,
1999                 0x8e10, 0x8e84,
2000                 0x8ea0, 0x8f88,
2001                 0x8fb8, 0x9058,
2002                 0x9060, 0x9060,
2003                 0x9068, 0x90f8,
2004                 0x9100, 0x9124,
2005                 0x9400, 0x9470,
2006                 0x9600, 0x9600,
2007                 0x9608, 0x9638,
2008                 0x9640, 0x9704,
2009                 0x9710, 0x971c,
2010                 0x9800, 0x9808,
2011                 0x9820, 0x983c,
2012                 0x9850, 0x9864,
2013                 0x9c00, 0x9c6c,
2014                 0x9c80, 0x9cec,
2015                 0x9d00, 0x9d6c,
2016                 0x9d80, 0x9dec,
2017                 0x9e00, 0x9e6c,
2018                 0x9e80, 0x9eec,
2019                 0x9f00, 0x9f6c,
2020                 0x9f80, 0xa020,
2021                 0xd004, 0xd03c,
2022                 0xd100, 0xd118,
2023                 0xd200, 0xd214,
2024                 0xd220, 0xd234,
2025                 0xd240, 0xd254,
2026                 0xd260, 0xd274,
2027                 0xd280, 0xd294,
2028                 0xd2a0, 0xd2b4,
2029                 0xd2c0, 0xd2d4,
2030                 0xd2e0, 0xd2f4,
2031                 0xd300, 0xd31c,
2032                 0xdfc0, 0xdfe0,
2033                 0xe000, 0xf008,
2034                 0x11000, 0x11014,
2035                 0x11048, 0x1106c,
2036                 0x11074, 0x11088,
2037                 0x11098, 0x11120,
2038                 0x1112c, 0x1117c,
2039                 0x11190, 0x112e0,
2040                 0x11300, 0x1130c,
2041                 0x12000, 0x1206c,
2042                 0x19040, 0x1906c,
2043                 0x19078, 0x19080,
2044                 0x1908c, 0x190e8,
2045                 0x190f0, 0x190f8,
2046                 0x19100, 0x19110,
2047                 0x19120, 0x19124,
2048                 0x19150, 0x19194,
2049                 0x1919c, 0x191b0,
2050                 0x191d0, 0x191e8,
2051                 0x19238, 0x192b0,
2052                 0x192bc, 0x192bc,
2053                 0x19348, 0x1934c,
2054                 0x193f8, 0x19418,
2055                 0x19420, 0x19428,
2056                 0x19430, 0x19444,
2057                 0x1944c, 0x1946c,
2058                 0x19474, 0x19474,
2059                 0x19490, 0x194cc,
2060                 0x194f0, 0x194f8,
2061                 0x19c00, 0x19c48,
2062                 0x19c50, 0x19c80,
2063                 0x19c94, 0x19c98,
2064                 0x19ca0, 0x19cbc,
2065                 0x19ce4, 0x19ce4,
2066                 0x19cf0, 0x19cf8,
2067                 0x19d00, 0x19d28,
2068                 0x19d50, 0x19d78,
2069                 0x19d94, 0x19d98,
2070                 0x19da0, 0x19dc8,
2071                 0x19df0, 0x19e10,
2072                 0x19e50, 0x19e6c,
2073                 0x19ea0, 0x19ebc,
2074                 0x19ec4, 0x19ef4,
2075                 0x19f04, 0x19f2c,
2076                 0x19f34, 0x19f34,
2077                 0x19f40, 0x19f50,
2078                 0x19f90, 0x19fac,
2079                 0x19fc4, 0x19fc8,
2080                 0x19fd0, 0x19fe4,
2081                 0x1a000, 0x1a004,
2082                 0x1a010, 0x1a06c,
2083                 0x1a0b0, 0x1a0e4,
2084                 0x1a0ec, 0x1a0f8,
2085                 0x1a100, 0x1a108,
2086                 0x1a114, 0x1a120,
2087                 0x1a128, 0x1a130,
2088                 0x1a138, 0x1a138,
2089                 0x1a190, 0x1a1c4,
2090                 0x1a1fc, 0x1a1fc,
2091                 0x1e008, 0x1e00c,
2092                 0x1e040, 0x1e044,
2093                 0x1e04c, 0x1e04c,
2094                 0x1e284, 0x1e290,
2095                 0x1e2c0, 0x1e2c0,
2096                 0x1e2e0, 0x1e2e0,
2097                 0x1e300, 0x1e384,
2098                 0x1e3c0, 0x1e3c8,
2099                 0x1e408, 0x1e40c,
2100                 0x1e440, 0x1e444,
2101                 0x1e44c, 0x1e44c,
2102                 0x1e684, 0x1e690,
2103                 0x1e6c0, 0x1e6c0,
2104                 0x1e6e0, 0x1e6e0,
2105                 0x1e700, 0x1e784,
2106                 0x1e7c0, 0x1e7c8,
2107                 0x1e808, 0x1e80c,
2108                 0x1e840, 0x1e844,
2109                 0x1e84c, 0x1e84c,
2110                 0x1ea84, 0x1ea90,
2111                 0x1eac0, 0x1eac0,
2112                 0x1eae0, 0x1eae0,
2113                 0x1eb00, 0x1eb84,
2114                 0x1ebc0, 0x1ebc8,
2115                 0x1ec08, 0x1ec0c,
2116                 0x1ec40, 0x1ec44,
2117                 0x1ec4c, 0x1ec4c,
2118                 0x1ee84, 0x1ee90,
2119                 0x1eec0, 0x1eec0,
2120                 0x1eee0, 0x1eee0,
2121                 0x1ef00, 0x1ef84,
2122                 0x1efc0, 0x1efc8,
2123                 0x1f008, 0x1f00c,
2124                 0x1f040, 0x1f044,
2125                 0x1f04c, 0x1f04c,
2126                 0x1f284, 0x1f290,
2127                 0x1f2c0, 0x1f2c0,
2128                 0x1f2e0, 0x1f2e0,
2129                 0x1f300, 0x1f384,
2130                 0x1f3c0, 0x1f3c8,
2131                 0x1f408, 0x1f40c,
2132                 0x1f440, 0x1f444,
2133                 0x1f44c, 0x1f44c,
2134                 0x1f684, 0x1f690,
2135                 0x1f6c0, 0x1f6c0,
2136                 0x1f6e0, 0x1f6e0,
2137                 0x1f700, 0x1f784,
2138                 0x1f7c0, 0x1f7c8,
2139                 0x1f808, 0x1f80c,
2140                 0x1f840, 0x1f844,
2141                 0x1f84c, 0x1f84c,
2142                 0x1fa84, 0x1fa90,
2143                 0x1fac0, 0x1fac0,
2144                 0x1fae0, 0x1fae0,
2145                 0x1fb00, 0x1fb84,
2146                 0x1fbc0, 0x1fbc8,
2147                 0x1fc08, 0x1fc0c,
2148                 0x1fc40, 0x1fc44,
2149                 0x1fc4c, 0x1fc4c,
2150                 0x1fe84, 0x1fe90,
2151                 0x1fec0, 0x1fec0,
2152                 0x1fee0, 0x1fee0,
2153                 0x1ff00, 0x1ff84,
2154                 0x1ffc0, 0x1ffc8,
2155                 0x30000, 0x30030,
2156                 0x30038, 0x30038,
2157                 0x30040, 0x30040,
2158                 0x30048, 0x30048,
2159                 0x30050, 0x30050,
2160                 0x3005c, 0x30060,
2161                 0x30068, 0x30068,
2162                 0x30070, 0x30070,
2163                 0x30100, 0x30168,
2164                 0x30190, 0x301a0,
2165                 0x301a8, 0x301b8,
2166                 0x301c4, 0x301c8,
2167                 0x301d0, 0x301d0,
2168                 0x30200, 0x30320,
2169                 0x30400, 0x304b4,
2170                 0x304c0, 0x3052c,
2171                 0x30540, 0x3061c,
2172                 0x30800, 0x308a0,
2173                 0x308c0, 0x30908,
2174                 0x30910, 0x309b8,
2175                 0x30a00, 0x30a04,
2176                 0x30a0c, 0x30a14,
2177                 0x30a1c, 0x30a2c,
2178                 0x30a44, 0x30a50,
2179                 0x30a74, 0x30a74,
2180                 0x30a7c, 0x30afc,
2181                 0x30b08, 0x30c24,
2182                 0x30d00, 0x30d14,
2183                 0x30d1c, 0x30d3c,
2184                 0x30d44, 0x30d4c,
2185                 0x30d54, 0x30d74,
2186                 0x30d7c, 0x30d7c,
2187                 0x30de0, 0x30de0,
2188                 0x30e00, 0x30ed4,
2189                 0x30f00, 0x30fa4,
2190                 0x30fc0, 0x30fc4,
2191                 0x31000, 0x31004,
2192                 0x31080, 0x310fc,
2193                 0x31208, 0x31220,
2194                 0x3123c, 0x31254,
2195                 0x31300, 0x31300,
2196                 0x31308, 0x3131c,
2197                 0x31338, 0x3133c,
2198                 0x31380, 0x31380,
2199                 0x31388, 0x313a8,
2200                 0x313b4, 0x313b4,
2201                 0x31400, 0x31420,
2202                 0x31438, 0x3143c,
2203                 0x31480, 0x31480,
2204                 0x314a8, 0x314a8,
2205                 0x314b0, 0x314b4,
2206                 0x314c8, 0x314d4,
2207                 0x31a40, 0x31a4c,
2208                 0x31af0, 0x31b20,
2209                 0x31b38, 0x31b3c,
2210                 0x31b80, 0x31b80,
2211                 0x31ba8, 0x31ba8,
2212                 0x31bb0, 0x31bb4,
2213                 0x31bc8, 0x31bd4,
2214                 0x32140, 0x3218c,
2215                 0x321f0, 0x321f4,
2216                 0x32200, 0x32200,
2217                 0x32218, 0x32218,
2218                 0x32400, 0x32400,
2219                 0x32408, 0x3241c,
2220                 0x32618, 0x32620,
2221                 0x32664, 0x32664,
2222                 0x326a8, 0x326a8,
2223                 0x326ec, 0x326ec,
2224                 0x32a00, 0x32abc,
2225                 0x32b00, 0x32b38,
2226                 0x32b40, 0x32b58,
2227                 0x32b60, 0x32b78,
2228                 0x32c00, 0x32c00,
2229                 0x32c08, 0x32c3c,
2230                 0x32e00, 0x32e2c,
2231                 0x32f00, 0x32f2c,
2232                 0x33000, 0x3302c,
2233                 0x33034, 0x33050,
2234                 0x33058, 0x33058,
2235                 0x33060, 0x3308c,
2236                 0x3309c, 0x330ac,
2237                 0x330c0, 0x330c0,
2238                 0x330c8, 0x330d0,
2239                 0x330d8, 0x330e0,
2240                 0x330ec, 0x3312c,
2241                 0x33134, 0x33150,
2242                 0x33158, 0x33158,
2243                 0x33160, 0x3318c,
2244                 0x3319c, 0x331ac,
2245                 0x331c0, 0x331c0,
2246                 0x331c8, 0x331d0,
2247                 0x331d8, 0x331e0,
2248                 0x331ec, 0x33290,
2249                 0x33298, 0x332c4,
2250                 0x332e4, 0x33390,
2251                 0x33398, 0x333c4,
2252                 0x333e4, 0x3342c,
2253                 0x33434, 0x33450,
2254                 0x33458, 0x33458,
2255                 0x33460, 0x3348c,
2256                 0x3349c, 0x334ac,
2257                 0x334c0, 0x334c0,
2258                 0x334c8, 0x334d0,
2259                 0x334d8, 0x334e0,
2260                 0x334ec, 0x3352c,
2261                 0x33534, 0x33550,
2262                 0x33558, 0x33558,
2263                 0x33560, 0x3358c,
2264                 0x3359c, 0x335ac,
2265                 0x335c0, 0x335c0,
2266                 0x335c8, 0x335d0,
2267                 0x335d8, 0x335e0,
2268                 0x335ec, 0x33690,
2269                 0x33698, 0x336c4,
2270                 0x336e4, 0x33790,
2271                 0x33798, 0x337c4,
2272                 0x337e4, 0x337fc,
2273                 0x33814, 0x33814,
2274                 0x33854, 0x33868,
2275                 0x33880, 0x3388c,
2276                 0x338c0, 0x338d0,
2277                 0x338e8, 0x338ec,
2278                 0x33900, 0x3392c,
2279                 0x33934, 0x33950,
2280                 0x33958, 0x33958,
2281                 0x33960, 0x3398c,
2282                 0x3399c, 0x339ac,
2283                 0x339c0, 0x339c0,
2284                 0x339c8, 0x339d0,
2285                 0x339d8, 0x339e0,
2286                 0x339ec, 0x33a90,
2287                 0x33a98, 0x33ac4,
2288                 0x33ae4, 0x33b10,
2289                 0x33b24, 0x33b28,
2290                 0x33b38, 0x33b50,
2291                 0x33bf0, 0x33c10,
2292                 0x33c24, 0x33c28,
2293                 0x33c38, 0x33c50,
2294                 0x33cf0, 0x33cfc,
2295                 0x34000, 0x34030,
2296                 0x34038, 0x34038,
2297                 0x34040, 0x34040,
2298                 0x34048, 0x34048,
2299                 0x34050, 0x34050,
2300                 0x3405c, 0x34060,
2301                 0x34068, 0x34068,
2302                 0x34070, 0x34070,
2303                 0x34100, 0x34168,
2304                 0x34190, 0x341a0,
2305                 0x341a8, 0x341b8,
2306                 0x341c4, 0x341c8,
2307                 0x341d0, 0x341d0,
2308                 0x34200, 0x34320,
2309                 0x34400, 0x344b4,
2310                 0x344c0, 0x3452c,
2311                 0x34540, 0x3461c,
2312                 0x34800, 0x348a0,
2313                 0x348c0, 0x34908,
2314                 0x34910, 0x349b8,
2315                 0x34a00, 0x34a04,
2316                 0x34a0c, 0x34a14,
2317                 0x34a1c, 0x34a2c,
2318                 0x34a44, 0x34a50,
2319                 0x34a74, 0x34a74,
2320                 0x34a7c, 0x34afc,
2321                 0x34b08, 0x34c24,
2322                 0x34d00, 0x34d14,
2323                 0x34d1c, 0x34d3c,
2324                 0x34d44, 0x34d4c,
2325                 0x34d54, 0x34d74,
2326                 0x34d7c, 0x34d7c,
2327                 0x34de0, 0x34de0,
2328                 0x34e00, 0x34ed4,
2329                 0x34f00, 0x34fa4,
2330                 0x34fc0, 0x34fc4,
2331                 0x35000, 0x35004,
2332                 0x35080, 0x350fc,
2333                 0x35208, 0x35220,
2334                 0x3523c, 0x35254,
2335                 0x35300, 0x35300,
2336                 0x35308, 0x3531c,
2337                 0x35338, 0x3533c,
2338                 0x35380, 0x35380,
2339                 0x35388, 0x353a8,
2340                 0x353b4, 0x353b4,
2341                 0x35400, 0x35420,
2342                 0x35438, 0x3543c,
2343                 0x35480, 0x35480,
2344                 0x354a8, 0x354a8,
2345                 0x354b0, 0x354b4,
2346                 0x354c8, 0x354d4,
2347                 0x35a40, 0x35a4c,
2348                 0x35af0, 0x35b20,
2349                 0x35b38, 0x35b3c,
2350                 0x35b80, 0x35b80,
2351                 0x35ba8, 0x35ba8,
2352                 0x35bb0, 0x35bb4,
2353                 0x35bc8, 0x35bd4,
2354                 0x36140, 0x3618c,
2355                 0x361f0, 0x361f4,
2356                 0x36200, 0x36200,
2357                 0x36218, 0x36218,
2358                 0x36400, 0x36400,
2359                 0x36408, 0x3641c,
2360                 0x36618, 0x36620,
2361                 0x36664, 0x36664,
2362                 0x366a8, 0x366a8,
2363                 0x366ec, 0x366ec,
2364                 0x36a00, 0x36abc,
2365                 0x36b00, 0x36b38,
2366                 0x36b40, 0x36b58,
2367                 0x36b60, 0x36b78,
2368                 0x36c00, 0x36c00,
2369                 0x36c08, 0x36c3c,
2370                 0x36e00, 0x36e2c,
2371                 0x36f00, 0x36f2c,
2372                 0x37000, 0x3702c,
2373                 0x37034, 0x37050,
2374                 0x37058, 0x37058,
2375                 0x37060, 0x3708c,
2376                 0x3709c, 0x370ac,
2377                 0x370c0, 0x370c0,
2378                 0x370c8, 0x370d0,
2379                 0x370d8, 0x370e0,
2380                 0x370ec, 0x3712c,
2381                 0x37134, 0x37150,
2382                 0x37158, 0x37158,
2383                 0x37160, 0x3718c,
2384                 0x3719c, 0x371ac,
2385                 0x371c0, 0x371c0,
2386                 0x371c8, 0x371d0,
2387                 0x371d8, 0x371e0,
2388                 0x371ec, 0x37290,
2389                 0x37298, 0x372c4,
2390                 0x372e4, 0x37390,
2391                 0x37398, 0x373c4,
2392                 0x373e4, 0x3742c,
2393                 0x37434, 0x37450,
2394                 0x37458, 0x37458,
2395                 0x37460, 0x3748c,
2396                 0x3749c, 0x374ac,
2397                 0x374c0, 0x374c0,
2398                 0x374c8, 0x374d0,
2399                 0x374d8, 0x374e0,
2400                 0x374ec, 0x3752c,
2401                 0x37534, 0x37550,
2402                 0x37558, 0x37558,
2403                 0x37560, 0x3758c,
2404                 0x3759c, 0x375ac,
2405                 0x375c0, 0x375c0,
2406                 0x375c8, 0x375d0,
2407                 0x375d8, 0x375e0,
2408                 0x375ec, 0x37690,
2409                 0x37698, 0x376c4,
2410                 0x376e4, 0x37790,
2411                 0x37798, 0x377c4,
2412                 0x377e4, 0x377fc,
2413                 0x37814, 0x37814,
2414                 0x37854, 0x37868,
2415                 0x37880, 0x3788c,
2416                 0x378c0, 0x378d0,
2417                 0x378e8, 0x378ec,
2418                 0x37900, 0x3792c,
2419                 0x37934, 0x37950,
2420                 0x37958, 0x37958,
2421                 0x37960, 0x3798c,
2422                 0x3799c, 0x379ac,
2423                 0x379c0, 0x379c0,
2424                 0x379c8, 0x379d0,
2425                 0x379d8, 0x379e0,
2426                 0x379ec, 0x37a90,
2427                 0x37a98, 0x37ac4,
2428                 0x37ae4, 0x37b10,
2429                 0x37b24, 0x37b28,
2430                 0x37b38, 0x37b50,
2431                 0x37bf0, 0x37c10,
2432                 0x37c24, 0x37c28,
2433                 0x37c38, 0x37c50,
2434                 0x37cf0, 0x37cfc,
2435                 0x40040, 0x40040,
2436                 0x40080, 0x40084,
2437                 0x40100, 0x40100,
2438                 0x40140, 0x401bc,
2439                 0x40200, 0x40214,
2440                 0x40228, 0x40228,
2441                 0x40240, 0x40258,
2442                 0x40280, 0x40280,
2443                 0x40304, 0x40304,
2444                 0x40330, 0x4033c,
2445                 0x41304, 0x413c8,
2446                 0x413d0, 0x413dc,
2447                 0x413f0, 0x413f0,
2448                 0x41400, 0x4140c,
2449                 0x41414, 0x4141c,
2450                 0x41480, 0x414d0,
2451                 0x44000, 0x4407c,
2452                 0x440c0, 0x441ac,
2453                 0x441b4, 0x4427c,
2454                 0x442c0, 0x443ac,
2455                 0x443b4, 0x4447c,
2456                 0x444c0, 0x445ac,
2457                 0x445b4, 0x4467c,
2458                 0x446c0, 0x447ac,
2459                 0x447b4, 0x4487c,
2460                 0x448c0, 0x449ac,
2461                 0x449b4, 0x44a7c,
2462                 0x44ac0, 0x44bac,
2463                 0x44bb4, 0x44c7c,
2464                 0x44cc0, 0x44dac,
2465                 0x44db4, 0x44e7c,
2466                 0x44ec0, 0x44fac,
2467                 0x44fb4, 0x4507c,
2468                 0x450c0, 0x451ac,
2469                 0x451b4, 0x451fc,
2470                 0x45800, 0x45804,
2471                 0x45810, 0x45830,
2472                 0x45840, 0x45860,
2473                 0x45868, 0x45868,
2474                 0x45880, 0x45884,
2475                 0x458a0, 0x458b0,
2476                 0x45a00, 0x45a04,
2477                 0x45a10, 0x45a30,
2478                 0x45a40, 0x45a60,
2479                 0x45a68, 0x45a68,
2480                 0x45a80, 0x45a84,
2481                 0x45aa0, 0x45ab0,
2482                 0x460c0, 0x460e4,
2483                 0x47000, 0x4703c,
2484                 0x47044, 0x4708c,
2485                 0x47200, 0x47250,
2486                 0x47400, 0x47408,
2487                 0x47414, 0x47420,
2488                 0x47600, 0x47618,
2489                 0x47800, 0x47814,
2490                 0x47820, 0x4782c,
2491                 0x50000, 0x50084,
2492                 0x50090, 0x500cc,
2493                 0x50300, 0x50384,
2494                 0x50400, 0x50400,
2495                 0x50800, 0x50884,
2496                 0x50890, 0x508cc,
2497                 0x50b00, 0x50b84,
2498                 0x50c00, 0x50c00,
2499                 0x51000, 0x51020,
2500                 0x51028, 0x510b0,
2501                 0x51300, 0x51324,
2502         };
2503
2504         u32 *buf_end = (u32 *)((char *)buf + buf_size);
2505         const unsigned int *reg_ranges;
2506         int reg_ranges_size, range;
2507         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2508
2509         /* Select the right set of register ranges to dump depending on the
2510          * adapter chip type.
2511          */
2512         switch (chip_version) {
2513         case CHELSIO_T4:
2514                 reg_ranges = t4_reg_ranges;
2515                 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2516                 break;
2517
2518         case CHELSIO_T5:
2519                 reg_ranges = t5_reg_ranges;
2520                 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2521                 break;
2522
2523         case CHELSIO_T6:
2524                 reg_ranges = t6_reg_ranges;
2525                 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2526                 break;
2527
2528         default:
2529                 dev_err(adap->pdev_dev,
2530                         "Unsupported chip version %d\n", chip_version);
2531                 return;
2532         }
2533
2534         /* Clear the register buffer and insert the appropriate register
2535          * values selected by the above register ranges.
2536          */
2537         memset(buf, 0, buf_size);
2538         for (range = 0; range < reg_ranges_size; range += 2) {
2539                 unsigned int reg = reg_ranges[range];
2540                 unsigned int last_reg = reg_ranges[range + 1];
2541                 u32 *bufp = (u32 *)((char *)buf + reg);
2542
2543                 /* Iterate across the register range filling in the register
2544                  * buffer but don't write past the end of the register buffer.
2545                  */
2546                 while (reg <= last_reg && bufp < buf_end) {
2547                         *bufp++ = t4_read_reg(adap, reg);
2548                         reg += sizeof(u32);
2549                 }
2550         }
2551 }
2552
2553 #define EEPROM_STAT_ADDR   0x7bfc
2554 #define VPD_BASE           0x400
2555 #define VPD_BASE_OLD       0
2556 #define VPD_LEN            1024
2557 #define CHELSIO_VPD_UNIQUE_ID 0x82
2558
2559 /**
2560  *      t4_seeprom_wp - enable/disable EEPROM write protection
2561  *      @adapter: the adapter
2562  *      @enable: whether to enable or disable write protection
2563  *
2564  *      Enables or disables write protection on the serial EEPROM.
