]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/intel/igbvf/netdev.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/ide
[karo-tx-linux.git] / drivers / net / ethernet / intel / igbvf / netdev.c
1 /*******************************************************************************
2
3   Intel(R) 82576 Virtual Function Linux driver
4   Copyright(c) 2009 - 2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, see <http://www.gnu.org/licenses/>.
17
18   The full GNU General Public License is included in this distribution in
19   the file called "COPYING".
20
21   Contact Information:
22   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 *******************************************************************************/
26
27 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <linux/slab.h>
40 #include <net/checksum.h>
41 #include <net/ip6_checksum.h>
42 #include <linux/mii.h>
43 #include <linux/ethtool.h>
44 #include <linux/if_vlan.h>
45 #include <linux/prefetch.h>
46
47 #include "igbvf.h"
48
49 #define DRV_VERSION "2.0.2-k"
50 char igbvf_driver_name[] = "igbvf";
51 const char igbvf_driver_version[] = DRV_VERSION;
52 static const char igbvf_driver_string[] =
53                   "Intel(R) Gigabit Virtual Function Network Driver";
54 static const char igbvf_copyright[] =
55                   "Copyright (c) 2009 - 2012 Intel Corporation.";
56
57 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
58 static int debug = -1;
59 module_param(debug, int, 0);
60 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
61
62 static int igbvf_poll(struct napi_struct *napi, int budget);
63 static void igbvf_reset(struct igbvf_adapter *);
64 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
65 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
66
67 static struct igbvf_info igbvf_vf_info = {
68         .mac            = e1000_vfadapt,
69         .flags          = 0,
70         .pba            = 10,
71         .init_ops       = e1000_init_function_pointers_vf,
72 };
73
74 static struct igbvf_info igbvf_i350_vf_info = {
75         .mac            = e1000_vfadapt_i350,
76         .flags          = 0,
77         .pba            = 10,
78         .init_ops       = e1000_init_function_pointers_vf,
79 };
80
81 static const struct igbvf_info *igbvf_info_tbl[] = {
82         [board_vf]      = &igbvf_vf_info,
83         [board_i350_vf] = &igbvf_i350_vf_info,
84 };
85
86 /**
87  * igbvf_desc_unused - calculate if we have unused descriptors
88  * @rx_ring: address of receive ring structure
89  **/
90 static int igbvf_desc_unused(struct igbvf_ring *ring)
91 {
92         if (ring->next_to_clean > ring->next_to_use)
93                 return ring->next_to_clean - ring->next_to_use - 1;
94
95         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
96 }
97
98 /**
99  * igbvf_receive_skb - helper function to handle Rx indications
100  * @adapter: board private structure
101  * @status: descriptor status field as written by hardware
102  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
103  * @skb: pointer to sk_buff to be indicated to stack
104  **/
105 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
106                               struct net_device *netdev,
107                               struct sk_buff *skb,
108                               u32 status, u16 vlan)
109 {
110         u16 vid;
111
112         if (status & E1000_RXD_STAT_VP) {
113                 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
114                     (status & E1000_RXDEXT_STATERR_LB))
115                         vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
116                 else
117                         vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
118                 if (test_bit(vid, adapter->active_vlans))
119                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
120         }
121
122         napi_gro_receive(&adapter->rx_ring->napi, skb);
123 }
124
125 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
126                                          u32 status_err, struct sk_buff *skb)
127 {
128         skb_checksum_none_assert(skb);
129
130         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
131         if ((status_err & E1000_RXD_STAT_IXSM) ||
132             (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
133                 return;
134
135         /* TCP/UDP checksum error bit is set */
136         if (status_err &
137             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
138                 /* let the stack verify checksum errors */
139                 adapter->hw_csum_err++;
140                 return;
141         }
142
143         /* It must be a TCP or UDP packet with a valid checksum */
144         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
145                 skb->ip_summed = CHECKSUM_UNNECESSARY;
146
147         adapter->hw_csum_good++;
148 }
149
150 /**
151  * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
152  * @rx_ring: address of ring structure to repopulate
153  * @cleaned_count: number of buffers to repopulate
154  **/
155 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
156                                    int cleaned_count)
157 {
158         struct igbvf_adapter *adapter = rx_ring->adapter;
159         struct net_device *netdev = adapter->netdev;
160         struct pci_dev *pdev = adapter->pdev;
161         union e1000_adv_rx_desc *rx_desc;
162         struct igbvf_buffer *buffer_info;
163         struct sk_buff *skb;
164         unsigned int i;
165         int bufsz;
166
167         i = rx_ring->next_to_use;
168         buffer_info = &rx_ring->buffer_info[i];
169
170         if (adapter->rx_ps_hdr_size)
171                 bufsz = adapter->rx_ps_hdr_size;
172         else
173                 bufsz = adapter->rx_buffer_len;
174
175         while (cleaned_count--) {
176                 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
177
178                 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
179                         if (!buffer_info->page) {
180                                 buffer_info->page = alloc_page(GFP_ATOMIC);
181                                 if (!buffer_info->page) {
182                                         adapter->alloc_rx_buff_failed++;
183                                         goto no_buffers;
184                                 }
185                                 buffer_info->page_offset = 0;
186                         } else {
187                                 buffer_info->page_offset ^= PAGE_SIZE / 2;
188                         }
189                         buffer_info->page_dma =
190                                 dma_map_page(&pdev->dev, buffer_info->page,
191                                              buffer_info->page_offset,
192                                              PAGE_SIZE / 2,
193                                              DMA_FROM_DEVICE);
194                         if (dma_mapping_error(&pdev->dev,
195                                               buffer_info->page_dma)) {
196                                 __free_page(buffer_info->page);
197                                 buffer_info->page = NULL;
198                                 dev_err(&pdev->dev, "RX DMA map failed\n");
199                                 break;
200                         }
201                 }
202
203                 if (!buffer_info->skb) {
204                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
205                         if (!skb) {
206                                 adapter->alloc_rx_buff_failed++;
207                                 goto no_buffers;
208                         }
209
210                         buffer_info->skb = skb;
211                         buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
212                                                           bufsz,
213                                                           DMA_FROM_DEVICE);
214                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
215                                 dev_kfree_skb(buffer_info->skb);
216                                 buffer_info->skb = NULL;
217                                 dev_err(&pdev->dev, "RX DMA map failed\n");
218                                 goto no_buffers;
219                         }
220                 }
221                 /* Refresh the desc even if buffer_addrs didn't change because
222                  * each write-back erases this info.
223                  */
224                 if (adapter->rx_ps_hdr_size) {
225                         rx_desc->read.pkt_addr =
226                              cpu_to_le64(buffer_info->page_dma);
227                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
228                 } else {
229                         rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
230                         rx_desc->read.hdr_addr = 0;
231                 }
232
233                 i++;
234                 if (i == rx_ring->count)
235                         i = 0;
236                 buffer_info = &rx_ring->buffer_info[i];
237         }
238
239 no_buffers:
240         if (rx_ring->next_to_use != i) {
241                 rx_ring->next_to_use = i;
242                 if (i == 0)
243                         i = (rx_ring->count - 1);
244                 else
245                         i--;
246
247                 /* Force memory writes to complete before letting h/w
248                  * know there are new descriptors to fetch.  (Only
249                  * applicable for weak-ordered memory model archs,
250                  * such as IA-64).
251                 */
252                 wmb();
253                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
254         }
255 }
256
257 /**
258  * igbvf_clean_rx_irq - Send received data up the network stack; legacy
259  * @adapter: board private structure
260  *
261  * the return value indicates whether actual cleaning was done, there
262  * is no guarantee that everything was cleaned
263  **/
264 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
265                                int *work_done, int work_to_do)
266 {
267         struct igbvf_ring *rx_ring = adapter->rx_ring;
268         struct net_device *netdev = adapter->netdev;
269         struct pci_dev *pdev = adapter->pdev;
270         union e1000_adv_rx_desc *rx_desc, *next_rxd;
271         struct igbvf_buffer *buffer_info, *next_buffer;
272         struct sk_buff *skb;
273         bool cleaned = false;
274         int cleaned_count = 0;
275         unsigned int total_bytes = 0, total_packets = 0;
276         unsigned int i;
277         u32 length, hlen, staterr;
278
279         i = rx_ring->next_to_clean;
280         rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
281         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
282
283         while (staterr & E1000_RXD_STAT_DD) {
284                 if (*work_done >= work_to_do)
285                         break;
286                 (*work_done)++;
287                 rmb(); /* read descriptor and rx_buffer_info after status DD */
288
289                 buffer_info = &rx_ring->buffer_info[i];
290
291                 /* HW will not DMA in data larger than the given buffer, even
292                  * if it parses the (NFS, of course) header to be larger.  In
293                  * that case, it fills the header buffer and spills the rest
294                  * into the page.
