]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/neterion/s2io.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
[karo-tx-linux.git] / drivers / net / ethernet / neterion / s2io.c
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2010 Exar Corp.
4  *
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik          : For pointing out the improper error condition
15  *                        check in the s2io_xmit routine and also some
16  *                        issues in the Tx watch dog function. Also for
17  *                        patiently answering all those innumerable
18  *                        questions regaring the 2.6 porting issues.
19  * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
20  *                        macros available only in 2.6 Kernel.
21  * Francois Romieu      : For pointing out all code part that were
22  *                        deprecated and also styling related comments.
23  * Grant Grundler       : For helping me get rid of some Architecture
24  *                        dependent code.
25  * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explanation of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *              values are 1, 2.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     2(MSI_X). Default value is '2(MSI_X)'
41  * lro_max_pkts: This parameter defines maximum number of packets can be
42  *     aggregated as a single large packet
43  * napi: This parameter used to enable/disable NAPI (polling Rx)
44  *     Possible values '1' for enable and '0' for disable. Default is '1'
45  * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
46  *      Possible values '1' for enable and '0' for disable. Default is '0'
47  * vlan_tag_strip: This can be used to enable or disable vlan stripping.
48  *                 Possible values '1' for enable , '0' for disable.
49  *                 Default is '2' - which means disable in promisc mode
50  *                 and enable in non-promiscuous mode.
51  * multiq: This parameter used to enable/disable MULTIQUEUE support.
52  *      Possible values '1' for enable and '0' for disable. Default is '0'
53  ************************************************************************/
54
55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/mdio.h>
67 #include <linux/skbuff.h>
68 #include <linux/init.h>
69 #include <linux/delay.h>
70 #include <linux/stddef.h>
71 #include <linux/ioctl.h>
72 #include <linux/timex.h>
73 #include <linux/ethtool.h>
74 #include <linux/workqueue.h>
75 #include <linux/if_vlan.h>
76 #include <linux/ip.h>
77 #include <linux/tcp.h>
78 #include <linux/uaccess.h>
79 #include <linux/io.h>
80 #include <linux/slab.h>
81 #include <linux/prefetch.h>
82 #include <net/tcp.h>
83 #include <net/checksum.h>
84
85 #include <asm/div64.h>
86 #include <asm/irq.h>
87
88 /* local include */
89 #include "s2io.h"
90 #include "s2io-regs.h"
91
92 #define DRV_VERSION "2.0.26.28"
93
94 /* S2io Driver name & version. */
95 static const char s2io_driver_name[] = "Neterion";
96 static const char s2io_driver_version[] = DRV_VERSION;
97
98 static const int rxd_size[2] = {32, 48};
99 static const int rxd_count[2] = {127, 85};
100
101 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
102 {
103         int ret;
104
105         ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
106                (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
107
108         return ret;
109 }
110
111 /*
112  * Cards with following subsystem_id have a link state indication
113  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
114  * macro below identifies these cards given the subsystem_id.
115  */
116 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid)              \
117         (dev_type == XFRAME_I_DEVICE) ?                                 \
118         ((((subid >= 0x600B) && (subid <= 0x600D)) ||                   \
119           ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
120
121 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
122                                       ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
123
124 static inline int is_s2io_card_up(const struct s2io_nic *sp)
125 {
126         return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
127 }
128
129 /* Ethtool related variables and Macros. */
130 static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
131         "Register test\t(offline)",
132         "Eeprom test\t(offline)",
133         "Link test\t(online)",
134         "RLDRAM test\t(offline)",
135         "BIST Test\t(offline)"
136 };
137
138 static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
139         {"tmac_frms"},
140         {"tmac_data_octets"},
141         {"tmac_drop_frms"},
142         {"tmac_mcst_frms"},
143         {"tmac_bcst_frms"},
144         {"tmac_pause_ctrl_frms"},
145         {"tmac_ttl_octets"},
146         {"tmac_ucst_frms"},
147         {"tmac_nucst_frms"},
148         {"tmac_any_err_frms"},
149         {"tmac_ttl_less_fb_octets"},
150         {"tmac_vld_ip_octets"},
151         {"tmac_vld_ip"},
152         {"tmac_drop_ip"},
153         {"tmac_icmp"},
154         {"tmac_rst_tcp"},
155         {"tmac_tcp"},
156         {"tmac_udp"},
157         {"rmac_vld_frms"},
158         {"rmac_data_octets"},
159         {"rmac_fcs_err_frms"},
160         {"rmac_drop_frms"},
161         {"rmac_vld_mcst_frms"},
162         {"rmac_vld_bcst_frms"},
163         {"rmac_in_rng_len_err_frms"},
164         {"rmac_out_rng_len_err_frms"},
165         {"rmac_long_frms"},
166         {"rmac_pause_ctrl_frms"},
167         {"rmac_unsup_ctrl_frms"},
168         {"rmac_ttl_octets"},
169         {"rmac_accepted_ucst_frms"},
170         {"rmac_accepted_nucst_frms"},
171         {"rmac_discarded_frms"},
172         {"rmac_drop_events"},
173         {"rmac_ttl_less_fb_octets"},
174         {"rmac_ttl_frms"},
175         {"rmac_usized_frms"},
176         {"rmac_osized_frms"},
177         {"rmac_frag_frms"},
178         {"rmac_jabber_frms"},
179         {"rmac_ttl_64_frms"},
180         {"rmac_ttl_65_127_frms"},
181         {"rmac_ttl_128_255_frms"},
182         {"rmac_ttl_256_511_frms"},
183         {"rmac_ttl_512_1023_frms"},
184         {"rmac_ttl_1024_1518_frms"},
185         {"rmac_ip"},
186         {"rmac_ip_octets"},
187         {"rmac_hdr_err_ip"},
188         {"rmac_drop_ip"},
189         {"rmac_icmp"},
190         {"rmac_tcp"},
191         {"rmac_udp"},
192         {"rmac_err_drp_udp"},
193         {"rmac_xgmii_err_sym"},
194         {"rmac_frms_q0"},
195         {"rmac_frms_q1"},
196         {"rmac_frms_q2"},
197         {"rmac_frms_q3"},
198         {"rmac_frms_q4"},
199         {"rmac_frms_q5"},
200         {"rmac_frms_q6"},
201         {"rmac_frms_q7"},
202         {"rmac_full_q0"},
203         {"rmac_full_q1"},
204         {"rmac_full_q2"},
205         {"rmac_full_q3"},
206         {"rmac_full_q4"},
207         {"rmac_full_q5"},
208         {"rmac_full_q6"},
209         {"rmac_full_q7"},
210         {"rmac_pause_cnt"},
211         {"rmac_xgmii_data_err_cnt"},
212         {"rmac_xgmii_ctrl_err_cnt"},
213         {"rmac_accepted_ip"},
214         {"rmac_err_tcp"},
215         {"rd_req_cnt"},
216         {"new_rd_req_cnt"},
217         {"new_rd_req_rtry_cnt"},
218         {"rd_rtry_cnt"},
219         {"wr_rtry_rd_ack_cnt"},
220         {"wr_req_cnt"},
221         {"new_wr_req_cnt"},
222         {"new_wr_req_rtry_cnt"},
223         {"wr_rtry_cnt"},
224         {"wr_disc_cnt"},
225         {"rd_rtry_wr_ack_cnt"},
226         {"txp_wr_cnt"},
227         {"txd_rd_cnt"},
228         {"txd_wr_cnt"},
229         {"rxd_rd_cnt"},
230         {"rxd_wr_cnt"},
231         {"txf_rd_cnt"},
232         {"rxf_wr_cnt"}
233 };
234
235 static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
236         {"rmac_ttl_1519_4095_frms"},
237         {"rmac_ttl_4096_8191_frms"},
238         {"rmac_ttl_8192_max_frms"},
239         {"rmac_ttl_gt_max_frms"},
240         {"rmac_osized_alt_frms"},
241         {"rmac_jabber_alt_frms"},
242         {"rmac_gt_max_alt_frms"},
243         {"rmac_vlan_frms"},
244         {"rmac_len_discard"},
245         {"rmac_fcs_discard"},
246         {"rmac_pf_discard"},
247         {"rmac_da_discard"},
248         {"rmac_red_discard"},
249         {"rmac_rts_discard"},
250         {"rmac_ingm_full_discard"},
251         {"link_fault_cnt"}
252 };
253
254 static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
255         {"\n DRIVER STATISTICS"},
256         {"single_bit_ecc_errs"},
257         {"double_bit_ecc_errs"},
258         {"parity_err_cnt"},
259         {"serious_err_cnt"},
260         {"soft_reset_cnt"},
261         {"fifo_full_cnt"},
262         {"ring_0_full_cnt"},
263         {"ring_1_full_cnt"},
264         {"ring_2_full_cnt"},
265         {"ring_3_full_cnt"},
266         {"ring_4_full_cnt"},
267         {"ring_5_full_cnt"},
268         {"ring_6_full_cnt"},
269         {"ring_7_full_cnt"},
270         {"alarm_transceiver_temp_high"},
271         {"alarm_transceiver_temp_low"},
272         {"alarm_laser_bias_current_high"},
273         {"alarm_laser_bias_current_low"},
274         {"alarm_laser_output_power_high"},
275         {"alarm_laser_output_power_low"},
276         {"warn_transceiver_temp_high"},
277         {"warn_transceiver_temp_low"},
278         {"warn_laser_bias_current_high"},
279         {"warn_laser_bias_current_low"},
280         {"warn_laser_output_power_high"},
281         {"warn_laser_output_power_low"},
282         {"lro_aggregated_pkts"},
283         {"lro_flush_both_count"},
284         {"lro_out_of_sequence_pkts"},
285         {"lro_flush_due_to_max_pkts"},
286         {"lro_avg_aggr_pkts"},
287         {"mem_alloc_fail_cnt"},
288         {"pci_map_fail_cnt"},
289         {"watchdog_timer_cnt"},
290         {"mem_allocated"},
291         {"mem_freed"},
292         {"link_up_cnt"},
293         {"link_down_cnt"},
294         {"link_up_time"},
295         {"link_down_time"},
296         {"tx_tcode_buf_abort_cnt"},
297         {"tx_tcode_desc_abort_cnt"},
298         {"tx_tcode_parity_err_cnt"},
299         {"tx_tcode_link_loss_cnt"},
300         {"tx_tcode_list_proc_err_cnt"},
301         {"rx_tcode_parity_err_cnt"},
302         {"rx_tcode_abort_cnt"},
303         {"rx_tcode_parity_abort_cnt"},
304         {"rx_tcode_rda_fail_cnt"},
305         {"rx_tcode_unkn_prot_cnt"},
306         {"rx_tcode_fcs_err_cnt"},
307         {"rx_tcode_buf_size_err_cnt"},
308         {"rx_tcode_rxd_corrupt_cnt"},
309         {"rx_tcode_unkn_err_cnt"},
310         {"tda_err_cnt"},
311         {"pfc_err_cnt"},
312         {"pcc_err_cnt"},
313         {"tti_err_cnt"},
314         {"tpa_err_cnt"},
315         {"sm_err_cnt"},
316         {"lso_err_cnt"},
317         {"mac_tmac_err_cnt"},
318         {"mac_rmac_err_cnt"},
319         {"xgxs_txgxs_err_cnt"},
320         {"xgxs_rxgxs_err_cnt"},
321         {"rc_err_cnt"},
322         {"prc_pcix_err_cnt"},
323         {"rpa_err_cnt"},
324         {"rda_err_cnt"},
325         {"rti_err_cnt"},
326         {"mc_err_cnt"}
327 };
328
329 #define S2IO_XENA_STAT_LEN      ARRAY_SIZE(ethtool_xena_stats_keys)
330 #define S2IO_ENHANCED_STAT_LEN  ARRAY_SIZE(ethtool_enhanced_stats_keys)
331 #define S2IO_DRIVER_STAT_LEN    ARRAY_SIZE(ethtool_driver_stats_keys)
332
333 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
334 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
335
336 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
337 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
338
339 #define S2IO_TEST_LEN   ARRAY_SIZE(s2io_gstrings)
340 #define S2IO_STRINGS_LEN        (S2IO_TEST_LEN * ETH_GSTRING_LEN)
341
342 #define S2IO_TIMER_CONF(timer, handle, arg, exp)        \
343         init_timer(&timer);                             \
344         timer.function = handle;                        \
345         timer.data = (unsigned long)arg;                \
346         mod_timer(&timer, (jiffies + exp))              \
347
348 /* copy mac addr to def_mac_addr array */
349 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
350 {
351         sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
352         sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
353         sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
354         sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
355         sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
356         sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
357 }
358
359 /*
360  * Constants to be programmed into the Xena's registers, to configure
361  * the XAUI.
362  */
363
364 #define END_SIGN        0x0
365 static const u64 herc_act_dtx_cfg[] = {
366         /* Set address */
367         0x8000051536750000ULL, 0x80000515367500E0ULL,
368         /* Write data */
369         0x8000051536750004ULL, 0x80000515367500E4ULL,
370         /* Set address */
371         0x80010515003F0000ULL, 0x80010515003F00E0ULL,
372         /* Write data */
373         0x80010515003F0004ULL, 0x80010515003F00E4ULL,
374         /* Set address */
375         0x801205150D440000ULL, 0x801205150D4400E0ULL,
376         /* Write data */
377         0x801205150D440004ULL, 0x801205150D4400E4ULL,
378         /* Set address */
379         0x80020515F2100000ULL, 0x80020515F21000E0ULL,
380         /* Write data */
381         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
382         /* Done */
383         END_SIGN
384 };
385
386 static const u64 xena_dtx_cfg[] = {
387         /* Set address */
388         0x8000051500000000ULL, 0x80000515000000E0ULL,
389         /* Write data */
390         0x80000515D9350004ULL, 0x80000515D93500E4ULL,
391         /* Set address */
392         0x8001051500000000ULL, 0x80010515000000E0ULL,
393         /* Write data */
394         0x80010515001E0004ULL, 0x80010515001E00E4ULL,
395         /* Set address */
396         0x8002051500000000ULL, 0x80020515000000E0ULL,
397         /* Write data */
398         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
399         END_SIGN
400 };
401
402 /*
403  * Constants for Fixing the MacAddress problem seen mostly on
404  * Alpha machines.
405  */
406 static const u64 fix_mac[] = {
407         0x0060000000000000ULL, 0x0060600000000000ULL,
408         0x0040600000000000ULL, 0x0000600000000000ULL,
409         0x0020600000000000ULL, 0x0060600000000000ULL,
410         0x0020600000000000ULL, 0x0060600000000000ULL,
411         0x0020600000000000ULL, 0x0060600000000000ULL,
412         0x0020600000000000ULL, 0x0060600000000000ULL,
413         0x0020600000000000ULL, 0x0060600000000000ULL,
414         0x0020600000000000ULL, 0x0060600000000000ULL,
415         0x0020600000000000ULL, 0x0060600000000000ULL,
416         0x0020600000000000ULL, 0x0060600000000000ULL,
417         0x0020600000000000ULL, 0x0060600000000000ULL,
418         0x0020600000000000ULL, 0x0060600000000000ULL,
419         0x0020600000000000ULL, 0x0000600000000000ULL,
420         0x0040600000000000ULL, 0x0060600000000000ULL,
421         END_SIGN
422 };
423
424 MODULE_LICENSE("GPL");
425 MODULE_VERSION(DRV_VERSION);
426
427
428 /* Module Loadable parameters. */
429 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
430 S2IO_PARM_INT(rx_ring_num, 1);
431 S2IO_PARM_INT(multiq, 0);
432 S2IO_PARM_INT(rx_ring_mode, 1);
433 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
434 S2IO_PARM_INT(rmac_pause_time, 0x100);
435 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
436 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
437 S2IO_PARM_INT(shared_splits, 0);
438 S2IO_PARM_INT(tmac_util_period, 5);
439 S2IO_PARM_INT(rmac_util_period, 5);
440 S2IO_PARM_INT(l3l4hdr_size, 128);
441 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
442 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
443 /* Frequency of Rx desc syncs expressed as power of 2 */
444 S2IO_PARM_INT(rxsync_frequency, 3);
445 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
446 S2IO_PARM_INT(intr_type, 2);
447 /* Large receive offload feature */
448
449 /* Max pkts to be aggregated by LRO at one time. If not specified,
450  * aggregation happens until we hit max IP pkt size(64K)
451  */
452 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
453 S2IO_PARM_INT(indicate_max_pkts, 0);
454
455 S2IO_PARM_INT(napi, 1);
456 S2IO_PARM_INT(ufo, 0);
457 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
458
459 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
460 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
461 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
462 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
463 static unsigned int rts_frm_len[MAX_RX_RINGS] =
464 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
465
466 module_param_array(tx_fifo_len, uint, NULL, 0);
467 module_param_array(rx_ring_sz, uint, NULL, 0);
468 module_param_array(rts_frm_len, uint, NULL, 0);
469
470 /*
471  * S2IO device table.
472  * This table lists all the devices that this driver supports.
473  */
474 static const struct pci_device_id s2io_tbl[] = {
475         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
476          PCI_ANY_ID, PCI_ANY_ID},
477         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
478          PCI_ANY_ID, PCI_ANY_ID},
479         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
480          PCI_ANY_ID, PCI_ANY_ID},
481         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
482          PCI_ANY_ID, PCI_ANY_ID},
483         {0,}
484 };
485
486 MODULE_DEVICE_TABLE(pci, s2io_tbl);
487
488 static const struct pci_error_handlers s2io_err_handler = {
489         .error_detected = s2io_io_error_detected,
490         .slot_reset = s2io_io_slot_reset,
491         .resume = s2io_io_resume,
492 };
493
494 static struct pci_driver s2io_driver = {
495         .name = "S2IO",
496         .id_table = s2io_tbl,
497         .probe = s2io_init_nic,
498         .remove = s2io_rem_nic,
499         .err_handler = &s2io_err_handler,
500 };
501
502 /* A simplifier macro used both by init and free shared_mem Fns(). */
503 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
504
505 /* netqueue manipulation helper functions */
506 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
507 {
508         if (!sp->config.multiq) {
509                 int i;
510
511                 for (i = 0; i < sp->config.tx_fifo_num; i++)
512                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
513         }
514         netif_tx_stop_all_queues(sp->dev);
515 }
516
517 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
518 {
519         if (!sp->config.multiq)
520                 sp->mac_control.fifos[fifo_no].queue_state =
521                         FIFO_QUEUE_STOP;
522
523         netif_tx_stop_all_queues(sp->dev);
524 }
525
526 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
527 {
528         if (!sp->config.multiq) {
529                 int i;
530
531                 for (i = 0; i < sp->config.tx_fifo_num; i++)
532                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
533         }
534         netif_tx_start_all_queues(sp->dev);
535 }
536
537 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
538 {
539         if (!sp->config.multiq) {
540                 int i;
541
542                 for (i = 0; i < sp->config.tx_fifo_num; i++)
543                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
544         }
545         netif_tx_wake_all_queues(sp->dev);
546 }
547
548 static inline void s2io_wake_tx_queue(
549         struct fifo_info *fifo, int cnt, u8 multiq)
550 {
551
552         if (multiq) {
553                 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
554                         netif_wake_subqueue(fifo->dev, fifo->fifo_no);
555         } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
556                 if (netif_queue_stopped(fifo->dev)) {
557                         fifo->queue_state = FIFO_QUEUE_START;
558                         netif_wake_queue(fifo->dev);
559                 }
560         }
561 }
562
563 /**
564  * init_shared_mem - Allocation and Initialization of Memory
565  * @nic: Device private variable.
566  * Description: The function allocates all the memory areas shared
567  * between the NIC and the driver. This includes Tx descriptors,
568  * Rx descriptors and the statistics block.
569  */
570
571 static int init_shared_mem(struct s2io_nic *nic)
572 {
573         u32 size;
574         void *tmp_v_addr, *tmp_v_addr_next;
575         dma_addr_t tmp_p_addr, tmp_p_addr_next;
576         struct RxD_block *pre_rxd_blk = NULL;
577         int i, j, blk_cnt;
578         int lst_size, lst_per_page;
579         struct net_device *dev = nic->dev;
580         unsigned long tmp;
581         struct buffAdd *ba;
582         struct config_param *config = &nic->config;
583         struct mac_info *mac_control = &nic->mac_control;
584         unsigned long long mem_allocated = 0;
585
586         /* Allocation and initialization of TXDLs in FIFOs */
587         size = 0;
588         for (i = 0; i < config->tx_fifo_num; i++) {
589                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
590
591                 size += tx_cfg->fifo_len;
592         }
593         if (size > MAX_AVAILABLE_TXDS) {
594                 DBG_PRINT(ERR_DBG,
595                           "Too many TxDs requested: %d, max supported: %d\n",
596                           size, MAX_AVAILABLE_TXDS);
597                 return -EINVAL;
598         }
599
600         size = 0;
601         for (i = 0; i < config->tx_fifo_num; i++) {
602                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
603
604                 size = tx_cfg->fifo_len;
605                 /*
606                  * Legal values are from 2 to 8192
607                  */
608                 if (size < 2) {
609                         DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
610                                   "Valid lengths are 2 through 8192\n",
611                                   i, size);
612                         return -EINVAL;
613                 }
614         }
615
616         lst_size = (sizeof(struct TxD) * config->max_txds);
617         lst_per_page = PAGE_SIZE / lst_size;
618
619         for (i = 0; i < config->tx_fifo_num; i++) {
620                 struct fifo_info *fifo = &mac_control->fifos[i];
621                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
622                 int fifo_len = tx_cfg->fifo_len;
623                 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
624
625                 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
626                 if (!fifo->list_info) {
627                         DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
628                         return -ENOMEM;
629                 }
630                 mem_allocated += list_holder_size;
631         }
632         for (i = 0; i < config->tx_fifo_num; i++) {
633                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
634                                                 lst_per_page);
635                 struct fifo_info *fifo = &mac_control->fifos[i];
636                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
637
638                 fifo->tx_curr_put_info.offset = 0;
639                 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
640                 fifo->tx_curr_get_info.offset = 0;
641                 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
642                 fifo->fifo_no = i;
643                 fifo->nic = nic;
644                 fifo->max_txds = MAX_SKB_FRAGS + 2;
645                 fifo->dev = dev;
646
647                 for (j = 0; j < page_num; j++) {
648                         int k = 0;
649                         dma_addr_t tmp_p;
650                         void *tmp_v;
651                         tmp_v = pci_alloc_consistent(nic->pdev,
652                                                      PAGE_SIZE, &tmp_p);
653                         if (!tmp_v) {
654                                 DBG_PRINT(INFO_DBG,
655                                           "pci_alloc_consistent failed for TxDL\n");
656                                 return -ENOMEM;
657                         }
658                         /* If we got a zero DMA address(can happen on
659                          * certain platforms like PPC), reallocate.
660                          * Store virtual address of page we don't want,
661                          * to be freed later.
662                          */
663                         if (!tmp_p) {
664                                 mac_control->zerodma_virt_addr = tmp_v;
665                                 DBG_PRINT(INIT_DBG,
666                                           "%s: Zero DMA address for TxDL. "
667                                           "Virtual address %p\n",
668                                           dev->name, tmp_v);
669                                 tmp_v = pci_alloc_consistent(nic->pdev,
670                                                              PAGE_SIZE, &tmp_p);
671                                 if (!tmp_v) {
672                                         DBG_PRINT(INFO_DBG,
673                                                   "pci_alloc_consistent failed for TxDL\n");
674                                         return -ENOMEM;
675                                 }
676                                 mem_allocated += PAGE_SIZE;
677                         }
678                         while (k < lst_per_page) {
679                                 int l = (j * lst_per_page) + k;
680                                 if (l == tx_cfg->fifo_len)
681                                         break;
682                                 fifo->list_info[l].list_virt_addr =
683                                         tmp_v + (k * lst_size);
684                                 fifo->list_info[l].list_phy_addr =
685                                         tmp_p + (k * lst_size);
686                                 k++;
687                         }
688                 }
689         }
690
691         for (i = 0; i < config->tx_fifo_num; i++) {
692                 struct fifo_info *fifo = &mac_control->fifos[i];
693                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
694
695                 size = tx_cfg->fifo_len;
696                 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
697                 if (!fifo->ufo_in_band_v)
698                         return -ENOMEM;
699                 mem_allocated += (size * sizeof(u64));
700         }
701
702         /* Allocation and initialization of RXDs in Rings */
703         size = 0;
704         for (i = 0; i < config->rx_ring_num; i++) {
705                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
706                 struct ring_info *ring = &mac_control->rings[i];
707
708                 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
709                         DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
710                                   "multiple of RxDs per Block\n",
711                                   dev->name, i);
712                         return FAILURE;
713                 }
714                 size += rx_cfg->num_rxd;
715                 ring->block_count = rx_cfg->num_rxd /
716                         (rxd_count[nic->rxd_mode] + 1);
717                 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
718         }
719         if (nic->rxd_mode == RXD_MODE_1)
720                 size = (size * (sizeof(struct RxD1)));
721         else
722                 size = (size * (sizeof(struct RxD3)));
723
724         for (i = 0; i < config->rx_ring_num; i++) {
725                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
726                 struct ring_info *ring = &mac_control->rings[i];
727
728                 ring->rx_curr_get_info.block_index = 0;
729                 ring->rx_curr_get_info.offset = 0;
730                 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
731                 ring->rx_curr_put_info.block_index = 0;
732                 ring->rx_curr_put_info.offset = 0;
733                 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
734                 ring->nic = nic;
735                 ring->ring_no = i;
736
737                 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
738                 /*  Allocating all the Rx blocks */
739                 for (j = 0; j < blk_cnt; j++) {
740                         struct rx_block_info *rx_blocks;
741                         int l;
742
743                         rx_blocks = &ring->rx_blocks[j];
744                         size = SIZE_OF_BLOCK;   /* size is always page size */
745                         tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
746                                                           &tmp_p_addr);
747                         if (tmp_v_addr == NULL) {
748                                 /*
749                                  * In case of failure, free_shared_mem()
750                                  * is called, which should free any
751                                  * memory that was alloced till the
752                                  * failure happened.
753                                  */
754                                 rx_blocks->block_virt_addr = tmp_v_addr;
755                                 return -ENOMEM;
756                         }
757                         mem_allocated += size;
758                         memset(tmp_v_addr, 0, size);
759
760                         size = sizeof(struct rxd_info) *
761                                 rxd_count[nic->rxd_mode];
762                         rx_blocks->block_virt_addr = tmp_v_addr;
763                         rx_blocks->block_dma_addr = tmp_p_addr;
764                         rx_blocks->rxds = kmalloc(size,  GFP_KERNEL);
765                         if (!rx_blocks->rxds)
766                                 return -ENOMEM;
767                         mem_allocated += size;
768                         for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
769                                 rx_blocks->rxds[l].virt_addr =
770                                         rx_blocks->block_virt_addr +
771                                         (rxd_size[nic->rxd_mode] * l);
772                                 rx_blocks->rxds[l].dma_addr =
773                                         rx_blocks->block_dma_addr +
774                                         (rxd_size[nic->rxd_mode] * l);
775                         }
776                 }
777                 /* Interlinking all Rx Blocks */
778                 for (j = 0; j < blk_cnt; j++) {
779                         int next = (j + 1) % blk_cnt;
780                         tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
781                         tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
782                         tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
783                         tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
784
785                         pre_rxd_blk = tmp_v_addr;
786                         pre_rxd_blk->reserved_2_pNext_RxD_block =
787                                 (unsigned long)tmp_v_addr_next;
788                         pre_rxd_blk->pNext_RxD_Blk_physical =
789                                 (u64)tmp_p_addr_next;
790                 }
791         }
792         if (nic->rxd_mode == RXD_MODE_3B) {
793                 /*
794                  * Allocation of Storages for buffer addresses in 2BUFF mode
795                  * and the buffers as well.
796                  */
797                 for (i = 0; i < config->rx_ring_num; i++) {
798                         struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
799                         struct ring_info *ring = &mac_control->rings[i];
800
801                         blk_cnt = rx_cfg->num_rxd /
802                                 (rxd_count[nic->rxd_mode] + 1);
803                         size = sizeof(struct buffAdd *) * blk_cnt;
804                         ring->ba = kmalloc(size, GFP_KERNEL);
805                         if (!ring->ba)
806                                 return -ENOMEM;
807                         mem_allocated += size;
808                         for (j = 0; j < blk_cnt; j++) {
809                                 int k = 0;
810
811                                 size = sizeof(struct buffAdd) *
812                                         (rxd_count[nic->rxd_mode] + 1);
813                                 ring->ba[j] = kmalloc(size, GFP_KERNEL);
814                                 if (!ring->ba[j])
815                                         return -ENOMEM;
816                                 mem_allocated += size;
817                                 while (k != rxd_count[nic->rxd_mode]) {
818                                         ba = &ring->ba[j][k];
819                                         size = BUF0_LEN + ALIGN_SIZE;
820                                         ba->ba_0_org = kmalloc(size, GFP_KERNEL);
821                                         if (!ba->ba_0_org)
822                                                 return -ENOMEM;
823                                         mem_allocated += size;
824                                         tmp = (unsigned long)ba->ba_0_org;
825                                         tmp += ALIGN_SIZE;
826                                         tmp &= ~((unsigned long)ALIGN_SIZE);
827                                         ba->ba_0 = (void *)tmp;
828
829                                         size = BUF1_LEN + ALIGN_SIZE;
830                                         ba->ba_1_org = kmalloc(size, GFP_KERNEL);
831                                         if (!ba->ba_1_org)
832                                                 return -ENOMEM;
833                                         mem_allocated += size;
834                                         tmp = (unsigned long)ba->ba_1_org;
835                                         tmp += ALIGN_SIZE;
836                                         tmp &= ~((unsigned long)ALIGN_SIZE);
837                                         ba->ba_1 = (void *)tmp;
838                                         k++;
839                                 }
840                         }
841                 }
842         }
843
844         /* Allocation and initialization of Statistics block */
845         size = sizeof(struct stat_block);
846         mac_control->stats_mem =
847                 pci_alloc_consistent(nic->pdev, size,
848                                      &mac_control->stats_mem_phy);
849
850         if (!mac_control->stats_mem) {
851                 /*
852                  * In case of failure, free_shared_mem() is called, which
853                  * should free any memory that was alloced till the
854                  * failure happened.
855                  */
856                 return -ENOMEM;
857         }
858         mem_allocated += size;
859         mac_control->stats_mem_sz = size;
860
861         tmp_v_addr = mac_control->stats_mem;
862         mac_control->stats_info = tmp_v_addr;
863         memset(tmp_v_addr, 0, size);
864         DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
865                 dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
866         mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
867         return SUCCESS;
868 }
869
870 /**
871  * free_shared_mem - Free the allocated Memory
872  * @nic:  Device private variable.
873  * Description: This function is to free all memory locations allocated by
874  * the init_shared_mem() function and return it to the kernel.
875  */
876
877 static void free_shared_mem(struct s2io_nic *nic)
878 {
879         int i, j, blk_cnt, size;
880         void *tmp_v_addr;
881         dma_addr_t tmp_p_addr;
882         int lst_size, lst_per_page;
883         struct net_device *dev;
884         int page_num = 0;
885         struct config_param *config;
886         struct mac_info *mac_control;
887         struct stat_block *stats;
888         struct swStat *swstats;
889
890         if (!nic)
891                 return;
892
893         dev = nic->dev;
894
895         config = &nic->config;
896         mac_control = &nic->mac_control;
897         stats = mac_control->stats_info;
898         swstats = &stats->sw_stat;
899
900         lst_size = sizeof(struct TxD) * config->max_txds;
901         lst_per_page = PAGE_SIZE / lst_size;
902
903         for (i = 0; i < config->tx_fifo_num; i++) {
904                 struct fifo_info *fifo = &mac_control->fifos[i];
905                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
906
907                 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
908                 for (j = 0; j < page_num; j++) {
909                         int mem_blks = (j * lst_per_page);
910                         struct list_info_hold *fli;
911
912                         if (!fifo->list_info)
913                                 return;
914
915                         fli = &fifo->list_info[mem_blks];
916                         if (!fli->list_virt_addr)
917                                 break;
918                         pci_free_consistent(nic->pdev, PAGE_SIZE,
919                                             fli->list_virt_addr,
920                                             fli->list_phy_addr);
921                         swstats->mem_freed += PAGE_SIZE;
922                 }
923                 /* If we got a zero DMA address during allocation,
924                  * free the page now
925                  */
926                 if (mac_control->zerodma_virt_addr) {
927                         pci_free_consistent(nic->pdev, PAGE_SIZE,
928                                             mac_control->zerodma_virt_addr,
929                                             (dma_addr_t)0);
930                         DBG_PRINT(INIT_DBG,
931                                   "%s: Freeing TxDL with zero DMA address. "
932                                   "Virtual address %p\n",
933                                   dev->name, mac_control->zerodma_virt_addr);
934                         swstats->mem_freed += PAGE_SIZE;
935                 }
936                 kfree(fifo->list_info);
937                 swstats->mem_freed += tx_cfg->fifo_len *
938                         sizeof(struct list_info_hold);
939         }
940
941         size = SIZE_OF_BLOCK;
942         for (i = 0; i < config->rx_ring_num; i++) {
943                 struct ring_info *ring = &mac_control->rings[i];
944
945                 blk_cnt = ring->block_count;
946                 for (j = 0; j < blk_cnt; j++) {
947                         tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
948                         tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
949                         if (tmp_v_addr == NULL)
950                                 break;
951                         pci_free_consistent(nic->pdev, size,
952                                             tmp_v_addr, tmp_p_addr);
953                         swstats->mem_freed += size;
954                         kfree(ring->rx_blocks[j].rxds);
955                         swstats->mem_freed += sizeof(struct rxd_info) *
956                                 rxd_count[nic->rxd_mode];
957                 }
958         }
959
960         if (nic->rxd_mode == RXD_MODE_3B) {
961                 /* Freeing buffer storage addresses in 2BUFF mode. */
962                 for (i = 0; i < config->rx_ring_num; i++) {
963                         struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
964                         struct ring_info *ring = &mac_control->rings[i];
965
966                         blk_cnt = rx_cfg->num_rxd /
967                                 (rxd_count[nic->rxd_mode] + 1);
968                         for (j = 0; j < blk_cnt; j++) {
969                                 int k = 0;
970                                 if (!ring->ba[j])
971                                         continue;
972                                 while (k != rxd_count[nic->rxd_mode]) {
973                                         struct buffAdd *ba = &ring->ba[j][k];
974                                         kfree(ba->ba_0_org);
975                                         swstats->mem_freed +=
976                                                 BUF0_LEN + ALIGN_SIZE;
977                                         kfree(ba->ba_1_org);
978                                         swstats->mem_freed +=
979                                                 BUF1_LEN + ALIGN_SIZE;
980                                         k++;
981                                 }
982                                 kfree(ring->ba[j]);
983                                 swstats->mem_freed += sizeof(struct buffAdd) *
984                                         (rxd_count[nic->rxd_mode] + 1);
985                         }
986                         kfree(ring->ba);
987                         swstats->mem_freed += sizeof(struct buffAdd *) *
988                                 blk_cnt;
989                 }
990         }
991
992         for (i = 0; i < nic->config.tx_fifo_num; i++) {
993                 struct fifo_info *fifo = &mac_control->fifos[i];
994                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
995
996                 if (fifo->ufo_in_band_v) {
997                         swstats->mem_freed += tx_cfg->fifo_len *
998                                 sizeof(u64);
999                         kfree(fifo->ufo_in_band_v);
1000                 }
1001         }
1002
1003         if (mac_control->stats_mem) {
1004                 swstats->mem_freed += mac_control->stats_mem_sz;
1005                 pci_free_consistent(nic->pdev,
1006                                     mac_control->stats_mem_sz,
1007                                     mac_control->stats_mem,
1008                                     mac_control->stats_mem_phy);
1009         }
1010 }
1011
1012 /**
1013  * s2io_verify_pci_mode -
1014  */
1015
1016 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1017 {
1018         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1019         register u64 val64 = 0;
1020         int     mode;
1021
1022         val64 = readq(&bar0->pci_mode);
1023         mode = (u8)GET_PCI_MODE(val64);
1024
1025         if (val64 & PCI_MODE_UNKNOWN_MODE)
1026                 return -1;      /* Unknown PCI mode */
1027         return mode;
1028 }
1029
1030 #define NEC_VENID   0x1033
1031 #define NEC_DEVID   0x0125
1032 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1033 {
1034         struct pci_dev *tdev = NULL;
1035         for_each_pci_dev(tdev) {
1036                 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1037                         if (tdev->bus == s2io_pdev->bus->parent) {
1038                                 pci_dev_put(tdev);
1039                                 return 1;
1040                         }
1041                 }
1042         }
1043         return 0;
1044 }
1045
1046 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1047 /**
1048  * s2io_print_pci_mode -
1049  */
1050 static int s2io_print_pci_mode(struct s2io_nic *nic)
1051 {
1052         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1053         register u64 val64 = 0;
1054         int     mode;
1055         struct config_param *config = &nic->config;
1056         const char *pcimode;
1057
1058         val64 = readq(&bar0->pci_mode);
1059         mode = (u8)GET_PCI_MODE(val64);
1060
1061         if (val64 & PCI_MODE_UNKNOWN_MODE)
1062                 return -1;      /* Unknown PCI mode */
1063
1064         config->bus_speed = bus_speed[mode];
1065
1066         if (s2io_on_nec_bridge(nic->pdev)) {
1067                 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1068                           nic->dev->name);
1069                 return mode;
1070         }
1071
1072         switch (mode) {
1073         case PCI_MODE_PCI_33:
1074                 pcimode = "33MHz PCI bus";
1075                 break;
1076         case PCI_MODE_PCI_66:
1077                 pcimode = "66MHz PCI bus";
1078                 break;
1079         case PCI_MODE_PCIX_M1_66:
1080                 pcimode = "66MHz PCIX(M1) bus";
1081                 break;
1082         case PCI_MODE_PCIX_M1_100:
1083                 pcimode = "100MHz PCIX(M1) bus";
1084                 break;
1085         case PCI_MODE_PCIX_M1_133:
1086                 pcimode = "133MHz PCIX(M1) bus";
1087                 break;
1088         case PCI_MODE_PCIX_M2_66:
1089                 pcimode = "133MHz PCIX(M2) bus";
1090                 break;
1091         case PCI_MODE_PCIX_M2_100:
1092                 pcimode = "200MHz PCIX(M2) bus";
1093                 break;
1094         case PCI_MODE_PCIX_M2_133:
1095                 pcimode = "266MHz PCIX(M2) bus";
1096                 break;
1097         default:
1098                 pcimode = "unsupported bus!";
1099                 mode = -1;
1100         }
1101
1102         DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1103                   nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1104
1105         return mode;
1106 }
1107
1108 /**
1109  *  init_tti - Initialization transmit traffic interrupt scheme
1110  *  @nic: device private variable
1111  *  @link: link status (UP/DOWN) used to enable/disable continuous
1112  *  transmit interrupts
1113  *  Description: The function configures transmit traffic interrupts
1114  *  Return Value:  SUCCESS on success and
1115  *  '-1' on failure
1116  */
1117
1118 static int init_tti(struct s2io_nic *nic, int link)
1119 {
1120         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1121         register u64 val64 = 0;
1122         int i;
1123         struct config_param *config = &nic->config;
1124
1125         for (i = 0; i < config->tx_fifo_num; i++) {
1126                 /*
1127                  * TTI Initialization. Default Tx timer gets us about
1128                  * 250 interrupts per sec. Continuous interrupts are enabled
1129                  * by default.
