]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/intel/igb/igb_ptp.c
Merge remote-tracking branch 'sound-current/for-linus'
[karo-tx-linux.git] / drivers / net / ethernet / intel / igb / igb_ptp.c
1 /* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
2  *
3  * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 #include <linux/module.h>
19 #include <linux/device.h>
20 #include <linux/pci.h>
21 #include <linux/ptp_classify.h>
22
23 #include "igb.h"
24
25 #define INCVALUE_MASK           0x7fffffff
26 #define ISGN                    0x80000000
27
28 /* The 82580 timesync updates the system timer every 8ns by 8ns,
29  * and this update value cannot be reprogrammed.
30  *
31  * Neither the 82576 nor the 82580 offer registers wide enough to hold
32  * nanoseconds time values for very long. For the 82580, SYSTIM always
33  * counts nanoseconds, but the upper 24 bits are not available. The
34  * frequency is adjusted by changing the 32 bit fractional nanoseconds
35  * register, TIMINCA.
36  *
37  * For the 82576, the SYSTIM register time unit is affect by the
38  * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
39  * field are needed to provide the nominal 16 nanosecond period,
40  * leaving 19 bits for fractional nanoseconds.
41  *
42  * We scale the NIC clock cycle by a large factor so that relatively
43  * small clock corrections can be added or subtracted at each clock
44  * tick. The drawbacks of a large factor are a) that the clock
45  * register overflows more quickly (not such a big deal) and b) that
46  * the increment per tick has to fit into 24 bits.  As a result we
47  * need to use a shift of 19 so we can fit a value of 16 into the
48  * TIMINCA register.
49  *
50  *
51  *             SYSTIMH            SYSTIML
52  *        +--------------+   +---+---+------+
53  *  82576 |      32      |   | 8 | 5 |  19  |
54  *        +--------------+   +---+---+------+
55  *         \________ 45 bits _______/  fract
56  *
57  *        +----------+---+   +--------------+
58  *  82580 |    24    | 8 |   |      32      |
59  *        +----------+---+   +--------------+
60  *          reserved  \______ 40 bits _____/
61  *
62  *
63  * The 45 bit 82576 SYSTIM overflows every
64  *   2^45 * 10^-9 / 3600 = 9.77 hours.
65  *
66  * The 40 bit 82580 SYSTIM overflows every
67  *   2^40 * 10^-9 /  60  = 18.3 minutes.
68  */
69
70 #define IGB_SYSTIM_OVERFLOW_PERIOD      (HZ * 60 * 9)
71 #define IGB_PTP_TX_TIMEOUT              (HZ * 15)
72 #define INCPERIOD_82576                 (1 << E1000_TIMINCA_16NS_SHIFT)
73 #define INCVALUE_82576_MASK             ((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
74 #define INCVALUE_82576                  (16 << IGB_82576_TSYNC_SHIFT)
75 #define IGB_NBITS_82580                 40
76
77 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
78
79 /* SYSTIM read access for the 82576 */
80 static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
81 {
82         struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
83         struct e1000_hw *hw = &igb->hw;
84         u64 val;
85         u32 lo, hi;
86
87         lo = rd32(E1000_SYSTIML);
88         hi = rd32(E1000_SYSTIMH);
89
90         val = ((u64) hi) << 32;
91         val |= lo;
92
93         return val;
94 }
95
96 /* SYSTIM read access for the 82580 */
97 static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
98 {
99         struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
100         struct e1000_hw *hw = &igb->hw;
101         u32 lo, hi;
102         u64 val;
103
104         /* The timestamp latches on lowest register read. For the 82580
105          * the lowest register is SYSTIMR instead of SYSTIML.  However we only
106          * need to provide nanosecond resolution, so we just ignore it.
107          */
108         rd32(E1000_SYSTIMR);
109         lo = rd32(E1000_SYSTIML);
110         hi = rd32(E1000_SYSTIMH);
111
112         val = ((u64) hi) << 32;
113         val |= lo;
114
115         return val;
116 }
117
118 /* SYSTIM read access for I210/I211 */
119 static void igb_ptp_read_i210(struct igb_adapter *adapter,
120                               struct timespec64 *ts)
121 {
122         struct e1000_hw *hw = &adapter->hw;
123         u32 sec, nsec;
124
125         /* The timestamp latches on lowest register read. For I210/I211, the
126          * lowest register is SYSTIMR. Since we only need to provide nanosecond
127          * resolution, we can ignore it.
128          */
129         rd32(E1000_SYSTIMR);
130         nsec = rd32(E1000_SYSTIML);
131         sec = rd32(E1000_SYSTIMH);
132
133         ts->tv_sec = sec;
134         ts->tv_nsec = nsec;
135 }
136
137 static void igb_ptp_write_i210(struct igb_adapter *adapter,
138                                const struct timespec64 *ts)
139 {
140         struct e1000_hw *hw = &adapter->hw;
141
142         /* Writing the SYSTIMR register is not necessary as it only provides
143          * sub-nanosecond resolution.