295                  */
296                 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info)
297                        & E1000_RXDADV_HDRBUFLEN_MASK) >>
298                        E1000_RXDADV_HDRBUFLEN_SHIFT;
299                 if (hlen > adapter->rx_ps_hdr_size)
300                         hlen = adapter->rx_ps_hdr_size;
301
302                 length = le16_to_cpu(rx_desc->wb.upper.length);
303                 cleaned = true;
304                 cleaned_count++;
305
306                 skb = buffer_info->skb;
307                 prefetch(skb->data - NET_IP_ALIGN);
308                 buffer_info->skb = NULL;
309                 if (!adapter->rx_ps_hdr_size) {
310                         dma_unmap_single(&pdev->dev, buffer_info->dma,
311                                          adapter->rx_buffer_len,
312                                          DMA_FROM_DEVICE);
313                         buffer_info->dma = 0;
314                         skb_put(skb, length);
315                         goto send_up;
316                 }
317
318                 if (!skb_shinfo(skb)->nr_frags) {
319                         dma_unmap_single(&pdev->dev, buffer_info->dma,
320                                          adapter->rx_ps_hdr_size,
321                                          DMA_FROM_DEVICE);
322                         buffer_info->dma = 0;
323                         skb_put(skb, hlen);
324                 }
325
326                 if (length) {
327                         dma_unmap_page(&pdev->dev, buffer_info->page_dma,
328                                        PAGE_SIZE / 2,
329                                        DMA_FROM_DEVICE);
330                         buffer_info->page_dma = 0;
331
332                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
333                                            buffer_info->page,
334                                            buffer_info->page_offset,
335                                            length);
336
337                         if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
338                             (page_count(buffer_info->page) != 1))
339                                 buffer_info->page = NULL;
340                         else
341                                 get_page(buffer_info->page);
342
343                         skb->len += length;
344                         skb->data_len += length;
345                         skb->truesize += PAGE_SIZE / 2;
346                 }
347 send_up:
348                 i++;
349                 if (i == rx_ring->count)
350                         i = 0;
351                 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
352                 prefetch(next_rxd);
353                 next_buffer = &rx_ring->buffer_info[i];
354
355                 if (!(staterr & E1000_RXD_STAT_EOP)) {
356                         buffer_info->skb = next_buffer->skb;
357                         buffer_info->dma = next_buffer->dma;
358                         next_buffer->skb = skb;
359                         next_buffer->dma = 0;
360                         goto next_desc;
361                 }
362
363                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
364                         dev_kfree_skb_irq(skb);
365                         goto next_desc;
366                 }
367
368                 total_bytes += skb->len;
369                 total_packets++;
370
371                 igbvf_rx_checksum_adv(adapter, staterr, skb);
372
373                 skb->protocol = eth_type_trans(skb, netdev);
374
375                 igbvf_receive_skb(adapter, netdev, skb, staterr,
376                                   rx_desc->wb.upper.vlan);
377
378 next_desc:
379                 rx_desc->wb.upper.status_error = 0;
380
381                 /* return some buffers to hardware, one at a time is too slow */
382                 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
383                         igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
384                         cleaned_count = 0;
385                 }
386
387                 /* use prefetched values */
388                 rx_desc = next_rxd;
389                 buffer_info = next_buffer;
390
391                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
392         }
393
394         rx_ring->next_to_clean = i;
395         cleaned_count = igbvf_desc_unused(rx_ring);
396
397         if (cleaned_count)
398                 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
399
400         adapter->total_rx_packets += total_packets;
401         adapter->total_rx_bytes += total_bytes;
402         adapter->net_stats.rx_bytes += total_bytes;
403         adapter->net_stats.rx_packets += total_packets;
404         return cleaned;
405 }
406
407 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
408                             struct igbvf_buffer *buffer_info)
409 {
410         if (buffer_info->dma) {
411                 if (buffer_info->mapped_as_page)
412                         dma_unmap_page(&adapter->pdev->dev,
413                                        buffer_info->dma,
414                                        buffer_info->length,
415                                        DMA_TO_DEVICE);
416                 else
417                         dma_unmap_single(&adapter->pdev->dev,
418                                          buffer_info->dma,
419                                          buffer_info->length,
420                                          DMA_TO_DEVICE);
421                 buffer_info->dma = 0;
422         }
423         if (buffer_info->skb) {
424                 dev_kfree_skb_any(buffer_info->skb);
425                 buffer_info->skb = NULL;
426         }
427         buffer_info->time_stamp = 0;
428 }
429
430 /**
431  * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
432  * @adapter: board private structure
433  *
434  * Return 0 on success, negative on failure
435  **/
436 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
437                              struct igbvf_ring *tx_ring)
438 {
439         struct pci_dev *pdev = adapter->pdev;
440         int size;
441
442         size = sizeof(struct igbvf_buffer) * tx_ring->count;
443         tx_ring->buffer_info = vzalloc(size);
444         if (!tx_ring->buffer_info)
445                 goto err;
446
447         /* round up to nearest 4K */
448         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
449         tx_ring->size = ALIGN(tx_ring->size, 4096);
450
451         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
452                                            &tx_ring->dma, GFP_KERNEL);
453         if (!tx_ring->desc)
454                 goto err;
455
456         tx_ring->adapter = adapter;
457         tx_ring->next_to_use = 0;
458         tx_ring->next_to_clean = 0;
459
460         return 0;
461 err:
462         vfree(tx_ring->buffer_info);
463         dev_err(&adapter->pdev->dev,
464                 "Unable to allocate memory for the transmit descriptor ring\n");
465         return -ENOMEM;
466 }
467
468 /**
469  * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
470  * @adapter: board private structure
471  *
472  * Returns 0 on success, negative on failure
473  **/
474 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
475                              struct igbvf_ring *rx_ring)
476 {
477         struct pci_dev *pdev = adapter->pdev;
478         int size, desc_len;
479
480         size = sizeof(struct igbvf_buffer) * rx_ring->count;
481         rx_ring->buffer_info = vzalloc(size);
482         if (!rx_ring->buffer_info)
483                 goto err;
484
485         desc_len = sizeof(union e1000_adv_rx_desc);
486
487         /* Round up to nearest 4K */
488         rx_ring->size = rx_ring->count * desc_len;
489         rx_ring->size = ALIGN(rx_ring->size, 4096);
490
491         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
492                                            &rx_ring->dma, GFP_KERNEL);
493         if (!rx_ring->desc)
494                 goto err;
495
496         rx_ring->next_to_clean = 0;
497         rx_ring->next_to_use = 0;
498
499         rx_ring->adapter = adapter;
500
501         return 0;
502
503 err:
504         vfree(rx_ring->buffer_info);
505         rx_ring->buffer_info = NULL;
506         dev_err(&adapter->pdev->dev,
507                 "Unable to allocate memory for the receive descriptor ring\n");
508         return -ENOMEM;
509 }
510
511 /**
512  * igbvf_clean_tx_ring - Free Tx Buffers
513  * @tx_ring: ring to be cleaned
514  **/
515 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
516 {
517         struct igbvf_adapter *adapter = tx_ring->adapter;
518         struct igbvf_buffer *buffer_info;
519         unsigned long size;
520         unsigned int i;
521
522         if (!tx_ring->buffer_info)
523                 return;
524
525         /* Free all the Tx ring sk_buffs */
526         for (i = 0; i < tx_ring->count; i++) {
527                 buffer_info = &tx_ring->buffer_info[i];
528                 igbvf_put_txbuf(adapter, buffer_info);
529         }
530
531         size = sizeof(struct igbvf_buffer) * tx_ring->count;
532         memset(tx_ring->buffer_info, 0, size);
533
534         /* Zero out the descriptor ring */
535         memset(tx_ring->desc, 0, tx_ring->size);
536
537         tx_ring->next_to_use = 0;
538         tx_ring->next_to_clean = 0;
539
540         writel(0, adapter->hw.hw_addr + tx_ring->head);
541         writel(0, adapter->hw.hw_addr + tx_ring->tail);
542 }
543
544 /**
545  * igbvf_free_tx_resources - Free Tx Resources per Queue
546  * @tx_ring: ring to free resources from
547  *
548  * Free all transmit software resources
549  **/
550 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
551 {
552         struct pci_dev *pdev = tx_ring->adapter->pdev;
553
554         igbvf_clean_tx_ring(tx_ring);
555
556         vfree(tx_ring->buffer_info);
557         tx_ring->buffer_info = NULL;
558
559         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
560                           tx_ring->dma);
561
562         tx_ring->desc = NULL;
563 }
564
565 /**
566  * igbvf_clean_rx_ring - Free Rx Buffers per Queue
567  * @adapter: board private structure
568  **/
569 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
570 {
571         struct igbvf_adapter *adapter = rx_ring->adapter;
572         struct igbvf_buffer *buffer_info;
573         struct pci_dev *pdev = adapter->pdev;
574         unsigned long size;
575         unsigned int i;
576
577         if (!rx_ring->buffer_info)
578                 return;
579
580         /* Free all the Rx ring sk_buffs */
581         for (i = 0; i < rx_ring->count; i++) {
582                 buffer_info = &rx_ring->buffer_info[i];
583                 if (buffer_info->dma) {
584                         if (adapter->rx_ps_hdr_size) {
585                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
586                                                  adapter->rx_ps_hdr_size,
587                                                  DMA_FROM_DEVICE);
588                         } else {
589                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
590                                                  adapter->rx_buffer_len,
591                                                  DMA_FROM_DEVICE);
592                         }
593                         buffer_info->dma = 0;
594                 }
595
596                 if (buffer_info->skb) {
597                         dev_kfree_skb(buffer_info->skb);
598                         buffer_info->skb = NULL;
599                 }
600
601                 if (buffer_info->page) {
602                         if (buffer_info->page_dma)
603                                 dma_unmap_page(&pdev->dev,
604                                                buffer_info->page_dma,
605                                                PAGE_SIZE / 2,
606                                                DMA_FROM_DEVICE);
607                         put_page(buffer_info->page);
608                         buffer_info->page = NULL;
609                         buffer_info->page_dma = 0;
610                         buffer_info->page_offset = 0;
611                 }
612         }
613
614         size = sizeof(struct igbvf_buffer) * rx_ring->count;
615         memset(rx_ring->buffer_info, 0, size);
616
617         /* Zero out the descriptor ring */
618         memset(rx_ring->desc, 0, rx_ring->size);
619
620         rx_ring->next_to_clean = 0;
621         rx_ring->next_to_use = 0;
622
623         writel(0, adapter->hw.hw_addr + rx_ring->head);
624         writel(0, adapter->hw.hw_addr + rx_ring->tail);
625 }
626
627 /**
628  * igbvf_free_rx_resources - Free Rx Resources
629  * @rx_ring: ring to clean the resources from
630  *
631  * Free all receive software resources
632  **/
633
634 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
635 {
636         struct pci_dev *pdev = rx_ring->adapter->pdev;
637
638         igbvf_clean_rx_ring(rx_ring);
639
640         vfree(rx_ring->buffer_info);
641         rx_ring->buffer_info = NULL;
642
643         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
644                           rx_ring->dma);
645         rx_ring->desc = NULL;
646 }
647
648 /**
649  * igbvf_update_itr - update the dynamic ITR value based on statistics
650  * @adapter: pointer to adapter
651  * @itr_setting: current adapter->itr
652  * @packets: the number of packets during this measurement interval
653  * @bytes: the number of bytes during this measurement interval
654  *
655  * Stores a new ITR value based on packets and byte counts during the last
656  * interrupt.  The advantage of per interrupt computation is faster updates
657  * and more accurate ITR for the current traffic pattern.  Constants in this
658  * function were computed based on theoretical maximum wire speed and thresholds
659  * were set based on testing data as well as attempting to minimize response
660  * time while increasing bulk throughput.
661  **/
662 static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
663                                            enum latency_range itr_setting,
664                                            int packets, int bytes)
665 {
666         enum latency_range retval = itr_setting;
667
668         if (packets == 0)
669                 goto update_itr_done;
670
671         switch (itr_setting) {
672         case lowest_latency:
673                 /* handle TSO and jumbo frames */
674                 if (bytes/packets > 8000)
675                         retval = bulk_latency;
676                 else if ((packets < 5) && (bytes > 512))
677                         retval = low_latency;
678                 break;
679         case low_latency:  /* 50 usec aka 20000 ints/s */
680                 if (bytes > 10000) {
681                         /* this if handles the TSO accounting */
682                         if (bytes/packets > 8000)
683                                 retval = bulk_latency;
684                         else if ((packets < 10) || ((bytes/packets) > 1200))
685                                 retval = bulk_latency;
686                         else if ((packets > 35))
687                                 retval = lowest_latency;
688                 } else if (bytes/packets > 2000) {
689                         retval = bulk_latency;
690                 } else if (packets <= 2 && bytes < 512) {
691                         retval = lowest_latency;
692                 }
693                 break;
694         case bulk_latency: /* 250 usec aka 4000 ints/s */
695                 if (bytes > 25000) {
696                         if (packets > 35)
697                                 retval = low_latency;
698                 } else if (bytes < 6000) {
699                         retval = low_latency;
700                 }
701                 break;
702         default:
703                 break;
704         }
705
706 update_itr_done:
707         return retval;
708 }
709
710 static int igbvf_range_to_itr(enum latency_range current_range)
711 {
712         int new_itr;
713
714         switch (current_range) {
715         /* counts and packets in update_itr are dependent on these numbers */
716         case lowest_latency:
717                 new_itr = IGBVF_70K_ITR;
718                 break;
719         case low_latency:
720                 new_itr = IGBVF_20K_ITR;
721                 break;
722         case bulk_latency:
723                 new_itr = IGBVF_4K_ITR;
724                 break;
725         default:
726                 new_itr = IGBVF_START_ITR;
727                 break;
728         }
729         return new_itr;
730 }
731
732 static void igbvf_set_itr(struct igbvf_adapter *adapter)
733 {
734         u32 new_itr;
735
736         adapter->tx_ring->itr_range =
737                         igbvf_update_itr(adapter,
738                                          adapter->tx_ring->itr_val,
739                                          adapter->total_tx_packets,
740                                          adapter->total_tx_bytes);
741
742         /* conservative mode (itr 3) eliminates the lowest_latency setting */
743         if (adapter->requested_itr == 3 &&
744             adapter->tx_ring->itr_range == lowest_latency)
745                 adapter->tx_ring->itr_range = low_latency;
746
747         new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
748
749         if (new_itr != adapter->tx_ring->itr_val) {
750                 u32 current_itr = adapter->tx_ring->itr_val;
751                 /* this attempts to bias the interrupt rate towards Bulk
752                  * by adding intermediate steps when interrupt rate is
753                  * increasing
754                  */
755                 new_itr = new_itr > current_itr ?