1130                  */
1131                 if (nic->device_type == XFRAME_II_DEVICE) {
1132                         int count = (nic->config.bus_speed * 125)/2;
1133                         val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1134                 } else
1135                         val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1136
1137                 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1138                         TTI_DATA1_MEM_TX_URNG_B(0x10) |
1139                         TTI_DATA1_MEM_TX_URNG_C(0x30) |
1140                         TTI_DATA1_MEM_TX_TIMER_AC_EN;
1141                 if (i == 0)
1142                         if (use_continuous_tx_intrs && (link == LINK_UP))
1143                                 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1144                 writeq(val64, &bar0->tti_data1_mem);
1145
1146                 if (nic->config.intr_type == MSI_X) {
1147                         val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1148                                 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1149                                 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1150                                 TTI_DATA2_MEM_TX_UFC_D(0x300);
1151                 } else {
1152                         if ((nic->config.tx_steering_type ==
1153                              TX_DEFAULT_STEERING) &&
1154                             (config->tx_fifo_num > 1) &&
1155                             (i >= nic->udp_fifo_idx) &&
1156                             (i < (nic->udp_fifo_idx +
1157                                   nic->total_udp_fifos)))
1158                                 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1159                                         TTI_DATA2_MEM_TX_UFC_B(0x80) |
1160                                         TTI_DATA2_MEM_TX_UFC_C(0x100) |
1161                                         TTI_DATA2_MEM_TX_UFC_D(0x120);
1162                         else
1163                                 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1164                                         TTI_DATA2_MEM_TX_UFC_B(0x20) |
1165                                         TTI_DATA2_MEM_TX_UFC_C(0x40) |
1166                                         TTI_DATA2_MEM_TX_UFC_D(0x80);
1167                 }
1168
1169                 writeq(val64, &bar0->tti_data2_mem);
1170
1171                 val64 = TTI_CMD_MEM_WE |
1172                         TTI_CMD_MEM_STROBE_NEW_CMD |
1173                         TTI_CMD_MEM_OFFSET(i);
1174                 writeq(val64, &bar0->tti_command_mem);
1175
1176                 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1177                                           TTI_CMD_MEM_STROBE_NEW_CMD,
1178                                           S2IO_BIT_RESET) != SUCCESS)
1179                         return FAILURE;
1180         }
1181
1182         return SUCCESS;
1183 }
1184
1185 /**
1186  *  init_nic - Initialization of hardware
1187  *  @nic: device private variable
1188  *  Description: The function sequentially configures every block
1189  *  of the H/W from their reset values.
1190  *  Return Value:  SUCCESS on success and
1191  *  '-1' on failure (endian settings incorrect).
1192  */
1193
1194 static int init_nic(struct s2io_nic *nic)
1195 {
1196         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1197         struct net_device *dev = nic->dev;
1198         register u64 val64 = 0;
1199         void __iomem *add;
1200         u32 time;
1201         int i, j;
1202         int dtx_cnt = 0;
1203         unsigned long long mem_share;
1204         int mem_size;
1205         struct config_param *config = &nic->config;
1206         struct mac_info *mac_control = &nic->mac_control;
1207
1208         /* to set the swapper controle on the card */
1209         if (s2io_set_swapper(nic)) {
1210                 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
1211                 return -EIO;
1212         }
1213
1214         /*
1215          * Herc requires EOI to be removed from reset before XGXS, so..
1216          */
1217         if (nic->device_type & XFRAME_II_DEVICE) {
1218                 val64 = 0xA500000000ULL;
1219                 writeq(val64, &bar0->sw_reset);
1220                 msleep(500);
1221                 val64 = readq(&bar0->sw_reset);
1222         }
1223
1224         /* Remove XGXS from reset state */
1225         val64 = 0;
1226         writeq(val64, &bar0->sw_reset);
1227         msleep(500);
1228         val64 = readq(&bar0->sw_reset);
1229
1230         /* Ensure that it's safe to access registers by checking
1231          * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1232          */
1233         if (nic->device_type == XFRAME_II_DEVICE) {
1234                 for (i = 0; i < 50; i++) {
1235                         val64 = readq(&bar0->adapter_status);
1236                         if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1237                                 break;
1238                         msleep(10);
1239                 }
1240                 if (i == 50)
1241                         return -ENODEV;
1242         }
1243
1244         /*  Enable Receiving broadcasts */
1245         add = &bar0->mac_cfg;
1246         val64 = readq(&bar0->mac_cfg);
1247         val64 |= MAC_RMAC_BCAST_ENABLE;
1248         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1249         writel((u32)val64, add);
1250         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1251         writel((u32) (val64 >> 32), (add + 4));
1252
1253         /* Read registers in all blocks */
1254         val64 = readq(&bar0->mac_int_mask);
1255         val64 = readq(&bar0->mc_int_mask);
1256         val64 = readq(&bar0->xgxs_int_mask);
1257
1258         /*  Set MTU */
1259         val64 = dev->mtu;
1260         writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1261
1262         if (nic->device_type & XFRAME_II_DEVICE) {
1263                 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1264                         SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1265                                           &bar0->dtx_control, UF);
1266                         if (dtx_cnt & 0x1)
1267                                 msleep(1); /* Necessary!! */
1268                         dtx_cnt++;
1269                 }
1270         } else {
1271                 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1272                         SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1273                                           &bar0->dtx_control, UF);
1274                         val64 = readq(&bar0->dtx_control);
1275                         dtx_cnt++;
1276                 }
1277         }
1278
1279         /*  Tx DMA Initialization */
1280         val64 = 0;
1281         writeq(val64, &bar0->tx_fifo_partition_0);
1282         writeq(val64, &bar0->tx_fifo_partition_1);
1283         writeq(val64, &bar0->tx_fifo_partition_2);
1284         writeq(val64, &bar0->tx_fifo_partition_3);
1285
1286         for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1287                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1288
1289                 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1290                         vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1291
1292                 if (i == (config->tx_fifo_num - 1)) {
1293                         if (i % 2 == 0)
1294                                 i++;
1295                 }
1296
1297                 switch (i) {
1298                 case 1:
1299                         writeq(val64, &bar0->tx_fifo_partition_0);
1300                         val64 = 0;
1301                         j = 0;
1302                         break;
1303                 case 3:
1304                         writeq(val64, &bar0->tx_fifo_partition_1);
1305                         val64 = 0;
1306                         j = 0;
1307                         break;
1308                 case 5:
1309                         writeq(val64, &bar0->tx_fifo_partition_2);
1310                         val64 = 0;
1311                         j = 0;
1312                         break;
1313                 case 7:
1314                         writeq(val64, &bar0->tx_fifo_partition_3);
1315                         val64 = 0;
1316                         j = 0;
1317                         break;
1318                 default:
1319                         j++;
1320                         break;
1321                 }
1322         }
1323
1324         /*
1325          * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1326          * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1327          */
1328         if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
1329                 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1330
1331         val64 = readq(&bar0->tx_fifo_partition_0);
1332         DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1333                   &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1334
1335         /*
1336          * Initialization of Tx_PA_CONFIG register to ignore packet
1337          * integrity checking.
1338          */
1339         val64 = readq(&bar0->tx_pa_cfg);
1340         val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1341                 TX_PA_CFG_IGNORE_SNAP_OUI |
1342                 TX_PA_CFG_IGNORE_LLC_CTRL |
1343                 TX_PA_CFG_IGNORE_L2_ERR;
1344         writeq(val64, &bar0->tx_pa_cfg);
1345
1346         /* Rx DMA initialization. */
1347         val64 = 0;
1348         for (i = 0; i < config->rx_ring_num; i++) {
1349                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1350
1351                 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1352         }
1353         writeq(val64, &bar0->rx_queue_priority);
1354
1355         /*
1356          * Allocating equal share of memory to all the
1357          * configured Rings.
1358          */
1359         val64 = 0;
1360         if (nic->device_type & XFRAME_II_DEVICE)
1361                 mem_size = 32;
1362         else
1363                 mem_size = 64;
1364
1365         for (i = 0; i < config->rx_ring_num; i++) {
1366                 switch (i) {
1367                 case 0:
1368                         mem_share = (mem_size / config->rx_ring_num +
1369                                      mem_size % config->rx_ring_num);
1370                         val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1371                         continue;
1372                 case 1:
1373                         mem_share = (mem_size / config->rx_ring_num);
1374                         val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1375                         continue;
1376                 case 2:
1377                         mem_share = (mem_size / config->rx_ring_num);
1378                         val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1379                         continue;
1380                 case 3:
1381                         mem_share = (mem_size / config->rx_ring_num);
1382                         val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1383                         continue;
1384                 case 4:
1385                         mem_share = (mem_size / config->rx_ring_num);
1386                         val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1387                         continue;
1388                 case 5:
1389                         mem_share = (mem_size / config->rx_ring_num);
1390                         val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1391                         continue;
1392                 case 6:
1393                         mem_share = (mem_size / config->rx_ring_num);
1394                         val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1395                         continue;
1396                 case 7:
1397                         mem_share = (mem_size / config->rx_ring_num);
1398                         val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1399                         continue;
1400                 }
1401         }
1402         writeq(val64, &bar0->rx_queue_cfg);
1403
1404         /*
1405          * Filling Tx round robin registers
1406          * as per the number of FIFOs for equal scheduling priority
1407          */
1408         switch (config->tx_fifo_num) {
1409         case 1:
1410                 val64 = 0x0;
1411                 writeq(val64, &bar0->tx_w_round_robin_0);
1412                 writeq(val64, &bar0->tx_w_round_robin_1);
1413                 writeq(val64, &bar0->tx_w_round_robin_2);
1414                 writeq(val64, &bar0->tx_w_round_robin_3);
1415                 writeq(val64, &bar0->tx_w_round_robin_4);
1416                 break;
1417         case 2:
1418                 val64 = 0x0001000100010001ULL;
1419                 writeq(val64, &bar0->tx_w_round_robin_0);
1420                 writeq(val64, &bar0->tx_w_round_robin_1);
1421                 writeq(val64, &bar0->tx_w_round_robin_2);
1422                 writeq(val64, &bar0->tx_w_round_robin_3);
1423                 val64 = 0x0001000100000000ULL;
1424                 writeq(val64, &bar0->tx_w_round_robin_4);
1425                 break;
1426         case 3:
1427                 val64 = 0x0001020001020001ULL;
1428                 writeq(val64, &bar0->tx_w_round_robin_0);
1429                 val64 = 0x0200010200010200ULL;
1430                 writeq(val64, &bar0->tx_w_round_robin_1);
1431                 val64 = 0x0102000102000102ULL;
1432                 writeq(val64, &bar0->tx_w_round_robin_2);
1433                 val64 = 0x0001020001020001ULL;
1434                 writeq(val64, &bar0->tx_w_round_robin_3);
1435                 val64 = 0x0200010200000000ULL;
1436                 writeq(val64, &bar0->tx_w_round_robin_4);
1437                 break;
1438         case 4:
1439                 val64 = 0x0001020300010203ULL;
1440                 writeq(val64, &bar0->tx_w_round_robin_0);
1441                 writeq(val64, &bar0->tx_w_round_robin_1);
1442                 writeq(val64, &bar0->tx_w_round_robin_2);
1443                 writeq(val64, &bar0->tx_w_round_robin_3);
1444                 val64 = 0x0001020300000000ULL;
1445                 writeq(val64, &bar0->tx_w_round_robin_4);
1446                 break;
1447         case 5:
1448                 val64 = 0x0001020304000102ULL;
1449                 writeq(val64, &bar0->tx_w_round_robin_0);
1450                 val64 = 0x0304000102030400ULL;
1451                 writeq(val64, &bar0->tx_w_round_robin_1);
1452                 val64 = 0x0102030400010203ULL;
1453                 writeq(val64, &bar0->tx_w_round_robin_2);
1454                 val64 = 0x0400010203040001ULL;
1455                 writeq(val64, &bar0->tx_w_round_robin_3);
1456                 val64 = 0x0203040000000000ULL;
1457                 writeq(val64, &bar0->tx_w_round_robin_4);
1458                 break;
1459         case 6:
1460                 val64 = 0x0001020304050001ULL;
1461                 writeq(val64, &bar0->tx_w_round_robin_0);
1462                 val64 = 0x0203040500010203ULL;
1463                 writeq(val64, &bar0->tx_w_round_robin_1);
1464                 val64 = 0x0405000102030405ULL;
1465                 writeq(val64, &bar0->tx_w_round_robin_2);
1466                 val64 = 0x0001020304050001ULL;
1467                 writeq(val64, &bar0->tx_w_round_robin_3);
1468                 val64 = 0x0203040500000000ULL;
1469                 writeq(val64, &bar0->tx_w_round_robin_4);
1470                 break;
1471         case 7:
1472                 val64 = 0x0001020304050600ULL;
1473                 writeq(val64, &bar0->tx_w_round_robin_0);
1474                 val64 = 0x0102030405060001ULL;
1475                 writeq(val64, &bar0->tx_w_round_robin_1);
1476                 val64 = 0x0203040506000102ULL;
1477                 writeq(val64, &bar0->tx_w_round_robin_2);
1478                 val64 = 0x0304050600010203ULL;
1479                 writeq(val64, &bar0->tx_w_round_robin_3);
1480                 val64 = 0x0405060000000000ULL;
1481                 writeq(val64, &bar0->tx_w_round_robin_4);
1482                 break;
1483         case 8:
1484                 val64 = 0x0001020304050607ULL;
1485                 writeq(val64, &bar0->tx_w_round_robin_0);
1486                 writeq(val64, &bar0->tx_w_round_robin_1);
1487                 writeq(val64, &bar0->tx_w_round_robin_2);
1488                 writeq(val64, &bar0->tx_w_round_robin_3);
1489                 val64 = 0x0001020300000000ULL;
1490                 writeq(val64, &bar0->tx_w_round_robin_4);
1491                 break;
1492         }
1493
1494         /* Enable all configured Tx FIFO partitions */
1495         val64 = readq(&bar0->tx_fifo_partition_0);
1496         val64 |= (TX_FIFO_PARTITION_EN);
1497         writeq(val64, &bar0->tx_fifo_partition_0);
1498
1499         /* Filling the Rx round robin registers as per the
1500          * number of Rings and steering based on QoS with
1501          * equal priority.
1502          */
1503         switch (config->rx_ring_num) {
1504         case 1:
1505                 val64 = 0x0;
1506                 writeq(val64, &bar0->rx_w_round_robin_0);
1507                 writeq(val64, &bar0->rx_w_round_robin_1);
1508                 writeq(val64, &bar0->rx_w_round_robin_2);
1509                 writeq(val64, &bar0->rx_w_round_robin_3);
1510                 writeq(val64, &bar0->rx_w_round_robin_4);
1511
1512                 val64 = 0x8080808080808080ULL;
1513                 writeq(val64, &bar0->rts_qos_steering);
1514                 break;
1515         case 2:
1516                 val64 = 0x0001000100010001ULL;
1517                 writeq(val64, &bar0->rx_w_round_robin_0);
1518                 writeq(val64, &bar0->rx_w_round_robin_1);
1519                 writeq(val64, &bar0->rx_w_round_robin_2);
1520                 writeq(val64, &bar0->rx_w_round_robin_3);
1521                 val64 = 0x0001000100000000ULL;
1522                 writeq(val64, &bar0->rx_w_round_robin_4);
1523
1524                 val64 = 0x8080808040404040ULL;
1525                 writeq(val64, &bar0->rts_qos_steering);
1526                 break;
1527         case 3:
1528                 val64 = 0x0001020001020001ULL;
1529                 writeq(val64, &bar0->rx_w_round_robin_0);
1530                 val64 = 0x0200010200010200ULL;
1531                 writeq(val64, &bar0->rx_w_round_robin_1);
1532                 val64 = 0x0102000102000102ULL;
1533                 writeq(val64, &bar0->rx_w_round_robin_2);
1534                 val64 = 0x0001020001020001ULL;
1535                 writeq(val64, &bar0->rx_w_round_robin_3);
1536                 val64 = 0x0200010200000000ULL;
1537                 writeq(val64, &bar0->rx_w_round_robin_4);
1538
1539                 val64 = 0x8080804040402020ULL;
1540                 writeq(val64, &bar0->rts_qos_steering);
1541                 break;
1542         case 4:
1543                 val64 = 0x0001020300010203ULL;
1544                 writeq(val64, &bar0->rx_w_round_robin_0);
1545                 writeq(val64, &bar0->rx_w_round_robin_1);
1546                 writeq(val64, &bar0->rx_w_round_robin_2);
1547                 writeq(val64, &bar0->rx_w_round_robin_3);
1548                 val64 = 0x0001020300000000ULL;
1549                 writeq(val64, &bar0->rx_w_round_robin_4);
1550
1551                 val64 = 0x8080404020201010ULL;
1552                 writeq(val64, &bar0->rts_qos_steering);
1553                 break;
1554         case 5:
1555                 val64 = 0x0001020304000102ULL;
1556                 writeq(val64, &bar0->rx_w_round_robin_0);
1557                 val64 = 0x0304000102030400ULL;
1558                 writeq(val64, &bar0->rx_w_round_robin_1);
1559                 val64 = 0x0102030400010203ULL;
1560                 writeq(val64, &bar0->rx_w_round_robin_2);
1561                 val64 = 0x0400010203040001ULL;
1562                 writeq(val64, &bar0->rx_w_round_robin_3);
1563                 val64 = 0x0203040000000000ULL;
1564                 writeq(val64, &bar0->rx_w_round_robin_4);
1565
1566                 val64 = 0x8080404020201008ULL;
1567                 writeq(val64, &bar0->rts_qos_steering);
1568                 break;
1569         case 6:
1570                 val64 = 0x0001020304050001ULL;
1571                 writeq(val64, &bar0->rx_w_round_robin_0);
1572                 val64 = 0x0203040500010203ULL;
1573                 writeq(val64, &bar0->rx_w_round_robin_1);
1574                 val64 = 0x0405000102030405ULL;
1575                 writeq(val64, &bar0->rx_w_round_robin_2);
1576                 val64 = 0x0001020304050001ULL;
1577                 writeq(val64, &bar0->rx_w_round_robin_3);
1578                 val64 = 0x0203040500000000ULL;
1579                 writeq(val64, &bar0->rx_w_round_robin_4);
1580
1581                 val64 = 0x8080404020100804ULL;
1582                 writeq(val64, &bar0->rts_qos_steering);
1583                 break;
1584         case 7:
1585                 val64 = 0x0001020304050600ULL;
1586                 writeq(val64, &bar0->rx_w_round_robin_0);
1587                 val64 = 0x0102030405060001ULL;
1588                 writeq(val64, &bar0->rx_w_round_robin_1);
1589                 val64 = 0x0203040506000102ULL;
1590                 writeq(val64, &bar0->rx_w_round_robin_2);
1591                 val64 = 0x0304050600010203ULL;
1592                 writeq(val64, &bar0->rx_w_round_robin_3);
1593                 val64 = 0x0405060000000000ULL;
1594                 writeq(val64, &bar0->rx_w_round_robin_4);
1595
1596                 val64 = 0x8080402010080402ULL;
1597                 writeq(val64, &bar0->rts_qos_steering);
1598                 break;
1599         case 8:
1600                 val64 = 0x0001020304050607ULL;
1601                 writeq(val64, &bar0->rx_w_round_robin_0);
1602                 writeq(val64, &bar0->rx_w_round_robin_1);
1603                 writeq(val64, &bar0->rx_w_round_robin_2);
1604                 writeq(val64, &bar0->rx_w_round_robin_3);
1605                 val64 = 0x0001020300000000ULL;
1606                 writeq(val64, &bar0->rx_w_round_robin_4);
1607
1608                 val64 = 0x8040201008040201ULL;
1609                 writeq(val64, &bar0->rts_qos_steering);
1610                 break;
1611         }
1612
1613         /* UDP Fix */
1614         val64 = 0;
1615         for (i = 0; i < 8; i++)
1616                 writeq(val64, &bar0->rts_frm_len_n[i]);
1617
1618         /* Set the default rts frame length for the rings configured */
1619         val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1620         for (i = 0 ; i < config->rx_ring_num ; i++)
1621                 writeq(val64, &bar0->rts_frm_len_n[i]);
1622
1623         /* Set the frame length for the configured rings
1624          * desired by the user
1625          */
1626         for (i = 0; i < config->rx_ring_num; i++) {
1627                 /* If rts_frm_len[i] == 0 then it is assumed that user not
1628                  * specified frame length steering.
1629                  * If the user provides the frame length then program
1630                  * the rts_frm_len register for those values or else
1631                  * leave it as it is.
1632                  */
1633                 if (rts_frm_len[i] != 0) {
1634                         writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1635                                &bar0->rts_frm_len_n[i]);
1636                 }
1637         }
1638
1639         /* Disable differentiated services steering logic */
1640         for (i = 0; i < 64; i++) {
1641                 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1642                         DBG_PRINT(ERR_DBG,
1643                                   "%s: rts_ds_steer failed on codepoint %d\n",
1644                                   dev->name, i);
1645                         return -ENODEV;
1646                 }
1647         }
1648
1649         /* Program statistics memory */
1650         writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1651
1652         if (nic->device_type == XFRAME_II_DEVICE) {
1653                 val64 = STAT_BC(0x320);
1654                 writeq(val64, &bar0->stat_byte_cnt);
1655         }
1656
1657         /*
1658          * Initializing the sampling rate for the device to calculate the
1659          * bandwidth utilization.
1660          */
1661         val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1662                 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1663         writeq(val64, &bar0->mac_link_util);
1664
1665         /*
1666          * Initializing the Transmit and Receive Traffic Interrupt
1667          * Scheme.
1668          */
1669
1670         /* Initialize TTI */
1671         if (SUCCESS != init_tti(nic, nic->last_link_state))
1672                 return -ENODEV;
1673
1674         /* RTI Initialization */
1675         if (nic->device_type == XFRAME_II_DEVICE) {
1676                 /*
1677                  * Programmed to generate Apprx 500 Intrs per
1678                  * second
1679                  */
1680                 int count = (nic->config.bus_speed * 125)/4;
1681                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1682         } else
1683                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1684         val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1685                 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1686                 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1687                 RTI_DATA1_MEM_RX_TIMER_AC_EN;
1688
1689         writeq(val64, &bar0->rti_data1_mem);
1690
1691         val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1692                 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1693         if (nic->config.intr_type == MSI_X)
1694                 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1695                           RTI_DATA2_MEM_RX_UFC_D(0x40));
1696         else
1697                 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1698                           RTI_DATA2_MEM_RX_UFC_D(0x80));
1699         writeq(val64, &bar0->rti_data2_mem);
1700
1701         for (i = 0; i < config->rx_ring_num; i++) {
1702                 val64 = RTI_CMD_MEM_WE |
1703                         RTI_CMD_MEM_STROBE_NEW_CMD |
1704                         RTI_CMD_MEM_OFFSET(i);
1705                 writeq(val64, &bar0->rti_command_mem);
1706
1707                 /*
1708                  * Once the operation completes, the Strobe bit of the
1709                  * command register will be reset. We poll for this
1710                  * particular condition. We wait for a maximum of 500ms
1711                  * for the operation to complete, if it's not complete
1712                  * by then we return error.
1713                  */
1714                 time = 0;
1715                 while (true) {
1716                         val64 = readq(&bar0->rti_command_mem);
1717                         if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1718                                 break;
1719
1720                         if (time > 10) {
1721                                 DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
1722                                           dev->name);
1723                                 return -ENODEV;
1724                         }
1725                         time++;
1726                         msleep(50);
1727                 }
1728         }
1729
1730         /*
1731          * Initializing proper values as Pause threshold into all
1732          * the 8 Queues on Rx side.
1733          */
1734         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1735         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1736
1737         /* Disable RMAC PAD STRIPPING */
1738         add = &bar0->mac_cfg;
1739         val64 = readq(&bar0->mac_cfg);
1740         val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1741         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1742         writel((u32) (val64), add);
1743         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1744         writel((u32) (val64 >> 32), (add + 4));
1745         val64 = readq(&bar0->mac_cfg);
1746
1747         /* Enable FCS stripping by adapter */
1748         add = &bar0->mac_cfg;
1749         val64 = readq(&bar0->mac_cfg);
1750         val64 |= MAC_CFG_RMAC_STRIP_FCS;
1751         if (nic->device_type == XFRAME_II_DEVICE)
1752                 writeq(val64, &bar0->mac_cfg);
1753         else {
1754                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1755                 writel((u32) (val64), add);
1756                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1757                 writel((u32) (val64 >> 32), (add + 4));
1758         }
1759
1760         /*
1761          * Set the time value to be inserted in the pause frame
1762          * generated by xena.
1763          */
1764         val64 = readq(&bar0->rmac_pause_cfg);
1765         val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1766         val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1767         writeq(val64, &bar0->rmac_pause_cfg);
1768
1769         /*
1770          * Set the Threshold Limit for Generating the pause frame
1771          * If the amount of data in any Queue exceeds ratio of
1772          * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1773          * pause frame is generated
1774          */
1775         val64 = 0;
1776         for (i = 0; i < 4; i++) {
1777                 val64 |= (((u64)0xFF00 |
1778                            nic->mac_control.mc_pause_threshold_q0q3)
1779                           << (i * 2 * 8));
1780         }
1781         writeq(val64, &bar0->mc_pause_thresh_q0q3);
1782
1783         val64 = 0;
1784         for (i = 0; i < 4; i++) {
1785                 val64 |= (((u64)0xFF00 |
1786                            nic->mac_control.mc_pause_threshold_q4q7)
1787                           << (i * 2 * 8));
1788         }
1789         writeq(val64, &bar0->mc_pause_thresh_q4q7);
1790
1791         /*
1792          * TxDMA will stop Read request if the number of read split has
1793          * exceeded the limit pointed by shared_splits
1794          */
1795         val64 = readq(&bar0->pic_control);
1796         val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1797         writeq(val64, &bar0->pic_control);
1798
1799         if (nic->config.bus_speed == 266) {
1800                 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1801                 writeq(0x0, &bar0->read_retry_delay);
1802                 writeq(0x0, &bar0->write_retry_delay);
1803         }
1804
1805         /*
1806          * Programming the Herc to split every write transaction
1807          * that does not start on an ADB to reduce disconnects.
1808          */
1809         if (nic->device_type == XFRAME_II_DEVICE) {
1810                 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1811                         MISC_LINK_STABILITY_PRD(3);
1812                 writeq(val64, &bar0->misc_control);
1813                 val64 = readq(&bar0->pic_control2);
1814                 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1815                 writeq(val64, &bar0->pic_control2);
1816         }
1817         if (strstr(nic->product_name, "CX4")) {
1818                 val64 = TMAC_AVG_IPG(0x17);
1819                 writeq(val64, &bar0->tmac_avg_ipg);
1820         }
1821
1822         return SUCCESS;
1823 }
1824 #define LINK_UP_DOWN_INTERRUPT          1
1825 #define MAC_RMAC_ERR_TIMER              2
1826
1827 static int s2io_link_fault_indication(struct s2io_nic *nic)
1828 {
1829         if (nic->device_type == XFRAME_II_DEVICE)
1830                 return LINK_UP_DOWN_INTERRUPT;
1831         else
1832                 return MAC_RMAC_ERR_TIMER;
1833 }
1834
1835 /**
1836  *  do_s2io_write_bits -  update alarm bits in alarm register
1837  *  @value: alarm bits
1838  *  @flag: interrupt status
1839  *  @addr: address value
1840  *  Description: update alarm bits in alarm register
1841  *  Return Value:
1842  *  NONE.
1843  */
1844 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1845 {
1846         u64 temp64;
1847
1848         temp64 = readq(addr);
1849
1850         if (flag == ENABLE_INTRS)
1851                 temp64 &= ~((u64)value);
1852         else
1853                 temp64 |= ((u64)value);
1854         writeq(temp64, addr);
1855 }
1856
1857 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1858 {
1859         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1860         register u64 gen_int_mask = 0;
1861         u64 interruptible;
1862
1863         writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1864         if (mask & TX_DMA_INTR) {
1865                 gen_int_mask |= TXDMA_INT_M;
1866
1867                 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1868                                    TXDMA_PCC_INT | TXDMA_TTI_INT |
1869                                    TXDMA_LSO_INT | TXDMA_TPA_INT |
1870                                    TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1871
1872                 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1873                                    PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1874                                    PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1875                                    &bar0->pfc_err_mask);
1876
1877                 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1878                                    TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1879                                    TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1880
1881                 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1882                                    PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1883                                    PCC_N_SERR | PCC_6_COF_OV_ERR |
1884                                    PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1885                                    PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1886                                    PCC_TXB_ECC_SG_ERR,
1887                                    flag, &bar0->pcc_err_mask);
1888
1889                 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1890                                    TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1891
1892                 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1893                                    LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1894                                    LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1895                                    flag, &bar0->lso_err_mask);
1896
1897                 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1898                                    flag, &bar0->tpa_err_mask);
1899
1900                 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1901         }
1902
1903         if (mask & TX_MAC_INTR) {
1904                 gen_int_mask |= TXMAC_INT_M;
1905                 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1906                                    &bar0->mac_int_mask);
1907                 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1908                                    TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1909                                    TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1910                                    flag, &bar0->mac_tmac_err_mask);
1911         }
1912
1913         if (mask & TX_XGXS_INTR) {
1914                 gen_int_mask |= TXXGXS_INT_M;
1915                 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1916                                    &bar0->xgxs_int_mask);
1917                 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1918                                    TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1919                                    flag, &bar0->xgxs_txgxs_err_mask);
1920         }
1921
1922         if (mask & RX_DMA_INTR) {
1923                 gen_int_mask |= RXDMA_INT_M;
1924                 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1925                                    RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1926                                    flag, &bar0->rxdma_int_mask);
1927                 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1928                                    RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1929                                    RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1930                                    RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1931                 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1932                                    PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1933                                    PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1934                                    &bar0->prc_pcix_err_mask);
1935                 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1936                                    RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1937                                    &bar0->rpa_err_mask);
1938                 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1939                                    RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1940                                    RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1941                                    RDA_FRM_ECC_SG_ERR |
1942                                    RDA_MISC_ERR|RDA_PCIX_ERR,
1943                                    flag, &bar0->rda_err_mask);
1944                 do_s2io_write_bits(RTI_SM_ERR_ALARM |
1945                                    RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1946                                    flag, &bar0->rti_err_mask);
1947         }
1948
1949         if (mask & RX_MAC_INTR) {
1950                 gen_int_mask |= RXMAC_INT_M;
1951                 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
1952                                    &bar0->mac_int_mask);
1953                 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
1954                                  RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
1955                                  RMAC_DOUBLE_ECC_ERR);
1956                 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
1957                         interruptible |= RMAC_LINK_STATE_CHANGE_INT;
1958                 do_s2io_write_bits(interruptible,
1959                                    flag, &bar0->mac_rmac_err_mask);
1960         }
1961
1962         if (mask & RX_XGXS_INTR) {
1963                 gen_int_mask |= RXXGXS_INT_M;
1964                 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
1965                                    &bar0->xgxs_int_mask);
1966                 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
1967                                    &bar0->xgxs_rxgxs_err_mask);
1968         }
1969
1970         if (mask & MC_INTR) {
1971                 gen_int_mask |= MC_INT_M;
1972                 do_s2io_write_bits(MC_INT_MASK_MC_INT,
1973                                    flag, &bar0->mc_int_mask);
1974                 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
1975                                    MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
1976                                    &bar0->mc_err_mask);
1977         }
1978         nic->general_int_mask = gen_int_mask;
1979
1980         /* Remove this line when alarm interrupts are enabled */
1981         nic->general_int_mask = 0;
1982 }
1983
1984 /**
1985  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
1986  *  @nic: device private variable,
1987  *  @mask: A mask indicating which Intr block must be modified and,
1988  *  @flag: A flag indicating whether to enable or disable the Intrs.
1989  *  Description: This function will either disable or enable the interrupts
1990  *  depending on the flag argument. The mask argument can be used to
1991  *  enable/disable any Intr block.
1992  *  Return Value: NONE.
1993  */
1994
1995 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1996 {
1997         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1998         register u64 temp64 = 0, intr_mask = 0;
1999
2000         intr_mask = nic->general_int_mask;
2001
2002         /*  Top level interrupt classification */
2003         /*  PIC Interrupts */
2004         if (mask & TX_PIC_INTR) {
2005                 /*  Enable PIC Intrs in the general intr mask register */
2006                 intr_mask |= TXPIC_INT_M;
2007                 if (flag == ENABLE_INTRS) {
2008                         /*
2009                          * If Hercules adapter enable GPIO otherwise
2010                          * disable all PCIX, Flash, MDIO, IIC and GPIO
2011                          * interrupts for now.
2012                          * TODO
2013                          */
2014                         if (s2io_link_fault_indication(nic) ==
2015                             LINK_UP_DOWN_INTERRUPT) {
2016                                 do_s2io_write_bits(PIC_INT_GPIO, flag,
2017                                                    &bar0->pic_int_mask);
2018                                 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2019                                                    &bar0->gpio_int_mask);
2020                         } else
2021                                 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2022                 } else if (flag == DISABLE_INTRS) {
2023                         /*
2024                          * Disable PIC Intrs in the general
2025                          * intr mask register
2026                          */
2027                         writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2028                 }
2029         }
2030
2031         /*  Tx traffic interrupts */
2032         if (mask & TX_TRAFFIC_INTR) {
2033                 intr_mask |= TXTRAFFIC_INT_M;
2034                 if (flag == ENABLE_INTRS) {
2035                         /*
2036                          * Enable all the Tx side interrupts
2037                          * writing 0 Enables all 64 TX interrupt levels
2038                          */
2039                         writeq(0x0, &bar0->tx_traffic_mask);
2040                 } else if (flag == DISABLE_INTRS) {
2041                         /*
2042                          * Disable Tx Traffic Intrs in the general intr mask
2043                          * register.
2044                          */
2045                         writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2046                 }
2047         }
2048
2049         /*  Rx traffic interrupts */
2050         if (mask & RX_TRAFFIC_INTR) {
2051                 intr_mask |= RXTRAFFIC_INT_M;
2052                 if (flag == ENABLE_INTRS) {
2053                         /* writing 0 Enables all 8 RX interrupt levels */
2054                         writeq(0x0, &bar0->rx_traffic_mask);
2055                 } else if (flag == DISABLE_INTRS) {
2056                         /*
2057                          * Disable Rx Traffic Intrs in the general intr mask
2058                          * register.
