]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/intel/e1000/e1000_ethtool.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/ide
[karo-tx-linux.git] / drivers / net / ethernet / intel / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2  * Intel PRO/1000 Linux driver
3  * Copyright(c) 1999 - 2006 Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * The full GNU General Public License is included in this distribution in
15  * the file called "COPYING".
16  *
17  * Contact Information:
18  * Linux NICS <linux.nics@intel.com>
19  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
20  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
21  *
22  ******************************************************************************/
23
24 /* ethtool support for e1000 */
25
26 #include "e1000.h"
27 #include <linux/jiffies.h>
28 #include <linux/uaccess.h>
29
30 enum {NETDEV_STATS, E1000_STATS};
31
32 struct e1000_stats {
33         char stat_string[ETH_GSTRING_LEN];
34         int type;
35         int sizeof_stat;
36         int stat_offset;
37 };
38
39 #define E1000_STAT(m)           E1000_STATS, \
40                                 sizeof(((struct e1000_adapter *)0)->m), \
41                                 offsetof(struct e1000_adapter, m)
42 #define E1000_NETDEV_STAT(m)    NETDEV_STATS, \
43                                 sizeof(((struct net_device *)0)->m), \
44                                 offsetof(struct net_device, m)
45
46 static const struct e1000_stats e1000_gstrings_stats[] = {
47         { "rx_packets", E1000_STAT(stats.gprc) },
48         { "tx_packets", E1000_STAT(stats.gptc) },
49         { "rx_bytes", E1000_STAT(stats.gorcl) },
50         { "tx_bytes", E1000_STAT(stats.gotcl) },
51         { "rx_broadcast", E1000_STAT(stats.bprc) },
52         { "tx_broadcast", E1000_STAT(stats.bptc) },
53         { "rx_multicast", E1000_STAT(stats.mprc) },
54         { "tx_multicast", E1000_STAT(stats.mptc) },
55         { "rx_errors", E1000_STAT(stats.rxerrc) },
56         { "tx_errors", E1000_STAT(stats.txerrc) },
57         { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
58         { "multicast", E1000_STAT(stats.mprc) },
59         { "collisions", E1000_STAT(stats.colc) },
60         { "rx_length_errors", E1000_STAT(stats.rlerrc) },
61         { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
62         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
63         { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
64         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
65         { "rx_missed_errors", E1000_STAT(stats.mpc) },
66         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
67         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
68         { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
69         { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
70         { "tx_window_errors", E1000_STAT(stats.latecol) },
71         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
72         { "tx_deferred_ok", E1000_STAT(stats.dc) },
73         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
74         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
75         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
76         { "tx_restart_queue", E1000_STAT(restart_queue) },
77         { "rx_long_length_errors", E1000_STAT(stats.roc) },
78         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
79         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
80         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
81         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
82         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
83         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
84         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
85         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
86         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
87         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
88         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
89         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
90         { "tx_smbus", E1000_STAT(stats.mgptc) },
91         { "rx_smbus", E1000_STAT(stats.mgprc) },
92         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
93 };
94
95 #define E1000_QUEUE_STATS_LEN 0
96 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
97 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
98 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
99         "Register test  (offline)", "Eeprom test    (offline)",
100         "Interrupt test (offline)", "Loopback test  (offline)",
101         "Link test   (on/offline)"
102 };
103
104 #define E1000_TEST_LEN  ARRAY_SIZE(e1000_gstrings_test)
105
106 static int e1000_get_settings(struct net_device *netdev,
107                               struct ethtool_cmd *ecmd)
108 {
109         struct e1000_adapter *adapter = netdev_priv(netdev);
110         struct e1000_hw *hw = &adapter->hw;
111
112         if (hw->media_type == e1000_media_type_copper) {
113                 ecmd->supported = (SUPPORTED_10baseT_Half |
114                                    SUPPORTED_10baseT_Full |
115                                    SUPPORTED_100baseT_Half |
116                                    SUPPORTED_100baseT_Full |
117                                    SUPPORTED_1000baseT_Full|
118                                    SUPPORTED_Autoneg |
119                                    SUPPORTED_TP);
120                 ecmd->advertising = ADVERTISED_TP;
121
122                 if (hw->autoneg == 1) {
123                         ecmd->advertising |= ADVERTISED_Autoneg;
124                         /* the e1000 autoneg seems to match ethtool nicely */
125                         ecmd->advertising |= hw->autoneg_advertised;
126                 }
127
128                 ecmd->port = PORT_TP;
129                 ecmd->phy_address = hw->phy_addr;
130
131                 if (hw->mac_type == e1000_82543)
132                         ecmd->transceiver = XCVR_EXTERNAL;
133                 else
134                         ecmd->transceiver = XCVR_INTERNAL;
135
136         } else {
137                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
138                                      SUPPORTED_FIBRE |
139                                      SUPPORTED_Autoneg);
140
141                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
142                                      ADVERTISED_FIBRE |
143                                      ADVERTISED_Autoneg);
144
145                 ecmd->port = PORT_FIBRE;
146
147                 if (hw->mac_type >= e1000_82545)
148                         ecmd->transceiver = XCVR_INTERNAL;
149                 else
150                         ecmd->transceiver = XCVR_EXTERNAL;
151         }
152
153         if (er32(STATUS) & E1000_STATUS_LU) {
154                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
155                                            &adapter->link_duplex);
156                 ethtool_cmd_speed_set(ecmd, adapter->link_speed);
157
158                 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
159                  * and HALF_DUPLEX != DUPLEX_HALF
160                  */
161                 if (adapter->link_duplex == FULL_DUPLEX)
162                         ecmd->duplex = DUPLEX_FULL;
163                 else
164                         ecmd->duplex = DUPLEX_HALF;
165         } else {
166                 ethtool_cmd_speed_set(ecmd, SPEED_UNKNOWN);
167                 ecmd->duplex = DUPLEX_UNKNOWN;
168         }
169
170         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
171                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
172
173         /* MDI-X => 1; MDI => 0 */
174         if ((hw->media_type == e1000_media_type_copper) &&
175             netif_carrier_ok(netdev))
176                 ecmd->eth_tp_mdix = (!!adapter->phy_info.mdix_mode ?
177                                      ETH_TP_MDI_X : ETH_TP_MDI);
178         else
179                 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
180
181         if (hw->mdix == AUTO_ALL_MODES)
182                 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
183         else
184                 ecmd->eth_tp_mdix_ctrl = hw->mdix;
185         return 0;
186 }
187
188 static int e1000_set_settings(struct net_device *netdev,
189                               struct ethtool_cmd *ecmd)
190 {
191         struct e1000_adapter *adapter = netdev_priv(netdev);
192         struct e1000_hw *hw = &adapter->hw;
193
194         /* MDI setting is only allowed when autoneg enabled because
195          * some hardware doesn't allow MDI setting when speed or
196          * duplex is forced.
