]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/intel/i40evf/i40e_txrx.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/ide
[karo-tx-linux.git] / drivers / net / ethernet / intel / i40evf / i40e_txrx.c
1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
4  * Copyright(c) 2013 - 2014 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26
27 #include <linux/prefetch.h>
28 #include <net/busy_poll.h>
29
30 #include "i40evf.h"
31 #include "i40e_prototype.h"
32
33 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
34                                 u32 td_tag)
35 {
36         return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
37                            ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
38                            ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
39                            ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
40                            ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
41 }
42
43 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
44
45 /**
46  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
47  * @ring:      the ring that owns the buffer
48  * @tx_buffer: the buffer to free
49  **/
50 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
51                                             struct i40e_tx_buffer *tx_buffer)
52 {
53         if (tx_buffer->skb) {
54                 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
55                         kfree(tx_buffer->raw_buf);
56                 else
57                         dev_kfree_skb_any(tx_buffer->skb);
58
59                 if (dma_unmap_len(tx_buffer, len))
60                         dma_unmap_single(ring->dev,
61                                          dma_unmap_addr(tx_buffer, dma),
62                                          dma_unmap_len(tx_buffer, len),
63                                          DMA_TO_DEVICE);
64         } else if (dma_unmap_len(tx_buffer, len)) {
65                 dma_unmap_page(ring->dev,
66                                dma_unmap_addr(tx_buffer, dma),
67                                dma_unmap_len(tx_buffer, len),
68                                DMA_TO_DEVICE);
69         }
70         tx_buffer->next_to_watch = NULL;
71         tx_buffer->skb = NULL;
72         dma_unmap_len_set(tx_buffer, len, 0);
73         /* tx_buffer must be completely set up in the transmit path */
74 }
75
76 /**
77  * i40evf_clean_tx_ring - Free any empty Tx buffers
78  * @tx_ring: ring to be cleaned
79  **/
80 void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
81 {
82         unsigned long bi_size;
83         u16 i;
84
85         /* ring already cleared, nothing to do */
86         if (!tx_ring->tx_bi)
87                 return;
88
89         /* Free all the Tx ring sk_buffs */
90         for (i = 0; i < tx_ring->count; i++)
91                 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
92
93         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
94         memset(tx_ring->tx_bi, 0, bi_size);
95
96         /* Zero out the descriptor ring */
97         memset(tx_ring->desc, 0, tx_ring->size);
98
99         tx_ring->next_to_use = 0;
100         tx_ring->next_to_clean = 0;
101
102         if (!tx_ring->netdev)
103                 return;
104
105         /* cleanup Tx queue statistics */
106         netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
107                                                   tx_ring->queue_index));
108 }
109
110 /**
111  * i40evf_free_tx_resources - Free Tx resources per queue
112  * @tx_ring: Tx descriptor ring for a specific queue
113  *
114  * Free all transmit software resources
115  **/
116 void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
117 {
118         i40evf_clean_tx_ring(tx_ring);
119         kfree(tx_ring->tx_bi);
120         tx_ring->tx_bi = NULL;
121
122         if (tx_ring->desc) {
123                 dma_free_coherent(tx_ring->dev, tx_ring->size,
124                                   tx_ring->desc, tx_ring->dma);
125                 tx_ring->desc = NULL;
126         }
127 }
128
129 /**
130  * i40e_get_head - Retrieve head from head writeback
131  * @tx_ring:  tx ring to fetch head of
132  *
133  * Returns value of Tx ring head based on value stored
134  * in head write-back location
135  **/
136 static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
137 {
138         void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
139
140         return le32_to_cpu(*(volatile __le32 *)head);
141 }
142
143 #define WB_STRIDE 0x3
144
145 /**
146  * i40e_clean_tx_irq - Reclaim resources after transmit completes
147  * @tx_ring:  tx ring to clean
148  * @budget:   how many cleans we're allowed
149  *
150  * Returns true if there's any budget left (e.g. the clean is finished)
151  **/
152 static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
153 {
154         u16 i = tx_ring->next_to_clean;
155         struct i40e_tx_buffer *tx_buf;
156         struct i40e_tx_desc *tx_head;
157         struct i40e_tx_desc *tx_desc;
158         unsigned int total_packets = 0;
159         unsigned int total_bytes = 0;
160
161         tx_buf = &tx_ring->tx_bi[i];
162         tx_desc = I40E_TX_DESC(tx_ring, i);
163         i -= tx_ring->count;
164
165         tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
166
167         do {
168                 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
169
170                 /* if next_to_watch is not set then there is no work pending */
171                 if (!eop_desc)
172                         break;
173
174                 /* prevent any other reads prior to eop_desc */
175                 read_barrier_depends();
176
177                 /* we have caught up to head, no work left to do */
178                 if (tx_head == tx_desc)
179                         break;
180
181                 /* clear next_to_watch to prevent false hangs */
182                 tx_buf->next_to_watch = NULL;
183
184                 /* update the statistics for this packet */
185                 total_bytes += tx_buf->bytecount;
186                 total_packets += tx_buf->gso_segs;
187
188                 /* free the skb */
189                 dev_kfree_skb_any(tx_buf->skb);
190
191                 /* unmap skb header data */
192                 dma_unmap_single(tx_ring->dev,
193                                  dma_unmap_addr(tx_buf, dma),
194                                  dma_unmap_len(tx_buf, len),
195                                  DMA_TO_DEVICE);
196
197                 /* clear tx_buffer data */
198                 tx_buf->skb = NULL;
199                 dma_unmap_len_set(tx_buf, len, 0);
200
201                 /* unmap remaining buffers */
202                 while (tx_desc != eop_desc) {
203
204                         tx_buf++;
205                         tx_desc++;
206                         i++;
207                         if (unlikely(!i)) {
208                                 i -= tx_ring->count;
209                                 tx_buf = tx_ring->tx_bi;
210                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
211                         }
212
213                         /* unmap any remaining paged data */
214                         if (dma_unmap_len(tx_buf, len)) {
215                                 dma_unmap_page(tx_ring->dev,
216                                                dma_unmap_addr(tx_buf, dma),
217                                                dma_unmap_len(tx_buf, len),
218                                                DMA_TO_DEVICE);
219                                 dma_unmap_len_set(tx_buf, len, 0);
220                         }
221                 }
222
223                 /* move us one more past the eop_desc for start of next pkt */
224                 tx_buf++;
225                 tx_desc++;
226                 i++;
227                 if (unlikely(!i)) {
228                         i -= tx_ring->count;
229                         tx_buf = tx_ring->tx_bi;
230                         tx_desc = I40E_TX_DESC(tx_ring, 0);
231                 }
232
233                 prefetch(tx_desc);
234
235                 /* update budget accounting */
236                 budget--;
237         } while (likely(budget));
238
239         i += tx_ring->count;
240         tx_ring->next_to_clean = i;
241         u64_stats_update_begin(&tx_ring->syncp);
242         tx_ring->stats.bytes += total_bytes;
243         tx_ring->stats.packets += total_packets;
244         u64_stats_update_end(&tx_ring->syncp);
245         tx_ring->q_vector->tx.total_bytes += total_bytes;
246         tx_ring->q_vector->tx.total_packets += total_packets;
247
248         /* check to see if there are any non-cache aligned descriptors
249          * waiting to be written back, and kick the hardware to force
250          * them to be written back in case of napi polling
251          */
252         if (budget &&
253             !((i & WB_STRIDE) == WB_STRIDE) &&
254             !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
255             (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
256                 tx_ring->arm_wb = true;
257
258         netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
259                                                       tx_ring->queue_index),
260                                   total_packets, total_bytes);
261
262 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
263         if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
264                      (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
265                 /* Make sure that anybody stopping the queue after this
266                  * sees the new next_to_clean.