2059                          */
2060                         writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2061                 }
2062         }
2063
2064         temp64 = readq(&bar0->general_int_mask);
2065         if (flag == ENABLE_INTRS)
2066                 temp64 &= ~((u64)intr_mask);
2067         else
2068                 temp64 = DISABLE_ALL_INTRS;
2069         writeq(temp64, &bar0->general_int_mask);
2070
2071         nic->general_int_mask = readq(&bar0->general_int_mask);
2072 }
2073
2074 /**
2075  *  verify_pcc_quiescent- Checks for PCC quiescent state
2076  *  Return: 1 If PCC is quiescence
2077  *          0 If PCC is not quiescence
2078  */
2079 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2080 {
2081         int ret = 0, herc;
2082         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2083         u64 val64 = readq(&bar0->adapter_status);
2084
2085         herc = (sp->device_type == XFRAME_II_DEVICE);
2086
2087         if (flag == false) {
2088                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2089                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2090                                 ret = 1;
2091                 } else {
2092                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2093                                 ret = 1;
2094                 }
2095         } else {
2096                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2097                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2098                              ADAPTER_STATUS_RMAC_PCC_IDLE))
2099                                 ret = 1;
2100                 } else {
2101                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2102                              ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2103                                 ret = 1;
2104                 }
2105         }
2106
2107         return ret;
2108 }
2109 /**
2110  *  verify_xena_quiescence - Checks whether the H/W is ready
2111  *  Description: Returns whether the H/W is ready to go or not. Depending
2112  *  on whether adapter enable bit was written or not the comparison
2113  *  differs and the calling function passes the input argument flag to
2114  *  indicate this.
2115  *  Return: 1 If xena is quiescence
2116  *          0 If Xena is not quiescence
2117  */
2118
2119 static int verify_xena_quiescence(struct s2io_nic *sp)
2120 {
2121         int  mode;
2122         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2123         u64 val64 = readq(&bar0->adapter_status);
2124         mode = s2io_verify_pci_mode(sp);
2125
2126         if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2127                 DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
2128                 return 0;
2129         }
2130         if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2131                 DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
2132                 return 0;
2133         }
2134         if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2135                 DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
2136                 return 0;
2137         }
2138         if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2139                 DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
2140                 return 0;
2141         }
2142         if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2143                 DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
2144                 return 0;
2145         }
2146         if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2147                 DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
2148                 return 0;
2149         }
2150         if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2151                 DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
2152                 return 0;
2153         }
2154         if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2155                 DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
2156                 return 0;
2157         }
2158
2159         /*
2160          * In PCI 33 mode, the P_PLL is not used, and therefore,
2161          * the the P_PLL_LOCK bit in the adapter_status register will
2162          * not be asserted.
2163          */
2164         if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2165             sp->device_type == XFRAME_II_DEVICE &&
2166             mode != PCI_MODE_PCI_33) {
2167                 DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
2168                 return 0;
2169         }
2170         if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2171               ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2172                 DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
2173                 return 0;
2174         }
2175         return 1;
2176 }
2177
2178 /**
2179  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
2180  * @sp: Pointer to device specifc structure
2181  * Description :
2182  * New procedure to clear mac address reading  problems on Alpha platforms
2183  *
2184  */
2185
2186 static void fix_mac_address(struct s2io_nic *sp)
2187 {
2188         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2189         int i = 0;
2190
2191         while (fix_mac[i] != END_SIGN) {
2192                 writeq(fix_mac[i++], &bar0->gpio_control);
2193                 udelay(10);
2194                 (void) readq(&bar0->gpio_control);
2195         }
2196 }
2197
2198 /**
2199  *  start_nic - Turns the device on
2200  *  @nic : device private variable.
2201  *  Description:
2202  *  This function actually turns the device on. Before this  function is
2203  *  called,all Registers are configured from their reset states
2204  *  and shared memory is allocated but the NIC is still quiescent. On
2205  *  calling this function, the device interrupts are cleared and the NIC is
2206  *  literally switched on by writing into the adapter control register.
2207  *  Return Value:
2208  *  SUCCESS on success and -1 on failure.
2209  */
2210
2211 static int start_nic(struct s2io_nic *nic)
2212 {
2213         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2214         struct net_device *dev = nic->dev;
2215         register u64 val64 = 0;
2216         u16 subid, i;
2217         struct config_param *config = &nic->config;
2218         struct mac_info *mac_control = &nic->mac_control;
2219
2220         /*  PRC Initialization and configuration */
2221         for (i = 0; i < config->rx_ring_num; i++) {
2222                 struct ring_info *ring = &mac_control->rings[i];
2223
2224                 writeq((u64)ring->rx_blocks[0].block_dma_addr,
2225                        &bar0->prc_rxd0_n[i]);
2226
2227                 val64 = readq(&bar0->prc_ctrl_n[i]);
2228                 if (nic->rxd_mode == RXD_MODE_1)
2229                         val64 |= PRC_CTRL_RC_ENABLED;
2230                 else
2231                         val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2232                 if (nic->device_type == XFRAME_II_DEVICE)
2233                         val64 |= PRC_CTRL_GROUP_READS;
2234                 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2235                 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2236                 writeq(val64, &bar0->prc_ctrl_n[i]);
2237         }
2238
2239         if (nic->rxd_mode == RXD_MODE_3B) {
2240                 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2241                 val64 = readq(&bar0->rx_pa_cfg);
2242                 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2243                 writeq(val64, &bar0->rx_pa_cfg);
2244         }
2245
2246         if (vlan_tag_strip == 0) {
2247                 val64 = readq(&bar0->rx_pa_cfg);
2248                 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2249                 writeq(val64, &bar0->rx_pa_cfg);
2250                 nic->vlan_strip_flag = 0;
2251         }
2252
2253         /*
2254          * Enabling MC-RLDRAM. After enabling the device, we timeout
2255          * for around 100ms, which is approximately the time required
2256          * for the device to be ready for operation.
2257          */
2258         val64 = readq(&bar0->mc_rldram_mrs);
2259         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2260         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2261         val64 = readq(&bar0->mc_rldram_mrs);
2262
2263         msleep(100);    /* Delay by around 100 ms. */
2264
2265         /* Enabling ECC Protection. */
2266         val64 = readq(&bar0->adapter_control);
2267         val64 &= ~ADAPTER_ECC_EN;
2268         writeq(val64, &bar0->adapter_control);
2269
2270         /*
2271          * Verify if the device is ready to be enabled, if so enable
2272          * it.
2273          */
2274         val64 = readq(&bar0->adapter_status);
2275         if (!verify_xena_quiescence(nic)) {
2276                 DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2277                           "Adapter status reads: 0x%llx\n",
2278                           dev->name, (unsigned long long)val64);
2279                 return FAILURE;
2280         }
2281
2282         /*
2283          * With some switches, link might be already up at this point.
2284          * Because of this weird behavior, when we enable laser,
2285          * we may not get link. We need to handle this. We cannot
2286          * figure out which switch is misbehaving. So we are forced to
2287          * make a global change.
2288          */
2289
2290         /* Enabling Laser. */
2291         val64 = readq(&bar0->adapter_control);
2292         val64 |= ADAPTER_EOI_TX_ON;
2293         writeq(val64, &bar0->adapter_control);
2294
2295         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2296                 /*
2297                  * Dont see link state interrupts initially on some switches,
2298                  * so directly scheduling the link state task here.
2299                  */
2300                 schedule_work(&nic->set_link_task);
2301         }
2302         /* SXE-002: Initialize link and activity LED */
2303         subid = nic->pdev->subsystem_device;
2304         if (((subid & 0xFF) >= 0x07) &&
2305             (nic->device_type == XFRAME_I_DEVICE)) {
2306                 val64 = readq(&bar0->gpio_control);
2307                 val64 |= 0x0000800000000000ULL;
2308                 writeq(val64, &bar0->gpio_control);
2309                 val64 = 0x0411040400000000ULL;
2310                 writeq(val64, (void __iomem *)bar0 + 0x2700);
2311         }
2312
2313         return SUCCESS;
2314 }
2315 /**
2316  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2317  */
2318 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2319                                         struct TxD *txdlp, int get_off)
2320 {
2321         struct s2io_nic *nic = fifo_data->nic;
2322         struct sk_buff *skb;
2323         struct TxD *txds;
2324         u16 j, frg_cnt;
2325
2326         txds = txdlp;
2327         if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2328                 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2329                                  sizeof(u64), PCI_DMA_TODEVICE);
2330                 txds++;
2331         }
2332
2333         skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
2334         if (!skb) {
2335                 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2336                 return NULL;
2337         }
2338         pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2339                          skb_headlen(skb), PCI_DMA_TODEVICE);
2340         frg_cnt = skb_shinfo(skb)->nr_frags;
2341         if (frg_cnt) {
2342                 txds++;
2343                 for (j = 0; j < frg_cnt; j++, txds++) {
2344                         const skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2345                         if (!txds->Buffer_Pointer)
2346                                 break;
2347                         pci_unmap_page(nic->pdev,
2348                                        (dma_addr_t)txds->Buffer_Pointer,
2349                                        skb_frag_size(frag), PCI_DMA_TODEVICE);
2350                 }
2351         }
2352         memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2353         return skb;
2354 }
2355
2356 /**
2357  *  free_tx_buffers - Free all queued Tx buffers
2358  *  @nic : device private variable.
2359  *  Description:
2360  *  Free all queued Tx buffers.
2361  *  Return Value: void
2362  */
2363
2364 static void free_tx_buffers(struct s2io_nic *nic)
2365 {
2366         struct net_device *dev = nic->dev;
2367         struct sk_buff *skb;
2368         struct TxD *txdp;
2369         int i, j;
2370         int cnt = 0;
2371         struct config_param *config = &nic->config;
2372         struct mac_info *mac_control = &nic->mac_control;
2373         struct stat_block *stats = mac_control->stats_info;
2374         struct swStat *swstats = &stats->sw_stat;
2375
2376         for (i = 0; i < config->tx_fifo_num; i++) {
2377                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2378                 struct fifo_info *fifo = &mac_control->fifos[i];
2379                 unsigned long flags;
2380
2381                 spin_lock_irqsave(&fifo->tx_lock, flags);
2382                 for (j = 0; j < tx_cfg->fifo_len; j++) {
2383                         txdp = fifo->list_info[j].list_virt_addr;
2384                         skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2385                         if (skb) {
2386                                 swstats->mem_freed += skb->truesize;
2387                                 dev_kfree_skb(skb);
2388                                 cnt++;
2389                         }
2390                 }
2391                 DBG_PRINT(INTR_DBG,
2392                           "%s: forcibly freeing %d skbs on FIFO%d\n",
2393                           dev->name, cnt, i);
2394                 fifo->tx_curr_get_info.offset = 0;
2395                 fifo->tx_curr_put_info.offset = 0;
2396                 spin_unlock_irqrestore(&fifo->tx_lock, flags);
2397         }
2398 }
2399
2400 /**
2401  *   stop_nic -  To stop the nic
2402  *   @nic ; device private variable.
2403  *   Description:
2404  *   This function does exactly the opposite of what the start_nic()
2405  *   function does. This function is called to stop the device.
2406  *   Return Value:
2407  *   void.
2408  */
2409
2410 static void stop_nic(struct s2io_nic *nic)
2411 {
2412         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2413         register u64 val64 = 0;
2414         u16 interruptible;
2415
2416         /*  Disable all interrupts */
2417         en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2418         interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2419         interruptible |= TX_PIC_INTR;
2420         en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2421
2422         /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2423         val64 = readq(&bar0->adapter_control);
2424         val64 &= ~(ADAPTER_CNTL_EN);
2425         writeq(val64, &bar0->adapter_control);
2426 }
2427
2428 /**
2429  *  fill_rx_buffers - Allocates the Rx side skbs
2430  *  @ring_info: per ring structure
2431  *  @from_card_up: If this is true, we will map the buffer to get
2432  *     the dma address for buf0 and buf1 to give it to the card.
2433  *     Else we will sync the already mapped buffer to give it to the card.
2434  *  Description:
2435  *  The function allocates Rx side skbs and puts the physical
2436  *  address of these buffers into the RxD buffer pointers, so that the NIC
2437  *  can DMA the received frame into these locations.
2438  *  The NIC supports 3 receive modes, viz
2439  *  1. single buffer,
2440  *  2. three buffer and
2441  *  3. Five buffer modes.
2442  *  Each mode defines how many fragments the received frame will be split
2443  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2444  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2445  *  is split into 3 fragments. As of now only single buffer mode is
2446  *  supported.
2447  *   Return Value:
2448  *  SUCCESS on success or an appropriate -ve value on failure.
2449  */
2450 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2451                            int from_card_up)
2452 {
2453         struct sk_buff *skb;
2454         struct RxD_t *rxdp;
2455         int off, size, block_no, block_no1;
2456         u32 alloc_tab = 0;
2457         u32 alloc_cnt;
2458         u64 tmp;
2459         struct buffAdd *ba;
2460         struct RxD_t *first_rxdp = NULL;
2461         u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2462         int rxd_index = 0;
2463         struct RxD1 *rxdp1;
2464         struct RxD3 *rxdp3;
2465         struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
2466
2467         alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2468
2469         block_no1 = ring->rx_curr_get_info.block_index;
2470         while (alloc_tab < alloc_cnt) {
2471                 block_no = ring->rx_curr_put_info.block_index;
2472
2473                 off = ring->rx_curr_put_info.offset;
2474
2475                 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2476
2477                 rxd_index = off + 1;
2478                 if (block_no)
2479                         rxd_index += (block_no * ring->rxd_count);
2480
2481                 if ((block_no == block_no1) &&
2482                     (off == ring->rx_curr_get_info.offset) &&
2483                     (rxdp->Host_Control)) {
2484                         DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2485                                   ring->dev->name);
2486                         goto end;
2487                 }
2488                 if (off && (off == ring->rxd_count)) {
2489                         ring->rx_curr_put_info.block_index++;
2490                         if (ring->rx_curr_put_info.block_index ==
2491                             ring->block_count)
2492                                 ring->rx_curr_put_info.block_index = 0;
2493                         block_no = ring->rx_curr_put_info.block_index;
2494                         off = 0;
2495                         ring->rx_curr_put_info.offset = off;
2496                         rxdp = ring->rx_blocks[block_no].block_virt_addr;
2497                         DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2498                                   ring->dev->name, rxdp);
2499
2500                 }
2501
2502                 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2503                     ((ring->rxd_mode == RXD_MODE_3B) &&
2504                      (rxdp->Control_2 & s2BIT(0)))) {
2505                         ring->rx_curr_put_info.offset = off;
2506                         goto end;
2507                 }
2508                 /* calculate size of skb based on ring mode */
2509                 size = ring->mtu +
2510                         HEADER_ETHERNET_II_802_3_SIZE +
2511                         HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2512                 if (ring->rxd_mode == RXD_MODE_1)
2513                         size += NET_IP_ALIGN;
2514                 else
2515                         size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2516
2517                 /* allocate skb */
2518                 skb = netdev_alloc_skb(nic->dev, size);
2519                 if (!skb) {
2520                         DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2521                                   ring->dev->name);
2522                         if (first_rxdp) {
2523                                 dma_wmb();
2524                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2525                         }
2526                         swstats->mem_alloc_fail_cnt++;
2527
2528                         return -ENOMEM ;
2529                 }
2530                 swstats->mem_allocated += skb->truesize;
2531
2532                 if (ring->rxd_mode == RXD_MODE_1) {
2533                         /* 1 buffer mode - normal operation mode */
2534                         rxdp1 = (struct RxD1 *)rxdp;
2535                         memset(rxdp, 0, sizeof(struct RxD1));
2536                         skb_reserve(skb, NET_IP_ALIGN);
2537                         rxdp1->Buffer0_ptr =
2538                                 pci_map_single(ring->pdev, skb->data,
2539                                                size - NET_IP_ALIGN,
2540                                                PCI_DMA_FROMDEVICE);
2541                         if (pci_dma_mapping_error(nic->pdev,
2542                                                   rxdp1->Buffer0_ptr))
2543                                 goto pci_map_failed;
2544
2545                         rxdp->Control_2 =
2546                                 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2547                         rxdp->Host_Control = (unsigned long)skb;
2548                 } else if (ring->rxd_mode == RXD_MODE_3B) {
2549                         /*
2550                          * 2 buffer mode -
2551                          * 2 buffer mode provides 128
2552                          * byte aligned receive buffers.
2553                          */
2554
2555                         rxdp3 = (struct RxD3 *)rxdp;
2556                         /* save buffer pointers to avoid frequent dma mapping */
2557                         Buffer0_ptr = rxdp3->Buffer0_ptr;
2558                         Buffer1_ptr = rxdp3->Buffer1_ptr;
2559                         memset(rxdp, 0, sizeof(struct RxD3));
2560                         /* restore the buffer pointers for dma sync*/
2561                         rxdp3->Buffer0_ptr = Buffer0_ptr;
2562                         rxdp3->Buffer1_ptr = Buffer1_ptr;
2563
2564                         ba = &ring->ba[block_no][off];
2565                         skb_reserve(skb, BUF0_LEN);
2566                         tmp = (u64)(unsigned long)skb->data;
2567                         tmp += ALIGN_SIZE;
2568                         tmp &= ~ALIGN_SIZE;
2569                         skb->data = (void *) (unsigned long)tmp;
2570                         skb_reset_tail_pointer(skb);
2571
2572                         if (from_card_up) {
2573                                 rxdp3->Buffer0_ptr =
2574                                         pci_map_single(ring->pdev, ba->ba_0,
2575                                                        BUF0_LEN,
2576                                                        PCI_DMA_FROMDEVICE);
2577                                 if (pci_dma_mapping_error(nic->pdev,
2578                                                           rxdp3->Buffer0_ptr))
2579                                         goto pci_map_failed;
2580                         } else
2581                                 pci_dma_sync_single_for_device(ring->pdev,
2582                                                                (dma_addr_t)rxdp3->Buffer0_ptr,
2583                                                                BUF0_LEN,
2584                                                                PCI_DMA_FROMDEVICE);
2585
2586                         rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2587                         if (ring->rxd_mode == RXD_MODE_3B) {
2588                                 /* Two buffer mode */
2589
2590                                 /*
2591                                  * Buffer2 will have L3/L4 header plus
2592                                  * L4 payload
2593                                  */
2594                                 rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2595                                                                     skb->data,
2596                                                                     ring->mtu + 4,
2597                                                                     PCI_DMA_FROMDEVICE);
2598
2599                                 if (pci_dma_mapping_error(nic->pdev,
2600                                                           rxdp3->Buffer2_ptr))
2601                                         goto pci_map_failed;
2602
2603                                 if (from_card_up) {
2604                                         rxdp3->Buffer1_ptr =
2605                                                 pci_map_single(ring->pdev,
2606                                                                ba->ba_1,
2607                                                                BUF1_LEN,
2608                                                                PCI_DMA_FROMDEVICE);
2609
2610                                         if (pci_dma_mapping_error(nic->pdev,
2611                                                                   rxdp3->Buffer1_ptr)) {
2612                                                 pci_unmap_single(ring->pdev,
2613                                                                  (dma_addr_t)(unsigned long)
2614                                                                  skb->data,
2615                                                                  ring->mtu + 4,
2616                                                                  PCI_DMA_FROMDEVICE);
2617                                                 goto pci_map_failed;
2618                                         }
2619                                 }
2620                                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2621                                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2622                                         (ring->mtu + 4);
2623                         }
2624                         rxdp->Control_2 |= s2BIT(0);
2625                         rxdp->Host_Control = (unsigned long) (skb);
2626                 }
2627                 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2628                         rxdp->Control_1 |= RXD_OWN_XENA;
2629                 off++;
2630                 if (off == (ring->rxd_count + 1))
2631                         off = 0;
2632                 ring->rx_curr_put_info.offset = off;
2633
2634                 rxdp->Control_2 |= SET_RXD_MARKER;
2635                 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2636                         if (first_rxdp) {
2637                                 dma_wmb();
2638                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2639                         }
2640                         first_rxdp = rxdp;
2641                 }
2642                 ring->rx_bufs_left += 1;
2643                 alloc_tab++;
2644         }
2645
2646 end:
2647         /* Transfer ownership of first descriptor to adapter just before
2648          * exiting. Before that, use memory barrier so that ownership
2649          * and other fields are seen by adapter correctly.
2650          */
2651         if (first_rxdp) {
2652                 dma_wmb();
2653                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2654         }
2655
2656         return SUCCESS;
2657
2658 pci_map_failed:
2659         swstats->pci_map_fail_cnt++;
2660         swstats->mem_freed += skb->truesize;
2661         dev_kfree_skb_irq(skb);
2662         return -ENOMEM;
2663 }
2664
2665 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2666 {
2667         struct net_device *dev = sp->dev;
2668         int j;
2669         struct sk_buff *skb;
2670         struct RxD_t *rxdp;
2671         struct RxD1 *rxdp1;
2672         struct RxD3 *rxdp3;
2673         struct mac_info *mac_control = &sp->mac_control;
2674         struct stat_block *stats = mac_control->stats_info;
2675         struct swStat *swstats = &stats->sw_stat;
2676
2677         for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2678                 rxdp = mac_control->rings[ring_no].
2679                         rx_blocks[blk].rxds[j].virt_addr;
2680                 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2681                 if (!skb)
2682                         continue;
2683                 if (sp->rxd_mode == RXD_MODE_1) {
2684                         rxdp1 = (struct RxD1 *)rxdp;
2685                         pci_unmap_single(sp->pdev,
2686                                          (dma_addr_t)rxdp1->Buffer0_ptr,
2687                                          dev->mtu +
2688                                          HEADER_ETHERNET_II_802_3_SIZE +
2689                                          HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2690                                          PCI_DMA_FROMDEVICE);
2691                         memset(rxdp, 0, sizeof(struct RxD1));
2692                 } else if (sp->rxd_mode == RXD_MODE_3B) {
2693                         rxdp3 = (struct RxD3 *)rxdp;
2694                         pci_unmap_single(sp->pdev,
2695                                          (dma_addr_t)rxdp3->Buffer0_ptr,
2696                                          BUF0_LEN,
2697                                          PCI_DMA_FROMDEVICE);
2698                         pci_unmap_single(sp->pdev,
2699                                          (dma_addr_t)rxdp3->Buffer1_ptr,
2700                                          BUF1_LEN,
2701                                          PCI_DMA_FROMDEVICE);
2702                         pci_unmap_single(sp->pdev,
2703                                          (dma_addr_t)rxdp3->Buffer2_ptr,
2704                                          dev->mtu + 4,
2705                                          PCI_DMA_FROMDEVICE);
2706                         memset(rxdp, 0, sizeof(struct RxD3));
2707                 }
2708                 swstats->mem_freed += skb->truesize;
2709                 dev_kfree_skb(skb);
2710                 mac_control->rings[ring_no].rx_bufs_left -= 1;
2711         }
2712 }
2713
2714 /**
2715  *  free_rx_buffers - Frees all Rx buffers
2716  *  @sp: device private variable.
2717  *  Description:
2718  *  This function will free all Rx buffers allocated by host.
2719  *  Return Value:
2720  *  NONE.
2721  */
2722
2723 static void free_rx_buffers(struct s2io_nic *sp)
2724 {
2725         struct net_device *dev = sp->dev;
2726         int i, blk = 0, buf_cnt = 0;
2727         struct config_param *config = &sp->config;
2728         struct mac_info *mac_control = &sp->mac_control;
2729
2730         for (i = 0; i < config->rx_ring_num; i++) {
2731                 struct ring_info *ring = &mac_control->rings[i];
2732
2733                 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2734                         free_rxd_blk(sp, i, blk);
2735
2736                 ring->rx_curr_put_info.block_index = 0;
2737                 ring->rx_curr_get_info.block_index = 0;
2738                 ring->rx_curr_put_info.offset = 0;
2739                 ring->rx_curr_get_info.offset = 0;
2740                 ring->rx_bufs_left = 0;
2741                 DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2742                           dev->name, buf_cnt, i);
2743         }
2744 }
2745
2746 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2747 {
2748         if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2749                 DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2750                           ring->dev->name);
2751         }
2752         return 0;
2753 }
2754
2755 /**
2756  * s2io_poll - Rx interrupt handler for NAPI support
2757  * @napi : pointer to the napi structure.
2758  * @budget : The number of packets that were budgeted to be processed
2759  * during  one pass through the 'Poll" function.
2760  * Description:
2761  * Comes into picture only if NAPI support has been incorporated. It does
2762  * the same thing that rx_intr_handler does, but not in a interrupt context
2763  * also It will process only a given number of packets.
2764  * Return value:
2765  * 0 on success and 1 if there are No Rx packets to be processed.
2766  */
2767
2768 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2769 {
2770         struct ring_info *ring = container_of(napi, struct ring_info, napi);
2771         struct net_device *dev = ring->dev;
2772         int pkts_processed = 0;
2773         u8 __iomem *addr = NULL;
2774         u8 val8 = 0;
2775         struct s2io_nic *nic = netdev_priv(dev);
2776         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2777         int budget_org = budget;
2778
2779         if (unlikely(!is_s2io_card_up(nic)))
2780                 return 0;
2781
2782         pkts_processed = rx_intr_handler(ring, budget);
2783         s2io_chk_rx_buffers(nic, ring);
2784
2785         if (pkts_processed < budget_org) {
2786                 napi_complete(napi);
2787                 /*Re Enable MSI-Rx Vector*/
2788                 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2789                 addr += 7 - ring->ring_no;
2790                 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2791                 writeb(val8, addr);
2792                 val8 = readb(addr);
2793         }
2794         return pkts_processed;
2795 }
2796
2797 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2798 {
2799         struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2800         int pkts_processed = 0;
2801         int ring_pkts_processed, i;
2802         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2803         int budget_org = budget;
2804         struct config_param *config = &nic->config;
2805         struct mac_info *mac_control = &nic->mac_control;
2806
2807         if (unlikely(!is_s2io_card_up(nic)))
2808                 return 0;
2809
2810         for (i = 0; i < config->rx_ring_num; i++) {
2811                 struct ring_info *ring = &mac_control->rings[i];
2812                 ring_pkts_processed = rx_intr_handler(ring, budget);
2813                 s2io_chk_rx_buffers(nic, ring);
2814                 pkts_processed += ring_pkts_processed;
2815                 budget -= ring_pkts_processed;
2816                 if (budget <= 0)
2817                         break;
2818         }
2819         if (pkts_processed < budget_org) {
2820                 napi_complete(napi);
2821                 /* Re enable the Rx interrupts for the ring */
2822                 writeq(0, &bar0->rx_traffic_mask);
2823                 readl(&bar0->rx_traffic_mask);
2824         }
2825         return pkts_processed;
2826 }
2827
2828 #ifdef CONFIG_NET_POLL_CONTROLLER
2829 /**
2830  * s2io_netpoll - netpoll event handler entry point
2831  * @dev : pointer to the device structure.
2832  * Description:
2833  *      This function will be called by upper layer to check for events on the
2834  * interface in situations where interrupts are disabled. It is used for
2835  * specific in-kernel networking tasks, such as remote consoles and kernel
2836  * debugging over the network (example netdump in RedHat).
2837  */
2838 static void s2io_netpoll(struct net_device *dev)
2839 {
2840         struct s2io_nic *nic = netdev_priv(dev);
2841         const int irq = nic->pdev->irq;
2842         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2843         u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2844         int i;
2845         struct config_param *config = &nic->config;
2846         struct mac_info *mac_control = &nic->mac_control;
2847
2848         if (pci_channel_offline(nic->pdev))
2849                 return;
2850
2851         disable_irq(irq);
2852
2853         writeq(val64, &bar0->rx_traffic_int);
2854         writeq(val64, &bar0->tx_traffic_int);
2855
2856         /* we need to free up the transmitted skbufs or else netpoll will
2857          * run out of skbs and will fail and eventually netpoll application such
2858          * as netdump will fail.
2859          */
2860         for (i = 0; i < config->tx_fifo_num; i++)
2861                 tx_intr_handler(&mac_control->fifos[i]);
2862
2863         /* check for received packet and indicate up to network */
2864         for (i = 0; i < config->rx_ring_num; i++) {
2865                 struct ring_info *ring = &mac_control->rings[i];
2866
2867                 rx_intr_handler(ring, 0);
2868         }
2869
2870         for (i = 0; i < config->rx_ring_num; i++) {
2871                 struct ring_info *ring = &mac_control->rings[i];
2872
2873                 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2874                         DBG_PRINT(INFO_DBG,
2875                                   "%s: Out of memory in Rx Netpoll!!\n",
2876                                   dev->name);
2877                         break;
2878                 }
2879         }
2880         enable_irq(irq);
2881 }
2882 #endif
2883
2884 /**
2885  *  rx_intr_handler - Rx interrupt handler
2886  *  @ring_info: per ring structure.
2887  *  @budget: budget for napi processing.
2888  *  Description:
2889  *  If the interrupt is because of a received frame or if the
2890  *  receive ring contains fresh as yet un-processed frames,this function is
2891  *  called. It picks out the RxD at which place the last Rx processing had
2892  *  stopped and sends the skb to the OSM's Rx handler and then increments
2893  *  the offset.
2894  *  Return Value:
2895  *  No. of napi packets processed.
2896  */
2897 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2898 {
2899         int get_block, put_block;
2900         struct rx_curr_get_info get_info, put_info;
2901         struct RxD_t *rxdp;
2902         struct sk_buff *skb;
2903         int pkt_cnt = 0, napi_pkts = 0;
2904         int i;
2905         struct RxD1 *rxdp1;
2906         struct RxD3 *rxdp3;
2907
2908         if (budget <= 0)
2909                 return napi_pkts;
2910
2911         get_info = ring_data->rx_curr_get_info;
2912         get_block = get_info.block_index;
2913         memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2914         put_block = put_info.block_index;
2915         rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2916
2917         while (RXD_IS_UP2DT(rxdp)) {
2918                 /*
2919                  * If your are next to put index then it's
2920                  * FIFO full condition
2921                  */
2922                 if ((get_block == put_block) &&
2923                     (get_info.offset + 1) == put_info.offset) {
2924                         DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2925                                   ring_data->dev->name);
2926                         break;
2927                 }
2928                 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2929                 if (skb == NULL) {
2930                         DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
2931                                   ring_data->dev->name);
2932                         return 0;
2933                 }
2934                 if (ring_data->rxd_mode == RXD_MODE_1) {
2935                         rxdp1 = (struct RxD1 *)rxdp;
2936                         pci_unmap_single(ring_data->pdev, (dma_addr_t)
2937                                          rxdp1->Buffer0_ptr,
2938                                          ring_data->mtu +
2939                                          HEADER_ETHERNET_II_802_3_SIZE +
2940                                          HEADER_802_2_SIZE +
2941                                          HEADER_SNAP_SIZE,
2942                                          PCI_DMA_FROMDEVICE);
2943                 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
2944                         rxdp3 = (struct RxD3 *)rxdp;
2945                         pci_dma_sync_single_for_cpu(ring_data->pdev,
2946                                                     (dma_addr_t)rxdp3->Buffer0_ptr,
2947                                                     BUF0_LEN,
2948                                                     PCI_DMA_FROMDEVICE);
2949                         pci_unmap_single(ring_data->pdev,
2950                                          (dma_addr_t)rxdp3->Buffer2_ptr,
2951                                          ring_data->mtu + 4,
2952                                          PCI_DMA_FROMDEVICE);
2953                 }
2954                 prefetch(skb->data);
2955                 rx_osm_handler(ring_data, rxdp);
2956                 get_info.offset++;
2957                 ring_data->rx_curr_get_info.offset = get_info.offset;
2958                 rxdp = ring_data->rx_blocks[get_block].
2959                         rxds[get_info.offset].virt_addr;
2960                 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
2961                         get_info.offset = 0;
2962                         ring_data->rx_curr_get_info.offset = get_info.offset;
2963                         get_block++;
2964                         if (get_block == ring_data->block_count)
2965                                 get_block = 0;
2966                         ring_data->rx_curr_get_info.block_index = get_block;
2967                         rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2968                 }
2969
2970                 if (ring_data->nic->config.napi) {
2971                         budget--;
2972                         napi_pkts++;
2973                         if (!budget)
2974                                 break;
2975                 }
2976                 pkt_cnt++;
2977                 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2978                         break;
2979         }
2980         if (ring_data->lro) {
2981                 /* Clear all LRO sessions before exiting */
2982                 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
2983                         struct lro *lro = &ring_data->lro0_n[i];
2984                         if (lro->in_use) {
2985                                 update_L3L4_header(ring_data->nic, lro);
2986                                 queue_rx_frame(lro->parent, lro->vlan_tag);
2987                                 clear_lro_session(lro);
2988                         }
2989                 }
2990         }
2991         return napi_pkts;
2992 }
2993
2994 /**
2995  *  tx_intr_handler - Transmit interrupt handler
2996  *  @nic : device private variable
2997  *  Description:
2998  *  If an interrupt was raised to indicate DMA complete of the
2999  *  Tx packet, this function is called. It identifies the last TxD
3000  *  whose buffer was freed and frees all skbs whose data have already
3001  *  DMA'ed into the NICs internal memory.