2565  */
2566 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2567 {
2568         unsigned int v = enable ? 0xc : 0;
2569         int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2570         return ret < 0 ? ret : 0;
2571 }
2572
2573 /**
2574  *      t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2575  *      @adapter: adapter to read
2576  *      @p: where to store the parameters
2577  *
2578  *      Reads card parameters stored in VPD EEPROM.
2579  */
2580 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2581 {
2582         int i, ret = 0, addr;
2583         int ec, sn, pn, na;
2584         u8 *vpd, csum;
2585         unsigned int vpdr_len, kw_offset, id_len;
2586
2587         vpd = vmalloc(VPD_LEN);
2588         if (!vpd)
2589                 return -ENOMEM;
2590
2591         /* Card information normally starts at VPD_BASE but early cards had
2592          * it at 0.
2593          */
2594         ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2595         if (ret < 0)
2596                 goto out;
2597
2598         /* The VPD shall have a unique identifier specified by the PCI SIG.
2599          * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2600          * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2601          * is expected to automatically put this entry at the
2602          * beginning of the VPD.
2603          */
2604         addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2605
2606         ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2607         if (ret < 0)
2608                 goto out;
2609
2610         if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2611                 dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2612                 ret = -EINVAL;
2613                 goto out;
2614         }
2615
2616         id_len = pci_vpd_lrdt_size(vpd);
2617         if (id_len > ID_LEN)
2618                 id_len = ID_LEN;
2619
2620         i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2621         if (i < 0) {
2622                 dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2623                 ret = -EINVAL;
2624                 goto out;
2625         }
2626
2627         vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2628         kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2629         if (vpdr_len + kw_offset > VPD_LEN) {
2630                 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2631                 ret = -EINVAL;
2632                 goto out;
2633         }
2634
2635 #define FIND_VPD_KW(var, name) do { \
2636         var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2637         if (var < 0) { \
2638                 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2639                 ret = -EINVAL; \
2640                 goto out; \
2641         } \
2642         var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2643 } while (0)
2644
2645         FIND_VPD_KW(i, "RV");
2646         for (csum = 0; i >= 0; i--)
2647                 csum += vpd[i];
2648
2649         if (csum) {
2650                 dev_err(adapter->pdev_dev,
2651                         "corrupted VPD EEPROM, actual csum %u\n", csum);
2652                 ret = -EINVAL;
2653                 goto out;
2654         }
2655
2656         FIND_VPD_KW(ec, "EC");
2657         FIND_VPD_KW(sn, "SN");
2658         FIND_VPD_KW(pn, "PN");
2659         FIND_VPD_KW(na, "NA");
2660 #undef FIND_VPD_KW
2661
2662         memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2663         strim(p->id);
2664         memcpy(p->ec, vpd + ec, EC_LEN);
2665         strim(p->ec);
2666         i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2667         memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2668         strim(p->sn);
2669         i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2670         memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2671         strim(p->pn);
2672         memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2673         strim((char *)p->na);
2674
2675 out:
2676         vfree(vpd);
2677         return ret;
2678 }
2679
2680 /**
2681  *      t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2682  *      @adapter: adapter to read
2683  *      @p: where to store the parameters
2684  *
2685  *      Reads card parameters stored in VPD EEPROM and retrieves the Core
2686  *      Clock.  This can only be called after a connection to the firmware
2687  *      is established.
2688  */
2689 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2690 {
2691         u32 cclk_param, cclk_val;
2692         int ret;
2693
2694         /* Grab the raw VPD parameters.
2695          */
2696         ret = t4_get_raw_vpd_params(adapter, p);
2697         if (ret)
2698                 return ret;
2699
2700         /* Ask firmware for the Core Clock since it knows how to translate the
2701          * Reference Clock ('V2') VPD field into a Core Clock value ...
2702          */
2703         cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2704                       FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2705         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2706                               1, &cclk_param, &cclk_val);
2707
2708         if (ret)
2709                 return ret;
2710         p->cclk = cclk_val;
2711
2712         return 0;
2713 }
2714
2715 /* serial flash and firmware constants */
2716 enum {
2717         SF_ATTEMPTS = 10,             /* max retries for SF operations */
2718
2719         /* flash command opcodes */
2720         SF_PROG_PAGE    = 2,          /* program page */
2721         SF_WR_DISABLE   = 4,          /* disable writes */
2722         SF_RD_STATUS    = 5,          /* read status register */
2723         SF_WR_ENABLE    = 6,          /* enable writes */
2724         SF_RD_DATA_FAST = 0xb,        /* read flash */
2725         SF_RD_ID        = 0x9f,       /* read ID */
2726         SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2727
2728         FW_MAX_SIZE = 16 * SF_SEC_SIZE,
2729 };
2730
2731 /**
2732  *      sf1_read - read data from the serial flash
2733  *      @adapter: the adapter
2734  *      @byte_cnt: number of bytes to read
2735  *      @cont: whether another operation will be chained
2736  *      @lock: whether to lock SF for PL access only
2737  *      @valp: where to store the read data
2738  *
2739  *      Reads up to 4 bytes of data from the serial flash.  The location of
2740  *      the read needs to be specified prior to calling this by issuing the
2741  *      appropriate commands to the serial flash.
2742  */
2743 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2744                     int lock, u32 *valp)
2745 {
2746         int ret;
2747
2748         if (!byte_cnt || byte_cnt > 4)
2749                 return -EINVAL;
2750         if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2751                 return -EBUSY;
2752         t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2753                      SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2754         ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2755         if (!ret)
2756                 *valp = t4_read_reg(adapter, SF_DATA_A);
2757         return ret;
2758 }
2759
2760 /**
2761  *      sf1_write - write data to the serial flash
2762  *      @adapter: the adapter
2763  *      @byte_cnt: number of bytes to write
2764  *      @cont: whether another operation will be chained
2765  *      @lock: whether to lock SF for PL access only
2766  *      @val: value to write
2767  *
2768  *      Writes up to 4 bytes of data to the serial flash.  The location of
2769  *      the write needs to be specified prior to calling this by issuing the
2770  *      appropriate commands to the serial flash.
2771  */
2772 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2773                      int lock, u32 val)
2774 {
2775         if (!byte_cnt || byte_cnt > 4)
2776                 return -EINVAL;
2777         if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2778                 return -EBUSY;
2779         t4_write_reg(adapter, SF_DATA_A, val);
2780         t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2781                      SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2782         return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2783 }
2784
2785 /**
2786  *      flash_wait_op - wait for a flash operation to complete
2787  *      @adapter: the adapter
2788  *      @attempts: max number of polls of the status register
2789  *      @delay: delay between polls in ms
2790  *
2791  *      Wait for a flash operation to complete by polling the status register.
2792  */
2793 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2794 {
2795         int ret;
2796         u32 status;
2797
2798         while (1) {
2799                 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2800                     (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2801                         return ret;
2802                 if (!(status & 1))
2803                         return 0;
2804                 if (--attempts == 0)
2805                         return -EAGAIN;
2806                 if (delay)
2807                         msleep(delay);
2808         }
2809 }
2810
2811 /**
2812  *      t4_read_flash - read words from serial flash
2813  *      @adapter: the adapter
2814  *      @addr: the start address for the read
2815  *      @nwords: how many 32-bit words to read
2816  *      @data: where to store the read data
2817  *      @byte_oriented: whether to store data as bytes or as words
2818  *
2819  *      Read the specified number of 32-bit words from the serial flash.
2820  *      If @byte_oriented is set the read data is stored as a byte array
2821  *      (i.e., big-endian), otherwise as 32-bit words in the platform's
2822  *      natural endianness.
2823  */
2824 int t4_read_flash(struct adapter *adapter, unsigned int addr,
2825                   unsigned int nwords, u32 *data, int byte_oriented)
2826 {
2827         int ret;
2828
2829         if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
2830                 return -EINVAL;
2831
2832         addr = swab32(addr) | SF_RD_DATA_FAST;
2833
2834         if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
2835             (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
2836                 return ret;
2837
2838         for ( ; nwords; nwords--, data++) {
2839                 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
2840                 if (nwords == 1)
2841                         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2842                 if (ret)
2843                         return ret;
2844                 if (byte_oriented)
2845                         *data = (__force __u32)(cpu_to_be32(*data));
2846         }
2847         return 0;
2848 }
2849
2850 /**
2851  *      t4_write_flash - write up to a page of data to the serial flash
2852  *      @adapter: the adapter
2853  *      @addr: the start address to write
2854  *      @n: length of data to write in bytes
2855  *      @data: the data to write
2856  *
2857  *      Writes up to a page of data (256 bytes) to the serial flash starting
2858  *      at the given address.  All the data must be written to the same page.
2859  */
2860 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
2861                           unsigned int n, const u8 *data)
2862 {
2863         int ret;
2864         u32 buf[64];
2865         unsigned int i, c, left, val, offset = addr & 0xff;
2866
2867         if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
2868                 return -EINVAL;
2869
2870         val = swab32(addr) | SF_PROG_PAGE;
2871
2872         if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2873             (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
2874                 goto unlock;
2875
2876         for (left = n; left; left -= c) {
2877                 c = min(left, 4U);
2878                 for (val = 0, i = 0; i < c; ++i)
2879                         val = (val << 8) + *data++;
2880
2881                 ret = sf1_write(adapter, c, c != left, 1, val);
2882                 if (ret)
2883                         goto unlock;
2884         }
2885         ret = flash_wait_op(adapter, 8, 1);
2886         if (ret)
2887                 goto unlock;
2888
2889         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2890
2891         /* Read the page to verify the write succeeded */
2892         ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
2893         if (ret)
2894                 return ret;
2895
2896         if (memcmp(data - n, (u8 *)buf + offset, n)) {
2897                 dev_err(adapter->pdev_dev,
2898                         "failed to correctly write the flash page at %#x\n",
2899                         addr);
2900                 return -EIO;
2901         }
2902         return 0;
2903
2904 unlock:
2905         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2906         return ret;
2907 }
2908
2909 /**
2910  *      t4_get_fw_version - read the firmware version
2911  *      @adapter: the adapter
2912  *      @vers: where to place the version
2913  *
2914  *      Reads the FW version from flash.
2915  */
2916 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
2917 {
2918         return t4_read_flash(adapter, FLASH_FW_START +
2919                              offsetof(struct fw_hdr, fw_ver), 1,
2920                              vers, 0);
2921 }
2922
2923 /**
2924  *      t4_get_tp_version - read the TP microcode version
2925  *      @adapter: the adapter
2926  *      @vers: where to place the version
2927  *
2928  *      Reads the TP microcode version from flash.
2929  */
2930 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
2931 {
2932         return t4_read_flash(adapter, FLASH_FW_START +
2933                              offsetof(struct fw_hdr, tp_microcode_ver),
2934                              1, vers, 0);
2935 }
2936
2937 /**
2938  *      t4_get_exprom_version - return the Expansion ROM version (if any)
2939  *      @adapter: the adapter
2940  *      @vers: where to place the version
2941  *
2942  *      Reads the Expansion ROM header from FLASH and returns the version
2943  *      number (if present) through the @vers return value pointer.  We return
2944  *      this in the Firmware Version Format since it's convenient.  Return
2945  *      0 on success, -ENOENT if no Expansion ROM is present.
2946  */
2947 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
2948 {
2949         struct exprom_header {
2950                 unsigned char hdr_arr[16];      /* must start with 0x55aa */
2951                 unsigned char hdr_ver[4];       /* Expansion ROM version */
2952         } *hdr;
2953         u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
2954                                            sizeof(u32))];
2955         int ret;
2956
2957         ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
2958                             ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
2959                             0);
2960         if (ret)
2961                 return ret;
2962
2963         hdr = (struct exprom_header *)exprom_header_buf;
2964         if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
2965                 return -ENOENT;
2966
2967         *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
2968                  FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
2969                  FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
2970                  FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
2971         return 0;
2972 }
2973
2974 /**
2975  *      t4_check_fw_version - check if the FW is supported with this driver
2976  *      @adap: the adapter
2977  *
2978  *      Checks if an adapter's FW is compatible with the driver.  Returns 0
2979  *      if there's exact match, a negative error if the version could not be
2980  *      read or there's a major version mismatch
2981  */
2982 int t4_check_fw_version(struct adapter *adap)
2983 {
2984         int i, ret, major, minor, micro;
2985         int exp_major, exp_minor, exp_micro;
2986         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2987
2988         ret = t4_get_fw_version(adap, &adap->params.fw_vers);
2989         /* Try multiple times before returning error */
2990         for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
2991                 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
2992
2993         if (ret)
2994                 return ret;
2995
2996         major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
2997         minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
2998         micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
2999
3000         switch (chip_version) {
3001         case CHELSIO_T4:
3002                 exp_major = T4FW_MIN_VERSION_MAJOR;
3003                 exp_minor = T4FW_MIN_VERSION_MINOR;
3004                 exp_micro = T4FW_MIN_VERSION_MICRO;
3005                 break;
3006         case CHELSIO_T5:
3007                 exp_major = T5FW_MIN_VERSION_MAJOR;
3008                 exp_minor = T5FW_MIN_VERSION_MINOR;
3009                 exp_micro = T5FW_MIN_VERSION_MICRO;
3010                 break;
3011         case CHELSIO_T6:
3012                 exp_major = T6FW_MIN_VERSION_MAJOR;
3013                 exp_minor = T6FW_MIN_VERSION_MINOR;
3014                 exp_micro = T6FW_MIN_VERSION_MICRO;
3015                 break;
3016         default:
3017                 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3018                         adap->chip);
3019                 return -EINVAL;
3020         }
3021
3022         if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3023             (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3024                 dev_err(adap->pdev_dev,
3025                         "Card has firmware version %u.%u.%u, minimum "
3026                         "supported firmware is %u.%u.%u.\n", major, minor,
3027                         micro, exp_major, exp_minor, exp_micro);
3028                 return -EFAULT;
3029         }
3030         return 0;
3031 }
3032
3033 /* Is the given firmware API compatible with the one the driver was compiled
3034  * with?
3035  */
3036 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3037 {
3038
3039         /* short circuit if it's the exact same firmware version */
3040         if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3041                 return 1;
3042
3043 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3044         if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3045             SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3046                 return 1;
3047 #undef SAME_INTF
3048
3049         return 0;
3050 }
3051
3052 /* The firmware in the filesystem is usable, but should it be installed?
3053  * This routine explains itself in detail if it indicates the filesystem
3054  * firmware should be installed.
3055  */
3056 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3057                                 int k, int c)
3058 {
3059         const char *reason;
3060
3061         if (!card_fw_usable) {
3062                 reason = "incompatible or unusable";
3063                 goto install;
3064         }
3065
3066         if (k > c) {
3067                 reason = "older than the version supported with this driver";
3068                 goto install;
3069         }
3070
3071         return 0;
3072
3073 install:
3074         dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3075                 "installing firmware %u.%u.%u.%u on card.\n",
3076                 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3077                 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3078                 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3079                 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3080
3081         return 1;
3082 }
3083
3084 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3085                const u8 *fw_data, unsigned int fw_size,
3086                struct fw_hdr *card_fw, enum dev_state state,
3087                int *reset)
3088 {
3089         int ret, card_fw_usable, fs_fw_usable;
3090         const struct fw_hdr *fs_fw;
3091         const struct fw_hdr *drv_fw;
3092
3093         drv_fw = &fw_info->fw_hdr;
3094
3095         /* Read the header of the firmware on the card */
3096         ret = -t4_read_flash(adap, FLASH_FW_START,
3097                             sizeof(*card_fw) / sizeof(uint32_t),
3098                             (uint32_t *)card_fw, 1);
3099         if (ret == 0) {
3100                 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3101         } else {
3102                 dev_err(adap->pdev_dev,
3103                         "Unable to read card's firmware header: %d\n", ret);
3104                 card_fw_usable = 0;
3105         }
3106
3107         if (fw_data != NULL) {
3108                 fs_fw = (const void *)fw_data;
3109                 fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3110         } else {
3111                 fs_fw = NULL;
3112                 fs_fw_usable = 0;
3113         }
3114
3115         if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3116             (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3117                 /* Common case: the firmware on the card is an exact match and
3118                  * the filesystem one is an exact match too, or the filesystem
3119                  * one is absent/incompatible.
3120                  */
3121         } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3122                    should_install_fs_fw(adap, card_fw_usable,
3123                                         be32_to_cpu(fs_fw->fw_ver),
3124                                         be32_to_cpu(card_fw->fw_ver))) {
3125                 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3126                                      fw_size, 0);
3127                 if (ret != 0) {
3128                         dev_err(adap->pdev_dev,
3129                                 "failed to install firmware: %d\n", ret);
3130                         goto bye;
3131                 }
3132
3133                 /* Installed successfully, update the cached header too. */
3134                 *card_fw = *fs_fw;
3135                 card_fw_usable = 1;
3136                 *reset = 0;     /* already reset as part of load_fw */
3137         }
3138
3139         if (!card_fw_usable) {
3140                 uint32_t d, c, k;
3141
3142                 d = be32_to_cpu(drv_fw->fw_ver);
3143                 c = be32_to_cpu(card_fw->fw_ver);
3144                 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3145
3146                 dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3147                         "chip state %d, "
3148                         "driver compiled with %d.%d.%d.%d, "
3149                         "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3150                         state,
3151                         FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3152                         FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3153                         FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3154                         FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3155                         FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3156                         FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3157                 ret = EINVAL;
3158                 goto bye;
3159         }
3160
3161         /* We're using whatever's on the card and it's known to be good. */
3162         adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3163         adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3164
3165 bye:
3166         return ret;
3167 }
3168
3169 /**
3170  *      t4_flash_erase_sectors - erase a range of flash sectors
3171  *      @adapter: the adapter
3172  *      @start: the first sector to erase
3173  *      @end: the last sector to erase
3174  *
3175  *      Erases the sectors in the given inclusive range.
3176  */
3177 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3178 {
3179         int ret = 0;
3180
3181         if (end >= adapter->params.sf_nsec)
3182                 return -EINVAL;
3183
3184         while (start <= end) {
3185                 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3186                     (ret = sf1_write(adapter, 4, 0, 1,
3187                                      SF_ERASE_SECTOR | (start << 8))) != 0 ||
3188                     (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3189                         dev_err(adapter->pdev_dev,
3190                                 "erase of flash sector %d failed, error %d\n",
3191                                 start, ret);
3192                         break;
3193                 }
3194                 start++;
3195         }
3196         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3197         return ret;
3198 }
3199
3200 /**
3201  *      t4_flash_cfg_addr - return the address of the flash configuration file
3202  *      @adapter: the adapter
3203  *
3204  *      Return the address within the flash where the Firmware Configuration
3205  *      File is stored.
3206  */
3207 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3208 {
3209         if (adapter->params.sf_size == 0x100000)
3210                 return FLASH_FPGA_CFG_START;
3211         else
3212                 return FLASH_CFG_START;
3213 }
3214
3215 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3216  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3217  * and emit an error message for mismatched firmware to save our caller the
3218  * effort ...
3219  */
3220 static bool t4_fw_matches_chip(const struct adapter *adap,
3221                                const struct fw_hdr *hdr)
3222 {
3223         /* The expression below will return FALSE for any unsupported adapter
3224          * which will keep us "honest" in the future ...
3225          */
3226         if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3227             (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3228             (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3229                 return true;
3230
3231         dev_err(adap->pdev_dev,
3232                 "FW image (%d) is not suitable for this adapter (%d)\n",
3233                 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3234         return false;
3235 }
3236
3237 /**
3238  *      t4_load_fw - download firmware
3239  *      @adap: the adapter
3240  *      @fw_data: the firmware image to write
3241  *      @size: image size
3242  *
3243  *      Write the supplied firmware image to the card's serial flash.
3244  */
3245 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3246 {
3247         u32 csum;
3248         int ret, addr;
3249         unsigned int i;
3250         u8 first_page[SF_PAGE_SIZE];
3251         const __be32 *p = (const __be32 *)fw_data;
3252         const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3253         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3254         unsigned int fw_img_start = adap->params.sf_fw_start;
3255         unsigned int fw_start_sec = fw_img_start / sf_sec_size;
3256
3257         if (!size) {
3258                 dev_err(adap->pdev_dev, "FW image has no data\n");
3259                 return -EINVAL;
3260         }
3261         if (size & 511) {
3262                 dev_err(adap->pdev_dev,
3263                         "FW image size not multiple of 512 bytes\n");
3264                 return -EINVAL;
3265         }
3266         if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3267                 dev_err(adap->pdev_dev,
3268                         "FW image size differs from size in FW header\n");
3269                 return -EINVAL;
3270         }
3271         if (size > FW_MAX_SIZE) {
3272                 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3273                         FW_MAX_SIZE);
3274                 return -EFBIG;
3275         }
3276         if (!t4_fw_matches_chip(adap, hdr))
3277                 return -EINVAL;
3278
3279         for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3280                 csum += be32_to_cpu(p[i]);
3281
3282         if (csum != 0xffffffff) {
3283                 dev_err(adap->pdev_dev,
3284                         "corrupted firmware image, checksum %#x\n", csum);
3285                 return -EINVAL;
3286         }
3287
3288         i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3289         ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3290         if (ret)
3291                 goto out;
3292
3293         /*
3294          * We write the correct version at the end so the driver can see a bad
3295          * version if the FW write fails.  Start by writing a copy of the
3296          * first page with a bad version.
3297          */
3298         memcpy(first_page, fw_data, SF_PAGE_SIZE);
3299         ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3300         ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
3301         if (ret)
3302                 goto out;
3303
3304         addr = fw_img_start;
3305         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3306                 addr += SF_PAGE_SIZE;
3307                 fw_data += SF_PAGE_SIZE;
3308                 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3309                 if (ret)
3310                         goto out;
3311         }
3312
3313         ret = t4_write_flash(adap,
3314                              fw_img_start + offsetof(struct fw_hdr, fw_ver),
3315                              sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3316 out:
3317         if (ret)
3318                 dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3319                         ret);
3320         else
3321                 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3322         return ret;
3323 }
3324
3325 /**
3326  *      t4_phy_fw_ver - return current PHY firmware version
3327  *      @adap: the adapter
3328  *      @phy_fw_ver: return value buffer for PHY firmware version
3329  *
3330  *      Returns the current version of external PHY firmware on the
3331  *      adapter.
3332  */
3333 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3334 {
3335         u32 param, val;
3336         int ret;
3337
3338         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3339                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3340                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3341                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3342         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3343                               &param, &val);
3344         if (ret < 0)
3345                 return ret;
3346         *phy_fw_ver = val;
3347         return 0;
3348 }
3349
3350 /**
3351  *      t4_load_phy_fw - download port PHY firmware
3352  *      @adap: the adapter
3353  *      @win: the PCI-E Memory Window index to use for t4_memory_rw()
3354  *      @win_lock: the lock to use to guard the memory copy
3355  *      @phy_fw_version: function to check PHY firmware versions
3356  *      @phy_fw_data: the PHY firmware image to write
3357  *      @phy_fw_size: image size
3358  *
3359  *      Transfer the specified PHY firmware to the adapter.  If a non-NULL
3360  *      @phy_fw_version is supplied, then it will be used to determine if
3361  *      it's necessary to perform the transfer by comparing the version
3362  *      of any existing adapter PHY firmware with that of the passed in
3363  *      PHY firmware image.  If @win_lock is non-NULL then it will be used
3364  *      around the call to t4_memory_rw() which transfers the PHY firmware
3365  *      to the adapter.
3366  *
3367  *      A negative error number will be returned if an error occurs.  If
3368  *      version number support is available and there's no need to upgrade
3369  *      the firmware, 0 will be returned.  If firmware is successfully
3370  *      transferred to the adapter, 1 will be retured.
3371  *
3372  *      NOTE: some adapters only have local RAM to store the PHY firmware.  As
3373  *      a result, a RESET of the adapter would cause that RAM to lose its
3374  *      contents.  Thus, loading PHY firmware on such adapters must happen
3375  *      after any FW_RESET_CMDs ...