144          */
145         wr32(E1000_SYSTIML, ts->tv_nsec);
146         wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
147 }
148
149 /**
150  * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
151  * @adapter: board private structure
152  * @hwtstamps: timestamp structure to update
153  * @systim: unsigned 64bit system time value.
154  *
155  * We need to convert the system time value stored in the RX/TXSTMP registers
156  * into a hwtstamp which can be used by the upper level timestamping functions.
157  *
158  * The 'tmreg_lock' spinlock is used to protect the consistency of the
159  * system time value. This is needed because reading the 64 bit time
160  * value involves reading two (or three) 32 bit registers. The first
161  * read latches the value. Ditto for writing.
162  *
163  * In addition, here have extended the system time with an overflow
164  * counter in software.
165  **/
166 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
167                                        struct skb_shared_hwtstamps *hwtstamps,
168                                        u64 systim)
169 {
170         unsigned long flags;
171         u64 ns;
172
173         switch (adapter->hw.mac.type) {
174         case e1000_82576:
175         case e1000_82580:
176         case e1000_i354:
177         case e1000_i350:
178                 spin_lock_irqsave(&adapter->tmreg_lock, flags);
179
180                 ns = timecounter_cyc2time(&adapter->tc, systim);
181
182                 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
183
184                 memset(hwtstamps, 0, sizeof(*hwtstamps));
185                 hwtstamps->hwtstamp = ns_to_ktime(ns);
186                 break;
187         case e1000_i210:
188         case e1000_i211:
189                 memset(hwtstamps, 0, sizeof(*hwtstamps));
190                 /* Upper 32 bits contain s, lower 32 bits contain ns. */
191                 hwtstamps->hwtstamp = ktime_set(systim >> 32,
192                                                 systim & 0xFFFFFFFF);
193                 break;
194         default:
195                 break;
196         }
197 }
198
199 /* PTP clock operations */
200 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
201 {
202         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
203                                                ptp_caps);
204         struct e1000_hw *hw = &igb->hw;
205         int neg_adj = 0;
206         u64 rate;
207         u32 incvalue;
208
209         if (ppb < 0) {
210                 neg_adj = 1;
211                 ppb = -ppb;
212         }
213         rate = ppb;
214         rate <<= 14;
215         rate = div_u64(rate, 1953125);
216
217         incvalue = 16 << IGB_82576_TSYNC_SHIFT;
218
219         if (neg_adj)
220                 incvalue -= rate;
221         else
222                 incvalue += rate;
223
224         wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
225
226         return 0;
227 }
228
229 static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
230 {
231         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
232                                                ptp_caps);
233         struct e1000_hw *hw = &igb->hw;
234         int neg_adj = 0;
235         u64 rate;
236         u32 inca;
237
238         if (ppb < 0) {
239                 neg_adj = 1;
240                 ppb = -ppb;
241         }
242         rate = ppb;
243         rate <<= 26;
244         rate = div_u64(rate, 1953125);
245
246         inca = rate & INCVALUE_MASK;
247         if (neg_adj)
248                 inca |= ISGN;
249
250         wr32(E1000_TIMINCA, inca);
251
252         return 0;
253 }
254
255 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
256 {
257         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
258                                                ptp_caps);
259         unsigned long flags;
260
261         spin_lock_irqsave(&igb->tmreg_lock, flags);
262         timecounter_adjtime(&igb->tc, delta);
263         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
264
265         return 0;
266 }
267
268 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
269 {
270         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
271                                                ptp_caps);
272         unsigned long flags;
273         struct timespec64 now, then = ns_to_timespec64(delta);
274
275         spin_lock_irqsave(&igb->tmreg_lock, flags);
276
277         igb_ptp_read_i210(igb, &now);
278         now = timespec64_add(now, then);
279         igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
280
281         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
282
283         return 0;
284 }
285
286 static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
287                                  struct timespec64 *ts)
288 {
289         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
290                                                ptp_caps);
291         unsigned long flags;
292         u64 ns;
293
294         spin_lock_irqsave(&igb->tmreg_lock, flags);
295
296         ns = timecounter_read(&igb->tc);
297
298         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
299
300         *ts = ns_to_timespec64(ns);
301
302         return 0;
303 }
304
305 static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
306                                 struct timespec64 *ts)
307 {
308         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
309                                                ptp_caps);
310         unsigned long flags;
311
312         spin_lock_irqsave(&igb->tmreg_lock, flags);
313
314         igb_ptp_read_i210(igb, ts);
315
316         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
317
318         return 0;
319 }
320
321 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
322                                  const struct timespec64 *ts)
323 {
324         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
325                                                ptp_caps);
326         unsigned long flags;
327         u64 ns;