3002  *  Return Value:
3003  *  NONE
3004  */
3005
3006 static void tx_intr_handler(struct fifo_info *fifo_data)
3007 {
3008         struct s2io_nic *nic = fifo_data->nic;
3009         struct tx_curr_get_info get_info, put_info;
3010         struct sk_buff *skb = NULL;
3011         struct TxD *txdlp;
3012         int pkt_cnt = 0;
3013         unsigned long flags = 0;
3014         u8 err_mask;
3015         struct stat_block *stats = nic->mac_control.stats_info;
3016         struct swStat *swstats = &stats->sw_stat;
3017
3018         if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3019                 return;
3020
3021         get_info = fifo_data->tx_curr_get_info;
3022         memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3023         txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3024         while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3025                (get_info.offset != put_info.offset) &&
3026                (txdlp->Host_Control)) {
3027                 /* Check for TxD errors */
3028                 if (txdlp->Control_1 & TXD_T_CODE) {
3029                         unsigned long long err;
3030                         err = txdlp->Control_1 & TXD_T_CODE;
3031                         if (err & 0x1) {
3032                                 swstats->parity_err_cnt++;
3033                         }
3034
3035                         /* update t_code statistics */
3036                         err_mask = err >> 48;
3037                         switch (err_mask) {
3038                         case 2:
3039                                 swstats->tx_buf_abort_cnt++;
3040                                 break;
3041
3042                         case 3:
3043                                 swstats->tx_desc_abort_cnt++;
3044                                 break;
3045
3046                         case 7:
3047                                 swstats->tx_parity_err_cnt++;
3048                                 break;
3049
3050                         case 10:
3051                                 swstats->tx_link_loss_cnt++;
3052                                 break;
3053
3054                         case 15:
3055                                 swstats->tx_list_proc_err_cnt++;
3056                                 break;
3057                         }
3058                 }
3059
3060                 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3061                 if (skb == NULL) {
3062                         spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3063                         DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3064                                   __func__);
3065                         return;
3066                 }
3067                 pkt_cnt++;
3068
3069                 /* Updating the statistics block */
3070                 swstats->mem_freed += skb->truesize;
3071                 dev_kfree_skb_irq(skb);
3072
3073                 get_info.offset++;
3074                 if (get_info.offset == get_info.fifo_len + 1)
3075                         get_info.offset = 0;
3076                 txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3077                 fifo_data->tx_curr_get_info.offset = get_info.offset;
3078         }
3079
3080         s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3081
3082         spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3083 }
3084
3085 /**
3086  *  s2io_mdio_write - Function to write in to MDIO registers
3087  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3088  *  @addr     : address value
3089  *  @value    : data value
3090  *  @dev      : pointer to net_device structure
3091  *  Description:
3092  *  This function is used to write values to the MDIO registers
3093  *  NONE
3094  */
3095 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3096                             struct net_device *dev)
3097 {
3098         u64 val64;
3099         struct s2io_nic *sp = netdev_priv(dev);
3100         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3101
3102         /* address transaction */
3103         val64 = MDIO_MMD_INDX_ADDR(addr) |
3104                 MDIO_MMD_DEV_ADDR(mmd_type) |
3105                 MDIO_MMS_PRT_ADDR(0x0);
3106         writeq(val64, &bar0->mdio_control);
3107         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3108         writeq(val64, &bar0->mdio_control);
3109         udelay(100);
3110
3111         /* Data transaction */
3112         val64 = MDIO_MMD_INDX_ADDR(addr) |
3113                 MDIO_MMD_DEV_ADDR(mmd_type) |
3114                 MDIO_MMS_PRT_ADDR(0x0) |
3115                 MDIO_MDIO_DATA(value) |
3116                 MDIO_OP(MDIO_OP_WRITE_TRANS);
3117         writeq(val64, &bar0->mdio_control);
3118         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3119         writeq(val64, &bar0->mdio_control);
3120         udelay(100);
3121
3122         val64 = MDIO_MMD_INDX_ADDR(addr) |
3123                 MDIO_MMD_DEV_ADDR(mmd_type) |
3124                 MDIO_MMS_PRT_ADDR(0x0) |
3125                 MDIO_OP(MDIO_OP_READ_TRANS);
3126         writeq(val64, &bar0->mdio_control);
3127         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3128         writeq(val64, &bar0->mdio_control);
3129         udelay(100);
3130 }
3131
3132 /**
3133  *  s2io_mdio_read - Function to write in to MDIO registers
3134  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3135  *  @addr     : address value
3136  *  @dev      : pointer to net_device structure
3137  *  Description:
3138  *  This function is used to read values to the MDIO registers
3139  *  NONE
3140  */
3141 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3142 {
3143         u64 val64 = 0x0;
3144         u64 rval64 = 0x0;
3145         struct s2io_nic *sp = netdev_priv(dev);
3146         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3147
3148         /* address transaction */
3149         val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3150                          | MDIO_MMD_DEV_ADDR(mmd_type)
3151                          | MDIO_MMS_PRT_ADDR(0x0));
3152         writeq(val64, &bar0->mdio_control);
3153         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3154         writeq(val64, &bar0->mdio_control);
3155         udelay(100);
3156
3157         /* Data transaction */
3158         val64 = MDIO_MMD_INDX_ADDR(addr) |
3159                 MDIO_MMD_DEV_ADDR(mmd_type) |
3160                 MDIO_MMS_PRT_ADDR(0x0) |
3161                 MDIO_OP(MDIO_OP_READ_TRANS);
3162         writeq(val64, &bar0->mdio_control);
3163         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3164         writeq(val64, &bar0->mdio_control);
3165         udelay(100);
3166
3167         /* Read the value from regs */
3168         rval64 = readq(&bar0->mdio_control);
3169         rval64 = rval64 & 0xFFFF0000;
3170         rval64 = rval64 >> 16;
3171         return rval64;
3172 }
3173
3174 /**
3175  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3176  *  @counter      : counter value to be updated
3177  *  @flag         : flag to indicate the status
3178  *  @type         : counter type
3179  *  Description:
3180  *  This function is to check the status of the xpak counters value
3181  *  NONE
3182  */
3183
3184 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3185                                   u16 flag, u16 type)
3186 {
3187         u64 mask = 0x3;
3188         u64 val64;
3189         int i;
3190         for (i = 0; i < index; i++)
3191                 mask = mask << 0x2;
3192
3193         if (flag > 0) {
3194                 *counter = *counter + 1;
3195                 val64 = *regs_stat & mask;
3196                 val64 = val64 >> (index * 0x2);
3197                 val64 = val64 + 1;
3198                 if (val64 == 3) {
3199                         switch (type) {
3200                         case 1:
3201                                 DBG_PRINT(ERR_DBG,
3202                                           "Take Xframe NIC out of service.\n");
3203                                 DBG_PRINT(ERR_DBG,
3204 "Excessive temperatures may result in premature transceiver failure.\n");
3205                                 break;
3206                         case 2:
3207                                 DBG_PRINT(ERR_DBG,
3208                                           "Take Xframe NIC out of service.\n");
3209                                 DBG_PRINT(ERR_DBG,
3210 "Excessive bias currents may indicate imminent laser diode failure.\n");
3211                                 break;
3212                         case 3:
3213                                 DBG_PRINT(ERR_DBG,
3214                                           "Take Xframe NIC out of service.\n");
3215                                 DBG_PRINT(ERR_DBG,
3216 "Excessive laser output power may saturate far-end receiver.\n");
3217                                 break;
3218                         default:
3219                                 DBG_PRINT(ERR_DBG,
3220                                           "Incorrect XPAK Alarm type\n");
3221                         }
3222                         val64 = 0x0;
3223                 }
3224                 val64 = val64 << (index * 0x2);
3225                 *regs_stat = (*regs_stat & (~mask)) | (val64);
3226
3227         } else {
3228                 *regs_stat = *regs_stat & (~mask);
3229         }
3230 }
3231
3232 /**
3233  *  s2io_updt_xpak_counter - Function to update the xpak counters
3234  *  @dev         : pointer to net_device struct
3235  *  Description:
3236  *  This function is to upate the status of the xpak counters value
3237  *  NONE
3238  */
3239 static void s2io_updt_xpak_counter(struct net_device *dev)
3240 {
3241         u16 flag  = 0x0;
3242         u16 type  = 0x0;
3243         u16 val16 = 0x0;
3244         u64 val64 = 0x0;
3245         u64 addr  = 0x0;
3246
3247         struct s2io_nic *sp = netdev_priv(dev);
3248         struct stat_block *stats = sp->mac_control.stats_info;
3249         struct xpakStat *xstats = &stats->xpak_stat;
3250
3251         /* Check the communication with the MDIO slave */
3252         addr = MDIO_CTRL1;
3253         val64 = 0x0;
3254         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3255         if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
3256                 DBG_PRINT(ERR_DBG,
3257                           "ERR: MDIO slave access failed - Returned %llx\n",
3258                           (unsigned long long)val64);
3259                 return;
3260         }
3261
3262         /* Check for the expected value of control reg 1 */
3263         if (val64 != MDIO_CTRL1_SPEED10G) {
3264                 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3265                           "Returned: %llx- Expected: 0x%x\n",
3266                           (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3267                 return;
3268         }
3269
3270         /* Loading the DOM register to MDIO register */
3271         addr = 0xA100;
3272         s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3273         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3274
3275         /* Reading the Alarm flags */
3276         addr = 0xA070;
3277         val64 = 0x0;
3278         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3279
3280         flag = CHECKBIT(val64, 0x7);
3281         type = 1;
3282         s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3283                               &xstats->xpak_regs_stat,
3284                               0x0, flag, type);
3285
3286         if (CHECKBIT(val64, 0x6))
3287                 xstats->alarm_transceiver_temp_low++;
3288
3289         flag = CHECKBIT(val64, 0x3);
3290         type = 2;
3291         s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3292                               &xstats->xpak_regs_stat,
3293                               0x2, flag, type);
3294
3295         if (CHECKBIT(val64, 0x2))
3296                 xstats->alarm_laser_bias_current_low++;
3297
3298         flag = CHECKBIT(val64, 0x1);
3299         type = 3;
3300         s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3301                               &xstats->xpak_regs_stat,
3302                               0x4, flag, type);
3303
3304         if (CHECKBIT(val64, 0x0))
3305                 xstats->alarm_laser_output_power_low++;
3306
3307         /* Reading the Warning flags */
3308         addr = 0xA074;
3309         val64 = 0x0;
3310         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3311
3312         if (CHECKBIT(val64, 0x7))
3313                 xstats->warn_transceiver_temp_high++;
3314
3315         if (CHECKBIT(val64, 0x6))
3316                 xstats->warn_transceiver_temp_low++;
3317
3318         if (CHECKBIT(val64, 0x3))
3319                 xstats->warn_laser_bias_current_high++;
3320
3321         if (CHECKBIT(val64, 0x2))
3322                 xstats->warn_laser_bias_current_low++;
3323
3324         if (CHECKBIT(val64, 0x1))
3325                 xstats->warn_laser_output_power_high++;
3326
3327         if (CHECKBIT(val64, 0x0))
3328                 xstats->warn_laser_output_power_low++;
3329 }
3330
3331 /**
3332  *  wait_for_cmd_complete - waits for a command to complete.
3333  *  @sp : private member of the device structure, which is a pointer to the
3334  *  s2io_nic structure.
3335  *  Description: Function that waits for a command to Write into RMAC
3336  *  ADDR DATA registers to be completed and returns either success or
3337  *  error depending on whether the command was complete or not.
3338  *  Return value:
3339  *   SUCCESS on success and FAILURE on failure.
3340  */
3341
3342 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3343                                  int bit_state)
3344 {
3345         int ret = FAILURE, cnt = 0, delay = 1;
3346         u64 val64;
3347
3348         if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3349                 return FAILURE;
3350
3351         do {
3352                 val64 = readq(addr);
3353                 if (bit_state == S2IO_BIT_RESET) {
3354                         if (!(val64 & busy_bit)) {
3355                                 ret = SUCCESS;
3356                                 break;
3357                         }
3358                 } else {
3359                         if (val64 & busy_bit) {
3360                                 ret = SUCCESS;
3361                                 break;
3362                         }
3363                 }
3364
3365                 if (in_interrupt())
3366                         mdelay(delay);
3367                 else
3368                         msleep(delay);
3369
3370                 if (++cnt >= 10)
3371                         delay = 50;
3372         } while (cnt < 20);
3373         return ret;
3374 }
3375 /**
3376  * check_pci_device_id - Checks if the device id is supported
3377  * @id : device id
3378  * Description: Function to check if the pci device id is supported by driver.
3379  * Return value: Actual device id if supported else PCI_ANY_ID
3380  */
3381 static u16 check_pci_device_id(u16 id)
3382 {
3383         switch (id) {
3384         case PCI_DEVICE_ID_HERC_WIN:
3385         case PCI_DEVICE_ID_HERC_UNI:
3386                 return XFRAME_II_DEVICE;
3387         case PCI_DEVICE_ID_S2IO_UNI:
3388         case PCI_DEVICE_ID_S2IO_WIN:
3389                 return XFRAME_I_DEVICE;
3390         default:
3391                 return PCI_ANY_ID;
3392         }
3393 }
3394
3395 /**
3396  *  s2io_reset - Resets the card.
3397  *  @sp : private member of the device structure.
3398  *  Description: Function to Reset the card. This function then also
3399  *  restores the previously saved PCI configuration space registers as
3400  *  the card reset also resets the configuration space.
3401  *  Return value:
3402  *  void.
3403  */
3404
3405 static void s2io_reset(struct s2io_nic *sp)
3406 {
3407         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3408         u64 val64;
3409         u16 subid, pci_cmd;
3410         int i;
3411         u16 val16;
3412         unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3413         unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3414         struct stat_block *stats;
3415         struct swStat *swstats;
3416
3417         DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3418                   __func__, pci_name(sp->pdev));
3419
3420         /* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3421         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3422
3423         val64 = SW_RESET_ALL;
3424         writeq(val64, &bar0->sw_reset);
3425         if (strstr(sp->product_name, "CX4"))
3426                 msleep(750);
3427         msleep(250);
3428         for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3429
3430                 /* Restore the PCI state saved during initialization. */
3431                 pci_restore_state(sp->pdev);
3432                 pci_save_state(sp->pdev);
3433                 pci_read_config_word(sp->pdev, 0x2, &val16);
3434                 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3435                         break;
3436                 msleep(200);
3437         }
3438
3439         if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3440                 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
3441
3442         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3443
3444         s2io_init_pci(sp);
3445
3446         /* Set swapper to enable I/O register access */
3447         s2io_set_swapper(sp);
3448
3449         /* restore mac_addr entries */
3450         do_s2io_restore_unicast_mc(sp);
3451
3452         /* Restore the MSIX table entries from local variables */
3453         restore_xmsi_data(sp);
3454
3455         /* Clear certain PCI/PCI-X fields after reset */
3456         if (sp->device_type == XFRAME_II_DEVICE) {
3457                 /* Clear "detected parity error" bit */
3458                 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3459
3460                 /* Clearing PCIX Ecc status register */
3461                 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3462
3463                 /* Clearing PCI_STATUS error reflected here */
3464                 writeq(s2BIT(62), &bar0->txpic_int_reg);
3465         }
3466
3467         /* Reset device statistics maintained by OS */
3468         memset(&sp->stats, 0, sizeof(struct net_device_stats));
3469
3470         stats = sp->mac_control.stats_info;
3471         swstats = &stats->sw_stat;
3472
3473         /* save link up/down time/cnt, reset/memory/watchdog cnt */
3474         up_cnt = swstats->link_up_cnt;
3475         down_cnt = swstats->link_down_cnt;
3476         up_time = swstats->link_up_time;
3477         down_time = swstats->link_down_time;
3478         reset_cnt = swstats->soft_reset_cnt;
3479         mem_alloc_cnt = swstats->mem_allocated;
3480         mem_free_cnt = swstats->mem_freed;
3481         watchdog_cnt = swstats->watchdog_timer_cnt;
3482
3483         memset(stats, 0, sizeof(struct stat_block));
3484
3485         /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3486         swstats->link_up_cnt = up_cnt;
3487         swstats->link_down_cnt = down_cnt;
3488         swstats->link_up_time = up_time;
3489         swstats->link_down_time = down_time;
3490         swstats->soft_reset_cnt = reset_cnt;
3491         swstats->mem_allocated = mem_alloc_cnt;
3492         swstats->mem_freed = mem_free_cnt;
3493         swstats->watchdog_timer_cnt = watchdog_cnt;
3494
3495         /* SXE-002: Configure link and activity LED to turn it off */
3496         subid = sp->pdev->subsystem_device;
3497         if (((subid & 0xFF) >= 0x07) &&
3498             (sp->device_type == XFRAME_I_DEVICE)) {
3499                 val64 = readq(&bar0->gpio_control);
3500                 val64 |= 0x0000800000000000ULL;
3501                 writeq(val64, &bar0->gpio_control);
3502                 val64 = 0x0411040400000000ULL;
3503                 writeq(val64, (void __iomem *)bar0 + 0x2700);
3504         }
3505
3506         /*
3507          * Clear spurious ECC interrupts that would have occurred on
3508          * XFRAME II cards after reset.
3509          */
3510         if (sp->device_type == XFRAME_II_DEVICE) {
3511                 val64 = readq(&bar0->pcc_err_reg);
3512                 writeq(val64, &bar0->pcc_err_reg);
3513         }
3514
3515         sp->device_enabled_once = false;
3516 }
3517
3518 /**
3519  *  s2io_set_swapper - to set the swapper controle on the card
3520  *  @sp : private member of the device structure,
3521  *  pointer to the s2io_nic structure.
3522  *  Description: Function to set the swapper control on the card
3523  *  correctly depending on the 'endianness' of the system.
3524  *  Return value:
3525  *  SUCCESS on success and FAILURE on failure.
3526  */
3527
3528 static int s2io_set_swapper(struct s2io_nic *sp)
3529 {
3530         struct net_device *dev = sp->dev;
3531         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3532         u64 val64, valt, valr;
3533
3534         /*
3535          * Set proper endian settings and verify the same by reading
3536          * the PIF Feed-back register.
3537          */
3538
3539         val64 = readq(&bar0->pif_rd_swapper_fb);
3540         if (val64 != 0x0123456789ABCDEFULL) {
3541                 int i = 0;
3542                 static const u64 value[] = {
3543                         0xC30000C3C30000C3ULL,  /* FE=1, SE=1 */
3544                         0x8100008181000081ULL,  /* FE=1, SE=0 */
3545                         0x4200004242000042ULL,  /* FE=0, SE=1 */
3546                         0                       /* FE=0, SE=0 */
3547                 };
3548
3549                 while (i < 4) {
3550                         writeq(value[i], &bar0->swapper_ctrl);
3551                         val64 = readq(&bar0->pif_rd_swapper_fb);
3552                         if (val64 == 0x0123456789ABCDEFULL)
3553                                 break;
3554                         i++;
3555                 }
3556                 if (i == 4) {
3557                         DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3558                                   "feedback read %llx\n",
3559                                   dev->name, (unsigned long long)val64);
3560                         return FAILURE;
3561                 }
3562                 valr = value[i];
3563         } else {
3564                 valr = readq(&bar0->swapper_ctrl);
3565         }
3566
3567         valt = 0x0123456789ABCDEFULL;
3568         writeq(valt, &bar0->xmsi_address);
3569         val64 = readq(&bar0->xmsi_address);
3570
3571         if (val64 != valt) {
3572                 int i = 0;
3573                 static const u64 value[] = {
3574                         0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
3575                         0x0081810000818100ULL,  /* FE=1, SE=0 */
3576                         0x0042420000424200ULL,  /* FE=0, SE=1 */
3577                         0                       /* FE=0, SE=0 */
3578                 };
3579
3580                 while (i < 4) {
3581                         writeq((value[i] | valr), &bar0->swapper_ctrl);
3582                         writeq(valt, &bar0->xmsi_address);
3583                         val64 = readq(&bar0->xmsi_address);
3584                         if (val64 == valt)
3585                                 break;
3586                         i++;
3587                 }
3588                 if (i == 4) {
3589                         unsigned long long x = val64;
3590                         DBG_PRINT(ERR_DBG,
3591                                   "Write failed, Xmsi_addr reads:0x%llx\n", x);
3592                         return FAILURE;
3593                 }
3594         }
3595         val64 = readq(&bar0->swapper_ctrl);
3596         val64 &= 0xFFFF000000000000ULL;
3597
3598 #ifdef __BIG_ENDIAN
3599         /*
3600          * The device by default set to a big endian format, so a
3601          * big endian driver need not set anything.
3602          */
3603         val64 |= (SWAPPER_CTRL_TXP_FE |
3604                   SWAPPER_CTRL_TXP_SE |
3605                   SWAPPER_CTRL_TXD_R_FE |
3606                   SWAPPER_CTRL_TXD_W_FE |
3607                   SWAPPER_CTRL_TXF_R_FE |
3608                   SWAPPER_CTRL_RXD_R_FE |
3609                   SWAPPER_CTRL_RXD_W_FE |
3610                   SWAPPER_CTRL_RXF_W_FE |
3611                   SWAPPER_CTRL_XMSI_FE |
3612                   SWAPPER_CTRL_STATS_FE |
3613                   SWAPPER_CTRL_STATS_SE);
3614         if (sp->config.intr_type == INTA)
3615                 val64 |= SWAPPER_CTRL_XMSI_SE;
3616         writeq(val64, &bar0->swapper_ctrl);
3617 #else
3618         /*
3619          * Initially we enable all bits to make it accessible by the
3620          * driver, then we selectively enable only those bits that
3621          * we want to set.
3622          */
3623         val64 |= (SWAPPER_CTRL_TXP_FE |
3624                   SWAPPER_CTRL_TXP_SE |
3625                   SWAPPER_CTRL_TXD_R_FE |
3626                   SWAPPER_CTRL_TXD_R_SE |
3627                   SWAPPER_CTRL_TXD_W_FE |
3628                   SWAPPER_CTRL_TXD_W_SE |
3629                   SWAPPER_CTRL_TXF_R_FE |
3630                   SWAPPER_CTRL_RXD_R_FE |
3631                   SWAPPER_CTRL_RXD_R_SE |
3632                   SWAPPER_CTRL_RXD_W_FE |
3633                   SWAPPER_CTRL_RXD_W_SE |
3634                   SWAPPER_CTRL_RXF_W_FE |
3635                   SWAPPER_CTRL_XMSI_FE |
3636                   SWAPPER_CTRL_STATS_FE |
3637                   SWAPPER_CTRL_STATS_SE);
3638         if (sp->config.intr_type == INTA)
3639                 val64 |= SWAPPER_CTRL_XMSI_SE;
3640         writeq(val64, &bar0->swapper_ctrl);
3641 #endif
3642         val64 = readq(&bar0->swapper_ctrl);
3643
3644         /*
3645          * Verifying if endian settings are accurate by reading a
3646          * feedback register.
3647          */
3648         val64 = readq(&bar0->pif_rd_swapper_fb);
3649         if (val64 != 0x0123456789ABCDEFULL) {
3650                 /* Endian settings are incorrect, calls for another dekko. */
3651                 DBG_PRINT(ERR_DBG,
3652                           "%s: Endian settings are wrong, feedback read %llx\n",
3653                           dev->name, (unsigned long long)val64);
3654                 return FAILURE;
3655         }
3656
3657         return SUCCESS;
3658 }
3659
3660 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3661 {
3662         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3663         u64 val64;
3664         int ret = 0, cnt = 0;
3665
3666         do {
3667                 val64 = readq(&bar0->xmsi_access);
3668                 if (!(val64 & s2BIT(15)))
3669                         break;
3670                 mdelay(1);
3671                 cnt++;
3672         } while (cnt < 5);
3673         if (cnt == 5) {
3674                 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3675                 ret = 1;
3676         }
3677
3678         return ret;
3679 }
3680
3681 static void restore_xmsi_data(struct s2io_nic *nic)
3682 {
3683         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3684         u64 val64;
3685         int i, msix_index;
3686
3687         if (nic->device_type == XFRAME_I_DEVICE)
3688                 return;
3689
3690         for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3691                 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3692                 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3693                 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3694                 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3695                 writeq(val64, &bar0->xmsi_access);
3696                 if (wait_for_msix_trans(nic, msix_index)) {
3697                         DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3698                                   __func__, msix_index);
3699                         continue;
3700                 }
3701         }
3702 }
3703
3704 static void store_xmsi_data(struct s2io_nic *nic)
3705 {
3706         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3707         u64 val64, addr, data;
3708         int i, msix_index;
3709
3710         if (nic->device_type == XFRAME_I_DEVICE)
3711                 return;
3712
3713         /* Store and display */
3714         for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3715                 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3716                 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3717                 writeq(val64, &bar0->xmsi_access);
3718                 if (wait_for_msix_trans(nic, msix_index)) {
3719                         DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3720                                   __func__, msix_index);
3721                         continue;
3722                 }
3723                 addr = readq(&bar0->xmsi_address);
3724                 data = readq(&bar0->xmsi_data);
3725                 if (addr && data) {
3726                         nic->msix_info[i].addr = addr;
3727                         nic->msix_info[i].data = data;
3728                 }
3729         }
3730 }
3731
3732 static int s2io_enable_msi_x(struct s2io_nic *nic)
3733 {
3734         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3735         u64 rx_mat;
3736         u16 msi_control; /* Temp variable */
3737         int ret, i, j, msix_indx = 1;
3738         int size;
3739         struct stat_block *stats = nic->mac_control.stats_info;
3740         struct swStat *swstats = &stats->sw_stat;
3741
3742         size = nic->num_entries * sizeof(struct msix_entry);
3743         nic->entries = kzalloc(size, GFP_KERNEL);
3744         if (!nic->entries) {
3745                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3746                           __func__);
3747                 swstats->mem_alloc_fail_cnt++;
3748                 return -ENOMEM;
3749         }
3750         swstats->mem_allocated += size;
3751
3752         size = nic->num_entries * sizeof(struct s2io_msix_entry);
3753         nic->s2io_entries = kzalloc(size, GFP_KERNEL);
3754         if (!nic->s2io_entries) {
3755                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3756                           __func__);
3757                 swstats->mem_alloc_fail_cnt++;
3758                 kfree(nic->entries);
3759                 swstats->mem_freed
3760                         += (nic->num_entries * sizeof(struct msix_entry));
3761                 return -ENOMEM;
3762         }
3763         swstats->mem_allocated += size;
3764
3765         nic->entries[0].entry = 0;
3766         nic->s2io_entries[0].entry = 0;
3767         nic->s2io_entries[0].in_use = MSIX_FLG;
3768         nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3769         nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3770
3771         for (i = 1; i < nic->num_entries; i++) {
3772                 nic->entries[i].entry = ((i - 1) * 8) + 1;
3773                 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3774                 nic->s2io_entries[i].arg = NULL;
3775                 nic->s2io_entries[i].in_use = 0;
3776         }
3777
3778         rx_mat = readq(&bar0->rx_mat);
3779         for (j = 0; j < nic->config.rx_ring_num; j++) {
3780                 rx_mat |= RX_MAT_SET(j, msix_indx);
3781                 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3782                 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3783                 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3784                 msix_indx += 8;
3785         }
3786         writeq(rx_mat, &bar0->rx_mat);
3787         readq(&bar0->rx_mat);
3788
3789         ret = pci_enable_msix_range(nic->pdev, nic->entries,
3790                                     nic->num_entries, nic->num_entries);
3791         /* We fail init if error or we get less vectors than min required */
3792         if (ret < 0) {
3793                 DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
3794                 kfree(nic->entries);
3795                 swstats->mem_freed += nic->num_entries *
3796                         sizeof(struct msix_entry);
3797                 kfree(nic->s2io_entries);
3798                 swstats->mem_freed += nic->num_entries *
3799                         sizeof(struct s2io_msix_entry);
3800                 nic->entries = NULL;
3801                 nic->s2io_entries = NULL;
3802                 return -ENOMEM;
3803         }
3804
3805         /*
3806          * To enable MSI-X, MSI also needs to be enabled, due to a bug
3807          * in the herc NIC. (Temp change, needs to be removed later)
3808          */
3809         pci_read_config_word(nic->pdev, 0x42, &msi_control);
3810         msi_control |= 0x1; /* Enable MSI */
3811         pci_write_config_word(nic->pdev, 0x42, msi_control);
3812
3813         return 0;
3814 }
3815
3816 /* Handle software interrupt used during MSI(X) test */
3817 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3818 {
3819         struct s2io_nic *sp = dev_id;
3820
3821         sp->msi_detected = 1;
3822         wake_up(&sp->msi_wait);
3823
3824         return IRQ_HANDLED;
3825 }
3826
3827 /* Test interrupt path by forcing a a software IRQ */
3828 static int s2io_test_msi(struct s2io_nic *sp)
3829 {
3830         struct pci_dev *pdev = sp->pdev;
3831         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3832         int err;
3833         u64 val64, saved64;
3834
3835         err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3836                           sp->name, sp);
3837         if (err) {
3838                 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3839                           sp->dev->name, pci_name(pdev), pdev->irq);
3840                 return err;
3841         }
3842
3843         init_waitqueue_head(&sp->msi_wait);
3844         sp->msi_detected = 0;
3845
3846         saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3847         val64 |= SCHED_INT_CTRL_ONE_SHOT;
3848         val64 |= SCHED_INT_CTRL_TIMER_EN;
3849         val64 |= SCHED_INT_CTRL_INT2MSI(1);
3850         writeq(val64, &bar0->scheduled_int_ctrl);
3851
3852         wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3853
3854         if (!sp->msi_detected) {
3855                 /* MSI(X) test failed, go back to INTx mode */
3856                 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3857                           "using MSI(X) during test\n",
3858                           sp->dev->name, pci_name(pdev));
3859
3860                 err = -EOPNOTSUPP;
3861         }
3862
3863         free_irq(sp->entries[1].vector, sp);
3864
3865         writeq(saved64, &bar0->scheduled_int_ctrl);
3866
3867         return err;
3868 }
3869
3870 static void remove_msix_isr(struct s2io_nic *sp)
3871 {
3872         int i;
3873         u16 msi_control;
3874
3875         for (i = 0; i < sp->num_entries; i++) {
3876                 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
3877                         int vector = sp->entries[i].vector;
3878                         void *arg = sp->s2io_entries[i].arg;
3879                         free_irq(vector, arg);
3880                 }
3881         }
3882
3883         kfree(sp->entries);
3884         kfree(sp->s2io_entries);
3885         sp->entries = NULL;
3886         sp->s2io_entries = NULL;
3887
3888         pci_read_config_word(sp->pdev, 0x42, &msi_control);
3889         msi_control &= 0xFFFE; /* Disable MSI */
3890         pci_write_config_word(sp->pdev, 0x42, msi_control);
3891
3892         pci_disable_msix(sp->pdev);
3893 }
3894
3895 static void remove_inta_isr(struct s2io_nic *sp)
3896 {
3897         free_irq(sp->pdev->irq, sp->dev);
3898 }
3899
3900 /* ********************************************************* *
3901  * Functions defined below concern the OS part of the driver *
3902  * ********************************************************* */
3903
3904 /**
3905  *  s2io_open - open entry point of the driver
3906  *  @dev : pointer to the device structure.
3907  *  Description:
3908  *  This function is the open entry point of the driver. It mainly calls a
3909  *  function to allocate Rx buffers and inserts them into the buffer
3910  *  descriptors and then enables the Rx part of the NIC.
3911  *  Return value:
3912  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3913  *   file on failure.
3914  */
3915
3916 static int s2io_open(struct net_device *dev)
3917 {
3918         struct s2io_nic *sp = netdev_priv(dev);
3919         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
3920         int err = 0;
3921
3922         /*
3923          * Make sure you have link off by default every time
3924          * Nic is initialized
3925          */
3926         netif_carrier_off(dev);
3927         sp->last_link_state = 0;
3928
3929         /* Initialize H/W and enable interrupts */
3930         err = s2io_card_up(sp);
3931         if (err) {
3932                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3933                           dev->name);
3934                 goto hw_init_failed;
3935         }
3936
3937         if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3938                 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3939                 s2io_card_down(sp);
3940                 err = -ENODEV;
3941                 goto hw_init_failed;
3942         }
3943         s2io_start_all_tx_queue(sp);
3944         return 0;
3945
3946 hw_init_failed:
3947         if (sp->config.intr_type == MSI_X) {
3948                 if (sp->entries) {
3949                         kfree(sp->entries);
3950                         swstats->mem_freed += sp->num_entries *
3951                                 sizeof(struct msix_entry);
3952                 }
3953                 if (sp->s2io_entries) {
3954                         kfree(sp->s2io_entries);
3955                         swstats->mem_freed += sp->num_entries *
3956                                 sizeof(struct s2io_msix_entry);
3957                 }
3958         }
3959         return err;
3960 }
3961
3962 /**
3963  *  s2io_close -close entry point of the driver
3964  *  @dev : device pointer.
3965  *  Description:
3966  *  This is the stop entry point of the driver. It needs to undo exactly
3967  *  whatever was done by the open entry point,thus it's usually referred to
3968  *  as the close function.Among other things this function mainly stops the
3969  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3970  *  Return value:
3971  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3972  *  file on failure.
3973  */
3974
3975 static int s2io_close(struct net_device *dev)
3976 {
3977         struct s2io_nic *sp = netdev_priv(dev);
3978         struct config_param *config = &sp->config;
3979         u64 tmp64;
3980         int offset;
3981
3982         /* Return if the device is already closed               *
3983          *  Can happen when s2io_card_up failed in change_mtu    *
3984          */
3985         if (!is_s2io_card_up(sp))
3986                 return 0;
3987
3988         s2io_stop_all_tx_queue(sp);
3989         /* delete all populated mac entries */
3990         for (offset = 1; offset < config->max_mc_addr; offset++) {
3991                 tmp64 = do_s2io_read_unicast_mc(sp, offset);
3992                 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
3993                         do_s2io_delete_unicast_mc(sp, tmp64);
3994         }
3995
3996         s2io_card_down(sp);
3997
3998         return 0;
3999 }
4000
4001 /**
4002  *  s2io_xmit - Tx entry point of te driver
4003  *  @skb : the socket buffer containing the Tx data.
4004  *  @dev : device pointer.
4005  *  Description :
4006  *  This function is the Tx entry point of the driver. S2IO NIC supports
4007  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
4008  *  NOTE: when device can't queue the pkt,just the trans_start variable will
4009  *  not be upadted.
4010  *  Return value:
4011  *  0 on success & 1 on failure.
4012  */
4013
4014 static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4015 {
4016         struct s2io_nic *sp = netdev_priv(dev);
4017         u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4018         register u64 val64;
4019         struct TxD *txdp;
4020         struct TxFIFO_element __iomem *tx_fifo;
4021         unsigned long flags = 0;
4022         u16 vlan_tag = 0;
4023         struct fifo_info *fifo = NULL;
4024         int do_spin_lock = 1;
4025         int offload_type;
4026         int enable_per_list_interrupt = 0;
4027         struct config_param *config = &sp->config;
4028         struct mac_info *mac_control = &sp->mac_control;
4029         struct stat_block *stats = mac_control->stats_info;
4030         struct swStat *swstats = &stats->sw_stat;
4031
4032         DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4033
4034         if (unlikely(skb->len <= 0)) {
4035                 DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
4036                 dev_kfree_skb_any(skb);
4037                 return NETDEV_TX_OK;
4038         }
4039
4040         if (!is_s2io_card_up(sp)) {
4041                 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4042                           dev->name);
4043                 dev_kfree_skb_any(skb);
4044                 return NETDEV_TX_OK;
4045         }
4046
4047         queue = 0;
4048         if (skb_vlan_tag_present(skb))
4049                 vlan_tag = skb_vlan_tag_get(skb);
4050         if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4051                 if (skb->protocol == htons(ETH_P_IP)) {
4052                         struct iphdr *ip;
4053                         struct tcphdr *th;
4054                         ip = ip_hdr(skb);
4055
4056                         if (!ip_is_fragment(ip)) {
4057                                 th = (struct tcphdr *)(((unsigned char *)ip) +
4058                                                        ip->ihl*4);
4059
4060                                 if (ip->protocol == IPPROTO_TCP) {
4061                                         queue_len = sp->total_tcp_fifos;
4062                                         queue = (ntohs(th->source) +
4063                                                  ntohs(th->dest)) &
4064                                                 sp->fifo_selector[queue_len - 1];
4065                                         if (queue >= queue_len)
4066                                                 queue = queue_len - 1;
4067                                 } else if (ip->protocol == IPPROTO_UDP) {
4068                                         queue_len = sp->total_udp_fifos;
4069                                         queue = (ntohs(th->source) +
4070                                                  ntohs(th->dest)) &
4071                                                 sp->fifo_selector[queue_len - 1];
4072                                         if (queue >= queue_len)
4073                                                 queue = queue_len - 1;
4074                                         queue += sp->udp_fifo_idx;
4075                                         if (skb->len > 1024)
4076                                                 enable_per_list_interrupt = 1;
4077                                         do_spin_lock = 0;
4078                                 }
4079                         }
4080                 }
4081         } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4082                 /* get fifo number based on skb->priority value */
4083                 queue = config->fifo_mapping
4084                         [skb->priority & (MAX_TX_FIFOS - 1)];
4085         fifo = &mac_control->fifos[queue];
4086
4087         if (do_spin_lock)
4088                 spin_lock_irqsave(&fifo->tx_lock, flags);
4089         else {
4090                 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4091                         return NETDEV_TX_LOCKED;
4092         }
4093
4094         if (sp->config.multiq) {
4095                 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4096                         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4097                         return NETDEV_TX_BUSY;
4098                 }
4099         } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4100                 if (netif_queue_stopped(dev)) {
4101                         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4102                         return NETDEV_TX_BUSY;
4103                 }
4104         }
4105
4106         put_off = (u16)fifo->tx_curr_put_info.offset;
4107         get_off = (u16)fifo->tx_curr_get_info.offset;
4108         txdp = fifo->list_info[put_off].list_virt_addr;
4109
4110         queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4111         /* Avoid "put" pointer going beyond "get" pointer */
4112         if (txdp->Host_Control ||
4113             ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4114                 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4115                 s2io_stop_tx_queue(sp, fifo->fifo_no);
4116                 dev_kfree_skb_any(skb);
4117                 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4118                 return NETDEV_TX_OK;
4119         }
4120
4121         offload_type = s2io_offload_type(skb);
4122         if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4123                 txdp->Control_1 |= TXD_TCP_LSO_EN;
4124                 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4125         }
4126         if (skb->ip_summed == CHECKSUM_PARTIAL) {
4127                 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4128                                     TXD_TX_CKO_TCP_EN |
4129                                     TXD_TX_CKO_UDP_EN);
4130         }
4131         txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4132         txdp->Control_1 |= TXD_LIST_OWN_XENA;
4133         txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4134         if (enable_per_list_interrupt)
4135                 if (put_off & (queue_len >> 5))
4136                         txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4137         if (vlan_tag) {
4138                 txdp->Control_2 |= TXD_VLAN_ENABLE;
4139                 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4140         }
4141
4142         frg_len = skb_headlen(skb);
4143         if (offload_type == SKB_GSO_UDP) {
4144                 int ufo_size;
4145
4146                 ufo_size = s2io_udp_mss(skb);
4147                 ufo_size &= ~7;
4148                 txdp->Control_1 |= TXD_UFO_EN;
4149                 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4150                 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4151 #ifdef __BIG_ENDIAN
4152                 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4153                 fifo->ufo_in_band_v[put_off] =
4154                         (__force u64)skb_shinfo(skb)->ip6_frag_id;
4155 #else
4156                 fifo->ufo_in_band_v[put_off] =
4157                         (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4158 #endif
4159                 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4160                 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4161                                                       fifo->ufo_in_band_v,
4162                                                       sizeof(u64),
4163                                                       PCI_DMA_TODEVICE);
4164                 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4165                         goto pci_map_failed;
4166                 txdp++;
4167         }
4168
4169         txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4170                                               frg_len, PCI_DMA_TODEVICE);
4171         if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4172                 goto pci_map_failed;
4173
4174         txdp->Host_Control = (unsigned long)skb;
4175         txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4176         if (offload_type == SKB_GSO_UDP)
4177                 txdp->Control_1 |= TXD_UFO_EN;
4178
4179         frg_cnt = skb_shinfo(skb)->nr_frags;
4180         /* For fragmented SKB. */
4181         for (i = 0; i < frg_cnt; i++) {
4182                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4183                 /* A '0' length fragment will be ignored */
4184                 if (!skb_frag_size(frag))
4185                         continue;
4186                 txdp++;
4187                 txdp->Buffer_Pointer = (u64)skb_frag_dma_map(&sp->pdev->dev,
4188                                                              frag, 0,
4189                                                              skb_frag_size(frag),
4190                                                              DMA_TO_DEVICE);
4191                 txdp->Control_1 = TXD_BUFFER0_SIZE(skb_frag_size(frag));
4192                 if (offload_type == SKB_GSO_UDP)
4193                         txdp->Control_1 |= TXD_UFO_EN;
4194         }
4195         txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4196
4197         if (offload_type == SKB_GSO_UDP)
4198                 frg_cnt++; /* as Txd0 was used for inband header */
4199
4200         tx_fifo = mac_control->tx_FIFO_start[queue];
4201         val64 = fifo->list_info[put_off].list_phy_addr;
4202         writeq(val64, &tx_fifo->TxDL_Pointer);
4203
4204         val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4205                  TX_FIFO_LAST_LIST);
4206         if (offload_type)
4207                 val64 |= TX_FIFO_SPECIAL_FUNC;
4208
4209         writeq(val64, &tx_fifo->List_Control);
4210
4211         mmiowb();
4212
4213         put_off++;
4214         if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4215                 put_off = 0;
4216         fifo->tx_curr_put_info.offset = put_off;
4217
4218         /* Avoid "put" pointer going beyond "get" pointer */
4219         if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4220                 swstats->fifo_full_cnt++;
4221                 DBG_PRINT(TX_DBG,
4222                           "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4223                           put_off, get_off);
4224                 s2io_stop_tx_queue(sp, fifo->fifo_no);
4225         }
4226         swstats->mem_allocated += skb->truesize;
4227         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4228
4229         if (sp->config.intr_type == MSI_X)
4230                 tx_intr_handler(fifo);
4231
4232         return NETDEV_TX_OK;
4233
4234 pci_map_failed:
4235         swstats->pci_map_fail_cnt++;
4236         s2io_stop_tx_queue(sp, fifo->fifo_no);
4237         swstats->mem_freed += skb->truesize;
4238         dev_kfree_skb_any(skb);
4239         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4240         return NETDEV_TX_OK;
4241 }
4242
4243 static void
4244 s2io_alarm_handle(unsigned long data)
4245 {
4246         struct s2io_nic *sp = (struct s2io_nic *)data;
4247         struct net_device *dev = sp->dev;
4248
4249         s2io_handle_errors(dev);
4250         mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4251 }
4252
4253 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4254 {
4255         struct ring_info *ring = (struct ring_info *)dev_id;
4256         struct s2io_nic *sp = ring->nic;
4257         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4258
4259         if (unlikely(!is_s2io_card_up(sp)))
4260                 return IRQ_HANDLED;
4261
4262         if (sp->config.napi) {
4263                 u8 __iomem *addr = NULL;
4264                 u8 val8 = 0;
4265
4266                 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4267                 addr += (7 - ring->ring_no);
4268                 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4269                 writeb(val8, addr);
4270                 val8 = readb(addr);
4271                 napi_schedule(&ring->napi);
4272         } else {
4273                 rx_intr_handler(ring, 0);
4274                 s2io_chk_rx_buffers(sp, ring);
4275         }
4276
4277         return IRQ_HANDLED;
4278 }
4279
4280 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4281 {
4282         int i;
4283         struct fifo_info *fifos = (struct fifo_info *)dev_id;
4284         struct s2io_nic *sp = fifos->nic;
4285         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4286         struct config_param *config  = &sp->config;
4287         u64 reason;
4288
4289         if (unlikely(!is_s2io_card_up(sp)))
4290                 return IRQ_NONE;
4291
4292         reason = readq(&bar0->general_int_status);
4293         if (unlikely(reason == S2IO_MINUS_ONE))
4294                 /* Nothing much can be done. Get out */
4295                 return IRQ_HANDLED;
4296
4297         if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4298                 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4299
4300                 if (reason & GEN_INTR_TXPIC)
4301                         s2io_txpic_intr_handle(sp);
4302
4303                 if (reason & GEN_INTR_TXTRAFFIC)
4304                         writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4305
4306                 for (i = 0; i < config->tx_fifo_num; i++)
4307                         tx_intr_handler(&fifos[i]);
4308
4309                 writeq(sp->general_int_mask, &bar0->general_int_mask);
4310                 readl(&bar0->general_int_status);
4311                 return IRQ_HANDLED;
4312         }
4313         /* The interrupt was not raised by us */
4314         return IRQ_NONE;
4315 }
4316
4317 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4318 {
4319         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4320         u64 val64;
4321
4322         val64 = readq(&bar0->pic_int_status);
4323         if (val64 & PIC_INT_GPIO) {
4324                 val64 = readq(&bar0->gpio_int_reg);
4325                 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4326                     (val64 & GPIO_INT_REG_LINK_UP)) {
4327                         /*
4328                          * This is unstable state so clear both up/down
4329                          * interrupt and adapter to re-evaluate the link state.