197          */
198         if (ecmd->eth_tp_mdix_ctrl) {
199                 if (hw->media_type != e1000_media_type_copper)
200                         return -EOPNOTSUPP;
201
202                 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
203                     (ecmd->autoneg != AUTONEG_ENABLE)) {
204                         e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
205                         return -EINVAL;
206                 }
207         }
208
209         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
210                 msleep(1);
211
212         if (ecmd->autoneg == AUTONEG_ENABLE) {
213                 hw->autoneg = 1;
214                 if (hw->media_type == e1000_media_type_fiber)
215                         hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
216                                      ADVERTISED_FIBRE |
217                                      ADVERTISED_Autoneg;
218                 else
219                         hw->autoneg_advertised = ecmd->advertising |
220                                                  ADVERTISED_TP |
221                                                  ADVERTISED_Autoneg;
222                 ecmd->advertising = hw->autoneg_advertised;
223         } else {
224                 u32 speed = ethtool_cmd_speed(ecmd);
225                 /* calling this overrides forced MDI setting */
226                 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
227                         clear_bit(__E1000_RESETTING, &adapter->flags);
228                         return -EINVAL;
229                 }
230         }
231
232         /* MDI-X => 2; MDI => 1; Auto => 3 */
233         if (ecmd->eth_tp_mdix_ctrl) {
234                 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
235                         hw->mdix = AUTO_ALL_MODES;
236                 else
237                         hw->mdix = ecmd->eth_tp_mdix_ctrl;
238         }
239
240         /* reset the link */
241
242         if (netif_running(adapter->netdev)) {
243                 e1000_down(adapter);
244                 e1000_up(adapter);
245         } else {
246                 e1000_reset(adapter);
247         }
248         clear_bit(__E1000_RESETTING, &adapter->flags);
249         return 0;
250 }
251
252 static u32 e1000_get_link(struct net_device *netdev)
253 {
254         struct e1000_adapter *adapter = netdev_priv(netdev);
255
256         /* If the link is not reported up to netdev, interrupts are disabled,
257          * and so the physical link state may have changed since we last
258          * looked. Set get_link_status to make sure that the true link
259          * state is interrogated, rather than pulling a cached and possibly
260          * stale link state from the driver.
261          */
262         if (!netif_carrier_ok(netdev))
263                 adapter->hw.get_link_status = 1;
264
265         return e1000_has_link(adapter);
266 }
267
268 static void e1000_get_pauseparam(struct net_device *netdev,
269                                  struct ethtool_pauseparam *pause)
270 {
271         struct e1000_adapter *adapter = netdev_priv(netdev);
272         struct e1000_hw *hw = &adapter->hw;
273
274         pause->autoneg =
275                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
276
277         if (hw->fc == E1000_FC_RX_PAUSE) {
278                 pause->rx_pause = 1;
279         } else if (hw->fc == E1000_FC_TX_PAUSE) {
280                 pause->tx_pause = 1;
281         } else if (hw->fc == E1000_FC_FULL) {
282                 pause->rx_pause = 1;
283                 pause->tx_pause = 1;
284         }
285 }
286
287 static int e1000_set_pauseparam(struct net_device *netdev,
288                                 struct ethtool_pauseparam *pause)
289 {
290         struct e1000_adapter *adapter = netdev_priv(netdev);
291         struct e1000_hw *hw = &adapter->hw;
292         int retval = 0;
293
294         adapter->fc_autoneg = pause->autoneg;
295
296         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
297                 msleep(1);
298
299         if (pause->rx_pause && pause->tx_pause)
300                 hw->fc = E1000_FC_FULL;
301         else if (pause->rx_pause && !pause->tx_pause)
302                 hw->fc = E1000_FC_RX_PAUSE;
303         else if (!pause->rx_pause && pause->tx_pause)
304                 hw->fc = E1000_FC_TX_PAUSE;
305         else if (!pause->rx_pause && !pause->tx_pause)
306                 hw->fc = E1000_FC_NONE;
307
308         hw->original_fc = hw->fc;
309
310         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
311                 if (netif_running(adapter->netdev)) {
312                         e1000_down(adapter);
313                         e1000_up(adapter);
314                 } else {
315                         e1000_reset(adapter);
316                 }
317         } else
318                 retval = ((hw->media_type == e1000_media_type_fiber) ?
319                           e1000_setup_link(hw) : e1000_force_mac_fc(hw));
320
321         clear_bit(__E1000_RESETTING, &adapter->flags);
322         return retval;
323 }
324
325 static u32 e1000_get_msglevel(struct net_device *netdev)
326 {
327         struct e1000_adapter *adapter = netdev_priv(netdev);
328
329         return adapter->msg_enable;
330 }
331
332 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
333 {
334         struct e1000_adapter *adapter = netdev_priv(netdev);
335
336         adapter->msg_enable = data;
337 }
338
339 static int e1000_get_regs_len(struct net_device *netdev)
340 {
341 #define E1000_REGS_LEN 32
342         return E1000_REGS_LEN * sizeof(u32);
343 }
344
345 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
346                            void *p)
347 {
348         struct e1000_adapter *adapter = netdev_priv(netdev);
349         struct e1000_hw *hw = &adapter->hw;
350         u32 *regs_buff = p;
351         u16 phy_data;
352
353         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
354
355         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
356
357         regs_buff[0]  = er32(CTRL);
358         regs_buff[1]  = er32(STATUS);
359
360         regs_buff[2]  = er32(RCTL);
361         regs_buff[3]  = er32(RDLEN);
362         regs_buff[4]  = er32(RDH);
363         regs_buff[5]  = er32(RDT);
364         regs_buff[6]  = er32(RDTR);
365
366         regs_buff[7]  = er32(TCTL);
367         regs_buff[8]  = er32(TDLEN);
368         regs_buff[9]  = er32(TDH);
369         regs_buff[10] = er32(TDT);
370         regs_buff[11] = er32(TIDV);
371
372         regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
373         if (hw->phy_type == e1000_phy_igp) {
374                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
375                                     IGP01E1000_PHY_AGC_A);
376                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
377                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
378                 regs_buff[13] = (u32)phy_data; /* cable length */
379                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
380                                     IGP01E1000_PHY_AGC_B);
381                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
382                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
383                 regs_buff[14] = (u32)phy_data; /* cable length */
384                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
385                                     IGP01E1000_PHY_AGC_C);
386                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
387                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
388                 regs_buff[15] = (u32)phy_data; /* cable length */
389                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
390                                     IGP01E1000_PHY_AGC_D);
391                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
392                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
393                 regs_buff[16] = (u32)phy_data; /* cable length */
394                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
395                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
396                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
397                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
398                 regs_buff[18] = (u32)phy_data; /* cable polarity */
399                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
400                                     IGP01E1000_PHY_PCS_INIT_REG);
401                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
402                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
403                 regs_buff[19] = (u32)phy_data; /* cable polarity */
404                 regs_buff[20] = 0; /* polarity correction enabled (always) */
405                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
406                 regs_buff[23] = regs_buff[18]; /* mdix mode */
407                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
408         } else {
409                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
410                 regs_buff[13] = (u32)phy_data; /* cable length */
411                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
412                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
413                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
414                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
415                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
416                 regs_buff[18] = regs_buff[13]; /* cable polarity */
417                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
418                 regs_buff[20] = regs_buff[17]; /* polarity correction */
419                 /* phy receive errors */
420                 regs_buff[22] = adapter->phy_stats.receive_errors;
421                 regs_buff[23] = regs_buff[13]; /* mdix mode */
422         }
423         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
424         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
425         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
426         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
427         if (hw->mac_type >= e1000_82540 &&
428             hw->media_type == e1000_media_type_copper) {
429                 regs_buff[26] = er32(MANC);
430         }
431 }
432
433 static int e1000_get_eeprom_len(struct net_device *netdev)
434 {
435         struct e1000_adapter *adapter = netdev_priv(netdev);
436         struct e1000_hw *hw = &adapter->hw;
437
438         return hw->eeprom.word_size * 2;
439 }
440
441 static int e1000_get_eeprom(struct net_device *netdev,
442                             struct ethtool_eeprom *eeprom, u8 *bytes)
443 {
444         struct e1000_adapter *adapter = netdev_priv(netdev);
445         struct e1000_hw *hw = &adapter->hw;
446         u16 *eeprom_buff;
447         int first_word, last_word;
448         int ret_val = 0;
449         u16 i;
450
451         if (eeprom->len == 0)
452                 return -EINVAL;
453
454         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
455
456         first_word = eeprom->offset >> 1;
457         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
458
459         eeprom_buff = kmalloc(sizeof(u16) *