328
329         ns = timespec64_to_ns(ts);
330
331         spin_lock_irqsave(&igb->tmreg_lock, flags);
332
333         timecounter_init(&igb->tc, &igb->cc, ns);
334
335         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
336
337         return 0;
338 }
339
340 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
341                                 const struct timespec64 *ts)
342 {
343         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
344                                                ptp_caps);
345         unsigned long flags;
346
347         spin_lock_irqsave(&igb->tmreg_lock, flags);
348
349         igb_ptp_write_i210(igb, ts);
350
351         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
352
353         return 0;
354 }
355
356 static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
357 {
358         u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
359         static const u32 mask[IGB_N_SDP] = {
360                 E1000_CTRL_SDP0_DIR,
361                 E1000_CTRL_SDP1_DIR,
362                 E1000_CTRL_EXT_SDP2_DIR,
363                 E1000_CTRL_EXT_SDP3_DIR,
364         };
365
366         if (input)
367                 *ptr &= ~mask[pin];
368         else
369                 *ptr |= mask[pin];
370 }
371
372 static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
373 {
374         static const u32 aux0_sel_sdp[IGB_N_SDP] = {
375                 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
376         };
377         static const u32 aux1_sel_sdp[IGB_N_SDP] = {
378                 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
379         };
380         static const u32 ts_sdp_en[IGB_N_SDP] = {
381                 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
382         };
383         struct e1000_hw *hw = &igb->hw;
384         u32 ctrl, ctrl_ext, tssdp = 0;
385
386         ctrl = rd32(E1000_CTRL);
387         ctrl_ext = rd32(E1000_CTRL_EXT);
388         tssdp = rd32(E1000_TSSDP);
389
390         igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
391
392         /* Make sure this pin is not enabled as an output. */
393         tssdp &= ~ts_sdp_en[pin];
394
395         if (chan == 1) {
396                 tssdp &= ~AUX1_SEL_SDP3;
397                 tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
398         } else {
399                 tssdp &= ~AUX0_SEL_SDP3;
400                 tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
401         }
402
403         wr32(E1000_TSSDP, tssdp);
404         wr32(E1000_CTRL, ctrl);
405         wr32(E1000_CTRL_EXT, ctrl_ext);
406 }
407
408 static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
409 {
410         static const u32 aux0_sel_sdp[IGB_N_SDP] = {
411                 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
412         };
413         static const u32 aux1_sel_sdp[IGB_N_SDP] = {
414                 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
415         };
416         static const u32 ts_sdp_en[IGB_N_SDP] = {
417                 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
418         };
419         static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
420                 TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
421                 TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
422         };
423         static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
424                 TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
425                 TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
426         };
427         static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
428                 TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
429                 TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
430         };
431         static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
432                 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
433                 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
434         };
435         static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
436                 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
437                 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
438         };
439         struct e1000_hw *hw = &igb->hw;
440         u32 ctrl, ctrl_ext, tssdp = 0;
441
442         ctrl = rd32(E1000_CTRL);
443         ctrl_ext = rd32(E1000_CTRL_EXT);
444         tssdp = rd32(E1000_TSSDP);
445
446         igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
447
448         /* Make sure this pin is not enabled as an input. */
449         if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
450                 tssdp &= ~AUX0_TS_SDP_EN;
451
452         if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
453                 tssdp &= ~AUX1_TS_SDP_EN;
454
455         tssdp &= ~ts_sdp_sel_clr[pin];
456         if (freq) {
457                 if (chan == 1)
458                         tssdp |= ts_sdp_sel_fc1[pin];
459                 else
460                         tssdp |= ts_sdp_sel_fc0[pin];
461         } else {
462                 if (chan == 1)
463                         tssdp |= ts_sdp_sel_tt1[pin];
464                 else
465                         tssdp |= ts_sdp_sel_tt0[pin];
466         }
467         tssdp |= ts_sdp_en[pin];
468
469         wr32(E1000_TSSDP, tssdp);
470         wr32(E1000_CTRL, ctrl);
471         wr32(E1000_CTRL_EXT, ctrl_ext);
472 }
473
474 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
475                                        struct ptp_clock_request *rq, int on)
476 {
477         struct igb_adapter *igb =
478                 container_of(ptp, struct igb_adapter, ptp_caps);
479         struct e1000_hw *hw = &igb->hw;
480         u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
481         unsigned long flags;
482         struct timespec64 ts;
483         int use_freq = 0, pin = -1;
484         s64 ns;
485
486         switch (rq->type) {
487         case PTP_CLK_REQ_EXTTS:
488                 if (on) {