756                           min(current_itr + (new_itr >> 2), new_itr) :
757                           new_itr;
758                 adapter->tx_ring->itr_val = new_itr;
759
760                 adapter->tx_ring->set_itr = 1;
761         }
762
763         adapter->rx_ring->itr_range =
764                         igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
765                                          adapter->total_rx_packets,
766                                          adapter->total_rx_bytes);
767         if (adapter->requested_itr == 3 &&
768             adapter->rx_ring->itr_range == lowest_latency)
769                 adapter->rx_ring->itr_range = low_latency;
770
771         new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
772
773         if (new_itr != adapter->rx_ring->itr_val) {
774                 u32 current_itr = adapter->rx_ring->itr_val;
775
776                 new_itr = new_itr > current_itr ?
777                           min(current_itr + (new_itr >> 2), new_itr) :
778                           new_itr;
779                 adapter->rx_ring->itr_val = new_itr;
780
781                 adapter->rx_ring->set_itr = 1;
782         }
783 }
784
785 /**
786  * igbvf_clean_tx_irq - Reclaim resources after transmit completes
787  * @adapter: board private structure
788  *
789  * returns true if ring is completely cleaned
790  **/
791 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
792 {
793         struct igbvf_adapter *adapter = tx_ring->adapter;
794         struct net_device *netdev = adapter->netdev;
795         struct igbvf_buffer *buffer_info;
796         struct sk_buff *skb;
797         union e1000_adv_tx_desc *tx_desc, *eop_desc;
798         unsigned int total_bytes = 0, total_packets = 0;
799         unsigned int i, count = 0;
800         bool cleaned = false;
801
802         i = tx_ring->next_to_clean;
803         buffer_info = &tx_ring->buffer_info[i];
804         eop_desc = buffer_info->next_to_watch;
805
806         do {
807                 /* if next_to_watch is not set then there is no work pending */
808                 if (!eop_desc)
809                         break;
810
811                 /* prevent any other reads prior to eop_desc */
812                 read_barrier_depends();
813
814                 /* if DD is not set pending work has not been completed */
815                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
816                         break;
817
818                 /* clear next_to_watch to prevent false hangs */
819                 buffer_info->next_to_watch = NULL;
820
821                 for (cleaned = false; !cleaned; count++) {
822                         tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
823                         cleaned = (tx_desc == eop_desc);
824                         skb = buffer_info->skb;
825
826                         if (skb) {
827                                 unsigned int segs, bytecount;
828
829                                 /* gso_segs is currently only valid for tcp */
830                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
831                                 /* multiply data chunks by size of headers */
832                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
833                                             skb->len;
834                                 total_packets += segs;
835                                 total_bytes += bytecount;
836                         }
837
838                         igbvf_put_txbuf(adapter, buffer_info);
839                         tx_desc->wb.status = 0;
840
841                         i++;
842                         if (i == tx_ring->count)
843                                 i = 0;
844
845                         buffer_info = &tx_ring->buffer_info[i];
846                 }
847
848                 eop_desc = buffer_info->next_to_watch;
849         } while (count < tx_ring->count);
850
851         tx_ring->next_to_clean = i;
852
853         if (unlikely(count && netif_carrier_ok(netdev) &&
854             igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
855                 /* Make sure that anybody stopping the queue after this
856                  * sees the new next_to_clean.
857                  */
858                 smp_mb();
859                 if (netif_queue_stopped(netdev) &&
860                     !(test_bit(__IGBVF_DOWN, &adapter->state))) {
861                         netif_wake_queue(netdev);
862                         ++adapter->restart_queue;
863                 }
864         }
865
866         adapter->net_stats.tx_bytes += total_bytes;
867         adapter->net_stats.tx_packets += total_packets;
868         return count < tx_ring->count;
869 }
870
871 static irqreturn_t igbvf_msix_other(int irq, void *data)
872 {
873         struct net_device *netdev = data;
874         struct igbvf_adapter *adapter = netdev_priv(netdev);
875         struct e1000_hw *hw = &adapter->hw;
876
877         adapter->int_counter1++;
878
879         netif_carrier_off(netdev);
880         hw->mac.get_link_status = 1;
881         if (!test_bit(__IGBVF_DOWN, &adapter->state))
882                 mod_timer(&adapter->watchdog_timer, jiffies + 1);
883
884         ew32(EIMS, adapter->eims_other);
885
886         return IRQ_HANDLED;
887 }
888
889 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
890 {
891         struct net_device *netdev = data;
892         struct igbvf_adapter *adapter = netdev_priv(netdev);
893         struct e1000_hw *hw = &adapter->hw;
894         struct igbvf_ring *tx_ring = adapter->tx_ring;
895
896         if (tx_ring->set_itr) {
897                 writel(tx_ring->itr_val,
898                        adapter->hw.hw_addr + tx_ring->itr_register);
899                 adapter->tx_ring->set_itr = 0;
900         }
901
902         adapter->total_tx_bytes = 0;
903         adapter->total_tx_packets = 0;
904
905         /* auto mask will automatically re-enable the interrupt when we write
906          * EICS
907          */
908         if (!igbvf_clean_tx_irq(tx_ring))
909                 /* Ring was not completely cleaned, so fire another interrupt */
910                 ew32(EICS, tx_ring->eims_value);
911         else
912                 ew32(EIMS, tx_ring->eims_value);
913
914         return IRQ_HANDLED;
915 }
916
917 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
918 {
919         struct net_device *netdev = data;
920         struct igbvf_adapter *adapter = netdev_priv(netdev);
921
922         adapter->int_counter0++;
923
924         /* Write the ITR value calculated at the end of the
925          * previous interrupt.
926          */
927         if (adapter->rx_ring->set_itr) {
928                 writel(adapter->rx_ring->itr_val,
929                        adapter->hw.hw_addr + adapter->rx_ring->itr_register);
930                 adapter->rx_ring->set_itr = 0;
931         }
932
933         if (napi_schedule_prep(&adapter->rx_ring->napi)) {
934                 adapter->total_rx_bytes = 0;
935                 adapter->total_rx_packets = 0;
936                 __napi_schedule(&adapter->rx_ring->napi);
937         }
938
939         return IRQ_HANDLED;
940 }
941
942 #define IGBVF_NO_QUEUE -1
943
944 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
945                                 int tx_queue, int msix_vector)
946 {
947         struct e1000_hw *hw = &adapter->hw;
948         u32 ivar, index;
949
950         /* 82576 uses a table-based method for assigning vectors.
951          * Each queue has a single entry in the table to which we write
952          * a vector number along with a "valid" bit.  Sadly, the layout
953          * of the table is somewhat counterintuitive.
954          */
955         if (rx_queue > IGBVF_NO_QUEUE) {
956                 index = (rx_queue >> 1);
957                 ivar = array_er32(IVAR0, index);
958                 if (rx_queue & 0x1) {
959                         /* vector goes into third byte of register */
960                         ivar = ivar & 0xFF00FFFF;
961                         ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
962                 } else {
963                         /* vector goes into low byte of register */
964                         ivar = ivar & 0xFFFFFF00;
965                         ivar |= msix_vector | E1000_IVAR_VALID;
966                 }
967                 adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
968                 array_ew32(IVAR0, index, ivar);
969         }
970         if (tx_queue > IGBVF_NO_QUEUE) {
971                 index = (tx_queue >> 1);
972                 ivar = array_er32(IVAR0, index);
973                 if (tx_queue & 0x1) {
974                         /* vector goes into high byte of register */
975                         ivar = ivar & 0x00FFFFFF;
976                         ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
977                 } else {
978                         /* vector goes into second byte of register */
979                         ivar = ivar & 0xFFFF00FF;
980                         ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
981                 }
982                 adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
983                 array_ew32(IVAR0, index, ivar);
984         }
985 }
986
987 /**
988  * igbvf_configure_msix - Configure MSI-X hardware
989  * @adapter: board private structure
990  *
991  * igbvf_configure_msix sets up the hardware to properly
992  * generate MSI-X interrupts.
993  **/
994 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
995 {
996         u32 tmp;
997         struct e1000_hw *hw = &adapter->hw;
998         struct igbvf_ring *tx_ring = adapter->tx_ring;
999         struct igbvf_ring *rx_ring = adapter->rx_ring;
1000         int vector = 0;
1001
1002         adapter->eims_enable_mask = 0;
1003
1004         igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
1005         adapter->eims_enable_mask |= tx_ring->eims_value;
1006         writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
1007         igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
1008         adapter->eims_enable_mask |= rx_ring->eims_value;
1009         writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
1010
1011         /* set vector for other causes, i.e. link changes */
1012
1013         tmp = (vector++ | E1000_IVAR_VALID);
1014
1015         ew32(IVAR_MISC, tmp);
1016
1017         adapter->eims_enable_mask = (1 << (vector)) - 1;
1018         adapter->eims_other = 1 << (vector - 1);
1019         e1e_flush();
1020 }
1021
1022 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1023 {
1024         if (adapter->msix_entries) {
1025                 pci_disable_msix(adapter->pdev);
1026                 kfree(adapter->msix_entries);
1027                 adapter->msix_entries = NULL;
1028         }
1029 }
1030
1031 /**
1032  * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1033  * @adapter: board private structure
1034  *
1035  * Attempt to configure interrupts using the best available
1036  * capabilities of the hardware and kernel.
1037  **/
1038 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1039 {
1040         int err = -ENOMEM;
1041         int i;
1042
1043         /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1044         adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1045                                         GFP_KERNEL);
1046         if (adapter->msix_entries) {
1047                 for (i = 0; i < 3; i++)
1048                         adapter->msix_entries[i].entry = i;
1049
1050                 err = pci_enable_msix_range(adapter->pdev,
1051                                             adapter->msix_entries, 3, 3);
1052         }
1053
1054         if (err < 0) {
1055                 /* MSI-X failed */
1056                 dev_err(&adapter->pdev->dev,
1057                         "Failed to initialize MSI-X interrupts.\n");
1058                 igbvf_reset_interrupt_capability(adapter);
1059         }
1060 }
1061
1062 /**
1063  * igbvf_request_msix - Initialize MSI-X interrupts
1064  * @adapter: board private structure
1065  *
1066  * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1067  * kernel.
1068  **/
1069 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1070 {
1071         struct net_device *netdev = adapter->netdev;
1072         int err = 0, vector = 0;
1073
1074         if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1075                 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1076                 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1077         } else {
1078                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1079                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1080         }
1081
1082         err = request_irq(adapter->msix_entries[vector].vector,
1083                           igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1084                           netdev);
1085         if (err)
1086                 goto out;
1087
1088         adapter->tx_ring->itr_register = E1000_EITR(vector);
1089         adapter->tx_ring->itr_val = adapter->current_itr;
1090         vector++;
1091
1092         err = request_irq(adapter->msix_entries[vector].vector,
1093                           igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1094                           netdev);
1095         if (err)
1096                 goto out;
1097
1098         adapter->rx_ring->itr_register = E1000_EITR(vector);
1099         adapter->rx_ring->itr_val = adapter->current_itr;
1100         vector++;
1101
1102         err = request_irq(adapter->msix_entries[vector].vector,
1103                           igbvf_msix_other, 0, netdev->name, netdev);
1104         if (err)
1105                 goto out;
1106
1107         igbvf_configure_msix(adapter);
1108         return 0;
1109 out:
1110         return err;
1111 }
1112
1113 /**
1114  * igbvf_alloc_queues - Allocate memory for all rings
1115  * @adapter: board private structure to initialize
1116  **/
1117 static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1118 {
1119         struct net_device *netdev = adapter->netdev;
1120
1121         adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1122         if (!adapter->tx_ring)
1123                 return -ENOMEM;
1124
1125         adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1126         if (!adapter->rx_ring) {
1127                 kfree(adapter->tx_ring);
1128                 return -ENOMEM;
1129         }
1130
1131         netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1132
1133         return 0;
1134 }
1135
1136 /**
1137  * igbvf_request_irq - initialize interrupts
1138  * @adapter: board private structure
1139  *
1140  * Attempts to configure interrupts using the best available
1141  * capabilities of the hardware and kernel.
