]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/intel/i40e/i40e_txrx.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
[karo-tx-linux.git] / drivers / net / ethernet / intel / i40e / i40e_txrx.c
1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Driver
4  * Copyright(c) 2013 - 2014 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26
27 #include <linux/prefetch.h>
28 #include <net/busy_poll.h>
29 #include "i40e.h"
30 #include "i40e_prototype.h"
31
32 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
33                                 u32 td_tag)
34 {
35         return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
36                            ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
37                            ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
38                            ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
39                            ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
40 }
41
42 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
43 #define I40E_FD_CLEAN_DELAY 10
44 /**
45  * i40e_program_fdir_filter - Program a Flow Director filter
46  * @fdir_data: Packet data that will be filter parameters
47  * @raw_packet: the pre-allocated packet buffer for FDir
48  * @pf: The PF pointer
49  * @add: True for add/update, False for remove
50  **/
51 int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, u8 *raw_packet,
52                              struct i40e_pf *pf, bool add)
53 {
54         struct i40e_filter_program_desc *fdir_desc;
55         struct i40e_tx_buffer *tx_buf, *first;
56         struct i40e_tx_desc *tx_desc;
57         struct i40e_ring *tx_ring;
58         unsigned int fpt, dcc;
59         struct i40e_vsi *vsi;
60         struct device *dev;
61         dma_addr_t dma;
62         u32 td_cmd = 0;
63         u16 delay = 0;
64         u16 i;
65
66         /* find existing FDIR VSI */
67         vsi = NULL;
68         for (i = 0; i < pf->num_alloc_vsi; i++)
69                 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR)
70                         vsi = pf->vsi[i];
71         if (!vsi)
72                 return -ENOENT;
73
74         tx_ring = vsi->tx_rings[0];
75         dev = tx_ring->dev;
76
77         /* we need two descriptors to add/del a filter and we can wait */
78         do {
79                 if (I40E_DESC_UNUSED(tx_ring) > 1)
80                         break;
81                 msleep_interruptible(1);
82                 delay++;
83         } while (delay < I40E_FD_CLEAN_DELAY);
84
85         if (!(I40E_DESC_UNUSED(tx_ring) > 1))
86                 return -EAGAIN;
87
88         dma = dma_map_single(dev, raw_packet,
89                              I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
90         if (dma_mapping_error(dev, dma))
91                 goto dma_fail;
92
93         /* grab the next descriptor */
94         i = tx_ring->next_to_use;
95         fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
96         first = &tx_ring->tx_bi[i];
97         memset(first, 0, sizeof(struct i40e_tx_buffer));
98
99         tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
100
101         fpt = (fdir_data->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
102               I40E_TXD_FLTR_QW0_QINDEX_MASK;
103
104         fpt |= (fdir_data->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT) &
105                I40E_TXD_FLTR_QW0_FLEXOFF_MASK;
106
107         fpt |= (fdir_data->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) &
108                I40E_TXD_FLTR_QW0_PCTYPE_MASK;
109
110         /* Use LAN VSI Id if not programmed by user */
111         if (fdir_data->dest_vsi == 0)
112                 fpt |= (pf->vsi[pf->lan_vsi]->id) <<
113                        I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
114         else
115                 fpt |= ((u32)fdir_data->dest_vsi <<
116                         I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT) &
117                        I40E_TXD_FLTR_QW0_DEST_VSI_MASK;
118
119         dcc = I40E_TX_DESC_DTYPE_FILTER_PROG;
120
121         if (add)
122                 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
123                        I40E_TXD_FLTR_QW1_PCMD_SHIFT;
124         else
125                 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
126                        I40E_TXD_FLTR_QW1_PCMD_SHIFT;
127
128         dcc |= (fdir_data->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT) &
129                I40E_TXD_FLTR_QW1_DEST_MASK;
130
131         dcc |= (fdir_data->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT) &
132                I40E_TXD_FLTR_QW1_FD_STATUS_MASK;
133
134         if (fdir_data->cnt_index != 0) {
135                 dcc |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
136                 dcc |= ((u32)fdir_data->cnt_index <<
137                         I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
138                         I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
139         }
140
141         fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(fpt);
142         fdir_desc->rsvd = cpu_to_le32(0);
143         fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dcc);
144         fdir_desc->fd_id = cpu_to_le32(fdir_data->fd_id);
145
146         /* Now program a dummy descriptor */
147         i = tx_ring->next_to_use;
148         tx_desc = I40E_TX_DESC(tx_ring, i);
149         tx_buf = &tx_ring->tx_bi[i];
150
151         tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
152
153         memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
154
155         /* record length, and DMA address */
156         dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
157         dma_unmap_addr_set(tx_buf, dma, dma);
158
159         tx_desc->buffer_addr = cpu_to_le64(dma);
160         td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
161
162         tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
163         tx_buf->raw_buf = (void *)raw_packet;
164
165         tx_desc->cmd_type_offset_bsz =
166                 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
167
168         /* Force memory writes to complete before letting h/w
169          * know there are new descriptors to fetch.
170          */
171         wmb();
172
173         /* Mark the data descriptor to be watched */
174         first->next_to_watch = tx_desc;
175
176         writel(tx_ring->next_to_use, tx_ring->tail);
177         return 0;
178
179 dma_fail:
180         return -1;
181 }
182
183 #define IP_HEADER_OFFSET 14
184 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
185 /**
186  * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
187  * @vsi: pointer to the targeted VSI
188  * @fd_data: the flow director data required for the FDir descriptor
189  * @add: true adds a filter, false removes it
190  *
191  * Returns 0 if the filters were successfully added or removed
192  **/
193 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
194                                    struct i40e_fdir_filter *fd_data,
195                                    bool add)
196 {
197         struct i40e_pf *pf = vsi->back;
198         struct udphdr *udp;
199         struct iphdr *ip;
200         bool err = false;
201         u8 *raw_packet;
202         int ret;
203         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
204                 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
205                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
206
207         raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
208         if (!raw_packet)
209                 return -ENOMEM;
210         memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
211
212         ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
213         udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
214               + sizeof(struct iphdr));
215
216         ip->daddr = fd_data->dst_ip[0];
217         udp->dest = fd_data->dst_port;
218         ip->saddr = fd_data->src_ip[0];
219         udp->source = fd_data->src_port;
220
221         fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
222         ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
223         if (ret) {
224                 dev_info(&pf->pdev->dev,
225                          "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
226                          fd_data->pctype, fd_data->fd_id, ret);
227                 err = true;
228         } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
229                 if (add)
230                         dev_info(&pf->pdev->dev,
231                                  "Filter OK for PCTYPE %d loc = %d\n",
232                                  fd_data->pctype, fd_data->fd_id);
233                 else
234                         dev_info(&pf->pdev->dev,
235                                  "Filter deleted for PCTYPE %d loc = %d\n",
236                                  fd_data->pctype, fd_data->fd_id);
237         }
238         return err ? -EOPNOTSUPP : 0;
239 }
240
241 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
242 /**
243  * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
244  * @vsi: pointer to the targeted VSI
245  * @fd_data: the flow director data required for the FDir descriptor
246  * @add: true adds a filter, false removes it
247  *
248  * Returns 0 if the filters were successfully added or removed
249  **/
250 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
251                                    struct i40e_fdir_filter *fd_data,
252                                    bool add)
253 {
254         struct i40e_pf *pf = vsi->back;
255         struct tcphdr *tcp;
256         struct iphdr *ip;
257         bool err = false;
258         u8 *raw_packet;
259         int ret;
260         /* Dummy packet */
261         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
262                 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
263                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
264                 0x0, 0x72, 0, 0, 0, 0};
265
266         raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
267         if (!raw_packet)
268                 return -ENOMEM;
269         memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
270
271         ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
272         tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
273               + sizeof(struct iphdr));
274
275         ip->daddr = fd_data->dst_ip[0];
276         tcp->dest = fd_data->dst_port;
277         ip->saddr = fd_data->src_ip[0];
278         tcp->source = fd_data->src_port;
279
280         if (add) {
281                 pf->fd_tcp_rule++;
282                 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) {
283                         if (I40E_DEBUG_FD & pf->hw.debug_mask)
284                                 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
285                         pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED;
286                 }
287         } else {
288                 pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ?
289                                   (pf->fd_tcp_rule - 1) : 0;
290                 if (pf->fd_tcp_rule == 0) {
291                         pf->flags |= I40E_FLAG_FD_ATR_ENABLED;
292                         if (I40E_DEBUG_FD & pf->hw.debug_mask)
293                                 dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
294                 }
295         }
296
297         fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
298         ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
299
300         if (ret) {
301                 dev_info(&pf->pdev->dev,
302                          "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
303                          fd_data->pctype, fd_data->fd_id, ret);
304                 err = true;
305         } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
306                 if (add)
307                         dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
308                                  fd_data->pctype, fd_data->fd_id);
309                 else
310                         dev_info(&pf->pdev->dev,
311                                  "Filter deleted for PCTYPE %d loc = %d\n",
312                                  fd_data->pctype, fd_data->fd_id);
313         }
314
315         return err ? -EOPNOTSUPP : 0;
316 }
317
318 /**
319  * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
320  * a specific flow spec
321  * @vsi: pointer to the targeted VSI
322  * @fd_data: the flow director data required for the FDir descriptor
323  * @add: true adds a filter, false removes it
324  *
325  * Always returns -EOPNOTSUPP
326  **/
327 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
328                                     struct i40e_fdir_filter *fd_data,
329                                     bool add)
330 {
331         return -EOPNOTSUPP;
332 }
333
334 #define I40E_IP_DUMMY_PACKET_LEN 34
335 /**
336  * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
337  * a specific flow spec
338  * @vsi: pointer to the targeted VSI
339  * @fd_data: the flow director data required for the FDir descriptor
340  * @add: true adds a filter, false removes it
341  *
342  * Returns 0 if the filters were successfully added or removed
343  **/
344 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
345                                   struct i40e_fdir_filter *fd_data,
346                                   bool add)
347 {
348         struct i40e_pf *pf = vsi->back;
349         struct iphdr *ip;
350         bool err = false;
351         u8 *raw_packet;
352         int ret;
353         int i;
354         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
355                 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
356                 0, 0, 0, 0};
357
358         for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
359              i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
360                 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
361                 if (!raw_packet)
362                         return -ENOMEM;
363                 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
364                 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
365
366                 ip->saddr = fd_data->src_ip[0];
367                 ip->daddr = fd_data->dst_ip[0];
368                 ip->protocol = 0;
369
370                 fd_data->pctype = i;
371                 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
372
373                 if (ret) {
374                         dev_info(&pf->pdev->dev,
375                                  "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
376                                  fd_data->pctype, fd_data->fd_id, ret);
377                         err = true;
378                 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
379                         if (add)
380                                 dev_info(&pf->pdev->dev,
381                                          "Filter OK for PCTYPE %d loc = %d\n",
382                                          fd_data->pctype, fd_data->fd_id);
383                         else
384                                 dev_info(&pf->pdev->dev,
385                                          "Filter deleted for PCTYPE %d loc = %d\n",
386                                          fd_data->pctype, fd_data->fd_id);
387                 }
388         }
389
390         return err ? -EOPNOTSUPP : 0;
391 }
392
393 /**
394  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
395  * @vsi: pointer to the targeted VSI
396  * @cmd: command to get or set RX flow classification rules
397  * @add: true adds a filter, false removes it
398  *
399  **/
400 int i40e_add_del_fdir(struct i40e_vsi *vsi,
401                       struct i40e_fdir_filter *input, bool add)
402 {
403         struct i40e_pf *pf = vsi->back;
404         int ret;
405
406         switch (input->flow_type & ~FLOW_EXT) {
407         case TCP_V4_FLOW:
408                 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
409                 break;
410         case UDP_V4_FLOW:
411                 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
412                 break;
413         case SCTP_V4_FLOW:
414                 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
415                 break;
416         case IPV4_FLOW:
417                 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
418                 break;
419         case IP_USER_FLOW:
420                 switch (input->ip4_proto) {
421                 case IPPROTO_TCP:
422                         ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
423                         break;
424                 case IPPROTO_UDP:
425                         ret = i40e_add_del_fdir_udpv4(vsi, input, add);
426                         break;
427                 case IPPROTO_SCTP:
428                         ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
429                         break;
430                 default:
431                         ret = i40e_add_del_fdir_ipv4(vsi, input, add);
432                         break;
433                 }
434                 break;
435         default:
436                 dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
437                          input->flow_type);
438                 ret = -EINVAL;
439         }
440
441         /* The buffer allocated here is freed by the i40e_clean_tx_ring() */
442         return ret;
443 }
444
445 /**
446  * i40e_fd_handle_status - check the Programming Status for FD
447  * @rx_ring: the Rx ring for this descriptor
448  * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
449  * @prog_id: the id originally used for programming
450  *
451  * This is used to verify if the FD programming or invalidation
452  * requested by SW to the HW is successful or not and take actions accordingly.