489                         pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
490                                            rq->extts.index);
491                         if (pin < 0)
492                                 return -EBUSY;
493                 }
494                 if (rq->extts.index == 1) {
495                         tsauxc_mask = TSAUXC_EN_TS1;
496                         tsim_mask = TSINTR_AUTT1;
497                 } else {
498                         tsauxc_mask = TSAUXC_EN_TS0;
499                         tsim_mask = TSINTR_AUTT0;
500                 }
501                 spin_lock_irqsave(&igb->tmreg_lock, flags);
502                 tsauxc = rd32(E1000_TSAUXC);
503                 tsim = rd32(E1000_TSIM);
504                 if (on) {
505                         igb_pin_extts(igb, rq->extts.index, pin);
506                         tsauxc |= tsauxc_mask;
507                         tsim |= tsim_mask;
508                 } else {
509                         tsauxc &= ~tsauxc_mask;
510                         tsim &= ~tsim_mask;
511                 }
512                 wr32(E1000_TSAUXC, tsauxc);
513                 wr32(E1000_TSIM, tsim);
514                 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
515                 return 0;
516
517         case PTP_CLK_REQ_PEROUT:
518                 if (on) {
519                         pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
520                                            rq->perout.index);
521                         if (pin < 0)
522                                 return -EBUSY;
523                 }
524                 ts.tv_sec = rq->perout.period.sec;
525                 ts.tv_nsec = rq->perout.period.nsec;
526                 ns = timespec64_to_ns(&ts);
527                 ns = ns >> 1;
528                 if (on && ns <= 70000000LL) {
529                         if (ns < 8LL)
530                                 return -EINVAL;
531                         use_freq = 1;
532                 }
533                 ts = ns_to_timespec64(ns);
534                 if (rq->perout.index == 1) {
535                         if (use_freq) {
536                                 tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
537                                 tsim_mask = 0;
538                         } else {
539                                 tsauxc_mask = TSAUXC_EN_TT1;
540                                 tsim_mask = TSINTR_TT1;
541                         }
542                         trgttiml = E1000_TRGTTIML1;
543                         trgttimh = E1000_TRGTTIMH1;
544                         freqout = E1000_FREQOUT1;
545                 } else {
546                         if (use_freq) {
547                                 tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
548                                 tsim_mask = 0;
549                         } else {
550                                 tsauxc_mask = TSAUXC_EN_TT0;
551                                 tsim_mask = TSINTR_TT0;
552                         }
553                         trgttiml = E1000_TRGTTIML0;
554                         trgttimh = E1000_TRGTTIMH0;
555                         freqout = E1000_FREQOUT0;
556                 }
557                 spin_lock_irqsave(&igb->tmreg_lock, flags);
558                 tsauxc = rd32(E1000_TSAUXC);
559                 tsim = rd32(E1000_TSIM);
560                 if (rq->perout.index == 1) {
561                         tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
562                         tsim &= ~TSINTR_TT1;
563                 } else {
564                         tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
565                         tsim &= ~TSINTR_TT0;
566                 }
567                 if (on) {
568                         int i = rq->perout.index;
569                         igb_pin_perout(igb, i, pin, use_freq);
570                         igb->perout[i].start.tv_sec = rq->perout.start.sec;
571                         igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
572                         igb->perout[i].period.tv_sec = ts.tv_sec;
573                         igb->perout[i].period.tv_nsec = ts.tv_nsec;
574                         wr32(trgttimh, rq->perout.start.sec);
575                         wr32(trgttiml, rq->perout.start.nsec);
576                         if (use_freq)
577                                 wr32(freqout, ns);
578                         tsauxc |= tsauxc_mask;
579                         tsim |= tsim_mask;
580                 }
581                 wr32(E1000_TSAUXC, tsauxc);
582                 wr32(E1000_TSIM, tsim);
583                 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
584                 return 0;
585
586         case PTP_CLK_REQ_PPS:
587                 spin_lock_irqsave(&igb->tmreg_lock, flags);
588                 tsim = rd32(E1000_TSIM);
589                 if (on)
590                         tsim |= TSINTR_SYS_WRAP;
591                 else
592                         tsim &= ~TSINTR_SYS_WRAP;
593                 wr32(E1000_TSIM, tsim);
594                 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
595                 return 0;
596         }
597
598         return -EOPNOTSUPP;
599 }
600
601 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
602                                   struct ptp_clock_request *rq, int on)
603 {
604         return -EOPNOTSUPP;
605 }
606
607 static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
608                               enum ptp_pin_function func, unsigned int chan)
609 {
610         switch (func) {
611         case PTP_PF_NONE:
612         case PTP_PF_EXTTS:
613         case PTP_PF_PEROUT:
614                 break;
615         case PTP_PF_PHYSYNC:
616                 return -1;
617         }
618         return 0;
619 }
620
621 /**
622  * igb_ptp_tx_work
623  * @work: pointer to work struct
624  *
625  * This work function polls the TSYNCTXCTL valid bit to determine when a
626  * timestamp has been taken for the current stored skb.