1142  **/
1143 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1144 {
1145         int err = -1;
1146
1147         /* igbvf supports msi-x only */
1148         if (adapter->msix_entries)
1149                 err = igbvf_request_msix(adapter);
1150
1151         if (!err)
1152                 return err;
1153
1154         dev_err(&adapter->pdev->dev,
1155                 "Unable to allocate interrupt, Error: %d\n", err);
1156
1157         return err;
1158 }
1159
1160 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1161 {
1162         struct net_device *netdev = adapter->netdev;
1163         int vector;
1164
1165         if (adapter->msix_entries) {
1166                 for (vector = 0; vector < 3; vector++)
1167                         free_irq(adapter->msix_entries[vector].vector, netdev);
1168         }
1169 }
1170
1171 /**
1172  * igbvf_irq_disable - Mask off interrupt generation on the NIC
1173  * @adapter: board private structure
1174  **/
1175 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1176 {
1177         struct e1000_hw *hw = &adapter->hw;
1178
1179         ew32(EIMC, ~0);
1180
1181         if (adapter->msix_entries)
1182                 ew32(EIAC, 0);
1183 }
1184
1185 /**
1186  * igbvf_irq_enable - Enable default interrupt generation settings
1187  * @adapter: board private structure
1188  **/
1189 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1190 {
1191         struct e1000_hw *hw = &adapter->hw;
1192
1193         ew32(EIAC, adapter->eims_enable_mask);
1194         ew32(EIAM, adapter->eims_enable_mask);
1195         ew32(EIMS, adapter->eims_enable_mask);
1196 }
1197
1198 /**
1199  * igbvf_poll - NAPI Rx polling callback
1200  * @napi: struct associated with this polling callback
1201  * @budget: amount of packets driver is allowed to process this poll
1202  **/
1203 static int igbvf_poll(struct napi_struct *napi, int budget)
1204 {
1205         struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1206         struct igbvf_adapter *adapter = rx_ring->adapter;
1207         struct e1000_hw *hw = &adapter->hw;
1208         int work_done = 0;
1209
1210         igbvf_clean_rx_irq(adapter, &work_done, budget);
1211
1212         /* If not enough Rx work done, exit the polling mode */
1213         if (work_done < budget) {
1214                 napi_complete_done(napi, work_done);
1215
1216                 if (adapter->requested_itr & 3)
1217                         igbvf_set_itr(adapter);
1218
1219                 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1220                         ew32(EIMS, adapter->rx_ring->eims_value);
1221         }
1222
1223         return work_done;
1224 }
1225
1226 /**
1227  * igbvf_set_rlpml - set receive large packet maximum length
1228  * @adapter: board private structure
1229  *
1230  * Configure the maximum size of packets that will be received
1231  */
1232 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1233 {
1234         int max_frame_size;
1235         struct e1000_hw *hw = &adapter->hw;
1236
1237         max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1238         e1000_rlpml_set_vf(hw, max_frame_size);
1239 }
1240
1241 static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1242                                  __be16 proto, u16 vid)
1243 {
1244         struct igbvf_adapter *adapter = netdev_priv(netdev);
1245         struct e1000_hw *hw = &adapter->hw;
1246
1247         if (hw->mac.ops.set_vfta(hw, vid, true)) {
1248                 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1249                 return -EINVAL;
1250         }
1251         set_bit(vid, adapter->active_vlans);
1252         return 0;
1253 }
1254
1255 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1256                                   __be16 proto, u16 vid)
1257 {
1258         struct igbvf_adapter *adapter = netdev_priv(netdev);
1259         struct e1000_hw *hw = &adapter->hw;
1260
1261         if (hw->mac.ops.set_vfta(hw, vid, false)) {
1262                 dev_err(&adapter->pdev->dev,
1263                         "Failed to remove vlan id %d\n", vid);
1264                 return -EINVAL;
1265         }
1266         clear_bit(vid, adapter->active_vlans);
1267         return 0;
1268 }
1269
1270 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1271 {
1272         u16 vid;
1273
1274         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1275                 igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1276 }
1277
1278 /**
1279  * igbvf_configure_tx - Configure Transmit Unit after Reset
1280  * @adapter: board private structure
1281  *
1282  * Configure the Tx unit of the MAC after a reset.
1283  **/
1284 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1285 {
1286         struct e1000_hw *hw = &adapter->hw;
1287         struct igbvf_ring *tx_ring = adapter->tx_ring;
1288         u64 tdba;
1289         u32 txdctl, dca_txctrl;
1290
1291         /* disable transmits */
1292         txdctl = er32(TXDCTL(0));
1293         ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1294         e1e_flush();
1295         msleep(10);
1296
1297         /* Setup the HW Tx Head and Tail descriptor pointers */
1298         ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1299         tdba = tx_ring->dma;
1300         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1301         ew32(TDBAH(0), (tdba >> 32));
1302         ew32(TDH(0), 0);
1303         ew32(TDT(0), 0);
1304         tx_ring->head = E1000_TDH(0);
1305         tx_ring->tail = E1000_TDT(0);
1306
1307         /* Turn off Relaxed Ordering on head write-backs.  The writebacks
1308          * MUST be delivered in order or it will completely screw up
1309          * our bookkeeping.
1310          */
1311         dca_txctrl = er32(DCA_TXCTRL(0));
1312         dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1313         ew32(DCA_TXCTRL(0), dca_txctrl);
1314
1315         /* enable transmits */
1316         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1317         ew32(TXDCTL(0), txdctl);
1318
1319         /* Setup Transmit Descriptor Settings for eop descriptor */
1320         adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1321
1322         /* enable Report Status bit */
1323         adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1324 }
1325
1326 /**
1327  * igbvf_setup_srrctl - configure the receive control registers
1328  * @adapter: Board private structure
1329  **/
1330 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1331 {
1332         struct e1000_hw *hw = &adapter->hw;
1333         u32 srrctl = 0;
1334
1335         srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1336                     E1000_SRRCTL_BSIZEHDR_MASK |
1337                     E1000_SRRCTL_BSIZEPKT_MASK);
1338
1339         /* Enable queue drop to avoid head of line blocking */
1340         srrctl |= E1000_SRRCTL_DROP_EN;
1341
1342         /* Setup buffer sizes */
1343         srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1344                   E1000_SRRCTL_BSIZEPKT_SHIFT;
1345
1346         if (adapter->rx_buffer_len < 2048) {
1347                 adapter->rx_ps_hdr_size = 0;
1348                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1349         } else {
1350                 adapter->rx_ps_hdr_size = 128;
1351                 srrctl |= adapter->rx_ps_hdr_size <<
1352                           E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1353                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1354         }
1355
1356         ew32(SRRCTL(0), srrctl);
1357 }
1358
1359 /**
1360  * igbvf_configure_rx - Configure Receive Unit after Reset
1361  * @adapter: board private structure
1362  *
1363  * Configure the Rx unit of the MAC after a reset.
1364  **/
1365 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1366 {
1367         struct e1000_hw *hw = &adapter->hw;
1368         struct igbvf_ring *rx_ring = adapter->rx_ring;
1369         u64 rdba;
1370         u32 rdlen, rxdctl;
1371
1372         /* disable receives */
1373         rxdctl = er32(RXDCTL(0));
1374         ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1375         e1e_flush();
1376         msleep(10);
1377
1378         rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1379
1380         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1381          * the Base and Length of the Rx Descriptor Ring
1382          */
1383         rdba = rx_ring->dma;
1384         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1385         ew32(RDBAH(0), (rdba >> 32));
1386         ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1387         rx_ring->head = E1000_RDH(0);
1388         rx_ring->tail = E1000_RDT(0);
1389         ew32(RDH(0), 0);
1390         ew32(RDT(0), 0);
1391
1392         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1393         rxdctl &= 0xFFF00000;
1394         rxdctl |= IGBVF_RX_PTHRESH;
1395         rxdctl |= IGBVF_RX_HTHRESH << 8;
1396         rxdctl |= IGBVF_RX_WTHRESH << 16;
1397
1398         igbvf_set_rlpml(adapter);
1399
1400         /* enable receives */
1401         ew32(RXDCTL(0), rxdctl);
1402 }
1403
1404 /**
1405  * igbvf_set_multi - Multicast and Promiscuous mode set
1406  * @netdev: network interface device structure
1407  *
1408  * The set_multi entry point is called whenever the multicast address
1409  * list or the network interface flags are updated.  This routine is
1410  * responsible for configuring the hardware for proper multicast,
1411  * promiscuous mode, and all-multi behavior.
1412  **/
1413 static void igbvf_set_multi(struct net_device *netdev)
1414 {
1415         struct igbvf_adapter *adapter = netdev_priv(netdev);
1416         struct e1000_hw *hw = &adapter->hw;
1417         struct netdev_hw_addr *ha;
1418         u8  *mta_list = NULL;
1419         int i;
1420
1421         if (!netdev_mc_empty(netdev)) {
1422                 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1423                                          GFP_ATOMIC);
1424                 if (!mta_list)
1425                         return;
1426         }
1427
1428         /* prepare a packed array of only addresses. */
1429         i = 0;
1430         netdev_for_each_mc_addr(ha, netdev)
1431                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1432
1433         hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1434         kfree(mta_list);
1435 }
1436
1437 /**
1438  * igbvf_configure - configure the hardware for Rx and Tx
1439  * @adapter: private board structure
1440  **/
1441 static void igbvf_configure(struct igbvf_adapter *adapter)
1442 {
1443         igbvf_set_multi(adapter->netdev);
1444
1445         igbvf_restore_vlan(adapter);
1446
1447         igbvf_configure_tx(adapter);
1448         igbvf_setup_srrctl(adapter);
1449         igbvf_configure_rx(adapter);
1450         igbvf_alloc_rx_buffers(adapter->rx_ring,
1451                                igbvf_desc_unused(adapter->rx_ring));
1452 }
1453
1454 /* igbvf_reset - bring the hardware into a known good state
1455  * @adapter: private board structure
1456  *
1457  * This function boots the hardware and enables some settings that
1458  * require a configuration cycle of the hardware - those cannot be
1459  * set/changed during runtime. After reset the device needs to be
1460  * properly configured for Rx, Tx etc.