453  **/
454 static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
455                                   union i40e_rx_desc *rx_desc, u8 prog_id)
456 {
457         struct i40e_pf *pf = rx_ring->vsi->back;
458         struct pci_dev *pdev = pf->pdev;
459         u32 fcnt_prog, fcnt_avail;
460         u32 error;
461         u64 qw;
462
463         qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
464         error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
465                 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
466
467         if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
468                 pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
469                 if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
470                     (I40E_DEBUG_FD & pf->hw.debug_mask))
471                         dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
472                                  pf->fd_inv);
473
474                 /* Check if the programming error is for ATR.
475                  * If so, auto disable ATR and set a state for
476                  * flush in progress. Next time we come here if flush is in
477                  * progress do nothing, once flush is complete the state will
478                  * be cleared.
479                  */
480                 if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state))
481                         return;
482
483                 pf->fd_add_err++;
484                 /* store the current atr filter count */
485                 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
486
487                 if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
488                     (pf->auto_disable_flags & I40E_FLAG_FD_SB_ENABLED)) {
489                         pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
490                         set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state);
491                 }
492
493                 /* filter programming failed most likely due to table full */
494                 fcnt_prog = i40e_get_global_fd_count(pf);
495                 fcnt_avail = pf->fdir_pf_filter_count;
496                 /* If ATR is running fcnt_prog can quickly change,
497                  * if we are very close to full, it makes sense to disable
498                  * FD ATR/SB and then re-enable it when there is room.
499                  */
500                 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
501                         if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
502                             !(pf->auto_disable_flags &
503                                      I40E_FLAG_FD_SB_ENABLED)) {
504                                 if (I40E_DEBUG_FD & pf->hw.debug_mask)
505                                         dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
506                                 pf->auto_disable_flags |=
507                                                         I40E_FLAG_FD_SB_ENABLED;
508                         }
509                 } else {
510                         dev_info(&pdev->dev,
511                                 "FD filter programming failed due to incorrect filter parameters\n");
512                 }
513         } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
514                 if (I40E_DEBUG_FD & pf->hw.debug_mask)
515                         dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
516                                  rx_desc->wb.qword0.hi_dword.fd_id);
517         }
518 }
519
520 /**
521  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
522  * @ring:      the ring that owns the buffer
523  * @tx_buffer: the buffer to free
524  **/
525 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
526                                             struct i40e_tx_buffer *tx_buffer)
527 {
528         if (tx_buffer->skb) {
529                 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
530                         kfree(tx_buffer->raw_buf);
531                 else
532                         dev_kfree_skb_any(tx_buffer->skb);
533
534                 if (dma_unmap_len(tx_buffer, len))
535                         dma_unmap_single(ring->dev,
536                                          dma_unmap_addr(tx_buffer, dma),
537                                          dma_unmap_len(tx_buffer, len),
538                                          DMA_TO_DEVICE);
539         } else if (dma_unmap_len(tx_buffer, len)) {
540                 dma_unmap_page(ring->dev,
541                                dma_unmap_addr(tx_buffer, dma),
542                                dma_unmap_len(tx_buffer, len),
543                                DMA_TO_DEVICE);
544         }
545         tx_buffer->next_to_watch = NULL;
546         tx_buffer->skb = NULL;
547         dma_unmap_len_set(tx_buffer, len, 0);
548         /* tx_buffer must be completely set up in the transmit path */
549 }
550
551 /**
552  * i40e_clean_tx_ring - Free any empty Tx buffers
553  * @tx_ring: ring to be cleaned
554  **/
555 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
556 {
557         unsigned long bi_size;
558         u16 i;
559
560         /* ring already cleared, nothing to do */
561         if (!tx_ring->tx_bi)
562                 return;
563
564         /* Free all the Tx ring sk_buffs */
565         for (i = 0; i < tx_ring->count; i++)
566                 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
567
568         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
569         memset(tx_ring->tx_bi, 0, bi_size);
570
571         /* Zero out the descriptor ring */
572         memset(tx_ring->desc, 0, tx_ring->size);
573
574         tx_ring->next_to_use = 0;
575         tx_ring->next_to_clean = 0;
576
577         if (!tx_ring->netdev)
578                 return;
579
580         /* cleanup Tx queue statistics */
581         netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
582                                                   tx_ring->queue_index));
583 }
584
585 /**
586  * i40e_free_tx_resources - Free Tx resources per queue
587  * @tx_ring: Tx descriptor ring for a specific queue
588  *
589  * Free all transmit software resources
590  **/
591 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
592 {
593         i40e_clean_tx_ring(tx_ring);
594         kfree(tx_ring->tx_bi);
595         tx_ring->tx_bi = NULL;
596
597         if (tx_ring->desc) {
598                 dma_free_coherent(tx_ring->dev, tx_ring->size,
599                                   tx_ring->desc, tx_ring->dma);
600                 tx_ring->desc = NULL;
601         }
602 }
603
604 /**
605  * i40e_get_tx_pending - how many tx descriptors not processed
606  * @tx_ring: the ring of descriptors
607  *
608  * Since there is no access to the ring head register
609  * in XL710, we need to use our local copies
610  **/
611 u32 i40e_get_tx_pending(struct i40e_ring *ring)
612 {
613         u32 head, tail;
614
615         head = i40e_get_head(ring);
616         tail = readl(ring->tail);
617
618         if (head != tail)
619                 return (head < tail) ?
620                         tail - head : (tail + ring->count - head);
621
622         return 0;
623 }
624
625 #define WB_STRIDE 0x3
626
627 /**
628  * i40e_clean_tx_irq - Reclaim resources after transmit completes
629  * @tx_ring:  tx ring to clean
630  * @budget:   how many cleans we're allowed
631  *
632  * Returns true if there's any budget left (e.g. the clean is finished)
633  **/
634 static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
635 {
636         u16 i = tx_ring->next_to_clean;
637         struct i40e_tx_buffer *tx_buf;
638         struct i40e_tx_desc *tx_head;
639         struct i40e_tx_desc *tx_desc;
640         unsigned int total_packets = 0;
641         unsigned int total_bytes = 0;
642
643         tx_buf = &tx_ring->tx_bi[i];
644         tx_desc = I40E_TX_DESC(tx_ring, i);
645         i -= tx_ring->count;
646
647         tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
648
649         do {
650                 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
651
652                 /* if next_to_watch is not set then there is no work pending */
653                 if (!eop_desc)
654                         break;
655
656                 /* prevent any other reads prior to eop_desc */
657                 read_barrier_depends();
658
659                 /* we have caught up to head, no work left to do */
660                 if (tx_head == tx_desc)
661                         break;
662
663                 /* clear next_to_watch to prevent false hangs */
664                 tx_buf->next_to_watch = NULL;
665
666                 /* update the statistics for this packet */
667                 total_bytes += tx_buf->bytecount;
668                 total_packets += tx_buf->gso_segs;
669
670                 /* free the skb */
671                 dev_consume_skb_any(tx_buf->skb);
672
673                 /* unmap skb header data */
674                 dma_unmap_single(tx_ring->dev,
675                                  dma_unmap_addr(tx_buf, dma),
676                                  dma_unmap_len(tx_buf, len),
677                                  DMA_TO_DEVICE);
678
679                 /* clear tx_buffer data */
680                 tx_buf->skb = NULL;
681                 dma_unmap_len_set(tx_buf, len, 0);
682
683                 /* unmap remaining buffers */
684                 while (tx_desc != eop_desc) {
685
686                         tx_buf++;
687                         tx_desc++;
688                         i++;
689                         if (unlikely(!i)) {
690                                 i -= tx_ring->count;
691                                 tx_buf = tx_ring->tx_bi;
692                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
693                         }
694
695                         /* unmap any remaining paged data */
696                         if (dma_unmap_len(tx_buf, len)) {
697                                 dma_unmap_page(tx_ring->dev,
698                                                dma_unmap_addr(tx_buf, dma),
699                                                dma_unmap_len(tx_buf, len),
700                                                DMA_TO_DEVICE);
701                                 dma_unmap_len_set(tx_buf, len, 0);
702                         }
703                 }
704
705                 /* move us one more past the eop_desc for start of next pkt */
706                 tx_buf++;
707                 tx_desc++;
708                 i++;
709                 if (unlikely(!i)) {
710                         i -= tx_ring->count;
711                         tx_buf = tx_ring->tx_bi;
712                         tx_desc = I40E_TX_DESC(tx_ring, 0);
713                 }
714
715                 prefetch(tx_desc);
716
717                 /* update budget accounting */
718                 budget--;
719         } while (likely(budget));
720
721         i += tx_ring->count;
722         tx_ring->next_to_clean = i;
723         u64_stats_update_begin(&tx_ring->syncp);
724         tx_ring->stats.bytes += total_bytes;
725         tx_ring->stats.packets += total_packets;
726         u64_stats_update_end(&tx_ring->syncp);
727         tx_ring->q_vector->tx.total_bytes += total_bytes;
728         tx_ring->q_vector->tx.total_packets += total_packets;
729
730         if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
731                 unsigned int j = 0;
732
733                 /* check to see if there are < 4 descriptors
734                  * waiting to be written back, then kick the hardware to force
735                  * them to be written back in case we stay in NAPI.
736                  * In this mode on X722 we do not enable Interrupt.
737                  */
738                 j = i40e_get_tx_pending(tx_ring);
739
740                 if (budget &&
741                     ((j / (WB_STRIDE + 1)) == 0) && (j != 0) &&
742                     !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
743                     (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
744                         tx_ring->arm_wb = true;
745         }
746
747         netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
748                                                       tx_ring->queue_index),
749                                   total_packets, total_bytes);
750
751 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
752         if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
753                      (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
754                 /* Make sure that anybody stopping the queue after this
755                  * sees the new next_to_clean.