3376  */
3377 int t4_load_phy_fw(struct adapter *adap,
3378                    int win, spinlock_t *win_lock,
3379                    int (*phy_fw_version)(const u8 *, size_t),
3380                    const u8 *phy_fw_data, size_t phy_fw_size)
3381 {
3382         unsigned long mtype = 0, maddr = 0;
3383         u32 param, val;
3384         int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3385         int ret;
3386
3387         /* If we have version number support, then check to see if the adapter
3388          * already has up-to-date PHY firmware loaded.
3389          */
3390          if (phy_fw_version) {
3391                 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3392                 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3393                 if (ret < 0)
3394                         return ret;
3395
3396                 if (cur_phy_fw_ver >= new_phy_fw_vers) {
3397                         CH_WARN(adap, "PHY Firmware already up-to-date, "
3398                                 "version %#x\n", cur_phy_fw_ver);
3399                         return 0;
3400                 }
3401         }
3402
3403         /* Ask the firmware where it wants us to copy the PHY firmware image.
3404          * The size of the file requires a special version of the READ coommand
3405          * which will pass the file size via the values field in PARAMS_CMD and
3406          * retrieve the return value from firmware and place it in the same
3407          * buffer values
3408          */
3409         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3410                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3411                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3412                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3413         val = phy_fw_size;
3414         ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3415                                  &param, &val, 1);
3416         if (ret < 0)
3417                 return ret;
3418         mtype = val >> 8;
3419         maddr = (val & 0xff) << 16;
3420
3421         /* Copy the supplied PHY Firmware image to the adapter memory location
3422          * allocated by the adapter firmware.
3423          */
3424         if (win_lock)
3425                 spin_lock_bh(win_lock);
3426         ret = t4_memory_rw(adap, win, mtype, maddr,
3427                            phy_fw_size, (__be32 *)phy_fw_data,
3428                            T4_MEMORY_WRITE);
3429         if (win_lock)
3430                 spin_unlock_bh(win_lock);
3431         if (ret)
3432                 return ret;
3433
3434         /* Tell the firmware that the PHY firmware image has been written to
3435          * RAM and it can now start copying it over to the PHYs.  The chip
3436          * firmware will RESET the affected PHYs as part of this operation
3437          * leaving them running the new PHY firmware image.
3438          */
3439         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3440                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3441                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3442                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3443         ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3444                                     &param, &val, 30000);
3445
3446         /* If we have version number support, then check to see that the new
3447          * firmware got loaded properly.
3448          */
3449         if (phy_fw_version) {
3450                 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3451                 if (ret < 0)
3452                         return ret;
3453
3454                 if (cur_phy_fw_ver != new_phy_fw_vers) {
3455                         CH_WARN(adap, "PHY Firmware did not update: "
3456                                 "version on adapter %#x, "
3457                                 "version flashed %#x\n",
3458                                 cur_phy_fw_ver, new_phy_fw_vers);
3459                         return -ENXIO;
3460                 }
3461         }
3462
3463         return 1;
3464 }
3465
3466 /**
3467  *      t4_fwcache - firmware cache operation
3468  *      @adap: the adapter
3469  *      @op  : the operation (flush or flush and invalidate)
3470  */
3471 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3472 {
3473         struct fw_params_cmd c;
3474
3475         memset(&c, 0, sizeof(c));
3476         c.op_to_vfn =
3477                 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3478                             FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3479                             FW_PARAMS_CMD_PFN_V(adap->pf) |
3480                             FW_PARAMS_CMD_VFN_V(0));
3481         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3482         c.param[0].mnem =
3483                 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3484                             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3485         c.param[0].val = (__force __be32)op;
3486
3487         return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3488 }
3489
3490 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3491                         unsigned int *pif_req_wrptr,
3492                         unsigned int *pif_rsp_wrptr)
3493 {
3494         int i, j;
3495         u32 cfg, val, req, rsp;
3496
3497         cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3498         if (cfg & LADBGEN_F)
3499                 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3500
3501         val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3502         req = POLADBGWRPTR_G(val);
3503         rsp = PILADBGWRPTR_G(val);
3504         if (pif_req_wrptr)
3505                 *pif_req_wrptr = req;
3506         if (pif_rsp_wrptr)
3507                 *pif_rsp_wrptr = rsp;
3508
3509         for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3510                 for (j = 0; j < 6; j++) {
3511                         t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3512                                      PILADBGRDPTR_V(rsp));
3513                         *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3514                         *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3515                         req++;
3516                         rsp++;
3517                 }
3518                 req = (req + 2) & POLADBGRDPTR_M;
3519                 rsp = (rsp + 2) & PILADBGRDPTR_M;
3520         }
3521         t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3522 }
3523
3524 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3525 {
3526         u32 cfg;
3527         int i, j, idx;
3528
3529         cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3530         if (cfg & LADBGEN_F)
3531                 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3532
3533         for (i = 0; i < CIM_MALA_SIZE; i++) {
3534                 for (j = 0; j < 5; j++) {
3535                         idx = 8 * i + j;
3536                         t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3537                                      PILADBGRDPTR_V(idx));
3538                         *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3539                         *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3540                 }
3541         }
3542         t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3543 }
3544
3545 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3546 {
3547         unsigned int i, j;
3548
3549         for (i = 0; i < 8; i++) {
3550                 u32 *p = la_buf + i;
3551
3552                 t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3553                 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3554                 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3555                 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3556                         *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3557         }
3558 }
3559
3560 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
3561                      FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
3562                      FW_PORT_CAP_ANEG)
3563
3564 /**
3565  *      t4_link_l1cfg - apply link configuration to MAC/PHY
3566  *      @phy: the PHY to setup
3567  *      @mac: the MAC to setup
3568  *      @lc: the requested link configuration
3569  *
3570  *      Set up a port's MAC and PHY according to a desired link configuration.
3571  *      - If the PHY can auto-negotiate first decide what to advertise, then
3572  *        enable/disable auto-negotiation as desired, and reset.
3573  *      - If the PHY does not auto-negotiate just reset it.
3574  *      - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3575  *        otherwise do it later based on the outcome of auto-negotiation.
3576  */
3577 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3578                   struct link_config *lc)
3579 {
3580         struct fw_port_cmd c;
3581         unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO);
3582
3583         lc->link_ok = 0;
3584         if (lc->requested_fc & PAUSE_RX)
3585                 fc |= FW_PORT_CAP_FC_RX;
3586         if (lc->requested_fc & PAUSE_TX)
3587                 fc |= FW_PORT_CAP_FC_TX;
3588
3589         memset(&c, 0, sizeof(c));
3590         c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3591                                      FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3592                                      FW_PORT_CMD_PORTID_V(port));
3593         c.action_to_len16 =
3594                 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3595                             FW_LEN16(c));
3596
3597         if (!(lc->supported & FW_PORT_CAP_ANEG)) {
3598                 c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
3599                                              fc);
3600                 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3601         } else if (lc->autoneg == AUTONEG_DISABLE) {
3602                 c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
3603                 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3604         } else
3605                 c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
3606
3607         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3608 }
3609
3610 /**
3611  *      t4_restart_aneg - restart autonegotiation
3612  *      @adap: the adapter
3613  *      @mbox: mbox to use for the FW command
3614  *      @port: the port id
3615  *
3616  *      Restarts autonegotiation for the selected port.
3617  */
3618 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3619 {
3620         struct fw_port_cmd c;
3621
3622         memset(&c, 0, sizeof(c));
3623         c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3624                                      FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3625                                      FW_PORT_CMD_PORTID_V(port));
3626         c.action_to_len16 =
3627                 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3628                             FW_LEN16(c));
3629         c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3630         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3631 }
3632
3633 typedef void (*int_handler_t)(struct adapter *adap);
3634
3635 struct intr_info {
3636         unsigned int mask;       /* bits to check in interrupt status */
3637         const char *msg;         /* message to print or NULL */
3638         short stat_idx;          /* stat counter to increment or -1 */
3639         unsigned short fatal;    /* whether the condition reported is fatal */
3640         int_handler_t int_handler; /* platform-specific int handler */
3641 };
3642
3643 /**
3644  *      t4_handle_intr_status - table driven interrupt handler
3645  *      @adapter: the adapter that generated the interrupt
3646  *      @reg: the interrupt status register to process
3647  *      @acts: table of interrupt actions
3648  *
3649  *      A table driven interrupt handler that applies a set of masks to an
3650  *      interrupt status word and performs the corresponding actions if the
3651  *      interrupts described by the mask have occurred.  The actions include
3652  *      optionally emitting a warning or alert message.  The table is terminated
3653  *      by an entry specifying mask 0.  Returns the number of fatal interrupt
3654  *      conditions.
3655  */
3656 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3657                                  const struct intr_info *acts)
3658 {
3659         int fatal = 0;
3660         unsigned int mask = 0;
3661         unsigned int status = t4_read_reg(adapter, reg);
3662
3663         for ( ; acts->mask; ++acts) {
3664                 if (!(status & acts->mask))
3665                         continue;
3666                 if (acts->fatal) {
3667                         fatal++;
3668                         dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3669                                   status & acts->mask);
3670                 } else if (acts->msg && printk_ratelimit())
3671                         dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3672                                  status & acts->mask);
3673                 if (acts->int_handler)
3674                         acts->int_handler(adapter);
3675                 mask |= acts->mask;
3676         }
3677         status &= mask;
3678         if (status)                           /* clear processed interrupts */
3679                 t4_write_reg(adapter, reg, status);
3680         return fatal;
3681 }
3682
3683 /*
3684  * Interrupt handler for the PCIE module.
3685  */
3686 static void pcie_intr_handler(struct adapter *adapter)
3687 {
3688         static const struct intr_info sysbus_intr_info[] = {
3689                 { RNPP_F, "RXNP array parity error", -1, 1 },
3690                 { RPCP_F, "RXPC array parity error", -1, 1 },
3691                 { RCIP_F, "RXCIF array parity error", -1, 1 },
3692                 { RCCP_F, "Rx completions control array parity error", -1, 1 },
3693                 { RFTP_F, "RXFT array parity error", -1, 1 },
3694                 { 0 }
3695         };
3696         static const struct intr_info pcie_port_intr_info[] = {
3697                 { TPCP_F, "TXPC array parity error", -1, 1 },
3698                 { TNPP_F, "TXNP array parity error", -1, 1 },
3699                 { TFTP_F, "TXFT array parity error", -1, 1 },
3700                 { TCAP_F, "TXCA array parity error", -1, 1 },
3701                 { TCIP_F, "TXCIF array parity error", -1, 1 },
3702                 { RCAP_F, "RXCA array parity error", -1, 1 },
3703                 { OTDD_F, "outbound request TLP discarded", -1, 1 },
3704                 { RDPE_F, "Rx data parity error", -1, 1 },
3705                 { TDUE_F, "Tx uncorrectable data error", -1, 1 },
3706                 { 0 }
3707         };
3708         static const struct intr_info pcie_intr_info[] = {
3709                 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
3710                 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
3711                 { MSIDATAPERR_F, "MSI data parity error", -1, 1 },
3712                 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3713                 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3714                 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3715                 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3716                 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
3717                 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
3718                 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3719                 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
3720                 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3721                 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3722                 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
3723                 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3724                 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3725                 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
3726                 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3727                 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3728                 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3729                 { FIDPERR_F, "PCI FID parity error", -1, 1 },
3730                 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
3731                 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
3732                 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3733                 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
3734                 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
3735                 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
3736                 { PCIESINT_F, "PCI core secondary fault", -1, 1 },
3737                 { PCIEPINT_F, "PCI core primary fault", -1, 1 },
3738                 { UNXSPLCPLERR_F, "PCI unexpected split completion error",
3739                   -1, 0 },
3740                 { 0 }
3741         };
3742
3743         static struct intr_info t5_pcie_intr_info[] = {
3744                 { MSTGRPPERR_F, "Master Response Read Queue parity error",
3745                   -1, 1 },
3746                 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
3747                 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
3748                 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3749                 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3750                 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3751                 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3752                 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
3753                   -1, 1 },
3754                 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
3755                   -1, 1 },
3756                 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3757                 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
3758                 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3759                 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3760                 { DREQWRPERR_F, "PCI DMA channel write request parity error",
3761                   -1, 1 },
3762                 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3763                 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3764                 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
3765                 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3766                 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3767                 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3768                 { FIDPERR_F, "PCI FID parity error", -1, 1 },
3769                 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
3770                 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
3771                 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3772                 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
3773                   -1, 1 },
3774                 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
3775                   -1, 1 },
3776                 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
3777                 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
3778                 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3779                 { READRSPERR_F, "Outbound read error", -1, 0 },
3780                 { 0 }
3781         };
3782
3783         int fat;
3784
3785         if (is_t4(adapter->params.chip))
3786                 fat = t4_handle_intr_status(adapter,
3787                                 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
3788                                 sysbus_intr_info) +
3789                         t4_handle_intr_status(adapter,
3790                                         PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
3791                                         pcie_port_intr_info) +
3792                         t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
3793                                               pcie_intr_info);
3794         else
3795                 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
3796                                             t5_pcie_intr_info);
3797
3798         if (fat)
3799                 t4_fatal_err(adapter);
3800 }
3801
3802 /*
3803  * TP interrupt handler.
3804  */
3805 static void tp_intr_handler(struct adapter *adapter)
3806 {
3807         static const struct intr_info tp_intr_info[] = {
3808                 { 0x3fffffff, "TP parity error", -1, 1 },
3809                 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
3810                 { 0 }
3811         };
3812
3813         if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
3814                 t4_fatal_err(adapter);
3815 }
3816
3817 /*
3818  * SGE interrupt handler.
3819  */
3820 static void sge_intr_handler(struct adapter *adapter)
3821 {
3822         u64 v;
3823         u32 err;
3824
3825         static const struct intr_info sge_intr_info[] = {
3826                 { ERR_CPL_EXCEED_IQE_SIZE_F,
3827                   "SGE received CPL exceeding IQE size", -1, 1 },
3828                 { ERR_INVALID_CIDX_INC_F,
3829                   "SGE GTS CIDX increment too large", -1, 0 },
3830                 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
3831                 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
3832                 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
3833                   "SGE IQID > 1023 received CPL for FL", -1, 0 },
3834                 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
3835                   0 },
3836                 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
3837                   0 },
3838                 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
3839                   0 },
3840                 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
3841                   0 },
3842                 { ERR_ING_CTXT_PRIO_F,
3843                   "SGE too many priority ingress contexts", -1, 0 },
3844                 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
3845                 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
3846                 { 0 }
3847         };
3848
3849         static struct intr_info t4t5_sge_intr_info[] = {
3850                 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
3851                 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
3852                 { ERR_EGR_CTXT_PRIO_F,
3853                   "SGE too many priority egress contexts", -1, 0 },
3854                 { 0 }
3855         };
3856
3857         v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
3858                 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
3859         if (v) {
3860                 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
3861                                 (unsigned long long)v);
3862                 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
3863                 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
3864         }
3865
3866         v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
3867         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
3868                 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
3869                                            t4t5_sge_intr_info);
3870
3871         err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
3872         if (err & ERROR_QID_VALID_F) {
3873                 dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
3874                         ERROR_QID_G(err));
3875                 if (err & UNCAPTURED_ERROR_F)
3876                         dev_err(adapter->pdev_dev,
3877                                 "SGE UNCAPTURED_ERROR set (clearing)\n");
3878                 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
3879                              UNCAPTURED_ERROR_F);
3880         }
3881
3882         if (v != 0)
3883                 t4_fatal_err(adapter);
3884 }
3885
3886 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
3887                       OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
3888 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
3889                       IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
3890
3891 /*
3892  * CIM interrupt handler.
3893  */
3894 static void cim_intr_handler(struct adapter *adapter)
3895 {
3896         static const struct intr_info cim_intr_info[] = {
3897                 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
3898                 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
3899                 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
3900                 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
3901                 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
3902                 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
3903                 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
3904                 { 0 }
3905         };
3906         static const struct intr_info cim_upintr_info[] = {
3907                 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
3908                 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
3909                 { ILLWRINT_F, "CIM illegal write", -1, 1 },
3910                 { ILLRDINT_F, "CIM illegal read", -1, 1 },
3911                 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
3912                 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
3913                 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
3914                 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
3915                 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
3916                 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
3917                 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
3918                 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
3919                 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
3920                 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
3921                 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
3922                 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
3923                 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
3924                 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
3925                 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
3926                 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
3927                 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
3928                 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
3929                 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
3930                 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
3931                 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
3932                 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
3933                 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
3934                 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
3935                 { 0 }
3936         };
3937
3938         int fat;
3939
3940         if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F)
3941                 t4_report_fw_error(adapter);
3942
3943         fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
3944                                     cim_intr_info) +
3945               t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
3946                                     cim_upintr_info);
3947         if (fat)
3948                 t4_fatal_err(adapter);
3949 }
3950
3951 /*
3952  * ULP RX interrupt handler.
3953  */
3954 static void ulprx_intr_handler(struct adapter *adapter)
3955 {
3956         static const struct intr_info ulprx_intr_info[] = {
3957                 { 0x1800000, "ULPRX context error", -1, 1 },
3958                 { 0x7fffff, "ULPRX parity error", -1, 1 },
3959                 { 0 }
3960         };
3961
3962         if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
3963                 t4_fatal_err(adapter);
3964 }
3965
3966 /*
3967  * ULP TX interrupt handler.
3968  */
3969 static void ulptx_intr_handler(struct adapter *adapter)
3970 {
3971         static const struct intr_info ulptx_intr_info[] = {
3972                 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
3973                   0 },
3974                 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
3975                   0 },
3976                 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
3977                   0 },
3978                 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
3979                   0 },
3980                 { 0xfffffff, "ULPTX parity error", -1, 1 },
3981                 { 0 }
3982         };
3983
3984         if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
3985                 t4_fatal_err(adapter);
3986 }
3987
3988 /*
3989  * PM TX interrupt handler.
3990  */
3991 static void pmtx_intr_handler(struct adapter *adapter)
3992 {
3993         static const struct intr_info pmtx_intr_info[] = {
3994                 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
3995                 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
3996                 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
3997                 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
3998                 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
3999                 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4000                 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4001                   -1, 1 },
4002                 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4003                 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4004                 { 0 }
4005         };
4006
4007         if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4008                 t4_fatal_err(adapter);
4009 }
4010
4011 /*
4012  * PM RX interrupt handler.
4013  */
4014 static void pmrx_intr_handler(struct adapter *adapter)
4015 {
4016         static const struct intr_info pmrx_intr_info[] = {
4017                 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4018                 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4019                 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4020                 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4021                   -1, 1 },
4022                 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4023                 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4024                 { 0 }
4025         };
4026
4027         if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4028                 t4_fatal_err(adapter);
4029 }
4030
4031 /*
4032  * CPL switch interrupt handler.
4033  */
4034 static void cplsw_intr_handler(struct adapter *adapter)
4035 {
4036         static const struct intr_info cplsw_intr_info[] = {
4037                 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4038                 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4039                 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4040                 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4041                 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4042                 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4043                 { 0 }
4044         };
4045
4046         if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4047                 t4_fatal_err(adapter);
4048 }
4049
4050 /*
4051  * LE interrupt handler.
4052  */
4053 static void le_intr_handler(struct adapter *adap)
4054 {
4055         enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4056         static const struct intr_info le_intr_info[] = {
4057                 { LIPMISS_F, "LE LIP miss", -1, 0 },
4058                 { LIP0_F, "LE 0 LIP error", -1, 0 },
4059                 { PARITYERR_F, "LE parity error", -1, 1 },
4060                 { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4061                 { REQQPARERR_F, "LE request queue parity error", -1, 1 },
4062                 { 0 }
4063         };
4064
4065         static struct intr_info t6_le_intr_info[] = {
4066                 { T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4067                 { T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4068                 { TCAMINTPERR_F, "LE parity error", -1, 1 },
4069                 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4070                 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4071                 { 0 }
4072         };
4073
4074         if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4075                                   (chip <= CHELSIO_T5) ?
4076                                   le_intr_info : t6_le_intr_info))
4077                 t4_fatal_err(adap);
4078 }
4079
4080 /*
4081  * MPS interrupt handler.
4082  */
4083 static void mps_intr_handler(struct adapter *adapter)
4084 {
4085         static const struct intr_info mps_rx_intr_info[] = {
4086                 { 0xffffff, "MPS Rx parity error", -1, 1 },
4087                 { 0 }
4088         };
4089         static const struct intr_info mps_tx_intr_info[] = {
4090                 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4091                 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4092                 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4093                   -1, 1 },
4094                 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4095                   -1, 1 },
4096                 { BUBBLE_F, "MPS Tx underflow", -1, 1 },
4097                 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4098                 { FRMERR_F, "MPS Tx framing error", -1, 1 },
4099                 { 0 }
4100         };
4101         static const struct intr_info mps_trc_intr_info[] = {
4102                 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4103                 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4104                   -1, 1 },
4105                 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4106                 { 0 }
4107         };
4108         static const struct intr_info mps_stat_sram_intr_info[] = {
4109                 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4110                 { 0 }
4111         };
4112         static const struct intr_info mps_stat_tx_intr_info[] = {
4113                 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4114                 { 0 }
4115         };
4116         static const struct intr_info mps_stat_rx_intr_info[] = {
4117                 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4118                 { 0 }
4119         };
4120         static const struct intr_info mps_cls_intr_info[] = {
4121                 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4122                 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4123                 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4124                 { 0 }
4125         };
4126
4127         int fat;
4128
4129         fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4130                                     mps_rx_intr_info) +
4131               t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4132                                     mps_tx_intr_info) +
4133               t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4134                                     mps_trc_intr_info) +
4135               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4136                                     mps_stat_sram_intr_info) +
4137               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4138                                     mps_stat_tx_intr_info) +
4139               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4140                                     mps_stat_rx_intr_info) +
4141               t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4142                                     mps_cls_intr_info);
4143
4144         t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4145         t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4146         if (fat)
4147                 t4_fatal_err(adapter);
4148 }
4149
4150 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4151                       ECC_UE_INT_CAUSE_F)
4152
4153 /*
4154  * EDC/MC interrupt handler.
4155  */
4156 static void mem_intr_handler(struct adapter *adapter, int idx)
4157 {
4158         static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4159
4160         unsigned int addr, cnt_addr, v;
4161
4162         if (idx <= MEM_EDC1) {
4163                 addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4164                 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4165         } else if (idx == MEM_MC) {
4166                 if (is_t4(adapter->params.chip)) {
4167                         addr = MC_INT_CAUSE_A;
4168                         cnt_addr = MC_ECC_STATUS_A;
4169                 } else {
4170                         addr = MC_P_INT_CAUSE_A;
4171                         cnt_addr = MC_P_ECC_STATUS_A;
4172                 }
4173         } else {
4174                 addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4175                 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4176         }
4177
4178         v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4179         if (v & PERR_INT_CAUSE_F)
4180                 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4181                           name[idx]);
4182         if (v & ECC_CE_INT_CAUSE_F) {
4183                 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4184
4185                 t4_edc_err_read(adapter, idx);
4186
4187                 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4188                 if (printk_ratelimit())
4189                         dev_warn(adapter->pdev_dev,
4190                                  "%u %s correctable ECC data error%s\n",
4191                                  cnt, name[idx], cnt > 1 ? "s" : "");
4192         }
4193         if (v & ECC_UE_INT_CAUSE_F)
4194                 dev_alert(adapter->pdev_dev,
4195                           "%s uncorrectable ECC data error\n", name[idx]);
4196
4197         t4_write_reg(adapter, addr, v);
4198         if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4199                 t4_fatal_err(adapter);
4200 }
4201
4202 /*
4203  * MA interrupt handler.
4204  */
4205 static void ma_intr_handler(struct adapter *adap)
4206 {
4207         u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4208
4209         if (status & MEM_PERR_INT_CAUSE_F) {
4210                 dev_alert(adap->pdev_dev,
4211                           "MA parity error, parity status %#x\n",
4212                           t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4213                 if (is_t5(adap->params.chip))
4214                         dev_alert(adap->pdev_dev,
4215                                   "MA parity error, parity status %#x\n",
4216                                   t4_read_reg(adap,
4217                                               MA_PARITY_ERROR_STATUS2_A));
4218         }
4219         if (status & MEM_WRAP_INT_CAUSE_F) {
4220                 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4221                 dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4222                           "client %u to address %#x\n",
4223                           MEM_WRAP_CLIENT_NUM_G(v),
4224                           MEM_WRAP_ADDRESS_G(v) << 4);
4225         }
4226         t4_write_reg(adap, MA_INT_CAUSE_A, status);
4227         t4_fatal_err(adap);
4228 }
4229
4230 /*
4231  * SMB interrupt handler.
