]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/qlogic/qed/qed_hw.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
[karo-tx-linux.git] / drivers / net / ethernet / qlogic / qed / qed_hw.c
1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015 QLogic Corporation
3  *
4  * This software is available under the terms of the GNU General Public License
5  * (GPL) Version 2, available from the file COPYING in the main directory of
6  * this source tree.
7  */
8
9 #include <linux/types.h>
10 #include <linux/io.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/errno.h>
14 #include <linux/kernel.h>
15 #include <linux/list.h>
16 #include <linux/mutex.h>
17 #include <linux/pci.h>
18 #include <linux/slab.h>
19 #include <linux/spinlock.h>
20 #include <linux/string.h>
21 #include <linux/qed/qed_chain.h>
22 #include "qed.h"
23 #include "qed_hsi.h"
24 #include "qed_hw.h"
25 #include "qed_reg_addr.h"
26
27 #define QED_BAR_ACQUIRE_TIMEOUT 1000
28
29 /* Invalid values */
30 #define QED_BAR_INVALID_OFFSET          (cpu_to_le32(-1))
31
32 struct qed_ptt {
33         struct list_head        list_entry;
34         unsigned int            idx;
35         struct pxp_ptt_entry    pxp;
36 };
37
38 struct qed_ptt_pool {
39         struct list_head        free_list;
40         spinlock_t              lock; /* ptt synchronized access */
41         struct qed_ptt          ptts[PXP_EXTERNAL_BAR_PF_WINDOW_NUM];
42 };
43
44 int qed_ptt_pool_alloc(struct qed_hwfn *p_hwfn)
45 {
46         struct qed_ptt_pool *p_pool = kmalloc(sizeof(*p_pool),
47                                               GFP_ATOMIC);
48         int i;
49
50         if (!p_pool)
51                 return -ENOMEM;
52
53         INIT_LIST_HEAD(&p_pool->free_list);
54         for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) {
55                 p_pool->ptts[i].idx = i;
56                 p_pool->ptts[i].pxp.offset = QED_BAR_INVALID_OFFSET;
57                 p_pool->ptts[i].pxp.pretend.control = 0;
58                 if (i >= RESERVED_PTT_MAX)
59                         list_add(&p_pool->ptts[i].list_entry,
60                                  &p_pool->free_list);
61         }
62
63         p_hwfn->p_ptt_pool = p_pool;
64         spin_lock_init(&p_pool->lock);
65
66         return 0;
67 }
68
69 void qed_ptt_invalidate(struct qed_hwfn *p_hwfn)
70 {
71         struct qed_ptt *p_ptt;
72         int i;
73
74         for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) {
75                 p_ptt = &p_hwfn->p_ptt_pool->ptts[i];
76                 p_ptt->pxp.offset = QED_BAR_INVALID_OFFSET;
77         }
78 }
79
80 void qed_ptt_pool_free(struct qed_hwfn *p_hwfn)
81 {
82         kfree(p_hwfn->p_ptt_pool);
83         p_hwfn->p_ptt_pool = NULL;
84 }
85
86 struct qed_ptt *qed_ptt_acquire(struct qed_hwfn *p_hwfn)
87 {
88         struct qed_ptt *p_ptt;
89         unsigned int i;
90
91         /* Take the free PTT from the list */
92         for (i = 0; i < QED_BAR_ACQUIRE_TIMEOUT; i++) {
93                 spin_lock_bh(&p_hwfn->p_ptt_pool->lock);
94
95                 if (!list_empty(&p_hwfn->p_ptt_pool->free_list)) {
96                         p_ptt = list_first_entry(&p_hwfn->p_ptt_pool->free_list,
97                                                  struct qed_ptt, list_entry);
98                         list_del(&p_ptt->list_entry);
99
100                         spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
101