756                  */
757                 smp_mb();
758                 if (__netif_subqueue_stopped(tx_ring->netdev,
759                                              tx_ring->queue_index) &&
760                    !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
761                         netif_wake_subqueue(tx_ring->netdev,
762                                             tx_ring->queue_index);
763                         ++tx_ring->tx_stats.restart_queue;
764                 }
765         }
766
767         return !!budget;
768 }
769
770 /**
771  * i40e_force_wb - Arm hardware to do a wb on noncache aligned descriptors
772  * @vsi: the VSI we care about
773  * @q_vector: the vector  on which to force writeback
774  *
775  **/
776 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
777 {
778         u16 flags = q_vector->tx.ring[0].flags;
779
780         if (flags & I40E_TXR_FLAGS_WB_ON_ITR) {
781                 u32 val;
782
783                 if (q_vector->arm_wb_state)
784                         return;
785
786                 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK;
787
788                 wr32(&vsi->back->hw,
789                      I40E_PFINT_DYN_CTLN(q_vector->v_idx +
790                                          vsi->base_vector - 1),
791                      val);
792                 q_vector->arm_wb_state = true;
793         } else if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
794                 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
795                           I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
796                           I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
797                           I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
798                           /* allow 00 to be written to the index */
799
800                 wr32(&vsi->back->hw,
801                      I40E_PFINT_DYN_CTLN(q_vector->v_idx +
802                                          vsi->base_vector - 1), val);
803         } else {
804                 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
805                           I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
806                           I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
807                           I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
808                         /* allow 00 to be written to the index */
809
810                 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
811         }
812 }
813
814 /**
815  * i40e_set_new_dynamic_itr - Find new ITR level
816  * @rc: structure containing ring performance data
817  *
818  * Returns true if ITR changed, false if not
819  *
820  * Stores a new ITR value based on packets and byte counts during
821  * the last interrupt.  The advantage of per interrupt computation
822  * is faster updates and more accurate ITR for the current traffic
823  * pattern.  Constants in this function were computed based on
824  * theoretical maximum wire speed and thresholds were set based on
825  * testing data as well as attempting to minimize response time
826  * while increasing bulk throughput.
827  **/
828 static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
829 {
830         enum i40e_latency_range new_latency_range = rc->latency_range;
831         struct i40e_q_vector *qv = rc->ring->q_vector;
832         u32 new_itr = rc->itr;
833         int bytes_per_int;
834         int usecs;
835
836         if (rc->total_packets == 0 || !rc->itr)
837                 return false;
838
839         /* simple throttlerate management
840          *   0-10MB/s   lowest (50000 ints/s)
841          *  10-20MB/s   low    (20000 ints/s)
842          *  20-1249MB/s bulk   (18000 ints/s)
843          *  > 40000 Rx packets per second (8000 ints/s)
844          *
845          * The math works out because the divisor is in 10^(-6) which
846          * turns the bytes/us input value into MB/s values, but
847          * make sure to use usecs, as the register values written
848          * are in 2 usec increments in the ITR registers, and make sure
849          * to use the smoothed values that the countdown timer gives us.
850          */
851         usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
852         bytes_per_int = rc->total_bytes / usecs;
853
854         switch (new_latency_range) {
855         case I40E_LOWEST_LATENCY:
856                 if (bytes_per_int > 10)
857                         new_latency_range = I40E_LOW_LATENCY;
858                 break;
859         case I40E_LOW_LATENCY:
860                 if (bytes_per_int > 20)
861                         new_latency_range = I40E_BULK_LATENCY;
862                 else if (bytes_per_int <= 10)
863                         new_latency_range = I40E_LOWEST_LATENCY;
864                 break;
865         case I40E_BULK_LATENCY:
866         case I40E_ULTRA_LATENCY:
867         default:
868                 if (bytes_per_int <= 20)
869                         new_latency_range = I40E_LOW_LATENCY;
870                 break;
871         }
872
873         /* this is to adjust RX more aggressively when streaming small
874          * packets.  The value of 40000 was picked as it is just beyond
875          * what the hardware can receive per second if in low latency
876          * mode.
877          */
878 #define RX_ULTRA_PACKET_RATE 40000
879
880         if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
881             (&qv->rx == rc))
882                 new_latency_range = I40E_ULTRA_LATENCY;
883
884         rc->latency_range = new_latency_range;
885
886         switch (new_latency_range) {
887         case I40E_LOWEST_LATENCY:
888                 new_itr = I40E_ITR_50K;
889                 break;
890         case I40E_LOW_LATENCY:
891                 new_itr = I40E_ITR_20K;
892                 break;
893         case I40E_BULK_LATENCY:
894                 new_itr = I40E_ITR_18K;
895                 break;
896         case I40E_ULTRA_LATENCY:
897                 new_itr = I40E_ITR_8K;
898                 break;
899         default:
900                 break;
901         }
902
903         rc->total_bytes = 0;
904         rc->total_packets = 0;
905
906         if (new_itr != rc->itr) {
907                 rc->itr = new_itr;
908                 return true;
909         }
910
911         return false;
912 }
913
914 /**
915  * i40e_clean_programming_status - clean the programming status descriptor
916  * @rx_ring: the rx ring that has this descriptor
917  * @rx_desc: the rx descriptor written back by HW
918  *
919  * Flow director should handle FD_FILTER_STATUS to check its filter programming
920  * status being successful or not and take actions accordingly. FCoE should
921  * handle its context/filter programming/invalidation status and take actions.
922  *
923  **/
924 static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
925                                           union i40e_rx_desc *rx_desc)
926 {
927         u64 qw;
928         u8 id;
929
930         qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
931         id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
932                   I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
933
934         if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
935                 i40e_fd_handle_status(rx_ring, rx_desc, id);
936 #ifdef I40E_FCOE
937         else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
938                  (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
939                 i40e_fcoe_handle_status(rx_ring, rx_desc, id);
940 #endif
941 }
942
943 /**
944  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
945  * @tx_ring: the tx ring to set up
946  *
947  * Return 0 on success, negative on error
948  **/
949 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
950 {
951         struct device *dev = tx_ring->dev;
952         int bi_size;
953
954         if (!dev)
955                 return -ENOMEM;
956
957         /* warn if we are about to overwrite the pointer */
958         WARN_ON(tx_ring->tx_bi);
959         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
960         tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
961         if (!tx_ring->tx_bi)
962                 goto err;
963
964         /* round up to nearest 4K */
965         tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
966         /* add u32 for head writeback, align after this takes care of
967          * guaranteeing this is at least one cache line in size
968          */
969         tx_ring->size += sizeof(u32);
970         tx_ring->size = ALIGN(tx_ring->size, 4096);
971         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
972                                            &tx_ring->dma, GFP_KERNEL);
973         if (!tx_ring->desc) {
974                 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
975                          tx_ring->size);
976                 goto err;
977         }
978
979         tx_ring->next_to_use = 0;
980         tx_ring->next_to_clean = 0;
981         return 0;
982
983 err:
984         kfree(tx_ring->tx_bi);
985         tx_ring->tx_bi = NULL;
986         return -ENOMEM;
987 }
988
989 /**
990  * i40e_clean_rx_ring - Free Rx buffers
991  * @rx_ring: ring to be cleaned
992  **/
993 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
994 {
995         struct device *dev = rx_ring->dev;
996         struct i40e_rx_buffer *rx_bi;
997         unsigned long bi_size;
998         u16 i;
999
1000         /* ring already cleared, nothing to do */
1001         if (!rx_ring->rx_bi)
1002                 return;
1003
1004         if (ring_is_ps_enabled(rx_ring)) {
1005                 int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
1006
1007                 rx_bi = &rx_ring->rx_bi[0];
1008                 if (rx_bi->hdr_buf) {
1009                         dma_free_coherent(dev,
1010                                           bufsz,
1011                                           rx_bi->hdr_buf,
1012                                           rx_bi->dma);
1013                         for (i = 0; i < rx_ring->count; i++) {
1014                                 rx_bi = &rx_ring->rx_bi[i];
1015                                 rx_bi->dma = 0;
1016                                 rx_bi->hdr_buf = NULL;
1017                         }
1018                 }
1019         }
1020         /* Free all the Rx ring sk_buffs */
1021         for (i = 0; i < rx_ring->count; i++) {
1022                 rx_bi = &rx_ring->rx_bi[i];
1023                 if (rx_bi->dma) {
1024                         dma_unmap_single(dev,
1025                                          rx_bi->dma,
1026                                          rx_ring->rx_buf_len,
1027                                          DMA_FROM_DEVICE);
1028                         rx_bi->dma = 0;
1029                 }
1030                 if (rx_bi->skb) {
1031                         dev_kfree_skb(rx_bi->skb);
1032                         rx_bi->skb = NULL;
1033                 }
1034                 if (rx_bi->page) {
1035                         if (rx_bi->page_dma) {
1036                                 dma_unmap_page(dev,
1037                                                rx_bi->page_dma,
1038                                                PAGE_SIZE / 2,
1039                                                DMA_FROM_DEVICE);
1040                                 rx_bi->page_dma = 0;
1041                         }
1042                         __free_page(rx_bi->page);
1043                         rx_bi->page = NULL;
1044                         rx_bi->page_offset = 0;
1045                 }
1046         }
1047
1048         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1049         memset(rx_ring->rx_bi, 0, bi_size);
1050
1051         /* Zero out the descriptor ring */
1052         memset(rx_ring->desc, 0, rx_ring->size);
1053
1054         rx_ring->next_to_clean = 0;
1055         rx_ring->next_to_use = 0;
1056 }
1057
1058 /**
1059  * i40e_free_rx_resources - Free Rx resources
1060  * @rx_ring: ring to clean the resources from
1061  *
1062  * Free all receive software resources
1063  **/
1064 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1065 {
1066         i40e_clean_rx_ring(rx_ring);
1067         kfree(rx_ring->rx_bi);
1068         rx_ring->rx_bi = NULL;
1069
1070         if (rx_ring->desc) {
1071                 dma_free_coherent(rx_ring->dev, rx_ring->size,
1072                                   rx_ring->desc, rx_ring->dma);
1073                 rx_ring->desc = NULL;
1074         }
1075 }
1076
1077 /**
1078  * i40e_alloc_rx_headers - allocate rx header buffers
1079  * @rx_ring: ring to alloc buffers
1080  *
1081  * Allocate rx header buffers for the entire ring. As these are static,
1082  * this is only called when setting up a new ring.
1083  **/
1084 void i40e_alloc_rx_headers(struct i40e_ring *rx_ring)
1085 {
1086         struct device *dev = rx_ring->dev;
1087         struct i40e_rx_buffer *rx_bi;
1088         dma_addr_t dma;
1089         void *buffer;
1090         int buf_size;
1091         int i;
1092
1093         if (rx_ring->rx_bi[0].hdr_buf)
1094                 return;
1095         /* Make sure the buffers don't cross cache line boundaries. */
1096         buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
1097         buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
1098                                     &dma, GFP_KERNEL);
1099         if (!buffer)
1100                 return;
1101         for (i = 0; i < rx_ring->count; i++) {
1102                 rx_bi = &rx_ring->rx_bi[i];
1103                 rx_bi->dma = dma + (i * buf_size);
1104                 rx_bi->hdr_buf = buffer + (i * buf_size);
1105         }
1106 }
1107
1108 /**
1109  * i40e_setup_rx_descriptors - Allocate Rx descriptors
1110  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1111  *
1112  * Returns 0 on success, negative on failure
1113  **/
1114 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1115 {
1116         struct device *dev = rx_ring->dev;
1117         int bi_size;
1118
1119         /* warn if we are about to overwrite the pointer */
1120         WARN_ON(rx_ring->rx_bi);
1121         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1122         rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1123         if (!rx_ring->rx_bi)
1124                 goto err;
1125
1126         u64_stats_init(&rx_ring->syncp);
1127
1128         /* Round up to nearest 4K */
1129         rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
1130                 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
1131                 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1132         rx_ring->size = ALIGN(rx_ring->size, 4096);
1133         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1134                                            &rx_ring->dma, GFP_KERNEL);
1135
1136         if (!rx_ring->desc) {
1137                 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1138                          rx_ring->size);
1139                 goto err;
1140         }
1141
1142         rx_ring->next_to_clean = 0;
1143         rx_ring->next_to_use = 0;
1144
1145         return 0;
1146 err:
1147         kfree(rx_ring->rx_bi);
1148         rx_ring->rx_bi = NULL;
1149         return -ENOMEM;
1150 }
1151
1152 /**
1153  * i40e_release_rx_desc - Store the new tail and head values
1154  * @rx_ring: ring to bump
1155  * @val: new head index
1156  **/
1157 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1158 {
1159         rx_ring->next_to_use = val;
1160         /* Force memory writes to complete before letting h/w
1161          * know there are new descriptors to fetch.  (Only
1162          * applicable for weak-ordered memory model archs,
1163          * such as IA-64).