4232  */
4233 static void smb_intr_handler(struct adapter *adap)
4234 {
4235         static const struct intr_info smb_intr_info[] = {
4236                 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4237                 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4238                 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4239                 { 0 }
4240         };
4241
4242         if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4243                 t4_fatal_err(adap);
4244 }
4245
4246 /*
4247  * NC-SI interrupt handler.
4248  */
4249 static void ncsi_intr_handler(struct adapter *adap)
4250 {
4251         static const struct intr_info ncsi_intr_info[] = {
4252                 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4253                 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4254                 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4255                 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4256                 { 0 }
4257         };
4258
4259         if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4260                 t4_fatal_err(adap);
4261 }
4262
4263 /*
4264  * XGMAC interrupt handler.
4265  */
4266 static void xgmac_intr_handler(struct adapter *adap, int port)
4267 {
4268         u32 v, int_cause_reg;
4269
4270         if (is_t4(adap->params.chip))
4271                 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4272         else
4273                 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4274
4275         v = t4_read_reg(adap, int_cause_reg);
4276
4277         v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4278         if (!v)
4279                 return;
4280
4281         if (v & TXFIFO_PRTY_ERR_F)
4282                 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4283                           port);
4284         if (v & RXFIFO_PRTY_ERR_F)
4285                 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4286                           port);
4287         t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4288         t4_fatal_err(adap);
4289 }
4290
4291 /*
4292  * PL interrupt handler.
4293  */
4294 static void pl_intr_handler(struct adapter *adap)
4295 {
4296         static const struct intr_info pl_intr_info[] = {
4297                 { FATALPERR_F, "T4 fatal parity error", -1, 1 },
4298                 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4299                 { 0 }
4300         };
4301
4302         if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4303                 t4_fatal_err(adap);
4304 }
4305
4306 #define PF_INTR_MASK (PFSW_F)
4307 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4308                 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4309                 CPL_SWITCH_F | SGE_F | ULP_TX_F)
4310
4311 /**
4312  *      t4_slow_intr_handler - control path interrupt handler
4313  *      @adapter: the adapter
4314  *
4315  *      T4 interrupt handler for non-data global interrupt events, e.g., errors.
4316  *      The designation 'slow' is because it involves register reads, while
4317  *      data interrupts typically don't involve any MMIOs.
4318  */
4319 int t4_slow_intr_handler(struct adapter *adapter)
4320 {
4321         u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
4322
4323         if (!(cause & GLBL_INTR_MASK))
4324                 return 0;
4325         if (cause & CIM_F)
4326                 cim_intr_handler(adapter);
4327         if (cause & MPS_F)
4328                 mps_intr_handler(adapter);
4329         if (cause & NCSI_F)
4330                 ncsi_intr_handler(adapter);
4331         if (cause & PL_F)
4332                 pl_intr_handler(adapter);
4333         if (cause & SMB_F)
4334                 smb_intr_handler(adapter);
4335         if (cause & XGMAC0_F)
4336                 xgmac_intr_handler(adapter, 0);
4337         if (cause & XGMAC1_F)
4338                 xgmac_intr_handler(adapter, 1);
4339         if (cause & XGMAC_KR0_F)
4340                 xgmac_intr_handler(adapter, 2);
4341         if (cause & XGMAC_KR1_F)
4342                 xgmac_intr_handler(adapter, 3);
4343         if (cause & PCIE_F)
4344                 pcie_intr_handler(adapter);
4345         if (cause & MC_F)
4346                 mem_intr_handler(adapter, MEM_MC);
4347         if (is_t5(adapter->params.chip) && (cause & MC1_F))
4348                 mem_intr_handler(adapter, MEM_MC1);
4349         if (cause & EDC0_F)
4350                 mem_intr_handler(adapter, MEM_EDC0);
4351         if (cause & EDC1_F)
4352                 mem_intr_handler(adapter, MEM_EDC1);
4353         if (cause & LE_F)
4354                 le_intr_handler(adapter);
4355         if (cause & TP_F)
4356                 tp_intr_handler(adapter);
4357         if (cause & MA_F)
4358                 ma_intr_handler(adapter);
4359         if (cause & PM_TX_F)
4360                 pmtx_intr_handler(adapter);
4361         if (cause & PM_RX_F)
4362                 pmrx_intr_handler(adapter);
4363         if (cause & ULP_RX_F)
4364                 ulprx_intr_handler(adapter);
4365         if (cause & CPL_SWITCH_F)
4366                 cplsw_intr_handler(adapter);
4367         if (cause & SGE_F)
4368                 sge_intr_handler(adapter);
4369         if (cause & ULP_TX_F)
4370                 ulptx_intr_handler(adapter);
4371
4372         /* Clear the interrupts just processed for which we are the master. */
4373         t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
4374         (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
4375         return 1;
4376 }
4377
4378 /**
4379  *      t4_intr_enable - enable interrupts
4380  *      @adapter: the adapter whose interrupts should be enabled
4381  *
4382  *      Enable PF-specific interrupts for the calling function and the top-level
4383  *      interrupt concentrator for global interrupts.  Interrupts are already
4384  *      enabled at each module, here we just enable the roots of the interrupt
4385  *      hierarchies.
4386  *
4387  *      Note: this function should be called only when the driver manages
4388  *      non PF-specific interrupts from the various HW modules.  Only one PCI
4389  *      function at a time should be doing this.
4390  */
4391 void t4_intr_enable(struct adapter *adapter)
4392 {
4393         u32 val = 0;
4394         u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4395         u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4396                         SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4397
4398         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4399                 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
4400         t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
4401                      ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
4402                      ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
4403                      ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
4404                      ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
4405                      ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
4406                      DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
4407         t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
4408         t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
4409 }
4410
4411 /**
4412  *      t4_intr_disable - disable interrupts
4413  *      @adapter: the adapter whose interrupts should be disabled
4414  *
4415  *      Disable interrupts.  We only disable the top-level interrupt
4416  *      concentrators.  The caller must be a PCI function managing global
4417  *      interrupts.
4418  */
4419 void t4_intr_disable(struct adapter *adapter)
4420 {
4421         u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4422         u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4423                         SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4424
4425         t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
4426         t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
4427 }
4428
4429 /**
4430  *      hash_mac_addr - return the hash value of a MAC address
4431  *      @addr: the 48-bit Ethernet MAC address
4432  *
4433  *      Hashes a MAC address according to the hash function used by HW inexact
4434  *      (hash) address matching.
4435  */
4436 static int hash_mac_addr(const u8 *addr)
4437 {
4438         u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
4439         u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
4440         a ^= b;
4441         a ^= (a >> 12);
4442         a ^= (a >> 6);
4443         return a & 0x3f;
4444 }
4445
4446 /**
4447  *      t4_config_rss_range - configure a portion of the RSS mapping table
4448  *      @adapter: the adapter
4449  *      @mbox: mbox to use for the FW command
4450  *      @viid: virtual interface whose RSS subtable is to be written
4451  *      @start: start entry in the table to write
4452  *      @n: how many table entries to write
4453  *      @rspq: values for the response queue lookup table
4454  *      @nrspq: number of values in @rspq
4455  *
4456  *      Programs the selected part of the VI's RSS mapping table with the
4457  *      provided values.  If @nrspq < @n the supplied values are used repeatedly
4458  *      until the full table range is populated.
4459  *
4460  *      The caller must ensure the values in @rspq are in the range allowed for
4461  *      @viid.
4462  */
4463 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4464                         int start, int n, const u16 *rspq, unsigned int nrspq)
4465 {
4466         int ret;
4467         const u16 *rsp = rspq;
4468         const u16 *rsp_end = rspq + nrspq;
4469         struct fw_rss_ind_tbl_cmd cmd;
4470
4471         memset(&cmd, 0, sizeof(cmd));
4472         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
4473                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4474                                FW_RSS_IND_TBL_CMD_VIID_V(viid));
4475         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4476
4477         /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
4478         while (n > 0) {
4479                 int nq = min(n, 32);
4480                 __be32 *qp = &cmd.iq0_to_iq2;
4481
4482                 cmd.niqid = cpu_to_be16(nq);
4483                 cmd.startidx = cpu_to_be16(start);
4484
4485                 start += nq;
4486                 n -= nq;
4487
4488                 while (nq > 0) {
4489                         unsigned int v;
4490
4491                         v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
4492                         if (++rsp >= rsp_end)
4493                                 rsp = rspq;
4494                         v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
4495                         if (++rsp >= rsp_end)
4496                                 rsp = rspq;
4497                         v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
4498                         if (++rsp >= rsp_end)
4499                                 rsp = rspq;
4500
4501                         *qp++ = cpu_to_be32(v);
4502                         nq -= 3;
4503                 }
4504
4505                 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4506                 if (ret)
4507                         return ret;
4508         }
4509         return 0;
4510 }
4511
4512 /**
4513  *      t4_config_glbl_rss - configure the global RSS mode
4514  *      @adapter: the adapter
4515  *      @mbox: mbox to use for the FW command
4516  *      @mode: global RSS mode
4517  *      @flags: mode-specific flags
4518  *
4519  *      Sets the global RSS mode.
4520  */
4521 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4522                        unsigned int flags)
4523 {
4524         struct fw_rss_glb_config_cmd c;
4525
4526         memset(&c, 0, sizeof(c));
4527         c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
4528                                     FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4529         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4530         if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4531                 c.u.manual.mode_pkd =
4532                         cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4533         } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4534                 c.u.basicvirtual.mode_pkd =
4535                         cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4536                 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4537         } else
4538                 return -EINVAL;
4539         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4540 }
4541
4542 /**
4543  *      t4_config_vi_rss - configure per VI RSS settings
4544  *      @adapter: the adapter
4545  *      @mbox: mbox to use for the FW command
4546  *      @viid: the VI id
4547  *      @flags: RSS flags
4548  *      @defq: id of the default RSS queue for the VI.
4549  *
4550  *      Configures VI-specific RSS properties.
4551  */
4552 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4553                      unsigned int flags, unsigned int defq)
4554 {
4555         struct fw_rss_vi_config_cmd c;
4556
4557         memset(&c, 0, sizeof(c));
4558         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
4559                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4560                                    FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
4561         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4562         c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4563                                         FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
4564         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4565 }
4566
4567 /* Read an RSS table row */
4568 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4569 {
4570         t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
4571         return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
4572                                    5, 0, val);
4573 }
4574
4575 /**
4576  *      t4_read_rss - read the contents of the RSS mapping table
4577  *      @adapter: the adapter
4578  *      @map: holds the contents of the RSS mapping table
4579  *
4580  *      Reads the contents of the RSS hash->queue mapping table.
4581  */
4582 int t4_read_rss(struct adapter *adapter, u16 *map)
4583 {
4584         u32 val;
4585         int i, ret;
4586
4587         for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4588                 ret = rd_rss_row(adapter, i, &val);
4589                 if (ret)
4590                         return ret;
4591                 *map++ = LKPTBLQUEUE0_G(val);
4592                 *map++ = LKPTBLQUEUE1_G(val);
4593         }
4594         return 0;
4595 }
4596
4597 static unsigned int t4_use_ldst(struct adapter *adap)
4598 {
4599         return (adap->flags & FW_OK) || !adap->use_bd;
4600 }
4601
4602 /**
4603  *      t4_fw_tp_pio_rw - Access TP PIO through LDST
4604  *      @adap: the adapter
4605  *      @vals: where the indirect register values are stored/written
4606  *      @nregs: how many indirect registers to read/write
4607  *      @start_idx: index of first indirect register to read/write
4608  *      @rw: Read (1) or Write (0)
4609  *
4610  *      Access TP PIO registers through LDST
4611  */
4612 static void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
4613                             unsigned int start_index, unsigned int rw)
4614 {
4615         int ret, i;
4616         int cmd = FW_LDST_ADDRSPC_TP_PIO;
4617         struct fw_ldst_cmd c;
4618
4619         for (i = 0 ; i < nregs; i++) {
4620                 memset(&c, 0, sizeof(c));
4621                 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4622                                                 FW_CMD_REQUEST_F |
4623                                                 (rw ? FW_CMD_READ_F :
4624                                                       FW_CMD_WRITE_F) |
4625                                                 FW_LDST_CMD_ADDRSPACE_V(cmd));
4626                 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4627
4628                 c.u.addrval.addr = cpu_to_be32(start_index + i);
4629                 c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
4630                 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4631                 if (!ret && rw)
4632                         vals[i] = be32_to_cpu(c.u.addrval.val);
4633         }
4634 }
4635
4636 /**
4637  *      t4_read_rss_key - read the global RSS key
4638  *      @adap: the adapter
4639  *      @key: 10-entry array holding the 320-bit RSS key
4640  *
4641  *      Reads the global 320-bit RSS key.
4642  */
4643 void t4_read_rss_key(struct adapter *adap, u32 *key)
4644 {
4645         if (t4_use_ldst(adap))
4646                 t4_fw_tp_pio_rw(adap, key, 10, TP_RSS_SECRET_KEY0_A, 1);
4647         else
4648                 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4649                                  TP_RSS_SECRET_KEY0_A);
4650 }
4651
4652 /**
4653  *      t4_write_rss_key - program one of the RSS keys
4654  *      @adap: the adapter
4655  *      @key: 10-entry array holding the 320-bit RSS key
4656  *      @idx: which RSS key to write
4657  *
4658  *      Writes one of the RSS keys with the given 320-bit value.  If @idx is
4659  *      0..15 the corresponding entry in the RSS key table is written,
4660  *      otherwise the global RSS key is written.
4661  */
4662 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
4663 {
4664         u8 rss_key_addr_cnt = 16;
4665         u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
4666
4667         /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
4668          * allows access to key addresses 16-63 by using KeyWrAddrX
4669          * as index[5:4](upper 2) into key table
4670          */
4671         if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
4672             (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
4673                 rss_key_addr_cnt = 32;
4674
4675         if (t4_use_ldst(adap))
4676                 t4_fw_tp_pio_rw(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, 0);
4677         else
4678                 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4679                                   TP_RSS_SECRET_KEY0_A);
4680
4681         if (idx >= 0 && idx < rss_key_addr_cnt) {
4682                 if (rss_key_addr_cnt > 16)
4683                         t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4684                                      KEYWRADDRX_V(idx >> 4) |
4685                                      T6_VFWRADDR_V(idx) | KEYWREN_F);
4686                 else
4687                         t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4688                                      KEYWRADDR_V(idx) | KEYWREN_F);
4689         }
4690 }
4691
4692 /**
4693  *      t4_read_rss_pf_config - read PF RSS Configuration Table
4694  *      @adapter: the adapter
4695  *      @index: the entry in the PF RSS table to read
4696  *      @valp: where to store the returned value
4697  *
4698  *      Reads the PF RSS Configuration Table at the specified index and returns
4699  *      the value found there.
4700  */
4701 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
4702                            u32 *valp)
4703 {
4704         if (t4_use_ldst(adapter))
4705                 t4_fw_tp_pio_rw(adapter, valp, 1,
4706                                 TP_RSS_PF0_CONFIG_A + index, 1);
4707         else
4708                 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4709                                  valp, 1, TP_RSS_PF0_CONFIG_A + index);
4710 }
4711
4712 /**
4713  *      t4_read_rss_vf_config - read VF RSS Configuration Table
4714  *      @adapter: the adapter
4715  *      @index: the entry in the VF RSS table to read
4716  *      @vfl: where to store the returned VFL
4717  *      @vfh: where to store the returned VFH
4718  *
4719  *      Reads the VF RSS Configuration Table at the specified index and returns
4720  *      the (VFL, VFH) values found there.
4721  */
4722 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
4723                            u32 *vfl, u32 *vfh)
4724 {
4725         u32 vrt, mask, data;
4726
4727         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
4728                 mask = VFWRADDR_V(VFWRADDR_M);
4729                 data = VFWRADDR_V(index);
4730         } else {
4731                  mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
4732                  data = T6_VFWRADDR_V(index);
4733         }
4734
4735         /* Request that the index'th VF Table values be read into VFL/VFH.
4736          */
4737         vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
4738         vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
4739         vrt |= data | VFRDEN_F;
4740         t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
4741
4742         /* Grab the VFL/VFH values ...
4743          */
4744         if (t4_use_ldst(adapter)) {
4745                 t4_fw_tp_pio_rw(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, 1);
4746                 t4_fw_tp_pio_rw(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, 1);
4747         } else {
4748                 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4749                                  vfl, 1, TP_RSS_VFL_CONFIG_A);
4750                 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4751                                  vfh, 1, TP_RSS_VFH_CONFIG_A);
4752         }
4753 }
4754
4755 /**
4756  *      t4_read_rss_pf_map - read PF RSS Map
4757  *      @adapter: the adapter
4758  *
4759  *      Reads the PF RSS Map register and returns its value.
4760  */
4761 u32 t4_read_rss_pf_map(struct adapter *adapter)
4762 {
4763         u32 pfmap;
4764
4765         if (t4_use_ldst(adapter))
4766                 t4_fw_tp_pio_rw(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, 1);
4767         else
4768                 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4769                                  &pfmap, 1, TP_RSS_PF_MAP_A);
4770         return pfmap;
4771 }
4772
4773 /**
4774  *      t4_read_rss_pf_mask - read PF RSS Mask
4775  *      @adapter: the adapter
4776  *
4777  *      Reads the PF RSS Mask register and returns its value.
4778  */
4779 u32 t4_read_rss_pf_mask(struct adapter *adapter)
4780 {
4781         u32 pfmask;
4782
4783         if (t4_use_ldst(adapter))
4784                 t4_fw_tp_pio_rw(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, 1);
4785         else
4786                 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4787                                  &pfmask, 1, TP_RSS_PF_MSK_A);
4788         return pfmask;
4789 }
4790
4791 /**
4792  *      t4_tp_get_tcp_stats - read TP's TCP MIB counters
4793  *      @adap: the adapter
4794  *      @v4: holds the TCP/IP counter values
4795  *      @v6: holds the TCP/IPv6 counter values
4796  *
4797  *      Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
4798  *      Either @v4 or @v6 may be %NULL to skip the corresponding stats.
4799  */
4800 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
4801                          struct tp_tcp_stats *v6)
4802 {
4803         u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
4804
4805 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
4806 #define STAT(x)     val[STAT_IDX(x)]
4807 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
4808
4809         if (v4) {
4810                 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4811                                  ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A);
4812                 v4->tcp_out_rsts = STAT(OUT_RST);
4813                 v4->tcp_in_segs  = STAT64(IN_SEG);
4814                 v4->tcp_out_segs = STAT64(OUT_SEG);
4815                 v4->tcp_retrans_segs = STAT64(RXT_SEG);
4816         }
4817         if (v6) {
4818                 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4819                                  ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A);
4820                 v6->tcp_out_rsts = STAT(OUT_RST);
4821                 v6->tcp_in_segs  = STAT64(IN_SEG);
4822                 v6->tcp_out_segs = STAT64(OUT_SEG);
4823                 v6->tcp_retrans_segs = STAT64(RXT_SEG);
4824         }
4825 #undef STAT64
4826 #undef STAT
4827 #undef STAT_IDX
4828 }
4829
4830 /**
4831  *      t4_tp_get_err_stats - read TP's error MIB counters
4832  *      @adap: the adapter
4833  *      @st: holds the counter values
4834  *
4835  *      Returns the values of TP's error counters.
4836  */
4837 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
4838 {
4839         int nchan = adap->params.arch.nchan;
4840
4841         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4842                          st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A);
4843         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4844                          st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A);
4845         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4846                          st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A);
4847         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4848                          st->tnl_cong_drops, nchan, TP_MIB_TNL_CNG_DROP_0_A);
4849         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4850                          st->ofld_chan_drops, nchan, TP_MIB_OFD_CHN_DROP_0_A);
4851         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4852                          st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A);
4853         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4854                          st->ofld_vlan_drops, nchan, TP_MIB_OFD_VLN_DROP_0_A);
4855         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4856                          st->tcp6_in_errs, nchan, TP_MIB_TCP_V6IN_ERR_0_A);
4857
4858         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4859                          &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A);
4860 }
4861
4862 /**
4863  *      t4_tp_get_cpl_stats - read TP's CPL MIB counters
4864  *      @adap: the adapter
4865  *      @st: holds the counter values
4866  *
4867  *      Returns the values of TP's CPL counters.
4868  */
4869 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
4870 {
4871         int nchan = adap->params.arch.nchan;
4872
4873         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req,
4874                          nchan, TP_MIB_CPL_IN_REQ_0_A);
4875         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp,
4876                          nchan, TP_MIB_CPL_OUT_RSP_0_A);
4877
4878 }
4879
4880 /**
4881  *      t4_tp_get_rdma_stats - read TP's RDMA MIB counters
4882  *      @adap: the adapter
4883  *      @st: holds the counter values
4884  *
4885  *      Returns the values of TP's RDMA counters.
4886  */
4887 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
4888 {
4889         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt,
4890                          2, TP_MIB_RQE_DFR_PKT_A);
4891 }
4892
4893 /**
4894  *      t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
4895  *      @adap: the adapter
4896  *      @idx: the port index
4897  *      @st: holds the counter values
4898  *
4899  *      Returns the values of TP's FCoE counters for the selected port.
4900  */
4901 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
4902                        struct tp_fcoe_stats *st)
4903 {
4904         u32 val[2];
4905
4906         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp,
4907                          1, TP_MIB_FCOE_DDP_0_A + idx);
4908         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop,
4909                          1, TP_MIB_FCOE_DROP_0_A + idx);
4910         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4911                          2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx);
4912         st->octets_ddp = ((u64)val[0] << 32) | val[1];
4913 }
4914
4915 /**
4916  *      t4_get_usm_stats - read TP's non-TCP DDP MIB counters
4917  *      @adap: the adapter
4918  *      @st: holds the counter values
4919  *
4920  *      Returns the values of TP's counters for non-TCP directly-placed packets.
4921  */
4922 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
4923 {
4924         u32 val[4];
4925
4926         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4,
4927                          TP_MIB_USM_PKTS_A);
4928         st->frames = val[0];
4929         st->drops = val[1];
4930         st->octets = ((u64)val[2] << 32) | val[3];
4931 }
4932
4933 /**
4934  *      t4_read_mtu_tbl - returns the values in the HW path MTU table
4935  *      @adap: the adapter
4936  *      @mtus: where to store the MTU values
4937  *      @mtu_log: where to store the MTU base-2 log (may be %NULL)
4938  *
4939  *      Reads the HW path MTU table.
4940  */
4941 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
4942 {
4943         u32 v;
4944         int i;
4945
4946         for (i = 0; i < NMTUS; ++i) {
4947                 t4_write_reg(adap, TP_MTU_TABLE_A,
4948                              MTUINDEX_V(0xff) | MTUVALUE_V(i));
4949                 v = t4_read_reg(adap, TP_MTU_TABLE_A);
4950                 mtus[i] = MTUVALUE_G(v);
4951                 if (mtu_log)
4952                         mtu_log[i] = MTUWIDTH_G(v);
4953         }
4954 }
4955
4956 /**
4957  *      t4_read_cong_tbl - reads the congestion control table
4958  *      @adap: the adapter
4959  *      @incr: where to store the alpha values
4960  *
4961  *      Reads the additive increments programmed into the HW congestion
4962  *      control table.