4330                          */
4331                         val64 |= GPIO_INT_REG_LINK_DOWN;
4332                         val64 |= GPIO_INT_REG_LINK_UP;
4333                         writeq(val64, &bar0->gpio_int_reg);
4334                         val64 = readq(&bar0->gpio_int_mask);
4335                         val64 &= ~(GPIO_INT_MASK_LINK_UP |
4336                                    GPIO_INT_MASK_LINK_DOWN);
4337                         writeq(val64, &bar0->gpio_int_mask);
4338                 } else if (val64 & GPIO_INT_REG_LINK_UP) {
4339                         val64 = readq(&bar0->adapter_status);
4340                         /* Enable Adapter */
4341                         val64 = readq(&bar0->adapter_control);
4342                         val64 |= ADAPTER_CNTL_EN;
4343                         writeq(val64, &bar0->adapter_control);
4344                         val64 |= ADAPTER_LED_ON;
4345                         writeq(val64, &bar0->adapter_control);
4346                         if (!sp->device_enabled_once)
4347                                 sp->device_enabled_once = 1;
4348
4349                         s2io_link(sp, LINK_UP);
4350                         /*
4351                          * unmask link down interrupt and mask link-up
4352                          * intr
4353                          */
4354                         val64 = readq(&bar0->gpio_int_mask);
4355                         val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4356                         val64 |= GPIO_INT_MASK_LINK_UP;
4357                         writeq(val64, &bar0->gpio_int_mask);
4358
4359                 } else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4360                         val64 = readq(&bar0->adapter_status);
4361                         s2io_link(sp, LINK_DOWN);
4362                         /* Link is down so unmaks link up interrupt */
4363                         val64 = readq(&bar0->gpio_int_mask);
4364                         val64 &= ~GPIO_INT_MASK_LINK_UP;
4365                         val64 |= GPIO_INT_MASK_LINK_DOWN;
4366                         writeq(val64, &bar0->gpio_int_mask);
4367
4368                         /* turn off LED */
4369                         val64 = readq(&bar0->adapter_control);
4370                         val64 = val64 & (~ADAPTER_LED_ON);
4371                         writeq(val64, &bar0->adapter_control);
4372                 }
4373         }
4374         val64 = readq(&bar0->gpio_int_mask);
4375 }
4376
4377 /**
4378  *  do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4379  *  @value: alarm bits
4380  *  @addr: address value
4381  *  @cnt: counter variable
4382  *  Description: Check for alarm and increment the counter
4383  *  Return Value:
4384  *  1 - if alarm bit set
4385  *  0 - if alarm bit is not set
4386  */
4387 static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4388                                  unsigned long long *cnt)
4389 {
4390         u64 val64;
4391         val64 = readq(addr);
4392         if (val64 & value) {
4393                 writeq(val64, addr);
4394                 (*cnt)++;
4395                 return 1;
4396         }
4397         return 0;
4398
4399 }
4400
4401 /**
4402  *  s2io_handle_errors - Xframe error indication handler
4403  *  @nic: device private variable
4404  *  Description: Handle alarms such as loss of link, single or
4405  *  double ECC errors, critical and serious errors.
4406  *  Return Value:
4407  *  NONE
4408  */
4409 static void s2io_handle_errors(void *dev_id)
4410 {
4411         struct net_device *dev = (struct net_device *)dev_id;
4412         struct s2io_nic *sp = netdev_priv(dev);
4413         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4414         u64 temp64 = 0, val64 = 0;
4415         int i = 0;
4416
4417         struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4418         struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4419
4420         if (!is_s2io_card_up(sp))
4421                 return;
4422
4423         if (pci_channel_offline(sp->pdev))
4424                 return;
4425
4426         memset(&sw_stat->ring_full_cnt, 0,
4427                sizeof(sw_stat->ring_full_cnt));
4428
4429         /* Handling the XPAK counters update */
4430         if (stats->xpak_timer_count < 72000) {
4431                 /* waiting for an hour */
4432                 stats->xpak_timer_count++;
4433         } else {
4434                 s2io_updt_xpak_counter(dev);
4435                 /* reset the count to zero */
4436                 stats->xpak_timer_count = 0;
4437         }
4438
4439         /* Handling link status change error Intr */
4440         if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4441                 val64 = readq(&bar0->mac_rmac_err_reg);
4442                 writeq(val64, &bar0->mac_rmac_err_reg);
4443                 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4444                         schedule_work(&sp->set_link_task);
4445         }
4446
4447         /* In case of a serious error, the device will be Reset. */
4448         if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4449                                   &sw_stat->serious_err_cnt))
4450                 goto reset;
4451
4452         /* Check for data parity error */
4453         if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4454                                   &sw_stat->parity_err_cnt))
4455                 goto reset;
4456
4457         /* Check for ring full counter */
4458         if (sp->device_type == XFRAME_II_DEVICE) {
4459                 val64 = readq(&bar0->ring_bump_counter1);
4460                 for (i = 0; i < 4; i++) {
4461                         temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4462                         temp64 >>= 64 - ((i+1)*16);
4463                         sw_stat->ring_full_cnt[i] += temp64;
4464                 }
4465
4466                 val64 = readq(&bar0->ring_bump_counter2);
4467                 for (i = 0; i < 4; i++) {
4468                         temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4469                         temp64 >>= 64 - ((i+1)*16);
4470                         sw_stat->ring_full_cnt[i+4] += temp64;
4471                 }
4472         }
4473
4474         val64 = readq(&bar0->txdma_int_status);
4475         /*check for pfc_err*/
4476         if (val64 & TXDMA_PFC_INT) {
4477                 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4478                                           PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4479                                           PFC_PCIX_ERR,
4480                                           &bar0->pfc_err_reg,
4481                                           &sw_stat->pfc_err_cnt))
4482                         goto reset;
4483                 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4484                                       &bar0->pfc_err_reg,
4485                                       &sw_stat->pfc_err_cnt);
4486         }
4487
4488         /*check for tda_err*/
4489         if (val64 & TXDMA_TDA_INT) {
4490                 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4491                                           TDA_SM0_ERR_ALARM |
4492                                           TDA_SM1_ERR_ALARM,
4493                                           &bar0->tda_err_reg,
4494                                           &sw_stat->tda_err_cnt))
4495                         goto reset;
4496                 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4497                                       &bar0->tda_err_reg,
4498                                       &sw_stat->tda_err_cnt);
4499         }
4500         /*check for pcc_err*/
4501         if (val64 & TXDMA_PCC_INT) {
4502                 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4503                                           PCC_N_SERR | PCC_6_COF_OV_ERR |
4504                                           PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4505                                           PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4506                                           PCC_TXB_ECC_DB_ERR,
4507                                           &bar0->pcc_err_reg,
4508                                           &sw_stat->pcc_err_cnt))
4509                         goto reset;
4510                 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4511                                       &bar0->pcc_err_reg,
4512                                       &sw_stat->pcc_err_cnt);
4513         }
4514
4515         /*check for tti_err*/
4516         if (val64 & TXDMA_TTI_INT) {
4517                 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4518                                           &bar0->tti_err_reg,
4519                                           &sw_stat->tti_err_cnt))
4520                         goto reset;
4521                 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4522                                       &bar0->tti_err_reg,
4523                                       &sw_stat->tti_err_cnt);
4524         }
4525
4526         /*check for lso_err*/
4527         if (val64 & TXDMA_LSO_INT) {
4528                 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4529                                           LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4530                                           &bar0->lso_err_reg,
4531                                           &sw_stat->lso_err_cnt))
4532                         goto reset;
4533                 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4534                                       &bar0->lso_err_reg,
4535                                       &sw_stat->lso_err_cnt);
4536         }
4537
4538         /*check for tpa_err*/
4539         if (val64 & TXDMA_TPA_INT) {
4540                 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4541                                           &bar0->tpa_err_reg,
4542                                           &sw_stat->tpa_err_cnt))
4543                         goto reset;
4544                 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4545                                       &bar0->tpa_err_reg,
4546                                       &sw_stat->tpa_err_cnt);
4547         }
4548
4549         /*check for sm_err*/
4550         if (val64 & TXDMA_SM_INT) {
4551                 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4552                                           &bar0->sm_err_reg,
4553                                           &sw_stat->sm_err_cnt))
4554                         goto reset;
4555         }
4556
4557         val64 = readq(&bar0->mac_int_status);
4558         if (val64 & MAC_INT_STATUS_TMAC_INT) {
4559                 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4560                                           &bar0->mac_tmac_err_reg,
4561                                           &sw_stat->mac_tmac_err_cnt))
4562                         goto reset;
4563                 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4564                                       TMAC_DESC_ECC_SG_ERR |
4565                                       TMAC_DESC_ECC_DB_ERR,
4566                                       &bar0->mac_tmac_err_reg,
4567                                       &sw_stat->mac_tmac_err_cnt);
4568         }
4569
4570         val64 = readq(&bar0->xgxs_int_status);
4571         if (val64 & XGXS_INT_STATUS_TXGXS) {
4572                 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4573                                           &bar0->xgxs_txgxs_err_reg,
4574                                           &sw_stat->xgxs_txgxs_err_cnt))
4575                         goto reset;
4576                 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4577                                       &bar0->xgxs_txgxs_err_reg,
4578                                       &sw_stat->xgxs_txgxs_err_cnt);
4579         }
4580
4581         val64 = readq(&bar0->rxdma_int_status);
4582         if (val64 & RXDMA_INT_RC_INT_M) {
4583                 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4584                                           RC_FTC_ECC_DB_ERR |
4585                                           RC_PRCn_SM_ERR_ALARM |
4586                                           RC_FTC_SM_ERR_ALARM,
4587                                           &bar0->rc_err_reg,
4588                                           &sw_stat->rc_err_cnt))
4589                         goto reset;
4590                 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4591                                       RC_FTC_ECC_SG_ERR |
4592                                       RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4593                                       &sw_stat->rc_err_cnt);
4594                 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4595                                           PRC_PCI_AB_WR_Rn |
4596                                           PRC_PCI_AB_F_WR_Rn,
4597                                           &bar0->prc_pcix_err_reg,
4598                                           &sw_stat->prc_pcix_err_cnt))
4599                         goto reset;
4600                 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4601                                       PRC_PCI_DP_WR_Rn |
4602                                       PRC_PCI_DP_F_WR_Rn,
4603                                       &bar0->prc_pcix_err_reg,
4604                                       &sw_stat->prc_pcix_err_cnt);
4605         }
4606
4607         if (val64 & RXDMA_INT_RPA_INT_M) {
4608                 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4609                                           &bar0->rpa_err_reg,
4610                                           &sw_stat->rpa_err_cnt))
4611                         goto reset;
4612                 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4613                                       &bar0->rpa_err_reg,
4614                                       &sw_stat->rpa_err_cnt);
4615         }
4616
4617         if (val64 & RXDMA_INT_RDA_INT_M) {
4618                 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4619                                           RDA_FRM_ECC_DB_N_AERR |
4620                                           RDA_SM1_ERR_ALARM |
4621                                           RDA_SM0_ERR_ALARM |
4622                                           RDA_RXD_ECC_DB_SERR,
4623                                           &bar0->rda_err_reg,
4624                                           &sw_stat->rda_err_cnt))
4625                         goto reset;
4626                 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4627                                       RDA_FRM_ECC_SG_ERR |
4628                                       RDA_MISC_ERR |
4629                                       RDA_PCIX_ERR,
4630                                       &bar0->rda_err_reg,
4631                                       &sw_stat->rda_err_cnt);
4632         }
4633
4634         if (val64 & RXDMA_INT_RTI_INT_M) {
4635                 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4636                                           &bar0->rti_err_reg,
4637                                           &sw_stat->rti_err_cnt))
4638                         goto reset;
4639                 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4640                                       &bar0->rti_err_reg,
4641                                       &sw_stat->rti_err_cnt);
4642         }
4643
4644         val64 = readq(&bar0->mac_int_status);
4645         if (val64 & MAC_INT_STATUS_RMAC_INT) {
4646                 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4647                                           &bar0->mac_rmac_err_reg,
4648                                           &sw_stat->mac_rmac_err_cnt))
4649                         goto reset;
4650                 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4651                                       RMAC_SINGLE_ECC_ERR |
4652                                       RMAC_DOUBLE_ECC_ERR,
4653                                       &bar0->mac_rmac_err_reg,
4654                                       &sw_stat->mac_rmac_err_cnt);
4655         }
4656
4657         val64 = readq(&bar0->xgxs_int_status);
4658         if (val64 & XGXS_INT_STATUS_RXGXS) {
4659                 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4660                                           &bar0->xgxs_rxgxs_err_reg,
4661                                           &sw_stat->xgxs_rxgxs_err_cnt))
4662                         goto reset;
4663         }
4664
4665         val64 = readq(&bar0->mc_int_status);
4666         if (val64 & MC_INT_STATUS_MC_INT) {
4667                 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4668                                           &bar0->mc_err_reg,
4669                                           &sw_stat->mc_err_cnt))
4670                         goto reset;
4671
4672                 /* Handling Ecc errors */
4673                 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4674                         writeq(val64, &bar0->mc_err_reg);
4675                         if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4676                                 sw_stat->double_ecc_errs++;
4677                                 if (sp->device_type != XFRAME_II_DEVICE) {
4678                                         /*
4679                                          * Reset XframeI only if critical error
4680                                          */
4681                                         if (val64 &
4682                                             (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4683                                              MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4684                                                 goto reset;
4685                                 }
4686                         } else
4687                                 sw_stat->single_ecc_errs++;
4688                 }
4689         }
4690         return;
4691
4692 reset:
4693         s2io_stop_all_tx_queue(sp);
4694         schedule_work(&sp->rst_timer_task);
4695         sw_stat->soft_reset_cnt++;
4696 }
4697
4698 /**
4699  *  s2io_isr - ISR handler of the device .
4700  *  @irq: the irq of the device.
4701  *  @dev_id: a void pointer to the dev structure of the NIC.
4702  *  Description:  This function is the ISR handler of the device. It
4703  *  identifies the reason for the interrupt and calls the relevant
4704  *  service routines. As a contongency measure, this ISR allocates the
4705  *  recv buffers, if their numbers are below the panic value which is
4706  *  presently set to 25% of the original number of rcv buffers allocated.
4707  *  Return value:
4708  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4709  *   IRQ_NONE: will be returned if interrupt is not from our device
4710  */
4711 static irqreturn_t s2io_isr(int irq, void *dev_id)
4712 {
4713         struct net_device *dev = (struct net_device *)dev_id;
4714         struct s2io_nic *sp = netdev_priv(dev);
4715         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4716         int i;
4717         u64 reason = 0;
4718         struct mac_info *mac_control;
4719         struct config_param *config;
4720
4721         /* Pretend we handled any irq's from a disconnected card */
4722         if (pci_channel_offline(sp->pdev))
4723                 return IRQ_NONE;
4724
4725         if (!is_s2io_card_up(sp))
4726                 return IRQ_NONE;
4727
4728         config = &sp->config;
4729         mac_control = &sp->mac_control;
4730
4731         /*
4732          * Identify the cause for interrupt and call the appropriate
4733          * interrupt handler. Causes for the interrupt could be;
4734          * 1. Rx of packet.
4735          * 2. Tx complete.
4736          * 3. Link down.
4737          */
4738         reason = readq(&bar0->general_int_status);
4739
4740         if (unlikely(reason == S2IO_MINUS_ONE))
4741                 return IRQ_HANDLED;     /* Nothing much can be done. Get out */
4742
4743         if (reason &
4744             (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
4745                 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4746
4747                 if (config->napi) {
4748                         if (reason & GEN_INTR_RXTRAFFIC) {
4749                                 napi_schedule(&sp->napi);
4750                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4751                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4752                                 readl(&bar0->rx_traffic_int);
4753                         }
4754                 } else {
4755                         /*
4756                          * rx_traffic_int reg is an R1 register, writing all 1's
4757                          * will ensure that the actual interrupt causing bit
4758                          * get's cleared and hence a read can be avoided.
4759                          */
4760                         if (reason & GEN_INTR_RXTRAFFIC)
4761                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4762
4763                         for (i = 0; i < config->rx_ring_num; i++) {
4764                                 struct ring_info *ring = &mac_control->rings[i];
4765
4766                                 rx_intr_handler(ring, 0);
4767                         }
4768                 }
4769
4770                 /*
4771                  * tx_traffic_int reg is an R1 register, writing all 1's
4772                  * will ensure that the actual interrupt causing bit get's
4773                  * cleared and hence a read can be avoided.
4774                  */
4775                 if (reason & GEN_INTR_TXTRAFFIC)
4776                         writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4777
4778                 for (i = 0; i < config->tx_fifo_num; i++)
4779                         tx_intr_handler(&mac_control->fifos[i]);
4780
4781                 if (reason & GEN_INTR_TXPIC)
4782                         s2io_txpic_intr_handle(sp);
4783
4784                 /*
4785                  * Reallocate the buffers from the interrupt handler itself.
4786                  */
4787                 if (!config->napi) {
4788                         for (i = 0; i < config->rx_ring_num; i++) {
4789                                 struct ring_info *ring = &mac_control->rings[i];
4790
4791                                 s2io_chk_rx_buffers(sp, ring);
4792                         }
4793                 }
4794                 writeq(sp->general_int_mask, &bar0->general_int_mask);
4795                 readl(&bar0->general_int_status);
4796
4797                 return IRQ_HANDLED;
4798
4799         } else if (!reason) {
4800                 /* The interrupt was not raised by us */
4801                 return IRQ_NONE;
4802         }
4803
4804         return IRQ_HANDLED;
4805 }
4806
4807 /**
4808  * s2io_updt_stats -
4809  */
4810 static void s2io_updt_stats(struct s2io_nic *sp)
4811 {
4812         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4813         u64 val64;
4814         int cnt = 0;
4815
4816         if (is_s2io_card_up(sp)) {
4817                 /* Apprx 30us on a 133 MHz bus */
4818                 val64 = SET_UPDT_CLICKS(10) |
4819                         STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4820                 writeq(val64, &bar0->stat_cfg);
4821                 do {
4822                         udelay(100);
4823                         val64 = readq(&bar0->stat_cfg);
4824                         if (!(val64 & s2BIT(0)))
4825                                 break;
4826                         cnt++;
4827                         if (cnt == 5)
4828                                 break; /* Updt failed */
4829                 } while (1);
4830         }
4831 }
4832
4833 /**
4834  *  s2io_get_stats - Updates the device statistics structure.
4835  *  @dev : pointer to the device structure.
4836  *  Description:
4837  *  This function updates the device statistics structure in the s2io_nic
4838  *  structure and returns a pointer to the same.
4839  *  Return value:
4840  *  pointer to the updated net_device_stats structure.
4841  */
4842 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4843 {
4844         struct s2io_nic *sp = netdev_priv(dev);
4845         struct mac_info *mac_control = &sp->mac_control;
4846         struct stat_block *stats = mac_control->stats_info;
4847         u64 delta;
4848
4849         /* Configure Stats for immediate updt */
4850         s2io_updt_stats(sp);
4851
4852         /* A device reset will cause the on-adapter statistics to be zero'ed.
4853          * This can be done while running by changing the MTU.  To prevent the
4854          * system from having the stats zero'ed, the driver keeps a copy of the
4855          * last update to the system (which is also zero'ed on reset).  This
4856          * enables the driver to accurately know the delta between the last
4857          * update and the current update.
4858          */
4859         delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
4860                 le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets;
4861         sp->stats.rx_packets += delta;
4862         dev->stats.rx_packets += delta;
4863
4864         delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 |
4865                 le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets;
4866         sp->stats.tx_packets += delta;
4867         dev->stats.tx_packets += delta;
4868
4869         delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
4870                 le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes;
4871         sp->stats.rx_bytes += delta;
4872         dev->stats.rx_bytes += delta;
4873
4874         delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
4875                 le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes;
4876         sp->stats.tx_bytes += delta;
4877         dev->stats.tx_bytes += delta;
4878
4879         delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors;
4880         sp->stats.rx_errors += delta;
4881         dev->stats.rx_errors += delta;
4882
4883         delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
4884                 le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors;
4885         sp->stats.tx_errors += delta;
4886         dev->stats.tx_errors += delta;
4887
4888         delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped;
4889         sp->stats.rx_dropped += delta;
4890         dev->stats.rx_dropped += delta;
4891
4892         delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped;
4893         sp->stats.tx_dropped += delta;
4894         dev->stats.tx_dropped += delta;
4895
4896         /* The adapter MAC interprets pause frames as multicast packets, but
4897          * does not pass them up.  This erroneously increases the multicast
4898          * packet count and needs to be deducted when the multicast frame count
4899          * is queried.
4900          */
4901         delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
4902                 le32_to_cpu(stats->rmac_vld_mcst_frms);
4903         delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms);
4904         delta -= sp->stats.multicast;
4905         sp->stats.multicast += delta;
4906         dev->stats.multicast += delta;
4907
4908         delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
4909                 le32_to_cpu(stats->rmac_usized_frms)) +
4910                 le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors;
4911         sp->stats.rx_length_errors += delta;
4912         dev->stats.rx_length_errors += delta;
4913
4914         delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors;
4915         sp->stats.rx_crc_errors += delta;
4916         dev->stats.rx_crc_errors += delta;
4917
4918         return &dev->stats;
4919 }
4920
4921 /**
4922  *  s2io_set_multicast - entry point for multicast address enable/disable.
4923  *  @dev : pointer to the device structure
4924  *  Description:
4925  *  This function is a driver entry point which gets called by the kernel
4926  *  whenever multicast addresses must be enabled/disabled. This also gets
4927  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4928  *  determine, if multicast address must be enabled or if promiscuous mode
4929  *  is to be disabled etc.
4930  *  Return value:
4931  *  void.
4932  */
4933
4934 static void s2io_set_multicast(struct net_device *dev)
4935 {
4936         int i, j, prev_cnt;
4937         struct netdev_hw_addr *ha;
4938         struct s2io_nic *sp = netdev_priv(dev);
4939         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4940         u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4941                 0xfeffffffffffULL;
4942         u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4943         void __iomem *add;
4944         struct config_param *config = &sp->config;
4945
4946         if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4947                 /*  Enable all Multicast addresses */
4948                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4949                        &bar0->rmac_addr_data0_mem);
4950                 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4951                        &bar0->rmac_addr_data1_mem);
4952                 val64 = RMAC_ADDR_CMD_MEM_WE |
4953                         RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4954                         RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4955                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4956                 /* Wait till command completes */
4957                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4958                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4959                                       S2IO_BIT_RESET);
4960
4961                 sp->m_cast_flg = 1;
4962                 sp->all_multi_pos = config->max_mc_addr - 1;
4963         } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4964                 /*  Disable all Multicast addresses */
4965                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4966                        &bar0->rmac_addr_data0_mem);
4967                 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4968                        &bar0->rmac_addr_data1_mem);
4969                 val64 = RMAC_ADDR_CMD_MEM_WE |
4970                         RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4971                         RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4972                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4973                 /* Wait till command completes */
4974                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4975                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4976                                       S2IO_BIT_RESET);
4977
4978                 sp->m_cast_flg = 0;
4979                 sp->all_multi_pos = 0;
4980         }
4981
4982         if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4983                 /*  Put the NIC into promiscuous mode */
4984                 add = &bar0->mac_cfg;
4985                 val64 = readq(&bar0->mac_cfg);
4986                 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4987
4988                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4989                 writel((u32)val64, add);
4990                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4991                 writel((u32) (val64 >> 32), (add + 4));
4992
4993                 if (vlan_tag_strip != 1) {
4994                         val64 = readq(&bar0->rx_pa_cfg);
4995                         val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4996                         writeq(val64, &bar0->rx_pa_cfg);
4997                         sp->vlan_strip_flag = 0;
4998                 }
4999
5000                 val64 = readq(&bar0->mac_cfg);
5001                 sp->promisc_flg = 1;
5002                 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5003                           dev->name);
5004         } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5005                 /*  Remove the NIC from promiscuous mode */
5006                 add = &bar0->mac_cfg;
5007                 val64 = readq(&bar0->mac_cfg);
5008                 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5009
5010                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5011                 writel((u32)val64, add);
5012                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5013                 writel((u32) (val64 >> 32), (add + 4));
5014
5015                 if (vlan_tag_strip != 0) {
5016                         val64 = readq(&bar0->rx_pa_cfg);
5017                         val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5018                         writeq(val64, &bar0->rx_pa_cfg);
5019                         sp->vlan_strip_flag = 1;
5020                 }
5021
5022                 val64 = readq(&bar0->mac_cfg);
5023                 sp->promisc_flg = 0;
5024                 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
5025         }
5026
5027         /*  Update individual M_CAST address list */
5028         if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
5029                 if (netdev_mc_count(dev) >
5030                     (config->max_mc_addr - config->max_mac_addr)) {
5031                         DBG_PRINT(ERR_DBG,
5032                                   "%s: No more Rx filters can be added - "
5033                                   "please enable ALL_MULTI instead\n",
5034                                   dev->name);
5035                         return;
5036                 }
5037
5038                 prev_cnt = sp->mc_addr_count;
5039                 sp->mc_addr_count = netdev_mc_count(dev);
5040
5041                 /* Clear out the previous list of Mc in the H/W. */
5042                 for (i = 0; i < prev_cnt; i++) {
5043                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5044                                &bar0->rmac_addr_data0_mem);
5045                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5046                                &bar0->rmac_addr_data1_mem);
5047                         val64 = RMAC_ADDR_CMD_MEM_WE |
5048                                 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5049                                 RMAC_ADDR_CMD_MEM_OFFSET
5050                                 (config->mc_start_offset + i);
5051                         writeq(val64, &bar0->rmac_addr_cmd_mem);
5052
5053                         /* Wait for command completes */
5054                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5055                                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5056                                                   S2IO_BIT_RESET)) {
5057                                 DBG_PRINT(ERR_DBG,
5058                                           "%s: Adding Multicasts failed\n",
5059                                           dev->name);
5060                                 return;
5061                         }
5062                 }
5063
5064                 /* Create the new Rx filter list and update the same in H/W. */
5065                 i = 0;
5066                 netdev_for_each_mc_addr(ha, dev) {
5067                         mac_addr = 0;
5068                         for (j = 0; j < ETH_ALEN; j++) {
5069                                 mac_addr |= ha->addr[j];
5070                                 mac_addr <<= 8;
5071                         }
5072                         mac_addr >>= 8;
5073                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5074                                &bar0->rmac_addr_data0_mem);
5075                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5076                                &bar0->rmac_addr_data1_mem);
5077                         val64 = RMAC_ADDR_CMD_MEM_WE |
5078                                 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5079                                 RMAC_ADDR_CMD_MEM_OFFSET
5080                                 (i + config->mc_start_offset);
5081                         writeq(val64, &bar0->rmac_addr_cmd_mem);
5082
5083                         /* Wait for command completes */
5084                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5085                                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5086                                                   S2IO_BIT_RESET)) {
5087                                 DBG_PRINT(ERR_DBG,
5088                                           "%s: Adding Multicasts failed\n",
5089                                           dev->name);
5090                                 return;
5091                         }
5092                         i++;
5093                 }
5094         }
5095 }
5096
5097 /* read from CAM unicast & multicast addresses and store it in
5098  * def_mac_addr structure
5099  */
5100 static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5101 {
5102         int offset;
5103         u64 mac_addr = 0x0;
5104         struct config_param *config = &sp->config;
5105
5106         /* store unicast & multicast mac addresses */
5107         for (offset = 0; offset < config->max_mc_addr; offset++) {
5108                 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5109                 /* if read fails disable the entry */
5110                 if (mac_addr == FAILURE)
5111                         mac_addr = S2IO_DISABLE_MAC_ENTRY;
5112                 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5113         }
5114 }
5115
5116 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5117 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5118 {
5119         int offset;
5120         struct config_param *config = &sp->config;
5121         /* restore unicast mac address */
5122         for (offset = 0; offset < config->max_mac_addr; offset++)
5123                 do_s2io_prog_unicast(sp->dev,
5124                                      sp->def_mac_addr[offset].mac_addr);
5125
5126         /* restore multicast mac address */
5127         for (offset = config->mc_start_offset;
5128              offset < config->max_mc_addr; offset++)
5129                 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5130 }
5131
5132 /* add a multicast MAC address to CAM */
5133 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5134 {
5135         int i;
5136         u64 mac_addr = 0;
5137         struct config_param *config = &sp->config;
5138
5139         for (i = 0; i < ETH_ALEN; i++) {
5140                 mac_addr <<= 8;
5141                 mac_addr |= addr[i];
5142         }
5143         if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5144                 return SUCCESS;
5145
5146         /* check if the multicast mac already preset in CAM */
5147         for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5148                 u64 tmp64;
5149                 tmp64 = do_s2io_read_unicast_mc(sp, i);
5150                 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5151                         break;
5152
5153                 if (tmp64 == mac_addr)
5154                         return SUCCESS;
5155         }
5156         if (i == config->max_mc_addr) {
5157                 DBG_PRINT(ERR_DBG,
5158                           "CAM full no space left for multicast MAC\n");
5159                 return FAILURE;
5160         }
5161         /* Update the internal structure with this new mac address */
5162         do_s2io_copy_mac_addr(sp, i, mac_addr);
5163
5164         return do_s2io_add_mac(sp, mac_addr, i);
5165 }
5166
5167 /* add MAC address to CAM */
5168 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5169 {
5170         u64 val64;
5171         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5172
5173         writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5174                &bar0->rmac_addr_data0_mem);
5175
5176         val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5177                 RMAC_ADDR_CMD_MEM_OFFSET(off);
5178         writeq(val64, &bar0->rmac_addr_cmd_mem);
5179
5180         /* Wait till command completes */
5181         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5182                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5183                                   S2IO_BIT_RESET)) {
5184                 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5185                 return FAILURE;
5186         }
5187         return SUCCESS;
5188 }
5189 /* deletes a specified unicast/multicast mac entry from CAM */
5190 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5191 {
5192         int offset;
5193         u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5194         struct config_param *config = &sp->config;
5195
5196         for (offset = 1;
5197              offset < config->max_mc_addr; offset++) {
5198                 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5199                 if (tmp64 == addr) {
5200                         /* disable the entry by writing  0xffffffffffffULL */
5201                         if (do_s2io_add_mac(sp, dis_addr, offset) ==  FAILURE)
5202                                 return FAILURE;
5203                         /* store the new mac list from CAM */
5204                         do_s2io_store_unicast_mc(sp);
5205                         return SUCCESS;
5206                 }
5207         }
5208         DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5209                   (unsigned long long)addr);
5210         return FAILURE;
5211 }
5212
5213 /* read mac entries from CAM */
5214 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5215 {
5216         u64 tmp64 = 0xffffffffffff0000ULL, val64;
5217         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5218
5219         /* read mac addr */
5220         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5221                 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5222         writeq(val64, &bar0->rmac_addr_cmd_mem);
5223
5224         /* Wait till command completes */
5225         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5226                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5227                                   S2IO_BIT_RESET)) {
5228                 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5229                 return FAILURE;
5230         }
5231         tmp64 = readq(&bar0->rmac_addr_data0_mem);
5232
5233         return tmp64 >> 16;
5234 }
5235
5236 /**
5237  * s2io_set_mac_addr - driver entry point
5238  */
5239
5240 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5241 {
5242         struct sockaddr *addr = p;
5243
5244         if (!is_valid_ether_addr(addr->sa_data))
5245                 return -EADDRNOTAVAIL;
5246
5247         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5248
5249         /* store the MAC address in CAM */
5250         return do_s2io_prog_unicast(dev, dev->dev_addr);
5251 }
5252 /**
5253  *  do_s2io_prog_unicast - Programs the Xframe mac address
5254  *  @dev : pointer to the device structure.
5255  *  @addr: a uchar pointer to the new mac address which is to be set.
5256  *  Description : This procedure will program the Xframe to receive
5257  *  frames with new Mac Address
5258  *  Return value: SUCCESS on success and an appropriate (-)ve integer
5259  *  as defined in errno.h file on failure.