267                  */
268                 smp_mb();
269                 if (__netif_subqueue_stopped(tx_ring->netdev,
270                                              tx_ring->queue_index) &&
271                    !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
272                         netif_wake_subqueue(tx_ring->netdev,
273                                             tx_ring->queue_index);
274                         ++tx_ring->tx_stats.restart_queue;
275                 }
276         }
277
278         return !!budget;
279 }
280
281 /**
282  * i40evf_force_wb -Arm hardware to do a wb on noncache aligned descriptors
283  * @vsi: the VSI we care about
284  * @q_vector: the vector  on which to force writeback
285  *
286  **/
287 static void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
288 {
289         u16 flags = q_vector->tx.ring[0].flags;
290
291         if (flags & I40E_TXR_FLAGS_WB_ON_ITR) {
292                 u32 val;
293
294                 if (q_vector->arm_wb_state)
295                         return;
296
297                 val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK;
298
299                 wr32(&vsi->back->hw,
300                      I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
301                                           vsi->base_vector - 1),
302                      val);
303                 q_vector->arm_wb_state = true;
304         } else {
305                 u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
306                           I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
307                           I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
308                           I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK;
309                           /* allow 00 to be written to the index */
310
311                 wr32(&vsi->back->hw,
312                      I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
313                                           vsi->base_vector - 1), val);
314         }
315 }
316
317 /**
318  * i40e_set_new_dynamic_itr - Find new ITR level
319  * @rc: structure containing ring performance data
320  *
321  * Returns true if ITR changed, false if not
322  *
323  * Stores a new ITR value based on packets and byte counts during
324  * the last interrupt.  The advantage of per interrupt computation
325  * is faster updates and more accurate ITR for the current traffic
326  * pattern.  Constants in this function were computed based on
327  * theoretical maximum wire speed and thresholds were set based on
328  * testing data as well as attempting to minimize response time
329  * while increasing bulk throughput.
330  **/
331 static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
332 {
333         enum i40e_latency_range new_latency_range = rc->latency_range;
334         struct i40e_q_vector *qv = rc->ring->q_vector;
335         u32 new_itr = rc->itr;
336         int bytes_per_int;
337         int usecs;
338
339         if (rc->total_packets == 0 || !rc->itr)
340                 return false;
341
342         /* simple throttlerate management
343          *   0-10MB/s   lowest (50000 ints/s)
344          *  10-20MB/s   low    (20000 ints/s)
345          *  20-1249MB/s bulk   (18000 ints/s)
346          *  > 40000 Rx packets per second (8000 ints/s)
347          *
348          * The math works out because the divisor is in 10^(-6) which
349          * turns the bytes/us input value into MB/s values, but
350          * make sure to use usecs, as the register values written
351          * are in 2 usec increments in the ITR registers, and make sure
352          * to use the smoothed values that the countdown timer gives us.
353          */
354         usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
355         bytes_per_int = rc->total_bytes / usecs;
356
357         switch (new_latency_range) {
358         case I40E_LOWEST_LATENCY:
359                 if (bytes_per_int > 10)
360                         new_latency_range = I40E_LOW_LATENCY;
361                 break;
362         case I40E_LOW_LATENCY:
363                 if (bytes_per_int > 20)
364                         new_latency_range = I40E_BULK_LATENCY;
365                 else if (bytes_per_int <= 10)
366                         new_latency_range = I40E_LOWEST_LATENCY;
367                 break;
368         case I40E_BULK_LATENCY:
369         case I40E_ULTRA_LATENCY:
370         default:
371                 if (bytes_per_int <= 20)
372                         new_latency_range = I40E_LOW_LATENCY;
373                 break;
374         }
375
376         /* this is to adjust RX more aggressively when streaming small
377          * packets.  The value of 40000 was picked as it is just beyond
378          * what the hardware can receive per second if in low latency
379          * mode.
380          */
381 #define RX_ULTRA_PACKET_RATE 40000
382
383         if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
384             (&qv->rx == rc))
385                 new_latency_range = I40E_ULTRA_LATENCY;
386
387         rc->latency_range = new_latency_range;
388
389         switch (new_latency_range) {
390         case I40E_LOWEST_LATENCY:
391                 new_itr = I40E_ITR_50K;
392                 break;
393         case I40E_LOW_LATENCY:
394                 new_itr = I40E_ITR_20K;
395                 break;
396         case I40E_BULK_LATENCY:
397                 new_itr = I40E_ITR_18K;
398                 break;
399         case I40E_ULTRA_LATENCY:
400                 new_itr = I40E_ITR_8K;
401                 break;
402         default:
403                 break;
404         }
405
406         rc->total_bytes = 0;
407         rc->total_packets = 0;
408
409         if (new_itr != rc->itr) {
410                 rc->itr = new_itr;
411                 return true;
412         }
413
414         return false;
415 }
416
417 /*
418  * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
419  * @tx_ring: the tx ring to set up
420  *
421  * Return 0 on success, negative on error
422  **/
423 int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
424 {
425         struct device *dev = tx_ring->dev;
426         int bi_size;
427
428         if (!dev)
429                 return -ENOMEM;
430
431         /* warn if we are about to overwrite the pointer */
432         WARN_ON(tx_ring->tx_bi);
433         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
434         tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
435         if (!tx_ring->tx_bi)
436                 goto err;
437
438         /* round up to nearest 4K */
439         tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
440         /* add u32 for head writeback, align after this takes care of
441          * guaranteeing this is at least one cache line in size
442          */
443         tx_ring->size += sizeof(u32);
444         tx_ring->size = ALIGN(tx_ring->size, 4096);
445         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
446                                            &tx_ring->dma, GFP_KERNEL);
447         if (!tx_ring->desc) {
448                 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
449                          tx_ring->size);
450                 goto err;
451         }
452
453         tx_ring->next_to_use = 0;
454         tx_ring->next_to_clean = 0;
455         return 0;
456
457 err:
458         kfree(tx_ring->tx_bi);
459         tx_ring->tx_bi = NULL;
460         return -ENOMEM;
461 }
462
463 /**
464  * i40evf_clean_rx_ring - Free Rx buffers
465  * @rx_ring: ring to be cleaned
466  **/
467 void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
468 {
469         struct device *dev = rx_ring->dev;
470         struct i40e_rx_buffer *rx_bi;
471         unsigned long bi_size;
472         u16 i;
473
474         /* ring already cleared, nothing to do */
475         if (!rx_ring->rx_bi)
476                 return;
477
478         if (ring_is_ps_enabled(rx_ring)) {
479                 int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
480
481                 rx_bi = &rx_ring->rx_bi[0];
482                 if (rx_bi->hdr_buf) {
483                         dma_free_coherent(dev,
484                                           bufsz,
485                                           rx_bi->hdr_buf,
486                                           rx_bi->dma);
487                         for (i = 0; i < rx_ring->count; i++) {
488                                 rx_bi = &rx_ring->rx_bi[i];
489                                 rx_bi->dma = 0;
490                                 rx_bi->hdr_buf = NULL;
491                         }
492                 }
493         }
494         /* Free all the Rx ring sk_buffs */
495         for (i = 0; i < rx_ring->count; i++) {
496                 rx_bi = &rx_ring->rx_bi[i];
497                 if (rx_bi->dma) {
498                         dma_unmap_single(dev,
499                                          rx_bi->dma,
500                                          rx_ring->rx_buf_len,
501                                          DMA_FROM_DEVICE);
502                         rx_bi->dma = 0;
503                 }
504                 if (rx_bi->skb) {
505                         dev_kfree_skb(rx_bi->skb);
506                         rx_bi->skb = NULL;
507                 }
508                 if (rx_bi->page) {
509                         if (rx_bi->page_dma) {
510                                 dma_unmap_page(dev,
511                                                rx_bi->page_dma,
512                                                PAGE_SIZE / 2,
513                                                DMA_FROM_DEVICE);
514                                 rx_bi->page_dma = 0;
515                         }
516                         __free_page(rx_bi->page);
517                         rx_bi->page = NULL;
518                         rx_bi->page_offset = 0;
519                 }
520         }
521
522         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
523         memset(rx_ring->rx_bi, 0, bi_size);
524
525         /* Zero out the descriptor ring */
526         memset(rx_ring->desc, 0, rx_ring->size);
527
528         rx_ring->next_to_clean = 0;
529         rx_ring->next_to_use = 0;
530 }
531
532 /**
533  * i40evf_free_rx_resources - Free Rx resources
534  * @rx_ring: ring to clean the resources from
535  *
536  * Free all receive software resources
537  **/
538 void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
539 {
540         i40evf_clean_rx_ring(rx_ring);
541         kfree(rx_ring->rx_bi);
542         rx_ring->rx_bi = NULL;
543
544         if (rx_ring->desc) {
545                 dma_free_coherent(rx_ring->dev, rx_ring->size,
546                                   rx_ring->desc, rx_ring->dma);
547                 rx_ring->desc = NULL;
548         }
549 }
550
551 /**
552  * i40evf_alloc_rx_headers - allocate rx header buffers
553  * @rx_ring: ring to alloc buffers
554  *
555  * Allocate rx header buffers for the entire ring. As these are static,
556  * this is only called when setting up a new ring.