4963  */
4964 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
4965 {
4966         unsigned int mtu, w;
4967
4968         for (mtu = 0; mtu < NMTUS; ++mtu)
4969                 for (w = 0; w < NCCTRL_WIN; ++w) {
4970                         t4_write_reg(adap, TP_CCTRL_TABLE_A,
4971                                      ROWINDEX_V(0xffff) | (mtu << 5) | w);
4972                         incr[mtu][w] = (u16)t4_read_reg(adap,
4973                                                 TP_CCTRL_TABLE_A) & 0x1fff;
4974                 }
4975 }
4976
4977 /**
4978  *      t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
4979  *      @adap: the adapter
4980  *      @addr: the indirect TP register address
4981  *      @mask: specifies the field within the register to modify
4982  *      @val: new value for the field
4983  *
4984  *      Sets a field of an indirect TP register to the given value.
4985  */
4986 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
4987                             unsigned int mask, unsigned int val)
4988 {
4989         t4_write_reg(adap, TP_PIO_ADDR_A, addr);
4990         val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
4991         t4_write_reg(adap, TP_PIO_DATA_A, val);
4992 }
4993
4994 /**
4995  *      init_cong_ctrl - initialize congestion control parameters
4996  *      @a: the alpha values for congestion control
4997  *      @b: the beta values for congestion control
4998  *
4999  *      Initialize the congestion control parameters.
5000  */
5001 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5002 {
5003         a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5004         a[9] = 2;
5005         a[10] = 3;
5006         a[11] = 4;
5007         a[12] = 5;
5008         a[13] = 6;
5009         a[14] = 7;
5010         a[15] = 8;
5011         a[16] = 9;
5012         a[17] = 10;
5013         a[18] = 14;
5014         a[19] = 17;
5015         a[20] = 21;
5016         a[21] = 25;
5017         a[22] = 30;
5018         a[23] = 35;
5019         a[24] = 45;
5020         a[25] = 60;
5021         a[26] = 80;
5022         a[27] = 100;
5023         a[28] = 200;
5024         a[29] = 300;
5025         a[30] = 400;
5026         a[31] = 500;
5027
5028         b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5029         b[9] = b[10] = 1;
5030         b[11] = b[12] = 2;
5031         b[13] = b[14] = b[15] = b[16] = 3;
5032         b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5033         b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5034         b[28] = b[29] = 6;
5035         b[30] = b[31] = 7;
5036 }
5037
5038 /* The minimum additive increment value for the congestion control table */
5039 #define CC_MIN_INCR 2U
5040
5041 /**
5042  *      t4_load_mtus - write the MTU and congestion control HW tables
5043  *      @adap: the adapter
5044  *      @mtus: the values for the MTU table
5045  *      @alpha: the values for the congestion control alpha parameter
5046  *      @beta: the values for the congestion control beta parameter
5047  *
5048  *      Write the HW MTU table with the supplied MTUs and the high-speed
5049  *      congestion control table with the supplied alpha, beta, and MTUs.
5050  *      We write the two tables together because the additive increments
5051  *      depend on the MTUs.
5052  */
5053 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5054                   const unsigned short *alpha, const unsigned short *beta)
5055 {
5056         static const unsigned int avg_pkts[NCCTRL_WIN] = {
5057                 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5058                 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5059                 28672, 40960, 57344, 81920, 114688, 163840, 229376
5060         };
5061
5062         unsigned int i, w;
5063
5064         for (i = 0; i < NMTUS; ++i) {
5065                 unsigned int mtu = mtus[i];
5066                 unsigned int log2 = fls(mtu);
5067
5068                 if (!(mtu & ((1 << log2) >> 2)))     /* round */
5069                         log2--;
5070                 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5071                              MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5072
5073                 for (w = 0; w < NCCTRL_WIN; ++w) {
5074                         unsigned int inc;
5075
5076                         inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5077                                   CC_MIN_INCR);
5078
5079                         t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5080                                      (w << 16) | (beta[w] << 13) | inc);
5081                 }
5082         }
5083 }
5084
5085 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5086  * clocks.  The formula is
5087  *
5088  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5089  *
5090  * which is equivalent to
5091  *
5092  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5093  */
5094 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5095 {
5096         u64 v = bytes256 * adap->params.vpd.cclk;
5097
5098         return v * 62 + v / 2;
5099 }
5100
5101 /**
5102  *      t4_get_chan_txrate - get the current per channel Tx rates
5103  *      @adap: the adapter
5104  *      @nic_rate: rates for NIC traffic
5105  *      @ofld_rate: rates for offloaded traffic
5106  *
5107  *      Return the current Tx rates in bytes/s for NIC and offloaded traffic
5108  *      for each channel.
5109  */
5110 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5111 {
5112         u32 v;
5113
5114         v = t4_read_reg(adap, TP_TX_TRATE_A);
5115         nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5116         nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5117         if (adap->params.arch.nchan == NCHAN) {
5118                 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5119                 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5120         }
5121
5122         v = t4_read_reg(adap, TP_TX_ORATE_A);
5123         ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5124         ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5125         if (adap->params.arch.nchan == NCHAN) {
5126                 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5127                 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5128         }
5129 }
5130
5131 /**
5132  *      t4_set_trace_filter - configure one of the tracing filters
5133  *      @adap: the adapter
5134  *      @tp: the desired trace filter parameters
5135  *      @idx: which filter to configure
5136  *      @enable: whether to enable or disable the filter
5137  *
5138  *      Configures one of the tracing filters available in HW.  If @enable is
5139  *      %0 @tp is not examined and may be %NULL. The user is responsible to
5140  *      set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5141  */
5142 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5143                         int idx, int enable)
5144 {
5145         int i, ofst = idx * 4;
5146         u32 data_reg, mask_reg, cfg;
5147         u32 multitrc = TRCMULTIFILTER_F;
5148
5149         if (!enable) {
5150                 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5151                 return 0;
5152         }
5153
5154         cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5155         if (cfg & TRCMULTIFILTER_F) {
5156                 /* If multiple tracers are enabled, then maximum
5157                  * capture size is 2.5KB (FIFO size of a single channel)
5158                  * minus 2 flits for CPL_TRACE_PKT header.
5159                  */
5160                 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5161                         return -EINVAL;
5162         } else {
5163                 /* If multiple tracers are disabled, to avoid deadlocks
5164                  * maximum packet capture size of 9600 bytes is recommended.
5165                  * Also in this mode, only trace0 can be enabled and running.
5166                  */
5167                 multitrc = 0;
5168                 if (tp->snap_len > 9600 || idx)
5169                         return -EINVAL;
5170         }
5171
5172         if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5173             tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5174             tp->min_len > TFMINPKTSIZE_M)
5175                 return -EINVAL;
5176
5177         /* stop the tracer we'll be changing */
5178         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5179
5180         idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5181         data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5182         mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5183
5184         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5185                 t4_write_reg(adap, data_reg, tp->data[i]);
5186                 t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5187         }
5188         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5189                      TFCAPTUREMAX_V(tp->snap_len) |
5190                      TFMINPKTSIZE_V(tp->min_len));
5191         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5192                      TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5193                      (is_t4(adap->params.chip) ?
5194                      TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5195                      T5_TFPORT_V(tp->port) | T5_TFEN_F |
5196                      T5_TFINVERTMATCH_V(tp->invert)));
5197
5198         return 0;
5199 }
5200
5201 /**
5202  *      t4_get_trace_filter - query one of the tracing filters
5203  *      @adap: the adapter
5204  *      @tp: the current trace filter parameters
5205  *      @idx: which trace filter to query
5206  *      @enabled: non-zero if the filter is enabled
5207  *
5208  *      Returns the current settings of one of the HW tracing filters.
5209  */
5210 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5211                          int *enabled)
5212 {
5213         u32 ctla, ctlb;
5214         int i, ofst = idx * 4;
5215         u32 data_reg, mask_reg;
5216
5217         ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
5218         ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
5219
5220         if (is_t4(adap->params.chip)) {
5221                 *enabled = !!(ctla & TFEN_F);
5222                 tp->port =  TFPORT_G(ctla);
5223                 tp->invert = !!(ctla & TFINVERTMATCH_F);
5224         } else {
5225                 *enabled = !!(ctla & T5_TFEN_F);
5226                 tp->port = T5_TFPORT_G(ctla);
5227                 tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
5228         }
5229         tp->snap_len = TFCAPTUREMAX_G(ctlb);
5230         tp->min_len = TFMINPKTSIZE_G(ctlb);
5231         tp->skip_ofst = TFOFFSET_G(ctla);
5232         tp->skip_len = TFLENGTH_G(ctla);
5233
5234         ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
5235         data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
5236         mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
5237
5238         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5239                 tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5240                 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5241         }
5242 }
5243
5244 /**
5245  *      t4_pmtx_get_stats - returns the HW stats from PMTX
5246  *      @adap: the adapter
5247  *      @cnt: where to store the count statistics
5248  *      @cycles: where to store the cycle statistics
5249  *
5250  *      Returns performance statistics from PMTX.
5251  */
5252 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5253 {
5254         int i;
5255         u32 data[2];
5256
5257         for (i = 0; i < PM_NSTATS; i++) {
5258                 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
5259                 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
5260                 if (is_t4(adap->params.chip)) {
5261                         cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
5262                 } else {
5263                         t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
5264                                          PM_TX_DBG_DATA_A, data, 2,
5265                                          PM_TX_DBG_STAT_MSB_A);
5266                         cycles[i] = (((u64)data[0] << 32) | data[1]);
5267                 }
5268         }
5269 }
5270
5271 /**
5272  *      t4_pmrx_get_stats - returns the HW stats from PMRX
5273  *      @adap: the adapter
5274  *      @cnt: where to store the count statistics
5275  *      @cycles: where to store the cycle statistics
5276  *
5277  *      Returns performance statistics from PMRX.
5278  */
5279 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5280 {
5281         int i;
5282         u32 data[2];
5283
5284         for (i = 0; i < PM_NSTATS; i++) {
5285                 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
5286                 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
5287                 if (is_t4(adap->params.chip)) {
5288                         cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
5289                 } else {
5290                         t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
5291                                          PM_RX_DBG_DATA_A, data, 2,
5292                                          PM_RX_DBG_STAT_MSB_A);
5293                         cycles[i] = (((u64)data[0] << 32) | data[1]);
5294                 }
5295         }
5296 }
5297
5298 /**
5299  *      t4_get_mps_bg_map - return the buffer groups associated with a port
5300  *      @adap: the adapter
5301  *      @idx: the port index
5302  *
5303  *      Returns a bitmap indicating which MPS buffer groups are associated
5304  *      with the given port.  Bit i is set if buffer group i is used by the
5305  *      port.
5306  */
5307 unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
5308 {
5309         u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
5310
5311         if (n == 0)
5312                 return idx == 0 ? 0xf : 0;
5313         if (n == 1)
5314                 return idx < 2 ? (3 << (2 * idx)) : 0;
5315         return 1 << idx;
5316 }
5317
5318 /**
5319  *      t4_get_port_type_description - return Port Type string description
5320  *      @port_type: firmware Port Type enumeration
5321  */
5322 const char *t4_get_port_type_description(enum fw_port_type port_type)
5323 {
5324         static const char *const port_type_description[] = {
5325                 "R XFI",
5326                 "R XAUI",
5327                 "T SGMII",
5328                 "T XFI",
5329                 "T XAUI",
5330                 "KX4",
5331                 "CX4",
5332                 "KX",
5333                 "KR",
5334                 "R SFP+",
5335                 "KR/KX",
5336                 "KR/KX/KX4",
5337                 "R QSFP_10G",
5338                 "R QSA",
5339                 "R QSFP",
5340                 "R BP40_BA",
5341         };
5342
5343         if (port_type < ARRAY_SIZE(port_type_description))
5344                 return port_type_description[port_type];
5345         return "UNKNOWN";
5346 }
5347
5348 /**
5349  *      t4_get_port_stats_offset - collect port stats relative to a previous
5350  *                                 snapshot
5351  *      @adap: The adapter
5352  *      @idx: The port
5353  *      @stats: Current stats to fill
5354  *      @offset: Previous stats snapshot
5355  */
5356 void t4_get_port_stats_offset(struct adapter *adap, int idx,
5357                               struct port_stats *stats,
5358                               struct port_stats *offset)
5359 {
5360         u64 *s, *o;
5361         int i;
5362
5363         t4_get_port_stats(adap, idx, stats);
5364         for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
5365                         i < (sizeof(struct port_stats) / sizeof(u64));
5366                         i++, s++, o++)
5367                 *s -= *o;
5368 }
5369
5370 /**
5371  *      t4_get_port_stats - collect port statistics
5372  *      @adap: the adapter
5373  *      @idx: the port index
5374  *      @p: the stats structure to fill
5375  *
5376  *      Collect statistics related to the given port from HW.
5377  */
5378 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
5379 {
5380         u32 bgmap = t4_get_mps_bg_map(adap, idx);
5381
5382 #define GET_STAT(name) \
5383         t4_read_reg64(adap, \
5384         (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
5385         T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
5386 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5387
5388         p->tx_octets           = GET_STAT(TX_PORT_BYTES);
5389         p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
5390         p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
5391         p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
5392         p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
5393         p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
5394         p->tx_frames_64        = GET_STAT(TX_PORT_64B);
5395         p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
5396         p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
5397         p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
5398         p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
5399         p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
5400         p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
5401         p->tx_drop             = GET_STAT(TX_PORT_DROP);
5402         p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
5403         p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
5404         p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
5405         p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
5406         p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
5407         p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
5408         p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
5409         p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
5410         p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
5411
5412         p->rx_octets           = GET_STAT(RX_PORT_BYTES);
5413         p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
5414         p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
5415         p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
5416         p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
5417         p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
5418         p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
5419         p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
5420         p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
5421         p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
5422         p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
5423         p->rx_frames_64        = GET_STAT(RX_PORT_64B);
5424         p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
5425         p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
5426         p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
5427         p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
5428         p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
5429         p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
5430         p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
5431         p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
5432         p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
5433         p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
5434         p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
5435         p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
5436         p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
5437         p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
5438         p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
5439
5440         p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
5441         p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
5442         p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
5443         p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
5444         p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
5445         p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
5446         p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
5447         p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
5448
5449 #undef GET_STAT
5450 #undef GET_STAT_COM
5451 }
5452
5453 /**
5454  *      t4_get_lb_stats - collect loopback port statistics
5455  *      @adap: the adapter
5456  *      @idx: the loopback port index
5457  *      @p: the stats structure to fill
5458  *
5459  *      Return HW statistics for the given loopback port.
5460  */
5461 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
5462 {
5463         u32 bgmap = t4_get_mps_bg_map(adap, idx);
5464
5465 #define GET_STAT(name) \
5466         t4_read_reg64(adap, \
5467         (is_t4(adap->params.chip) ? \
5468         PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
5469         T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
5470 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5471
5472         p->octets           = GET_STAT(BYTES);
5473         p->frames           = GET_STAT(FRAMES);
5474         p->bcast_frames     = GET_STAT(BCAST);
5475         p->mcast_frames     = GET_STAT(MCAST);
5476         p->ucast_frames     = GET_STAT(UCAST);
5477         p->error_frames     = GET_STAT(ERROR);
5478
5479         p->frames_64        = GET_STAT(64B);
5480         p->frames_65_127    = GET_STAT(65B_127B);
5481         p->frames_128_255   = GET_STAT(128B_255B);
5482         p->frames_256_511   = GET_STAT(256B_511B);
5483         p->frames_512_1023  = GET_STAT(512B_1023B);
5484         p->frames_1024_1518 = GET_STAT(1024B_1518B);
5485         p->frames_1519_max  = GET_STAT(1519B_MAX);
5486         p->drop             = GET_STAT(DROP_FRAMES);
5487
5488         p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
5489         p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
5490         p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
5491         p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
5492         p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
5493         p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
5494         p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
5495         p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
5496
5497 #undef GET_STAT
5498 #undef GET_STAT_COM
5499 }
5500
5501 /*     t4_mk_filtdelwr - create a delete filter WR
5502  *     @ftid: the filter ID
5503  *     @wr: the filter work request to populate
5504  *     @qid: ingress queue to receive the delete notification
5505  *
5506  *     Creates a filter work request to delete the supplied filter.  If @qid is
5507  *     negative the delete notification is suppressed.
5508  */
5509 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
5510 {
5511         memset(wr, 0, sizeof(*wr));
5512         wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
5513         wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
5514         wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
5515                                     FW_FILTER_WR_NOREPLY_V(qid < 0));
5516         wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
5517         if (qid >= 0)
5518                 wr->rx_chan_rx_rpl_iq =
5519                         cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
5520 }
5521
5522 #define INIT_CMD(var, cmd, rd_wr) do { \
5523         (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
5524                                         FW_CMD_REQUEST_F | \
5525                                         FW_CMD_##rd_wr##_F); \
5526         (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
5527 } while (0)
5528
5529 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
5530                           u32 addr, u32 val)
5531 {
5532         u32 ldst_addrspace;
5533         struct fw_ldst_cmd c;
5534
5535         memset(&c, 0, sizeof(c));
5536         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
5537         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5538                                         FW_CMD_REQUEST_F |
5539                                         FW_CMD_WRITE_F |
5540                                         ldst_addrspace);
5541         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5542         c.u.addrval.addr = cpu_to_be32(addr);
5543         c.u.addrval.val = cpu_to_be32(val);
5544
5545         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5546 }
5547
5548 /**
5549  *      t4_mdio_rd - read a PHY register through MDIO
5550  *      @adap: the adapter
5551  *      @mbox: mailbox to use for the FW command
5552  *      @phy_addr: the PHY address
5553  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
5554  *      @reg: the register to read
5555  *      @valp: where to store the value
5556  *
5557  *      Issues a FW command through the given mailbox to read a PHY register.
5558  */
5559 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5560                unsigned int mmd, unsigned int reg, u16 *valp)
5561 {
5562         int ret;
5563         u32 ldst_addrspace;
5564         struct fw_ldst_cmd c;
5565
5566         memset(&c, 0, sizeof(c));
5567         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5568         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5569                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
5570                                         ldst_addrspace);
5571         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5572         c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5573                                          FW_LDST_CMD_MMD_V(mmd));
5574         c.u.mdio.raddr = cpu_to_be16(reg);
5575
5576         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5577         if (ret == 0)
5578                 *valp = be16_to_cpu(c.u.mdio.rval);
5579         return ret;
5580 }
5581
5582 /**
5583  *      t4_mdio_wr - write a PHY register through MDIO
5584  *      @adap: the adapter
5585  *      @mbox: mailbox to use for the FW command
5586  *      @phy_addr: the PHY address
5587  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
5588  *      @reg: the register to write
5589  *      @valp: value to write
5590  *
5591  *      Issues a FW command through the given mailbox to write a PHY register.
5592  */
5593 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5594                unsigned int mmd, unsigned int reg, u16 val)
5595 {
5596         u32 ldst_addrspace;
5597         struct fw_ldst_cmd c;
5598
5599         memset(&c, 0, sizeof(c));
5600         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5601         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5602                                         FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5603                                         ldst_addrspace);
5604         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5605         c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5606                                          FW_LDST_CMD_MMD_V(mmd));
5607         c.u.mdio.raddr = cpu_to_be16(reg);
5608         c.u.mdio.rval = cpu_to_be16(val);
5609
5610         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5611 }
5612
5613 /**
5614  *      t4_sge_decode_idma_state - decode the idma state
5615  *      @adap: the adapter
5616  *      @state: the state idma is stuck in
5617  */
5618 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
5619 {
5620         static const char * const t4_decode[] = {
5621                 "IDMA_IDLE",
5622                 "IDMA_PUSH_MORE_CPL_FIFO",
5623                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5624                 "Not used",
5625                 "IDMA_PHYSADDR_SEND_PCIEHDR",
5626                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5627                 "IDMA_PHYSADDR_SEND_PAYLOAD",
5628                 "IDMA_SEND_FIFO_TO_IMSG",
5629                 "IDMA_FL_REQ_DATA_FL_PREP",
5630                 "IDMA_FL_REQ_DATA_FL",
5631                 "IDMA_FL_DROP",
5632                 "IDMA_FL_H_REQ_HEADER_FL",
5633                 "IDMA_FL_H_SEND_PCIEHDR",
5634                 "IDMA_FL_H_PUSH_CPL_FIFO",
5635                 "IDMA_FL_H_SEND_CPL",
5636                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
5637                 "IDMA_FL_H_SEND_IP_HDR",
5638                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5639                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5640                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
5641                 "IDMA_FL_D_SEND_PCIEHDR",
5642                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5643                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
5644                 "IDMA_FL_SEND_PCIEHDR",
5645                 "IDMA_FL_PUSH_CPL_FIFO",
5646                 "IDMA_FL_SEND_CPL",
5647                 "IDMA_FL_SEND_PAYLOAD_FIRST",
5648                 "IDMA_FL_SEND_PAYLOAD",
5649                 "IDMA_FL_REQ_NEXT_DATA_FL",
5650                 "IDMA_FL_SEND_NEXT_PCIEHDR",
5651                 "IDMA_FL_SEND_PADDING",
5652                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5653                 "IDMA_FL_SEND_FIFO_TO_IMSG",
5654                 "IDMA_FL_REQ_DATAFL_DONE",
5655                 "IDMA_FL_REQ_HEADERFL_DONE",
5656         };
5657         static const char * const t5_decode[] = {
5658                 "IDMA_IDLE",
5659                 "IDMA_ALMOST_IDLE",
5660                 "IDMA_PUSH_MORE_CPL_FIFO",
5661                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5662                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
5663                 "IDMA_PHYSADDR_SEND_PCIEHDR",
5664                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5665                 "IDMA_PHYSADDR_SEND_PAYLOAD",
5666                 "IDMA_SEND_FIFO_TO_IMSG",
5667                 "IDMA_FL_REQ_DATA_FL",
5668                 "IDMA_FL_DROP",
5669                 "IDMA_FL_DROP_SEND_INC",
5670                 "IDMA_FL_H_REQ_HEADER_FL",
5671                 "IDMA_FL_H_SEND_PCIEHDR",
5672                 "IDMA_FL_H_PUSH_CPL_FIFO",
5673                 "IDMA_FL_H_SEND_CPL",
5674                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
5675                 "IDMA_FL_H_SEND_IP_HDR",
5676                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5677                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5678                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
5679                 "IDMA_FL_D_SEND_PCIEHDR",
5680                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5681                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
5682                 "IDMA_FL_SEND_PCIEHDR",
5683                 "IDMA_FL_PUSH_CPL_FIFO",
5684                 "IDMA_FL_SEND_CPL",
5685                 "IDMA_FL_SEND_PAYLOAD_FIRST",
5686                 "IDMA_FL_SEND_PAYLOAD",
5687                 "IDMA_FL_REQ_NEXT_DATA_FL",
5688                 "IDMA_FL_SEND_NEXT_PCIEHDR",
5689                 "IDMA_FL_SEND_PADDING",
5690                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5691         };
5692         static const u32 sge_regs[] = {
5693                 SGE_DEBUG_DATA_LOW_INDEX_2_A,
5694                 SGE_DEBUG_DATA_LOW_INDEX_3_A,
5695                 SGE_DEBUG_DATA_HIGH_INDEX_10_A,
5696         };
5697         const char **sge_idma_decode;
5698         int sge_idma_decode_nstates;
5699         int i;
5700
5701         if (is_t4(adapter->params.chip)) {
5702                 sge_idma_decode = (const char **)t4_decode;
5703                 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
5704         } else {
5705                 sge_idma_decode = (const char **)t5_decode;
5706                 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
5707         }
5708
5709         if (state < sge_idma_decode_nstates)
5710                 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
5711         else
5712                 CH_WARN(adapter, "idma state %d unknown\n", state);
5713
5714         for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
5715                 CH_WARN(adapter, "SGE register %#x value %#x\n",
5716                         sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
5717 }
5718
5719 /**
5720  *      t4_sge_ctxt_flush - flush the SGE context cache
5721  *      @adap: the adapter
5722  *      @mbox: mailbox to use for the FW command
5723  *
5724  *      Issues a FW command through the given mailbox to flush the
5725  *      SGE context cache.