460                         (last_word - first_word + 1), GFP_KERNEL);
461         if (!eeprom_buff)
462                 return -ENOMEM;
463
464         if (hw->eeprom.type == e1000_eeprom_spi)
465                 ret_val = e1000_read_eeprom(hw, first_word,
466                                             last_word - first_word + 1,
467                                             eeprom_buff);
468         else {
469                 for (i = 0; i < last_word - first_word + 1; i++) {
470                         ret_val = e1000_read_eeprom(hw, first_word + i, 1,
471                                                     &eeprom_buff[i]);
472                         if (ret_val)
473                                 break;
474                 }
475         }
476
477         /* Device's eeprom is always little-endian, word addressable */
478         for (i = 0; i < last_word - first_word + 1; i++)
479                 le16_to_cpus(&eeprom_buff[i]);
480
481         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
482                eeprom->len);
483         kfree(eeprom_buff);
484
485         return ret_val;
486 }
487
488 static int e1000_set_eeprom(struct net_device *netdev,
489                             struct ethtool_eeprom *eeprom, u8 *bytes)
490 {
491         struct e1000_adapter *adapter = netdev_priv(netdev);
492         struct e1000_hw *hw = &adapter->hw;
493         u16 *eeprom_buff;
494         void *ptr;
495         int max_len, first_word, last_word, ret_val = 0;
496         u16 i;
497
498         if (eeprom->len == 0)
499                 return -EOPNOTSUPP;
500
501         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
502                 return -EFAULT;
503
504         max_len = hw->eeprom.word_size * 2;
505
506         first_word = eeprom->offset >> 1;
507         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
508         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
509         if (!eeprom_buff)
510                 return -ENOMEM;
511
512         ptr = (void *)eeprom_buff;
513
514         if (eeprom->offset & 1) {
515                 /* need read/modify/write of first changed EEPROM word
516                  * only the second byte of the word is being modified
517                  */
518                 ret_val = e1000_read_eeprom(hw, first_word, 1,
519                                             &eeprom_buff[0]);
520                 ptr++;
521         }
522         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
523                 /* need read/modify/write of last changed EEPROM word
524                  * only the first byte of the word is being modified
525                  */
526                 ret_val = e1000_read_eeprom(hw, last_word, 1,
527                                             &eeprom_buff[last_word - first_word]);
528         }
529
530         /* Device's eeprom is always little-endian, word addressable */
531         for (i = 0; i < last_word - first_word + 1; i++)
532                 le16_to_cpus(&eeprom_buff[i]);
533
534         memcpy(ptr, bytes, eeprom->len);
535
536         for (i = 0; i < last_word - first_word + 1; i++)
537                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
538
539         ret_val = e1000_write_eeprom(hw, first_word,
540                                      last_word - first_word + 1, eeprom_buff);
541
542         /* Update the checksum over the first part of the EEPROM if needed */
543         if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
544                 e1000_update_eeprom_checksum(hw);
545
546         kfree(eeprom_buff);
547         return ret_val;
548 }
549
550 static void e1000_get_drvinfo(struct net_device *netdev,
551                               struct ethtool_drvinfo *drvinfo)
552 {
553         struct e1000_adapter *adapter = netdev_priv(netdev);
554
555         strlcpy(drvinfo->driver,  e1000_driver_name,
556                 sizeof(drvinfo->driver));
557         strlcpy(drvinfo->version, e1000_driver_version,
558                 sizeof(drvinfo->version));
559
560         strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
561                 sizeof(drvinfo->bus_info));
562 }
563
564 static void e1000_get_ringparam(struct net_device *netdev,
565                                 struct ethtool_ringparam *ring)
566 {
567         struct e1000_adapter *adapter = netdev_priv(netdev);
568         struct e1000_hw *hw = &adapter->hw;
569         e1000_mac_type mac_type = hw->mac_type;
570         struct e1000_tx_ring *txdr = adapter->tx_ring;
571         struct e1000_rx_ring *rxdr = adapter->rx_ring;
572
573         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
574                 E1000_MAX_82544_RXD;
575         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
576                 E1000_MAX_82544_TXD;
577         ring->rx_pending = rxdr->count;
578         ring->tx_pending = txdr->count;
579 }
580
581 static int e1000_set_ringparam(struct net_device *netdev,
582                                struct ethtool_ringparam *ring)
583 {
584         struct e1000_adapter *adapter = netdev_priv(netdev);
585         struct e1000_hw *hw = &adapter->hw;
586         e1000_mac_type mac_type = hw->mac_type;
587         struct e1000_tx_ring *txdr, *tx_old;
588         struct e1000_rx_ring *rxdr, *rx_old;
589         int i, err;
590
591         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
592                 return -EINVAL;
593
594         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
595                 msleep(1);
596
597         if (netif_running(adapter->netdev))
598                 e1000_down(adapter);
599
600         tx_old = adapter->tx_ring;
601         rx_old = adapter->rx_ring;
602
603         err = -ENOMEM;
604         txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring),
605                        GFP_KERNEL);
606         if (!txdr)
607                 goto err_alloc_tx;
608
609         rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring),
610                        GFP_KERNEL);
611         if (!rxdr)
612                 goto err_alloc_rx;
613
614         adapter->tx_ring = txdr;
615         adapter->rx_ring = rxdr;
616
617         rxdr->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
618         rxdr->count = min(rxdr->count, (u32)(mac_type < e1000_82544 ?
619                           E1000_MAX_RXD : E1000_MAX_82544_RXD));
620         rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
621         txdr->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
622         txdr->count = min(txdr->count, (u32)(mac_type < e1000_82544 ?
623                           E1000_MAX_TXD : E1000_MAX_82544_TXD));
624         txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
625
626         for (i = 0; i < adapter->num_tx_queues; i++)
627                 txdr[i].count = txdr->count;
628         for (i = 0; i < adapter->num_rx_queues; i++)
629                 rxdr[i].count = rxdr->count;
630
631         if (netif_running(adapter->netdev)) {
632                 /* Try to get new resources before deleting old */
633                 err = e1000_setup_all_rx_resources(adapter);
634                 if (err)
635                         goto err_setup_rx;
636                 err = e1000_setup_all_tx_resources(adapter);
637                 if (err)
638                         goto err_setup_tx;
639
640                 /* save the new, restore the old in order to free it,
641                  * then restore the new back again
642                  */
643
644                 adapter->rx_ring = rx_old;
645                 adapter->tx_ring = tx_old;
646                 e1000_free_all_rx_resources(adapter);
647                 e1000_free_all_tx_resources(adapter);
648                 kfree(tx_old);
649                 kfree(rx_old);
650                 adapter->rx_ring = rxdr;
651                 adapter->tx_ring = txdr;
652                 err = e1000_up(adapter);
653                 if (err)
654                         goto err_setup;
655         }
656
657         clear_bit(__E1000_RESETTING, &adapter->flags);
658         return 0;
659 err_setup_tx:
660         e1000_free_all_rx_resources(adapter);
661 err_setup_rx:
662         adapter->rx_ring = rx_old;
663         adapter->tx_ring = tx_old;
664         kfree(rxdr);
665 err_alloc_rx:
666         kfree(txdr);
667 err_alloc_tx:
668         e1000_up(adapter);
669 err_setup:
670         clear_bit(__E1000_RESETTING, &adapter->flags);
671         return err;
672 }
673
674 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
675                              u32 mask, u32 write)
676 {
677         struct e1000_hw *hw = &adapter->hw;
678         static const u32 test[] = {
679                 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
680         };
681         u8 __iomem *address = hw->hw_addr + reg;
682         u32 read;
683         int i;
684
685         for (i = 0; i < ARRAY_SIZE(test); i++) {
686                 writel(write & test[i], address);
687                 read = readl(address);
688                 if (read != (write & test[i] & mask)) {
689                         e_err(drv, "pattern test reg %04X failed: "
690                               "got 0x%08X expected 0x%08X\n",
691                               reg, read, (write & test[i] & mask));
692                         *data = reg;
693                         return true;
694                 }
695         }
696         return false;
697 }
698
699 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
700                               u32 mask, u32 write)
701 {
702         struct e1000_hw *hw = &adapter->hw;
703         u8 __iomem *address = hw->hw_addr + reg;
704         u32 read;
705
706         writel(write & mask, address);
707         read = readl(address);
708         if ((read & mask) != (write & mask)) {
709                 e_err(drv, "set/check reg %04X test failed: "
710                       "got 0x%08X expected 0x%08X\n",
711                       reg, (read & mask), (write & mask));
712                 *data = reg;
713                 return true;
714         }
715         return false;
716 }
717
718 #define REG_PATTERN_TEST(reg, mask, write)                           \
719         do {                                                         \
720                 if (reg_pattern_test(adapter, data,                  \
721                              (hw->mac_type >= e1000_82543)   \
722                              ? E1000_##reg : E1000_82542_##reg,      \
723                              mask, write))                           \
724                         return 1;                                    \
725         } while (0)
726
727 #define REG_SET_AND_CHECK(reg, mask, write)                          \
728         do {                                                         \
729                 if (reg_set_and_check(adapter, data,                 \
730                               (hw->mac_type >= e1000_82543)  \
731                               ? E1000_##reg : E1000_82542_##reg,     \
732                               mask, write))                          \
733                         return 1;                                    \
734         } while (0)
735
736 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
737 {
738         u32 value, before, after;
739         u32 i, toggle;
740         struct e1000_hw *hw = &adapter->hw;
741
742         /* The status register is Read Only, so a write should fail.