557  **/
558 void i40evf_alloc_rx_headers(struct i40e_ring *rx_ring)
559 {
560         struct device *dev = rx_ring->dev;
561         struct i40e_rx_buffer *rx_bi;
562         dma_addr_t dma;
563         void *buffer;
564         int buf_size;
565         int i;
566
567         if (rx_ring->rx_bi[0].hdr_buf)
568                 return;
569         /* Make sure the buffers don't cross cache line boundaries. */
570         buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
571         buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
572                                     &dma, GFP_KERNEL);
573         if (!buffer)
574                 return;
575         for (i = 0; i < rx_ring->count; i++) {
576                 rx_bi = &rx_ring->rx_bi[i];
577                 rx_bi->dma = dma + (i * buf_size);
578                 rx_bi->hdr_buf = buffer + (i * buf_size);
579         }
580 }
581
582 /**
583  * i40evf_setup_rx_descriptors - Allocate Rx descriptors
584  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
585  *
586  * Returns 0 on success, negative on failure
587  **/
588 int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
589 {
590         struct device *dev = rx_ring->dev;
591         int bi_size;
592
593         /* warn if we are about to overwrite the pointer */
594         WARN_ON(rx_ring->rx_bi);
595         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
596         rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
597         if (!rx_ring->rx_bi)
598                 goto err;
599
600         u64_stats_init(&rx_ring->syncp);
601
602         /* Round up to nearest 4K */
603         rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
604                 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
605                 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
606         rx_ring->size = ALIGN(rx_ring->size, 4096);
607         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
608                                            &rx_ring->dma, GFP_KERNEL);
609
610         if (!rx_ring->desc) {
611                 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
612                          rx_ring->size);
613                 goto err;
614         }
615
616         rx_ring->next_to_clean = 0;
617         rx_ring->next_to_use = 0;
618
619         return 0;
620 err:
621         kfree(rx_ring->rx_bi);
622         rx_ring->rx_bi = NULL;
623         return -ENOMEM;
624 }
625
626 /**
627  * i40e_release_rx_desc - Store the new tail and head values
628  * @rx_ring: ring to bump
629  * @val: new head index
630  **/
631 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
632 {
633         rx_ring->next_to_use = val;
634         /* Force memory writes to complete before letting h/w
635          * know there are new descriptors to fetch.  (Only
636          * applicable for weak-ordered memory model archs,
637          * such as IA-64).
638          */
639         wmb();
640         writel(val, rx_ring->tail);
641 }
642
643 /**
644  * i40evf_alloc_rx_buffers_ps - Replace used receive buffers; packet split
645  * @rx_ring: ring to place buffers on
646  * @cleaned_count: number of buffers to replace
647  **/
648 void i40evf_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
649 {
650         u16 i = rx_ring->next_to_use;
651         union i40e_rx_desc *rx_desc;
652         struct i40e_rx_buffer *bi;
653
654         /* do nothing if no valid netdev defined */
655         if (!rx_ring->netdev || !cleaned_count)
656                 return;
657
658         while (cleaned_count--) {
659                 rx_desc = I40E_RX_DESC(rx_ring, i);
660                 bi = &rx_ring->rx_bi[i];
661
662                 if (bi->skb) /* desc is in use */
663                         goto no_buffers;
664                 if (!bi->page) {
665                         bi->page = alloc_page(GFP_ATOMIC);
666                         if (!bi->page) {
667                                 rx_ring->rx_stats.alloc_page_failed++;
668                                 goto no_buffers;
669                         }
670                 }
671
672                 if (!bi->page_dma) {
673                         /* use a half page if we're re-using */
674                         bi->page_offset ^= PAGE_SIZE / 2;
675                         bi->page_dma = dma_map_page(rx_ring->dev,
676                                                     bi->page,
677                                                     bi->page_offset,
678                                                     PAGE_SIZE / 2,
679                                                     DMA_FROM_DEVICE);
680                         if (dma_mapping_error(rx_ring->dev,
681                                               bi->page_dma)) {
682                                 rx_ring->rx_stats.alloc_page_failed++;
683                                 bi->page_dma = 0;
684                                 goto no_buffers;
685                         }
686                 }
687
688                 dma_sync_single_range_for_device(rx_ring->dev,
689                                                  bi->dma,
690                                                  0,
691                                                  rx_ring->rx_hdr_len,
692                                                  DMA_FROM_DEVICE);
693                 /* Refresh the desc even if buffer_addrs didn't change
694                  * because each write-back erases this info.
695                  */
696                 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
697                 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
698                 i++;
699                 if (i == rx_ring->count)
700                         i = 0;
701         }
702
703 no_buffers:
704         if (rx_ring->next_to_use != i)
705                 i40e_release_rx_desc(rx_ring, i);
706 }
707
708 /**
709  * i40evf_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
710  * @rx_ring: ring to place buffers on
711  * @cleaned_count: number of buffers to replace
712  **/
713 void i40evf_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
714 {
715         u16 i = rx_ring->next_to_use;
716         union i40e_rx_desc *rx_desc;
717         struct i40e_rx_buffer *bi;
718         struct sk_buff *skb;
719
720         /* do nothing if no valid netdev defined */
721         if (!rx_ring->netdev || !cleaned_count)
722                 return;
723
724         while (cleaned_count--) {
725                 rx_desc = I40E_RX_DESC(rx_ring, i);
726                 bi = &rx_ring->rx_bi[i];
727                 skb = bi->skb;
728
729                 if (!skb) {
730                         skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
731                                                         rx_ring->rx_buf_len);
732                         if (!skb) {
733                                 rx_ring->rx_stats.alloc_buff_failed++;
734                                 goto no_buffers;
735                         }
736                         /* initialize queue mapping */
737                         skb_record_rx_queue(skb, rx_ring->queue_index);
738                         bi->skb = skb;
739                 }
740
741                 if (!bi->dma) {
742                         bi->dma = dma_map_single(rx_ring->dev,
743                                                  skb->data,
744                                                  rx_ring->rx_buf_len,
745                                                  DMA_FROM_DEVICE);
746                         if (dma_mapping_error(rx_ring->dev, bi->dma)) {
747                                 rx_ring->rx_stats.alloc_buff_failed++;
748                                 bi->dma = 0;
749                                 goto no_buffers;
750                         }
751                 }
752
753                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
754                 rx_desc->read.hdr_addr = 0;
755                 i++;
756                 if (i == rx_ring->count)
757                         i = 0;
758         }
759
760 no_buffers:
761         if (rx_ring->next_to_use != i)
762                 i40e_release_rx_desc(rx_ring, i);
763 }
764
765 /**
766  * i40e_receive_skb - Send a completed packet up the stack
767  * @rx_ring:  rx ring in play
768  * @skb: packet to send up
769  * @vlan_tag: vlan tag for packet
770  **/
771 static void i40e_receive_skb(struct i40e_ring *rx_ring,
772                              struct sk_buff *skb, u16 vlan_tag)
773 {
774         struct i40e_q_vector *q_vector = rx_ring->q_vector;
775
776         if (vlan_tag & VLAN_VID_MASK)
777                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
778
779         napi_gro_receive(&q_vector->napi, skb);
780 }
781
782 /**
783  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
784  * @vsi: the VSI we care about
785  * @skb: skb currently being received and modified
786  * @rx_status: status value of last descriptor in packet
787  * @rx_error: error value of last descriptor in packet
788  * @rx_ptype: ptype value of last descriptor in packet
789  **/
790 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
791                                     struct sk_buff *skb,
792                                     u32 rx_status,
793                                     u32 rx_error,
794                                     u16 rx_ptype)
795 {
796         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
797         bool ipv4 = false, ipv6 = false;
798         bool ipv4_tunnel, ipv6_tunnel;
799         __wsum rx_udp_csum;
800         struct iphdr *iph;
801         __sum16 csum;
802
803         ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
804                      (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
805         ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
806                      (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
807
808         skb->ip_summed = CHECKSUM_NONE;
809
810         /* Rx csum enabled and ip headers found? */
811         if (!(vsi->netdev->features & NETIF_F_RXCSUM))
812                 return;
813
814         /* did the hardware decode the packet and checksum? */
815         if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
816                 return;
817
818         /* both known and outer_ip must be set for the below code to work */
819         if (!(decoded.known && decoded.outer_ip))
820                 return;
821
822         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
823             decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
824                 ipv4 = true;
825         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
826                  decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
827                 ipv6 = true;
828
829         if (ipv4 &&
830             (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
831                          BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
832                 goto checksum_fail;
833
834         /* likely incorrect csum if alternate IP extension headers found */
835         if (ipv6 &&
836             rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
837                 /* don't increment checksum err here, non-fatal err */
838                 return;
839
840         /* there was some L4 error, count error and punt packet to the stack */
841         if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
842                 goto checksum_fail;
843
844         /* handle packets that were not able to be checksummed due
845          * to arrival speed, in this case the stack can compute
846          * the csum.