5260  */
5261
5262 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5263 {
5264         struct s2io_nic *sp = netdev_priv(dev);
5265         register u64 mac_addr = 0, perm_addr = 0;
5266         int i;
5267         u64 tmp64;
5268         struct config_param *config = &sp->config;
5269
5270         /*
5271          * Set the new MAC address as the new unicast filter and reflect this
5272          * change on the device address registered with the OS. It will be
5273          * at offset 0.
5274          */
5275         for (i = 0; i < ETH_ALEN; i++) {
5276                 mac_addr <<= 8;
5277                 mac_addr |= addr[i];
5278                 perm_addr <<= 8;
5279                 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5280         }
5281
5282         /* check if the dev_addr is different than perm_addr */
5283         if (mac_addr == perm_addr)
5284                 return SUCCESS;
5285
5286         /* check if the mac already preset in CAM */
5287         for (i = 1; i < config->max_mac_addr; i++) {
5288                 tmp64 = do_s2io_read_unicast_mc(sp, i);
5289                 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5290                         break;
5291
5292                 if (tmp64 == mac_addr) {
5293                         DBG_PRINT(INFO_DBG,
5294                                   "MAC addr:0x%llx already present in CAM\n",
5295                                   (unsigned long long)mac_addr);
5296                         return SUCCESS;
5297                 }
5298         }
5299         if (i == config->max_mac_addr) {
5300                 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5301                 return FAILURE;
5302         }
5303         /* Update the internal structure with this new mac address */
5304         do_s2io_copy_mac_addr(sp, i, mac_addr);
5305
5306         return do_s2io_add_mac(sp, mac_addr, i);
5307 }
5308
5309 /**
5310  * s2io_ethtool_sset - Sets different link parameters.
5311  * @sp : private member of the device structure, which is a pointer to the
5312  * s2io_nic structure.
5313  * @info: pointer to the structure with parameters given by ethtool to set
5314  * link information.
5315  * Description:
5316  * The function sets different link parameters provided by the user onto
5317  * the NIC.
5318  * Return value:
5319  * 0 on success.
5320  */
5321
5322 static int s2io_ethtool_sset(struct net_device *dev,
5323                              struct ethtool_cmd *info)
5324 {
5325         struct s2io_nic *sp = netdev_priv(dev);
5326         if ((info->autoneg == AUTONEG_ENABLE) ||
5327             (ethtool_cmd_speed(info) != SPEED_10000) ||
5328             (info->duplex != DUPLEX_FULL))
5329                 return -EINVAL;
5330         else {
5331                 s2io_close(sp->dev);
5332                 s2io_open(sp->dev);
5333         }
5334
5335         return 0;
5336 }
5337
5338 /**
5339  * s2io_ethtol_gset - Return link specific information.
5340  * @sp : private member of the device structure, pointer to the
5341  *      s2io_nic structure.
5342  * @info : pointer to the structure with parameters given by ethtool
5343  * to return link information.
5344  * Description:
5345  * Returns link specific information like speed, duplex etc.. to ethtool.
5346  * Return value :
5347  * return 0 on success.
5348  */
5349
5350 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5351 {
5352         struct s2io_nic *sp = netdev_priv(dev);
5353         info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5354         info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5355         info->port = PORT_FIBRE;
5356
5357         /* info->transceiver */
5358         info->transceiver = XCVR_EXTERNAL;
5359
5360         if (netif_carrier_ok(sp->dev)) {
5361                 ethtool_cmd_speed_set(info, SPEED_10000);
5362                 info->duplex = DUPLEX_FULL;
5363         } else {
5364                 ethtool_cmd_speed_set(info, SPEED_UNKNOWN);
5365                 info->duplex = DUPLEX_UNKNOWN;
5366         }
5367
5368         info->autoneg = AUTONEG_DISABLE;
5369         return 0;
5370 }
5371
5372 /**
5373  * s2io_ethtool_gdrvinfo - Returns driver specific information.
5374  * @sp : private member of the device structure, which is a pointer to the
5375  * s2io_nic structure.
5376  * @info : pointer to the structure with parameters given by ethtool to
5377  * return driver information.
5378  * Description:
5379  * Returns driver specefic information like name, version etc.. to ethtool.
5380  * Return value:
5381  *  void
5382  */
5383
5384 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5385                                   struct ethtool_drvinfo *info)
5386 {
5387         struct s2io_nic *sp = netdev_priv(dev);
5388
5389         strlcpy(info->driver, s2io_driver_name, sizeof(info->driver));
5390         strlcpy(info->version, s2io_driver_version, sizeof(info->version));
5391         strlcpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5392 }
5393
5394 /**
5395  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5396  *  @sp: private member of the device structure, which is a pointer to the
5397  *  s2io_nic structure.
5398  *  @regs : pointer to the structure with parameters given by ethtool for
5399  *  dumping the registers.
5400  *  @reg_space: The input argumnet into which all the registers are dumped.
5401  *  Description:
5402  *  Dumps the entire register space of xFrame NIC into the user given
5403  *  buffer area.
5404  * Return value :
5405  * void .
5406  */
5407
5408 static void s2io_ethtool_gregs(struct net_device *dev,
5409                                struct ethtool_regs *regs, void *space)
5410 {
5411         int i;
5412         u64 reg;
5413         u8 *reg_space = (u8 *)space;
5414         struct s2io_nic *sp = netdev_priv(dev);
5415
5416         regs->len = XENA_REG_SPACE;
5417         regs->version = sp->pdev->subsystem_device;
5418
5419         for (i = 0; i < regs->len; i += 8) {
5420                 reg = readq(sp->bar0 + i);
5421                 memcpy((reg_space + i), &reg, 8);
5422         }
5423 }
5424
5425 /*
5426  *  s2io_set_led - control NIC led
5427  */
5428 static void s2io_set_led(struct s2io_nic *sp, bool on)
5429 {
5430         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5431         u16 subid = sp->pdev->subsystem_device;
5432         u64 val64;
5433
5434         if ((sp->device_type == XFRAME_II_DEVICE) ||
5435             ((subid & 0xFF) >= 0x07)) {
5436                 val64 = readq(&bar0->gpio_control);
5437                 if (on)
5438                         val64 |= GPIO_CTRL_GPIO_0;
5439                 else
5440                         val64 &= ~GPIO_CTRL_GPIO_0;
5441
5442                 writeq(val64, &bar0->gpio_control);
5443         } else {
5444                 val64 = readq(&bar0->adapter_control);
5445                 if (on)
5446                         val64 |= ADAPTER_LED_ON;
5447                 else
5448                         val64 &= ~ADAPTER_LED_ON;
5449
5450                 writeq(val64, &bar0->adapter_control);
5451         }
5452
5453 }
5454
5455 /**
5456  * s2io_ethtool_set_led - To physically identify the nic on the system.
5457  * @dev : network device
5458  * @state: led setting
5459  *
5460  * Description: Used to physically identify the NIC on the system.
5461  * The Link LED will blink for a time specified by the user for
5462  * identification.
5463  * NOTE: The Link has to be Up to be able to blink the LED. Hence
5464  * identification is possible only if it's link is up.
5465  */
5466
5467 static int s2io_ethtool_set_led(struct net_device *dev,
5468                                 enum ethtool_phys_id_state state)
5469 {
5470         struct s2io_nic *sp = netdev_priv(dev);
5471         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5472         u16 subid = sp->pdev->subsystem_device;
5473
5474         if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
5475                 u64 val64 = readq(&bar0->adapter_control);
5476                 if (!(val64 & ADAPTER_CNTL_EN)) {
5477                         pr_err("Adapter Link down, cannot blink LED\n");
5478                         return -EAGAIN;
5479                 }
5480         }
5481
5482         switch (state) {
5483         case ETHTOOL_ID_ACTIVE:
5484                 sp->adapt_ctrl_org = readq(&bar0->gpio_control);
5485                 return 1;       /* cycle on/off once per second */
5486
5487         case ETHTOOL_ID_ON:
5488                 s2io_set_led(sp, true);
5489                 break;
5490
5491         case ETHTOOL_ID_OFF:
5492                 s2io_set_led(sp, false);
5493                 break;
5494
5495         case ETHTOOL_ID_INACTIVE:
5496                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid))
5497                         writeq(sp->adapt_ctrl_org, &bar0->gpio_control);
5498         }
5499
5500         return 0;
5501 }
5502
5503 static void s2io_ethtool_gringparam(struct net_device *dev,
5504                                     struct ethtool_ringparam *ering)
5505 {
5506         struct s2io_nic *sp = netdev_priv(dev);
5507         int i, tx_desc_count = 0, rx_desc_count = 0;
5508
5509         if (sp->rxd_mode == RXD_MODE_1) {
5510                 ering->rx_max_pending = MAX_RX_DESC_1;
5511                 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5512         } else {
5513                 ering->rx_max_pending = MAX_RX_DESC_2;
5514                 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5515         }
5516
5517         ering->tx_max_pending = MAX_TX_DESC;
5518
5519         for (i = 0; i < sp->config.rx_ring_num; i++)
5520                 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5521         ering->rx_pending = rx_desc_count;
5522         ering->rx_jumbo_pending = rx_desc_count;
5523
5524         for (i = 0; i < sp->config.tx_fifo_num; i++)
5525                 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5526         ering->tx_pending = tx_desc_count;
5527         DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
5528 }
5529
5530 /**
5531  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5532  * @sp : private member of the device structure, which is a pointer to the
5533  *      s2io_nic structure.
5534  * @ep : pointer to the structure with pause parameters given by ethtool.
5535  * Description:
5536  * Returns the Pause frame generation and reception capability of the NIC.
5537  * Return value:
5538  *  void
5539  */
5540 static void s2io_ethtool_getpause_data(struct net_device *dev,
5541                                        struct ethtool_pauseparam *ep)
5542 {
5543         u64 val64;
5544         struct s2io_nic *sp = netdev_priv(dev);
5545         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5546
5547         val64 = readq(&bar0->rmac_pause_cfg);
5548         if (val64 & RMAC_PAUSE_GEN_ENABLE)
5549                 ep->tx_pause = true;
5550         if (val64 & RMAC_PAUSE_RX_ENABLE)
5551                 ep->rx_pause = true;
5552         ep->autoneg = false;
5553 }
5554
5555 /**
5556  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
5557  * @sp : private member of the device structure, which is a pointer to the
5558  *      s2io_nic structure.
5559  * @ep : pointer to the structure with pause parameters given by ethtool.
5560  * Description:
5561  * It can be used to set or reset Pause frame generation or reception
5562  * support of the NIC.
5563  * Return value:
5564  * int, returns 0 on Success
5565  */
5566
5567 static int s2io_ethtool_setpause_data(struct net_device *dev,
5568                                       struct ethtool_pauseparam *ep)
5569 {
5570         u64 val64;
5571         struct s2io_nic *sp = netdev_priv(dev);
5572         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5573
5574         val64 = readq(&bar0->rmac_pause_cfg);
5575         if (ep->tx_pause)
5576                 val64 |= RMAC_PAUSE_GEN_ENABLE;
5577         else
5578                 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5579         if (ep->rx_pause)
5580                 val64 |= RMAC_PAUSE_RX_ENABLE;
5581         else
5582                 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5583         writeq(val64, &bar0->rmac_pause_cfg);
5584         return 0;
5585 }
5586
5587 /**
5588  * read_eeprom - reads 4 bytes of data from user given offset.
5589  * @sp : private member of the device structure, which is a pointer to the
5590  *      s2io_nic structure.
5591  * @off : offset at which the data must be written
5592  * @data : Its an output parameter where the data read at the given
5593  *      offset is stored.
5594  * Description:
5595  * Will read 4 bytes of data from the user given offset and return the
5596  * read data.
5597  * NOTE: Will allow to read only part of the EEPROM visible through the
5598  *   I2C bus.
5599  * Return value:
5600  *  -1 on failure and 0 on success.
5601  */
5602
5603 #define S2IO_DEV_ID             5
5604 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
5605 {
5606         int ret = -1;
5607         u32 exit_cnt = 0;
5608         u64 val64;
5609         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5610
5611         if (sp->device_type == XFRAME_I_DEVICE) {
5612                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5613                         I2C_CONTROL_ADDR(off) |
5614                         I2C_CONTROL_BYTE_CNT(0x3) |
5615                         I2C_CONTROL_READ |
5616                         I2C_CONTROL_CNTL_START;
5617                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5618
5619                 while (exit_cnt < 5) {
5620                         val64 = readq(&bar0->i2c_control);
5621                         if (I2C_CONTROL_CNTL_END(val64)) {
5622                                 *data = I2C_CONTROL_GET_DATA(val64);
5623                                 ret = 0;
5624                                 break;
5625                         }
5626                         msleep(50);
5627                         exit_cnt++;
5628                 }
5629         }
5630
5631         if (sp->device_type == XFRAME_II_DEVICE) {
5632                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5633                         SPI_CONTROL_BYTECNT(0x3) |
5634                         SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5635                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5636                 val64 |= SPI_CONTROL_REQ;
5637                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5638                 while (exit_cnt < 5) {
5639                         val64 = readq(&bar0->spi_control);
5640                         if (val64 & SPI_CONTROL_NACK) {
5641                                 ret = 1;
5642                                 break;
5643                         } else if (val64 & SPI_CONTROL_DONE) {
5644                                 *data = readq(&bar0->spi_data);
5645                                 *data &= 0xffffff;
5646                                 ret = 0;
5647                                 break;
5648                         }
5649                         msleep(50);
5650                         exit_cnt++;
5651                 }
5652         }
5653         return ret;
5654 }
5655
5656 /**
5657  *  write_eeprom - actually writes the relevant part of the data value.
5658  *  @sp : private member of the device structure, which is a pointer to the
5659  *       s2io_nic structure.
5660  *  @off : offset at which the data must be written
5661  *  @data : The data that is to be written
5662  *  @cnt : Number of bytes of the data that are actually to be written into
5663  *  the Eeprom. (max of 3)
5664  * Description:
5665  *  Actually writes the relevant part of the data value into the Eeprom
5666  *  through the I2C bus.
5667  * Return value:
5668  *  0 on success, -1 on failure.
5669  */
5670
5671 static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
5672 {
5673         int exit_cnt = 0, ret = -1;
5674         u64 val64;
5675         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5676
5677         if (sp->device_type == XFRAME_I_DEVICE) {
5678                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5679                         I2C_CONTROL_ADDR(off) |
5680                         I2C_CONTROL_BYTE_CNT(cnt) |
5681                         I2C_CONTROL_SET_DATA((u32)data) |
5682                         I2C_CONTROL_CNTL_START;
5683                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5684
5685                 while (exit_cnt < 5) {
5686                         val64 = readq(&bar0->i2c_control);
5687                         if (I2C_CONTROL_CNTL_END(val64)) {
5688                                 if (!(val64 & I2C_CONTROL_NACK))
5689                                         ret = 0;
5690                                 break;
5691                         }
5692                         msleep(50);
5693                         exit_cnt++;
5694                 }
5695         }
5696
5697         if (sp->device_type == XFRAME_II_DEVICE) {
5698                 int write_cnt = (cnt == 8) ? 0 : cnt;
5699                 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
5700
5701                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5702                         SPI_CONTROL_BYTECNT(write_cnt) |
5703                         SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5704                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5705                 val64 |= SPI_CONTROL_REQ;
5706                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5707                 while (exit_cnt < 5) {
5708                         val64 = readq(&bar0->spi_control);
5709                         if (val64 & SPI_CONTROL_NACK) {
5710                                 ret = 1;
5711                                 break;
5712                         } else if (val64 & SPI_CONTROL_DONE) {
5713                                 ret = 0;
5714                                 break;
5715                         }
5716                         msleep(50);
5717                         exit_cnt++;
5718                 }
5719         }
5720         return ret;
5721 }
5722 static void s2io_vpd_read(struct s2io_nic *nic)
5723 {
5724         u8 *vpd_data;
5725         u8 data;
5726         int i = 0, cnt, len, fail = 0;
5727         int vpd_addr = 0x80;
5728         struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
5729
5730         if (nic->device_type == XFRAME_II_DEVICE) {
5731                 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5732                 vpd_addr = 0x80;
5733         } else {
5734                 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5735                 vpd_addr = 0x50;
5736         }
5737         strcpy(nic->serial_num, "NOT AVAILABLE");
5738
5739         vpd_data = kmalloc(256, GFP_KERNEL);
5740         if (!vpd_data) {
5741                 swstats->mem_alloc_fail_cnt++;
5742                 return;
5743         }
5744         swstats->mem_allocated += 256;
5745
5746         for (i = 0; i < 256; i += 4) {
5747                 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5748                 pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5749                 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5750                 for (cnt = 0; cnt < 5; cnt++) {
5751                         msleep(2);
5752                         pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5753                         if (data == 0x80)
5754                                 break;
5755                 }
5756                 if (cnt >= 5) {
5757                         DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5758                         fail = 1;
5759                         break;
5760                 }
5761                 pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5762                                       (u32 *)&vpd_data[i]);
5763         }
5764
5765         if (!fail) {
5766                 /* read serial number of adapter */
5767                 for (cnt = 0; cnt < 252; cnt++) {
5768                         if ((vpd_data[cnt] == 'S') &&
5769                             (vpd_data[cnt+1] == 'N')) {
5770                                 len = vpd_data[cnt+2];
5771                                 if (len < min(VPD_STRING_LEN, 256-cnt-2)) {
5772                                         memcpy(nic->serial_num,
5773                                                &vpd_data[cnt + 3],
5774                                                len);
5775                                         memset(nic->serial_num+len,
5776                                                0,
5777                                                VPD_STRING_LEN-len);
5778                                         break;
5779                                 }
5780                         }
5781                 }
5782         }
5783
5784         if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5785                 len = vpd_data[1];
5786                 memcpy(nic->product_name, &vpd_data[3], len);
5787                 nic->product_name[len] = 0;
5788         }
5789         kfree(vpd_data);
5790         swstats->mem_freed += 256;
5791 }
5792
5793 /**
5794  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5795  *  @sp : private member of the device structure, which is a pointer to the
5796  *  s2io_nic structure.
5797  *  @eeprom : pointer to the user level structure provided by ethtool,
5798  *  containing all relevant information.
5799  *  @data_buf : user defined value to be written into Eeprom.
5800  *  Description: Reads the values stored in the Eeprom at given offset
5801  *  for a given length. Stores these values int the input argument data
5802  *  buffer 'data_buf' and returns these to the caller (ethtool.)
5803  *  Return value:
5804  *  int  0 on success
5805  */
5806
5807 static int s2io_ethtool_geeprom(struct net_device *dev,
5808                                 struct ethtool_eeprom *eeprom, u8 * data_buf)
5809 {
5810         u32 i, valid;
5811         u64 data;
5812         struct s2io_nic *sp = netdev_priv(dev);
5813
5814         eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5815
5816         if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5817                 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5818
5819         for (i = 0; i < eeprom->len; i += 4) {
5820                 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5821                         DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5822                         return -EFAULT;
5823                 }
5824                 valid = INV(data);
5825                 memcpy((data_buf + i), &valid, 4);
5826         }
5827         return 0;
5828 }
5829
5830 /**
5831  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5832  *  @sp : private member of the device structure, which is a pointer to the
5833  *  s2io_nic structure.
5834  *  @eeprom : pointer to the user level structure provided by ethtool,
5835  *  containing all relevant information.
5836  *  @data_buf ; user defined value to be written into Eeprom.
5837  *  Description:
5838  *  Tries to write the user provided value in the Eeprom, at the offset
5839  *  given by the user.
5840  *  Return value:
5841  *  0 on success, -EFAULT on failure.
5842  */
5843
5844 static int s2io_ethtool_seeprom(struct net_device *dev,
5845                                 struct ethtool_eeprom *eeprom,
5846                                 u8 *data_buf)
5847 {
5848         int len = eeprom->len, cnt = 0;
5849         u64 valid = 0, data;
5850         struct s2io_nic *sp = netdev_priv(dev);
5851
5852         if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5853                 DBG_PRINT(ERR_DBG,
5854                           "ETHTOOL_WRITE_EEPROM Err: "
5855                           "Magic value is wrong, it is 0x%x should be 0x%x\n",
5856                           (sp->pdev->vendor | (sp->pdev->device << 16)),
5857                           eeprom->magic);
5858                 return -EFAULT;
5859         }
5860
5861         while (len) {
5862                 data = (u32)data_buf[cnt] & 0x000000FF;
5863                 if (data)
5864                         valid = (u32)(data << 24);
5865                 else
5866                         valid = data;
5867
5868                 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5869                         DBG_PRINT(ERR_DBG,
5870                                   "ETHTOOL_WRITE_EEPROM Err: "
5871                                   "Cannot write into the specified offset\n");
5872                         return -EFAULT;
5873                 }
5874                 cnt++;
5875                 len--;
5876         }
5877
5878         return 0;
5879 }
5880
5881 /**
5882  * s2io_register_test - reads and writes into all clock domains.
5883  * @sp : private member of the device structure, which is a pointer to the
5884  * s2io_nic structure.
5885  * @data : variable that returns the result of each of the test conducted b
5886  * by the driver.
5887  * Description:
5888  * Read and write into all clock domains. The NIC has 3 clock domains,
5889  * see that registers in all the three regions are accessible.
5890  * Return value:
5891  * 0 on success.
5892  */
5893
5894 static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
5895 {
5896         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5897         u64 val64 = 0, exp_val;
5898         int fail = 0;
5899
5900         val64 = readq(&bar0->pif_rd_swapper_fb);
5901         if (val64 != 0x123456789abcdefULL) {
5902                 fail = 1;
5903                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
5904         }
5905
5906         val64 = readq(&bar0->rmac_pause_cfg);
5907         if (val64 != 0xc000ffff00000000ULL) {
5908                 fail = 1;
5909                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
5910         }
5911
5912         val64 = readq(&bar0->rx_queue_cfg);
5913         if (sp->device_type == XFRAME_II_DEVICE)
5914                 exp_val = 0x0404040404040404ULL;
5915         else
5916                 exp_val = 0x0808080808080808ULL;
5917         if (val64 != exp_val) {
5918                 fail = 1;
5919                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
5920         }
5921
5922         val64 = readq(&bar0->xgxs_efifo_cfg);
5923         if (val64 != 0x000000001923141EULL) {
5924                 fail = 1;
5925                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
5926         }
5927
5928         val64 = 0x5A5A5A5A5A5A5A5AULL;
5929         writeq(val64, &bar0->xmsi_data);
5930         val64 = readq(&bar0->xmsi_data);
5931         if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5932                 fail = 1;
5933                 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
5934         }
5935
5936         val64 = 0xA5A5A5A5A5A5A5A5ULL;
5937         writeq(val64, &bar0->xmsi_data);
5938         val64 = readq(&bar0->xmsi_data);
5939         if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5940                 fail = 1;
5941                 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
5942         }
5943
5944         *data = fail;
5945         return fail;
5946 }
5947
5948 /**
5949  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5950  * @sp : private member of the device structure, which is a pointer to the
5951  * s2io_nic structure.
5952  * @data:variable that returns the result of each of the test conducted by
5953  * the driver.
5954  * Description:
5955  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5956  * register.
5957  * Return value:
5958  * 0 on success.
5959  */
5960
5961 static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
5962 {
5963         int fail = 0;
5964         u64 ret_data, org_4F0, org_7F0;
5965         u8 saved_4F0 = 0, saved_7F0 = 0;
5966         struct net_device *dev = sp->dev;
5967
5968         /* Test Write Error at offset 0 */
5969         /* Note that SPI interface allows write access to all areas
5970          * of EEPROM. Hence doing all negative testing only for Xframe I.
5971          */
5972         if (sp->device_type == XFRAME_I_DEVICE)
5973                 if (!write_eeprom(sp, 0, 0, 3))
5974                         fail = 1;
5975
5976         /* Save current values at offsets 0x4F0 and 0x7F0 */
5977         if (!read_eeprom(sp, 0x4F0, &org_4F0))
5978                 saved_4F0 = 1;
5979         if (!read_eeprom(sp, 0x7F0, &org_7F0))
5980                 saved_7F0 = 1;
5981
5982         /* Test Write at offset 4f0 */
5983         if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5984                 fail = 1;
5985         if (read_eeprom(sp, 0x4F0, &ret_data))
5986                 fail = 1;
5987
5988         if (ret_data != 0x012345) {
5989                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5990                           "Data written %llx Data read %llx\n",
5991                           dev->name, (unsigned long long)0x12345,
5992                           (unsigned long long)ret_data);
5993                 fail = 1;
5994         }
5995
5996         /* Reset the EEPROM data go FFFF */
5997         write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5998
5999         /* Test Write Request Error at offset 0x7c */
6000         if (sp->device_type == XFRAME_I_DEVICE)
6001                 if (!write_eeprom(sp, 0x07C, 0, 3))
6002                         fail = 1;
6003
6004         /* Test Write Request at offset 0x7f0 */
6005         if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6006                 fail = 1;
6007         if (read_eeprom(sp, 0x7F0, &ret_data))
6008                 fail = 1;
6009
6010         if (ret_data != 0x012345) {
6011                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6012                           "Data written %llx Data read %llx\n",
6013                           dev->name, (unsigned long long)0x12345,
6014                           (unsigned long long)ret_data);
6015                 fail = 1;
6016         }
6017
6018         /* Reset the EEPROM data go FFFF */
6019         write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6020
6021         if (sp->device_type == XFRAME_I_DEVICE) {
6022                 /* Test Write Error at offset 0x80 */
6023                 if (!write_eeprom(sp, 0x080, 0, 3))
6024                         fail = 1;
6025
6026                 /* Test Write Error at offset 0xfc */
6027                 if (!write_eeprom(sp, 0x0FC, 0, 3))
6028                         fail = 1;
6029
6030                 /* Test Write Error at offset 0x100 */
6031                 if (!write_eeprom(sp, 0x100, 0, 3))
6032                         fail = 1;
6033
6034                 /* Test Write Error at offset 4ec */
6035                 if (!write_eeprom(sp, 0x4EC, 0, 3))
6036                         fail = 1;
6037         }
6038
6039         /* Restore values at offsets 0x4F0 and 0x7F0 */
6040         if (saved_4F0)
6041                 write_eeprom(sp, 0x4F0, org_4F0, 3);
6042         if (saved_7F0)
6043                 write_eeprom(sp, 0x7F0, org_7F0, 3);
6044
6045         *data = fail;
6046         return fail;
6047 }
6048
6049 /**
6050  * s2io_bist_test - invokes the MemBist test of the card .
6051  * @sp : private member of the device structure, which is a pointer to the
6052  * s2io_nic structure.
6053  * @data:variable that returns the result of each of the test conducted by
6054  * the driver.
6055  * Description:
6056  * This invokes the MemBist test of the card. We give around
6057  * 2 secs time for the Test to complete. If it's still not complete
6058  * within this peiod, we consider that the test failed.
6059  * Return value:
6060  * 0 on success and -1 on failure.
6061  */
6062
6063 static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
6064 {
6065         u8 bist = 0;
6066         int cnt = 0, ret = -1;
6067
6068         pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6069         bist |= PCI_BIST_START;
6070         pci_write_config_word(sp->pdev, PCI_BIST, bist);
6071
6072         while (cnt < 20) {
6073                 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6074                 if (!(bist & PCI_BIST_START)) {
6075                         *data = (bist & PCI_BIST_CODE_MASK);
6076                         ret = 0;
6077                         break;
6078                 }
6079                 msleep(100);
6080                 cnt++;
6081         }
6082
6083         return ret;
6084 }
6085
6086 /**
6087  * s2io_link_test - verifies the link state of the nic
6088  * @sp ; private member of the device structure, which is a pointer to the
6089  * s2io_nic structure.
6090  * @data: variable that returns the result of each of the test conducted by
6091  * the driver.
6092  * Description:
6093  * The function verifies the link state of the NIC and updates the input
6094  * argument 'data' appropriately.
6095  * Return value:
6096  * 0 on success.
6097  */
6098
6099 static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
6100 {
6101         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6102         u64 val64;
6103
6104         val64 = readq(&bar0->adapter_status);
6105         if (!(LINK_IS_UP(val64)))
6106                 *data = 1;
6107         else
6108                 *data = 0;
6109
6110         return *data;
6111 }
6112
6113 /**
6114  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6115  * @sp: private member of the device structure, which is a pointer to the
6116  * s2io_nic structure.
6117  * @data: variable that returns the result of each of the test
6118  * conducted by the driver.
6119  * Description:
6120  *  This is one of the offline test that tests the read and write
6121  *  access to the RldRam chip on the NIC.
6122  * Return value:
6123  *  0 on success.
6124  */
6125
6126 static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
6127 {
6128         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6129         u64 val64;
6130         int cnt, iteration = 0, test_fail = 0;
6131
6132         val64 = readq(&bar0->adapter_control);
6133         val64 &= ~ADAPTER_ECC_EN;
6134         writeq(val64, &bar0->adapter_control);
6135
6136         val64 = readq(&bar0->mc_rldram_test_ctrl);
6137         val64 |= MC_RLDRAM_TEST_MODE;
6138         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6139
6140         val64 = readq(&bar0->mc_rldram_mrs);
6141         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6142         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6143
6144         val64 |= MC_RLDRAM_MRS_ENABLE;
6145         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6146
6147         while (iteration < 2) {
6148                 val64 = 0x55555555aaaa0000ULL;
6149                 if (iteration == 1)
6150                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6151                 writeq(val64, &bar0->mc_rldram_test_d0);
6152
6153                 val64 = 0xaaaa5a5555550000ULL;
6154                 if (iteration == 1)
6155                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6156                 writeq(val64, &bar0->mc_rldram_test_d1);
6157
6158                 val64 = 0x55aaaaaaaa5a0000ULL;
6159                 if (iteration == 1)
6160                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6161                 writeq(val64, &bar0->mc_rldram_test_d2);
6162
6163                 val64 = (u64) (0x0000003ffffe0100ULL);
6164                 writeq(val64, &bar0->mc_rldram_test_add);
6165
6166                 val64 = MC_RLDRAM_TEST_MODE |
6167                         MC_RLDRAM_TEST_WRITE |
6168                         MC_RLDRAM_TEST_GO;
6169                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6170
6171                 for (cnt = 0; cnt < 5; cnt++) {
6172                         val64 = readq(&bar0->mc_rldram_test_ctrl);
6173                         if (val64 & MC_RLDRAM_TEST_DONE)
6174                                 break;
6175                         msleep(200);
6176                 }
6177
6178                 if (cnt == 5)
6179                         break;
6180
6181                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6182                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6183
6184                 for (cnt = 0; cnt < 5; cnt++) {
6185                         val64 = readq(&bar0->mc_rldram_test_ctrl);
6186                         if (val64 & MC_RLDRAM_TEST_DONE)
6187                                 break;
6188                         msleep(500);
6189                 }
6190
6191                 if (cnt == 5)
6192                         break;
6193
6194                 val64 = readq(&bar0->mc_rldram_test_ctrl);
6195                 if (!(val64 & MC_RLDRAM_TEST_PASS))
6196                         test_fail = 1;
6197
6198                 iteration++;
6199         }
6200
6201         *data = test_fail;
6202
6203         /* Bring the adapter out of test mode */
6204         SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6205
6206         return test_fail;
6207 }
6208
6209 /**
6210  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6211  *  @sp : private member of the device structure, which is a pointer to the
6212  *  s2io_nic structure.
6213  *  @ethtest : pointer to a ethtool command specific structure that will be
6214  *  returned to the user.
6215  *  @data : variable that returns the result of each of the test
6216  * conducted by the driver.
6217  * Description:
6218  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
6219  *  the health of the card.
6220  * Return value:
6221  *  void
6222  */
6223
6224 static void s2io_ethtool_test(struct net_device *dev,
6225                               struct ethtool_test *ethtest,
6226                               uint64_t *data)
6227 {
6228         struct s2io_nic *sp = netdev_priv(dev);
6229         int orig_state = netif_running(sp->dev);
6230
6231         if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6232                 /* Offline Tests. */
6233                 if (orig_state)
6234                         s2io_close(sp->dev);
6235
6236                 if (s2io_register_test(sp, &data[0]))
6237                         ethtest->flags |= ETH_TEST_FL_FAILED;
6238
6239                 s2io_reset(sp);
6240
6241                 if (s2io_rldram_test(sp, &data[3]))
6242                         ethtest->flags |= ETH_TEST_FL_FAILED;
6243
6244                 s2io_reset(sp);
6245
6246                 if (s2io_eeprom_test(sp, &data[1]))
6247                         ethtest->flags |= ETH_TEST_FL_FAILED;
6248
6249                 if (s2io_bist_test(sp, &data[4]))
6250                         ethtest->flags |= ETH_TEST_FL_FAILED;
6251
6252                 if (orig_state)
6253                         s2io_open(sp->dev);
6254
6255                 data[2] = 0;
6256         } else {
6257                 /* Online Tests. */
6258                 if (!orig_state) {
6259                         DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
6260                                   dev->name);
6261                         data[0] = -1;
6262                         data[1] = -1;
6263                         data[2] = -1;
6264                         data[3] = -1;
6265                         data[4] = -1;
6266                 }
6267
6268                 if (s2io_link_test(sp, &data[2]))
6269                         ethtest->flags |= ETH_TEST_FL_FAILED;
6270
6271                 data[0] = 0;
6272                 data[1] = 0;
6273                 data[3] = 0;
6274                 data[4] = 0;
6275         }
6276 }
6277
6278 static void s2io_get_ethtool_stats(struct net_device *dev,
6279                                    struct ethtool_stats *estats,
6280                                    u64 *tmp_stats)
6281 {
6282         int i = 0, k;
6283         struct s2io_nic *sp = netdev_priv(dev);
6284         struct stat_block *stats = sp->mac_control.stats_info;
6285         struct swStat *swstats = &stats->sw_stat;
6286         struct xpakStat *xstats = &stats->xpak_stat;
6287
6288         s2io_updt_stats(sp);
6289         tmp_stats[i++] =
6290                 (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32  |
6291                 le32_to_cpu(stats->tmac_frms);
6292         tmp_stats[i++] =
6293                 (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6294                 le32_to_cpu(stats->tmac_data_octets);
6295         tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
6296         tmp_stats[i++] =
6297                 (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6298                 le32_to_cpu(stats->tmac_mcst_frms);
6299         tmp_stats[i++] =
6300                 (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6301                 le32_to_cpu(stats->tmac_bcst_frms);
6302         tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
6303         tmp_stats[i++] =
6304                 (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6305                 le32_to_cpu(stats->tmac_ttl_octets);
6306         tmp_stats[i++] =
6307                 (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6308                 le32_to_cpu(stats->tmac_ucst_frms);
6309         tmp_stats[i++] =
6310                 (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6311                 le32_to_cpu(stats->tmac_nucst_frms);
6312         tmp_stats[i++] =
6313                 (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6314                 le32_to_cpu(stats->tmac_any_err_frms);
6315         tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6316         tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
6317         tmp_stats[i++] =
6318                 (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6319                 le32_to_cpu(stats->tmac_vld_ip);
6320         tmp_stats[i++] =
6321                 (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6322                 le32_to_cpu(stats->tmac_drop_ip);
6323         tmp_stats[i++] =
6324                 (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6325                 le32_to_cpu(stats->tmac_icmp);
6326         tmp_stats[i++] =
6327                 (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6328                 le32_to_cpu(stats->tmac_rst_tcp);
6329         tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6330         tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6331                 le32_to_cpu(stats->tmac_udp);
6332         tmp_stats[i++] =
6333                 (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6334                 le32_to_cpu(stats->rmac_vld_frms);
6335         tmp_stats[i++] =
6336                 (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6337                 le32_to_cpu(stats->rmac_data_octets);
6338         tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6339         tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
6340         tmp_stats[i++] =
6341                 (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6342                 le32_to_cpu(stats->rmac_vld_mcst_frms);
6343         tmp_stats[i++] =
6344                 (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6345                 le32_to_cpu(stats->rmac_vld_bcst_frms);
6346         tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6347         tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6348         tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6349         tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6350         tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
6351         tmp_stats[i++] =
6352                 (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6353                 le32_to_cpu(stats->rmac_ttl_octets);
6354         tmp_stats[i++] =
6355                 (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6356                 | le32_to_cpu(stats->rmac_accepted_ucst_frms);
6357         tmp_stats[i++] =
6358                 (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6359                 << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
6360         tmp_stats[i++] =
6361                 (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6362                 le32_to_cpu(stats->rmac_discarded_frms);
6363         tmp_stats[i++] =
6364                 (u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6365                 << 32 | le32_to_cpu(stats->rmac_drop_events);
6366         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6367         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
6368         tmp_stats[i++] =
6369                 (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6370                 le32_to_cpu(stats->rmac_usized_frms);
6371         tmp_stats[i++] =
6372                 (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6373                 le32_to_cpu(stats->rmac_osized_frms);
6374         tmp_stats[i++] =
6375                 (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6376                 le32_to_cpu(stats->rmac_frag_frms);
6377         tmp_stats[i++] =
6378                 (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6379                 le32_to_cpu(stats->rmac_jabber_frms);
6380         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6381         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6382         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6383         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6384         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6385         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
6386         tmp_stats[i++] =
6387                 (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6388                 le32_to_cpu(stats->rmac_ip);
6389         tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6390         tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
6391         tmp_stats[i++] =
6392                 (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6393                 le32_to_cpu(stats->rmac_drop_ip);
6394         tmp_stats[i++] =
6395                 (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6396                 le32_to_cpu(stats->rmac_icmp);
6397         tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
6398         tmp_stats[i++] =
6399                 (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6400                 le32_to_cpu(stats->rmac_udp);
6401         tmp_stats[i++] =
6402                 (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6403                 le32_to_cpu(stats->rmac_err_drp_udp);
6404         tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6405         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6406         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6407         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6408         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6409         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6410         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6411         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6412         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6413         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6414         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6415         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6416         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6417         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6418         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6419         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6420         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
6421         tmp_stats[i++] =
6422                 (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6423                 le32_to_cpu(stats->rmac_pause_cnt);
6424         tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6425         tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
6426         tmp_stats[i++] =
6427                 (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6428                 le32_to_cpu(stats->rmac_accepted_ip);
6429         tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6430         tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6431         tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6432         tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6433         tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6434         tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6435         tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6436         tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6437         tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6438         tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6439         tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6440         tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6441         tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6442         tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6443         tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6444         tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6445         tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6446         tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6447         tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
6448
6449         /* Enhanced statistics exist only for Hercules */
6450         if (sp->device_type == XFRAME_II_DEVICE) {
6451                 tmp_stats[i++] =
6452                         le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
6453                 tmp_stats[i++] =
6454                         le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
6455                 tmp_stats[i++] =
6456                         le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6457                 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6458                 tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6459                 tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6460                 tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6461                 tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6462                 tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6463                 tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6464                 tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6465                 tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6466                 tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6467                 tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6468                 tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6469                 tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
6470         }
6471
6472         tmp_stats[i++] = 0;
6473         tmp_stats[i++] = swstats->single_ecc_errs;
6474         tmp_stats[i++] = swstats->double_ecc_errs;
6475         tmp_stats[i++] = swstats->parity_err_cnt;
6476         tmp_stats[i++] = swstats->serious_err_cnt;
6477         tmp_stats[i++] = swstats->soft_reset_cnt;
6478         tmp_stats[i++] = swstats->fifo_full_cnt;
6479         for (k = 0; k < MAX_RX_RINGS; k++)
6480                 tmp_stats[i++] = swstats->ring_full_cnt[k];
6481         tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6482         tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6483         tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6484         tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6485         tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6486         tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6487         tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6488         tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6489         tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6490         tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6491         tmp_stats[i++] = xstats->warn_laser_output_power_high;
6492         tmp_stats[i++] = xstats->warn_laser_output_power_low;
6493         tmp_stats[i++] = swstats->clubbed_frms_cnt;
6494         tmp_stats[i++] = swstats->sending_both;
6495         tmp_stats[i++] = swstats->outof_sequence_pkts;
6496         tmp_stats[i++] = swstats->flush_max_pkts;
6497         if (swstats->num_aggregations) {
6498                 u64 tmp = swstats->sum_avg_pkts_aggregated;
6499                 int count = 0;
6500                 /*
6501                  * Since 64-bit divide does not work on all platforms,
6502                  * do repeated subtraction.