627  **/
628 static void igb_ptp_tx_work(struct work_struct *work)
629 {
630         struct igb_adapter *adapter = container_of(work, struct igb_adapter,
631                                                    ptp_tx_work);
632         struct e1000_hw *hw = &adapter->hw;
633         u32 tsynctxctl;
634
635         if (!adapter->ptp_tx_skb)
636                 return;
637
638         if (time_is_before_jiffies(adapter->ptp_tx_start +
639                                    IGB_PTP_TX_TIMEOUT)) {
640                 dev_kfree_skb_any(adapter->ptp_tx_skb);
641                 adapter->ptp_tx_skb = NULL;
642                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
643                 adapter->tx_hwtstamp_timeouts++;
644                 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
645                 return;
646         }
647
648         tsynctxctl = rd32(E1000_TSYNCTXCTL);
649         if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
650                 igb_ptp_tx_hwtstamp(adapter);
651         else
652                 /* reschedule to check later */
653                 schedule_work(&adapter->ptp_tx_work);
654 }
655
656 static void igb_ptp_overflow_check(struct work_struct *work)
657 {
658         struct igb_adapter *igb =
659                 container_of(work, struct igb_adapter, ptp_overflow_work.work);
660         struct timespec64 ts;
661
662         igb->ptp_caps.gettime64(&igb->ptp_caps, &ts);
663
664         pr_debug("igb overflow check at %lld.%09lu\n",
665                  (long long) ts.tv_sec, ts.tv_nsec);
666
667         schedule_delayed_work(&igb->ptp_overflow_work,
668                               IGB_SYSTIM_OVERFLOW_PERIOD);
669 }
670
671 /**
672  * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
673  * @adapter: private network adapter structure
674  *
675  * This watchdog task is scheduled to detect error case where hardware has
676  * dropped an Rx packet that was timestamped when the ring is full. The
677  * particular error is rare but leaves the device in a state unable to timestamp
678  * any future packets.
679  **/
680 void igb_ptp_rx_hang(struct igb_adapter *adapter)
681 {
682         struct e1000_hw *hw = &adapter->hw;
683         u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
684         unsigned long rx_event;
685
686         if (hw->mac.type != e1000_82576)
687                 return;
688
689         /* If we don't have a valid timestamp in the registers, just update the
690          * timeout counter and exit
691          */
692         if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
693                 adapter->last_rx_ptp_check = jiffies;
694                 return;
695         }
696
697         /* Determine the most recent watchdog or rx_timestamp event */
698         rx_event = adapter->last_rx_ptp_check;
699         if (time_after(adapter->last_rx_timestamp, rx_event))
700                 rx_event = adapter->last_rx_timestamp;
701
702         /* Only need to read the high RXSTMP register to clear the lock */
703         if (time_is_before_jiffies(rx_event + 5 * HZ)) {
704                 rd32(E1000_RXSTMPH);
705                 adapter->last_rx_ptp_check = jiffies;
706                 adapter->rx_hwtstamp_cleared++;
707                 dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
708         }
709 }
710
711 /**
712  * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
713  * @adapter: Board private structure.
714  *
715  * If we were asked to do hardware stamping and such a time stamp is
716  * available, then it must have been for this skb here because we only
717  * allow only one such packet into the queue.
718  **/
719 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
720 {
721         struct e1000_hw *hw = &adapter->hw;
722         struct skb_shared_hwtstamps shhwtstamps;
723         u64 regval;
724
725         regval = rd32(E1000_TXSTMPL);
726         regval |= (u64)rd32(E1000_TXSTMPH) << 32;
727
728         igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
729         skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
730         dev_kfree_skb_any(adapter->ptp_tx_skb);
731         adapter->ptp_tx_skb = NULL;
732         clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
733 }
734
735 /**
736  * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
737  * @q_vector: Pointer to interrupt specific structure
738  * @va: Pointer to address containing Rx buffer
739  * @skb: Buffer containing timestamp and packet
740  *
741  * This function is meant to retrieve a timestamp from the first buffer of an
742  * incoming frame.  The value is stored in little endian format starting on
743  * byte 8.
744  **/
745 void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector,
746                          unsigned char *va,
747                          struct sk_buff *skb)
748 {
749         __le64 *regval = (__le64 *)va;
750
751         /* The timestamp is recorded in little endian format.
752          * DWORD: 0        1        2        3
753          * Field: Reserved Reserved SYSTIML  SYSTIMH
754          */
755         igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
756                                    le64_to_cpu(regval[1]));
757 }
758
759 /**
760  * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
761  * @q_vector: Pointer to interrupt specific structure
762  * @skb: Buffer containing timestamp and packet
763  *
764  * This function is meant to retrieve a timestamp from the internal registers
765  * of the adapter and store it in the skb.