1461  */
1462 static void igbvf_reset(struct igbvf_adapter *adapter)
1463 {
1464         struct e1000_mac_info *mac = &adapter->hw.mac;
1465         struct net_device *netdev = adapter->netdev;
1466         struct e1000_hw *hw = &adapter->hw;
1467
1468         /* Allow time for pending master requests to run */
1469         if (mac->ops.reset_hw(hw))
1470                 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1471
1472         mac->ops.init_hw(hw);
1473
1474         if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1475                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1476                        netdev->addr_len);
1477                 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1478                        netdev->addr_len);
1479         }
1480
1481         adapter->last_reset = jiffies;
1482 }
1483
1484 int igbvf_up(struct igbvf_adapter *adapter)
1485 {
1486         struct e1000_hw *hw = &adapter->hw;
1487
1488         /* hardware has been reset, we need to reload some things */
1489         igbvf_configure(adapter);
1490
1491         clear_bit(__IGBVF_DOWN, &adapter->state);
1492
1493         napi_enable(&adapter->rx_ring->napi);
1494         if (adapter->msix_entries)
1495                 igbvf_configure_msix(adapter);
1496
1497         /* Clear any pending interrupts. */
1498         er32(EICR);
1499         igbvf_irq_enable(adapter);
1500
1501         /* start the watchdog */
1502         hw->mac.get_link_status = 1;
1503         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1504
1505         return 0;
1506 }
1507
1508 void igbvf_down(struct igbvf_adapter *adapter)
1509 {
1510         struct net_device *netdev = adapter->netdev;
1511         struct e1000_hw *hw = &adapter->hw;
1512         u32 rxdctl, txdctl;
1513
1514         /* signal that we're down so the interrupt handler does not
1515          * reschedule our watchdog timer
1516          */
1517         set_bit(__IGBVF_DOWN, &adapter->state);
1518
1519         /* disable receives in the hardware */
1520         rxdctl = er32(RXDCTL(0));
1521         ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1522
1523         netif_carrier_off(netdev);
1524         netif_stop_queue(netdev);
1525
1526         /* disable transmits in the hardware */
1527         txdctl = er32(TXDCTL(0));
1528         ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1529
1530         /* flush both disables and wait for them to finish */
1531         e1e_flush();
1532         msleep(10);
1533
1534         napi_disable(&adapter->rx_ring->napi);
1535
1536         igbvf_irq_disable(adapter);
1537
1538         del_timer_sync(&adapter->watchdog_timer);
1539
1540         /* record the stats before reset*/
1541         igbvf_update_stats(adapter);
1542
1543         adapter->link_speed = 0;
1544         adapter->link_duplex = 0;
1545
1546         igbvf_reset(adapter);
1547         igbvf_clean_tx_ring(adapter->tx_ring);
1548         igbvf_clean_rx_ring(adapter->rx_ring);
1549 }
1550
1551 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1552 {
1553         might_sleep();
1554         while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1555                 usleep_range(1000, 2000);
1556         igbvf_down(adapter);
1557         igbvf_up(adapter);
1558         clear_bit(__IGBVF_RESETTING, &adapter->state);
1559 }
1560
1561 /**
1562  * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1563  * @adapter: board private structure to initialize
1564  *
1565  * igbvf_sw_init initializes the Adapter private data structure.
1566  * Fields are initialized based on PCI device information and
1567  * OS network device settings (MTU size).
1568  **/
1569 static int igbvf_sw_init(struct igbvf_adapter *adapter)
1570 {
1571         struct net_device *netdev = adapter->netdev;
1572         s32 rc;
1573
1574         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1575         adapter->rx_ps_hdr_size = 0;
1576         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1577         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1578
1579         adapter->tx_int_delay = 8;
1580         adapter->tx_abs_int_delay = 32;
1581         adapter->rx_int_delay = 0;
1582         adapter->rx_abs_int_delay = 8;
1583         adapter->requested_itr = 3;
1584         adapter->current_itr = IGBVF_START_ITR;
1585
1586         /* Set various function pointers */
1587         adapter->ei->init_ops(&adapter->hw);
1588
1589         rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1590         if (rc)
1591                 return rc;
1592
1593         rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1594         if (rc)
1595                 return rc;
1596
1597         igbvf_set_interrupt_capability(adapter);
1598
1599         if (igbvf_alloc_queues(adapter))
1600                 return -ENOMEM;
1601
1602         spin_lock_init(&adapter->tx_queue_lock);
1603
1604         /* Explicitly disable IRQ since the NIC can be in any state. */
1605         igbvf_irq_disable(adapter);
1606
1607         spin_lock_init(&adapter->stats_lock);
1608
1609         set_bit(__IGBVF_DOWN, &adapter->state);
1610         return 0;
1611 }
1612
1613 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1614 {
1615         struct e1000_hw *hw = &adapter->hw;
1616
1617         adapter->stats.last_gprc = er32(VFGPRC);
1618         adapter->stats.last_gorc = er32(VFGORC);
1619         adapter->stats.last_gptc = er32(VFGPTC);
1620         adapter->stats.last_gotc = er32(VFGOTC);
1621         adapter->stats.last_mprc = er32(VFMPRC);
1622         adapter->stats.last_gotlbc = er32(VFGOTLBC);
1623         adapter->stats.last_gptlbc = er32(VFGPTLBC);
1624         adapter->stats.last_gorlbc = er32(VFGORLBC);
1625         adapter->stats.last_gprlbc = er32(VFGPRLBC);
1626
1627         adapter->stats.base_gprc = er32(VFGPRC);
1628         adapter->stats.base_gorc = er32(VFGORC);
1629         adapter->stats.base_gptc = er32(VFGPTC);
1630         adapter->stats.base_gotc = er32(VFGOTC);
1631         adapter->stats.base_mprc = er32(VFMPRC);
1632         adapter->stats.base_gotlbc = er32(VFGOTLBC);
1633         adapter->stats.base_gptlbc = er32(VFGPTLBC);
1634         adapter->stats.base_gorlbc = er32(VFGORLBC);
1635         adapter->stats.base_gprlbc = er32(VFGPRLBC);
1636 }
1637
1638 /**
1639  * igbvf_open - Called when a network interface is made active
1640  * @netdev: network interface device structure
1641  *
1642  * Returns 0 on success, negative value on failure
1643  *
1644  * The open entry point is called when a network interface is made
1645  * active by the system (IFF_UP).  At this point all resources needed
1646  * for transmit and receive operations are allocated, the interrupt
1647  * handler is registered with the OS, the watchdog timer is started,
1648  * and the stack is notified that the interface is ready.
1649  **/
1650 static int igbvf_open(struct net_device *netdev)
1651 {
1652         struct igbvf_adapter *adapter = netdev_priv(netdev);
1653         struct e1000_hw *hw = &adapter->hw;
1654         int err;
1655
1656         /* disallow open during test */
1657         if (test_bit(__IGBVF_TESTING, &adapter->state))
1658                 return -EBUSY;
1659
1660         /* allocate transmit descriptors */
1661         err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1662         if (err)
1663                 goto err_setup_tx;
1664
1665         /* allocate receive descriptors */
1666         err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1667         if (err)
1668                 goto err_setup_rx;
1669
1670         /* before we allocate an interrupt, we must be ready to handle it.
1671          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1672          * as soon as we call pci_request_irq, so we have to setup our
1673          * clean_rx handler before we do so.
1674          */
1675         igbvf_configure(adapter);
1676
1677         err = igbvf_request_irq(adapter);
1678         if (err)
1679                 goto err_req_irq;
1680
1681         /* From here on the code is the same as igbvf_up() */
1682         clear_bit(__IGBVF_DOWN, &adapter->state);
1683
1684         napi_enable(&adapter->rx_ring->napi);
1685
1686         /* clear any pending interrupts */
1687         er32(EICR);
1688
1689         igbvf_irq_enable(adapter);
1690
1691         /* start the watchdog */
1692         hw->mac.get_link_status = 1;
1693         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1694
1695         return 0;
1696
1697 err_req_irq:
1698         igbvf_free_rx_resources(adapter->rx_ring);
1699 err_setup_rx:
1700         igbvf_free_tx_resources(adapter->tx_ring);
1701 err_setup_tx:
1702         igbvf_reset(adapter);
1703
1704         return err;
1705 }
1706
1707 /**
1708  * igbvf_close - Disables a network interface
1709  * @netdev: network interface device structure
1710  *
1711  * Returns 0, this is not allowed to fail
1712  *
1713  * The close entry point is called when an interface is de-activated
1714  * by the OS.  The hardware is still under the drivers control, but
1715  * needs to be disabled.  A global MAC reset is issued to stop the
1716  * hardware, and all transmit and receive resources are freed.
1717  **/
1718 static int igbvf_close(struct net_device *netdev)
1719 {
1720         struct igbvf_adapter *adapter = netdev_priv(netdev);
1721
1722         WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1723         igbvf_down(adapter);
1724
1725         igbvf_free_irq(adapter);
1726
1727         igbvf_free_tx_resources(adapter->tx_ring);
1728         igbvf_free_rx_resources(adapter->rx_ring);
1729
1730         return 0;
1731 }
1732
1733 /**
1734  * igbvf_set_mac - Change the Ethernet Address of the NIC
1735  * @netdev: network interface device structure
1736  * @p: pointer to an address structure
1737  *
1738  * Returns 0 on success, negative on failure
1739  **/
1740 static int igbvf_set_mac(struct net_device *netdev, void *p)
1741 {
1742         struct igbvf_adapter *adapter = netdev_priv(netdev);
1743         struct e1000_hw *hw = &adapter->hw;
1744         struct sockaddr *addr = p;
1745
1746         if (!is_valid_ether_addr(addr->sa_data))
1747                 return -EADDRNOTAVAIL;
1748
1749         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1750
1751         hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1752
1753         if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1754                 return -EADDRNOTAVAIL;
1755
1756         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1757
1758         return 0;
1759 }
1760
1761 #define UPDATE_VF_COUNTER(reg, name) \
1762 { \
1763         u32 current_counter = er32(reg); \
1764         if (current_counter < adapter->stats.last_##name) \
1765                 adapter->stats.name += 0x100000000LL; \
1766         adapter->stats.last_##name = current_counter; \
1767         adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1768         adapter->stats.name |= current_counter; \
1769 }
1770
1771 /**
1772  * igbvf_update_stats - Update the board statistics counters
1773  * @adapter: board private structure
1774 **/
1775 void igbvf_update_stats(struct igbvf_adapter *adapter)
1776 {
1777         struct e1000_hw *hw = &adapter->hw;
1778         struct pci_dev *pdev = adapter->pdev;
1779
1780         /* Prevent stats update while adapter is being reset, link is down
1781          * or if the pci connection is down.
1782          */
1783         if (adapter->link_speed == 0)
1784                 return;
1785
1786         if (test_bit(__IGBVF_RESETTING, &adapter->state))
1787                 return;
1788
1789         if (pci_channel_offline(pdev))
1790                 return;
1791
1792         UPDATE_VF_COUNTER(VFGPRC, gprc);
1793         UPDATE_VF_COUNTER(VFGORC, gorc);
1794         UPDATE_VF_COUNTER(VFGPTC, gptc);
1795         UPDATE_VF_COUNTER(VFGOTC, gotc);
1796         UPDATE_VF_COUNTER(VFMPRC, mprc);
1797         UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1798         UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1799         UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1800         UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1801
1802         /* Fill out the OS statistics structure */
1803         adapter->net_stats.multicast = adapter->stats.mprc;
1804 }
1805
1806 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1807 {
1808         dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1809                  adapter->link_speed,
1810                  adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1811 }
1812
1813 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1814 {
1815         struct e1000_hw *hw = &adapter->hw;
1816         s32 ret_val = E1000_SUCCESS;
1817         bool link_active;
1818
1819         /* If interface is down, stay link down */
1820         if (test_bit(__IGBVF_DOWN, &adapter->state))
1821                 return false;
1822
1823         ret_val = hw->mac.ops.check_for_link(hw);
1824         link_active = !hw->mac.get_link_status;
1825
1826         /* if check for link returns error we will need to reset */
1827         if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1828                 schedule_work(&adapter->reset_task);
1829
1830         return link_active;
1831 }
1832
1833 /**
1834  * igbvf_watchdog - Timer Call-back
1835  * @data: pointer to adapter cast into an unsigned long
1836  **/
1837 static void igbvf_watchdog(unsigned long data)
1838 {
1839         struct igbvf_adapter *adapter = (struct igbvf_adapter *)data;
1840
1841         /* Do the rest outside of interrupt context */
1842         schedule_work(&adapter->watchdog_task);
1843 }
1844
1845 static void igbvf_watchdog_task(struct work_struct *work)
1846 {
1847         struct igbvf_adapter *adapter = container_of(work,
1848                                                      struct igbvf_adapter,
1849                                                      watchdog_task);
1850         struct net_device *netdev = adapter->netdev;
1851         struct e1000_mac_info *mac = &adapter->hw.mac;
1852         struct igbvf_ring *tx_ring = adapter->tx_ring;
1853         struct e1000_hw *hw = &adapter->hw;
1854         u32 link;
1855         int tx_pending = 0;
1856
1857         link = igbvf_has_link(adapter);
1858
1859         if (link) {
1860                 if (!netif_carrier_ok(netdev)) {
1861                         mac->ops.get_link_up_info(&adapter->hw,
1862                                                   &adapter->link_speed,
1863                                                   &adapter->link_duplex);
1864                         igbvf_print_link_info(adapter);
1865
1866                         netif_carrier_on(netdev);
1867                         netif_wake_queue(netdev);
1868                 }
1869         } else {
1870                 if (netif_carrier_ok(netdev)) {
1871                         adapter->link_speed = 0;
1872                         adapter->link_duplex = 0;
1873                         dev_info(&adapter->pdev->dev, "Link is Down\n");
1874                         netif_carrier_off(netdev);
1875                         netif_stop_queue(netdev);
1876                 }
1877         }
1878
1879         if (netif_carrier_ok(netdev)) {
1880                 igbvf_update_stats(adapter);
1881         } else {
1882                 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1883                               tx_ring->count);
1884                 if (tx_pending) {
1885                         /* We've lost link, so the controller stops DMA,
1886                          * but we've got queued Tx work that's never going
1887                          * to get done, so reset controller to flush Tx.