102                         DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
103                                    "allocated ptt %d\n", p_ptt->idx);
104                         return p_ptt;
105                 }
106
107                 spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
108                 usleep_range(1000, 2000);
109         }
110
111         DP_NOTICE(p_hwfn, "PTT acquire timeout - failed to allocate PTT\n");
112         return NULL;
113 }
114
115 void qed_ptt_release(struct qed_hwfn *p_hwfn,
116                      struct qed_ptt *p_ptt)
117 {
118         spin_lock_bh(&p_hwfn->p_ptt_pool->lock);
119         list_add(&p_ptt->list_entry, &p_hwfn->p_ptt_pool->free_list);
120         spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
121 }
122
123 u32 qed_ptt_get_hw_addr(struct qed_hwfn *p_hwfn,
124                         struct qed_ptt *p_ptt)
125 {
126         /* The HW is using DWORDS and we need to translate it to Bytes */
127         return le32_to_cpu(p_ptt->pxp.offset) << 2;
128 }
129
130 static u32 qed_ptt_config_addr(struct qed_ptt *p_ptt)
131 {
132         return PXP_PF_WINDOW_ADMIN_PER_PF_START +
133                p_ptt->idx * sizeof(struct pxp_ptt_entry);
134 }
135
136 u32 qed_ptt_get_bar_addr(struct qed_ptt *p_ptt)
137 {
138         return PXP_EXTERNAL_BAR_PF_WINDOW_START +
139                p_ptt->idx * PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE;
140 }
141
142 void qed_ptt_set_win(struct qed_hwfn *p_hwfn,
143                      struct qed_ptt *p_ptt,
144                      u32 new_hw_addr)
145 {
146         u32 prev_hw_addr;
147
148         prev_hw_addr = qed_ptt_get_hw_addr(p_hwfn, p_ptt);
149
150         if (new_hw_addr == prev_hw_addr)
151                 return;
152
153         /* Update PTT entery in admin window */
154         DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
155                    "Updating PTT entry %d to offset 0x%x\n",
156                    p_ptt->idx, new_hw_addr);
157
158         /* The HW is using DWORDS and the address is in Bytes */
159         p_ptt->pxp.offset = cpu_to_le32(new_hw_addr >> 2);
160
161         REG_WR(p_hwfn,
162                qed_ptt_config_addr(p_ptt) +
163                offsetof(struct pxp_ptt_entry, offset),
164                le32_to_cpu(p_ptt->pxp.offset));
165 }
166
167 static u32 qed_set_ptt(struct qed_hwfn *p_hwfn,
168                        struct qed_ptt *p_ptt,
169                        u32 hw_addr)
170 {
171         u32 win_hw_addr = qed_ptt_get_hw_addr(p_hwfn, p_ptt);
172         u32 offset;
173
174         offset = hw_addr - win_hw_addr;
175
176         /* Verify the address is within the window */
177         if (hw_addr < win_hw_addr ||
178             offset >= PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE) {
179                 qed_ptt_set_win(p_hwfn, p_ptt, hw_addr);
180                 offset = 0;
181         }
182
183         return qed_ptt_get_bar_addr(p_ptt) + offset;
184 }
185
186 struct qed_ptt *qed_get_reserved_ptt(struct qed_hwfn *p_hwfn,
187                                      enum reserved_ptts ptt_idx)
188 {
189         if (ptt_idx >= RESERVED_PTT_MAX) {
190                 DP_NOTICE(p_hwfn,
191                           "Requested PTT %d is out of range\n", ptt_idx);
192                 return NULL;
193         }
194
195         return &p_hwfn->p_ptt_pool->ptts[ptt_idx];
196 }
197
198 void qed_wr(struct qed_hwfn *p_hwfn,