743          * Some bits that get toggled are ignored.
744          */
745
746         /* there are several bits on newer hardware that are r/w */
747         toggle = 0xFFFFF833;
748
749         before = er32(STATUS);
750         value = (er32(STATUS) & toggle);
751         ew32(STATUS, toggle);
752         after = er32(STATUS) & toggle;
753         if (value != after) {
754                 e_err(drv, "failed STATUS register test got: "
755                       "0x%08X expected: 0x%08X\n", after, value);
756                 *data = 1;
757                 return 1;
758         }
759         /* restore previous status */
760         ew32(STATUS, before);
761
762         REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
763         REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
764         REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
765         REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
766
767         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
768         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
769         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
770         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
771         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
772         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
773         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
774         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
775         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
776         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
777
778         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
779
780         before = 0x06DFB3FE;
781         REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
782         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
783
784         if (hw->mac_type >= e1000_82543) {
785                 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
786                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
787                 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
788                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
789                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
790                 value = E1000_RAR_ENTRIES;
791                 for (i = 0; i < value; i++) {
792                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2),
793                                          0x8003FFFF, 0xFFFFFFFF);
794                 }
795         } else {
796                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
797                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
798                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
799                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
800         }
801
802         value = E1000_MC_TBL_SIZE;
803         for (i = 0; i < value; i++)
804                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
805
806         *data = 0;
807         return 0;
808 }
809
810 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
811 {
812         struct e1000_hw *hw = &adapter->hw;
813         u16 temp;
814         u16 checksum = 0;
815         u16 i;
816
817         *data = 0;
818         /* Read and add up the contents of the EEPROM */
819         for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
820                 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
821                         *data = 1;
822                         break;
823                 }
824                 checksum += temp;
825         }
826
827         /* If Checksum is not Correct return error else test passed */
828         if ((checksum != (u16)EEPROM_SUM) && !(*data))
829                 *data = 2;
830
831         return *data;
832 }
833
834 static irqreturn_t e1000_test_intr(int irq, void *data)
835 {
836         struct net_device *netdev = (struct net_device *)data;
837         struct e1000_adapter *adapter = netdev_priv(netdev);
838         struct e1000_hw *hw = &adapter->hw;
839
840         adapter->test_icr |= er32(ICR);
841
842         return IRQ_HANDLED;
843 }
844
845 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
846 {
847         struct net_device *netdev = adapter->netdev;
848         u32 mask, i = 0;
849         bool shared_int = true;
850         u32 irq = adapter->pdev->irq;
851         struct e1000_hw *hw = &adapter->hw;
852
853         *data = 0;
854
855         /* NOTE: we don't test MSI interrupts here, yet
856          * Hook up test interrupt handler just for this test
857          */
858         if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
859                          netdev))
860                 shared_int = false;
861         else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
862                              netdev->name, netdev)) {
863                 *data = 1;
864                 return -1;
865         }
866         e_info(hw, "testing %s interrupt\n", (shared_int ?
867                "shared" : "unshared"));
868
869         /* Disable all the interrupts */
870         ew32(IMC, 0xFFFFFFFF);
871         E1000_WRITE_FLUSH();
872         msleep(10);
873
874         /* Test each interrupt */
875         for (; i < 10; i++) {
876                 /* Interrupt to test */
877                 mask = 1 << i;
878
879                 if (!shared_int) {
880                         /* Disable the interrupt to be reported in
881                          * the cause register and then force the same
882                          * interrupt and see if one gets posted.  If
883                          * an interrupt was posted to the bus, the
884                          * test failed.
885                          */
886                         adapter->test_icr = 0;
887                         ew32(IMC, mask);
888                         ew32(ICS, mask);
889                         E1000_WRITE_FLUSH();
890                         msleep(10);
891
892                         if (adapter->test_icr & mask) {
893                                 *data = 3;
894                                 break;
895                         }
896                 }
897
898                 /* Enable the interrupt to be reported in
899                  * the cause register and then force the same
900                  * interrupt and see if one gets posted.  If
901                  * an interrupt was not posted to the bus, the
902                  * test failed.
903                  */
904                 adapter->test_icr = 0;
905                 ew32(IMS, mask);
906                 ew32(ICS, mask);
907                 E1000_WRITE_FLUSH();
908                 msleep(10);
909
910                 if (!(adapter->test_icr & mask)) {
911                         *data = 4;
912                         break;
913                 }
914
915                 if (!shared_int) {
916                         /* Disable the other interrupts to be reported in
917                          * the cause register and then force the other
918                          * interrupts and see if any get posted.  If
919                          * an interrupt was posted to the bus, the
920                          * test failed.