6503                  */
6504                 while (tmp >= swstats->num_aggregations) {
6505                         tmp -= swstats->num_aggregations;
6506                         count++;
6507                 }
6508                 tmp_stats[i++] = count;
6509         } else
6510                 tmp_stats[i++] = 0;
6511         tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6512         tmp_stats[i++] = swstats->pci_map_fail_cnt;
6513         tmp_stats[i++] = swstats->watchdog_timer_cnt;
6514         tmp_stats[i++] = swstats->mem_allocated;
6515         tmp_stats[i++] = swstats->mem_freed;
6516         tmp_stats[i++] = swstats->link_up_cnt;
6517         tmp_stats[i++] = swstats->link_down_cnt;
6518         tmp_stats[i++] = swstats->link_up_time;
6519         tmp_stats[i++] = swstats->link_down_time;
6520
6521         tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6522         tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6523         tmp_stats[i++] = swstats->tx_parity_err_cnt;
6524         tmp_stats[i++] = swstats->tx_link_loss_cnt;
6525         tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6526
6527         tmp_stats[i++] = swstats->rx_parity_err_cnt;
6528         tmp_stats[i++] = swstats->rx_abort_cnt;
6529         tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6530         tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6531         tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6532         tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6533         tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6534         tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6535         tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6536         tmp_stats[i++] = swstats->tda_err_cnt;
6537         tmp_stats[i++] = swstats->pfc_err_cnt;
6538         tmp_stats[i++] = swstats->pcc_err_cnt;
6539         tmp_stats[i++] = swstats->tti_err_cnt;
6540         tmp_stats[i++] = swstats->tpa_err_cnt;
6541         tmp_stats[i++] = swstats->sm_err_cnt;
6542         tmp_stats[i++] = swstats->lso_err_cnt;
6543         tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6544         tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6545         tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6546         tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6547         tmp_stats[i++] = swstats->rc_err_cnt;
6548         tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6549         tmp_stats[i++] = swstats->rpa_err_cnt;
6550         tmp_stats[i++] = swstats->rda_err_cnt;
6551         tmp_stats[i++] = swstats->rti_err_cnt;
6552         tmp_stats[i++] = swstats->mc_err_cnt;
6553 }
6554
6555 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6556 {
6557         return XENA_REG_SPACE;
6558 }
6559
6560
6561 static int s2io_get_eeprom_len(struct net_device *dev)
6562 {
6563         return XENA_EEPROM_SPACE;
6564 }
6565
6566 static int s2io_get_sset_count(struct net_device *dev, int sset)
6567 {
6568         struct s2io_nic *sp = netdev_priv(dev);
6569
6570         switch (sset) {
6571         case ETH_SS_TEST:
6572                 return S2IO_TEST_LEN;
6573         case ETH_SS_STATS:
6574                 switch (sp->device_type) {
6575                 case XFRAME_I_DEVICE:
6576                         return XFRAME_I_STAT_LEN;
6577                 case XFRAME_II_DEVICE:
6578                         return XFRAME_II_STAT_LEN;
6579                 default:
6580                         return 0;
6581                 }
6582         default:
6583                 return -EOPNOTSUPP;
6584         }
6585 }
6586
6587 static void s2io_ethtool_get_strings(struct net_device *dev,
6588                                      u32 stringset, u8 *data)
6589 {
6590         int stat_size = 0;
6591         struct s2io_nic *sp = netdev_priv(dev);
6592
6593         switch (stringset) {
6594         case ETH_SS_TEST:
6595                 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6596                 break;
6597         case ETH_SS_STATS:
6598                 stat_size = sizeof(ethtool_xena_stats_keys);
6599                 memcpy(data, &ethtool_xena_stats_keys, stat_size);
6600                 if (sp->device_type == XFRAME_II_DEVICE) {
6601                         memcpy(data + stat_size,
6602                                &ethtool_enhanced_stats_keys,
6603                                sizeof(ethtool_enhanced_stats_keys));
6604                         stat_size += sizeof(ethtool_enhanced_stats_keys);
6605                 }
6606
6607                 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6608                        sizeof(ethtool_driver_stats_keys));
6609         }
6610 }
6611
6612 static int s2io_set_features(struct net_device *dev, netdev_features_t features)
6613 {
6614         struct s2io_nic *sp = netdev_priv(dev);
6615         netdev_features_t changed = (features ^ dev->features) & NETIF_F_LRO;
6616
6617         if (changed && netif_running(dev)) {
6618                 int rc;
6619
6620                 s2io_stop_all_tx_queue(sp);
6621                 s2io_card_down(sp);
6622                 dev->features = features;
6623                 rc = s2io_card_up(sp);
6624                 if (rc)
6625                         s2io_reset(sp);
6626                 else
6627                         s2io_start_all_tx_queue(sp);
6628
6629                 return rc ? rc : 1;
6630         }
6631
6632         return 0;
6633 }
6634
6635 static const struct ethtool_ops netdev_ethtool_ops = {
6636         .get_settings = s2io_ethtool_gset,
6637         .set_settings = s2io_ethtool_sset,
6638         .get_drvinfo = s2io_ethtool_gdrvinfo,
6639         .get_regs_len = s2io_ethtool_get_regs_len,
6640         .get_regs = s2io_ethtool_gregs,
6641         .get_link = ethtool_op_get_link,
6642         .get_eeprom_len = s2io_get_eeprom_len,
6643         .get_eeprom = s2io_ethtool_geeprom,
6644         .set_eeprom = s2io_ethtool_seeprom,
6645         .get_ringparam = s2io_ethtool_gringparam,
6646         .get_pauseparam = s2io_ethtool_getpause_data,
6647         .set_pauseparam = s2io_ethtool_setpause_data,
6648         .self_test = s2io_ethtool_test,
6649         .get_strings = s2io_ethtool_get_strings,
6650         .set_phys_id = s2io_ethtool_set_led,
6651         .get_ethtool_stats = s2io_get_ethtool_stats,
6652         .get_sset_count = s2io_get_sset_count,
6653 };
6654
6655 /**
6656  *  s2io_ioctl - Entry point for the Ioctl
6657  *  @dev :  Device pointer.
6658  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
6659  *  a proprietary structure used to pass information to the driver.
6660  *  @cmd :  This is used to distinguish between the different commands that
6661  *  can be passed to the IOCTL functions.
6662  *  Description:
6663  *  Currently there are no special functionality supported in IOCTL, hence
6664  *  function always return EOPNOTSUPPORTED
6665  */
6666
6667 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6668 {
6669         return -EOPNOTSUPP;
6670 }
6671
6672 /**
6673  *  s2io_change_mtu - entry point to change MTU size for the device.
6674  *   @dev : device pointer.
6675  *   @new_mtu : the new MTU size for the device.
6676  *   Description: A driver entry point to change MTU size for the device.
6677  *   Before changing the MTU the device must be stopped.
6678  *  Return value:
6679  *   0 on success and an appropriate (-)ve integer as defined in errno.h
6680  *   file on failure.
6681  */
6682
6683 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6684 {
6685         struct s2io_nic *sp = netdev_priv(dev);
6686         int ret = 0;
6687
6688         if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6689                 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
6690                 return -EPERM;
6691         }
6692
6693         dev->mtu = new_mtu;
6694         if (netif_running(dev)) {
6695                 s2io_stop_all_tx_queue(sp);
6696                 s2io_card_down(sp);
6697                 ret = s2io_card_up(sp);
6698                 if (ret) {
6699                         DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6700                                   __func__);
6701                         return ret;
6702                 }
6703                 s2io_wake_all_tx_queue(sp);
6704         } else { /* Device is down */
6705                 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6706                 u64 val64 = new_mtu;
6707
6708                 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6709         }
6710
6711         return ret;
6712 }
6713
6714 /**
6715  * s2io_set_link - Set the LInk status
6716  * @data: long pointer to device private structue
6717  * Description: Sets the link status for the adapter
6718  */
6719
6720 static void s2io_set_link(struct work_struct *work)
6721 {
6722         struct s2io_nic *nic = container_of(work, struct s2io_nic,
6723                                             set_link_task);
6724         struct net_device *dev = nic->dev;
6725         struct XENA_dev_config __iomem *bar0 = nic->bar0;
6726         register u64 val64;
6727         u16 subid;
6728
6729         rtnl_lock();
6730
6731         if (!netif_running(dev))
6732                 goto out_unlock;
6733
6734         if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6735                 /* The card is being reset, no point doing anything */
6736                 goto out_unlock;
6737         }
6738
6739         subid = nic->pdev->subsystem_device;
6740         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6741                 /*
6742                  * Allow a small delay for the NICs self initiated
6743                  * cleanup to complete.
6744                  */
6745                 msleep(100);
6746         }
6747
6748         val64 = readq(&bar0->adapter_status);
6749         if (LINK_IS_UP(val64)) {
6750                 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6751                         if (verify_xena_quiescence(nic)) {
6752                                 val64 = readq(&bar0->adapter_control);
6753                                 val64 |= ADAPTER_CNTL_EN;
6754                                 writeq(val64, &bar0->adapter_control);
6755                                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6756                                             nic->device_type, subid)) {
6757                                         val64 = readq(&bar0->gpio_control);
6758                                         val64 |= GPIO_CTRL_GPIO_0;
6759                                         writeq(val64, &bar0->gpio_control);
6760                                         val64 = readq(&bar0->gpio_control);
6761                                 } else {
6762                                         val64 |= ADAPTER_LED_ON;
6763                                         writeq(val64, &bar0->adapter_control);
6764                                 }
6765                                 nic->device_enabled_once = true;
6766                         } else {
6767                                 DBG_PRINT(ERR_DBG,
6768                                           "%s: Error: device is not Quiescent\n",
6769                                           dev->name);
6770                                 s2io_stop_all_tx_queue(nic);
6771                         }
6772                 }
6773                 val64 = readq(&bar0->adapter_control);
6774                 val64 |= ADAPTER_LED_ON;
6775                 writeq(val64, &bar0->adapter_control);
6776                 s2io_link(nic, LINK_UP);
6777         } else {
6778                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6779                                                       subid)) {
6780                         val64 = readq(&bar0->gpio_control);
6781                         val64 &= ~GPIO_CTRL_GPIO_0;
6782                         writeq(val64, &bar0->gpio_control);
6783                         val64 = readq(&bar0->gpio_control);
6784                 }
6785                 /* turn off LED */
6786                 val64 = readq(&bar0->adapter_control);
6787                 val64 = val64 & (~ADAPTER_LED_ON);
6788                 writeq(val64, &bar0->adapter_control);
6789                 s2io_link(nic, LINK_DOWN);
6790         }
6791         clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6792
6793 out_unlock:
6794         rtnl_unlock();
6795 }
6796
6797 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6798                                   struct buffAdd *ba,
6799                                   struct sk_buff **skb, u64 *temp0, u64 *temp1,
6800                                   u64 *temp2, int size)
6801 {
6802         struct net_device *dev = sp->dev;
6803         struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6804
6805         if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6806                 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6807                 /* allocate skb */
6808                 if (*skb) {
6809                         DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6810                         /*
6811                          * As Rx frame are not going to be processed,
6812                          * using same mapped address for the Rxd
6813                          * buffer pointer
6814                          */
6815                         rxdp1->Buffer0_ptr = *temp0;
6816                 } else {
6817                         *skb = netdev_alloc_skb(dev, size);
6818                         if (!(*skb)) {
6819                                 DBG_PRINT(INFO_DBG,
6820                                           "%s: Out of memory to allocate %s\n",
6821                                           dev->name, "1 buf mode SKBs");
6822                                 stats->mem_alloc_fail_cnt++;
6823                                 return -ENOMEM ;
6824                         }
6825                         stats->mem_allocated += (*skb)->truesize;
6826                         /* storing the mapped addr in a temp variable
6827                          * such it will be used for next rxd whose
6828                          * Host Control is NULL
6829                          */
6830                         rxdp1->Buffer0_ptr = *temp0 =
6831                                 pci_map_single(sp->pdev, (*skb)->data,
6832                                                size - NET_IP_ALIGN,
6833                                                PCI_DMA_FROMDEVICE);
6834                         if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6835                                 goto memalloc_failed;
6836                         rxdp->Host_Control = (unsigned long) (*skb);
6837                 }
6838         } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6839                 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6840                 /* Two buffer Mode */
6841                 if (*skb) {
6842                         rxdp3->Buffer2_ptr = *temp2;
6843                         rxdp3->Buffer0_ptr = *temp0;
6844                         rxdp3->Buffer1_ptr = *temp1;
6845                 } else {
6846                         *skb = netdev_alloc_skb(dev, size);
6847                         if (!(*skb)) {
6848                                 DBG_PRINT(INFO_DBG,
6849                                           "%s: Out of memory to allocate %s\n",
6850                                           dev->name,
6851                                           "2 buf mode SKBs");
6852                                 stats->mem_alloc_fail_cnt++;
6853                                 return -ENOMEM;
6854                         }
6855                         stats->mem_allocated += (*skb)->truesize;
6856                         rxdp3->Buffer2_ptr = *temp2 =
6857                                 pci_map_single(sp->pdev, (*skb)->data,
6858                                                dev->mtu + 4,
6859                                                PCI_DMA_FROMDEVICE);
6860                         if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6861                                 goto memalloc_failed;
6862                         rxdp3->Buffer0_ptr = *temp0 =
6863                                 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6864                                                PCI_DMA_FROMDEVICE);
6865                         if (pci_dma_mapping_error(sp->pdev,
6866                                                   rxdp3->Buffer0_ptr)) {
6867                                 pci_unmap_single(sp->pdev,
6868                                                  (dma_addr_t)rxdp3->Buffer2_ptr,
6869                                                  dev->mtu + 4,
6870                                                  PCI_DMA_FROMDEVICE);
6871                                 goto memalloc_failed;
6872                         }
6873                         rxdp->Host_Control = (unsigned long) (*skb);
6874
6875                         /* Buffer-1 will be dummy buffer not used */
6876                         rxdp3->Buffer1_ptr = *temp1 =
6877                                 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6878                                                PCI_DMA_FROMDEVICE);
6879                         if (pci_dma_mapping_error(sp->pdev,
6880                                                   rxdp3->Buffer1_ptr)) {
6881                                 pci_unmap_single(sp->pdev,
6882                                                  (dma_addr_t)rxdp3->Buffer0_ptr,
6883                                                  BUF0_LEN, PCI_DMA_FROMDEVICE);
6884                                 pci_unmap_single(sp->pdev,
6885                                                  (dma_addr_t)rxdp3->Buffer2_ptr,
6886                                                  dev->mtu + 4,
6887                                                  PCI_DMA_FROMDEVICE);
6888                                 goto memalloc_failed;
6889                         }
6890                 }
6891         }
6892         return 0;
6893
6894 memalloc_failed:
6895         stats->pci_map_fail_cnt++;
6896         stats->mem_freed += (*skb)->truesize;
6897         dev_kfree_skb(*skb);
6898         return -ENOMEM;
6899 }
6900
6901 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6902                                 int size)
6903 {
6904         struct net_device *dev = sp->dev;
6905         if (sp->rxd_mode == RXD_MODE_1) {
6906                 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
6907         } else if (sp->rxd_mode == RXD_MODE_3B) {
6908                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6909                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6910                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
6911         }
6912 }
6913
6914 static  int rxd_owner_bit_reset(struct s2io_nic *sp)
6915 {
6916         int i, j, k, blk_cnt = 0, size;
6917         struct config_param *config = &sp->config;
6918         struct mac_info *mac_control = &sp->mac_control;
6919         struct net_device *dev = sp->dev;
6920         struct RxD_t *rxdp = NULL;
6921         struct sk_buff *skb = NULL;
6922         struct buffAdd *ba = NULL;
6923         u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6924
6925         /* Calculate the size based on ring mode */
6926         size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6927                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6928         if (sp->rxd_mode == RXD_MODE_1)
6929                 size += NET_IP_ALIGN;
6930         else if (sp->rxd_mode == RXD_MODE_3B)
6931                 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6932
6933         for (i = 0; i < config->rx_ring_num; i++) {
6934                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
6935                 struct ring_info *ring = &mac_control->rings[i];
6936
6937                 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
6938
6939                 for (j = 0; j < blk_cnt; j++) {
6940                         for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6941                                 rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
6942                                 if (sp->rxd_mode == RXD_MODE_3B)
6943                                         ba = &ring->ba[j][k];
6944                                 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
6945                                                            &temp0_64,
6946                                                            &temp1_64,
6947                                                            &temp2_64,
6948                                                            size) == -ENOMEM) {
6949                                         return 0;
6950                                 }
6951
6952                                 set_rxd_buffer_size(sp, rxdp, size);
6953                                 dma_wmb();
6954                                 /* flip the Ownership bit to Hardware */
6955                                 rxdp->Control_1 |= RXD_OWN_XENA;
6956                         }
6957                 }
6958         }
6959         return 0;
6960
6961 }
6962
6963 static int s2io_add_isr(struct s2io_nic *sp)
6964 {
6965         int ret = 0;
6966         struct net_device *dev = sp->dev;
6967         int err = 0;
6968
6969         if (sp->config.intr_type == MSI_X)
6970                 ret = s2io_enable_msi_x(sp);
6971         if (ret) {
6972                 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6973                 sp->config.intr_type = INTA;
6974         }
6975
6976         /*
6977          * Store the values of the MSIX table in
6978          * the struct s2io_nic structure
6979          */
6980         store_xmsi_data(sp);
6981
6982         /* After proper initialization of H/W, register ISR */
6983         if (sp->config.intr_type == MSI_X) {
6984                 int i, msix_rx_cnt = 0;
6985
6986                 for (i = 0; i < sp->num_entries; i++) {
6987                         if (sp->s2io_entries[i].in_use == MSIX_FLG) {
6988                                 if (sp->s2io_entries[i].type ==
6989                                     MSIX_RING_TYPE) {
6990                                         snprintf(sp->desc[i],
6991                                                 sizeof(sp->desc[i]),
6992                                                 "%s:MSI-X-%d-RX",
6993                                                 dev->name, i);
6994                                         err = request_irq(sp->entries[i].vector,
6995                                                           s2io_msix_ring_handle,
6996                                                           0,
6997                                                           sp->desc[i],
6998                                                           sp->s2io_entries[i].arg);
6999                                 } else if (sp->s2io_entries[i].type ==
7000                                            MSIX_ALARM_TYPE) {
7001                                         snprintf(sp->desc[i],
7002                                                 sizeof(sp->desc[i]),
7003                                                 "%s:MSI-X-%d-TX",
7004                                                 dev->name, i);
7005                                         err = request_irq(sp->entries[i].vector,
7006                                                           s2io_msix_fifo_handle,
7007                                                           0,
7008                                                           sp->desc[i],
7009                                                           sp->s2io_entries[i].arg);
7010
7011                                 }
7012                                 /* if either data or addr is zero print it. */
7013                                 if (!(sp->msix_info[i].addr &&
7014                                       sp->msix_info[i].data)) {
7015                                         DBG_PRINT(ERR_DBG,
7016                                                   "%s @Addr:0x%llx Data:0x%llx\n",
7017                                                   sp->desc[i],
7018                                                   (unsigned long long)
7019                                                   sp->msix_info[i].addr,
7020                                                   (unsigned long long)
7021                                                   ntohl(sp->msix_info[i].data));
7022                                 } else
7023                                         msix_rx_cnt++;
7024                                 if (err) {
7025                                         remove_msix_isr(sp);
7026
7027                                         DBG_PRINT(ERR_DBG,
7028                                                   "%s:MSI-X-%d registration "
7029                                                   "failed\n", dev->name, i);
7030
7031                                         DBG_PRINT(ERR_DBG,
7032                                                   "%s: Defaulting to INTA\n",
7033                                                   dev->name);
7034                                         sp->config.intr_type = INTA;
7035                                         break;
7036                                 }
7037                                 sp->s2io_entries[i].in_use =
7038                                         MSIX_REGISTERED_SUCCESS;
7039                         }
7040                 }
7041                 if (!err) {
7042                         pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
7043                         DBG_PRINT(INFO_DBG,
7044                                   "MSI-X-TX entries enabled through alarm vector\n");
7045                 }
7046         }
7047         if (sp->config.intr_type == INTA) {
7048                 err = request_irq(sp->pdev->irq, s2io_isr, IRQF_SHARED,
7049                                   sp->name, dev);
7050                 if (err) {
7051                         DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7052                                   dev->name);
7053                         return -1;
7054                 }
7055         }
7056         return 0;
7057 }
7058
7059 static void s2io_rem_isr(struct s2io_nic *sp)
7060 {
7061         if (sp->config.intr_type == MSI_X)
7062                 remove_msix_isr(sp);
7063         else
7064                 remove_inta_isr(sp);
7065 }
7066
7067 static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
7068 {
7069         int cnt = 0;
7070         struct XENA_dev_config __iomem *bar0 = sp->bar0;
7071         register u64 val64 = 0;
7072         struct config_param *config;
7073         config = &sp->config;
7074
7075         if (!is_s2io_card_up(sp))
7076                 return;
7077
7078         del_timer_sync(&sp->alarm_timer);
7079         /* If s2io_set_link task is executing, wait till it completes. */
7080         while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
7081                 msleep(50);
7082         clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7083
7084         /* Disable napi */
7085         if (sp->config.napi) {
7086                 int off = 0;
7087                 if (config->intr_type ==  MSI_X) {
7088                         for (; off < sp->config.rx_ring_num; off++)
7089                                 napi_disable(&sp->mac_control.rings[off].napi);
7090                 }
7091                 else
7092                         napi_disable(&sp->napi);
7093         }
7094
7095         /* disable Tx and Rx traffic on the NIC */
7096         if (do_io)
7097                 stop_nic(sp);
7098
7099         s2io_rem_isr(sp);
7100
7101         /* stop the tx queue, indicate link down */
7102         s2io_link(sp, LINK_DOWN);
7103
7104         /* Check if the device is Quiescent and then Reset the NIC */
7105         while (do_io) {
7106                 /* As per the HW requirement we need to replenish the
7107                  * receive buffer to avoid the ring bump. Since there is
7108                  * no intention of processing the Rx frame at this pointwe are
7109                  * just setting the ownership bit of rxd in Each Rx
7110                  * ring to HW and set the appropriate buffer size
7111                  * based on the ring mode
7112                  */
7113                 rxd_owner_bit_reset(sp);
7114
7115                 val64 = readq(&bar0->adapter_status);
7116                 if (verify_xena_quiescence(sp)) {
7117                         if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7118                                 break;
7119                 }
7120
7121                 msleep(50);
7122                 cnt++;
7123                 if (cnt == 10) {
7124                         DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7125                                   "adapter status reads 0x%llx\n",
7126                                   (unsigned long long)val64);
7127                         break;
7128                 }
7129         }
7130         if (do_io)
7131                 s2io_reset(sp);
7132
7133         /* Free all Tx buffers */
7134         free_tx_buffers(sp);
7135
7136         /* Free all Rx buffers */
7137         free_rx_buffers(sp);
7138
7139         clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7140 }
7141
7142 static void s2io_card_down(struct s2io_nic *sp)
7143 {
7144         do_s2io_card_down(sp, 1);
7145 }
7146
7147 static int s2io_card_up(struct s2io_nic *sp)
7148 {
7149         int i, ret = 0;
7150         struct config_param *config;
7151         struct mac_info *mac_control;
7152         struct net_device *dev = sp->dev;
7153         u16 interruptible;
7154
7155         /* Initialize the H/W I/O registers */
7156         ret = init_nic(sp);
7157         if (ret != 0) {
7158                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7159                           dev->name);
7160                 if (ret != -EIO)
7161                         s2io_reset(sp);
7162                 return ret;
7163         }
7164
7165         /*
7166          * Initializing the Rx buffers. For now we are considering only 1
7167          * Rx ring and initializing buffers into 30 Rx blocks
7168          */
7169         config = &sp->config;
7170         mac_control = &sp->mac_control;
7171
7172         for (i = 0; i < config->rx_ring_num; i++) {
7173                 struct ring_info *ring = &mac_control->rings[i];
7174
7175                 ring->mtu = dev->mtu;
7176                 ring->lro = !!(dev->features & NETIF_F_LRO);
7177                 ret = fill_rx_buffers(sp, ring, 1);
7178                 if (ret) {
7179                         DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7180                                   dev->name);
7181                         s2io_reset(sp);
7182                         free_rx_buffers(sp);
7183                         return -ENOMEM;
7184                 }
7185                 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7186                           ring->rx_bufs_left);
7187         }
7188
7189         /* Initialise napi */
7190         if (config->napi) {
7191                 if (config->intr_type ==  MSI_X) {
7192                         for (i = 0; i < sp->config.rx_ring_num; i++)
7193                                 napi_enable(&sp->mac_control.rings[i].napi);
7194                 } else {
7195                         napi_enable(&sp->napi);
7196                 }
7197         }
7198
7199         /* Maintain the state prior to the open */
7200         if (sp->promisc_flg)
7201                 sp->promisc_flg = 0;
7202         if (sp->m_cast_flg) {
7203                 sp->m_cast_flg = 0;
7204                 sp->all_multi_pos = 0;
7205         }
7206
7207         /* Setting its receive mode */
7208         s2io_set_multicast(dev);
7209
7210         if (dev->features & NETIF_F_LRO) {
7211                 /* Initialize max aggregatable pkts per session based on MTU */
7212                 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7213                 /* Check if we can use (if specified) user provided value */
7214                 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7215                         sp->lro_max_aggr_per_sess = lro_max_pkts;
7216         }
7217
7218         /* Enable Rx Traffic and interrupts on the NIC */
7219         if (start_nic(sp)) {
7220                 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7221                 s2io_reset(sp);
7222                 free_rx_buffers(sp);
7223                 return -ENODEV;
7224         }
7225
7226         /* Add interrupt service routine */
7227         if (s2io_add_isr(sp) != 0) {
7228                 if (sp->config.intr_type == MSI_X)
7229                         s2io_rem_isr(sp);
7230                 s2io_reset(sp);
7231                 free_rx_buffers(sp);
7232                 return -ENODEV;
7233         }
7234
7235         S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7236
7237         set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7238
7239         /*  Enable select interrupts */
7240         en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7241         if (sp->config.intr_type != INTA) {
7242                 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7243                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7244         } else {
7245                 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7246                 interruptible |= TX_PIC_INTR;
7247                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7248         }
7249
7250         return 0;
7251 }
7252
7253 /**
7254  * s2io_restart_nic - Resets the NIC.
7255  * @data : long pointer to the device private structure
7256  * Description:
7257  * This function is scheduled to be run by the s2io_tx_watchdog
7258  * function after 0.5 secs to reset the NIC. The idea is to reduce
7259  * the run time of the watch dog routine which is run holding a
7260  * spin lock.
7261  */
7262
7263 static void s2io_restart_nic(struct work_struct *work)
7264 {
7265         struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7266         struct net_device *dev = sp->dev;
7267
7268         rtnl_lock();
7269
7270         if (!netif_running(dev))
7271                 goto out_unlock;
7272
7273         s2io_card_down(sp);
7274         if (s2io_card_up(sp)) {
7275                 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
7276         }
7277         s2io_wake_all_tx_queue(sp);
7278         DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
7279 out_unlock:
7280         rtnl_unlock();
7281 }
7282
7283 /**
7284  *  s2io_tx_watchdog - Watchdog for transmit side.
7285  *  @dev : Pointer to net device structure
7286  *  Description:
7287  *  This function is triggered if the Tx Queue is stopped
7288  *  for a pre-defined amount of time when the Interface is still up.
7289  *  If the Interface is jammed in such a situation, the hardware is
7290  *  reset (by s2io_close) and restarted again (by s2io_open) to
7291  *  overcome any problem that might have been caused in the hardware.
7292  *  Return value:
7293  *  void
7294  */
7295
7296 static void s2io_tx_watchdog(struct net_device *dev)
7297 {
7298         struct s2io_nic *sp = netdev_priv(dev);
7299         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7300
7301         if (netif_carrier_ok(dev)) {
7302                 swstats->watchdog_timer_cnt++;
7303                 schedule_work(&sp->rst_timer_task);
7304                 swstats->soft_reset_cnt++;
7305         }
7306 }
7307
7308 /**
7309  *   rx_osm_handler - To perform some OS related operations on SKB.
7310  *   @sp: private member of the device structure,pointer to s2io_nic structure.
7311  *   @skb : the socket buffer pointer.
7312  *   @len : length of the packet
7313  *   @cksum : FCS checksum of the frame.
7314  *   @ring_no : the ring from which this RxD was extracted.
7315  *   Description:
7316  *   This function is called by the Rx interrupt serivce routine to perform
7317  *   some OS related operations on the SKB before passing it to the upper
7318  *   layers. It mainly checks if the checksum is OK, if so adds it to the
7319  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
7320  *   to the upper layer. If the checksum is wrong, it increments the Rx
7321  *   packet error count, frees the SKB and returns error.
7322  *   Return value:
7323  *   SUCCESS on success and -1 on failure.
7324  */
7325 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7326 {
7327         struct s2io_nic *sp = ring_data->nic;
7328         struct net_device *dev = ring_data->dev;
7329         struct sk_buff *skb = (struct sk_buff *)
7330                 ((unsigned long)rxdp->Host_Control);
7331         int ring_no = ring_data->ring_no;
7332         u16 l3_csum, l4_csum;
7333         unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7334         struct lro *uninitialized_var(lro);
7335         u8 err_mask;
7336         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7337
7338         skb->dev = dev;
7339
7340         if (err) {
7341                 /* Check for parity error */
7342                 if (err & 0x1)
7343                         swstats->parity_err_cnt++;
7344
7345                 err_mask = err >> 48;
7346                 switch (err_mask) {
7347                 case 1:
7348                         swstats->rx_parity_err_cnt++;
7349                         break;
7350
7351                 case 2:
7352                         swstats->rx_abort_cnt++;
7353                         break;
7354
7355                 case 3:
7356                         swstats->rx_parity_abort_cnt++;
7357                         break;
7358
7359                 case 4:
7360                         swstats->rx_rda_fail_cnt++;
7361                         break;
7362
7363                 case 5:
7364                         swstats->rx_unkn_prot_cnt++;
7365                         break;
7366
7367                 case 6:
7368                         swstats->rx_fcs_err_cnt++;
7369                         break;
7370
7371                 case 7:
7372                         swstats->rx_buf_size_err_cnt++;
7373                         break;
7374
7375                 case 8:
7376                         swstats->rx_rxd_corrupt_cnt++;
7377                         break;
7378
7379                 case 15:
7380                         swstats->rx_unkn_err_cnt++;
7381                         break;
7382                 }
7383                 /*
7384                  * Drop the packet if bad transfer code. Exception being
7385                  * 0x5, which could be due to unsupported IPv6 extension header.
7386                  * In this case, we let stack handle the packet.
7387                  * Note that in this case, since checksum will be incorrect,
7388                  * stack will validate the same.
7389                  */
7390                 if (err_mask != 0x5) {
7391                         DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7392                                   dev->name, err_mask);
7393                         dev->stats.rx_crc_errors++;
7394                         swstats->mem_freed
7395                                 += skb->truesize;
7396                         dev_kfree_skb(skb);
7397                         ring_data->rx_bufs_left -= 1;
7398                         rxdp->Host_Control = 0;
7399                         return 0;
7400                 }
7401         }
7402
7403         rxdp->Host_Control = 0;
7404         if (sp->rxd_mode == RXD_MODE_1) {
7405                 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7406
7407                 skb_put(skb, len);
7408         } else if (sp->rxd_mode == RXD_MODE_3B) {
7409                 int get_block = ring_data->rx_curr_get_info.block_index;
7410                 int get_off = ring_data->rx_curr_get_info.offset;
7411                 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7412                 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7413                 unsigned char *buff = skb_push(skb, buf0_len);
7414
7415                 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7416                 memcpy(buff, ba->ba_0, buf0_len);
7417                 skb_put(skb, buf2_len);
7418         }
7419
7420         if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7421             ((!ring_data->lro) ||
7422              (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7423             (dev->features & NETIF_F_RXCSUM)) {
7424                 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7425                 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7426                 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7427                         /*
7428                          * NIC verifies if the Checksum of the received
7429                          * frame is Ok or not and accordingly returns
7430                          * a flag in the RxD.
7431                          */
7432                         skb->ip_summed = CHECKSUM_UNNECESSARY;
7433                         if (ring_data->lro) {
7434                                 u32 tcp_len = 0;
7435                                 u8 *tcp;
7436                                 int ret = 0;
7437
7438                                 ret = s2io_club_tcp_session(ring_data,
7439                                                             skb->data, &tcp,
7440                                                             &tcp_len, &lro,
7441                                                             rxdp, sp);
7442                                 switch (ret) {
7443                                 case 3: /* Begin anew */
7444                                         lro->parent = skb;
7445                                         goto aggregate;
7446                                 case 1: /* Aggregate */
7447                                         lro_append_pkt(sp, lro, skb, tcp_len);
7448                                         goto aggregate;
7449                                 case 4: /* Flush session */
7450                                         lro_append_pkt(sp, lro, skb, tcp_len);
7451                                         queue_rx_frame(lro->parent,
7452                                                        lro->vlan_tag);
7453                                         clear_lro_session(lro);
7454                                         swstats->flush_max_pkts++;
7455                                         goto aggregate;
7456                                 case 2: /* Flush both */
7457                                         lro->parent->data_len = lro->frags_len;
7458                                         swstats->sending_both++;
7459                                         queue_rx_frame(lro->parent,
7460                                                        lro->vlan_tag);
7461                                         clear_lro_session(lro);
7462                                         goto send_up;
7463                                 case 0: /* sessions exceeded */
7464                                 case -1: /* non-TCP or not L2 aggregatable */
7465                                 case 5: /*
7466                                          * First pkt in session not
7467                                          * L3/L4 aggregatable
7468                                          */
7469                                         break;
7470                                 default:
7471                                         DBG_PRINT(ERR_DBG,
7472                                                   "%s: Samadhana!!\n",
7473                                                   __func__);
7474                                         BUG();
7475                                 }
7476                         }
7477                 } else {
7478                         /*
7479                          * Packet with erroneous checksum, let the
7480                          * upper layers deal with it.