199             struct qed_ptt *p_ptt,
200             u32 hw_addr, u32 val)
201 {
202         u32 bar_addr = qed_set_ptt(p_hwfn, p_ptt, hw_addr);
203
204         REG_WR(p_hwfn, bar_addr, val);
205         DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
206                    "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
207                    bar_addr, hw_addr, val);
208 }
209
210 u32 qed_rd(struct qed_hwfn *p_hwfn,
211            struct qed_ptt *p_ptt,
212            u32 hw_addr)
213 {
214         u32 bar_addr = qed_set_ptt(p_hwfn, p_ptt, hw_addr);
215         u32 val = REG_RD(p_hwfn, bar_addr);
216
217         DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
218                    "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
219                    bar_addr, hw_addr, val);
220
221         return val;
222 }
223
224 static void qed_memcpy_hw(struct qed_hwfn *p_hwfn,
225                           struct qed_ptt *p_ptt,
226                           void *addr,
227                           u32 hw_addr,
228                           size_t n,
229                           bool to_device)
230 {
231         u32 dw_count, *host_addr, hw_offset;
232         size_t quota, done = 0;
233         u32 __iomem *reg_addr;
234
235         while (done < n) {
236                 quota = min_t(size_t, n - done,
237                               PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE);
238
239                 qed_ptt_set_win(p_hwfn, p_ptt, hw_addr + done);
240                 hw_offset = qed_ptt_get_bar_addr(p_ptt);
241
242                 dw_count = quota / 4;
243                 host_addr = (u32 *)((u8 *)addr + done);
244                 reg_addr = (u32 __iomem *)REG_ADDR(p_hwfn, hw_offset);
245                 if (to_device)
246                         while (dw_count--)
247                                 DIRECT_REG_WR(reg_addr++, *host_addr++);
248                 else
249                         while (dw_count--)
250                                 *host_addr++ = DIRECT_REG_RD(reg_addr++);
251
252                 done += quota;
253         }
254 }
255
256 void qed_memcpy_from(struct qed_hwfn *p_hwfn,
257                      struct qed_ptt *p_ptt,
258                      void *dest, u32 hw_addr, size_t n)
259 {
260         DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
261                    "hw_addr 0x%x, dest %p hw_addr 0x%x, size %lu\n",
262                    hw_addr, dest, hw_addr, (unsigned long)n);
263
264         qed_memcpy_hw(p_hwfn, p_ptt, dest, hw_addr, n, false);
265 }
266
267 void qed_memcpy_to(struct qed_hwfn *p_hwfn,
268                    struct qed_ptt *p_ptt,
269                    u32 hw_addr, void *src, size_t n)
270 {
271         DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
272                    "hw_addr 0x%x, hw_addr 0x%x, src %p size %lu\n",
273                    hw_addr, hw_addr, src, (unsigned long)n);
274
275         qed_memcpy_hw(p_hwfn, p_ptt, src, hw_addr, n, true);
276 }
277
278 void qed_fid_pretend(struct qed_hwfn *p_hwfn,
279                      struct qed_ptt *p_ptt,
280                      u16 fid)
281 {
282         u16 control = 0;
283
284         SET_FIELD(control, PXP_PRETEND_CMD_IS_CONCRETE, 1);
285         SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_FUNCTION, 1);
286
287         /* Every pretend undos previous pretends, including
288          * previous port pretend.