847          */
848         if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
849                 return;
850
851         /* If VXLAN traffic has an outer UDPv4 checksum we need to check
852          * it in the driver, hardware does not do it for us.
853          * Since L3L4P bit was set we assume a valid IHL value (>=5)
854          * so the total length of IPv4 header is IHL*4 bytes
855          * The UDP_0 bit *may* bet set if the *inner* header is UDP
856          */
857         if (ipv4_tunnel) {
858                 skb->transport_header = skb->mac_header +
859                                         sizeof(struct ethhdr) +
860                                         (ip_hdr(skb)->ihl * 4);
861
862                 /* Add 4 bytes for VLAN tagged packets */
863                 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
864                                           skb->protocol == htons(ETH_P_8021AD))
865                                           ? VLAN_HLEN : 0;
866
867                 if ((ip_hdr(skb)->protocol == IPPROTO_UDP) &&
868                     (udp_hdr(skb)->check != 0)) {
869                         rx_udp_csum = udp_csum(skb);
870                         iph = ip_hdr(skb);
871                         csum = csum_tcpudp_magic(iph->saddr, iph->daddr,
872                                                  (skb->len -
873                                                   skb_transport_offset(skb)),
874                                                  IPPROTO_UDP, rx_udp_csum);
875
876                         if (udp_hdr(skb)->check != csum)
877                                 goto checksum_fail;
878
879                 } /* else its GRE and so no outer UDP header */
880         }
881
882         skb->ip_summed = CHECKSUM_UNNECESSARY;
883         skb->csum_level = ipv4_tunnel || ipv6_tunnel;
884
885         return;
886
887 checksum_fail:
888         vsi->back->hw_csum_rx_error++;
889 }
890
891 /**
892  * i40e_rx_hash - returns the hash value from the Rx descriptor
893  * @ring: descriptor ring
894  * @rx_desc: specific descriptor
895  **/
896 static inline u32 i40e_rx_hash(struct i40e_ring *ring,
897                                union i40e_rx_desc *rx_desc)
898 {
899         const __le64 rss_mask =
900                 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
901                             I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
902
903         if ((ring->netdev->features & NETIF_F_RXHASH) &&
904             (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
905                 return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
906         else
907                 return 0;
908 }
909
910 /**
911  * i40e_ptype_to_hash - get a hash type
912  * @ptype: the ptype value from the descriptor
913  *
914  * Returns a hash type to be used by skb_set_hash
915  **/
916 static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
917 {
918         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
919
920         if (!decoded.known)
921                 return PKT_HASH_TYPE_NONE;
922
923         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
924             decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
925                 return PKT_HASH_TYPE_L4;
926         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
927                  decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
928                 return PKT_HASH_TYPE_L3;
929         else
930                 return PKT_HASH_TYPE_L2;
931 }
932
933 /**
934  * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
935  * @rx_ring:  rx ring to clean
936  * @budget:   how many cleans we're allowed
937  *
938  * Returns true if there's any budget left (e.g. the clean is finished)
939  **/
940 static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, int budget)
941 {
942         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
943         u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
944         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
945         const int current_node = numa_mem_id();
946         struct i40e_vsi *vsi = rx_ring->vsi;
947         u16 i = rx_ring->next_to_clean;
948         union i40e_rx_desc *rx_desc;
949         u32 rx_error, rx_status;
950         u8 rx_ptype;
951         u64 qword;
952
953         do {
954                 struct i40e_rx_buffer *rx_bi;
955                 struct sk_buff *skb;
956                 u16 vlan_tag;
957                 /* return some buffers to hardware, one at a time is too slow */
958                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
959                         i40evf_alloc_rx_buffers_ps(rx_ring, cleaned_count);
960                         cleaned_count = 0;
961                 }
962
963                 i = rx_ring->next_to_clean;
964                 rx_desc = I40E_RX_DESC(rx_ring, i);
965                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
966                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
967                         I40E_RXD_QW1_STATUS_SHIFT;
968
969                 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
970                         break;
971
972                 /* This memory barrier is needed to keep us from reading
973                  * any other fields out of the rx_desc until we know the
974                  * DD bit is set.
975                  */
976                 dma_rmb();
977                 rx_bi = &rx_ring->rx_bi[i];
978                 skb = rx_bi->skb;
979                 if (likely(!skb)) {
980                         skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
981                                                         rx_ring->rx_hdr_len);
982                         if (!skb) {
983                                 rx_ring->rx_stats.alloc_buff_failed++;
984                                 break;
985                         }
986
987                         /* initialize queue mapping */
988                         skb_record_rx_queue(skb, rx_ring->queue_index);
989                         /* we are reusing so sync this buffer for CPU use */
990                         dma_sync_single_range_for_cpu(rx_ring->dev,
991                                                       rx_bi->dma,
992                                                       0,
993                                                       rx_ring->rx_hdr_len,
994                                                       DMA_FROM_DEVICE);
995                 }
996                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
997                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
998                 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
999                                 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1000                 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1001                          I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1002
1003                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1004                            I40E_RXD_QW1_ERROR_SHIFT;
1005                 rx_hbo = rx_error & BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1006                 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1007
1008                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1009                            I40E_RXD_QW1_PTYPE_SHIFT;
1010                 prefetch(rx_bi->page);
1011                 rx_bi->skb = NULL;
1012                 cleaned_count++;
1013                 if (rx_hbo || rx_sph) {
1014                         int len;
1015
1016                         if (rx_hbo)
1017                                 len = I40E_RX_HDR_SIZE;
1018                         else
1019                                 len = rx_header_len;
1020                         memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
1021                 } else if (skb->len == 0) {
1022                         int len;
1023
1024                         len = (rx_packet_len > skb_headlen(skb) ?