5726  */
5727 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
5728 {
5729         int ret;
5730         u32 ldst_addrspace;
5731         struct fw_ldst_cmd c;
5732
5733         memset(&c, 0, sizeof(c));
5734         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC);
5735         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5736                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
5737                                         ldst_addrspace);
5738         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5739         c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
5740
5741         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5742         return ret;
5743 }
5744
5745 /**
5746  *      t4_fw_hello - establish communication with FW
5747  *      @adap: the adapter
5748  *      @mbox: mailbox to use for the FW command
5749  *      @evt_mbox: mailbox to receive async FW events
5750  *      @master: specifies the caller's willingness to be the device master
5751  *      @state: returns the current device state (if non-NULL)
5752  *
5753  *      Issues a command to establish communication with FW.  Returns either
5754  *      an error (negative integer) or the mailbox of the Master PF.
5755  */
5756 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
5757                 enum dev_master master, enum dev_state *state)
5758 {
5759         int ret;
5760         struct fw_hello_cmd c;
5761         u32 v;
5762         unsigned int master_mbox;
5763         int retries = FW_CMD_HELLO_RETRIES;
5764
5765 retry:
5766         memset(&c, 0, sizeof(c));
5767         INIT_CMD(c, HELLO, WRITE);
5768         c.err_to_clearinit = cpu_to_be32(
5769                 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
5770                 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
5771                 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
5772                                         mbox : FW_HELLO_CMD_MBMASTER_M) |
5773                 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
5774                 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
5775                 FW_HELLO_CMD_CLEARINIT_F);
5776
5777         /*
5778          * Issue the HELLO command to the firmware.  If it's not successful
5779          * but indicates that we got a "busy" or "timeout" condition, retry
5780          * the HELLO until we exhaust our retry limit.  If we do exceed our
5781          * retry limit, check to see if the firmware left us any error
5782          * information and report that if so.
5783          */
5784         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5785         if (ret < 0) {
5786                 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
5787                         goto retry;
5788                 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
5789                         t4_report_fw_error(adap);
5790                 return ret;
5791         }
5792
5793         v = be32_to_cpu(c.err_to_clearinit);
5794         master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
5795         if (state) {
5796                 if (v & FW_HELLO_CMD_ERR_F)
5797                         *state = DEV_STATE_ERR;
5798                 else if (v & FW_HELLO_CMD_INIT_F)
5799                         *state = DEV_STATE_INIT;
5800                 else
5801                         *state = DEV_STATE_UNINIT;
5802         }
5803
5804         /*
5805          * If we're not the Master PF then we need to wait around for the
5806          * Master PF Driver to finish setting up the adapter.
5807          *
5808          * Note that we also do this wait if we're a non-Master-capable PF and
5809          * there is no current Master PF; a Master PF may show up momentarily
5810          * and we wouldn't want to fail pointlessly.  (This can happen when an
5811          * OS loads lots of different drivers rapidly at the same time).  In
5812          * this case, the Master PF returned by the firmware will be
5813          * PCIE_FW_MASTER_M so the test below will work ...
5814          */
5815         if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
5816             master_mbox != mbox) {
5817                 int waiting = FW_CMD_HELLO_TIMEOUT;
5818
5819                 /*
5820                  * Wait for the firmware to either indicate an error or
5821                  * initialized state.  If we see either of these we bail out
5822                  * and report the issue to the caller.  If we exhaust the
5823                  * "hello timeout" and we haven't exhausted our retries, try
5824                  * again.  Otherwise bail with a timeout error.
5825                  */
5826                 for (;;) {
5827                         u32 pcie_fw;
5828
5829                         msleep(50);
5830                         waiting -= 50;
5831
5832                         /*
5833                          * If neither Error nor Initialialized are indicated
5834                          * by the firmware keep waiting till we exaust our
5835                          * timeout ... and then retry if we haven't exhausted
5836                          * our retries ...
5837                          */
5838                         pcie_fw = t4_read_reg(adap, PCIE_FW_A);
5839                         if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
5840                                 if (waiting <= 0) {
5841                                         if (retries-- > 0)
5842                                                 goto retry;
5843
5844                                         return -ETIMEDOUT;
5845                                 }
5846                                 continue;
5847                         }
5848
5849                         /*
5850                          * We either have an Error or Initialized condition
5851                          * report errors preferentially.
5852                          */
5853                         if (state) {
5854                                 if (pcie_fw & PCIE_FW_ERR_F)
5855                                         *state = DEV_STATE_ERR;
5856                                 else if (pcie_fw & PCIE_FW_INIT_F)
5857                                         *state = DEV_STATE_INIT;
5858                         }
5859
5860                         /*
5861                          * If we arrived before a Master PF was selected and
5862                          * there's not a valid Master PF, grab its identity
5863                          * for our caller.
5864                          */
5865                         if (master_mbox == PCIE_FW_MASTER_M &&
5866                             (pcie_fw & PCIE_FW_MASTER_VLD_F))
5867                                 master_mbox = PCIE_FW_MASTER_G(pcie_fw);
5868                         break;
5869                 }
5870         }
5871
5872         return master_mbox;
5873 }
5874
5875 /**
5876  *      t4_fw_bye - end communication with FW
5877  *      @adap: the adapter
5878  *      @mbox: mailbox to use for the FW command
5879  *
5880  *      Issues a command to terminate communication with FW.
5881  */
5882 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
5883 {
5884         struct fw_bye_cmd c;
5885
5886         memset(&c, 0, sizeof(c));
5887         INIT_CMD(c, BYE, WRITE);
5888         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5889 }
5890
5891 /**
5892  *      t4_init_cmd - ask FW to initialize the device
5893  *      @adap: the adapter
5894  *      @mbox: mailbox to use for the FW command
5895  *
5896  *      Issues a command to FW to partially initialize the device.  This
5897  *      performs initialization that generally doesn't depend on user input.
5898  */
5899 int t4_early_init(struct adapter *adap, unsigned int mbox)
5900 {
5901         struct fw_initialize_cmd c;
5902
5903         memset(&c, 0, sizeof(c));
5904         INIT_CMD(c, INITIALIZE, WRITE);
5905         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5906 }
5907
5908 /**
5909  *      t4_fw_reset - issue a reset to FW
5910  *      @adap: the adapter
5911  *      @mbox: mailbox to use for the FW command
5912  *      @reset: specifies the type of reset to perform
5913  *
5914  *      Issues a reset command of the specified type to FW.
5915  */
5916 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
5917 {
5918         struct fw_reset_cmd c;
5919
5920         memset(&c, 0, sizeof(c));
5921         INIT_CMD(c, RESET, WRITE);
5922         c.val = cpu_to_be32(reset);
5923         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5924 }
5925
5926 /**
5927  *      t4_fw_halt - issue a reset/halt to FW and put uP into RESET
5928  *      @adap: the adapter
5929  *      @mbox: mailbox to use for the FW RESET command (if desired)
5930  *      @force: force uP into RESET even if FW RESET command fails
5931  *
5932  *      Issues a RESET command to firmware (if desired) with a HALT indication
5933  *      and then puts the microprocessor into RESET state.  The RESET command
5934  *      will only be issued if a legitimate mailbox is provided (mbox <=
5935  *      PCIE_FW_MASTER_M).
5936  *
5937  *      This is generally used in order for the host to safely manipulate the
5938  *      adapter without fear of conflicting with whatever the firmware might
5939  *      be doing.  The only way out of this state is to RESTART the firmware
5940  *      ...
5941  */
5942 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
5943 {
5944         int ret = 0;
5945
5946         /*
5947          * If a legitimate mailbox is provided, issue a RESET command
5948          * with a HALT indication.
5949          */
5950         if (mbox <= PCIE_FW_MASTER_M) {
5951                 struct fw_reset_cmd c;
5952
5953                 memset(&c, 0, sizeof(c));
5954                 INIT_CMD(c, RESET, WRITE);
5955                 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
5956                 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
5957                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5958         }
5959
5960         /*
5961          * Normally we won't complete the operation if the firmware RESET
5962          * command fails but if our caller insists we'll go ahead and put the
5963          * uP into RESET.  This can be useful if the firmware is hung or even
5964          * missing ...  We'll have to take the risk of putting the uP into
5965          * RESET without the cooperation of firmware in that case.
5966          *
5967          * We also force the firmware's HALT flag to be on in case we bypassed
5968          * the firmware RESET command above or we're dealing with old firmware
5969          * which doesn't have the HALT capability.  This will serve as a flag
5970          * for the incoming firmware to know that it's coming out of a HALT
5971          * rather than a RESET ... if it's new enough to understand that ...
5972          */
5973         if (ret == 0 || force) {
5974                 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
5975                 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
5976                                  PCIE_FW_HALT_F);
5977         }
5978
5979         /*
5980          * And we always return the result of the firmware RESET command
5981          * even when we force the uP into RESET ...
5982          */
5983         return ret;
5984 }
5985
5986 /**
5987  *      t4_fw_restart - restart the firmware by taking the uP out of RESET
5988  *      @adap: the adapter
5989  *      @reset: if we want to do a RESET to restart things
5990  *
5991  *      Restart firmware previously halted by t4_fw_halt().  On successful
5992  *      return the previous PF Master remains as the new PF Master and there
5993  *      is no need to issue a new HELLO command, etc.
5994  *
5995  *      We do this in two ways:
5996  *
5997  *       1. If we're dealing with newer firmware we'll simply want to take
5998  *          the chip's microprocessor out of RESET.  This will cause the
5999  *          firmware to start up from its start vector.  And then we'll loop
6000  *          until the firmware indicates it's started again (PCIE_FW.HALT
6001  *          reset to 0) or we timeout.
6002  *
6003  *       2. If we're dealing with older firmware then we'll need to RESET
6004  *          the chip since older firmware won't recognize the PCIE_FW.HALT
6005  *          flag and automatically RESET itself on startup.
6006  */
6007 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6008 {
6009         if (reset) {
6010                 /*
6011                  * Since we're directing the RESET instead of the firmware
6012                  * doing it automatically, we need to clear the PCIE_FW.HALT
6013                  * bit.
6014                  */
6015                 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
6016
6017                 /*
6018                  * If we've been given a valid mailbox, first try to get the
6019                  * firmware to do the RESET.  If that works, great and we can
6020                  * return success.  Otherwise, if we haven't been given a
6021                  * valid mailbox or the RESET command failed, fall back to
6022                  * hitting the chip with a hammer.
6023                  */
6024                 if (mbox <= PCIE_FW_MASTER_M) {
6025                         t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6026                         msleep(100);
6027                         if (t4_fw_reset(adap, mbox,
6028                                         PIORST_F | PIORSTMODE_F) == 0)
6029                                 return 0;
6030                 }
6031
6032                 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
6033                 msleep(2000);
6034         } else {
6035                 int ms;
6036
6037                 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6038                 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6039                         if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
6040                                 return 0;
6041                         msleep(100);
6042                         ms += 100;
6043                 }
6044                 return -ETIMEDOUT;
6045         }
6046         return 0;
6047 }
6048
6049 /**
6050  *      t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6051  *      @adap: the adapter
6052  *      @mbox: mailbox to use for the FW RESET command (if desired)
6053  *      @fw_data: the firmware image to write
6054  *      @size: image size
6055  *      @force: force upgrade even if firmware doesn't cooperate
6056  *
6057  *      Perform all of the steps necessary for upgrading an adapter's
6058  *      firmware image.  Normally this requires the cooperation of the
6059  *      existing firmware in order to halt all existing activities
6060  *      but if an invalid mailbox token is passed in we skip that step
6061  *      (though we'll still put the adapter microprocessor into RESET in
6062  *      that case).
6063  *
6064  *      On successful return the new firmware will have been loaded and
6065  *      the adapter will have been fully RESET losing all previous setup
6066  *      state.  On unsuccessful return the adapter may be completely hosed ...
6067  *      positive errno indicates that the adapter is ~probably~ intact, a
6068  *      negative errno indicates that things are looking bad ...
6069  */
6070 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6071                   const u8 *fw_data, unsigned int size, int force)
6072 {
6073         const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6074         int reset, ret;
6075
6076         if (!t4_fw_matches_chip(adap, fw_hdr))
6077                 return -EINVAL;
6078
6079         ret = t4_fw_halt(adap, mbox, force);
6080         if (ret < 0 && !force)
6081                 return ret;
6082
6083         ret = t4_load_fw(adap, fw_data, size);
6084         if (ret < 0)
6085                 return ret;
6086
6087         /*
6088          * Older versions of the firmware don't understand the new
6089          * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6090          * restart.  So for newly loaded older firmware we'll have to do the
6091          * RESET for it so it starts up on a clean slate.  We can tell if
6092          * the newly loaded firmware will handle this right by checking
6093          * its header flags to see if it advertises the capability.
6094          */
6095         reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6096         return t4_fw_restart(adap, mbox, reset);
6097 }
6098
6099 /**
6100  *      t4_fixup_host_params - fix up host-dependent parameters
6101  *      @adap: the adapter
6102  *      @page_size: the host's Base Page Size
6103  *      @cache_line_size: the host's Cache Line Size
6104  *
6105  *      Various registers in T4 contain values which are dependent on the
6106  *      host's Base Page and Cache Line Sizes.  This function will fix all of
6107  *      those registers with the appropriate values as passed in ...
6108  */
6109 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
6110                          unsigned int cache_line_size)
6111 {
6112         unsigned int page_shift = fls(page_size) - 1;
6113         unsigned int sge_hps = page_shift - 10;
6114         unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
6115         unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
6116         unsigned int fl_align_log = fls(fl_align) - 1;
6117
6118         t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
6119                      HOSTPAGESIZEPF0_V(sge_hps) |
6120                      HOSTPAGESIZEPF1_V(sge_hps) |
6121                      HOSTPAGESIZEPF2_V(sge_hps) |
6122                      HOSTPAGESIZEPF3_V(sge_hps) |
6123                      HOSTPAGESIZEPF4_V(sge_hps) |
6124                      HOSTPAGESIZEPF5_V(sge_hps) |
6125                      HOSTPAGESIZEPF6_V(sge_hps) |
6126                      HOSTPAGESIZEPF7_V(sge_hps));
6127
6128         if (is_t4(adap->params.chip)) {
6129                 t4_set_reg_field(adap, SGE_CONTROL_A,
6130                                  INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6131                                  EGRSTATUSPAGESIZE_F,
6132                                  INGPADBOUNDARY_V(fl_align_log -
6133                                                   INGPADBOUNDARY_SHIFT_X) |
6134                                  EGRSTATUSPAGESIZE_V(stat_len != 64));
6135         } else {
6136                 /* T5 introduced the separation of the Free List Padding and
6137                  * Packing Boundaries.  Thus, we can select a smaller Padding
6138                  * Boundary to avoid uselessly chewing up PCIe Link and Memory
6139                  * Bandwidth, and use a Packing Boundary which is large enough
6140                  * to avoid false sharing between CPUs, etc.
6141                  *
6142                  * For the PCI Link, the smaller the Padding Boundary the
6143                  * better.  For the Memory Controller, a smaller Padding
6144                  * Boundary is better until we cross under the Memory Line
6145                  * Size (the minimum unit of transfer to/from Memory).  If we
6146                  * have a Padding Boundary which is smaller than the Memory
6147                  * Line Size, that'll involve a Read-Modify-Write cycle on the
6148                  * Memory Controller which is never good.  For T5 the smallest
6149                  * Padding Boundary which we can select is 32 bytes which is
6150                  * larger than any known Memory Controller Line Size so we'll
6151                  * use that.
6152                  *
6153                  * T5 has a different interpretation of the "0" value for the
6154                  * Packing Boundary.  This corresponds to 16 bytes instead of
6155                  * the expected 32 bytes.  We never have a Packing Boundary
6156                  * less than 32 bytes so we can't use that special value but
6157                  * on the other hand, if we wanted 32 bytes, the best we can
6158                  * really do is 64 bytes.
6159                 */
6160                 if (fl_align <= 32) {
6161                         fl_align = 64;
6162                         fl_align_log = 6;
6163                 }
6164                 t4_set_reg_field(adap, SGE_CONTROL_A,
6165                                  INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6166                                  EGRSTATUSPAGESIZE_F,
6167                                  INGPADBOUNDARY_V(INGPCIEBOUNDARY_32B_X) |
6168                                  EGRSTATUSPAGESIZE_V(stat_len != 64));
6169                 t4_set_reg_field(adap, SGE_CONTROL2_A,
6170                                  INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
6171                                  INGPACKBOUNDARY_V(fl_align_log -
6172                                                    INGPACKBOUNDARY_SHIFT_X));
6173         }
6174         /*
6175          * Adjust various SGE Free List Host Buffer Sizes.
6176          *
6177          * This is something of a crock since we're using fixed indices into
6178          * the array which are also known by the sge.c code and the T4
6179          * Firmware Configuration File.  We need to come up with a much better
6180          * approach to managing this array.  For now, the first four entries
6181          * are:
6182          *
6183          *   0: Host Page Size
6184          *   1: 64KB
6185          *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
6186          *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
6187          *
6188          * For the single-MTU buffers in unpacked mode we need to include
6189          * space for the SGE Control Packet Shift, 14 byte Ethernet header,
6190          * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
6191          * Padding boundary.  All of these are accommodated in the Factory
6192          * Default Firmware Configuration File but we need to adjust it for
6193          * this host's cache line size.
6194          */
6195         t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
6196         t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
6197                      (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
6198                      & ~(fl_align-1));
6199         t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
6200                      (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
6201                      & ~(fl_align-1));
6202
6203         t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
6204
6205         return 0;
6206 }
6207
6208 /**
6209  *      t4_fw_initialize - ask FW to initialize the device
6210  *      @adap: the adapter
6211  *      @mbox: mailbox to use for the FW command
6212  *
6213  *      Issues a command to FW to partially initialize the device.  This
6214  *      performs initialization that generally doesn't depend on user input.
6215  */
6216 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6217 {
6218         struct fw_initialize_cmd c;
6219
6220         memset(&c, 0, sizeof(c));
6221         INIT_CMD(c, INITIALIZE, WRITE);
6222         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6223 }
6224
6225 /**
6226  *      t4_query_params_rw - query FW or device parameters
6227  *      @adap: the adapter
6228  *      @mbox: mailbox to use for the FW command
6229  *      @pf: the PF
6230  *      @vf: the VF
6231  *      @nparams: the number of parameters
6232  *      @params: the parameter names
6233  *      @val: the parameter values
6234  *      @rw: Write and read flag
6235  *
6236  *      Reads the value of FW or device parameters.  Up to 7 parameters can be
6237  *      queried at once.
6238  */
6239 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6240                        unsigned int vf, unsigned int nparams, const u32 *params,
6241                        u32 *val, int rw)
6242 {
6243         int i, ret;
6244         struct fw_params_cmd c;
6245         __be32 *p = &c.param[0].mnem;
6246
6247         if (nparams > 7)
6248                 return -EINVAL;
6249
6250         memset(&c, 0, sizeof(c));
6251         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6252                                   FW_CMD_REQUEST_F | FW_CMD_READ_F |
6253                                   FW_PARAMS_CMD_PFN_V(pf) |
6254                                   FW_PARAMS_CMD_VFN_V(vf));
6255         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6256
6257         for (i = 0; i < nparams; i++) {
6258                 *p++ = cpu_to_be32(*params++);
6259                 if (rw)
6260                         *p = cpu_to_be32(*(val + i));
6261                 p++;
6262         }
6263
6264         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6265         if (ret == 0)
6266                 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
6267                         *val++ = be32_to_cpu(*p);
6268         return ret;
6269 }
6270
6271 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6272                     unsigned int vf, unsigned int nparams, const u32 *params,
6273                     u32 *val)
6274 {
6275         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6276 }
6277
6278 /**
6279  *      t4_set_params_timeout - sets FW or device parameters
6280  *      @adap: the adapter
6281  *      @mbox: mailbox to use for the FW command
6282  *      @pf: the PF
6283  *      @vf: the VF
6284  *      @nparams: the number of parameters
6285  *      @params: the parameter names
6286  *      @val: the parameter values
6287  *      @timeout: the timeout time
6288  *
6289  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
6290  *      specified at once.
6291  */
6292 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
6293                           unsigned int pf, unsigned int vf,
6294                           unsigned int nparams, const u32 *params,
6295                           const u32 *val, int timeout)
6296 {
6297         struct fw_params_cmd c;
6298         __be32 *p = &c.param[0].mnem;
6299
6300         if (nparams > 7)
6301                 return -EINVAL;
6302
6303         memset(&c, 0, sizeof(c));
6304         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6305                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6306                                   FW_PARAMS_CMD_PFN_V(pf) |
6307                                   FW_PARAMS_CMD_VFN_V(vf));
6308         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6309
6310         while (nparams--) {
6311                 *p++ = cpu_to_be32(*params++);
6312                 *p++ = cpu_to_be32(*val++);
6313         }
6314
6315         return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
6316 }
6317
6318 /**
6319  *      t4_set_params - sets FW or device parameters
6320  *      @adap: the adapter
6321  *      @mbox: mailbox to use for the FW command
6322  *      @pf: the PF
6323  *      @vf: the VF
6324  *      @nparams: the number of parameters
6325  *      @params: the parameter names
6326  *      @val: the parameter values
6327  *
6328  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
6329  *      specified at once.
6330  */
6331 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6332                   unsigned int vf, unsigned int nparams, const u32 *params,
6333                   const u32 *val)
6334 {
6335         return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
6336                                      FW_CMD_MAX_TIMEOUT);
6337 }
6338
6339 /**
6340  *      t4_cfg_pfvf - configure PF/VF resource limits
6341  *      @adap: the adapter
6342  *      @mbox: mailbox to use for the FW command
6343  *      @pf: the PF being configured
6344  *      @vf: the VF being configured
6345  *      @txq: the max number of egress queues
6346  *      @txq_eth_ctrl: the max number of egress Ethernet or control queues
6347  *      @rxqi: the max number of interrupt-capable ingress queues
6348  *      @rxq: the max number of interruptless ingress queues
6349  *      @tc: the PCI traffic class
6350  *      @vi: the max number of virtual interfaces
6351  *      @cmask: the channel access rights mask for the PF/VF
6352  *      @pmask: the port access rights mask for the PF/VF
6353  *      @nexact: the maximum number of exact MPS filters
6354  *      @rcaps: read capabilities
6355  *      @wxcaps: write/execute capabilities
6356  *
6357  *      Configures resource limits and capabilities for a physical or virtual
6358  *      function.
6359  */
6360 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
6361                 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
6362                 unsigned int rxqi, unsigned int rxq, unsigned int tc,
6363                 unsigned int vi, unsigned int cmask, unsigned int pmask,
6364                 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
6365 {
6366         struct fw_pfvf_cmd c;
6367
6368         memset(&c, 0, sizeof(c));
6369         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
6370                                   FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
6371                                   FW_PFVF_CMD_VFN_V(vf));
6372         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6373         c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
6374                                      FW_PFVF_CMD_NIQ_V(rxq));
6375         c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
6376                                     FW_PFVF_CMD_PMASK_V(pmask) |
6377                                     FW_PFVF_CMD_NEQ_V(txq));
6378         c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
6379                                       FW_PFVF_CMD_NVI_V(vi) |
6380                                       FW_PFVF_CMD_NEXACTF_V(nexact));
6381         c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
6382                                         FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
6383                                         FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
6384         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6385 }
6386
6387 /**
6388  *      t4_alloc_vi - allocate a virtual interface
6389  *      @adap: the adapter
6390  *      @mbox: mailbox to use for the FW command
6391  *      @port: physical port associated with the VI
6392  *      @pf: the PF owning the VI
6393  *      @vf: the VF owning the VI
6394  *      @nmac: number of MAC addresses needed (1 to 5)
6395  *      @mac: the MAC addresses of the VI
6396  *      @rss_size: size of RSS table slice associated with this VI
6397  *
6398  *      Allocates a virtual interface for the given physical port.  If @mac is
6399  *      not %NULL it contains the MAC addresses of the VI as assigned by FW.
6400  *      @mac should be large enough to hold @nmac Ethernet addresses, they are
6401  *      stored consecutively so the space needed is @nmac * 6 bytes.
6402  *      Returns a negative error number or the non-negative VI id.