7481                          */
7482                         skb_checksum_none_assert(skb);
7483                 }
7484         } else
7485                 skb_checksum_none_assert(skb);
7486
7487         swstats->mem_freed += skb->truesize;
7488 send_up:
7489         skb_record_rx_queue(skb, ring_no);
7490         queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7491 aggregate:
7492         sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7493         return SUCCESS;
7494 }
7495
7496 /**
7497  *  s2io_link - stops/starts the Tx queue.
7498  *  @sp : private member of the device structure, which is a pointer to the
7499  *  s2io_nic structure.
7500  *  @link : inidicates whether link is UP/DOWN.
7501  *  Description:
7502  *  This function stops/starts the Tx queue depending on whether the link
7503  *  status of the NIC is is down or up. This is called by the Alarm
7504  *  interrupt handler whenever a link change interrupt comes up.
7505  *  Return value:
7506  *  void.
7507  */
7508
7509 static void s2io_link(struct s2io_nic *sp, int link)
7510 {
7511         struct net_device *dev = sp->dev;
7512         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7513
7514         if (link != sp->last_link_state) {
7515                 init_tti(sp, link);
7516                 if (link == LINK_DOWN) {
7517                         DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7518                         s2io_stop_all_tx_queue(sp);
7519                         netif_carrier_off(dev);
7520                         if (swstats->link_up_cnt)
7521                                 swstats->link_up_time =
7522                                         jiffies - sp->start_time;
7523                         swstats->link_down_cnt++;
7524                 } else {
7525                         DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7526                         if (swstats->link_down_cnt)
7527                                 swstats->link_down_time =
7528                                         jiffies - sp->start_time;
7529                         swstats->link_up_cnt++;
7530                         netif_carrier_on(dev);
7531                         s2io_wake_all_tx_queue(sp);
7532                 }
7533         }
7534         sp->last_link_state = link;
7535         sp->start_time = jiffies;
7536 }
7537
7538 /**
7539  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7540  *  @sp : private member of the device structure, which is a pointer to the
7541  *  s2io_nic structure.
7542  *  Description:
7543  *  This function initializes a few of the PCI and PCI-X configuration registers
7544  *  with recommended values.
7545  *  Return value:
7546  *  void
7547  */
7548
7549 static void s2io_init_pci(struct s2io_nic *sp)
7550 {
7551         u16 pci_cmd = 0, pcix_cmd = 0;
7552
7553         /* Enable Data Parity Error Recovery in PCI-X command register. */
7554         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7555                              &(pcix_cmd));
7556         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7557                               (pcix_cmd | 1));
7558         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7559                              &(pcix_cmd));
7560
7561         /* Set the PErr Response bit in PCI command register. */
7562         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7563         pci_write_config_word(sp->pdev, PCI_COMMAND,
7564                               (pci_cmd | PCI_COMMAND_PARITY));
7565         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7566 }
7567
7568 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7569                             u8 *dev_multiq)
7570 {
7571         int i;
7572
7573         if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
7574                 DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
7575                           "(%d) not supported\n", tx_fifo_num);
7576
7577                 if (tx_fifo_num < 1)
7578                         tx_fifo_num = 1;
7579                 else
7580                         tx_fifo_num = MAX_TX_FIFOS;
7581
7582                 DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
7583         }
7584
7585         if (multiq)
7586                 *dev_multiq = multiq;
7587
7588         if (tx_steering_type && (1 == tx_fifo_num)) {
7589                 if (tx_steering_type != TX_DEFAULT_STEERING)
7590                         DBG_PRINT(ERR_DBG,
7591                                   "Tx steering is not supported with "
7592                                   "one fifo. Disabling Tx steering.\n");
7593                 tx_steering_type = NO_STEERING;
7594         }
7595
7596         if ((tx_steering_type < NO_STEERING) ||
7597             (tx_steering_type > TX_DEFAULT_STEERING)) {
7598                 DBG_PRINT(ERR_DBG,
7599                           "Requested transmit steering not supported\n");
7600                 DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
7601                 tx_steering_type = NO_STEERING;
7602         }
7603
7604         if (rx_ring_num > MAX_RX_RINGS) {
7605                 DBG_PRINT(ERR_DBG,
7606                           "Requested number of rx rings not supported\n");
7607                 DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
7608                           MAX_RX_RINGS);
7609                 rx_ring_num = MAX_RX_RINGS;
7610         }
7611
7612         if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7613                 DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
7614                           "Defaulting to INTA\n");
7615                 *dev_intr_type = INTA;
7616         }
7617
7618         if ((*dev_intr_type == MSI_X) &&
7619             ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7620              (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7621                 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
7622                           "Defaulting to INTA\n");
7623                 *dev_intr_type = INTA;
7624         }
7625
7626         if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7627                 DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7628                 DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
7629                 rx_ring_mode = 1;
7630         }
7631
7632         for (i = 0; i < MAX_RX_RINGS; i++)
7633                 if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) {
7634                         DBG_PRINT(ERR_DBG, "Requested rx ring size not "
7635                                   "supported\nDefaulting to %d\n",
7636                                   MAX_RX_BLOCKS_PER_RING);
7637                         rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING;
7638                 }
7639
7640         return SUCCESS;
7641 }
7642
7643 /**
7644  * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7645  * or Traffic class respectively.
7646  * @nic: device private variable
7647  * Description: The function configures the receive steering to
7648  * desired receive ring.
7649  * Return Value:  SUCCESS on success and
7650  * '-1' on failure (endian settings incorrect).
7651  */
7652 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7653 {
7654         struct XENA_dev_config __iomem *bar0 = nic->bar0;
7655         register u64 val64 = 0;
7656
7657         if (ds_codepoint > 63)
7658                 return FAILURE;
7659
7660         val64 = RTS_DS_MEM_DATA(ring);
7661         writeq(val64, &bar0->rts_ds_mem_data);
7662
7663         val64 = RTS_DS_MEM_CTRL_WE |
7664                 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7665                 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7666
7667         writeq(val64, &bar0->rts_ds_mem_ctrl);
7668
7669         return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7670                                      RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7671                                      S2IO_BIT_RESET);
7672 }
7673
7674 static const struct net_device_ops s2io_netdev_ops = {
7675         .ndo_open               = s2io_open,
7676         .ndo_stop               = s2io_close,
7677         .ndo_get_stats          = s2io_get_stats,
7678         .ndo_start_xmit         = s2io_xmit,
7679         .ndo_validate_addr      = eth_validate_addr,
7680         .ndo_set_rx_mode        = s2io_set_multicast,
7681         .ndo_do_ioctl           = s2io_ioctl,
7682         .ndo_set_mac_address    = s2io_set_mac_addr,
7683         .ndo_change_mtu         = s2io_change_mtu,
7684         .ndo_set_features       = s2io_set_features,
7685         .ndo_tx_timeout         = s2io_tx_watchdog,
7686 #ifdef CONFIG_NET_POLL_CONTROLLER
7687         .ndo_poll_controller    = s2io_netpoll,
7688 #endif
7689 };
7690
7691 /**
7692  *  s2io_init_nic - Initialization of the adapter .
7693  *  @pdev : structure containing the PCI related information of the device.
7694  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7695  *  Description:
7696  *  The function initializes an adapter identified by the pci_dec structure.
7697  *  All OS related initialization including memory and device structure and
7698  *  initlaization of the device private variable is done. Also the swapper
7699  *  control register is initialized to enable read and write into the I/O
7700  *  registers of the device.
7701  *  Return value:
7702  *  returns 0 on success and negative on failure.
7703  */
7704
7705 static int
7706 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7707 {
7708         struct s2io_nic *sp;
7709         struct net_device *dev;
7710         int i, j, ret;
7711         int dma_flag = false;
7712         u32 mac_up, mac_down;
7713         u64 val64 = 0, tmp64 = 0;
7714         struct XENA_dev_config __iomem *bar0 = NULL;
7715         u16 subid;
7716         struct config_param *config;
7717         struct mac_info *mac_control;
7718         int mode;
7719         u8 dev_intr_type = intr_type;
7720         u8 dev_multiq = 0;
7721
7722         ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7723         if (ret)
7724                 return ret;
7725
7726         ret = pci_enable_device(pdev);
7727         if (ret) {
7728                 DBG_PRINT(ERR_DBG,
7729                           "%s: pci_enable_device failed\n", __func__);
7730                 return ret;
7731         }
7732
7733         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
7734                 DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
7735                 dma_flag = true;
7736                 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
7737                         DBG_PRINT(ERR_DBG,
7738                                   "Unable to obtain 64bit DMA "
7739                                   "for consistent allocations\n");
7740                         pci_disable_device(pdev);
7741                         return -ENOMEM;
7742                 }
7743         } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
7744                 DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
7745         } else {
7746                 pci_disable_device(pdev);
7747                 return -ENOMEM;
7748         }
7749         ret = pci_request_regions(pdev, s2io_driver_name);
7750         if (ret) {
7751                 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
7752                           __func__, ret);
7753                 pci_disable_device(pdev);
7754                 return -ENODEV;
7755         }
7756         if (dev_multiq)
7757                 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7758         else
7759                 dev = alloc_etherdev(sizeof(struct s2io_nic));
7760         if (dev == NULL) {
7761                 pci_disable_device(pdev);
7762                 pci_release_regions(pdev);
7763                 return -ENODEV;
7764         }
7765
7766         pci_set_master(pdev);
7767         pci_set_drvdata(pdev, dev);
7768         SET_NETDEV_DEV(dev, &pdev->dev);
7769
7770         /*  Private member variable initialized to s2io NIC structure */
7771         sp = netdev_priv(dev);
7772         sp->dev = dev;
7773         sp->pdev = pdev;
7774         sp->high_dma_flag = dma_flag;
7775         sp->device_enabled_once = false;
7776         if (rx_ring_mode == 1)
7777                 sp->rxd_mode = RXD_MODE_1;
7778         if (rx_ring_mode == 2)
7779                 sp->rxd_mode = RXD_MODE_3B;
7780
7781         sp->config.intr_type = dev_intr_type;
7782
7783         if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7784             (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7785                 sp->device_type = XFRAME_II_DEVICE;
7786         else
7787                 sp->device_type = XFRAME_I_DEVICE;
7788
7789
7790         /* Initialize some PCI/PCI-X fields of the NIC. */
7791         s2io_init_pci(sp);
7792
7793         /*
7794          * Setting the device configuration parameters.
7795          * Most of these parameters can be specified by the user during
7796          * module insertion as they are module loadable parameters. If
7797          * these parameters are not not specified during load time, they
7798          * are initialized with default values.
7799          */
7800         config = &sp->config;
7801         mac_control = &sp->mac_control;
7802
7803         config->napi = napi;
7804         config->tx_steering_type = tx_steering_type;
7805
7806         /* Tx side parameters. */
7807         if (config->tx_steering_type == TX_PRIORITY_STEERING)
7808                 config->tx_fifo_num = MAX_TX_FIFOS;
7809         else
7810                 config->tx_fifo_num = tx_fifo_num;
7811
7812         /* Initialize the fifos used for tx steering */
7813         if (config->tx_fifo_num < 5) {
7814                 if (config->tx_fifo_num  == 1)
7815                         sp->total_tcp_fifos = 1;
7816                 else
7817                         sp->total_tcp_fifos = config->tx_fifo_num - 1;
7818                 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7819                 sp->total_udp_fifos = 1;
7820                 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7821         } else {
7822                 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7823                                        FIFO_OTHER_MAX_NUM);
7824                 sp->udp_fifo_idx = sp->total_tcp_fifos;
7825                 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7826                 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7827         }
7828
7829         config->multiq = dev_multiq;
7830         for (i = 0; i < config->tx_fifo_num; i++) {
7831                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7832
7833                 tx_cfg->fifo_len = tx_fifo_len[i];
7834                 tx_cfg->fifo_priority = i;
7835         }
7836
7837         /* mapping the QoS priority to the configured fifos */
7838         for (i = 0; i < MAX_TX_FIFOS; i++)
7839                 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7840
7841         /* map the hashing selector table to the configured fifos */
7842         for (i = 0; i < config->tx_fifo_num; i++)
7843                 sp->fifo_selector[i] = fifo_selector[i];
7844
7845
7846         config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7847         for (i = 0; i < config->tx_fifo_num; i++) {
7848                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7849
7850                 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7851                 if (tx_cfg->fifo_len < 65) {
7852                         config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7853                         break;
7854                 }
7855         }
7856         /* + 2 because one Txd for skb->data and one Txd for UFO */
7857         config->max_txds = MAX_SKB_FRAGS + 2;
7858
7859         /* Rx side parameters. */
7860         config->rx_ring_num = rx_ring_num;
7861         for (i = 0; i < config->rx_ring_num; i++) {
7862                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7863                 struct ring_info *ring = &mac_control->rings[i];
7864
7865                 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7866                 rx_cfg->ring_priority = i;
7867                 ring->rx_bufs_left = 0;
7868                 ring->rxd_mode = sp->rxd_mode;
7869                 ring->rxd_count = rxd_count[sp->rxd_mode];
7870                 ring->pdev = sp->pdev;
7871                 ring->dev = sp->dev;
7872         }
7873
7874         for (i = 0; i < rx_ring_num; i++) {
7875                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7876
7877                 rx_cfg->ring_org = RING_ORG_BUFF1;
7878                 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7879         }
7880
7881         /*  Setting Mac Control parameters */
7882         mac_control->rmac_pause_time = rmac_pause_time;
7883         mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7884         mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7885
7886
7887         /*  initialize the shared memory used by the NIC and the host */
7888         if (init_shared_mem(sp)) {
7889                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
7890                 ret = -ENOMEM;
7891                 goto mem_alloc_failed;
7892         }
7893
7894         sp->bar0 = pci_ioremap_bar(pdev, 0);
7895         if (!sp->bar0) {
7896                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7897                           dev->name);
7898                 ret = -ENOMEM;
7899                 goto bar0_remap_failed;
7900         }
7901
7902         sp->bar1 = pci_ioremap_bar(pdev, 2);
7903         if (!sp->bar1) {
7904                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7905                           dev->name);
7906                 ret = -ENOMEM;
7907                 goto bar1_remap_failed;
7908         }
7909
7910         /* Initializing the BAR1 address as the start of the FIFO pointer. */
7911         for (j = 0; j < MAX_TX_FIFOS; j++) {
7912                 mac_control->tx_FIFO_start[j] = sp->bar1 + (j * 0x00020000);
7913         }
7914
7915         /*  Driver entry points */
7916         dev->netdev_ops = &s2io_netdev_ops;
7917         dev->ethtool_ops = &netdev_ethtool_ops;
7918         dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
7919                 NETIF_F_TSO | NETIF_F_TSO6 |
7920                 NETIF_F_RXCSUM | NETIF_F_LRO;
7921         dev->features |= dev->hw_features |
7922                 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
7923         if (sp->device_type & XFRAME_II_DEVICE) {
7924                 dev->hw_features |= NETIF_F_UFO;
7925                 if (ufo)
7926                         dev->features |= NETIF_F_UFO;
7927         }
7928         if (sp->high_dma_flag == true)
7929                 dev->features |= NETIF_F_HIGHDMA;
7930         dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7931         INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7932         INIT_WORK(&sp->set_link_task, s2io_set_link);
7933
7934         pci_save_state(sp->pdev);
7935
7936         /* Setting swapper control on the NIC, for proper reset operation */
7937         if (s2io_set_swapper(sp)) {
7938                 DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
7939                           dev->name);
7940                 ret = -EAGAIN;
7941                 goto set_swap_failed;
7942         }
7943
7944         /* Verify if the Herc works on the slot its placed into */
7945         if (sp->device_type & XFRAME_II_DEVICE) {
7946                 mode = s2io_verify_pci_mode(sp);
7947                 if (mode < 0) {
7948                         DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
7949                                   __func__);
7950                         ret = -EBADSLT;
7951                         goto set_swap_failed;
7952                 }
7953         }
7954
7955         if (sp->config.intr_type == MSI_X) {
7956                 sp->num_entries = config->rx_ring_num + 1;
7957                 ret = s2io_enable_msi_x(sp);
7958
7959                 if (!ret) {
7960                         ret = s2io_test_msi(sp);
7961                         /* rollback MSI-X, will re-enable during add_isr() */
7962                         remove_msix_isr(sp);
7963                 }
7964                 if (ret) {
7965
7966                         DBG_PRINT(ERR_DBG,
7967                                   "MSI-X requested but failed to enable\n");
7968                         sp->config.intr_type = INTA;
7969                 }
7970         }
7971
7972         if (config->intr_type ==  MSI_X) {
7973                 for (i = 0; i < config->rx_ring_num ; i++) {
7974                         struct ring_info *ring = &mac_control->rings[i];
7975
7976                         netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
7977                 }
7978         } else {
7979                 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
7980         }
7981
7982         /* Not needed for Herc */
7983         if (sp->device_type & XFRAME_I_DEVICE) {
7984                 /*
7985                  * Fix for all "FFs" MAC address problems observed on
7986                  * Alpha platforms
7987                  */
7988                 fix_mac_address(sp);
7989                 s2io_reset(sp);
7990         }
7991
7992         /*
7993          * MAC address initialization.
7994          * For now only one mac address will be read and used.
7995          */
7996         bar0 = sp->bar0;
7997         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7998                 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
7999         writeq(val64, &bar0->rmac_addr_cmd_mem);
8000         wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8001                               RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
8002                               S2IO_BIT_RESET);
8003         tmp64 = readq(&bar0->rmac_addr_data0_mem);
8004         mac_down = (u32)tmp64;
8005         mac_up = (u32) (tmp64 >> 32);
8006
8007         sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8008         sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8009         sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8010         sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8011         sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8012         sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8013
8014         /*  Set the factory defined MAC address initially   */
8015         dev->addr_len = ETH_ALEN;
8016         memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8017
8018         /* initialize number of multicast & unicast MAC entries variables */
8019         if (sp->device_type == XFRAME_I_DEVICE) {
8020                 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8021                 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8022                 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8023         } else if (sp->device_type == XFRAME_II_DEVICE) {
8024                 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8025                 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8026                 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8027         }
8028
8029         /* store mac addresses from CAM to s2io_nic structure */
8030         do_s2io_store_unicast_mc(sp);
8031
8032         /* Configure MSIX vector for number of rings configured plus one */
8033         if ((sp->device_type == XFRAME_II_DEVICE) &&
8034             (config->intr_type == MSI_X))
8035                 sp->num_entries = config->rx_ring_num + 1;
8036
8037         /* Store the values of the MSIX table in the s2io_nic structure */
8038         store_xmsi_data(sp);
8039         /* reset Nic and bring it to known state */
8040         s2io_reset(sp);
8041
8042         /*
8043          * Initialize link state flags
8044          * and the card state parameter
8045          */
8046         sp->state = 0;
8047
8048         /* Initialize spinlocks */
8049         for (i = 0; i < sp->config.tx_fifo_num; i++) {
8050                 struct fifo_info *fifo = &mac_control->fifos[i];
8051
8052                 spin_lock_init(&fifo->tx_lock);
8053         }
8054
8055         /*
8056          * SXE-002: Configure link and activity LED to init state
8057          * on driver load.
8058          */
8059         subid = sp->pdev->subsystem_device;
8060         if ((subid & 0xFF) >= 0x07) {
8061                 val64 = readq(&bar0->gpio_control);
8062                 val64 |= 0x0000800000000000ULL;
8063                 writeq(val64, &bar0->gpio_control);
8064                 val64 = 0x0411040400000000ULL;
8065                 writeq(val64, (void __iomem *)bar0 + 0x2700);
8066                 val64 = readq(&bar0->gpio_control);
8067         }
8068
8069         sp->rx_csum = 1;        /* Rx chksum verify enabled by default */
8070
8071         if (register_netdev(dev)) {
8072                 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8073                 ret = -ENODEV;
8074                 goto register_failed;
8075         }
8076         s2io_vpd_read(sp);
8077         DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n");
8078         DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
8079                   sp->product_name, pdev->revision);
8080         DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8081                   s2io_driver_version);
8082         DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8083         DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
8084         if (sp->device_type & XFRAME_II_DEVICE) {
8085                 mode = s2io_print_pci_mode(sp);
8086                 if (mode < 0) {
8087                         ret = -EBADSLT;
8088                         unregister_netdev(dev);
8089                         goto set_swap_failed;
8090                 }
8091         }
8092         switch (sp->rxd_mode) {
8093         case RXD_MODE_1:
8094                 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8095                           dev->name);
8096                 break;
8097         case RXD_MODE_3B:
8098                 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8099                           dev->name);
8100                 break;
8101         }
8102
8103         switch (sp->config.napi) {
8104         case 0:
8105                 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8106                 break;
8107         case 1:
8108                 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8109                 break;
8110         }
8111
8112         DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8113                   sp->config.tx_fifo_num);
8114
8115         DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8116                   sp->config.rx_ring_num);
8117
8118         switch (sp->config.intr_type) {
8119         case INTA:
8120                 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8121                 break;
8122         case MSI_X:
8123                 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8124                 break;
8125         }
8126         if (sp->config.multiq) {
8127                 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8128                         struct fifo_info *fifo = &mac_control->fifos[i];
8129
8130                         fifo->multiq = config->multiq;
8131                 }
8132                 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8133                           dev->name);
8134         } else
8135                 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8136                           dev->name);
8137
8138         switch (sp->config.tx_steering_type) {
8139         case NO_STEERING:
8140                 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8141                           dev->name);
8142                 break;
8143         case TX_PRIORITY_STEERING:
8144                 DBG_PRINT(ERR_DBG,
8145                           "%s: Priority steering enabled for transmit\n",
8146                           dev->name);
8147                 break;
8148         case TX_DEFAULT_STEERING:
8149                 DBG_PRINT(ERR_DBG,
8150                           "%s: Default steering enabled for transmit\n",
8151                           dev->name);
8152         }
8153
8154         DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8155                   dev->name);
8156         if (ufo)
8157                 DBG_PRINT(ERR_DBG,
8158                           "%s: UDP Fragmentation Offload(UFO) enabled\n",
8159                           dev->name);
8160         /* Initialize device name */
8161         snprintf(sp->name, sizeof(sp->name), "%s Neterion %s", dev->name,
8162                  sp->product_name);
8163
8164         if (vlan_tag_strip)
8165                 sp->vlan_strip_flag = 1;
8166         else
8167                 sp->vlan_strip_flag = 0;
8168
8169         /*
8170          * Make Link state as off at this point, when the Link change
8171          * interrupt comes the state will be automatically changed to
8172          * the right state.
8173          */
8174         netif_carrier_off(dev);
8175
8176         return 0;
8177
8178 register_failed:
8179 set_swap_failed:
8180         iounmap(sp->bar1);
8181 bar1_remap_failed:
8182         iounmap(sp->bar0);
8183 bar0_remap_failed:
8184 mem_alloc_failed:
8185         free_shared_mem(sp);
8186         pci_disable_device(pdev);
8187         pci_release_regions(pdev);
8188         free_netdev(dev);
8189
8190         return ret;
8191 }
8192
8193 /**
8194  * s2io_rem_nic - Free the PCI device
8195  * @pdev: structure containing the PCI related information of the device.
8196  * Description: This function is called by the Pci subsystem to release a
8197  * PCI device and free up all resource held up by the device. This could
8198  * be in response to a Hot plug event or when the driver is to be removed
8199  * from memory.
8200  */
8201
8202 static void s2io_rem_nic(struct pci_dev *pdev)
8203 {
8204         struct net_device *dev = pci_get_drvdata(pdev);
8205         struct s2io_nic *sp;
8206
8207         if (dev == NULL) {
8208                 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8209                 return;
8210         }
8211
8212         sp = netdev_priv(dev);
8213
8214         cancel_work_sync(&sp->rst_timer_task);
8215         cancel_work_sync(&sp->set_link_task);
8216
8217         unregister_netdev(dev);
8218
8219         free_shared_mem(sp);
8220         iounmap(sp->bar0);
8221         iounmap(sp->bar1);
8222         pci_release_regions(pdev);
8223         free_netdev(dev);
8224         pci_disable_device(pdev);
8225 }
8226
8227 module_pci_driver(s2io_driver);
8228
8229 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8230                                 struct tcphdr **tcp, struct RxD_t *rxdp,
8231                                 struct s2io_nic *sp)
8232 {
8233         int ip_off;
8234         u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8235
8236         if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8237                 DBG_PRINT(INIT_DBG,
8238                           "%s: Non-TCP frames not supported for LRO\n",
8239                           __func__);
8240                 return -1;
8241         }
8242
8243         /* Checking for DIX type or DIX type with VLAN */
8244         if ((l2_type == 0) || (l2_type == 4)) {
8245                 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8246                 /*
8247                  * If vlan stripping is disabled and the frame is VLAN tagged,
8248                  * shift the offset by the VLAN header size bytes.
8249                  */
8250                 if ((!sp->vlan_strip_flag) &&
8251                     (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8252                         ip_off += HEADER_VLAN_SIZE;
8253         } else {
8254                 /* LLC, SNAP etc are considered non-mergeable */
8255                 return -1;
8256         }
8257
8258         *ip = (struct iphdr *)(buffer + ip_off);
8259         ip_len = (u8)((*ip)->ihl);
8260         ip_len <<= 2;
8261         *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8262
8263         return 0;
8264 }
8265
8266 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8267                                   struct tcphdr *tcp)
8268 {
8269         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8270         if ((lro->iph->saddr != ip->saddr) ||
8271             (lro->iph->daddr != ip->daddr) ||
8272             (lro->tcph->source != tcp->source) ||
8273             (lro->tcph->dest != tcp->dest))
8274                 return -1;
8275         return 0;
8276 }
8277
8278 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8279 {
8280         return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
8281 }
8282
8283 static void initiate_new_session(struct lro *lro, u8 *l2h,
8284                                  struct iphdr *ip, struct tcphdr *tcp,
8285                                  u32 tcp_pyld_len, u16 vlan_tag)
8286 {
8287         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8288         lro->l2h = l2h;
8289         lro->iph = ip;
8290         lro->tcph = tcp;
8291         lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8292         lro->tcp_ack = tcp->ack_seq;
8293         lro->sg_num = 1;
8294         lro->total_len = ntohs(ip->tot_len);
8295         lro->frags_len = 0;
8296         lro->vlan_tag = vlan_tag;
8297         /*
8298          * Check if we saw TCP timestamp.
8299          * Other consistency checks have already been done.
8300          */
8301         if (tcp->doff == 8) {
8302                 __be32 *ptr;
8303                 ptr = (__be32 *)(tcp+1);
8304                 lro->saw_ts = 1;
8305                 lro->cur_tsval = ntohl(*(ptr+1));
8306                 lro->cur_tsecr = *(ptr+2);
8307         }
8308         lro->in_use = 1;
8309 }
8310
8311 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8312 {
8313         struct iphdr *ip = lro->iph;
8314         struct tcphdr *tcp = lro->tcph;
8315         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8316
8317         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8318
8319         /* Update L3 header */
8320         csum_replace2(&ip->check, ip->tot_len, htons(lro->total_len));
8321         ip->tot_len = htons(lro->total_len);
8322
8323         /* Update L4 header */
8324         tcp->ack_seq = lro->tcp_ack;
8325         tcp->window = lro->window;
8326
8327         /* Update tsecr field if this session has timestamps enabled */
8328         if (lro->saw_ts) {
8329                 __be32 *ptr = (__be32 *)(tcp + 1);
8330                 *(ptr+2) = lro->cur_tsecr;
8331         }
8332
8333         /* Update counters required for calculation of
8334          * average no. of packets aggregated.
8335          */
8336         swstats->sum_avg_pkts_aggregated += lro->sg_num;
8337         swstats->num_aggregations++;
8338 }
8339
8340 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8341                              struct tcphdr *tcp, u32 l4_pyld)
8342 {
8343         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8344         lro->total_len += l4_pyld;
8345         lro->frags_len += l4_pyld;
8346         lro->tcp_next_seq += l4_pyld;
8347         lro->sg_num++;
8348
8349         /* Update ack seq no. and window ad(from this pkt) in LRO object */
8350         lro->tcp_ack = tcp->ack_seq;
8351         lro->window = tcp->window;
8352
8353         if (lro->saw_ts) {
8354                 __be32 *ptr;
8355                 /* Update tsecr and tsval from this packet */
8356                 ptr = (__be32 *)(tcp+1);
8357                 lro->cur_tsval = ntohl(*(ptr+1));
8358                 lro->cur_tsecr = *(ptr + 2);
8359         }
8360 }
8361
8362 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8363                                     struct tcphdr *tcp, u32 tcp_pyld_len)
8364 {
8365         u8 *ptr;
8366
8367         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8368
8369         if (!tcp_pyld_len) {
8370                 /* Runt frame or a pure ack */
8371                 return -1;
8372         }
8373
8374         if (ip->ihl != 5) /* IP has options */
8375                 return -1;
8376
8377         /* If we see CE codepoint in IP header, packet is not mergeable */
8378         if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8379                 return -1;
8380
8381         /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8382         if (tcp->urg || tcp->psh || tcp->rst ||
8383             tcp->syn || tcp->fin ||
8384             tcp->ece || tcp->cwr || !tcp->ack) {
8385                 /*
8386                  * Currently recognize only the ack control word and
8387                  * any other control field being set would result in
8388                  * flushing the LRO session
8389                  */
8390                 return -1;
8391         }
8392
8393         /*
8394          * Allow only one TCP timestamp option. Don't aggregate if
8395          * any other options are detected.
8396          */
8397         if (tcp->doff != 5 && tcp->doff != 8)
8398                 return -1;
8399
8400         if (tcp->doff == 8) {
8401                 ptr = (u8 *)(tcp + 1);
8402                 while (*ptr == TCPOPT_NOP)
8403                         ptr++;
8404                 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8405                         return -1;
8406
8407                 /* Ensure timestamp value increases monotonically */
8408                 if (l_lro)
8409                         if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8410                                 return -1;
8411
8412                 /* timestamp echo reply should be non-zero */
8413                 if (*((__be32 *)(ptr+6)) == 0)
8414                         return -1;
8415         }
8416
8417         return 0;
8418 }
8419
8420 static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8421                                  u8 **tcp, u32 *tcp_len, struct lro **lro,
8422                                  struct RxD_t *rxdp, struct s2io_nic *sp)
8423 {
8424         struct iphdr *ip;
8425         struct tcphdr *tcph;
8426         int ret = 0, i;
8427         u16 vlan_tag = 0;
8428         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8429
8430         ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8431                                    rxdp, sp);
8432         if (ret)
8433                 return ret;
8434
8435         DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8436
8437         vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8438         tcph = (struct tcphdr *)*tcp;
8439         *tcp_len = get_l4_pyld_length(ip, tcph);
8440         for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8441                 struct lro *l_lro = &ring_data->lro0_n[i];
8442                 if (l_lro->in_use) {
8443                         if (check_for_socket_match(l_lro, ip, tcph))
8444                                 continue;
8445                         /* Sock pair matched */
8446                         *lro = l_lro;
8447
8448                         if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8449                                 DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8450                                           "expected 0x%x, actual 0x%x\n",
8451                                           __func__,
8452                                           (*lro)->tcp_next_seq,
8453                                           ntohl(tcph->seq));
8454
8455                                 swstats->outof_sequence_pkts++;
8456                                 ret = 2;
8457                                 break;
8458                         }
8459
8460                         if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8461                                                       *tcp_len))
8462                                 ret = 1; /* Aggregate */
8463                         else
8464                                 ret = 2; /* Flush both */
8465                         break;
8466                 }
8467         }
8468
8469         if (ret == 0) {
8470                 /* Before searching for available LRO objects,
8471                  * check if the pkt is L3/L4 aggregatable. If not
8472                  * don't create new LRO session. Just send this
8473                  * packet up.
8474                  */
8475                 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
8476                         return 5;
8477
8478                 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8479                         struct lro *l_lro = &ring_data->lro0_n[i];
8480                         if (!(l_lro->in_use)) {
8481                                 *lro = l_lro;
8482                                 ret = 3; /* Begin anew */
8483                                 break;
8484                         }
8485                 }
8486         }
8487
8488         if (ret == 0) { /* sessions exceeded */
8489                 DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
8490                           __func__);
8491                 *lro = NULL;
8492                 return ret;
8493         }
8494
8495         switch (ret) {
8496         case 3:
8497                 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8498                                      vlan_tag);
8499                 break;
8500         case 2:
8501                 update_L3L4_header(sp, *lro);
8502                 break;
8503         case 1:
8504                 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8505                 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8506                         update_L3L4_header(sp, *lro);
8507                         ret = 4; /* Flush the LRO */
8508                 }
8509                 break;
8510         default:
8511                 DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
8512                 break;
8513         }
8514
8515         return ret;
8516 }
8517
8518 static void clear_lro_session(struct lro *lro)
8519 {
8520         static u16 lro_struct_size = sizeof(struct lro);
8521
8522         memset(lro, 0, lro_struct_size);
8523 }
8524
8525 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8526 {
8527         struct net_device *dev = skb->dev;
8528         struct s2io_nic *sp = netdev_priv(dev);
8529
8530         skb->protocol = eth_type_trans(skb, dev);
8531         if (vlan_tag && sp->vlan_strip_flag)
8532                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
8533         if (sp->config.napi)
8534                 netif_receive_skb(skb);
8535         else
8536                 netif_rx(skb);
8537 }
8538
8539 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8540                            struct sk_buff *skb, u32 tcp_len)
8541 {
8542         struct sk_buff *first = lro->parent;
8543         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8544
8545         first->len += tcp_len;
8546         first->data_len = lro->frags_len;
8547         skb_pull(skb, (skb->len - tcp_len));
8548         if (skb_shinfo(first)->frag_list)
8549                 lro->last_frag->next = skb;
8550         else
8551                 skb_shinfo(first)->frag_list = skb;
8552         first->truesize += skb->truesize;
8553         lro->last_frag = skb;
8554         swstats->clubbed_frms_cnt++;
8555 }
8556
8557 /**
8558  * s2io_io_error_detected - called when PCI error is detected
8559  * @pdev: Pointer to PCI device
8560  * @state: The current pci connection state
8561  *
8562  * This function is called after a PCI bus error affecting
8563  * this device has been detected.
8564  */
8565 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8566                                                pci_channel_state_t state)
8567 {
8568         struct net_device *netdev = pci_get_drvdata(pdev);
8569         struct s2io_nic *sp = netdev_priv(netdev);
8570
8571         netif_device_detach(netdev);
8572
8573         if (state == pci_channel_io_perm_failure)
8574                 return PCI_ERS_RESULT_DISCONNECT;
8575
8576         if (netif_running(netdev)) {
8577                 /* Bring down the card, while avoiding PCI I/O */
8578                 do_s2io_card_down(sp, 0);
8579         }
8580         pci_disable_device(pdev);
8581
8582         return PCI_ERS_RESULT_NEED_RESET;
8583 }
8584
8585 /**
8586  * s2io_io_slot_reset - called after the pci bus has been reset.
8587  * @pdev: Pointer to PCI device
8588  *
8589  * Restart the card from scratch, as if from a cold-boot.
8590  * At this point, the card has exprienced a hard reset,
8591  * followed by fixups by BIOS, and has its config space
8592  * set up identically to what it was at cold boot.
8593  */
8594 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8595 {
8596         struct net_device *netdev = pci_get_drvdata(pdev);
8597         struct s2io_nic *sp = netdev_priv(netdev);
8598
8599         if (pci_enable_device(pdev)) {
8600                 pr_err("Cannot re-enable PCI device after reset.\n");
8601                 return PCI_ERS_RESULT_DISCONNECT;
8602         }
8603
8604         pci_set_master(pdev);
8605         s2io_reset(sp);
8606
8607         return PCI_ERS_RESULT_RECOVERED;
8608 }
8609
8610 /**
8611  * s2io_io_resume - called when traffic can start flowing again.
8612  * @pdev: Pointer to PCI device
8613  *
8614  * This callback is called when the error recovery driver tells
8615  * us that its OK to resume normal operation.
8616  */
8617 static void s2io_io_resume(struct pci_dev *pdev)
8618 {
8619         struct net_device *netdev = pci_get_drvdata(pdev);
8620         struct s2io_nic *sp = netdev_priv(netdev);
8621
8622         if (netif_running(netdev)) {
8623                 if (s2io_card_up(sp)) {
8624                         pr_err("Can't bring device back up after reset.\n");
8625                         return;
8626                 }
8627
8628                 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8629                         s2io_card_down(sp);
8630                         pr_err("Can't restore mac addr after reset.\n");
8631                         return;
8632                 }
8633         }
8634
8635         netif_device_attach(netdev);
8636         netif_tx_wake_all_queues(netdev);
8637 }