1888                          * (Do the reset outside of interrupt context).
1889                          */
1890                         adapter->tx_timeout_count++;
1891                         schedule_work(&adapter->reset_task);
1892                 }
1893         }
1894
1895         /* Cause software interrupt to ensure Rx ring is cleaned */
1896         ew32(EICS, adapter->rx_ring->eims_value);
1897
1898         /* Reset the timer */
1899         if (!test_bit(__IGBVF_DOWN, &adapter->state))
1900                 mod_timer(&adapter->watchdog_timer,
1901                           round_jiffies(jiffies + (2 * HZ)));
1902 }
1903
1904 #define IGBVF_TX_FLAGS_CSUM             0x00000001
1905 #define IGBVF_TX_FLAGS_VLAN             0x00000002
1906 #define IGBVF_TX_FLAGS_TSO              0x00000004
1907 #define IGBVF_TX_FLAGS_IPV4             0x00000008
1908 #define IGBVF_TX_FLAGS_VLAN_MASK        0xffff0000
1909 #define IGBVF_TX_FLAGS_VLAN_SHIFT       16
1910
1911 static int igbvf_tso(struct igbvf_adapter *adapter,
1912                      struct igbvf_ring *tx_ring,
1913                      struct sk_buff *skb, u32 tx_flags, u8 *hdr_len,
1914                      __be16 protocol)
1915 {
1916         struct e1000_adv_tx_context_desc *context_desc;
1917         struct igbvf_buffer *buffer_info;
1918         u32 info = 0, tu_cmd = 0;
1919         u32 mss_l4len_idx, l4len;
1920         unsigned int i;
1921         int err;
1922
1923         *hdr_len = 0;
1924
1925         err = skb_cow_head(skb, 0);
1926         if (err < 0) {
1927                 dev_err(&adapter->pdev->dev, "igbvf_tso returning an error\n");
1928                 return err;
1929         }
1930
1931         l4len = tcp_hdrlen(skb);
1932         *hdr_len += l4len;
1933
1934         if (protocol == htons(ETH_P_IP)) {
1935                 struct iphdr *iph = ip_hdr(skb);
1936
1937                 iph->tot_len = 0;
1938                 iph->check = 0;
1939                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1940                                                          iph->daddr, 0,
1941                                                          IPPROTO_TCP,
1942                                                          0);
1943         } else if (skb_is_gso_v6(skb)) {
1944                 ipv6_hdr(skb)->payload_len = 0;
1945                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1946                                                        &ipv6_hdr(skb)->daddr,
1947                                                        0, IPPROTO_TCP, 0);
1948         }
1949
1950         i = tx_ring->next_to_use;
1951
1952         buffer_info = &tx_ring->buffer_info[i];
1953         context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1954         /* VLAN MACLEN IPLEN */
1955         if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1956                 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1957         info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1958         *hdr_len += skb_network_offset(skb);
1959         info |= (skb_transport_header(skb) - skb_network_header(skb));
1960         *hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1961         context_desc->vlan_macip_lens = cpu_to_le32(info);
1962
1963         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1964         tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1965
1966         if (protocol == htons(ETH_P_IP))
1967                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1968         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1969
1970         context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1971
1972         /* MSS L4LEN IDX */
1973         mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1974         mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1975
1976         context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1977         context_desc->seqnum_seed = 0;
1978
1979         buffer_info->time_stamp = jiffies;
1980         buffer_info->dma = 0;
1981         i++;
1982         if (i == tx_ring->count)
1983                 i = 0;
1984
1985         tx_ring->next_to_use = i;
1986
1987         return true;
1988 }
1989
1990 static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
1991                                  struct igbvf_ring *tx_ring,
1992                                  struct sk_buff *skb, u32 tx_flags,
1993                                  __be16 protocol)
1994 {
1995         struct e1000_adv_tx_context_desc *context_desc;
1996         unsigned int i;
1997         struct igbvf_buffer *buffer_info;
1998         u32 info = 0, tu_cmd = 0;
1999
2000         if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2001             (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
2002                 i = tx_ring->next_to_use;
2003                 buffer_info = &tx_ring->buffer_info[i];
2004                 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
2005
2006                 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2007                         info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
2008
2009                 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2010                 if (skb->ip_summed == CHECKSUM_PARTIAL)
2011                         info |= (skb_transport_header(skb) -
2012                                  skb_network_header(skb));
2013
2014                 context_desc->vlan_macip_lens = cpu_to_le32(info);
2015
2016                 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2017
2018                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2019                         switch (protocol) {
2020                         case htons(ETH_P_IP):
2021                                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2022                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2023                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2024                                 break;
2025                         case htons(ETH_P_IPV6):
2026                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2027                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2028                                 break;
2029                         default:
2030                                 break;
2031                         }
2032                 }
2033
2034                 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2035                 context_desc->seqnum_seed = 0;
2036                 context_desc->mss_l4len_idx = 0;
2037
2038                 buffer_info->time_stamp = jiffies;
2039                 buffer_info->dma = 0;
2040                 i++;
2041                 if (i == tx_ring->count)
2042                         i = 0;
2043                 tx_ring->next_to_use = i;
2044
2045                 return true;
2046         }
2047
2048         return false;
2049 }
2050
2051 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2052 {
2053         struct igbvf_adapter *adapter = netdev_priv(netdev);
2054
2055         /* there is enough descriptors then we don't need to worry  */
2056         if (igbvf_desc_unused(adapter->tx_ring) >= size)
2057                 return 0;
2058
2059         netif_stop_queue(netdev);
2060
2061         /* Herbert's original patch had:
2062          *  smp_mb__after_netif_stop_queue();
2063          * but since that doesn't exist yet, just open code it.
2064          */
2065         smp_mb();
2066
2067         /* We need to check again just in case room has been made available */
2068         if (igbvf_desc_unused(adapter->tx_ring) < size)
2069                 return -EBUSY;
2070
2071         netif_wake_queue(netdev);
2072
2073         ++adapter->restart_queue;
2074         return 0;
2075 }
2076
2077 #define IGBVF_MAX_TXD_PWR       16
2078 #define IGBVF_MAX_DATA_PER_TXD  (1 << IGBVF_MAX_TXD_PWR)
2079
2080 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2081                                    struct igbvf_ring *tx_ring,
2082                                    struct sk_buff *skb)
2083 {
2084         struct igbvf_buffer *buffer_info;
2085         struct pci_dev *pdev = adapter->pdev;
2086         unsigned int len = skb_headlen(skb);
2087         unsigned int count = 0, i;
2088         unsigned int f;
2089
2090         i = tx_ring->next_to_use;
2091
2092         buffer_info = &tx_ring->buffer_info[i];
2093         BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2094         buffer_info->length = len;
2095         /* set time_stamp *before* dma to help avoid a possible race */
2096         buffer_info->time_stamp = jiffies;
2097         buffer_info->mapped_as_page = false;
2098         buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2099                                           DMA_TO_DEVICE);
2100         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2101                 goto dma_error;
2102
2103         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2104                 const struct skb_frag_struct *frag;
2105
2106                 count++;
2107                 i++;
2108                 if (i == tx_ring->count)
2109                         i = 0;
2110
2111                 frag = &skb_shinfo(skb)->frags[f];
2112                 len = skb_frag_size(frag);
2113
2114                 buffer_info = &tx_ring->buffer_info[i];
2115                 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2116                 buffer_info->length = len;
2117                 buffer_info->time_stamp = jiffies;
2118                 buffer_info->mapped_as_page = true;
2119                 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2120                                                     DMA_TO_DEVICE);
2121                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2122                         goto dma_error;
2123         }
2124
2125         tx_ring->buffer_info[i].skb = skb;
2126
2127         return ++count;
2128
2129 dma_error:
2130         dev_err(&pdev->dev, "TX DMA map failed\n");
2131
2132         /* clear timestamp and dma mappings for failed buffer_info mapping */
2133         buffer_info->dma = 0;
2134         buffer_info->time_stamp = 0;
2135         buffer_info->length = 0;
2136         buffer_info->mapped_as_page = false;
2137         if (count)
2138                 count--;
2139
2140         /* clear timestamp and dma mappings for remaining portion of packet */
2141         while (count--) {
2142                 if (i == 0)
2143                         i += tx_ring->count;
2144                 i--;
2145                 buffer_info = &tx_ring->buffer_info[i];
2146                 igbvf_put_txbuf(adapter, buffer_info);
2147         }
2148
2149         return 0;
2150 }
2151
2152 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2153                                       struct igbvf_ring *tx_ring,
2154                                       int tx_flags, int count,
2155                                       unsigned int first, u32 paylen,
2156                                       u8 hdr_len)
2157 {
2158         union e1000_adv_tx_desc *tx_desc = NULL;
2159         struct igbvf_buffer *buffer_info;
2160         u32 olinfo_status = 0, cmd_type_len;
2161         unsigned int i;
2162
2163         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2164                         E1000_ADVTXD_DCMD_DEXT);
2165
2166         if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2167                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2168
2169         if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2170                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2171
2172                 /* insert tcp checksum */
2173                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2174
2175                 /* insert ip checksum */
2176                 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2177                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2178
2179         } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2180                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2181         }
2182
2183         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2184
2185         i = tx_ring->next_to_use;
2186         while (count--) {
2187                 buffer_info = &tx_ring->buffer_info[i];
2188                 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2189                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2190                 tx_desc->read.cmd_type_len =
2191                          cpu_to_le32(cmd_type_len | buffer_info->length);
2192                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2193                 i++;
2194                 if (i == tx_ring->count)
2195                         i = 0;
2196         }
2197
2198         tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2199         /* Force memory writes to complete before letting h/w
2200          * know there are new descriptors to fetch.  (Only
2201          * applicable for weak-ordered memory model archs,
2202          * such as IA-64).