1025                                 skb_headlen(skb) : rx_packet_len);
1026                         memcpy(__skb_put(skb, len),
1027                                rx_bi->page + rx_bi->page_offset,
1028                                len);
1029                         rx_bi->page_offset += len;
1030                         rx_packet_len -= len;
1031                 }
1032
1033                 /* Get the rest of the data if this was a header split */
1034                 if (rx_packet_len) {
1035                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1036                                            rx_bi->page,
1037                                            rx_bi->page_offset,
1038                                            rx_packet_len);
1039
1040                         skb->len += rx_packet_len;
1041                         skb->data_len += rx_packet_len;
1042                         skb->truesize += rx_packet_len;
1043
1044                         if ((page_count(rx_bi->page) == 1) &&
1045                             (page_to_nid(rx_bi->page) == current_node))
1046                                 get_page(rx_bi->page);
1047                         else
1048                                 rx_bi->page = NULL;
1049
1050                         dma_unmap_page(rx_ring->dev,
1051                                        rx_bi->page_dma,
1052                                        PAGE_SIZE / 2,
1053                                        DMA_FROM_DEVICE);
1054                         rx_bi->page_dma = 0;
1055                 }
1056                 I40E_RX_INCREMENT(rx_ring, i);
1057
1058                 if (unlikely(
1059                     !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1060                         struct i40e_rx_buffer *next_buffer;
1061
1062                         next_buffer = &rx_ring->rx_bi[i];
1063                         next_buffer->skb = skb;
1064                         rx_ring->rx_stats.non_eop_descs++;
1065                         continue;
1066                 }
1067
1068                 /* ERR_MASK will only have valid bits if EOP set */
1069                 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1070                         dev_kfree_skb_any(skb);
1071                         continue;
1072                 }
1073
1074                 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1075                              i40e_ptype_to_hash(rx_ptype));
1076                 /* probably a little skewed due to removing CRC */
1077                 total_rx_bytes += skb->len;
1078                 total_rx_packets++;
1079
1080                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1081
1082                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1083
1084                 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1085                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1086                          : 0;
1087 #ifdef I40E_FCOE
1088                 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1089                         dev_kfree_skb_any(skb);
1090                         continue;
1091                 }
1092 #endif
1093                 skb_mark_napi_id(skb, &rx_ring->q_vector->napi);
1094                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1095
1096                 rx_desc->wb.qword1.status_error_len = 0;
1097
1098         } while (likely(total_rx_packets < budget));
1099
1100         u64_stats_update_begin(&rx_ring->syncp);
1101         rx_ring->stats.packets += total_rx_packets;
1102         rx_ring->stats.bytes += total_rx_bytes;
1103         u64_stats_update_end(&rx_ring->syncp);
1104         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1105         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1106
1107         return total_rx_packets;
1108 }
1109
1110 /**
1111  * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
1112  * @rx_ring:  rx ring to clean
1113  * @budget:   how many cleans we're allowed
1114  *
1115  * Returns number of packets cleaned
1116  **/
1117 static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
1118 {
1119         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1120         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1121         struct i40e_vsi *vsi = rx_ring->vsi;
1122         union i40e_rx_desc *rx_desc;
1123         u32 rx_error, rx_status;
1124         u16 rx_packet_len;
1125         u8 rx_ptype;
1126         u64 qword;
1127         u16 i;
1128
1129         do {
1130                 struct i40e_rx_buffer *rx_bi;
1131                 struct sk_buff *skb;
1132                 u16 vlan_tag;
1133                 /* return some buffers to hardware, one at a time is too slow */
1134                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1135                         i40evf_alloc_rx_buffers_1buf(rx_ring, cleaned_count);
1136                         cleaned_count = 0;
1137                 }
1138
1139                 i = rx_ring->next_to_clean;
1140                 rx_desc = I40E_RX_DESC(rx_ring, i);
1141                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1142                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1143                         I40E_RXD_QW1_STATUS_SHIFT;
1144
1145                 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1146                         break;
1147
1148                 /* This memory barrier is needed to keep us from reading
1149                  * any other fields out of the rx_desc until we know the
1150                  * DD bit is set.
1151                  */
1152                 dma_rmb();
1153
1154                 rx_bi = &rx_ring->rx_bi[i];
1155                 skb = rx_bi->skb;
1156                 prefetch(skb->data);
1157
1158                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1159                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1160
1161                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1162                            I40E_RXD_QW1_ERROR_SHIFT;
1163                 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1164
1165                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1166                            I40E_RXD_QW1_PTYPE_SHIFT;
1167                 rx_bi->skb = NULL;
1168                 cleaned_count++;
1169
1170                 /* Get the header and possibly the whole packet
1171                  * If this is an skb from previous receive dma will be 0
1172                  */
1173                 skb_put(skb, rx_packet_len);
1174                 dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
1175                                  DMA_FROM_DEVICE);
1176                 rx_bi->dma = 0;
1177
1178                 I40E_RX_INCREMENT(rx_ring, i);
1179
1180                 if (unlikely(
1181                     !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1182                         rx_ring->rx_stats.non_eop_descs++;
1183                         continue;
1184                 }
1185
1186                 /* ERR_MASK will only have valid bits if EOP set */
1187                 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1188                         dev_kfree_skb_any(skb);
1189                         continue;
1190                 }
1191
1192                 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1193                              i40e_ptype_to_hash(rx_ptype));
1194                 /* probably a little skewed due to removing CRC */
1195                 total_rx_bytes += skb->len;
1196                 total_rx_packets++;
1197
1198                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1199
1200                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1201
1202                 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1203                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1204                          : 0;
1205                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1206
1207                 rx_desc->wb.qword1.status_error_len = 0;
1208         } while (likely(total_rx_packets < budget));
1209
1210         u64_stats_update_begin(&rx_ring->syncp);
1211         rx_ring->stats.packets += total_rx_packets;
1212         rx_ring->stats.bytes += total_rx_bytes;
1213         u64_stats_update_end(&rx_ring->syncp);
1214         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1215         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1216
1217         return total_rx_packets;
1218 }
1219
1220 static u32 i40e_buildreg_itr(const int type, const u16 itr)
1221 {
1222         u32 val;
1223
1224         val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
1225               I40E_VFINT_DYN_CTLN1_CLEARPBA_MASK |
1226               (type << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1227               (itr << I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);
1228
1229         return val;
1230 }
1231
1232 /* a small macro to shorten up some long lines */
1233 #define INTREG I40E_VFINT_DYN_CTLN1
1234
1235 /**
1236  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1237  * @vsi: the VSI we care about
1238  * @q_vector: q_vector for which itr is being updated and interrupt enabled
1239  *
1240  **/
1241 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1242                                           struct i40e_q_vector *q_vector)
1243 {
1244         struct i40e_hw *hw = &vsi->back->hw;
1245         bool rx = false, tx = false;
1246         u32 rxval, txval;
1247         int vector;
1248
1249         vector = (q_vector->v_idx + vsi->base_vector);
1250
1251         /* avoid dynamic calculation if in countdown mode OR if
1252          * all dynamic is disabled
1253          */
1254         rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1255
1256         if (q_vector->itr_countdown > 0 ||
1257             (!ITR_IS_DYNAMIC(vsi->rx_itr_setting) &&
1258              !ITR_IS_DYNAMIC(vsi->tx_itr_setting))) {
1259                 goto enable_int;
1260         }
1261
1262         if (ITR_IS_DYNAMIC(vsi->rx_itr_setting)) {
1263                 rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1264                 rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1265         }
1266         if (ITR_IS_DYNAMIC(vsi->tx_itr_setting)) {
1267                 tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1268                 txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1269         }
1270         if (rx || tx) {
1271                 /* get the higher of the two ITR adjustments and
1272                  * use the same value for both ITR registers
1273                  * when in adaptive mode (Rx and/or Tx)
1274                  */
1275                 u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1276
1277                 q_vector->tx.itr = q_vector->rx.itr = itr;
1278                 txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1279                 tx = true;
1280                 rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1281                 rx = true;
1282         }
1283
1284         /* only need to enable the interrupt once, but need
1285          * to possibly update both ITR values
1286          */
1287         if (rx) {
1288                 /* set the INTENA_MSK_MASK so that this first write
1289                  * won't actually enable the interrupt, instead just
1290                  * updating the ITR (it's bit 31 PF and VF)
1291                  */
1292                 rxval |= BIT(31);
1293                 /* don't check _DOWN because interrupt isn't being enabled */
1294                 wr32(hw, INTREG(vector - 1), rxval);
1295         }
1296
1297 enable_int:
1298         if (!test_bit(__I40E_DOWN, &vsi->state))
1299                 wr32(hw, INTREG(vector - 1), txval);
1300
1301         if (q_vector->itr_countdown)
1302                 q_vector->itr_countdown--;
1303         else
1304                 q_vector->itr_countdown = ITR_COUNTDOWN_START;
1305
1306 }
1307
1308 /**
1309  * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
1310  * @napi: napi struct with our devices info in it
1311  * @budget: amount of work driver is allowed to do this pass, in packets
1312  *
1313  * This function will clean all queues associated with a q_vector.
1314  *
1315  * Returns the amount of work done
1316  **/
1317 int i40evf_napi_poll(struct napi_struct *napi, int budget)
1318 {
1319         struct i40e_q_vector *q_vector =
1320                                container_of(napi, struct i40e_q_vector, napi);
1321         struct i40e_vsi *vsi = q_vector->vsi;
1322         struct i40e_ring *ring;
1323         bool clean_complete = true;
1324         bool arm_wb = false;
1325         int budget_per_ring;
1326         int work_done = 0;
1327
1328         if (test_bit(__I40E_DOWN, &vsi->state)) {
1329                 napi_complete(napi);
1330                 return 0;
1331         }
1332
1333         /* Since the actual Tx work is minimal, we can give the Tx a larger
1334          * budget and be more aggressive about cleaning up the Tx descriptors.