6403  */
6404 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
6405                 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
6406                 unsigned int *rss_size)
6407 {
6408         int ret;
6409         struct fw_vi_cmd c;
6410
6411         memset(&c, 0, sizeof(c));
6412         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
6413                                   FW_CMD_WRITE_F | FW_CMD_EXEC_F |
6414                                   FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
6415         c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
6416         c.portid_pkd = FW_VI_CMD_PORTID_V(port);
6417         c.nmac = nmac - 1;
6418
6419         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6420         if (ret)
6421                 return ret;
6422
6423         if (mac) {
6424                 memcpy(mac, c.mac, sizeof(c.mac));
6425                 switch (nmac) {
6426                 case 5:
6427                         memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
6428                 case 4:
6429                         memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
6430                 case 3:
6431                         memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
6432                 case 2:
6433                         memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
6434                 }
6435         }
6436         if (rss_size)
6437                 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
6438         return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
6439 }
6440
6441 /**
6442  *      t4_free_vi - free a virtual interface
6443  *      @adap: the adapter
6444  *      @mbox: mailbox to use for the FW command
6445  *      @pf: the PF owning the VI
6446  *      @vf: the VF owning the VI
6447  *      @viid: virtual interface identifiler
6448  *
6449  *      Free a previously allocated virtual interface.
6450  */
6451 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
6452                unsigned int vf, unsigned int viid)
6453 {
6454         struct fw_vi_cmd c;
6455
6456         memset(&c, 0, sizeof(c));
6457         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
6458                                   FW_CMD_REQUEST_F |
6459                                   FW_CMD_EXEC_F |
6460                                   FW_VI_CMD_PFN_V(pf) |
6461                                   FW_VI_CMD_VFN_V(vf));
6462         c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
6463         c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
6464
6465         return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6466 }
6467
6468 /**
6469  *      t4_set_rxmode - set Rx properties of a virtual interface
6470  *      @adap: the adapter
6471  *      @mbox: mailbox to use for the FW command
6472  *      @viid: the VI id
6473  *      @mtu: the new MTU or -1
6474  *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
6475  *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
6476  *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
6477  *      @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
6478  *      @sleep_ok: if true we may sleep while awaiting command completion
6479  *
6480  *      Sets Rx properties of a virtual interface.
6481  */
6482 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
6483                   int mtu, int promisc, int all_multi, int bcast, int vlanex,
6484                   bool sleep_ok)
6485 {
6486         struct fw_vi_rxmode_cmd c;
6487
6488         /* convert to FW values */
6489         if (mtu < 0)
6490                 mtu = FW_RXMODE_MTU_NO_CHG;
6491         if (promisc < 0)
6492                 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
6493         if (all_multi < 0)
6494                 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
6495         if (bcast < 0)
6496                 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
6497         if (vlanex < 0)
6498                 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
6499
6500         memset(&c, 0, sizeof(c));
6501         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
6502                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6503                                    FW_VI_RXMODE_CMD_VIID_V(viid));
6504         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6505         c.mtu_to_vlanexen =
6506                 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
6507                             FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
6508                             FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
6509                             FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
6510                             FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
6511         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6512 }
6513
6514 /**
6515  *      t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
6516  *      @adap: the adapter
6517  *      @mbox: mailbox to use for the FW command
6518  *      @viid: the VI id
6519  *      @free: if true any existing filters for this VI id are first removed
6520  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
6521  *      @addr: the MAC address(es)
6522  *      @idx: where to store the index of each allocated filter
6523  *      @hash: pointer to hash address filter bitmap
6524  *      @sleep_ok: call is allowed to sleep
6525  *
6526  *      Allocates an exact-match filter for each of the supplied addresses and
6527  *      sets it to the corresponding address.  If @idx is not %NULL it should
6528  *      have at least @naddr entries, each of which will be set to the index of
6529  *      the filter allocated for the corresponding MAC address.  If a filter
6530  *      could not be allocated for an address its index is set to 0xffff.
6531  *      If @hash is not %NULL addresses that fail to allocate an exact filter
6532  *      are hashed and update the hash filter bitmap pointed at by @hash.
6533  *
6534  *      Returns a negative error number or the number of filters allocated.
6535  */
6536 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
6537                       unsigned int viid, bool free, unsigned int naddr,
6538                       const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
6539 {
6540         int offset, ret = 0;
6541         struct fw_vi_mac_cmd c;
6542         unsigned int nfilters = 0;
6543         unsigned int max_naddr = adap->params.arch.mps_tcam_size;
6544         unsigned int rem = naddr;
6545
6546         if (naddr > max_naddr)
6547                 return -EINVAL;
6548
6549         for (offset = 0; offset < naddr ; /**/) {
6550                 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
6551                                          rem : ARRAY_SIZE(c.u.exact));
6552                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
6553                                                      u.exact[fw_naddr]), 16);
6554                 struct fw_vi_mac_exact *p;
6555                 int i;
6556
6557                 memset(&c, 0, sizeof(c));
6558                 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6559                                            FW_CMD_REQUEST_F |
6560                                            FW_CMD_WRITE_F |
6561                                            FW_CMD_EXEC_V(free) |
6562                                            FW_VI_MAC_CMD_VIID_V(viid));
6563                 c.freemacs_to_len16 =
6564                         cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
6565                                     FW_CMD_LEN16_V(len16));
6566
6567                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6568                         p->valid_to_idx =
6569                                 cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6570                                             FW_VI_MAC_CMD_IDX_V(
6571                                                     FW_VI_MAC_ADD_MAC));
6572                         memcpy(p->macaddr, addr[offset + i],
6573                                sizeof(p->macaddr));
6574                 }
6575
6576                 /* It's okay if we run out of space in our MAC address arena.
6577                  * Some of the addresses we submit may get stored so we need
6578                  * to run through the reply to see what the results were ...
6579                  */
6580                 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
6581                 if (ret && ret != -FW_ENOMEM)
6582                         break;
6583
6584                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6585                         u16 index = FW_VI_MAC_CMD_IDX_G(
6586                                         be16_to_cpu(p->valid_to_idx));
6587
6588                         if (idx)
6589                                 idx[offset + i] = (index >= max_naddr ?
6590                                                    0xffff : index);
6591                         if (index < max_naddr)
6592                                 nfilters++;
6593                         else if (hash)
6594                                 *hash |= (1ULL <<
6595                                           hash_mac_addr(addr[offset + i]));
6596                 }
6597
6598                 free = false;
6599                 offset += fw_naddr;
6600                 rem -= fw_naddr;
6601         }
6602
6603         if (ret == 0 || ret == -FW_ENOMEM)
6604                 ret = nfilters;
6605         return ret;
6606 }
6607
6608 /**
6609  *      t4_change_mac - modifies the exact-match filter for a MAC address
6610  *      @adap: the adapter
6611  *      @mbox: mailbox to use for the FW command
6612  *      @viid: the VI id
6613  *      @idx: index of existing filter for old value of MAC address, or -1
6614  *      @addr: the new MAC address value
6615  *      @persist: whether a new MAC allocation should be persistent
6616  *      @add_smt: if true also add the address to the HW SMT
6617  *
6618  *      Modifies an exact-match filter and sets it to the new MAC address.
6619  *      Note that in general it is not possible to modify the value of a given
6620  *      filter so the generic way to modify an address filter is to free the one
6621  *      being used by the old address value and allocate a new filter for the
6622  *      new address value.  @idx can be -1 if the address is a new addition.
6623  *
6624  *      Returns a negative error number or the index of the filter with the new
6625  *      MAC value.
6626  */
6627 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
6628                   int idx, const u8 *addr, bool persist, bool add_smt)
6629 {
6630         int ret, mode;
6631         struct fw_vi_mac_cmd c;
6632         struct fw_vi_mac_exact *p = c.u.exact;
6633         unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
6634
6635         if (idx < 0)                             /* new allocation */
6636                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
6637         mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
6638
6639         memset(&c, 0, sizeof(c));
6640         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6641                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6642                                    FW_VI_MAC_CMD_VIID_V(viid));
6643         c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
6644         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6645                                       FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
6646                                       FW_VI_MAC_CMD_IDX_V(idx));
6647         memcpy(p->macaddr, addr, sizeof(p->macaddr));
6648
6649         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6650         if (ret == 0) {
6651                 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
6652                 if (ret >= max_mac_addr)
6653                         ret = -ENOMEM;
6654         }
6655         return ret;
6656 }
6657
6658 /**
6659  *      t4_set_addr_hash - program the MAC inexact-match hash filter
6660  *      @adap: the adapter
6661  *      @mbox: mailbox to use for the FW command
6662  *      @viid: the VI id
6663  *      @ucast: whether the hash filter should also match unicast addresses
6664  *      @vec: the value to be written to the hash filter
6665  *      @sleep_ok: call is allowed to sleep
6666  *
6667  *      Sets the 64-bit inexact-match hash filter for a virtual interface.
6668  */
6669 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
6670                      bool ucast, u64 vec, bool sleep_ok)
6671 {
6672         struct fw_vi_mac_cmd c;
6673
6674         memset(&c, 0, sizeof(c));
6675         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6676                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6677                                    FW_VI_ENABLE_CMD_VIID_V(viid));
6678         c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
6679                                           FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
6680                                           FW_CMD_LEN16_V(1));
6681         c.u.hash.hashvec = cpu_to_be64(vec);
6682         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6683 }
6684
6685 /**
6686  *      t4_enable_vi_params - enable/disable a virtual interface
6687  *      @adap: the adapter
6688  *      @mbox: mailbox to use for the FW command
6689  *      @viid: the VI id
6690  *      @rx_en: 1=enable Rx, 0=disable Rx
6691  *      @tx_en: 1=enable Tx, 0=disable Tx
6692  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
6693  *
6694  *      Enables/disables a virtual interface.  Note that setting DCB Enable
6695  *      only makes sense when enabling a Virtual Interface ...
6696  */
6697 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
6698                         unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
6699 {
6700         struct fw_vi_enable_cmd c;
6701
6702         memset(&c, 0, sizeof(c));
6703         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
6704                                    FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6705                                    FW_VI_ENABLE_CMD_VIID_V(viid));
6706         c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
6707                                      FW_VI_ENABLE_CMD_EEN_V(tx_en) |
6708                                      FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
6709                                      FW_LEN16(c));
6710         return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
6711 }
6712
6713 /**
6714  *      t4_enable_vi - enable/disable a virtual interface
6715  *      @adap: the adapter
6716  *      @mbox: mailbox to use for the FW command
6717  *      @viid: the VI id
6718  *      @rx_en: 1=enable Rx, 0=disable Rx
6719  *      @tx_en: 1=enable Tx, 0=disable Tx
6720  *
6721  *      Enables/disables a virtual interface.
6722  */
6723 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
6724                  bool rx_en, bool tx_en)
6725 {
6726         return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
6727 }
6728
6729 /**
6730  *      t4_identify_port - identify a VI's port by blinking its LED
6731  *      @adap: the adapter
6732  *      @mbox: mailbox to use for the FW command
6733  *      @viid: the VI id
6734  *      @nblinks: how many times to blink LED at 2.5 Hz
6735  *
6736  *      Identifies a VI's port by blinking its LED.
6737  */
6738 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
6739                      unsigned int nblinks)
6740 {
6741         struct fw_vi_enable_cmd c;
6742
6743         memset(&c, 0, sizeof(c));
6744         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
6745                                    FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6746                                    FW_VI_ENABLE_CMD_VIID_V(viid));
6747         c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
6748         c.blinkdur = cpu_to_be16(nblinks);
6749         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6750 }
6751
6752 /**
6753  *      t4_iq_free - free an ingress queue and its FLs
6754  *      @adap: the adapter
6755  *      @mbox: mailbox to use for the FW command
6756  *      @pf: the PF owning the queues
6757  *      @vf: the VF owning the queues
6758  *      @iqtype: the ingress queue type
6759  *      @iqid: ingress queue id
6760  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
6761  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
6762  *
6763  *      Frees an ingress queue and its associated FLs, if any.
6764  */
6765 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
6766                unsigned int vf, unsigned int iqtype, unsigned int iqid,
6767                unsigned int fl0id, unsigned int fl1id)
6768 {
6769         struct fw_iq_cmd c;
6770
6771         memset(&c, 0, sizeof(c));
6772         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
6773                                   FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
6774                                   FW_IQ_CMD_VFN_V(vf));
6775         c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
6776         c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
6777         c.iqid = cpu_to_be16(iqid);
6778         c.fl0id = cpu_to_be16(fl0id);
6779         c.fl1id = cpu_to_be16(fl1id);
6780         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6781 }
6782
6783 /**
6784  *      t4_eth_eq_free - free an Ethernet egress queue
6785  *      @adap: the adapter
6786  *      @mbox: mailbox to use for the FW command
6787  *      @pf: the PF owning the queue
6788  *      @vf: the VF owning the queue
6789  *      @eqid: egress queue id
6790  *
6791  *      Frees an Ethernet egress queue.
6792  */
6793 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
6794                    unsigned int vf, unsigned int eqid)
6795 {
6796         struct fw_eq_eth_cmd c;
6797
6798         memset(&c, 0, sizeof(c));
6799         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
6800                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6801                                   FW_EQ_ETH_CMD_PFN_V(pf) |
6802                                   FW_EQ_ETH_CMD_VFN_V(vf));
6803         c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
6804         c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
6805         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6806 }
6807
6808 /**
6809  *      t4_ctrl_eq_free - free a control egress queue
6810  *      @adap: the adapter
6811  *      @mbox: mailbox to use for the FW command
6812  *      @pf: the PF owning the queue
6813  *      @vf: the VF owning the queue
6814  *      @eqid: egress queue id
6815  *
6816  *      Frees a control egress queue.
6817  */
6818 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
6819                     unsigned int vf, unsigned int eqid)
6820 {
6821         struct fw_eq_ctrl_cmd c;
6822
6823         memset(&c, 0, sizeof(c));
6824         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
6825                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6826                                   FW_EQ_CTRL_CMD_PFN_V(pf) |
6827                                   FW_EQ_CTRL_CMD_VFN_V(vf));
6828         c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
6829         c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
6830         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6831 }
6832
6833 /**
6834  *      t4_ofld_eq_free - free an offload egress queue
6835  *      @adap: the adapter
6836  *      @mbox: mailbox to use for the FW command
6837  *      @pf: the PF owning the queue
6838  *      @vf: the VF owning the queue
6839  *      @eqid: egress queue id
6840  *
6841  *      Frees a control egress queue.
6842  */
6843 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
6844                     unsigned int vf, unsigned int eqid)
6845 {
6846         struct fw_eq_ofld_cmd c;
6847
6848         memset(&c, 0, sizeof(c));
6849         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
6850                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6851                                   FW_EQ_OFLD_CMD_PFN_V(pf) |
6852                                   FW_EQ_OFLD_CMD_VFN_V(vf));
6853         c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
6854         c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
6855         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6856 }
6857
6858 /**
6859  *      t4_handle_fw_rpl - process a FW reply message
6860  *      @adap: the adapter
6861  *      @rpl: start of the FW message
6862  *
6863  *      Processes a FW message, such as link state change messages.
6864  */
6865 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
6866 {
6867         u8 opcode = *(const u8 *)rpl;
6868
6869         if (opcode == FW_PORT_CMD) {    /* link/module state change message */
6870                 int speed = 0, fc = 0;
6871                 const struct fw_port_cmd *p = (void *)rpl;
6872                 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
6873                 int port = adap->chan_map[chan];
6874                 struct port_info *pi = adap2pinfo(adap, port);
6875                 struct link_config *lc = &pi->link_cfg;
6876                 u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
6877                 int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
6878                 u32 mod = FW_PORT_CMD_MODTYPE_G(stat);
6879
6880                 if (stat & FW_PORT_CMD_RXPAUSE_F)
6881                         fc |= PAUSE_RX;
6882                 if (stat & FW_PORT_CMD_TXPAUSE_F)
6883                         fc |= PAUSE_TX;
6884                 if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
6885                         speed = 100;
6886                 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
6887                         speed = 1000;
6888                 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
6889                         speed = 10000;
6890                 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
6891                         speed = 40000;
6892
6893                 if (link_ok != lc->link_ok || speed != lc->speed ||
6894                     fc != lc->fc) {                    /* something changed */
6895                         lc->link_ok = link_ok;
6896                         lc->speed = speed;
6897                         lc->fc = fc;
6898                         lc->supported = be16_to_cpu(p->u.info.pcap);
6899                         t4_os_link_changed(adap, port, link_ok);
6900                 }
6901                 if (mod != pi->mod_type) {
6902                         pi->mod_type = mod;
6903                         t4_os_portmod_changed(adap, port);
6904                 }
6905         }
6906         return 0;
6907 }
6908
6909 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
6910 {
6911         u16 val;
6912
6913         if (pci_is_pcie(adapter->pdev)) {
6914                 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
6915                 p->speed = val & PCI_EXP_LNKSTA_CLS;
6916                 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
6917         }
6918 }
6919
6920 /**
6921  *      init_link_config - initialize a link's SW state
6922  *      @lc: structure holding the link state
6923  *      @caps: link capabilities
6924  *
6925  *      Initializes the SW state maintained for each link, including the link's
6926  *      capabilities and default speed/flow-control/autonegotiation settings.
6927  */
6928 static void init_link_config(struct link_config *lc, unsigned int caps)
6929 {
6930         lc->supported = caps;
6931         lc->requested_speed = 0;
6932         lc->speed = 0;
6933         lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
6934         if (lc->supported & FW_PORT_CAP_ANEG) {
6935                 lc->advertising = lc->supported & ADVERT_MASK;
6936                 lc->autoneg = AUTONEG_ENABLE;
6937                 lc->requested_fc |= PAUSE_AUTONEG;
6938         } else {
6939                 lc->advertising = 0;
6940                 lc->autoneg = AUTONEG_DISABLE;
6941         }
6942 }
6943
6944 #define CIM_PF_NOACCESS 0xeeeeeeee
6945
6946 int t4_wait_dev_ready(void __iomem *regs)
6947 {
6948         u32 whoami;
6949
6950         whoami = readl(regs + PL_WHOAMI_A);
6951         if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
6952                 return 0;
6953
6954         msleep(500);
6955         whoami = readl(regs + PL_WHOAMI_A);
6956         return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
6957 }
6958
6959 struct flash_desc {
6960         u32 vendor_and_model_id;
6961         u32 size_mb;
6962 };
6963
6964 static int get_flash_params(struct adapter *adap)
6965 {
6966         /* Table for non-Numonix supported flash parts.  Numonix parts are left
6967          * to the preexisting code.  All flash parts have 64KB sectors.
6968          */
6969         static struct flash_desc supported_flash[] = {
6970                 { 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
6971         };
6972
6973         int ret;
6974         u32 info;
6975
6976         ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
6977         if (!ret)
6978                 ret = sf1_read(adap, 3, 0, 1, &info);
6979         t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
6980         if (ret)
6981                 return ret;
6982
6983         for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
6984                 if (supported_flash[ret].vendor_and_model_id == info) {
6985                         adap->params.sf_size = supported_flash[ret].size_mb;
6986                         adap->params.sf_nsec =
6987                                 adap->params.sf_size / SF_SEC_SIZE;
6988                         return 0;
6989                 }
6990
6991         if ((info & 0xff) != 0x20)             /* not a Numonix flash */
6992                 return -EINVAL;
6993         info >>= 16;                           /* log2 of size */
6994         if (info >= 0x14 && info < 0x18)
6995                 adap->params.sf_nsec = 1 << (info - 16);
6996         else if (info == 0x18)
6997                 adap->params.sf_nsec = 64;
6998         else
6999                 return -EINVAL;
7000         adap->params.sf_size = 1 << info;
7001         adap->params.sf_fw_start =
7002                 t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M;
7003
7004         if (adap->params.sf_size < FLASH_MIN_SIZE)
7005                 dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
7006                          adap->params.sf_size, FLASH_MIN_SIZE);
7007         return 0;
7008 }
7009
7010 static void set_pcie_completion_timeout(struct adapter *adapter, u8 range)
7011 {
7012         u16 val;
7013         u32 pcie_cap;
7014
7015         pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
7016         if (pcie_cap) {
7017                 pci_read_config_word(adapter->pdev,
7018                                      pcie_cap + PCI_EXP_DEVCTL2, &val);
7019                 val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT;
7020                 val |= range;
7021                 pci_write_config_word(adapter->pdev,
7022                                       pcie_cap + PCI_EXP_DEVCTL2, val);
7023         }
7024 }
7025
7026 /**
7027  *      t4_prep_adapter - prepare SW and HW for operation
7028  *      @adapter: the adapter
7029  *      @reset: if true perform a HW reset
7030  *
7031  *      Initialize adapter SW state for the various HW modules, set initial
7032  *      values for some adapter tunables, take PHYs out of reset, and
7033  *      initialize the MDIO interface.
7034  */
7035 int t4_prep_adapter(struct adapter *adapter)
7036 {
7037         int ret, ver;
7038         uint16_t device_id;
7039         u32 pl_rev;
7040
7041         get_pci_mode(adapter, &adapter->params.pci);
7042         pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
7043
7044         ret = get_flash_params(adapter);
7045         if (ret < 0) {
7046                 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
7047                 return ret;
7048         }
7049
7050         /* Retrieve adapter's device ID
7051          */
7052         pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
7053         ver = device_id >> 12;
7054         adapter->params.chip = 0;
7055         switch (ver) {
7056         case CHELSIO_T4:
7057                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
7058                 adapter->params.arch.sge_fl_db = DBPRIO_F;
7059                 adapter->params.arch.mps_tcam_size =
7060                                  NUM_MPS_CLS_SRAM_L_INSTANCES;
7061                 adapter->params.arch.mps_rplc_size = 128;
7062                 adapter->params.arch.nchan = NCHAN;
7063                 adapter->params.arch.vfcount = 128;
7064                 break;
7065         case CHELSIO_T5:
7066                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
7067                 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
7068                 adapter->params.arch.mps_tcam_size =
7069                                  NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7070                 adapter->params.arch.mps_rplc_size = 128;
7071                 adapter->params.arch.nchan = NCHAN;
7072                 adapter->params.arch.vfcount = 128;
7073                 break;
7074         case CHELSIO_T6:
7075                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
7076                 adapter->params.arch.sge_fl_db = 0;
7077                 adapter->params.arch.mps_tcam_size =
7078                                  NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7079                 adapter->params.arch.mps_rplc_size = 256;
7080                 adapter->params.arch.nchan = 2;
7081                 adapter->params.arch.vfcount = 256;
7082                 break;
7083         default:
7084                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
7085                         device_id);
7086                 return -EINVAL;
7087         }
7088
7089         adapter->params.cim_la_size = CIMLA_SIZE;
7090         init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
7091
7092         /*
7093          * Default port for debugging in case we can't reach FW.
7094          */
7095         adapter->params.nports = 1;
7096         adapter->params.portvec = 1;
7097         adapter->params.vpd.cclk = 50000;
7098
7099         /* Set pci completion timeout value to 4 seconds. */
7100         set_pcie_completion_timeout(adapter, 0xd);
7101         return 0;
7102 }
7103
7104 /**
7105  *      t4_bar2_sge_qregs - return BAR2 SGE Queue register information
7106  *      @adapter: the adapter
7107  *      @qid: the Queue ID
7108  *      @qtype: the Ingress or Egress type for @qid
7109  *      @user: true if this request is for a user mode queue
7110  *      @pbar2_qoffset: BAR2 Queue Offset
7111  *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
7112  *
7113  *      Returns the BAR2 SGE Queue Registers information associated with the
7114  *      indicated Absolute Queue ID.  These are passed back in return value
7115  *      pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
7116  *      and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
7117  *
7118  *      This may return an error which indicates that BAR2 SGE Queue
7119  *      registers aren't available.  If an error is not returned, then the
7120  *      following values are returned:
7121  *
7122  *        *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
7123  *        *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
7124  *
7125  *      If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
7126  *      require the "Inferred Queue ID" ability may be used.  E.g. the
7127  *      Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
7128  *      then these "Inferred Queue ID" register may not be used.