2203          */
2204         wmb();
2205
2206         tx_ring->buffer_info[first].next_to_watch = tx_desc;
2207         tx_ring->next_to_use = i;
2208         writel(i, adapter->hw.hw_addr + tx_ring->tail);
2209         /* we need this if more than one processor can write to our tail
2210          * at a time, it synchronizes IO on IA64/Altix systems
2211          */
2212         mmiowb();
2213 }
2214
2215 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2216                                              struct net_device *netdev,
2217                                              struct igbvf_ring *tx_ring)
2218 {
2219         struct igbvf_adapter *adapter = netdev_priv(netdev);
2220         unsigned int first, tx_flags = 0;
2221         u8 hdr_len = 0;
2222         int count = 0;
2223         int tso = 0;
2224         __be16 protocol = vlan_get_protocol(skb);
2225
2226         if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2227                 dev_kfree_skb_any(skb);
2228                 return NETDEV_TX_OK;
2229         }
2230
2231         if (skb->len <= 0) {
2232                 dev_kfree_skb_any(skb);
2233                 return NETDEV_TX_OK;
2234         }
2235
2236         /* need: count + 4 desc gap to keep tail from touching
2237          *       + 2 desc gap to keep tail from touching head,
2238          *       + 1 desc for skb->data,
2239          *       + 1 desc for context descriptor,
2240          * head, otherwise try next time
2241          */
2242         if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2243                 /* this is a hard error */
2244                 return NETDEV_TX_BUSY;
2245         }
2246
2247         if (skb_vlan_tag_present(skb)) {
2248                 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2249                 tx_flags |= (skb_vlan_tag_get(skb) <<
2250                              IGBVF_TX_FLAGS_VLAN_SHIFT);
2251         }
2252
2253         if (protocol == htons(ETH_P_IP))
2254                 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2255
2256         first = tx_ring->next_to_use;
2257
2258         tso = skb_is_gso(skb) ?
2259                 igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len, protocol) : 0;
2260         if (unlikely(tso < 0)) {
2261                 dev_kfree_skb_any(skb);
2262                 return NETDEV_TX_OK;
2263         }
2264
2265         if (tso)
2266                 tx_flags |= IGBVF_TX_FLAGS_TSO;
2267         else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags, protocol) &&
2268                  (skb->ip_summed == CHECKSUM_PARTIAL))
2269                 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2270
2271         /* count reflects descriptors mapped, if 0 then mapping error
2272          * has occurred and we need to rewind the descriptor queue
2273          */
2274         count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2275
2276         if (count) {
2277                 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2278                                    first, skb->len, hdr_len);
2279                 /* Make sure there is space in the ring for the next send. */
2280                 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2281         } else {
2282                 dev_kfree_skb_any(skb);
2283                 tx_ring->buffer_info[first].time_stamp = 0;
2284                 tx_ring->next_to_use = first;
2285         }
2286
2287         return NETDEV_TX_OK;
2288 }
2289
2290 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2291                                     struct net_device *netdev)
2292 {
2293         struct igbvf_adapter *adapter = netdev_priv(netdev);
2294         struct igbvf_ring *tx_ring;
2295
2296         if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2297                 dev_kfree_skb_any(skb);
2298                 return NETDEV_TX_OK;
2299         }
2300
2301         tx_ring = &adapter->tx_ring[0];
2302
2303         return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2304 }
2305
2306 /**
2307  * igbvf_tx_timeout - Respond to a Tx Hang
2308  * @netdev: network interface device structure
2309  **/
2310 static void igbvf_tx_timeout(struct net_device *netdev)
2311 {
2312         struct igbvf_adapter *adapter = netdev_priv(netdev);
2313
2314         /* Do the reset outside of interrupt context */
2315         adapter->tx_timeout_count++;
2316         schedule_work(&adapter->reset_task);
2317 }
2318
2319 static void igbvf_reset_task(struct work_struct *work)
2320 {
2321         struct igbvf_adapter *adapter;
2322
2323         adapter = container_of(work, struct igbvf_adapter, reset_task);
2324
2325         igbvf_reinit_locked(adapter);
2326 }
2327
2328 /**
2329  * igbvf_get_stats - Get System Network Statistics
2330  * @netdev: network interface device structure
2331  *
2332  * Returns the address of the device statistics structure.
2333  * The statistics are actually updated from the timer callback.
2334  **/
2335 static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2336 {
2337         struct igbvf_adapter *adapter = netdev_priv(netdev);
2338
2339         /* only return the current stats */
2340         return &adapter->net_stats;
2341 }
2342
2343 /**
2344  * igbvf_change_mtu - Change the Maximum Transfer Unit
2345  * @netdev: network interface device structure
2346  * @new_mtu: new value for maximum frame size
2347  *
2348  * Returns 0 on success, negative on failure
2349  **/
2350 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2351 {
2352         struct igbvf_adapter *adapter = netdev_priv(netdev);
2353         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2354
2355         if (new_mtu < 68 || new_mtu > INT_MAX - ETH_HLEN - ETH_FCS_LEN ||
2356             max_frame > MAX_JUMBO_FRAME_SIZE)
2357                 return -EINVAL;
2358
2359 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2360         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2361                 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2362                 return -EINVAL;
2363         }
2364
2365         while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2366                 usleep_range(1000, 2000);
2367         /* igbvf_down has a dependency on max_frame_size */
2368         adapter->max_frame_size = max_frame;
2369         if (netif_running(netdev))
2370                 igbvf_down(adapter);
2371
2372         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2373          * means we reserve 2 more, this pushes us to allocate from the next
2374          * larger slab size.
2375          * i.e. RXBUFFER_2048 --> size-4096 slab
2376          * However with the new *_jumbo_rx* routines, jumbo receives will use
2377          * fragmented skbs
2378          */
2379
2380         if (max_frame <= 1024)
2381                 adapter->rx_buffer_len = 1024;
2382         else if (max_frame <= 2048)
2383                 adapter->rx_buffer_len = 2048;
2384         else
2385 #if (PAGE_SIZE / 2) > 16384
2386                 adapter->rx_buffer_len = 16384;
2387 #else
2388                 adapter->rx_buffer_len = PAGE_SIZE / 2;
2389 #endif
2390
2391         /* adjust allocation if LPE protects us, and we aren't using SBP */
2392         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2393             (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2394                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2395                                          ETH_FCS_LEN;
2396
2397         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2398                  netdev->mtu, new_mtu);
2399         netdev->mtu = new_mtu;
2400
2401         if (netif_running(netdev))
2402                 igbvf_up(adapter);
2403         else
2404                 igbvf_reset(adapter);
2405
2406         clear_bit(__IGBVF_RESETTING, &adapter->state);
2407
2408         return 0;
2409 }
2410
2411 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2412 {
2413         switch (cmd) {
2414         default:
2415                 return -EOPNOTSUPP;
2416         }
2417 }
2418
2419 static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2420 {
2421         struct net_device *netdev = pci_get_drvdata(pdev);
2422         struct igbvf_adapter *adapter = netdev_priv(netdev);
2423 #ifdef CONFIG_PM
2424         int retval = 0;
2425 #endif
2426
2427         netif_device_detach(netdev);
2428
2429         if (netif_running(netdev)) {
2430                 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2431                 igbvf_down(adapter);
2432                 igbvf_free_irq(adapter);
2433         }
2434
2435 #ifdef CONFIG_PM
2436         retval = pci_save_state(pdev);
2437         if (retval)
2438                 return retval;
2439 #endif
2440
2441         pci_disable_device(pdev);
2442
2443         return 0;
2444 }
2445
2446 #ifdef CONFIG_PM
2447 static int igbvf_resume(struct pci_dev *pdev)
2448 {
2449         struct net_device *netdev = pci_get_drvdata(pdev);
2450         struct igbvf_adapter *adapter = netdev_priv(netdev);
2451         u32 err;
2452
2453         pci_restore_state(pdev);
2454         err = pci_enable_device_mem(pdev);
2455         if (err) {
2456                 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2457                 return err;
2458         }
2459
2460         pci_set_master(pdev);
2461
2462         if (netif_running(netdev)) {
2463                 err = igbvf_request_irq(adapter);
2464                 if (err)
2465                         return err;
2466         }
2467
2468         igbvf_reset(adapter);
2469
2470         if (netif_running(netdev))
2471                 igbvf_up(adapter);
2472
2473         netif_device_attach(netdev);
2474
2475         return 0;
2476 }
2477 #endif
2478
2479 static void igbvf_shutdown(struct pci_dev *pdev)
2480 {
2481         igbvf_suspend(pdev, PMSG_SUSPEND);
2482 }
2483
2484 #ifdef CONFIG_NET_POLL_CONTROLLER
2485 /* Polling 'interrupt' - used by things like netconsole to send skbs
2486  * without having to re-enable interrupts. It's not called while
2487  * the interrupt routine is executing.
2488  */
2489 static void igbvf_netpoll(struct net_device *netdev)
2490 {
2491         struct igbvf_adapter *adapter = netdev_priv(netdev);
2492
2493         disable_irq(adapter->pdev->irq);
2494
2495         igbvf_clean_tx_irq(adapter->tx_ring);
2496
2497         enable_irq(adapter->pdev->irq);
2498 }
2499 #endif
2500
2501 /**
2502  * igbvf_io_error_detected - called when PCI error is detected
2503  * @pdev: Pointer to PCI device
2504  * @state: The current pci connection state
2505  *
2506  * This function is called after a PCI bus error affecting
2507  * this device has been detected.
2508  */
2509 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2510                                                 pci_channel_state_t state)
2511 {
2512         struct net_device *netdev = pci_get_drvdata(pdev);
2513         struct igbvf_adapter *adapter = netdev_priv(netdev);
2514
2515         netif_device_detach(netdev);
2516
2517         if (state == pci_channel_io_perm_failure)
2518                 return PCI_ERS_RESULT_DISCONNECT;
2519
2520         if (netif_running(netdev))
2521                 igbvf_down(adapter);
2522         pci_disable_device(pdev);
2523
2524         /* Request a slot slot reset. */
2525         return PCI_ERS_RESULT_NEED_RESET;
2526 }
2527
2528 /**
2529  * igbvf_io_slot_reset - called after the pci bus has been reset.
2530  * @pdev: Pointer to PCI device
2531  *
2532  * Restart the card from scratch, as if from a cold-boot. Implementation
2533  * resembles the first-half of the igbvf_resume routine.
2534  */
2535 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2536 {
2537         struct net_device *netdev = pci_get_drvdata(pdev);
2538         struct igbvf_adapter *adapter = netdev_priv(netdev);
2539
2540         if (pci_enable_device_mem(pdev)) {
2541                 dev_err(&pdev->dev,
2542                         "Cannot re-enable PCI device after reset.\n");
2543                 return PCI_ERS_RESULT_DISCONNECT;
2544         }
2545         pci_set_master(pdev);
2546
2547         igbvf_reset(adapter);
2548
2549         return PCI_ERS_RESULT_RECOVERED;
2550 }
2551
2552 /**
2553  * igbvf_io_resume - called when traffic can start flowing again.
2554  * @pdev: Pointer to PCI device
2555  *
2556  * This callback is called when the error recovery driver tells us that
2557  * its OK to resume normal operation. Implementation resembles the
2558  * second-half of the igbvf_resume routine.