1164          */
1165         wmb();
1166         writel(val, rx_ring->tail);
1167 }
1168
1169 /**
1170  * i40e_alloc_rx_buffers_ps - Replace used receive buffers; packet split
1171  * @rx_ring: ring to place buffers on
1172  * @cleaned_count: number of buffers to replace
1173  **/
1174 void i40e_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
1175 {
1176         u16 i = rx_ring->next_to_use;
1177         union i40e_rx_desc *rx_desc;
1178         struct i40e_rx_buffer *bi;
1179
1180         /* do nothing if no valid netdev defined */
1181         if (!rx_ring->netdev || !cleaned_count)
1182                 return;
1183
1184         while (cleaned_count--) {
1185                 rx_desc = I40E_RX_DESC(rx_ring, i);
1186                 bi = &rx_ring->rx_bi[i];
1187
1188                 if (bi->skb) /* desc is in use */
1189                         goto no_buffers;
1190                 if (!bi->page) {
1191                         bi->page = alloc_page(GFP_ATOMIC);
1192                         if (!bi->page) {
1193                                 rx_ring->rx_stats.alloc_page_failed++;
1194                                 goto no_buffers;
1195                         }
1196                 }
1197
1198                 if (!bi->page_dma) {
1199                         /* use a half page if we're re-using */
1200                         bi->page_offset ^= PAGE_SIZE / 2;
1201                         bi->page_dma = dma_map_page(rx_ring->dev,
1202                                                     bi->page,
1203                                                     bi->page_offset,
1204                                                     PAGE_SIZE / 2,
1205                                                     DMA_FROM_DEVICE);
1206                         if (dma_mapping_error(rx_ring->dev,
1207                                               bi->page_dma)) {
1208                                 rx_ring->rx_stats.alloc_page_failed++;
1209                                 bi->page_dma = 0;
1210                                 goto no_buffers;
1211                         }
1212                 }
1213
1214                 dma_sync_single_range_for_device(rx_ring->dev,
1215                                                  bi->dma,
1216                                                  0,
1217                                                  rx_ring->rx_hdr_len,
1218                                                  DMA_FROM_DEVICE);
1219                 /* Refresh the desc even if buffer_addrs didn't change
1220                  * because each write-back erases this info.
1221                  */
1222                 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
1223                 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
1224                 i++;
1225                 if (i == rx_ring->count)
1226                         i = 0;
1227         }
1228
1229 no_buffers:
1230         if (rx_ring->next_to_use != i)
1231                 i40e_release_rx_desc(rx_ring, i);
1232 }
1233
1234 /**
1235  * i40e_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
1236  * @rx_ring: ring to place buffers on
1237  * @cleaned_count: number of buffers to replace
1238  **/
1239 void i40e_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
1240 {
1241         u16 i = rx_ring->next_to_use;
1242         union i40e_rx_desc *rx_desc;
1243         struct i40e_rx_buffer *bi;
1244         struct sk_buff *skb;
1245
1246         /* do nothing if no valid netdev defined */
1247         if (!rx_ring->netdev || !cleaned_count)
1248                 return;
1249
1250         while (cleaned_count--) {
1251                 rx_desc = I40E_RX_DESC(rx_ring, i);
1252                 bi = &rx_ring->rx_bi[i];
1253                 skb = bi->skb;
1254
1255                 if (!skb) {
1256                         skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1257                                                         rx_ring->rx_buf_len);
1258                         if (!skb) {
1259                                 rx_ring->rx_stats.alloc_buff_failed++;
1260                                 goto no_buffers;
1261                         }
1262                         /* initialize queue mapping */
1263                         skb_record_rx_queue(skb, rx_ring->queue_index);
1264                         bi->skb = skb;
1265                 }
1266
1267                 if (!bi->dma) {
1268                         bi->dma = dma_map_single(rx_ring->dev,
1269                                                  skb->data,
1270                                                  rx_ring->rx_buf_len,
1271                                                  DMA_FROM_DEVICE);
1272                         if (dma_mapping_error(rx_ring->dev, bi->dma)) {
1273                                 rx_ring->rx_stats.alloc_buff_failed++;
1274                                 bi->dma = 0;
1275                                 goto no_buffers;
1276                         }
1277                 }
1278
1279                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
1280                 rx_desc->read.hdr_addr = 0;
1281                 i++;
1282                 if (i == rx_ring->count)
1283                         i = 0;
1284         }
1285
1286 no_buffers:
1287         if (rx_ring->next_to_use != i)
1288                 i40e_release_rx_desc(rx_ring, i);
1289 }
1290
1291 /**
1292  * i40e_receive_skb - Send a completed packet up the stack
1293  * @rx_ring:  rx ring in play
1294  * @skb: packet to send up
1295  * @vlan_tag: vlan tag for packet
1296  **/
1297 static void i40e_receive_skb(struct i40e_ring *rx_ring,
1298                              struct sk_buff *skb, u16 vlan_tag)
1299 {
1300         struct i40e_q_vector *q_vector = rx_ring->q_vector;
1301
1302         if (vlan_tag & VLAN_VID_MASK)
1303                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1304
1305         napi_gro_receive(&q_vector->napi, skb);
1306 }
1307
1308 /**
1309  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1310  * @vsi: the VSI we care about
1311  * @skb: skb currently being received and modified
1312  * @rx_status: status value of last descriptor in packet
1313  * @rx_error: error value of last descriptor in packet
1314  * @rx_ptype: ptype value of last descriptor in packet
1315  **/
1316 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1317                                     struct sk_buff *skb,
1318                                     u32 rx_status,
1319                                     u32 rx_error,
1320                                     u16 rx_ptype)
1321 {
1322         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
1323         bool ipv4 = false, ipv6 = false;
1324         bool ipv4_tunnel, ipv6_tunnel;
1325         __wsum rx_udp_csum;
1326         struct iphdr *iph;
1327         __sum16 csum;
1328
1329         ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
1330                      (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
1331         ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
1332                      (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
1333
1334         skb->ip_summed = CHECKSUM_NONE;
1335
1336         /* Rx csum enabled and ip headers found? */
1337         if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1338                 return;
1339
1340         /* did the hardware decode the packet and checksum? */
1341         if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1342                 return;
1343
1344         /* both known and outer_ip must be set for the below code to work */
1345         if (!(decoded.known && decoded.outer_ip))
1346                 return;
1347
1348         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1349             decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
1350                 ipv4 = true;
1351         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1352                  decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
1353                 ipv6 = true;
1354
1355         if (ipv4 &&
1356             (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1357                          BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1358                 goto checksum_fail;
1359
1360         /* likely incorrect csum if alternate IP extension headers found */
1361         if (ipv6 &&
1362             rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1363                 /* don't increment checksum err here, non-fatal err */
1364                 return;
1365
1366         /* there was some L4 error, count error and punt packet to the stack */
1367         if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1368                 goto checksum_fail;
1369
1370         /* handle packets that were not able to be checksummed due
1371          * to arrival speed, in this case the stack can compute
1372          * the csum.
1373          */
1374         if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1375                 return;
1376
1377         /* If VXLAN traffic has an outer UDPv4 checksum we need to check
1378          * it in the driver, hardware does not do it for us.
1379          * Since L3L4P bit was set we assume a valid IHL value (>=5)
1380          * so the total length of IPv4 header is IHL*4 bytes
1381          * The UDP_0 bit *may* bet set if the *inner* header is UDP
1382          */
1383         if (!(vsi->back->flags & I40E_FLAG_OUTER_UDP_CSUM_CAPABLE) &&
1384             (ipv4_tunnel)) {
1385                 skb->transport_header = skb->mac_header +
1386                                         sizeof(struct ethhdr) +
1387                                         (ip_hdr(skb)->ihl * 4);
1388
1389                 /* Add 4 bytes for VLAN tagged packets */
1390                 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
1391                                           skb->protocol == htons(ETH_P_8021AD))
1392                                           ? VLAN_HLEN : 0;
1393
1394                 if ((ip_hdr(skb)->protocol == IPPROTO_UDP) &&
1395                     (udp_hdr(skb)->check != 0)) {
1396                         rx_udp_csum = udp_csum(skb);
1397                         iph = ip_hdr(skb);
1398                         csum = csum_tcpudp_magic(
1399                                         iph->saddr, iph->daddr,
1400                                         (skb->len - skb_transport_offset(skb)),
1401                                         IPPROTO_UDP, rx_udp_csum);
1402
1403                         if (udp_hdr(skb)->check != csum)
1404                                 goto checksum_fail;
1405
1406                 } /* else its GRE and so no outer UDP header */
1407         }
1408
1409         skb->ip_summed = CHECKSUM_UNNECESSARY;
1410         skb->csum_level = ipv4_tunnel || ipv6_tunnel;
1411
1412         return;
1413
1414 checksum_fail:
1415         vsi->back->hw_csum_rx_error++;
1416 }
1417
1418 /**
1419  * i40e_rx_hash - returns the hash value from the Rx descriptor
1420  * @ring: descriptor ring
1421  * @rx_desc: specific descriptor
1422  **/
1423 static inline u32 i40e_rx_hash(struct i40e_ring *ring,
1424                                union i40e_rx_desc *rx_desc)
1425 {
1426         const __le64 rss_mask =
1427                 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1428                             I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1429
1430         if ((ring->netdev->features & NETIF_F_RXHASH) &&
1431             (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
1432                 return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1433         else
1434                 return 0;
1435 }
1436
1437 /**
1438  * i40e_ptype_to_hash - get a hash type
1439  * @ptype: the ptype value from the descriptor
1440  *
1441  * Returns a hash type to be used by skb_set_hash
1442  **/
1443 static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
1444 {
1445         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1446
1447         if (!decoded.known)
1448                 return PKT_HASH_TYPE_NONE;
1449
1450         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1451             decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1452                 return PKT_HASH_TYPE_L4;
1453         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1454                  decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1455                 return PKT_HASH_TYPE_L3;
1456         else
1457                 return PKT_HASH_TYPE_L2;
1458 }
1459
1460 /**
1461  * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
1462  * @rx_ring:  rx ring to clean
1463  * @budget:   how many cleans we're allowed
1464  *
1465  * Returns true if there's any budget left (e.g. the clean is finished)
1466  **/
1467 static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, int budget)
1468 {
1469         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1470         u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
1471         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1472         const int current_node = numa_mem_id();
1473         struct i40e_vsi *vsi = rx_ring->vsi;
1474         u16 i = rx_ring->next_to_clean;
1475         union i40e_rx_desc *rx_desc;
1476         u32 rx_error, rx_status;
1477         u8 rx_ptype;
1478         u64 qword;
1479
1480         if (budget <= 0)
1481                 return 0;
1482
1483         do {
1484                 struct i40e_rx_buffer *rx_bi;
1485                 struct sk_buff *skb;
1486                 u16 vlan_tag;
1487                 /* return some buffers to hardware, one at a time is too slow */
1488                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1489                         i40e_alloc_rx_buffers_ps(rx_ring, cleaned_count);
1490                         cleaned_count = 0;
1491                 }
1492
1493                 i = rx_ring->next_to_clean;
1494                 rx_desc = I40E_RX_DESC(rx_ring, i);
1495                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1496                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1497                         I40E_RXD_QW1_STATUS_SHIFT;
1498
1499                 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1500                         break;
1501
1502                 /* This memory barrier is needed to keep us from reading
1503                  * any other fields out of the rx_desc until we know the
1504                  * DD bit is set.