1335          */
1336         i40e_for_each_ring(ring, q_vector->tx) {
1337                 clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
1338                 arm_wb |= ring->arm_wb;
1339                 ring->arm_wb = false;
1340         }
1341
1342         /* Handle case where we are called by netpoll with a budget of 0 */
1343         if (budget <= 0)
1344                 goto tx_only;
1345
1346         /* We attempt to distribute budget to each Rx queue fairly, but don't
1347          * allow the budget to go below 1 because that would exit polling early.
1348          */
1349         budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1350
1351         i40e_for_each_ring(ring, q_vector->rx) {
1352                 int cleaned;
1353
1354                 if (ring_is_ps_enabled(ring))
1355                         cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
1356                 else
1357                         cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
1358
1359                 work_done += cleaned;
1360                 /* if we didn't clean as many as budgeted, we must be done */
1361                 clean_complete &= (budget_per_ring != cleaned);
1362         }
1363
1364         /* If work not completed, return budget and polling will return */
1365         if (!clean_complete) {
1366 tx_only:
1367                 if (arm_wb)
1368                         i40evf_force_wb(vsi, q_vector);
1369                 return budget;
1370         }
1371
1372         if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
1373                 q_vector->arm_wb_state = false;
1374
1375         /* Work is done so exit the polling mode and re-enable the interrupt */
1376         napi_complete_done(napi, work_done);
1377         i40e_update_enable_itr(vsi, q_vector);
1378         return 0;
1379 }
1380
1381 /**
1382  * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1383  * @skb:     send buffer
1384  * @tx_ring: ring to send buffer on
1385  * @flags:   the tx flags to be set
1386  *
1387  * Checks the skb and set up correspondingly several generic transmit flags
1388  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1389  *
1390  * Returns error code indicate the frame should be dropped upon error and the
1391  * otherwise  returns 0 to indicate the flags has been set properly.
1392  **/
1393 static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
1394                                                struct i40e_ring *tx_ring,
1395                                                u32 *flags)
1396 {
1397         __be16 protocol = skb->protocol;
1398         u32  tx_flags = 0;
1399
1400         if (protocol == htons(ETH_P_8021Q) &&
1401             !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1402                 /* When HW VLAN acceleration is turned off by the user the
1403                  * stack sets the protocol to 8021q so that the driver
1404                  * can take any steps required to support the SW only
1405                  * VLAN handling.  In our case the driver doesn't need
1406                  * to take any further steps so just set the protocol
1407                  * to the encapsulated ethertype.
1408                  */
1409                 skb->protocol = vlan_get_protocol(skb);
1410                 goto out;
1411         }
1412
1413         /* if we have a HW VLAN tag being added, default to the HW one */
1414         if (skb_vlan_tag_present(skb)) {
1415                 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1416                 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1417         /* else if it is a SW VLAN, check the next protocol and store the tag */
1418         } else if (protocol == htons(ETH_P_8021Q)) {
1419                 struct vlan_hdr *vhdr, _vhdr;
1420
1421                 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1422                 if (!vhdr)
1423                         return -EINVAL;
1424
1425                 protocol = vhdr->h_vlan_encapsulated_proto;
1426                 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1427                 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1428         }
1429
1430 out:
1431         *flags = tx_flags;
1432         return 0;
1433 }
1434
1435 /**
1436  * i40e_tso - set up the tso context descriptor
1437  * @tx_ring:  ptr to the ring to send
1438  * @skb:      ptr to the skb we're sending
1439  * @hdr_len:  ptr to the size of the packet header
1440  * @cd_tunneling: ptr to context descriptor bits
1441  *
1442  * Returns 0 if no TSO can happen, 1 if tso is going, or error
1443  **/
1444 static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
1445                     u8 *hdr_len, u64 *cd_type_cmd_tso_mss,
1446                     u32 *cd_tunneling)
1447 {
1448         u32 cd_cmd, cd_tso_len, cd_mss;
1449         struct ipv6hdr *ipv6h;
1450         struct tcphdr *tcph;
1451         struct iphdr *iph;
1452         u32 l4len;
1453         int err;
1454
1455         if (!skb_is_gso(skb))
1456                 return 0;
1457
1458         err = skb_cow_head(skb, 0);
1459         if (err < 0)
1460                 return err;
1461
1462         iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
1463         ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
1464
1465         if (iph->version == 4) {
1466                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1467                 iph->tot_len = 0;
1468                 iph->check = 0;
1469                 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1470                                                  0, IPPROTO_TCP, 0);
1471         } else if (ipv6h->version == 6) {
1472                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1473                 ipv6h->payload_len = 0;
1474                 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
1475                                                0, IPPROTO_TCP, 0);
1476         }
1477
1478         l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1479         *hdr_len = (skb->encapsulation
1480                     ? (skb_inner_transport_header(skb) - skb->data)
1481                     : skb_transport_offset(skb)) + l4len;
1482
1483         /* find the field values */
1484         cd_cmd = I40E_TX_CTX_DESC_TSO;
1485         cd_tso_len = skb->len - *hdr_len;
1486         cd_mss = skb_shinfo(skb)->gso_size;
1487         *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1488                                 ((u64)cd_tso_len <<
1489                                  I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1490                                 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1491         return 1;
1492 }
1493
1494 /**
1495  * i40e_tx_enable_csum - Enable Tx checksum offloads
1496  * @skb: send buffer
1497  * @tx_flags: pointer to Tx flags currently set
1498  * @td_cmd: Tx descriptor command bits to set
1499  * @td_offset: Tx descriptor header offsets to set
1500  * @cd_tunneling: ptr to context desc bits
1501  **/
1502 static void i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1503                                 u32 *td_cmd, u32 *td_offset,
1504                                 struct i40e_ring *tx_ring,
1505                                 u32 *cd_tunneling)
1506 {
1507         struct ipv6hdr *this_ipv6_hdr;
1508         unsigned int this_tcp_hdrlen;
1509         struct iphdr *this_ip_hdr;
1510         u32 network_hdr_len;
1511         u8 l4_hdr = 0;
1512         struct udphdr *oudph;
1513         struct iphdr *oiph;
1514         u32 l4_tunnel = 0;
1515
1516         if (skb->encapsulation) {
1517                 switch (ip_hdr(skb)->protocol) {
1518                 case IPPROTO_UDP:
1519                         oudph = udp_hdr(skb);
1520                         oiph = ip_hdr(skb);
1521                         l4_tunnel = I40E_TXD_CTX_UDP_TUNNELING;
1522                         *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1523                         break;
1524                 default:
1525                         return;
1526                 }
1527                 network_hdr_len = skb_inner_network_header_len(skb);
1528                 this_ip_hdr = inner_ip_hdr(skb);
1529                 this_ipv6_hdr = inner_ipv6_hdr(skb);
1530                 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
1531
1532                 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1533                         if (*tx_flags & I40E_TX_FLAGS_TSO) {
1534                                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
1535                                 ip_hdr(skb)->check = 0;
1536                         } else {
1537                                 *cd_tunneling |=
1538                                          I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1539                         }
1540                 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1541                         *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
1542                         if (*tx_flags & I40E_TX_FLAGS_TSO)
1543                                 ip_hdr(skb)->check = 0;
1544                 }
1545
1546                 /* Now set the ctx descriptor fields */
1547                 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
1548                                    I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT      |
1549                                    l4_tunnel                             |
1550                                    ((skb_inner_network_offset(skb) -
1551                                         skb_transport_offset(skb)) >> 1) <<
1552                                    I40E_TXD_CTX_QW0_NATLEN_SHIFT;
1553                 if (this_ip_hdr->version == 6) {
1554                         *tx_flags &= ~I40E_TX_FLAGS_IPV4;
1555                         *tx_flags |= I40E_TX_FLAGS_IPV6;
1556                 }
1557
1558
1559                 if ((tx_ring->flags & I40E_TXR_FLAGS_OUTER_UDP_CSUM) &&
1560                     (l4_tunnel == I40E_TXD_CTX_UDP_TUNNELING)        &&
1561                     (*cd_tunneling & I40E_TXD_CTX_QW0_EXT_IP_MASK)) {
1562                         oudph->check = ~csum_tcpudp_magic(oiph->saddr,
1563                                         oiph->daddr,
1564                                         (skb->len - skb_transport_offset(skb)),
1565                                         IPPROTO_UDP, 0);
1566                         *cd_tunneling |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
1567                 }
1568         } else {
1569                 network_hdr_len = skb_network_header_len(skb);
1570                 this_ip_hdr = ip_hdr(skb);
1571                 this_ipv6_hdr = ipv6_hdr(skb);
1572                 this_tcp_hdrlen = tcp_hdrlen(skb);
1573         }
1574
1575         /* Enable IP checksum offloads */
1576         if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1577                 l4_hdr = this_ip_hdr->protocol;
1578                 /* the stack computes the IP header already, the only time we
1579                  * need the hardware to recompute it is in the case of TSO.