921                          */
922                         adapter->test_icr = 0;
923                         ew32(IMC, ~mask & 0x00007FFF);
924                         ew32(ICS, ~mask & 0x00007FFF);
925                         E1000_WRITE_FLUSH();
926                         msleep(10);
927
928                         if (adapter->test_icr) {
929                                 *data = 5;
930                                 break;
931                         }
932                 }
933         }
934
935         /* Disable all the interrupts */
936         ew32(IMC, 0xFFFFFFFF);
937         E1000_WRITE_FLUSH();
938         msleep(10);
939
940         /* Unhook test interrupt handler */
941         free_irq(irq, netdev);
942
943         return *data;
944 }
945
946 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
947 {
948         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
949         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
950         struct pci_dev *pdev = adapter->pdev;
951         int i;
952
953         if (txdr->desc && txdr->buffer_info) {
954                 for (i = 0; i < txdr->count; i++) {
955                         if (txdr->buffer_info[i].dma)
956                                 dma_unmap_single(&pdev->dev,
957                                                  txdr->buffer_info[i].dma,
958                                                  txdr->buffer_info[i].length,
959                                                  DMA_TO_DEVICE);
960                         if (txdr->buffer_info[i].skb)
961                                 dev_kfree_skb(txdr->buffer_info[i].skb);
962                 }
963         }
964
965         if (rxdr->desc && rxdr->buffer_info) {
966                 for (i = 0; i < rxdr->count; i++) {
967                         if (rxdr->buffer_info[i].dma)
968                                 dma_unmap_single(&pdev->dev,
969                                                  rxdr->buffer_info[i].dma,
970                                                  E1000_RXBUFFER_2048,
971                                                  DMA_FROM_DEVICE);
972                         kfree(rxdr->buffer_info[i].rxbuf.data);
973                 }
974         }
975
976         if (txdr->desc) {
977                 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
978                                   txdr->dma);
979                 txdr->desc = NULL;
980         }
981         if (rxdr->desc) {
982                 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
983                                   rxdr->dma);
984                 rxdr->desc = NULL;
985         }
986
987         kfree(txdr->buffer_info);
988         txdr->buffer_info = NULL;
989         kfree(rxdr->buffer_info);
990         rxdr->buffer_info = NULL;
991 }
992
993 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
994 {
995         struct e1000_hw *hw = &adapter->hw;
996         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
997         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
998         struct pci_dev *pdev = adapter->pdev;
999         u32 rctl;
1000         int i, ret_val;
1001
1002         /* Setup Tx descriptor ring and Tx buffers */
1003
1004         if (!txdr->count)
1005                 txdr->count = E1000_DEFAULT_TXD;
1006
1007         txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_tx_buffer),
1008                                     GFP_KERNEL);
1009         if (!txdr->buffer_info) {
1010                 ret_val = 1;
1011                 goto err_nomem;
1012         }
1013
1014         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1015         txdr->size = ALIGN(txdr->size, 4096);
1016         txdr->desc = dma_zalloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1017                                          GFP_KERNEL);
1018         if (!txdr->desc) {
1019                 ret_val = 2;
1020                 goto err_nomem;
1021         }
1022         txdr->next_to_use = txdr->next_to_clean = 0;
1023
1024         ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1025         ew32(TDBAH, ((u64)txdr->dma >> 32));
1026         ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1027         ew32(TDH, 0);
1028         ew32(TDT, 0);
1029         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1030              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1031              E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1032
1033         for (i = 0; i < txdr->count; i++) {
1034                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1035                 struct sk_buff *skb;
1036                 unsigned int size = 1024;
1037
1038                 skb = alloc_skb(size, GFP_KERNEL);
1039                 if (!skb) {
1040                         ret_val = 3;
1041                         goto err_nomem;
1042                 }
1043                 skb_put(skb, size);
1044                 txdr->buffer_info[i].skb = skb;
1045                 txdr->buffer_info[i].length = skb->len;
1046                 txdr->buffer_info[i].dma =
1047                         dma_map_single(&pdev->dev, skb->data, skb->len,
1048                                        DMA_TO_DEVICE);
1049                 if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) {
1050                         ret_val = 4;
1051                         goto err_nomem;
1052                 }
1053                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1054                 tx_desc->lower.data = cpu_to_le32(skb->len);
1055                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1056                                                    E1000_TXD_CMD_IFCS |
1057                                                    E1000_TXD_CMD_RPS);
1058                 tx_desc->upper.data = 0;
1059         }
1060
1061         /* Setup Rx descriptor ring and Rx buffers */
1062
1063         if (!rxdr->count)
1064                 rxdr->count = E1000_DEFAULT_RXD;
1065
1066         rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_rx_buffer),
1067                                     GFP_KERNEL);
1068         if (!rxdr->buffer_info) {
1069                 ret_val = 5;
1070                 goto err_nomem;
1071         }
1072
1073         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1074         rxdr->desc = dma_zalloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1075                                          GFP_KERNEL);
1076         if (!rxdr->desc) {
1077                 ret_val = 6;
1078                 goto err_nomem;
1079         }
1080         rxdr->next_to_use = rxdr->next_to_clean = 0;
1081
1082         rctl = er32(RCTL);
1083         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1084         ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1085         ew32(RDBAH, ((u64)rxdr->dma >> 32));
1086         ew32(RDLEN, rxdr->size);
1087         ew32(RDH, 0);
1088         ew32(RDT, 0);
1089         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1090                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1091                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1092         ew32(RCTL, rctl);
1093
1094         for (i = 0; i < rxdr->count; i++) {
1095                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1096                 u8 *buf;
1097
1098                 buf = kzalloc(E1000_RXBUFFER_2048 + NET_SKB_PAD + NET_IP_ALIGN,
1099                               GFP_KERNEL);
1100                 if (!buf) {
1101                         ret_val = 7;
1102                         goto err_nomem;
1103                 }
1104                 rxdr->buffer_info[i].rxbuf.data = buf;
1105
1106                 rxdr->buffer_info[i].dma =
1107                         dma_map_single(&pdev->dev,
1108                                        buf + NET_SKB_PAD + NET_IP_ALIGN,
1109                                        E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1110                 if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) {
1111                         ret_val = 8;
1112                         goto err_nomem;
1113                 }
1114                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1115         }
1116
1117         return 0;
1118
1119 err_nomem:
1120         e1000_free_desc_rings(adapter);
1121         return ret_val;
1122 }
1123
1124 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1125 {
1126         struct e1000_hw *hw = &adapter->hw;
1127
1128         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1129         e1000_write_phy_reg(hw, 29, 0x001F);
1130         e1000_write_phy_reg(hw, 30, 0x8FFC);
1131         e1000_write_phy_reg(hw, 29, 0x001A);
1132         e1000_write_phy_reg(hw, 30, 0x8FF0);
1133 }
1134
1135 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1136 {
1137         struct e1000_hw *hw = &adapter->hw;
1138         u16 phy_reg;
1139
1140         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1141          * Extended PHY Specific Control Register to 25MHz clock.  This
1142          * value defaults back to a 2.5MHz clock when the PHY is reset.
1143          */
1144         e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1145         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1146         e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1147
1148         /* In addition, because of the s/w reset above, we need to enable
1149          * CRS on TX.  This must be set for both full and half duplex
1150          * operation.
1151          */
1152         e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1153         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1154         e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1155 }
1156
1157 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1158 {
1159         struct e1000_hw *hw = &adapter->hw;
1160         u32 ctrl_reg;
1161         u16 phy_reg;
1162
1163         /* Setup the Device Control Register for PHY loopback test. */
1164
1165         ctrl_reg = er32(CTRL);
1166         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1167                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1168                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1169                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1170                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1171
1172         ew32(CTRL, ctrl_reg);
1173
1174         /* Read the PHY Specific Control Register (0x10) */
1175         e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1176
1177         /* Clear Auto-Crossover bits in PHY Specific Control Register
1178          * (bits 6:5).
1179          */
1180         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1181         e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1182
1183         /* Perform software reset on the PHY */
1184         e1000_phy_reset(hw);
1185
1186         /* Have to setup TX_CLK and TX_CRS after software reset */
1187         e1000_phy_reset_clk_and_crs(adapter);
1188
1189         e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1190
1191         /* Wait for reset to complete. */
1192         udelay(500);
1193
1194         /* Have to setup TX_CLK and TX_CRS after software reset */
1195         e1000_phy_reset_clk_and_crs(adapter);
1196
1197         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1198         e1000_phy_disable_receiver(adapter);
1199
1200         /* Set the loopback bit in the PHY control register. */
1201         e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1202         phy_reg |= MII_CR_LOOPBACK;
1203         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1204
1205         /* Setup TX_CLK and TX_CRS one more time. */
1206         e1000_phy_reset_clk_and_crs(adapter);
1207
1208         /* Check Phy Configuration */
1209         e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1210         if (phy_reg != 0x4100)
1211                 return 9;
1212
1213         e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1214         if (phy_reg != 0x0070)
1215                 return 10;
1216
1217         e1000_read_phy_reg(hw, 29, &phy_reg);
1218         if (phy_reg != 0x001A)
1219                 return 11;
1220
1221         return 0;
1222 }
1223
1224 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1225 {
1226         struct e1000_hw *hw = &adapter->hw;
1227         u32 ctrl_reg = 0;
1228         u32 stat_reg = 0;
1229
1230         hw->autoneg = false;
1231
1232         if (hw->phy_type == e1000_phy_m88) {
1233                 /* Auto-MDI/MDIX Off */
1234                 e1000_write_phy_reg(hw,
1235                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1236                 /* reset to update Auto-MDI/MDIX */
1237                 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1238                 /* autoneg off */
1239                 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1240         }
1241
1242         ctrl_reg = er32(CTRL);
1243
1244         /* force 1000, set loopback */
1245         e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1246
1247         /* Now set up the MAC to the same speed/duplex as the PHY. */
1248         ctrl_reg = er32(CTRL);
1249         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1250         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1251                         E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1252                         E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1253                         E1000_CTRL_FD); /* Force Duplex to FULL */
1254
1255         if (hw->media_type == e1000_media_type_copper &&
1256             hw->phy_type == e1000_phy_m88)
1257                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1258         else {
1259                 /* Set the ILOS bit on the fiber Nic is half
1260                  * duplex link is detected.