1505                  */
1506                 dma_rmb();
1507                 if (i40e_rx_is_programming_status(qword)) {
1508                         i40e_clean_programming_status(rx_ring, rx_desc);
1509                         I40E_RX_INCREMENT(rx_ring, i);
1510                         continue;
1511                 }
1512                 rx_bi = &rx_ring->rx_bi[i];
1513                 skb = rx_bi->skb;
1514                 if (likely(!skb)) {
1515                         skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1516                                                         rx_ring->rx_hdr_len);
1517                         if (!skb) {
1518                                 rx_ring->rx_stats.alloc_buff_failed++;
1519                                 break;
1520                         }
1521
1522                         /* initialize queue mapping */
1523                         skb_record_rx_queue(skb, rx_ring->queue_index);
1524                         /* we are reusing so sync this buffer for CPU use */
1525                         dma_sync_single_range_for_cpu(rx_ring->dev,
1526                                                       rx_bi->dma,
1527                                                       0,
1528                                                       rx_ring->rx_hdr_len,
1529                                                       DMA_FROM_DEVICE);
1530                 }
1531                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1532                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1533                 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1534                                 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1535                 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1536                          I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1537
1538                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1539                            I40E_RXD_QW1_ERROR_SHIFT;
1540                 rx_hbo = rx_error & BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1541                 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1542
1543                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1544                            I40E_RXD_QW1_PTYPE_SHIFT;
1545                 prefetch(rx_bi->page);
1546                 rx_bi->skb = NULL;
1547                 cleaned_count++;
1548                 if (rx_hbo || rx_sph) {
1549                         int len;
1550
1551                         if (rx_hbo)
1552                                 len = I40E_RX_HDR_SIZE;
1553                         else
1554                                 len = rx_header_len;
1555                         memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
1556                 } else if (skb->len == 0) {
1557                         int len;
1558
1559                         len = (rx_packet_len > skb_headlen(skb) ?
1560                                 skb_headlen(skb) : rx_packet_len);
1561                         memcpy(__skb_put(skb, len),
1562                                rx_bi->page + rx_bi->page_offset,
1563                                len);
1564                         rx_bi->page_offset += len;
1565                         rx_packet_len -= len;
1566                 }
1567
1568                 /* Get the rest of the data if this was a header split */
1569                 if (rx_packet_len) {
1570                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1571                                            rx_bi->page,
1572                                            rx_bi->page_offset,
1573                                            rx_packet_len);
1574
1575                         skb->len += rx_packet_len;
1576                         skb->data_len += rx_packet_len;
1577                         skb->truesize += rx_packet_len;
1578
1579                         if ((page_count(rx_bi->page) == 1) &&
1580                             (page_to_nid(rx_bi->page) == current_node))
1581                                 get_page(rx_bi->page);
1582                         else
1583                                 rx_bi->page = NULL;
1584
1585                         dma_unmap_page(rx_ring->dev,
1586                                        rx_bi->page_dma,
1587                                        PAGE_SIZE / 2,
1588                                        DMA_FROM_DEVICE);
1589                         rx_bi->page_dma = 0;
1590                 }
1591                 I40E_RX_INCREMENT(rx_ring, i);
1592
1593                 if (unlikely(
1594                     !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1595                         struct i40e_rx_buffer *next_buffer;
1596
1597                         next_buffer = &rx_ring->rx_bi[i];
1598                         next_buffer->skb = skb;
1599                         rx_ring->rx_stats.non_eop_descs++;
1600                         continue;
1601                 }
1602
1603                 /* ERR_MASK will only have valid bits if EOP set */
1604                 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1605                         dev_kfree_skb_any(skb);
1606                         continue;
1607                 }
1608
1609                 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1610                              i40e_ptype_to_hash(rx_ptype));
1611                 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1612                         i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1613                                            I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1614                                            I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1615                         rx_ring->last_rx_timestamp = jiffies;
1616                 }
1617
1618                 /* probably a little skewed due to removing CRC */
1619                 total_rx_bytes += skb->len;
1620                 total_rx_packets++;
1621
1622                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1623
1624                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1625
1626                 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1627                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1628                          : 0;
1629 #ifdef I40E_FCOE
1630                 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1631                         dev_kfree_skb_any(skb);
1632                         continue;
1633                 }
1634 #endif
1635                 skb_mark_napi_id(skb, &rx_ring->q_vector->napi);
1636                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1637
1638                 rx_desc->wb.qword1.status_error_len = 0;
1639
1640         } while (likely(total_rx_packets < budget));
1641
1642         u64_stats_update_begin(&rx_ring->syncp);
1643         rx_ring->stats.packets += total_rx_packets;
1644         rx_ring->stats.bytes += total_rx_bytes;
1645         u64_stats_update_end(&rx_ring->syncp);
1646         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1647         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1648
1649         return total_rx_packets;
1650 }
1651
1652 /**
1653  * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
1654  * @rx_ring:  rx ring to clean
1655  * @budget:   how many cleans we're allowed
1656  *
1657  * Returns number of packets cleaned
1658  **/
1659 static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
1660 {
1661         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1662         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1663         struct i40e_vsi *vsi = rx_ring->vsi;
1664         union i40e_rx_desc *rx_desc;
1665         u32 rx_error, rx_status;
1666         u16 rx_packet_len;
1667         u8 rx_ptype;
1668         u64 qword;
1669         u16 i;
1670
1671         do {
1672                 struct i40e_rx_buffer *rx_bi;
1673                 struct sk_buff *skb;
1674                 u16 vlan_tag;
1675                 /* return some buffers to hardware, one at a time is too slow */
1676                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1677                         i40e_alloc_rx_buffers_1buf(rx_ring, cleaned_count);
1678                         cleaned_count = 0;
1679                 }
1680
1681                 i = rx_ring->next_to_clean;
1682                 rx_desc = I40E_RX_DESC(rx_ring, i);
1683                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1684                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1685                         I40E_RXD_QW1_STATUS_SHIFT;
1686
1687                 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1688                         break;
1689
1690                 /* This memory barrier is needed to keep us from reading
1691                  * any other fields out of the rx_desc until we know the
1692                  * DD bit is set.
1693                  */
1694                 dma_rmb();
1695
1696                 if (i40e_rx_is_programming_status(qword)) {
1697                         i40e_clean_programming_status(rx_ring, rx_desc);
1698                         I40E_RX_INCREMENT(rx_ring, i);
1699                         continue;
1700                 }
1701                 rx_bi = &rx_ring->rx_bi[i];
1702                 skb = rx_bi->skb;
1703                 prefetch(skb->data);
1704
1705                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1706                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1707
1708                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1709                            I40E_RXD_QW1_ERROR_SHIFT;
1710                 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1711
1712                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1713                            I40E_RXD_QW1_PTYPE_SHIFT;
1714                 rx_bi->skb = NULL;
1715                 cleaned_count++;
1716
1717                 /* Get the header and possibly the whole packet
1718                  * If this is an skb from previous receive dma will be 0
1719                  */
1720                 skb_put(skb, rx_packet_len);
1721                 dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
1722                                  DMA_FROM_DEVICE);
1723                 rx_bi->dma = 0;
1724
1725                 I40E_RX_INCREMENT(rx_ring, i);
1726
1727                 if (unlikely(
1728                     !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1729                         rx_ring->rx_stats.non_eop_descs++;
1730                         continue;
1731                 }
1732
1733                 /* ERR_MASK will only have valid bits if EOP set */
1734                 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1735                         dev_kfree_skb_any(skb);
1736                         continue;
1737                 }
1738
1739                 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1740                              i40e_ptype_to_hash(rx_ptype));
1741                 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1742                         i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1743                                            I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1744                                            I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1745                         rx_ring->last_rx_timestamp = jiffies;
1746                 }
1747
1748                 /* probably a little skewed due to removing CRC */
1749                 total_rx_bytes += skb->len;
1750                 total_rx_packets++;
1751
1752                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1753
1754                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1755
1756                 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1757                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1758                          : 0;
1759 #ifdef I40E_FCOE
1760                 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1761                         dev_kfree_skb_any(skb);
1762                         continue;
1763                 }
1764 #endif
1765                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1766
1767                 rx_desc->wb.qword1.status_error_len = 0;
1768         } while (likely(total_rx_packets < budget));
1769
1770         u64_stats_update_begin(&rx_ring->syncp);
1771         rx_ring->stats.packets += total_rx_packets;
1772         rx_ring->stats.bytes += total_rx_bytes;
1773         u64_stats_update_end(&rx_ring->syncp);
1774         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1775         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1776
1777         return total_rx_packets;
1778 }
1779
1780 static u32 i40e_buildreg_itr(const int type, const u16 itr)
1781 {
1782         u32 val;
1783
1784         val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1785               I40E_PFINT_DYN_CTLN_CLEARPBA_MASK |
1786               (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
1787               (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);
1788
1789         return val;
1790 }
1791
1792 /* a small macro to shorten up some long lines */
1793 #define INTREG I40E_PFINT_DYN_CTLN
1794
1795 /**
1796  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1797  * @vsi: the VSI we care about
1798  * @q_vector: q_vector for which itr is being updated and interrupt enabled
1799  *
1800  **/
1801 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1802                                           struct i40e_q_vector *q_vector)
1803 {
1804         struct i40e_hw *hw = &vsi->back->hw;
1805         bool rx = false, tx = false;
1806         u32 rxval, txval;
1807         int vector;
1808
1809         vector = (q_vector->v_idx + vsi->base_vector);
1810
1811         /* avoid dynamic calculation if in countdown mode OR if
1812          * all dynamic is disabled
1813          */
1814         rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1815
1816         if (q_vector->itr_countdown > 0 ||
1817             (!ITR_IS_DYNAMIC(vsi->rx_itr_setting) &&
1818              !ITR_IS_DYNAMIC(vsi->tx_itr_setting))) {
1819                 goto enable_int;
1820         }
1821
1822         if (ITR_IS_DYNAMIC(vsi->rx_itr_setting)) {
1823                 rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1824                 rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1825         }
1826
1827         if (ITR_IS_DYNAMIC(vsi->tx_itr_setting)) {
1828                 tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1829                 txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1830         }
1831
1832         if (rx || tx) {
1833                 /* get the higher of the two ITR adjustments and
1834                  * use the same value for both ITR registers
1835                  * when in adaptive mode (Rx and/or Tx)
1836                  */
1837                 u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1838
1839                 q_vector->tx.itr = q_vector->rx.itr = itr;
1840                 txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1841                 tx = true;
1842                 rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1843                 rx = true;
1844         }
1845
1846         /* only need to enable the interrupt once, but need
1847          * to possibly update both ITR values
1848          */
1849         if (rx) {
1850                 /* set the INTENA_MSK_MASK so that this first write
1851                  * won't actually enable the interrupt, instead just
1852                  * updating the ITR (it's bit 31 PF and VF)
1853                  */
1854                 rxval |= BIT(31);
1855                 /* don't check _DOWN because interrupt isn't being enabled */
1856                 wr32(hw, INTREG(vector - 1), rxval);
1857         }
1858
1859 enable_int:
1860         if (!test_bit(__I40E_DOWN, &vsi->state))
1861                 wr32(hw, INTREG(vector - 1), txval);
1862
1863         if (q_vector->itr_countdown)
1864                 q_vector->itr_countdown--;
1865         else
1866                 q_vector->itr_countdown = ITR_COUNTDOWN_START;
1867
1868 }
1869
1870 /**
1871  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
1872  * @napi: napi struct with our devices info in it
1873  * @budget: amount of work driver is allowed to do this pass, in packets
1874  *
1875  * This function will clean all queues associated with a q_vector.