1580                  */
1581                 if (*tx_flags & I40E_TX_FLAGS_TSO) {
1582                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
1583                         this_ip_hdr->check = 0;
1584                 } else {
1585                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
1586                 }
1587                 /* Now set the td_offset for IP header length */
1588                 *td_offset = (network_hdr_len >> 2) <<
1589                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1590         } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1591                 l4_hdr = this_ipv6_hdr->nexthdr;
1592                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1593                 /* Now set the td_offset for IP header length */
1594                 *td_offset = (network_hdr_len >> 2) <<
1595                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1596         }
1597         /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
1598         *td_offset |= (skb_network_offset(skb) >> 1) <<
1599                        I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1600
1601         /* Enable L4 checksum offloads */
1602         switch (l4_hdr) {
1603         case IPPROTO_TCP:
1604                 /* enable checksum offloads */
1605                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1606                 *td_offset |= (this_tcp_hdrlen >> 2) <<
1607                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1608                 break;
1609         case IPPROTO_SCTP:
1610                 /* enable SCTP checksum offload */
1611                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1612                 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
1613                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1614                 break;
1615         case IPPROTO_UDP:
1616                 /* enable UDP checksum offload */
1617                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1618                 *td_offset |= (sizeof(struct udphdr) >> 2) <<
1619                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1620                 break;
1621         default:
1622                 break;
1623         }
1624 }
1625
1626 /**
1627  * i40e_create_tx_ctx Build the Tx context descriptor
1628  * @tx_ring:  ring to create the descriptor on
1629  * @cd_type_cmd_tso_mss: Quad Word 1
1630  * @cd_tunneling: Quad Word 0 - bits 0-31
1631  * @cd_l2tag2: Quad Word 0 - bits 32-63
1632  **/
1633 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1634                                const u64 cd_type_cmd_tso_mss,
1635                                const u32 cd_tunneling, const u32 cd_l2tag2)
1636 {
1637         struct i40e_tx_context_desc *context_desc;
1638         int i = tx_ring->next_to_use;
1639
1640         if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
1641             !cd_tunneling && !cd_l2tag2)
1642                 return;
1643
1644         /* grab the next descriptor */
1645         context_desc = I40E_TX_CTXTDESC(tx_ring, i);
1646
1647         i++;
1648         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1649
1650         /* cpu_to_le32 and assign to struct fields */
1651         context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1652         context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
1653         context_desc->rsvd = cpu_to_le16(0);
1654         context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1655 }
1656
1657  /**
1658  * i40e_chk_linearize - Check if there are more than 8 fragments per packet
1659  * @skb:      send buffer
1660  * @tx_flags: collected send information
1661  *
1662  * Note: Our HW can't scatter-gather more than 8 fragments to build
1663  * a packet on the wire and so we need to figure out the cases where we
1664  * need to linearize the skb.
1665  **/
1666 static bool i40e_chk_linearize(struct sk_buff *skb, u32 tx_flags)
1667 {
1668         struct skb_frag_struct *frag;
1669         bool linearize = false;
1670         unsigned int size = 0;
1671         u16 num_frags;
1672         u16 gso_segs;
1673
1674         num_frags = skb_shinfo(skb)->nr_frags;
1675         gso_segs = skb_shinfo(skb)->gso_segs;
1676
1677         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) {
1678                 u16 j = 0;
1679
1680                 if (num_frags < (I40E_MAX_BUFFER_TXD))
1681                         goto linearize_chk_done;
1682                 /* try the simple math, if we have too many frags per segment */
1683                 if (DIV_ROUND_UP((num_frags + gso_segs), gso_segs) >
1684                     I40E_MAX_BUFFER_TXD) {
1685                         linearize = true;
1686                         goto linearize_chk_done;
1687                 }
1688                 frag = &skb_shinfo(skb)->frags[0];
1689                 /* we might still have more fragments per segment */
1690                 do {
1691                         size += skb_frag_size(frag);
1692                         frag++; j++;
1693                         if ((size >= skb_shinfo(skb)->gso_size) &&
1694                             (j < I40E_MAX_BUFFER_TXD)) {
1695                                 size = (size % skb_shinfo(skb)->gso_size);
1696                                 j = (size) ? 1 : 0;
1697                         }
1698                         if (j == I40E_MAX_BUFFER_TXD) {
1699                                 linearize = true;
1700                                 break;
1701                         }
1702                         num_frags--;
1703                 } while (num_frags);
1704         } else {
1705                 if (num_frags >= I40E_MAX_BUFFER_TXD)
1706                         linearize = true;
1707         }
1708
1709 linearize_chk_done:
1710         return linearize;
1711 }
1712
1713 /**
1714  * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
1715  * @tx_ring: the ring to be checked
1716  * @size:    the size buffer we want to assure is available
1717  *
1718  * Returns -EBUSY if a stop is needed, else 0
1719  **/
1720 static inline int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1721 {
1722         netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
1723         /* Memory barrier before checking head and tail */
1724         smp_mb();
1725
1726         /* Check again in a case another CPU has just made room available. */
1727         if (likely(I40E_DESC_UNUSED(tx_ring) < size))
1728                 return -EBUSY;
1729
1730         /* A reprieve! - use start_queue because it doesn't call schedule */
1731         netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
1732         ++tx_ring->tx_stats.restart_queue;
1733         return 0;
1734 }
1735
1736 /**
1737  * i40evf_maybe_stop_tx - 1st level check for tx stop conditions
1738  * @tx_ring: the ring to be checked
1739  * @size:    the size buffer we want to assure is available
1740  *
1741  * Returns 0 if stop is not needed
1742  **/
1743 static inline int i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1744 {
1745         if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
1746                 return 0;
1747         return __i40evf_maybe_stop_tx(tx_ring, size);
1748 }
1749
1750 /**
1751  * i40evf_tx_map - Build the Tx descriptor
1752  * @tx_ring:  ring to send buffer on
1753  * @skb:      send buffer
1754  * @first:    first buffer info buffer to use
1755  * @tx_flags: collected send information
1756  * @hdr_len:  size of the packet header
1757  * @td_cmd:   the command field in the descriptor
1758  * @td_offset: offset for checksum or crc
1759  **/
1760 static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
1761                                  struct i40e_tx_buffer *first, u32 tx_flags,
1762                                  const u8 hdr_len, u32 td_cmd, u32 td_offset)
1763 {
1764         unsigned int data_len = skb->data_len;
1765         unsigned int size = skb_headlen(skb);
1766         struct skb_frag_struct *frag;
1767         struct i40e_tx_buffer *tx_bi;
1768         struct i40e_tx_desc *tx_desc;
1769         u16 i = tx_ring->next_to_use;
1770         u32 td_tag = 0;
1771         dma_addr_t dma;
1772         u16 gso_segs;
1773
1774         if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
1775                 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1776                 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
1777                          I40E_TX_FLAGS_VLAN_SHIFT;
1778         }
1779
1780         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
1781                 gso_segs = skb_shinfo(skb)->gso_segs;
1782         else
1783                 gso_segs = 1;
1784
1785         /* multiply data chunks by size of headers */
1786         first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
1787         first->gso_segs = gso_segs;
1788         first->skb = skb;
1789         first->tx_flags = tx_flags;
1790
1791         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1792
1793         tx_desc = I40E_TX_DESC(tx_ring, i);
1794         tx_bi = first;
1795
1796         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1797                 if (dma_mapping_error(tx_ring->dev, dma))
1798                         goto dma_error;
1799
1800                 /* record length, and DMA address */
1801                 dma_unmap_len_set(tx_bi, len, size);
1802                 dma_unmap_addr_set(tx_bi, dma, dma);
1803
1804                 tx_desc->buffer_addr = cpu_to_le64(dma);
1805
1806                 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
1807                         tx_desc->cmd_type_offset_bsz =
1808                                 build_ctob(td_cmd, td_offset,
1809                                            I40E_MAX_DATA_PER_TXD, td_tag);
1810
1811                         tx_desc++;
1812                         i++;
1813                         if (i == tx_ring->count) {
1814                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
1815                                 i = 0;
1816                         }
1817
1818                         dma += I40E_MAX_DATA_PER_TXD;
1819                         size -= I40E_MAX_DATA_PER_TXD;
1820
1821                         tx_desc->buffer_addr = cpu_to_le64(dma);
1822                 }
1823
1824                 if (likely(!data_len))
1825                         break;
1826
1827                 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1828                                                           size, td_tag);
1829
1830                 tx_desc++;
1831                 i++;
1832                 if (i == tx_ring->count) {
1833                         tx_desc = I40E_TX_DESC(tx_ring, 0);
1834                         i = 0;
1835                 }
1836
1837                 size = skb_frag_size(frag);
1838                 data_len -= size;
1839
1840                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1841                                        DMA_TO_DEVICE);
1842
1843                 tx_bi = &tx_ring->tx_bi[i];
1844         }
1845
1846         /* Place RS bit on last descriptor of any packet that spans across the
1847          * 4th descriptor (WB_STRIDE aka 0x3) in a 64B cacheline.