1261                  */
1262                 stat_reg = er32(STATUS);
1263                 if ((stat_reg & E1000_STATUS_FD) == 0)
1264                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1265         }
1266
1267         ew32(CTRL, ctrl_reg);
1268
1269         /* Disable the receiver on the PHY so when a cable is plugged in, the
1270          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1271          */
1272         if (hw->phy_type == e1000_phy_m88)
1273                 e1000_phy_disable_receiver(adapter);
1274
1275         udelay(500);
1276
1277         return 0;
1278 }
1279
1280 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1281 {
1282         struct e1000_hw *hw = &adapter->hw;
1283         u16 phy_reg = 0;
1284         u16 count = 0;
1285
1286         switch (hw->mac_type) {
1287         case e1000_82543:
1288                 if (hw->media_type == e1000_media_type_copper) {
1289                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1290                          * Some PHY registers get corrupted at random, so
1291                          * attempt this 10 times.
1292                          */
1293                         while (e1000_nonintegrated_phy_loopback(adapter) &&
1294                                count++ < 10);
1295                         if (count < 11)
1296                                 return 0;
1297                 }
1298                 break;
1299
1300         case e1000_82544:
1301         case e1000_82540:
1302         case e1000_82545:
1303         case e1000_82545_rev_3:
1304         case e1000_82546:
1305         case e1000_82546_rev_3:
1306         case e1000_82541:
1307         case e1000_82541_rev_2:
1308         case e1000_82547:
1309         case e1000_82547_rev_2:
1310                 return e1000_integrated_phy_loopback(adapter);
1311         default:
1312                 /* Default PHY loopback work is to read the MII
1313                  * control register and assert bit 14 (loopback mode).
1314                  */
1315                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1316                 phy_reg |= MII_CR_LOOPBACK;
1317                 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1318                 return 0;
1319         }
1320
1321         return 8;
1322 }
1323
1324 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1325 {
1326         struct e1000_hw *hw = &adapter->hw;
1327         u32 rctl;
1328
1329         if (hw->media_type == e1000_media_type_fiber ||
1330             hw->media_type == e1000_media_type_internal_serdes) {
1331                 switch (hw->mac_type) {
1332                 case e1000_82545:
1333                 case e1000_82546:
1334                 case e1000_82545_rev_3:
1335                 case e1000_82546_rev_3:
1336                         return e1000_set_phy_loopback(adapter);
1337                 default:
1338                         rctl = er32(RCTL);
1339                         rctl |= E1000_RCTL_LBM_TCVR;
1340                         ew32(RCTL, rctl);
1341                         return 0;
1342                 }
1343         } else if (hw->media_type == e1000_media_type_copper) {
1344                 return e1000_set_phy_loopback(adapter);
1345         }
1346
1347         return 7;
1348 }
1349
1350 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1351 {
1352         struct e1000_hw *hw = &adapter->hw;
1353         u32 rctl;
1354         u16 phy_reg;
1355
1356         rctl = er32(RCTL);
1357         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1358         ew32(RCTL, rctl);
1359
1360         switch (hw->mac_type) {
1361         case e1000_82545:
1362         case e1000_82546:
1363         case e1000_82545_rev_3:
1364         case e1000_82546_rev_3:
1365         default:
1366                 hw->autoneg = true;
1367                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1368                 if (phy_reg & MII_CR_LOOPBACK) {
1369                         phy_reg &= ~MII_CR_LOOPBACK;
1370                         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1371                         e1000_phy_reset(hw);
1372                 }
1373                 break;
1374         }
1375 }
1376
1377 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1378                                       unsigned int frame_size)
1379 {
1380         memset(skb->data, 0xFF, frame_size);
1381         frame_size &= ~1;
1382         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1383         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1384         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1385 }
1386
1387 static int e1000_check_lbtest_frame(const unsigned char *data,
1388                                     unsigned int frame_size)
1389 {
1390         frame_size &= ~1;
1391         if (*(data + 3) == 0xFF) {
1392                 if ((*(data + frame_size / 2 + 10) == 0xBE) &&
1393                     (*(data + frame_size / 2 + 12) == 0xAF)) {
1394                         return 0;
1395                 }
1396         }
1397         return 13;
1398 }
1399
1400 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1401 {
1402         struct e1000_hw *hw = &adapter->hw;
1403         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1404         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1405         struct pci_dev *pdev = adapter->pdev;
1406         int i, j, k, l, lc, good_cnt, ret_val = 0;
1407         unsigned long time;
1408
1409         ew32(RDT, rxdr->count - 1);
1410
1411         /* Calculate the loop count based on the largest descriptor ring
1412          * The idea is to wrap the largest ring a number of times using 64
1413          * send/receive pairs during each loop
1414          */
1415
1416         if (rxdr->count <= txdr->count)
1417                 lc = ((txdr->count / 64) * 2) + 1;
1418         else
1419                 lc = ((rxdr->count / 64) * 2) + 1;
1420
1421         k = l = 0;
1422         for (j = 0; j <= lc; j++) { /* loop count loop */
1423                 for (i = 0; i < 64; i++) { /* send the packets */
1424                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1425                                                   1024);
1426                         dma_sync_single_for_device(&pdev->dev,
1427                                                    txdr->buffer_info[k].dma,
1428                                                    txdr->buffer_info[k].length,
1429                                                    DMA_TO_DEVICE);
1430                         if (unlikely(++k == txdr->count))
1431                                 k = 0;
1432                 }
1433                 ew32(TDT, k);
1434                 E1000_WRITE_FLUSH();
1435                 msleep(200);
1436                 time = jiffies; /* set the start time for the receive */
1437                 good_cnt = 0;
1438                 do { /* receive the sent packets */
1439                         dma_sync_single_for_cpu(&pdev->dev,
1440                                                 rxdr->buffer_info[l].dma,
1441                                                 E1000_RXBUFFER_2048,
1442                                                 DMA_FROM_DEVICE);
1443
1444                         ret_val = e1000_check_lbtest_frame(
1445                                         rxdr->buffer_info[l].rxbuf.data +
1446                                         NET_SKB_PAD + NET_IP_ALIGN,
1447                                         1024);
1448                         if (!ret_val)
1449                                 good_cnt++;
1450                         if (unlikely(++l == rxdr->count))
1451                                 l = 0;
1452                         /* time + 20 msecs (200 msecs on 2.4) is more than
1453                          * enough time to complete the receives, if it's
1454                          * exceeded, break and error off
1455                          */
1456                 } while (good_cnt < 64 && time_after(time + 20, jiffies));
1457
1458                 if (good_cnt != 64) {
1459                         ret_val = 13; /* ret_val is the same as mis-compare */
1460                         break;
1461                 }
1462                 if (time_after_eq(jiffies, time + 2)) {
1463                         ret_val = 14; /* error code for time out error */
1464                         break;
1465                 }
1466         } /* end loop count loop */
1467         return ret_val;
1468 }
1469
1470 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1471 {