766  **/
767 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
768                          struct sk_buff *skb)
769 {
770         struct igb_adapter *adapter = q_vector->adapter;
771         struct e1000_hw *hw = &adapter->hw;
772         u64 regval;
773
774         /* If this bit is set, then the RX registers contain the time stamp. No
775          * other packet will be time stamped until we read these registers, so
776          * read the registers to make them available again. Because only one
777          * packet can be time stamped at a time, we know that the register
778          * values must belong to this one here and therefore we don't need to
779          * compare any of the additional attributes stored for it.
780          *
781          * If nothing went wrong, then it should have a shared tx_flags that we
782          * can turn into a skb_shared_hwtstamps.
783          */
784         if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
785                 return;
786
787         regval = rd32(E1000_RXSTMPL);
788         regval |= (u64)rd32(E1000_RXSTMPH) << 32;
789
790         igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
791
792         /* Update the last_rx_timestamp timer in order to enable watchdog check
793          * for error case of latched timestamp on a dropped packet.
794          */
795         adapter->last_rx_timestamp = jiffies;
796 }
797
798 /**
799  * igb_ptp_get_ts_config - get hardware time stamping config
800  * @netdev:
801  * @ifreq:
802  *
803  * Get the hwtstamp_config settings to return to the user. Rather than attempt
804  * to deconstruct the settings from the registers, just return a shadow copy
805  * of the last known settings.
806  **/
807 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
808 {
809         struct igb_adapter *adapter = netdev_priv(netdev);
810         struct hwtstamp_config *config = &adapter->tstamp_config;
811
812         return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
813                 -EFAULT : 0;
814 }
815
816 /**
817  * igb_ptp_set_timestamp_mode - setup hardware for timestamping
818  * @adapter: networking device structure
819  * @config: hwtstamp configuration
820  *
821  * Outgoing time stamping can be enabled and disabled. Play nice and
822  * disable it when requested, although it shouldn't case any overhead
823  * when no packet needs it. At most one packet in the queue may be
824  * marked for time stamping, otherwise it would be impossible to tell
825  * for sure to which packet the hardware time stamp belongs.
826  *
827  * Incoming time stamping has to be configured via the hardware
828  * filters. Not all combinations are supported, in particular event
829  * type has to be specified. Matching the kind of event packet is
830  * not supported, with the exception of "all V2 events regardless of
831  * level 2 or 4".
832  */
833 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
834                                       struct hwtstamp_config *config)
835 {
836         struct e1000_hw *hw = &adapter->hw;
837         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
838         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
839         u32 tsync_rx_cfg = 0;
840         bool is_l4 = false;
841         bool is_l2 = false;
842         u32 regval;
843
844         /* reserved for future extensions */
845         if (config->flags)
846                 return -EINVAL;
847
848         switch (config->tx_type) {
849         case HWTSTAMP_TX_OFF:
850                 tsync_tx_ctl = 0;
851         case HWTSTAMP_TX_ON:
852                 break;
853         default:
854                 return -ERANGE;
855         }
856
857         switch (config->rx_filter) {
858         case HWTSTAMP_FILTER_NONE:
859                 tsync_rx_ctl = 0;
860                 break;
861         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
862                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
863                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
864                 is_l4 = true;
865                 break;
866         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
867                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
868                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
869                 is_l4 = true;
870                 break;
871         case HWTSTAMP_FILTER_PTP_V2_EVENT:
872         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
873         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
874         case HWTSTAMP_FILTER_PTP_V2_SYNC:
875         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
876         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
877         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
878         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
879         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
880                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
881                 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
882                 is_l2 = true;
883                 is_l4 = true;
884                 break;
885         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
886         case HWTSTAMP_FILTER_ALL:
887                 /* 82576 cannot timestamp all packets, which it needs to do to
888                  * support both V1 Sync and Delay_Req messages
889                  */
890                 if (hw->mac.type != e1000_82576) {
891                         tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
892                         config->rx_filter = HWTSTAMP_FILTER_ALL;
893                         break;
894                 }
895                 /* fall through */
896         default:
897                 config->rx_filter = HWTSTAMP_FILTER_NONE;
898                 return -ERANGE;
899         }
900
901         if (hw->mac.type == e1000_82575) {
902                 if (tsync_rx_ctl | tsync_tx_ctl)
903                         return -EINVAL;
904                 return 0;
905         }
906
907         /* Per-packet timestamping only works if all packets are
908          * timestamped, so enable timestamping in all packets as
909          * long as one Rx filter was configured.