7129  */
7130 int t4_bar2_sge_qregs(struct adapter *adapter,
7131                       unsigned int qid,
7132                       enum t4_bar2_qtype qtype,
7133                       int user,
7134                       u64 *pbar2_qoffset,
7135                       unsigned int *pbar2_qid)
7136 {
7137         unsigned int page_shift, page_size, qpp_shift, qpp_mask;
7138         u64 bar2_page_offset, bar2_qoffset;
7139         unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
7140
7141         /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
7142         if (!user && is_t4(adapter->params.chip))
7143                 return -EINVAL;
7144
7145         /* Get our SGE Page Size parameters.
7146          */
7147         page_shift = adapter->params.sge.hps + 10;
7148         page_size = 1 << page_shift;
7149
7150         /* Get the right Queues per Page parameters for our Queue.
7151          */
7152         qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
7153                      ? adapter->params.sge.eq_qpp
7154                      : adapter->params.sge.iq_qpp);
7155         qpp_mask = (1 << qpp_shift) - 1;
7156
7157         /*  Calculate the basics of the BAR2 SGE Queue register area:
7158          *  o The BAR2 page the Queue registers will be in.
7159          *  o The BAR2 Queue ID.
7160          *  o The BAR2 Queue ID Offset into the BAR2 page.
7161          */
7162         bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
7163         bar2_qid = qid & qpp_mask;
7164         bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
7165
7166         /* If the BAR2 Queue ID Offset is less than the Page Size, then the
7167          * hardware will infer the Absolute Queue ID simply from the writes to
7168          * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
7169          * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
7170          * write to the first BAR2 SGE Queue Area within the BAR2 Page with
7171          * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
7172          * from the BAR2 Page and BAR2 Queue ID.
7173          *
7174          * One important censequence of this is that some BAR2 SGE registers
7175          * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
7176          * there.  But other registers synthesize the SGE Queue ID purely
7177          * from the writes to the registers -- the Write Combined Doorbell
7178          * Buffer is a good example.  These BAR2 SGE Registers are only
7179          * available for those BAR2 SGE Register areas where the SGE Absolute
7180          * Queue ID can be inferred from simple writes.
7181          */
7182         bar2_qoffset = bar2_page_offset;
7183         bar2_qinferred = (bar2_qid_offset < page_size);
7184         if (bar2_qinferred) {
7185                 bar2_qoffset += bar2_qid_offset;
7186                 bar2_qid = 0;
7187         }
7188
7189         *pbar2_qoffset = bar2_qoffset;
7190         *pbar2_qid = bar2_qid;
7191         return 0;
7192 }
7193
7194 /**
7195  *      t4_init_devlog_params - initialize adapter->params.devlog
7196  *      @adap: the adapter
7197  *
7198  *      Initialize various fields of the adapter's Firmware Device Log
7199  *      Parameters structure.
7200  */
7201 int t4_init_devlog_params(struct adapter *adap)
7202 {
7203         struct devlog_params *dparams = &adap->params.devlog;
7204         u32 pf_dparams;
7205         unsigned int devlog_meminfo;
7206         struct fw_devlog_cmd devlog_cmd;
7207         int ret;
7208
7209         /* If we're dealing with newer firmware, the Device Log Paramerters
7210          * are stored in a designated register which allows us to access the
7211          * Device Log even if we can't talk to the firmware.
7212          */
7213         pf_dparams =
7214                 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
7215         if (pf_dparams) {
7216                 unsigned int nentries, nentries128;
7217
7218                 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
7219                 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
7220
7221                 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
7222                 nentries = (nentries128 + 1) * 128;
7223                 dparams->size = nentries * sizeof(struct fw_devlog_e);
7224
7225                 return 0;
7226         }
7227
7228         /* Otherwise, ask the firmware for it's Device Log Parameters.
7229          */
7230         memset(&devlog_cmd, 0, sizeof(devlog_cmd));
7231         devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
7232                                              FW_CMD_REQUEST_F | FW_CMD_READ_F);
7233         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
7234         ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
7235                          &devlog_cmd);
7236         if (ret)
7237                 return ret;
7238
7239         devlog_meminfo =
7240                 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
7241         dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
7242         dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
7243         dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
7244
7245         return 0;
7246 }
7247
7248 /**
7249  *      t4_init_sge_params - initialize adap->params.sge
7250  *      @adapter: the adapter
7251  *
7252  *      Initialize various fields of the adapter's SGE Parameters structure.
7253  */
7254 int t4_init_sge_params(struct adapter *adapter)
7255 {
7256         struct sge_params *sge_params = &adapter->params.sge;
7257         u32 hps, qpp;
7258         unsigned int s_hps, s_qpp;
7259
7260         /* Extract the SGE Page Size for our PF.
7261          */
7262         hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
7263         s_hps = (HOSTPAGESIZEPF0_S +
7264                  (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
7265         sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
7266
7267         /* Extract the SGE Egress and Ingess Queues Per Page for our PF.
7268          */
7269         s_qpp = (QUEUESPERPAGEPF0_S +
7270                 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
7271         qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
7272         sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
7273         qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
7274         sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
7275
7276         return 0;
7277 }
7278
7279 /**
7280  *      t4_init_tp_params - initialize adap->params.tp
7281  *      @adap: the adapter
7282  *
7283  *      Initialize various fields of the adapter's TP Parameters structure.
7284  */
7285 int t4_init_tp_params(struct adapter *adap)
7286 {
7287         int chan;
7288         u32 v;
7289
7290         v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
7291         adap->params.tp.tre = TIMERRESOLUTION_G(v);
7292         adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
7293
7294         /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
7295         for (chan = 0; chan < NCHAN; chan++)
7296                 adap->params.tp.tx_modq[chan] = chan;
7297
7298         /* Cache the adapter's Compressed Filter Mode and global Incress
7299          * Configuration.
7300          */
7301         if (t4_use_ldst(adap)) {
7302                 t4_fw_tp_pio_rw(adap, &adap->params.tp.vlan_pri_map, 1,
7303                                 TP_VLAN_PRI_MAP_A, 1);
7304                 t4_fw_tp_pio_rw(adap, &adap->params.tp.ingress_config, 1,
7305                                 TP_INGRESS_CONFIG_A, 1);
7306         } else {
7307                 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7308                                  &adap->params.tp.vlan_pri_map, 1,
7309                                  TP_VLAN_PRI_MAP_A);
7310                 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7311                                  &adap->params.tp.ingress_config, 1,
7312                                  TP_INGRESS_CONFIG_A);
7313         }
7314
7315         /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
7316          * shift positions of several elements of the Compressed Filter Tuple
7317          * for this adapter which we need frequently ...
7318          */
7319         adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
7320         adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
7321         adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
7322         adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
7323                                                                PROTOCOL_F);
7324
7325         /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
7326          * represents the presence of an Outer VLAN instead of a VNIC ID.
7327          */
7328         if ((adap->params.tp.ingress_config & VNIC_F) == 0)
7329                 adap->params.tp.vnic_shift = -1;
7330
7331         return 0;
7332 }
7333
7334 /**
7335  *      t4_filter_field_shift - calculate filter field shift
7336  *      @adap: the adapter
7337  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
7338  *
7339  *      Return the shift position of a filter field within the Compressed
7340  *      Filter Tuple.  The filter field is specified via its selection bit
7341  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
7342  */
7343 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
7344 {
7345         unsigned int filter_mode = adap->params.tp.vlan_pri_map;
7346         unsigned int sel;
7347         int field_shift;
7348
7349         if ((filter_mode & filter_sel) == 0)
7350                 return -1;
7351
7352         for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
7353                 switch (filter_mode & sel) {
7354                 case FCOE_F:
7355                         field_shift += FT_FCOE_W;
7356                         break;
7357                 case PORT_F:
7358                         field_shift += FT_PORT_W;
7359                         break;
7360                 case VNIC_ID_F:
7361                         field_shift += FT_VNIC_ID_W;
7362                         break;
7363                 case VLAN_F:
7364                         field_shift += FT_VLAN_W;
7365                         break;
7366                 case TOS_F:
7367                         field_shift += FT_TOS_W;
7368                         break;
7369                 case PROTOCOL_F:
7370                         field_shift += FT_PROTOCOL_W;
7371                         break;
7372                 case ETHERTYPE_F:
7373                         field_shift += FT_ETHERTYPE_W;
7374                         break;
7375                 case MACMATCH_F:
7376                         field_shift += FT_MACMATCH_W;
7377                         break;
7378                 case MPSHITTYPE_F:
7379                         field_shift += FT_MPSHITTYPE_W;
7380                         break;
7381                 case FRAGMENTATION_F:
7382                         field_shift += FT_FRAGMENTATION_W;
7383                         break;
7384                 }
7385         }
7386         return field_shift;
7387 }
7388
7389 int t4_init_rss_mode(struct adapter *adap, int mbox)
7390 {
7391         int i, ret;
7392         struct fw_rss_vi_config_cmd rvc;
7393
7394         memset(&rvc, 0, sizeof(rvc));
7395
7396         for_each_port(adap, i) {
7397                 struct port_info *p = adap2pinfo(adap, i);
7398
7399                 rvc.op_to_viid =
7400                         cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
7401                                     FW_CMD_REQUEST_F | FW_CMD_READ_F |
7402                                     FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
7403                 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
7404                 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
7405                 if (ret)
7406                         return ret;
7407                 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
7408         }
7409         return 0;
7410 }
7411
7412 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
7413 {
7414         u8 addr[6];
7415         int ret, i, j = 0;
7416         struct fw_port_cmd c;
7417         struct fw_rss_vi_config_cmd rvc;
7418
7419         memset(&c, 0, sizeof(c));
7420         memset(&rvc, 0, sizeof(rvc));
7421
7422         for_each_port(adap, i) {
7423                 unsigned int rss_size;
7424                 struct port_info *p = adap2pinfo(adap, i);
7425
7426                 while ((adap->params.portvec & (1 << j)) == 0)
7427                         j++;
7428
7429                 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
7430                                              FW_CMD_REQUEST_F | FW_CMD_READ_F |
7431                                              FW_PORT_CMD_PORTID_V(j));
7432                 c.action_to_len16 = cpu_to_be32(
7433                         FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
7434                         FW_LEN16(c));
7435                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7436                 if (ret)
7437                         return ret;
7438
7439                 ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
7440                 if (ret < 0)
7441                         return ret;
7442
7443                 p->viid = ret;
7444                 p->tx_chan = j;
7445                 p->lport = j;
7446                 p->rss_size = rss_size;
7447                 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
7448                 adap->port[i]->dev_port = j;
7449
7450                 ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
7451                 p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ?
7452                         FW_PORT_CMD_MDIOADDR_G(ret) : -1;
7453                 p->port_type = FW_PORT_CMD_PTYPE_G(ret);
7454                 p->mod_type = FW_PORT_MOD_TYPE_NA;
7455
7456                 rvc.op_to_viid =
7457                         cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
7458                                     FW_CMD_REQUEST_F | FW_CMD_READ_F |
7459                                     FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
7460                 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
7461                 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
7462                 if (ret)
7463                         return ret;
7464                 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
7465
7466                 init_link_config(&p->link_cfg, be16_to_cpu(c.u.info.pcap));
7467                 j++;
7468         }
7469         return 0;
7470 }
7471
7472 /**
7473  *      t4_read_cimq_cfg - read CIM queue configuration
7474  *      @adap: the adapter
7475  *      @base: holds the queue base addresses in bytes
7476  *      @size: holds the queue sizes in bytes
7477  *      @thres: holds the queue full thresholds in bytes
7478  *
7479  *      Returns the current configuration of the CIM queues, starting with
7480  *      the IBQs, then the OBQs.
7481  */
7482 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
7483 {
7484         unsigned int i, v;
7485         int cim_num_obq = is_t4(adap->params.chip) ?
7486                                 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
7487
7488         for (i = 0; i < CIM_NUM_IBQ; i++) {
7489                 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
7490                              QUENUMSELECT_V(i));
7491                 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7492                 /* value is in 256-byte units */
7493                 *base++ = CIMQBASE_G(v) * 256;
7494                 *size++ = CIMQSIZE_G(v) * 256;
7495                 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
7496         }
7497         for (i = 0; i < cim_num_obq; i++) {
7498                 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
7499                              QUENUMSELECT_V(i));
7500                 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7501                 /* value is in 256-byte units */
7502                 *base++ = CIMQBASE_G(v) * 256;
7503                 *size++ = CIMQSIZE_G(v) * 256;
7504         }
7505 }
7506
7507 /**
7508  *      t4_read_cim_ibq - read the contents of a CIM inbound queue
7509  *      @adap: the adapter
7510  *      @qid: the queue index
7511  *      @data: where to store the queue contents
7512  *      @n: capacity of @data in 32-bit words
7513  *
7514  *      Reads the contents of the selected CIM queue starting at address 0 up
7515  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
7516  *      error and the number of 32-bit words actually read on success.
7517  */
7518 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7519 {
7520         int i, err, attempts;
7521         unsigned int addr;
7522         const unsigned int nwords = CIM_IBQ_SIZE * 4;
7523
7524         if (qid > 5 || (n & 3))
7525                 return -EINVAL;
7526
7527         addr = qid * nwords;
7528         if (n > nwords)
7529                 n = nwords;
7530
7531         /* It might take 3-10ms before the IBQ debug read access is allowed.
7532          * Wait for 1 Sec with a delay of 1 usec.
7533          */
7534         attempts = 1000000;
7535
7536         for (i = 0; i < n; i++, addr++) {
7537                 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
7538                              IBQDBGEN_F);
7539                 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
7540                                       attempts, 1);
7541                 if (err)
7542                         return err;
7543                 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
7544         }
7545         t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
7546         return i;
7547 }
7548
7549 /**
7550  *      t4_read_cim_obq - read the contents of a CIM outbound queue
7551  *      @adap: the adapter
7552  *      @qid: the queue index
7553  *      @data: where to store the queue contents
7554  *      @n: capacity of @data in 32-bit words
7555  *
7556  *      Reads the contents of the selected CIM queue starting at address 0 up
7557  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
7558  *      error and the number of 32-bit words actually read on success.
7559  */
7560 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7561 {
7562         int i, err;
7563         unsigned int addr, v, nwords;
7564         int cim_num_obq = is_t4(adap->params.chip) ?
7565                                 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
7566
7567         if ((qid > (cim_num_obq - 1)) || (n & 3))
7568                 return -EINVAL;
7569
7570         t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
7571                      QUENUMSELECT_V(qid));
7572         v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7573
7574         addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
7575         nwords = CIMQSIZE_G(v) * 64;  /* same */
7576         if (n > nwords)
7577                 n = nwords;
7578
7579         for (i = 0; i < n; i++, addr++) {
7580                 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
7581                              OBQDBGEN_F);
7582                 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
7583                                       2, 1);
7584                 if (err)
7585                         return err;
7586                 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
7587         }
7588         t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
7589         return i;
7590 }
7591
7592 /**
7593  *      t4_cim_read - read a block from CIM internal address space
7594  *      @adap: the adapter
7595  *      @addr: the start address within the CIM address space
7596  *      @n: number of words to read
7597  *      @valp: where to store the result
7598  *
7599  *      Reads a block of 4-byte words from the CIM intenal address space.
7600  */
7601 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
7602                 unsigned int *valp)
7603 {
7604         int ret = 0;
7605
7606         if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
7607                 return -EBUSY;
7608
7609         for ( ; !ret && n--; addr += 4) {
7610                 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
7611                 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
7612                                       0, 5, 2);
7613                 if (!ret)
7614                         *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
7615         }
7616         return ret;
7617 }
7618
7619 /**
7620  *      t4_cim_write - write a block into CIM internal address space
7621  *      @adap: the adapter
7622  *      @addr: the start address within the CIM address space
7623  *      @n: number of words to write
7624  *      @valp: set of values to write
7625  *
7626  *      Writes a block of 4-byte words into the CIM intenal address space.
7627  */
7628 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
7629                  const unsigned int *valp)
7630 {
7631         int ret = 0;
7632
7633         if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
7634                 return -EBUSY;
7635
7636         for ( ; !ret && n--; addr += 4) {
7637                 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
7638                 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
7639                 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
7640                                       0, 5, 2);
7641         }
7642         return ret;
7643 }
7644
7645 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
7646                          unsigned int val)
7647 {
7648         return t4_cim_write(adap, addr, 1, &val);
7649 }
7650
7651 /**
7652  *      t4_cim_read_la - read CIM LA capture buffer
7653  *      @adap: the adapter
7654  *      @la_buf: where to store the LA data
7655  *      @wrptr: the HW write pointer within the capture buffer
7656  *
7657  *      Reads the contents of the CIM LA buffer with the most recent entry at
7658  *      the end of the returned data and with the entry at @wrptr first.
7659  *      We try to leave the LA in the running state we find it in.
7660  */
7661 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
7662 {
7663         int i, ret;
7664         unsigned int cfg, val, idx;
7665
7666         ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
7667         if (ret)
7668                 return ret;
7669
7670         if (cfg & UPDBGLAEN_F) {        /* LA is running, freeze it */
7671                 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
7672                 if (ret)
7673                         return ret;
7674         }
7675
7676         ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
7677         if (ret)
7678                 goto restart;
7679
7680         idx = UPDBGLAWRPTR_G(val);
7681         if (wrptr)
7682                 *wrptr = idx;
7683
7684         for (i = 0; i < adap->params.cim_la_size; i++) {
7685                 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
7686                                     UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
7687                 if (ret)
7688                         break;
7689                 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
7690                 if (ret)
7691                         break;
7692                 if (val & UPDBGLARDEN_F) {
7693                         ret = -ETIMEDOUT;
7694                         break;
7695                 }
7696                 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
7697                 if (ret)
7698                         break;
7699                 idx = (idx + 1) & UPDBGLARDPTR_M;
7700         }
7701 restart:
7702         if (cfg & UPDBGLAEN_F) {
7703                 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
7704                                       cfg & ~UPDBGLARDEN_F);
7705                 if (!ret)
7706                         ret = r;
7707         }
7708         return ret;
7709 }
7710
7711 /**
7712  *      t4_tp_read_la - read TP LA capture buffer
7713  *      @adap: the adapter
7714  *      @la_buf: where to store the LA data
7715  *      @wrptr: the HW write pointer within the capture buffer
7716  *
7717  *      Reads the contents of the TP LA buffer with the most recent entry at
7718  *      the end of the returned data and with the entry at @wrptr first.
7719  *      We leave the LA in the running state we find it in.
7720  */
7721 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
7722 {
7723         bool last_incomplete;
7724         unsigned int i, cfg, val, idx;
7725
7726         cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
7727         if (cfg & DBGLAENABLE_F)                        /* freeze LA */
7728                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
7729                              adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
7730
7731         val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
7732         idx = DBGLAWPTR_G(val);
7733         last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
7734         if (last_incomplete)
7735                 idx = (idx + 1) & DBGLARPTR_M;
7736         if (wrptr)
7737                 *wrptr = idx;
7738
7739         val &= 0xffff;
7740         val &= ~DBGLARPTR_V(DBGLARPTR_M);
7741         val |= adap->params.tp.la_mask;
7742
7743         for (i = 0; i < TPLA_SIZE; i++) {
7744                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
7745                 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
7746                 idx = (idx + 1) & DBGLARPTR_M;
7747         }
7748
7749         /* Wipe out last entry if it isn't valid */
7750         if (last_incomplete)
7751                 la_buf[TPLA_SIZE - 1] = ~0ULL;
7752
7753         if (cfg & DBGLAENABLE_F)                    /* restore running state */
7754                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
7755                              cfg | adap->params.tp.la_mask);
7756 }
7757
7758 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
7759  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
7760  * state for more than the Warning Threshold then we'll issue a warning about
7761  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
7762  * appears to be hung every Warning Repeat second till the situation clears.
7763  * If the situation clears, we'll note that as well.
7764  */
7765 #define SGE_IDMA_WARN_THRESH 1
7766 #define SGE_IDMA_WARN_REPEAT 300
7767
7768 /**
7769  *      t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
7770  *      @adapter: the adapter
7771  *      @idma: the adapter IDMA Monitor state
7772  *
7773  *      Initialize the state of an SGE Ingress DMA Monitor.
7774  */
7775 void t4_idma_monitor_init(struct adapter *adapter,
7776                           struct sge_idma_monitor_state *idma)
7777 {
7778         /* Initialize the state variables for detecting an SGE Ingress DMA
7779          * hang.  The SGE has internal counters which count up on each clock
7780          * tick whenever the SGE finds its Ingress DMA State Engines in the
7781          * same state they were on the previous clock tick.  The clock used is
7782          * the Core Clock so we have a limit on the maximum "time" they can
7783          * record; typically a very small number of seconds.  For instance,
7784          * with a 600MHz Core Clock, we can only count up to a bit more than
7785          * 7s.  So we'll synthesize a larger counter in order to not run the
7786          * risk of having the "timers" overflow and give us the flexibility to
7787          * maintain a Hung SGE State Machine of our own which operates across
7788          * a longer time frame.
7789          */
7790         idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
7791         idma->idma_stalled[0] = 0;
7792         idma->idma_stalled[1] = 0;
7793 }
7794
7795 /**
7796  *      t4_idma_monitor - monitor SGE Ingress DMA state
7797  *      @adapter: the adapter
7798  *      @idma: the adapter IDMA Monitor state
7799  *      @hz: number of ticks/second
7800  *      @ticks: number of ticks since the last IDMA Monitor call
7801  */
7802 void t4_idma_monitor(struct adapter *adapter,
7803                      struct sge_idma_monitor_state *idma,
7804                      int hz, int ticks)
7805 {
7806         int i, idma_same_state_cnt[2];
7807
7808          /* Read the SGE Debug Ingress DMA Same State Count registers.  These
7809           * are counters inside the SGE which count up on each clock when the
7810           * SGE finds its Ingress DMA State Engines in the same states they
7811           * were in the previous clock.  The counters will peg out at
7812           * 0xffffffff without wrapping around so once they pass the 1s
7813           * threshold they'll stay above that till the IDMA state changes.
7814           */
7815         t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
7816         idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
7817         idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
7818
7819         for (i = 0; i < 2; i++) {
7820                 u32 debug0, debug11;
7821
7822                 /* If the Ingress DMA Same State Counter ("timer") is less
7823                  * than 1s, then we can reset our synthesized Stall Timer and
7824                  * continue.  If we have previously emitted warnings about a
7825                  * potential stalled Ingress Queue, issue a note indicating
7826                  * that the Ingress Queue has resumed forward progress.
7827                  */
7828                 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
7829                         if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
7830                                 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
7831                                          "resumed after %d seconds\n",
7832                                          i, idma->idma_qid[i],
7833                                          idma->idma_stalled[i] / hz);
7834                         idma->idma_stalled[i] = 0;
7835                         continue;
7836                 }
7837
7838                 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
7839                  * domain.  The first time we get here it'll be because we
7840                  * passed the 1s Threshold; each additional time it'll be
7841                  * because the RX Timer Callback is being fired on its regular
7842                  * schedule.
7843                  *
7844                  * If the stall is below our Potential Hung Ingress Queue
7845                  * Warning Threshold, continue.
7846                  */
7847                 if (idma->idma_stalled[i] == 0) {
7848                         idma->idma_stalled[i] = hz;
7849                         idma->idma_warn[i] = 0;
7850                 } else {
7851                         idma->idma_stalled[i] += ticks;
7852                         idma->idma_warn[i] -= ticks;
7853                 }
7854
7855                 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
7856                         continue;
7857
7858                 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
7859                  */
7860                 if (idma->idma_warn[i] > 0)
7861                         continue;
7862                 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
7863
7864                 /* Read and save the SGE IDMA State and Queue ID information.
7865                  * We do this every time in case it changes across time ...
7866                  * can't be too careful ...
7867                  */
7868                 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
7869                 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
7870                 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
7871
7872                 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
7873                 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
7874                 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
7875
7876                 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
7877                          "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
7878                          i, idma->idma_qid[i], idma->idma_state[i],
7879                          idma->idma_stalled[i] / hz,
7880                          debug0, debug11);
7881                 t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
7882         }
7883 }