1472         *data = e1000_setup_desc_rings(adapter);
1473         if (*data)
1474                 goto out;
1475         *data = e1000_setup_loopback_test(adapter);
1476         if (*data)
1477                 goto err_loopback;
1478         *data = e1000_run_loopback_test(adapter);
1479         e1000_loopback_cleanup(adapter);
1480
1481 err_loopback:
1482         e1000_free_desc_rings(adapter);
1483 out:
1484         return *data;
1485 }
1486
1487 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1488 {
1489         struct e1000_hw *hw = &adapter->hw;
1490         *data = 0;
1491         if (hw->media_type == e1000_media_type_internal_serdes) {
1492                 int i = 0;
1493
1494                 hw->serdes_has_link = false;
1495
1496                 /* On some blade server designs, link establishment
1497                  * could take as long as 2-3 minutes
1498                  */
1499                 do {
1500                         e1000_check_for_link(hw);
1501                         if (hw->serdes_has_link)
1502                                 return *data;
1503                         msleep(20);
1504                 } while (i++ < 3750);
1505
1506                 *data = 1;
1507         } else {
1508                 e1000_check_for_link(hw);
1509                 if (hw->autoneg)  /* if auto_neg is set wait for it */
1510                         msleep(4000);
1511
1512                 if (!(er32(STATUS) & E1000_STATUS_LU))
1513                         *data = 1;
1514         }
1515         return *data;
1516 }
1517
1518 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1519 {
1520         switch (sset) {
1521         case ETH_SS_TEST:
1522                 return E1000_TEST_LEN;
1523         case ETH_SS_STATS:
1524                 return E1000_STATS_LEN;
1525         default:
1526                 return -EOPNOTSUPP;
1527         }
1528 }
1529
1530 static void e1000_diag_test(struct net_device *netdev,
1531                             struct ethtool_test *eth_test, u64 *data)
1532 {
1533         struct e1000_adapter *adapter = netdev_priv(netdev);
1534         struct e1000_hw *hw = &adapter->hw;
1535         bool if_running = netif_running(netdev);
1536
1537         set_bit(__E1000_TESTING, &adapter->flags);
1538         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1539                 /* Offline tests */
1540
1541                 /* save speed, duplex, autoneg settings */
1542                 u16 autoneg_advertised = hw->autoneg_advertised;
1543                 u8 forced_speed_duplex = hw->forced_speed_duplex;
1544                 u8 autoneg = hw->autoneg;
1545
1546                 e_info(hw, "offline testing starting\n");
1547
1548                 /* Link test performed before hardware reset so autoneg doesn't
1549                  * interfere with test result
1550                  */
1551                 if (e1000_link_test(adapter, &data[4]))
1552                         eth_test->flags |= ETH_TEST_FL_FAILED;
1553
1554                 if (if_running)
1555                         /* indicate we're in test mode */
1556                         dev_close(netdev);
1557                 else
1558                         e1000_reset(adapter);
1559
1560                 if (e1000_reg_test(adapter, &data[0]))
1561                         eth_test->flags |= ETH_TEST_FL_FAILED;
1562
1563                 e1000_reset(adapter);
1564                 if (e1000_eeprom_test(adapter, &data[1]))
1565                         eth_test->flags |= ETH_TEST_FL_FAILED;
1566
1567                 e1000_reset(adapter);
1568                 if (e1000_intr_test(adapter, &data[2]))
1569                         eth_test->flags |= ETH_TEST_FL_FAILED;
1570
1571                 e1000_reset(adapter);
1572                 /* make sure the phy is powered up */
1573                 e1000_power_up_phy(adapter);
1574                 if (e1000_loopback_test(adapter, &data[3]))
1575                         eth_test->flags |= ETH_TEST_FL_FAILED;
1576
1577                 /* restore speed, duplex, autoneg settings */
1578                 hw->autoneg_advertised = autoneg_advertised;
1579                 hw->forced_speed_duplex = forced_speed_duplex;
1580                 hw->autoneg = autoneg;
1581
1582                 e1000_reset(adapter);
1583                 clear_bit(__E1000_TESTING, &adapter->flags);
1584                 if (if_running)
1585                         dev_open(netdev);
1586         } else {
1587                 e_info(hw, "online testing starting\n");
1588                 /* Online tests */
1589                 if (e1000_link_test(adapter, &data[4]))
1590                         eth_test->flags |= ETH_TEST_FL_FAILED;
1591
1592                 /* Online tests aren't run; pass by default */
1593                 data[0] = 0;
1594                 data[1] = 0;
1595                 data[2] = 0;
1596                 data[3] = 0;
1597
1598                 clear_bit(__E1000_TESTING, &adapter->flags);
1599         }
1600         msleep_interruptible(4 * 1000);
1601 }
1602
1603 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1604                                struct ethtool_wolinfo *wol)
1605 {
1606         struct e1000_hw *hw = &adapter->hw;
1607         int retval = 1; /* fail by default */
1608
1609         switch (hw->device_id) {
1610         case E1000_DEV_ID_82542:
1611         case E1000_DEV_ID_82543GC_FIBER:
1612         case E1000_DEV_ID_82543GC_COPPER:
1613         case E1000_DEV_ID_82544EI_FIBER:
1614         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1615         case E1000_DEV_ID_82545EM_FIBER:
1616         case E1000_DEV_ID_82545EM_COPPER:
1617         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1618         case E1000_DEV_ID_82546GB_PCIE:
1619                 /* these don't support WoL at all */
1620                 wol->supported = 0;
1621                 break;
1622         case E1000_DEV_ID_82546EB_FIBER:
1623         case E1000_DEV_ID_82546GB_FIBER:
1624                 /* Wake events not supported on port B */
1625                 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1626                         wol->supported = 0;
1627                         break;
1628                 }
1629                 /* return success for non excluded adapter ports */
1630                 retval = 0;
1631                 break;
1632         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1633                 /* quad port adapters only support WoL on port A */
1634                 if (!adapter->quad_port_a) {
1635                         wol->supported = 0;
1636                         break;
1637                 }
1638                 /* return success for non excluded adapter ports */
1639                 retval = 0;
1640                 break;
1641         default:
1642                 /* dual port cards only support WoL on port A from now on
1643                  * unless it was enabled in the eeprom for port B
1644                  * so exclude FUNC_1 ports from having WoL enabled
1645                  */
1646                 if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1647                     !adapter->eeprom_wol) {
1648                         wol->supported = 0;
1649                         break;
1650                 }
1651
1652                 retval = 0;
1653         }
1654
1655         return retval;
1656 }
1657
1658 static void e1000_get_wol(struct net_device *netdev,
1659                           struct ethtool_wolinfo *wol)
1660 {
1661         struct e1000_adapter *adapter = netdev_priv(netdev);
1662         struct e1000_hw *hw = &adapter->hw;
1663
1664         wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
1665         wol->wolopts = 0;
1666
1667         /* this function will set ->supported = 0 and return 1 if wol is not
1668          * supported by this hardware
1669          */
1670         if (e1000_wol_exclusion(adapter, wol) ||
1671             !device_can_wakeup(&adapter->pdev->dev))
1672                 return;
1673
1674         /* apply any specific unsupported masks here */
1675         switch (hw->device_id) {
1676         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1677                 /* KSP3 does not support UCAST wake-ups */
1678                 wol->supported &= ~WAKE_UCAST;
1679
1680                 if (adapter->wol & E1000_WUFC_EX)
1681                         e_err(drv, "Interface does not support directed "
1682                               "(unicast) frame wake-up packets\n");
1683                 break;
1684         default:
1685                 break;