2559  */
2560 static void igbvf_io_resume(struct pci_dev *pdev)
2561 {
2562         struct net_device *netdev = pci_get_drvdata(pdev);
2563         struct igbvf_adapter *adapter = netdev_priv(netdev);
2564
2565         if (netif_running(netdev)) {
2566                 if (igbvf_up(adapter)) {
2567                         dev_err(&pdev->dev,
2568                                 "can't bring device back up after reset\n");
2569                         return;
2570                 }
2571         }
2572
2573         netif_device_attach(netdev);
2574 }
2575
2576 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2577 {
2578         struct e1000_hw *hw = &adapter->hw;
2579         struct net_device *netdev = adapter->netdev;
2580         struct pci_dev *pdev = adapter->pdev;
2581
2582         if (hw->mac.type == e1000_vfadapt_i350)
2583                 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2584         else
2585                 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2586         dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2587 }
2588
2589 static int igbvf_set_features(struct net_device *netdev,
2590                               netdev_features_t features)
2591 {
2592         struct igbvf_adapter *adapter = netdev_priv(netdev);
2593
2594         if (features & NETIF_F_RXCSUM)
2595                 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2596         else
2597                 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2598
2599         return 0;
2600 }
2601
2602 static const struct net_device_ops igbvf_netdev_ops = {
2603         .ndo_open               = igbvf_open,
2604         .ndo_stop               = igbvf_close,
2605         .ndo_start_xmit         = igbvf_xmit_frame,
2606         .ndo_get_stats          = igbvf_get_stats,
2607         .ndo_set_rx_mode        = igbvf_set_multi,
2608         .ndo_set_mac_address    = igbvf_set_mac,
2609         .ndo_change_mtu         = igbvf_change_mtu,
2610         .ndo_do_ioctl           = igbvf_ioctl,
2611         .ndo_tx_timeout         = igbvf_tx_timeout,
2612         .ndo_vlan_rx_add_vid    = igbvf_vlan_rx_add_vid,
2613         .ndo_vlan_rx_kill_vid   = igbvf_vlan_rx_kill_vid,
2614 #ifdef CONFIG_NET_POLL_CONTROLLER
2615         .ndo_poll_controller    = igbvf_netpoll,
2616 #endif
2617         .ndo_set_features       = igbvf_set_features,
2618         .ndo_features_check     = passthru_features_check,
2619 };
2620
2621 /**
2622  * igbvf_probe - Device Initialization Routine
2623  * @pdev: PCI device information struct
2624  * @ent: entry in igbvf_pci_tbl
2625  *
2626  * Returns 0 on success, negative on failure
2627  *
2628  * igbvf_probe initializes an adapter identified by a pci_dev structure.
2629  * The OS initialization, configuring of the adapter private structure,
2630  * and a hardware reset occur.
2631  **/
2632 static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2633 {
2634         struct net_device *netdev;
2635         struct igbvf_adapter *adapter;
2636         struct e1000_hw *hw;
2637         const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2638
2639         static int cards_found;
2640         int err, pci_using_dac;
2641
2642         err = pci_enable_device_mem(pdev);
2643         if (err)
2644                 return err;
2645
2646         pci_using_dac = 0;
2647         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2648         if (!err) {
2649                 pci_using_dac = 1;
2650         } else {
2651                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2652                 if (err) {
2653                         dev_err(&pdev->dev,
2654                                 "No usable DMA configuration, aborting\n");
2655                         goto err_dma;
2656                 }
2657         }
2658
2659         err = pci_request_regions(pdev, igbvf_driver_name);
2660         if (err)
2661                 goto err_pci_reg;
2662
2663         pci_set_master(pdev);
2664
2665         err = -ENOMEM;
2666         netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2667         if (!netdev)
2668                 goto err_alloc_etherdev;
2669
2670         SET_NETDEV_DEV(netdev, &pdev->dev);
2671
2672         pci_set_drvdata(pdev, netdev);
2673         adapter = netdev_priv(netdev);
2674         hw = &adapter->hw;
2675         adapter->netdev = netdev;
2676         adapter->pdev = pdev;
2677         adapter->ei = ei;
2678         adapter->pba = ei->pba;
2679         adapter->flags = ei->flags;
2680         adapter->hw.back = adapter;
2681         adapter->hw.mac.type = ei->mac;
2682         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2683
2684         /* PCI config space info */
2685
2686         hw->vendor_id = pdev->vendor;
2687         hw->device_id = pdev->device;
2688         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2689         hw->subsystem_device_id = pdev->subsystem_device;
2690         hw->revision_id = pdev->revision;
2691
2692         err = -EIO;
2693         adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2694                                       pci_resource_len(pdev, 0));
2695
2696         if (!adapter->hw.hw_addr)
2697                 goto err_ioremap;
2698
2699         if (ei->get_variants) {
2700                 err = ei->get_variants(adapter);
2701                 if (err)
2702                         goto err_get_variants;
2703         }
2704
2705         /* setup adapter struct */
2706         err = igbvf_sw_init(adapter);
2707         if (err)
2708                 goto err_sw_init;
2709
2710         /* construct the net_device struct */
2711         netdev->netdev_ops = &igbvf_netdev_ops;
2712
2713         igbvf_set_ethtool_ops(netdev);
2714         netdev->watchdog_timeo = 5 * HZ;
2715         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2716
2717         adapter->bd_number = cards_found++;
2718
2719         netdev->hw_features = NETIF_F_SG |
2720                            NETIF_F_IP_CSUM |
2721                            NETIF_F_IPV6_CSUM |
2722                            NETIF_F_TSO |
2723                            NETIF_F_TSO6 |
2724                            NETIF_F_RXCSUM;
2725
2726         netdev->features = netdev->hw_features |
2727                            NETIF_F_HW_VLAN_CTAG_TX |
2728                            NETIF_F_HW_VLAN_CTAG_RX |
2729                            NETIF_F_HW_VLAN_CTAG_FILTER;
2730
2731         if (pci_using_dac)
2732                 netdev->features |= NETIF_F_HIGHDMA;
2733
2734         netdev->vlan_features |= NETIF_F_TSO;
2735         netdev->vlan_features |= NETIF_F_TSO6;
2736         netdev->vlan_features |= NETIF_F_IP_CSUM;
2737         netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2738         netdev->vlan_features |= NETIF_F_SG;
2739
2740         /*reset the controller to put the device in a known good state */
2741         err = hw->mac.ops.reset_hw(hw);
2742         if (err) {
2743                 dev_info(&pdev->dev,
2744                          "PF still in reset state. Is the PF interface up?\n");
2745         } else {
2746                 err = hw->mac.ops.read_mac_addr(hw);
2747                 if (err)
2748                         dev_info(&pdev->dev, "Error reading MAC address.\n");
2749                 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2750                         dev_info(&pdev->dev,
2751                                  "MAC address not assigned by administrator.\n");
2752                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2753                        netdev->addr_len);
2754         }
2755
2756         if (!is_valid_ether_addr(netdev->dev_addr)) {
2757                 dev_info(&pdev->dev, "Assigning random MAC address.\n");
2758                 eth_hw_addr_random(netdev);
2759                 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2760                        netdev->addr_len);
2761         }
2762
2763         setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2764                     (unsigned long)adapter);
2765
2766         INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2767         INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2768
2769         /* ring size defaults */
2770         adapter->rx_ring->count = 1024;
2771         adapter->tx_ring->count = 1024;
2772
2773         /* reset the hardware with the new settings */
2774         igbvf_reset(adapter);
2775
2776         /* set hardware-specific flags */
2777         if (adapter->hw.mac.type == e1000_vfadapt_i350)
2778                 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2779
2780         strcpy(netdev->name, "eth%d");
2781         err = register_netdev(netdev);
2782         if (err)
2783                 goto err_hw_init;
2784
2785         /* tell the stack to leave us alone until igbvf_open() is called */
2786         netif_carrier_off(netdev);
2787         netif_stop_queue(netdev);
2788
2789         igbvf_print_device_info(adapter);
2790
2791         igbvf_initialize_last_counter_stats(adapter);
2792
2793         return 0;
2794
2795 err_hw_init:
2796         kfree(adapter->tx_ring);
2797         kfree(adapter->rx_ring);
2798 err_sw_init:
2799         igbvf_reset_interrupt_capability(adapter);
2800 err_get_variants:
2801         iounmap(adapter->hw.hw_addr);
2802 err_ioremap:
2803         free_netdev(netdev);
2804 err_alloc_etherdev:
2805         pci_release_regions(pdev);
2806 err_pci_reg:
2807 err_dma:
2808         pci_disable_device(pdev);
2809         return err;
2810 }
2811
2812 /**
2813  * igbvf_remove - Device Removal Routine
2814  * @pdev: PCI device information struct
2815  *
2816  * igbvf_remove is called by the PCI subsystem to alert the driver
2817  * that it should release a PCI device.  The could be caused by a
2818  * Hot-Plug event, or because the driver is going to be removed from
2819  * memory.
2820  **/
2821 static void igbvf_remove(struct pci_dev *pdev)
2822 {
2823         struct net_device *netdev = pci_get_drvdata(pdev);
2824         struct igbvf_adapter *adapter = netdev_priv(netdev);
2825         struct e1000_hw *hw = &adapter->hw;
2826
2827         /* The watchdog timer may be rescheduled, so explicitly
2828          * disable it from being rescheduled.
2829          */
2830         set_bit(__IGBVF_DOWN, &adapter->state);
2831         del_timer_sync(&adapter->watchdog_timer);
2832
2833         cancel_work_sync(&adapter->reset_task);
2834         cancel_work_sync(&adapter->watchdog_task);
2835
2836         unregister_netdev(netdev);
2837
2838         igbvf_reset_interrupt_capability(adapter);
2839
2840         /* it is important to delete the NAPI struct prior to freeing the
2841          * Rx ring so that you do not end up with null pointer refs
2842          */
2843         netif_napi_del(&adapter->rx_ring->napi);
2844         kfree(adapter->tx_ring);
2845         kfree(adapter->rx_ring);
2846
2847         iounmap(hw->hw_addr);
2848         if (hw->flash_address)
2849                 iounmap(hw->flash_address);
2850         pci_release_regions(pdev);
2851
2852         free_netdev(netdev);
2853
2854         pci_disable_device(pdev);
2855 }
2856
2857 /* PCI Error Recovery (ERS) */
2858 static const struct pci_error_handlers igbvf_err_handler = {
2859         .error_detected = igbvf_io_error_detected,
2860         .slot_reset = igbvf_io_slot_reset,
2861         .resume = igbvf_io_resume,
2862 };
2863
2864 static const struct pci_device_id igbvf_pci_tbl[] = {
2865         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2866         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2867         { } /* terminate list */
2868 };
2869 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2870
2871 /* PCI Device API Driver */
2872 static struct pci_driver igbvf_driver = {
2873         .name           = igbvf_driver_name,
2874         .id_table       = igbvf_pci_tbl,
2875         .probe          = igbvf_probe,
2876         .remove         = igbvf_remove,
2877 #ifdef CONFIG_PM
2878         /* Power Management Hooks */
2879         .suspend        = igbvf_suspend,
2880         .resume         = igbvf_resume,
2881 #endif
2882         .shutdown       = igbvf_shutdown,
2883         .err_handler    = &igbvf_err_handler
2884 };
2885
2886 /**
2887  * igbvf_init_module - Driver Registration Routine
2888  *
2889  * igbvf_init_module is the first routine called when the driver is
2890  * loaded. All it does is register with the PCI subsystem.
2891  **/
2892 static int __init igbvf_init_module(void)
2893 {
2894         int ret;
2895
2896         pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
2897         pr_info("%s\n", igbvf_copyright);
2898
2899         ret = pci_register_driver(&igbvf_driver);
2900
2901         return ret;
2902 }
2903 module_init(igbvf_init_module);
2904
2905 /**
2906  * igbvf_exit_module - Driver Exit Cleanup Routine
2907  *
2908  * igbvf_exit_module is called just before the driver is removed
2909  * from memory.
2910  **/
2911 static void __exit igbvf_exit_module(void)
2912 {
2913         pci_unregister_driver(&igbvf_driver);
2914 }
2915 module_exit(igbvf_exit_module);
2916
2917 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2918 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2919 MODULE_LICENSE("GPL");
2920 MODULE_VERSION(DRV_VERSION);
2921
2922 /* netdev.c */