1876  *
1877  * Returns the amount of work done
1878  **/
1879 int i40e_napi_poll(struct napi_struct *napi, int budget)
1880 {
1881         struct i40e_q_vector *q_vector =
1882                                container_of(napi, struct i40e_q_vector, napi);
1883         struct i40e_vsi *vsi = q_vector->vsi;
1884         struct i40e_ring *ring;
1885         bool clean_complete = true;
1886         bool arm_wb = false;
1887         int budget_per_ring;
1888         int work_done = 0;
1889
1890         if (test_bit(__I40E_DOWN, &vsi->state)) {
1891                 napi_complete(napi);
1892                 return 0;
1893         }
1894
1895         /* Since the actual Tx work is minimal, we can give the Tx a larger
1896          * budget and be more aggressive about cleaning up the Tx descriptors.
1897          */
1898         i40e_for_each_ring(ring, q_vector->tx) {
1899                 clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
1900                 arm_wb |= ring->arm_wb;
1901                 ring->arm_wb = false;
1902         }
1903
1904         /* Handle case where we are called by netpoll with a budget of 0 */
1905         if (budget <= 0)
1906                 goto tx_only;
1907
1908         /* We attempt to distribute budget to each Rx queue fairly, but don't
1909          * allow the budget to go below 1 because that would exit polling early.
1910          */
1911         budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1912
1913         i40e_for_each_ring(ring, q_vector->rx) {
1914                 int cleaned;
1915
1916                 if (ring_is_ps_enabled(ring))
1917                         cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
1918                 else
1919                         cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
1920
1921                 work_done += cleaned;
1922                 /* if we didn't clean as many as budgeted, we must be done */
1923                 clean_complete &= (budget_per_ring != cleaned);
1924         }
1925
1926         /* If work not completed, return budget and polling will return */
1927         if (!clean_complete) {
1928 tx_only:
1929                 if (arm_wb)
1930                         i40e_force_wb(vsi, q_vector);
1931                 return budget;
1932         }
1933
1934         if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
1935                 q_vector->arm_wb_state = false;
1936
1937         /* Work is done so exit the polling mode and re-enable the interrupt */
1938         napi_complete_done(napi, work_done);
1939         if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1940                 i40e_update_enable_itr(vsi, q_vector);
1941         } else { /* Legacy mode */
1942                 struct i40e_hw *hw = &vsi->back->hw;
1943                 /* We re-enable the queue 0 cause, but
1944                  * don't worry about dynamic_enable
1945                  * because we left it on for the other
1946                  * possible interrupts during napi
1947                  */
1948                 u32 qval = rd32(hw, I40E_QINT_RQCTL(0)) |
1949                            I40E_QINT_RQCTL_CAUSE_ENA_MASK;
1950
1951                 wr32(hw, I40E_QINT_RQCTL(0), qval);
1952                 qval = rd32(hw, I40E_QINT_TQCTL(0)) |
1953                        I40E_QINT_TQCTL_CAUSE_ENA_MASK;
1954                 wr32(hw, I40E_QINT_TQCTL(0), qval);
1955                 i40e_irq_dynamic_enable_icr0(vsi->back);
1956         }
1957         return 0;
1958 }
1959
1960 /**
1961  * i40e_atr - Add a Flow Director ATR filter
1962  * @tx_ring:  ring to add programming descriptor to
1963  * @skb:      send buffer
1964  * @tx_flags: send tx flags
1965  * @protocol: wire protocol
1966  **/
1967 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
1968                      u32 tx_flags, __be16 protocol)
1969 {
1970         struct i40e_filter_program_desc *fdir_desc;
1971         struct i40e_pf *pf = tx_ring->vsi->back;
1972         union {
1973                 unsigned char *network;
1974                 struct iphdr *ipv4;
1975                 struct ipv6hdr *ipv6;
1976         } hdr;
1977         struct tcphdr *th;
1978         unsigned int hlen;
1979         u32 flex_ptype, dtype_cmd;
1980         u16 i;
1981
1982         /* make sure ATR is enabled */
1983         if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
1984                 return;
1985
1986         if ((pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
1987                 return;
1988
1989         /* if sampling is disabled do nothing */
1990         if (!tx_ring->atr_sample_rate)
1991                 return;
1992
1993         if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
1994                 return;
1995
1996         if (!(tx_flags & I40E_TX_FLAGS_VXLAN_TUNNEL)) {
1997                 /* snag network header to get L4 type and address */
1998                 hdr.network = skb_network_header(skb);
1999
2000                 /* Currently only IPv4/IPv6 with TCP is supported
2001                  * access ihl as u8 to avoid unaligned access on ia64
2002                  */
2003                 if (tx_flags & I40E_TX_FLAGS_IPV4)
2004                         hlen = (hdr.network[0] & 0x0F) << 2;
2005                 else if (protocol == htons(ETH_P_IPV6))
2006                         hlen = sizeof(struct ipv6hdr);
2007                 else
2008                         return;
2009         } else {
2010                 hdr.network = skb_inner_network_header(skb);
2011                 hlen = skb_inner_network_header_len(skb);
2012         }
2013
2014         /* Currently only IPv4/IPv6 with TCP is supported
2015          * Note: tx_flags gets modified to reflect inner protocols in
2016          * tx_enable_csum function if encap is enabled.
2017          */
2018         if ((tx_flags & I40E_TX_FLAGS_IPV4) &&
2019             (hdr.ipv4->protocol != IPPROTO_TCP))
2020                 return;
2021         else if ((tx_flags & I40E_TX_FLAGS_IPV6) &&
2022                  (hdr.ipv6->nexthdr != IPPROTO_TCP))
2023                 return;
2024
2025         th = (struct tcphdr *)(hdr.network + hlen);
2026
2027         /* Due to lack of space, no more new filters can be programmed */
2028         if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
2029                 return;
2030         if (pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) {
2031                 /* HW ATR eviction will take care of removing filters on FIN
2032                  * and RST packets.
2033                  */
2034                 if (th->fin || th->rst)
2035                         return;
2036         }
2037
2038         tx_ring->atr_count++;
2039
2040         /* sample on all syn/fin/rst packets or once every atr sample rate */
2041         if (!th->fin &&
2042             !th->syn &&
2043             !th->rst &&
2044             (tx_ring->atr_count < tx_ring->atr_sample_rate))
2045                 return;
2046
2047         tx_ring->atr_count = 0;
2048
2049         /* grab the next descriptor */
2050         i = tx_ring->next_to_use;
2051         fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2052
2053         i++;
2054         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2055
2056         flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2057                       I40E_TXD_FLTR_QW0_QINDEX_MASK;
2058         flex_ptype |= (protocol == htons(ETH_P_IP)) ?
2059                       (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2060                        I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2061                       (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2062                        I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2063
2064         flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2065
2066         dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2067
2068         dtype_cmd |= (th->fin || th->rst) ?
2069                      (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2070                       I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2071                      (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2072                       I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2073
2074         dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2075                      I40E_TXD_FLTR_QW1_DEST_SHIFT;
2076
2077         dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2078                      I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2079
2080         dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2081         if (!(tx_flags & I40E_TX_FLAGS_VXLAN_TUNNEL))
2082                 dtype_cmd |=
2083                         ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2084                         I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2085                         I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2086         else
2087                 dtype_cmd |=
2088                         ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2089                         I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2090                         I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2091
2092         if (pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE)
2093                 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2094
2095         fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2096         fdir_desc->rsvd = cpu_to_le32(0);
2097         fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2098         fdir_desc->fd_id = cpu_to_le32(0);
2099 }
2100
2101 /**
2102  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2103  * @skb:     send buffer
2104  * @tx_ring: ring to send buffer on
2105  * @flags:   the tx flags to be set
2106  *
2107  * Checks the skb and set up correspondingly several generic transmit flags
2108  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2109  *
2110  * Returns error code indicate the frame should be dropped upon error and the
2111  * otherwise  returns 0 to indicate the flags has been set properly.
2112  **/
2113 #ifdef I40E_FCOE
2114 inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2115                                       struct i40e_ring *tx_ring,
2116                                       u32 *flags)
2117 #else
2118 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2119                                              struct i40e_ring *tx_ring,
2120                                              u32 *flags)
2121 #endif
2122 {
2123         __be16 protocol = skb->protocol;
2124         u32  tx_flags = 0;
2125
2126         if (protocol == htons(ETH_P_8021Q) &&
2127             !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2128                 /* When HW VLAN acceleration is turned off by the user the
2129                  * stack sets the protocol to 8021q so that the driver
2130                  * can take any steps required to support the SW only
2131                  * VLAN handling.  In our case the driver doesn't need
2132                  * to take any further steps so just set the protocol
2133                  * to the encapsulated ethertype.