1686         }
1687
1688         if (adapter->wol & E1000_WUFC_EX)
1689                 wol->wolopts |= WAKE_UCAST;
1690         if (adapter->wol & E1000_WUFC_MC)
1691                 wol->wolopts |= WAKE_MCAST;
1692         if (adapter->wol & E1000_WUFC_BC)
1693                 wol->wolopts |= WAKE_BCAST;
1694         if (adapter->wol & E1000_WUFC_MAG)
1695                 wol->wolopts |= WAKE_MAGIC;
1696 }
1697
1698 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1699 {
1700         struct e1000_adapter *adapter = netdev_priv(netdev);
1701         struct e1000_hw *hw = &adapter->hw;
1702
1703         if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1704                 return -EOPNOTSUPP;
1705
1706         if (e1000_wol_exclusion(adapter, wol) ||
1707             !device_can_wakeup(&adapter->pdev->dev))
1708                 return wol->wolopts ? -EOPNOTSUPP : 0;
1709
1710         switch (hw->device_id) {
1711         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1712                 if (wol->wolopts & WAKE_UCAST) {
1713                         e_err(drv, "Interface does not support directed "
1714                               "(unicast) frame wake-up packets\n");
1715                         return -EOPNOTSUPP;
1716                 }
1717                 break;
1718         default:
1719                 break;
1720         }
1721
1722         /* these settings will always override what we currently have */
1723         adapter->wol = 0;
1724
1725         if (wol->wolopts & WAKE_UCAST)
1726                 adapter->wol |= E1000_WUFC_EX;
1727         if (wol->wolopts & WAKE_MCAST)
1728                 adapter->wol |= E1000_WUFC_MC;
1729         if (wol->wolopts & WAKE_BCAST)
1730                 adapter->wol |= E1000_WUFC_BC;
1731         if (wol->wolopts & WAKE_MAGIC)
1732                 adapter->wol |= E1000_WUFC_MAG;
1733
1734         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1735
1736         return 0;
1737 }
1738
1739 static int e1000_set_phys_id(struct net_device *netdev,
1740                              enum ethtool_phys_id_state state)
1741 {
1742         struct e1000_adapter *adapter = netdev_priv(netdev);
1743         struct e1000_hw *hw = &adapter->hw;
1744
1745         switch (state) {
1746         case ETHTOOL_ID_ACTIVE:
1747                 e1000_setup_led(hw);
1748                 return 2;
1749
1750         case ETHTOOL_ID_ON:
1751                 e1000_led_on(hw);
1752                 break;
1753
1754         case ETHTOOL_ID_OFF:
1755                 e1000_led_off(hw);
1756                 break;
1757
1758         case ETHTOOL_ID_INACTIVE:
1759                 e1000_cleanup_led(hw);
1760         }
1761
1762         return 0;
1763 }
1764
1765 static int e1000_get_coalesce(struct net_device *netdev,
1766                               struct ethtool_coalesce *ec)
1767 {
1768         struct e1000_adapter *adapter = netdev_priv(netdev);
1769
1770         if (adapter->hw.mac_type < e1000_82545)
1771                 return -EOPNOTSUPP;
1772
1773         if (adapter->itr_setting <= 4)
1774                 ec->rx_coalesce_usecs = adapter->itr_setting;
1775         else
1776                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1777
1778         return 0;
1779 }
1780
1781 static int e1000_set_coalesce(struct net_device *netdev,
1782                               struct ethtool_coalesce *ec)
1783 {
1784         struct e1000_adapter *adapter = netdev_priv(netdev);
1785         struct e1000_hw *hw = &adapter->hw;
1786
1787         if (hw->mac_type < e1000_82545)
1788                 return -EOPNOTSUPP;
1789
1790         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1791             ((ec->rx_coalesce_usecs > 4) &&
1792              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1793             (ec->rx_coalesce_usecs == 2))
1794                 return -EINVAL;
1795
1796         if (ec->rx_coalesce_usecs == 4) {
1797                 adapter->itr = adapter->itr_setting = 4;
1798         } else if (ec->rx_coalesce_usecs <= 3) {
1799                 adapter->itr = 20000;
1800                 adapter->itr_setting = ec->rx_coalesce_usecs;
1801         } else {
1802                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1803                 adapter->itr_setting = adapter->itr & ~3;
1804         }
1805
1806         if (adapter->itr_setting != 0)
1807                 ew32(ITR, 1000000000 / (adapter->itr * 256));
1808         else
1809                 ew32(ITR, 0);
1810
1811         return 0;
1812 }
1813
1814 static int e1000_nway_reset(struct net_device *netdev)
1815 {
1816         struct e1000_adapter *adapter = netdev_priv(netdev);
1817
1818         if (netif_running(netdev))
1819                 e1000_reinit_locked(adapter);
1820         return 0;
1821 }
1822
1823 static void e1000_get_ethtool_stats(struct net_device *netdev,
1824                                     struct ethtool_stats *stats, u64 *data)
1825 {
1826         struct e1000_adapter *adapter = netdev_priv(netdev);
1827         int i;
1828         char *p = NULL;
1829         const struct e1000_stats *stat = e1000_gstrings_stats;
1830
1831         e1000_update_stats(adapter);
1832         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1833                 switch (stat->type) {
1834                 case NETDEV_STATS:
1835                         p = (char *)netdev + stat->stat_offset;
1836                         break;
1837                 case E1000_STATS:
1838                         p = (char *)adapter + stat->stat_offset;
1839                         break;
1840                 default:
1841                         WARN_ONCE(1, "Invalid E1000 stat type: %u index %d\n",
1842                                   stat->type, i);
1843                         break;
1844                 }
1845
1846                 if (stat->sizeof_stat == sizeof(u64))
1847                         data[i] = *(u64 *)p;
1848                 else
1849                         data[i] = *(u32 *)p;
1850
1851                 stat++;
1852         }
1853 /* BUG_ON(i != E1000_STATS_LEN); */
1854 }
1855
1856 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1857                               u8 *data)
1858 {
1859         u8 *p = data;
1860         int i;
1861
1862         switch (stringset) {
1863         case ETH_SS_TEST:
1864                 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
1865                 break;
1866         case ETH_SS_STATS:
1867                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1868                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1869                                ETH_GSTRING_LEN);
1870                         p += ETH_GSTRING_LEN;
1871                 }
1872                 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1873                 break;
1874         }
1875 }
1876
1877 static const struct ethtool_ops e1000_ethtool_ops = {
1878         .get_settings           = e1000_get_settings,
1879         .set_settings           = e1000_set_settings,
1880         .get_drvinfo            = e1000_get_drvinfo,
1881         .get_regs_len           = e1000_get_regs_len,
1882         .get_regs               = e1000_get_regs,
1883         .get_wol                = e1000_get_wol,
1884         .set_wol                = e1000_set_wol,
1885         .get_msglevel           = e1000_get_msglevel,
1886         .set_msglevel           = e1000_set_msglevel,
1887         .nway_reset             = e1000_nway_reset,
1888         .get_link               = e1000_get_link,
1889         .get_eeprom_len         = e1000_get_eeprom_len,
1890         .get_eeprom             = e1000_get_eeprom,
1891         .set_eeprom             = e1000_set_eeprom,
1892         .get_ringparam          = e1000_get_ringparam,
1893         .set_ringparam          = e1000_set_ringparam,
1894         .get_pauseparam         = e1000_get_pauseparam,
1895         .set_pauseparam         = e1000_set_pauseparam,
1896         .self_test              = e1000_diag_test,
1897         .get_strings            = e1000_get_strings,
1898         .set_phys_id            = e1000_set_phys_id,
1899         .get_ethtool_stats      = e1000_get_ethtool_stats,
1900         .get_sset_count         = e1000_get_sset_count,
1901         .get_coalesce           = e1000_get_coalesce,
1902         .set_coalesce           = e1000_set_coalesce,
1903         .get_ts_info            = ethtool_op_get_ts_info,
1904 };
1905
1906 void e1000_set_ethtool_ops(struct net_device *netdev)
1907 {
1908         netdev->ethtool_ops = &e1000_ethtool_ops;
1909 }