1848          */
1849 #define WB_STRIDE 0x3
1850         if (((i & WB_STRIDE) != WB_STRIDE) &&
1851             (first <= &tx_ring->tx_bi[i]) &&
1852             (first >= &tx_ring->tx_bi[i & ~WB_STRIDE])) {
1853                 tx_desc->cmd_type_offset_bsz =
1854                         build_ctob(td_cmd, td_offset, size, td_tag) |
1855                         cpu_to_le64((u64)I40E_TX_DESC_CMD_EOP <<
1856                                          I40E_TXD_QW1_CMD_SHIFT);
1857         } else {
1858                 tx_desc->cmd_type_offset_bsz =
1859                         build_ctob(td_cmd, td_offset, size, td_tag) |
1860                         cpu_to_le64((u64)I40E_TXD_CMD <<
1861                                          I40E_TXD_QW1_CMD_SHIFT);
1862         }
1863
1864         netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
1865                                                  tx_ring->queue_index),
1866                              first->bytecount);
1867
1868         /* Force memory writes to complete before letting h/w
1869          * know there are new descriptors to fetch.  (Only
1870          * applicable for weak-ordered memory model archs,
1871          * such as IA-64).
1872          */
1873         wmb();
1874
1875         /* set next_to_watch value indicating a packet is present */
1876         first->next_to_watch = tx_desc;
1877
1878         i++;
1879         if (i == tx_ring->count)
1880                 i = 0;
1881
1882         tx_ring->next_to_use = i;
1883
1884         i40evf_maybe_stop_tx(tx_ring, DESC_NEEDED);
1885         /* notify HW of packet */
1886         if (!skb->xmit_more ||
1887             netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
1888                                                    tx_ring->queue_index)))
1889                 writel(i, tx_ring->tail);
1890         else
1891                 prefetchw(tx_desc + 1);
1892
1893         return;
1894
1895 dma_error:
1896         dev_info(tx_ring->dev, "TX DMA map failed\n");
1897
1898         /* clear dma mappings for failed tx_bi map */
1899         for (;;) {
1900                 tx_bi = &tx_ring->tx_bi[i];
1901                 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
1902                 if (tx_bi == first)
1903                         break;
1904                 if (i == 0)
1905                         i = tx_ring->count;
1906                 i--;
1907         }
1908
1909         tx_ring->next_to_use = i;
1910 }
1911
1912 /**
1913  * i40evf_xmit_descriptor_count - calculate number of tx descriptors needed
1914  * @skb:     send buffer
1915  * @tx_ring: ring to send buffer on
1916  *
1917  * Returns number of data descriptors needed for this skb. Returns 0 to indicate
1918  * there is not enough descriptors available in this ring since we need at least
1919  * one descriptor.
1920  **/
1921 static inline int i40evf_xmit_descriptor_count(struct sk_buff *skb,
1922                                                struct i40e_ring *tx_ring)
1923 {
1924         unsigned int f;
1925         int count = 0;
1926
1927         /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
1928          *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
1929          *       + 4 desc gap to avoid the cache line where head is,
1930          *       + 1 desc for context descriptor,
1931          * otherwise try next time
1932          */
1933         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1934                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1935
1936         count += TXD_USE_COUNT(skb_headlen(skb));
1937         if (i40evf_maybe_stop_tx(tx_ring, count + 4 + 1)) {
1938                 tx_ring->tx_stats.tx_busy++;
1939                 return 0;
1940         }
1941         return count;
1942 }
1943
1944 /**
1945  * i40e_xmit_frame_ring - Sends buffer on Tx ring
1946  * @skb:     send buffer
1947  * @tx_ring: ring to send buffer on
1948  *
1949  * Returns NETDEV_TX_OK if sent, else an error code
1950  **/
1951 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
1952                                         struct i40e_ring *tx_ring)
1953 {
1954         u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
1955         u32 cd_tunneling = 0, cd_l2tag2 = 0;
1956         struct i40e_tx_buffer *first;
1957         u32 td_offset = 0;
1958         u32 tx_flags = 0;
1959         __be16 protocol;
1960         u32 td_cmd = 0;
1961         u8 hdr_len = 0;
1962         int tso;
1963
1964         if (0 == i40evf_xmit_descriptor_count(skb, tx_ring))
1965                 return NETDEV_TX_BUSY;
1966
1967         /* prepare the xmit flags */
1968         if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
1969                 goto out_drop;
1970
1971         /* obtain protocol of skb */
1972         protocol = vlan_get_protocol(skb);
1973
1974         /* record the location of the first descriptor for this packet */
1975         first = &tx_ring->tx_bi[tx_ring->next_to_use];
1976
1977         /* setup IPv4/IPv6 offloads */
1978         if (protocol == htons(ETH_P_IP))
1979                 tx_flags |= I40E_TX_FLAGS_IPV4;
1980         else if (protocol == htons(ETH_P_IPV6))
1981                 tx_flags |= I40E_TX_FLAGS_IPV6;
1982
1983         tso = i40e_tso(tx_ring, skb, &hdr_len,
1984                        &cd_type_cmd_tso_mss, &cd_tunneling);
1985
1986         if (tso < 0)
1987                 goto out_drop;
1988         else if (tso)
1989                 tx_flags |= I40E_TX_FLAGS_TSO;
1990
1991         if (i40e_chk_linearize(skb, tx_flags)) {
1992                 if (skb_linearize(skb))
1993                         goto out_drop;
1994                 tx_ring->tx_stats.tx_linearize++;
1995         }
1996         skb_tx_timestamp(skb);
1997
1998         /* always enable CRC insertion offload */
1999         td_cmd |= I40E_TX_DESC_CMD_ICRC;
2000
2001         /* Always offload the checksum, since it's in the data descriptor */
2002         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2003                 tx_flags |= I40E_TX_FLAGS_CSUM;
2004
2005                 i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2006                                     tx_ring, &cd_tunneling);
2007         }
2008
2009         i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2010                            cd_tunneling, cd_l2tag2);
2011
2012         i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2013                       td_cmd, td_offset);
2014
2015         return NETDEV_TX_OK;
2016
2017 out_drop:
2018         dev_kfree_skb_any(skb);
2019         return NETDEV_TX_OK;
2020 }
2021
2022 /**
2023  * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2024  * @skb:    send buffer
2025  * @netdev: network interface device structure
2026  *
2027  * Returns NETDEV_TX_OK if sent, else an error code
2028  **/
2029 netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2030 {
2031         struct i40evf_adapter *adapter = netdev_priv(netdev);
2032         struct i40e_ring *tx_ring = adapter->tx_rings[skb->queue_mapping];
2033
2034         /* hardware can't handle really short frames, hardware padding works
2035          * beyond this point
2036          */
2037         if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
2038                 if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
2039                         return NETDEV_TX_OK;
2040                 skb->len = I40E_MIN_TX_LEN;
2041                 skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
2042         }
2043
2044         return i40e_xmit_frame_ring(skb, tx_ring);
2045 }