2134                  */
2135                 skb->protocol = vlan_get_protocol(skb);
2136                 goto out;
2137         }
2138
2139         /* if we have a HW VLAN tag being added, default to the HW one */
2140         if (skb_vlan_tag_present(skb)) {
2141                 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2142                 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2143         /* else if it is a SW VLAN, check the next protocol and store the tag */
2144         } else if (protocol == htons(ETH_P_8021Q)) {
2145                 struct vlan_hdr *vhdr, _vhdr;
2146
2147                 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2148                 if (!vhdr)
2149                         return -EINVAL;
2150
2151                 protocol = vhdr->h_vlan_encapsulated_proto;
2152                 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2153                 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2154         }
2155
2156         if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2157                 goto out;
2158
2159         /* Insert 802.1p priority into VLAN header */
2160         if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2161             (skb->priority != TC_PRIO_CONTROL)) {
2162                 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2163                 tx_flags |= (skb->priority & 0x7) <<
2164                                 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2165                 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2166                         struct vlan_ethhdr *vhdr;
2167                         int rc;
2168
2169                         rc = skb_cow_head(skb, 0);
2170                         if (rc < 0)
2171                                 return rc;
2172                         vhdr = (struct vlan_ethhdr *)skb->data;
2173                         vhdr->h_vlan_TCI = htons(tx_flags >>
2174                                                  I40E_TX_FLAGS_VLAN_SHIFT);
2175                 } else {
2176                         tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2177                 }
2178         }
2179
2180 out:
2181         *flags = tx_flags;
2182         return 0;
2183 }
2184
2185 /**
2186  * i40e_tso - set up the tso context descriptor
2187  * @tx_ring:  ptr to the ring to send
2188  * @skb:      ptr to the skb we're sending
2189  * @hdr_len:  ptr to the size of the packet header
2190  * @cd_type_cmd_tso_mss: ptr to u64 object
2191  * @cd_tunneling: ptr to context descriptor bits
2192  *
2193  * Returns 0 if no TSO can happen, 1 if tso is going, or error
2194  **/
2195 static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
2196                     u8 *hdr_len, u64 *cd_type_cmd_tso_mss,
2197                     u32 *cd_tunneling)
2198 {
2199         u32 cd_cmd, cd_tso_len, cd_mss;
2200         struct ipv6hdr *ipv6h;
2201         struct tcphdr *tcph;
2202         struct iphdr *iph;
2203         u32 l4len;
2204         int err;
2205
2206         if (!skb_is_gso(skb))
2207                 return 0;
2208
2209         err = skb_cow_head(skb, 0);
2210         if (err < 0)
2211                 return err;
2212
2213         iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
2214         ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
2215
2216         if (iph->version == 4) {
2217                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
2218                 iph->tot_len = 0;
2219                 iph->check = 0;
2220                 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
2221                                                  0, IPPROTO_TCP, 0);
2222         } else if (ipv6h->version == 6) {
2223                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
2224                 ipv6h->payload_len = 0;
2225                 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
2226                                                0, IPPROTO_TCP, 0);
2227         }
2228
2229         l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
2230         *hdr_len = (skb->encapsulation
2231                     ? (skb_inner_transport_header(skb) - skb->data)
2232                     : skb_transport_offset(skb)) + l4len;
2233
2234         /* find the field values */
2235         cd_cmd = I40E_TX_CTX_DESC_TSO;
2236         cd_tso_len = skb->len - *hdr_len;
2237         cd_mss = skb_shinfo(skb)->gso_size;
2238         *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2239                                 ((u64)cd_tso_len <<
2240                                  I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2241                                 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2242         return 1;
2243 }
2244
2245 /**
2246  * i40e_tsyn - set up the tsyn context descriptor
2247  * @tx_ring:  ptr to the ring to send
2248  * @skb:      ptr to the skb we're sending
2249  * @tx_flags: the collected send information
2250  * @cd_type_cmd_tso_mss: ptr to u64 object
2251  *
2252  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2253  **/
2254 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2255                      u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2256 {
2257         struct i40e_pf *pf;
2258
2259         if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2260                 return 0;
2261
2262         /* Tx timestamps cannot be sampled when doing TSO */
2263         if (tx_flags & I40E_TX_FLAGS_TSO)
2264                 return 0;
2265
2266         /* only timestamp the outbound packet if the user has requested it and
2267          * we are not already transmitting a packet to be timestamped
2268          */
2269         pf = i40e_netdev_to_pf(tx_ring->netdev);
2270         if (!(pf->flags & I40E_FLAG_PTP))
2271                 return 0;
2272
2273         if (pf->ptp_tx &&
2274             !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
2275                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2276                 pf->ptp_tx_skb = skb_get(skb);
2277         } else {
2278                 return 0;
2279         }
2280
2281         *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
2282                                 I40E_TXD_CTX_QW1_CMD_SHIFT;
2283
2284         return 1;
2285 }
2286
2287 /**
2288  * i40e_tx_enable_csum - Enable Tx checksum offloads
2289  * @skb: send buffer
2290  * @tx_flags: pointer to Tx flags currently set
2291  * @td_cmd: Tx descriptor command bits to set
2292  * @td_offset: Tx descriptor header offsets to set
2293  * @tx_ring: Tx descriptor ring
2294  * @cd_tunneling: ptr to context desc bits
2295  **/
2296 static void i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
2297                                 u32 *td_cmd, u32 *td_offset,
2298                                 struct i40e_ring *tx_ring,
2299                                 u32 *cd_tunneling)
2300 {
2301         struct ipv6hdr *this_ipv6_hdr;
2302         unsigned int this_tcp_hdrlen;
2303         struct iphdr *this_ip_hdr;
2304         u32 network_hdr_len;
2305         u8 l4_hdr = 0;
2306         struct udphdr *oudph;
2307         struct iphdr *oiph;
2308         u32 l4_tunnel = 0;
2309
2310         if (skb->encapsulation) {
2311                 switch (ip_hdr(skb)->protocol) {
2312                 case IPPROTO_UDP:
2313                         oudph = udp_hdr(skb);
2314                         oiph = ip_hdr(skb);
2315                         l4_tunnel = I40E_TXD_CTX_UDP_TUNNELING;
2316                         *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
2317                         break;
2318                 case IPPROTO_GRE:
2319                         l4_tunnel = I40E_TXD_CTX_GRE_TUNNELING;
2320                         break;
2321                 default:
2322                         return;
2323                 }
2324                 network_hdr_len = skb_inner_network_header_len(skb);
2325                 this_ip_hdr = inner_ip_hdr(skb);
2326                 this_ipv6_hdr = inner_ipv6_hdr(skb);
2327                 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
2328
2329                 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2330                         if (*tx_flags & I40E_TX_FLAGS_TSO) {
2331                                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
2332                                 ip_hdr(skb)->check = 0;
2333                         } else {
2334                                 *cd_tunneling |=
2335                                          I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2336                         }
2337                 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2338                         *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
2339                         if (*tx_flags & I40E_TX_FLAGS_TSO)
2340                                 ip_hdr(skb)->check = 0;
2341                 }
2342
2343                 /* Now set the ctx descriptor fields */
2344                 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
2345                                    I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT      |
2346                                    l4_tunnel                             |
2347                                    ((skb_inner_network_offset(skb) -
2348                                         skb_transport_offset(skb)) >> 1) <<
2349                                    I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2350                 if (this_ip_hdr->version == 6) {
2351                         *tx_flags &= ~I40E_TX_FLAGS_IPV4;
2352                         *tx_flags |= I40E_TX_FLAGS_IPV6;
2353                 }
2354                 if ((tx_ring->flags & I40E_TXR_FLAGS_OUTER_UDP_CSUM) &&
2355                     (l4_tunnel == I40E_TXD_CTX_UDP_TUNNELING)        &&
2356                     (*cd_tunneling & I40E_TXD_CTX_QW0_EXT_IP_MASK)) {
2357                         oudph->check = ~csum_tcpudp_magic(oiph->saddr,
2358                                         oiph->daddr,
2359                                         (skb->len - skb_transport_offset(skb)),
2360                                         IPPROTO_UDP, 0);
2361                         *cd_tunneling |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
2362                 }
2363         } else {
2364                 network_hdr_len = skb_network_header_len(skb);
2365                 this_ip_hdr = ip_hdr(skb);
2366                 this_ipv6_hdr = ipv6_hdr(skb);
2367                 this_tcp_hdrlen = tcp_hdrlen(skb);
2368         }
2369
2370         /* Enable IP checksum offloads */
2371         if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2372                 l4_hdr = this_ip_hdr->protocol;
2373                 /* the stack computes the IP header already, the only time we
2374                  * need the hardware to recompute it is in the case of TSO.
2375                  */
2376                 if (*tx_flags & I40E_TX_FLAGS_TSO) {
2377                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
2378                         this_ip_hdr->check = 0;
2379                 } else {
2380                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
2381                 }
2382                 /* Now set the td_offset for IP header length */
2383                 *td_offset = (network_hdr_len >> 2) <<
2384                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2385         } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2386                 l4_hdr = this_ipv6_hdr->nexthdr;
2387                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2388                 /* Now set the td_offset for IP header length */
2389                 *td_offset = (network_hdr_len >> 2) <<
2390                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2391         }
2392         /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
2393         *td_offset |= (skb_network_offset(skb) >> 1) <<
2394                        I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2395
2396         /* Enable L4 checksum offloads */
2397         switch (l4_hdr) {
2398         case IPPROTO_TCP:
2399                 /* enable checksum offloads */
2400                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2401                 *td_offset |= (this_tcp_hdrlen >> 2) <<
2402                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2403                 break;
2404         case IPPROTO_SCTP:
2405                 /* enable SCTP checksum offload */
2406                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2407                 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
2408                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2409                 break;
2410         case IPPROTO_UDP:
2411                 /* enable UDP checksum offload */
2412                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2413                 *td_offset |= (sizeof(struct udphdr) >> 2) <<
2414                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2415                 break;
2416         default:
2417                 break;
2418         }
2419 }
2420
2421 /**
2422  * i40e_create_tx_ctx Build the Tx context descriptor
2423  * @tx_ring:  ring to create the descriptor on
2424  * @cd_type_cmd_tso_mss: Quad Word 1
2425  * @cd_tunneling: Quad Word 0 - bits 0-31
2426  * @cd_l2tag2: Quad Word 0 - bits 32-63
2427  **/
2428 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2429                                const u64 cd_type_cmd_tso_mss,
2430                                const u32 cd_tunneling, const u32 cd_l2tag2)
2431 {
2432         struct i40e_tx_context_desc *context_desc;
2433         int i = tx_ring->next_to_use;
2434
2435         if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2436             !cd_tunneling && !cd_l2tag2)
2437                 return;
2438
2439         /* grab the next descriptor */
2440         context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2441
2442         i++;
2443         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2444
2445         /* cpu_to_le32 and assign to struct fields */
2446         context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2447         context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2448         context_desc->rsvd = cpu_to_le16(0);
2449         context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2450 }
2451
2452 /**
2453  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2454  * @tx_ring: the ring to be checked
2455  * @size:    the size buffer we want to assure is available
2456  *
2457  * Returns -EBUSY if a stop is needed, else 0
2458  **/
2459 static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2460 {
2461         netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2462         /* Memory barrier before checking head and tail */
2463         smp_mb();
2464
2465         /* Check again in a case another CPU has just made room available. */
2466         if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2467                 return -EBUSY;
2468
2469         /* A reprieve! - use start_queue because it doesn't call schedule */
2470         netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2471         ++tx_ring->tx_stats.restart_queue;
2472         return 0;
2473 }
2474
2475 /**
2476  * i40e_maybe_stop_tx - 1st level check for tx stop conditions
2477  * @tx_ring: the ring to be checked
2478  * @size:    the size buffer we want to assure is available
2479  *
2480  * Returns 0 if stop is not needed
2481  **/
2482 #ifdef I40E_FCOE
2483 inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2484 #else
2485 static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2486 #endif
2487 {
2488         if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
2489                 return 0;
2490         return __i40e_maybe_stop_tx(tx_ring, size);
2491 }
2492
2493 /**
2494  * i40e_chk_linearize - Check if there are more than 8 fragments per packet
2495  * @skb:      send buffer
2496  * @tx_flags: collected send information
2497  *
2498  * Note: Our HW can't scatter-gather more than 8 fragments to build
2499  * a packet on the wire and so we need to figure out the cases where we
2500  * need to linearize the skb.