910          */
911         if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
912                 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
913                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
914                 config->rx_filter = HWTSTAMP_FILTER_ALL;
915                 is_l2 = true;
916                 is_l4 = true;
917
918                 if ((hw->mac.type == e1000_i210) ||
919                     (hw->mac.type == e1000_i211)) {
920                         regval = rd32(E1000_RXPBS);
921                         regval |= E1000_RXPBS_CFG_TS_EN;
922                         wr32(E1000_RXPBS, regval);
923                 }
924         }
925
926         /* enable/disable TX */
927         regval = rd32(E1000_TSYNCTXCTL);
928         regval &= ~E1000_TSYNCTXCTL_ENABLED;
929         regval |= tsync_tx_ctl;
930         wr32(E1000_TSYNCTXCTL, regval);
931
932         /* enable/disable RX */
933         regval = rd32(E1000_TSYNCRXCTL);
934         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
935         regval |= tsync_rx_ctl;
936         wr32(E1000_TSYNCRXCTL, regval);
937
938         /* define which PTP packets are time stamped */
939         wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
940
941         /* define ethertype filter for timestamped packets */
942         if (is_l2)
943                 wr32(E1000_ETQF(3),
944                      (E1000_ETQF_FILTER_ENABLE | /* enable filter */
945                       E1000_ETQF_1588 | /* enable timestamping */
946                       ETH_P_1588));     /* 1588 eth protocol type */
947         else
948                 wr32(E1000_ETQF(3), 0);
949
950         /* L4 Queue Filter[3]: filter by destination port and protocol */
951         if (is_l4) {
952                 u32 ftqf = (IPPROTO_UDP /* UDP */
953                         | E1000_FTQF_VF_BP /* VF not compared */
954                         | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
955                         | E1000_FTQF_MASK); /* mask all inputs */
956                 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
957
958                 wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
959                 wr32(E1000_IMIREXT(3),
960                      (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
961                 if (hw->mac.type == e1000_82576) {
962                         /* enable source port check */
963                         wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
964                         ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
965                 }
966                 wr32(E1000_FTQF(3), ftqf);
967         } else {
968                 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
969         }
970         wrfl();
971
972         /* clear TX/RX time stamp registers, just to be sure */
973         regval = rd32(E1000_TXSTMPL);
974         regval = rd32(E1000_TXSTMPH);
975         regval = rd32(E1000_RXSTMPL);
976         regval = rd32(E1000_RXSTMPH);
977
978         return 0;
979 }
980
981 /**
982  * igb_ptp_set_ts_config - set hardware time stamping config
983  * @netdev:
984  * @ifreq:
985  *
986  **/
987 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
988 {
989         struct igb_adapter *adapter = netdev_priv(netdev);
990         struct hwtstamp_config config;
991         int err;
992
993         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
994                 return -EFAULT;
995
996         err = igb_ptp_set_timestamp_mode(adapter, &config);
997         if (err)
998                 return err;
999
1000         /* save these settings for future reference */
1001         memcpy(&adapter->tstamp_config, &config,
1002                sizeof(adapter->tstamp_config));
1003
1004         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1005                 -EFAULT : 0;
1006 }
1007
1008 void igb_ptp_init(struct igb_adapter *adapter)
1009 {
1010         struct e1000_hw *hw = &adapter->hw;
1011         struct net_device *netdev = adapter->netdev;
1012         int i;
1013
1014         switch (hw->mac.type) {
1015         case e1000_82576:
1016                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1017                 adapter->ptp_caps.owner = THIS_MODULE;
1018                 adapter->ptp_caps.max_adj = 999999881;
1019                 adapter->ptp_caps.n_ext_ts = 0;
1020                 adapter->ptp_caps.pps = 0;
1021                 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
1022                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1023                 adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1024                 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1025                 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1026                 adapter->cc.read = igb_ptp_read_82576;
1027                 adapter->cc.mask = CYCLECOUNTER_MASK(64);
1028                 adapter->cc.mult = 1;
1029                 adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1030                 /* Dial the nominal frequency. */
1031                 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1032                 break;
1033         case e1000_82580:
1034         case e1000_i354:
1035         case e1000_i350:
1036                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1037                 adapter->ptp_caps.owner = THIS_MODULE;
1038                 adapter->ptp_caps.max_adj = 62499999;
1039                 adapter->ptp_caps.n_ext_ts = 0;
1040                 adapter->ptp_caps.pps = 0;
1041                 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
1042                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1043                 adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1044                 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1045                 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1046                 adapter->cc.read = igb_ptp_read_82580;
1047                 adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1048                 adapter->cc.mult = 1;
1049                 adapter->cc.shift = 0;
1050                 /* Enable the timer functions by clearing bit 31. */
1051                 wr32(E1000_TSAUXC, 0x0);
1052                 break;
1053         case e1000_i210:
1054         case e1000_i211:
1055                 for (i = 0; i < IGB_N_SDP; i++) {
1056                         struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1057
1058                         snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1059                         ppd->index = i;
1060                         ppd->func = PTP_PF_NONE;
1061                 }
1062                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1063                 adapter->ptp_caps.owner = THIS_MODULE;
1064                 adapter->ptp_caps.max_adj = 62499999;
1065                 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1066                 adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1067                 adapter->ptp_caps.n_pins = IGB_N_SDP;
1068                 adapter->ptp_caps.pps = 1;
1069                 adapter->ptp_caps.pin_config = adapter->sdp_config;
1070                 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
1071                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1072                 adapter->ptp_caps.gettime64 = igb_ptp_gettime_i210;
1073                 adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1074                 adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1075                 adapter->ptp_caps.verify = igb_ptp_verify_pin;
1076                 /* Enable the timer functions by clearing bit 31. */
1077                 wr32(E1000_TSAUXC, 0x0);
1078                 break;
1079         default:
1080                 adapter->ptp_clock = NULL;
1081                 return;
1082         }
1083
1084         wrfl();
1085
1086         spin_lock_init(&adapter->tmreg_lock);
1087         INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1088
1089         /* Initialize the clock and overflow work for devices that need it. */
1090         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1091                 struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1092
1093                 igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
1094         } else {
1095                 timecounter_init(&adapter->tc, &adapter->cc,
1096                                  ktime_to_ns(ktime_get_real()));
1097
1098                 INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1099                                   igb_ptp_overflow_check);
1100
1101                 schedule_delayed_work(&adapter->ptp_overflow_work,
1102                                       IGB_SYSTIM_OVERFLOW_PERIOD);
1103         }
1104
1105         /* Initialize the time sync interrupts for devices that support it. */
1106         if (hw->mac.type >= e1000_82580) {
1107                 wr32(E1000_TSIM, TSYNC_INTERRUPTS);
1108                 wr32(E1000_IMS, E1000_IMS_TS);
1109         }
1110
1111         adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1112         adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1113
1114         adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1115                                                 &adapter->pdev->dev);
1116         if (IS_ERR(adapter->ptp_clock)) {
1117                 adapter->ptp_clock = NULL;
1118                 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1119         } else {
1120                 dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1121                          adapter->netdev->name);
1122                 adapter->flags |= IGB_FLAG_PTP;
1123         }
1124 }
1125
1126 /**
1127  * igb_ptp_stop - Disable PTP device and stop the overflow check.
1128  * @adapter: Board private structure.
1129  *
1130  * This function stops the PTP support and cancels the delayed work.
1131  **/
1132 void igb_ptp_stop(struct igb_adapter *adapter)
1133 {
1134         switch (adapter->hw.mac.type) {
1135         case e1000_82576:
1136         case e1000_82580:
1137         case e1000_i354:
1138         case e1000_i350:
1139                 cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1140                 break;
1141         case e1000_i210:
1142         case e1000_i211:
1143                 /* No delayed work to cancel. */
1144                 break;
1145         default:
1146                 return;
1147         }
1148
1149         cancel_work_sync(&adapter->ptp_tx_work);
1150         if (adapter->ptp_tx_skb) {
1151                 dev_kfree_skb_any(adapter->ptp_tx_skb);
1152                 adapter->ptp_tx_skb = NULL;
1153                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1154         }
1155
1156         if (adapter->ptp_clock) {
1157                 ptp_clock_unregister(adapter->ptp_clock);
1158                 dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1159                          adapter->netdev->name);
1160                 adapter->flags &= ~IGB_FLAG_PTP;
1161         }
1162 }
1163
1164 /**
1165  * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1166  * @adapter: Board private structure.
1167  *
1168  * This function handles the reset work required to re-enable the PTP device.
1169  **/
1170 void igb_ptp_reset(struct igb_adapter *adapter)
1171 {
1172         struct e1000_hw *hw = &adapter->hw;
1173         unsigned long flags;
1174
1175         if (!(adapter->flags & IGB_FLAG_PTP))
1176                 return;
1177
1178         /* reset the tstamp_config */
1179         igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1180
1181         spin_lock_irqsave(&adapter->tmreg_lock, flags);
1182
1183         switch (adapter->hw.mac.type) {
1184         case e1000_82576:
1185                 /* Dial the nominal frequency. */
1186                 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1187                 break;
1188         case e1000_82580:
1189         case e1000_i354:
1190         case e1000_i350:
1191         case e1000_i210:
1192         case e1000_i211:
1193                 wr32(E1000_TSAUXC, 0x0);
1194                 wr32(E1000_TSSDP, 0x0);
1195                 wr32(E1000_TSIM, TSYNC_INTERRUPTS);
1196                 wr32(E1000_IMS, E1000_IMS_TS);
1197                 break;
1198         default:
1199                 /* No work to do. */
1200                 goto out;
1201         }
1202
1203         /* Re-initialize the timer. */
1204         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1205                 struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1206
1207                 igb_ptp_write_i210(adapter, &ts);
1208         } else {
1209                 timecounter_init(&adapter->tc, &adapter->cc,
1210                                  ktime_to_ns(ktime_get_real()));
1211         }
1212 out:
1213         spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1214 }