2501  **/
2502 static bool i40e_chk_linearize(struct sk_buff *skb, u32 tx_flags)
2503 {
2504         struct skb_frag_struct *frag;
2505         bool linearize = false;
2506         unsigned int size = 0;
2507         u16 num_frags;
2508         u16 gso_segs;
2509
2510         num_frags = skb_shinfo(skb)->nr_frags;
2511         gso_segs = skb_shinfo(skb)->gso_segs;
2512
2513         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) {
2514                 u16 j = 0;
2515
2516                 if (num_frags < (I40E_MAX_BUFFER_TXD))
2517                         goto linearize_chk_done;
2518                 /* try the simple math, if we have too many frags per segment */
2519                 if (DIV_ROUND_UP((num_frags + gso_segs), gso_segs) >
2520                     I40E_MAX_BUFFER_TXD) {
2521                         linearize = true;
2522                         goto linearize_chk_done;
2523                 }
2524                 frag = &skb_shinfo(skb)->frags[0];
2525                 /* we might still have more fragments per segment */
2526                 do {
2527                         size += skb_frag_size(frag);
2528                         frag++; j++;
2529                         if ((size >= skb_shinfo(skb)->gso_size) &&
2530                             (j < I40E_MAX_BUFFER_TXD)) {
2531                                 size = (size % skb_shinfo(skb)->gso_size);
2532                                 j = (size) ? 1 : 0;
2533                         }
2534                         if (j == I40E_MAX_BUFFER_TXD) {
2535                                 linearize = true;
2536                                 break;
2537                         }
2538                         num_frags--;
2539                 } while (num_frags);
2540         } else {
2541                 if (num_frags >= I40E_MAX_BUFFER_TXD)
2542                         linearize = true;
2543         }
2544
2545 linearize_chk_done:
2546         return linearize;
2547 }
2548
2549 /**
2550  * i40e_tx_map - Build the Tx descriptor
2551  * @tx_ring:  ring to send buffer on
2552  * @skb:      send buffer
2553  * @first:    first buffer info buffer to use
2554  * @tx_flags: collected send information
2555  * @hdr_len:  size of the packet header
2556  * @td_cmd:   the command field in the descriptor
2557  * @td_offset: offset for checksum or crc
2558  **/
2559 #ifdef I40E_FCOE
2560 inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2561                         struct i40e_tx_buffer *first, u32 tx_flags,
2562                         const u8 hdr_len, u32 td_cmd, u32 td_offset)
2563 #else
2564 static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2565                                struct i40e_tx_buffer *first, u32 tx_flags,
2566                                const u8 hdr_len, u32 td_cmd, u32 td_offset)
2567 #endif
2568 {
2569         unsigned int data_len = skb->data_len;
2570         unsigned int size = skb_headlen(skb);
2571         struct skb_frag_struct *frag;
2572         struct i40e_tx_buffer *tx_bi;
2573         struct i40e_tx_desc *tx_desc;
2574         u16 i = tx_ring->next_to_use;
2575         u32 td_tag = 0;
2576         dma_addr_t dma;
2577         u16 gso_segs;
2578         u16 desc_count = 0;
2579         bool tail_bump = true;
2580         bool do_rs = false;
2581
2582         if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2583                 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2584                 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2585                          I40E_TX_FLAGS_VLAN_SHIFT;
2586         }
2587
2588         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
2589                 gso_segs = skb_shinfo(skb)->gso_segs;
2590         else
2591                 gso_segs = 1;
2592
2593         /* multiply data chunks by size of headers */
2594         first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
2595         first->gso_segs = gso_segs;
2596         first->skb = skb;
2597         first->tx_flags = tx_flags;
2598
2599         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2600
2601         tx_desc = I40E_TX_DESC(tx_ring, i);
2602         tx_bi = first;
2603
2604         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2605                 if (dma_mapping_error(tx_ring->dev, dma))
2606                         goto dma_error;
2607
2608                 /* record length, and DMA address */
2609                 dma_unmap_len_set(tx_bi, len, size);
2610                 dma_unmap_addr_set(tx_bi, dma, dma);
2611
2612                 tx_desc->buffer_addr = cpu_to_le64(dma);
2613
2614                 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2615                         tx_desc->cmd_type_offset_bsz =
2616                                 build_ctob(td_cmd, td_offset,
2617                                            I40E_MAX_DATA_PER_TXD, td_tag);
2618
2619                         tx_desc++;
2620                         i++;
2621                         desc_count++;
2622
2623                         if (i == tx_ring->count) {
2624                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
2625                                 i = 0;
2626                         }
2627
2628                         dma += I40E_MAX_DATA_PER_TXD;
2629                         size -= I40E_MAX_DATA_PER_TXD;
2630
2631                         tx_desc->buffer_addr = cpu_to_le64(dma);
2632                 }
2633
2634                 if (likely(!data_len))
2635                         break;
2636
2637                 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2638                                                           size, td_tag);
2639
2640                 tx_desc++;
2641                 i++;
2642                 desc_count++;
2643
2644                 if (i == tx_ring->count) {
2645                         tx_desc = I40E_TX_DESC(tx_ring, 0);
2646                         i = 0;
2647                 }
2648
2649                 size = skb_frag_size(frag);
2650                 data_len -= size;
2651
2652                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2653                                        DMA_TO_DEVICE);
2654
2655                 tx_bi = &tx_ring->tx_bi[i];
2656         }
2657
2658         /* set next_to_watch value indicating a packet is present */
2659         first->next_to_watch = tx_desc;
2660
2661         i++;
2662         if (i == tx_ring->count)
2663                 i = 0;
2664
2665         tx_ring->next_to_use = i;
2666
2667         netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
2668                                                  tx_ring->queue_index),
2669                                                  first->bytecount);
2670         i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2671
2672         /* Algorithm to optimize tail and RS bit setting:
2673          * if xmit_more is supported
2674          *      if xmit_more is true
2675          *              do not update tail and do not mark RS bit.
2676          *      if xmit_more is false and last xmit_more was false
2677          *              if every packet spanned less than 4 desc
2678          *                      then set RS bit on 4th packet and update tail
2679          *                      on every packet
2680          *              else
2681          *                      update tail and set RS bit on every packet.
2682          *      if xmit_more is false and last_xmit_more was true
2683          *              update tail and set RS bit.
2684          *
2685          * Optimization: wmb to be issued only in case of tail update.
2686          * Also optimize the Descriptor WB path for RS bit with the same
2687          * algorithm.
2688          *
2689          * Note: If there are less than 4 packets
2690          * pending and interrupts were disabled the service task will
2691          * trigger a force WB.
2692          */
2693         if (skb->xmit_more  &&
2694             !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2695                                                     tx_ring->queue_index))) {
2696                 tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2697                 tail_bump = false;
2698         } else if (!skb->xmit_more &&
2699                    !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2700                                                        tx_ring->queue_index)) &&
2701                    (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) &&
2702                    (tx_ring->packet_stride < WB_STRIDE) &&
2703                    (desc_count < WB_STRIDE)) {
2704                 tx_ring->packet_stride++;
2705         } else {
2706                 tx_ring->packet_stride = 0;
2707                 tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2708                 do_rs = true;
2709         }
2710         if (do_rs)
2711                 tx_ring->packet_stride = 0;
2712
2713         tx_desc->cmd_type_offset_bsz =
2714                         build_ctob(td_cmd, td_offset, size, td_tag) |
2715                         cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD :
2716                                                   I40E_TX_DESC_CMD_EOP) <<
2717                                                   I40E_TXD_QW1_CMD_SHIFT);
2718
2719         /* notify HW of packet */
2720         if (!tail_bump)
2721                 prefetchw(tx_desc + 1);
2722
2723         if (tail_bump) {
2724                 /* Force memory writes to complete before letting h/w
2725                  * know there are new descriptors to fetch.  (Only
2726                  * applicable for weak-ordered memory model archs,
2727                  * such as IA-64).
2728                  */
2729                 wmb();
2730                 writel(i, tx_ring->tail);
2731         }
2732
2733         return;
2734
2735 dma_error:
2736         dev_info(tx_ring->dev, "TX DMA map failed\n");
2737
2738         /* clear dma mappings for failed tx_bi map */
2739         for (;;) {
2740                 tx_bi = &tx_ring->tx_bi[i];
2741                 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2742                 if (tx_bi == first)
2743                         break;
2744                 if (i == 0)
2745                         i = tx_ring->count;
2746                 i--;
2747         }
2748
2749         tx_ring->next_to_use = i;
2750 }
2751
2752 /**
2753  * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
2754  * @skb:     send buffer
2755  * @tx_ring: ring to send buffer on
2756  *
2757  * Returns number of data descriptors needed for this skb. Returns 0 to indicate
2758  * there is not enough descriptors available in this ring since we need at least
2759  * one descriptor.
2760  **/
2761 #ifdef I40E_FCOE
2762 inline int i40e_xmit_descriptor_count(struct sk_buff *skb,
2763                                       struct i40e_ring *tx_ring)
2764 #else
2765 static inline int i40e_xmit_descriptor_count(struct sk_buff *skb,
2766                                              struct i40e_ring *tx_ring)
2767 #endif
2768 {
2769         unsigned int f;
2770         int count = 0;
2771
2772         /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2773          *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2774          *       + 4 desc gap to avoid the cache line where head is,
2775          *       + 1 desc for context descriptor,
2776          * otherwise try next time
2777          */
2778         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
2779                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
2780
2781         count += TXD_USE_COUNT(skb_headlen(skb));
2782         if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2783                 tx_ring->tx_stats.tx_busy++;
2784                 return 0;
2785         }
2786         return count;
2787 }
2788
2789 /**
2790  * i40e_xmit_frame_ring - Sends buffer on Tx ring
2791  * @skb:     send buffer
2792  * @tx_ring: ring to send buffer on
2793  *
2794  * Returns NETDEV_TX_OK if sent, else an error code
2795  **/
2796 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2797                                         struct i40e_ring *tx_ring)
2798 {
2799         u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2800         u32 cd_tunneling = 0, cd_l2tag2 = 0;
2801         struct i40e_tx_buffer *first;
2802         u32 td_offset = 0;
2803         u32 tx_flags = 0;
2804         __be16 protocol;
2805         u32 td_cmd = 0;
2806         u8 hdr_len = 0;
2807         int tsyn;
2808         int tso;
2809
2810         if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
2811                 return NETDEV_TX_BUSY;
2812
2813         /* prepare the xmit flags */
2814         if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2815                 goto out_drop;
2816
2817         /* obtain protocol of skb */
2818         protocol = vlan_get_protocol(skb);
2819
2820         /* record the location of the first descriptor for this packet */
2821         first = &tx_ring->tx_bi[tx_ring->next_to_use];
2822
2823         /* setup IPv4/IPv6 offloads */
2824         if (protocol == htons(ETH_P_IP))
2825                 tx_flags |= I40E_TX_FLAGS_IPV4;
2826         else if (protocol == htons(ETH_P_IPV6))
2827                 tx_flags |= I40E_TX_FLAGS_IPV6;
2828
2829         tso = i40e_tso(tx_ring, skb, &hdr_len,
2830                        &cd_type_cmd_tso_mss, &cd_tunneling);
2831
2832         if (tso < 0)
2833                 goto out_drop;
2834         else if (tso)
2835                 tx_flags |= I40E_TX_FLAGS_TSO;
2836
2837         tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
2838
2839         if (tsyn)
2840                 tx_flags |= I40E_TX_FLAGS_TSYN;
2841
2842         if (i40e_chk_linearize(skb, tx_flags)) {
2843                 if (skb_linearize(skb))
2844                         goto out_drop;
2845                 tx_ring->tx_stats.tx_linearize++;
2846         }
2847         skb_tx_timestamp(skb);
2848
2849         /* always enable CRC insertion offload */
2850         td_cmd |= I40E_TX_DESC_CMD_ICRC;
2851
2852         /* Always offload the checksum, since it's in the data descriptor */
2853         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2854                 tx_flags |= I40E_TX_FLAGS_CSUM;
2855
2856                 i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2857                                     tx_ring, &cd_tunneling);
2858         }
2859
2860         i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2861                            cd_tunneling, cd_l2tag2);
2862
2863         /* Add Flow Director ATR if it's enabled.
2864          *
2865          * NOTE: this must always be directly before the data descriptor.
2866          */
2867         i40e_atr(tx_ring, skb, tx_flags, protocol);
2868
2869         i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2870                     td_cmd, td_offset);
2871
2872         return NETDEV_TX_OK;
2873
2874 out_drop:
2875         dev_kfree_skb_any(skb);
2876         return NETDEV_TX_OK;
2877 }
2878
2879 /**
2880  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2881  * @skb:    send buffer
2882  * @netdev: network interface device structure
2883  *
2884  * Returns NETDEV_TX_OK if sent, else an error code
2885  **/
2886 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2887 {
2888         struct i40e_netdev_priv *np = netdev_priv(netdev);
2889         struct i40e_vsi *vsi = np->vsi;
2890         struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
2891
2892         /* hardware can't handle really short frames, hardware padding works
2893          * beyond this point
2894          */
2895         if (skb_put_padto(skb, I40E_MIN_TX_LEN))
2896                 return NETDEV_TX_OK;
2897
2898         return i40e_xmit_frame_ring(skb, tx_ring);
2899 }