289          */
290         SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0);
291         SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0);
292         SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
293
294         if (!GET_FIELD(fid, PXP_CONCRETE_FID_VFVALID))
295                 fid = GET_FIELD(fid, PXP_CONCRETE_FID_PFID);
296
297         p_ptt->pxp.pretend.control = cpu_to_le16(control);
298         p_ptt->pxp.pretend.fid.concrete_fid.fid = cpu_to_le16(fid);
299
300         REG_WR(p_hwfn,
301                qed_ptt_config_addr(p_ptt) +
302                offsetof(struct pxp_ptt_entry, pretend),
303                *(u32 *)&p_ptt->pxp.pretend);
304 }
305
306 void qed_port_pretend(struct qed_hwfn *p_hwfn,
307                       struct qed_ptt *p_ptt,
308                       u8 port_id)
309 {
310         u16 control = 0;
311
312         SET_FIELD(control, PXP_PRETEND_CMD_PORT, port_id);
313         SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 1);
314         SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
315
316         p_ptt->pxp.pretend.control = cpu_to_le16(control);
317
318         REG_WR(p_hwfn,
319                qed_ptt_config_addr(p_ptt) +
320                offsetof(struct pxp_ptt_entry, pretend),
321                *(u32 *)&p_ptt->pxp.pretend);
322 }
323
324 void qed_port_unpretend(struct qed_hwfn *p_hwfn,
325                         struct qed_ptt *p_ptt)
326 {
327         u16 control = 0;
328
329         SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0);
330         SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0);
331         SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
332
333         p_ptt->pxp.pretend.control = cpu_to_le16(control);
334
335         REG_WR(p_hwfn,
336                qed_ptt_config_addr(p_ptt) +
337                offsetof(struct pxp_ptt_entry, pretend),
338                *(u32 *)&p_ptt->pxp.pretend);
339 }
340
341 /* DMAE */
342 static void qed_dmae_opcode(struct qed_hwfn *p_hwfn,
343                             const u8 is_src_type_grc,
344                             const u8 is_dst_type_grc,
345                             struct qed_dmae_params *p_params)
346 {
347         u32 opcode = 0;
348         u16 opcodeB = 0;
349
350         /* Whether the source is the PCIe or the GRC.
351          * 0- The source is the PCIe
352          * 1- The source is the GRC.
353          */
354         opcode |= (is_src_type_grc ? DMAE_CMD_SRC_MASK_GRC
355                                    : DMAE_CMD_SRC_MASK_PCIE) <<
356                    DMAE_CMD_SRC_SHIFT;
357         opcode |= ((p_hwfn->rel_pf_id & DMAE_CMD_SRC_PF_ID_MASK) <<
358                    DMAE_CMD_SRC_PF_ID_SHIFT);
359
360         /* The destination of the DMA can be: 0-None 1-PCIe 2-GRC 3-None */
361         opcode |= (is_dst_type_grc ? DMAE_CMD_DST_MASK_GRC
362                                    : DMAE_CMD_DST_MASK_PCIE) <<
363                    DMAE_CMD_DST_SHIFT;
364         opcode |= ((p_hwfn->rel_pf_id & DMAE_CMD_DST_PF_ID_MASK) <<
365                    DMAE_CMD_DST_PF_ID_SHIFT);
366
367         /* Whether to write a completion word to the completion destination:
368          * 0-Do not write a completion word
369          * 1-Write the completion word
370          */
371         opcode |= (DMAE_CMD_COMP_WORD_EN_MASK << DMAE_CMD_COMP_WORD_EN_SHIFT);
372         opcode |= (DMAE_CMD_SRC_ADDR_RESET_MASK <<
373                    DMAE_CMD_SRC_ADDR_RESET_SHIFT);
374
375         if (p_params->flags & QED_DMAE_FLAG_COMPLETION_DST)
376                 opcode |= (1 << DMAE_CMD_COMP_FUNC_SHIFT);
377
378         opcode |= (DMAE_CMD_ENDIANITY << DMAE_CMD_ENDIANITY_MODE_SHIFT);
379
380         opcode |= ((p_hwfn->port_id) << DMAE_CMD_PORT_ID_SHIFT);
381
382         /* reset source address in next go */
383         opcode |= (DMAE_CMD_SRC_ADDR_RESET_MASK <<
384                    DMAE_CMD_SRC_ADDR_RESET_SHIFT);
385
386         /* reset dest address in next go */
387         opcode |= (DMAE_CMD_DST_ADDR_RESET_MASK <<
388                    DMAE_CMD_DST_ADDR_RESET_SHIFT);
389
390         opcodeB |= (DMAE_CMD_SRC_VF_ID_MASK <<
391                     DMAE_CMD_SRC_VF_ID_SHIFT);
392
393         opcodeB |= (DMAE_CMD_DST_VF_ID_MASK <<
394                     DMAE_CMD_DST_VF_ID_SHIFT);
395
396         p_hwfn->dmae_info.p_dmae_cmd->opcode = cpu_to_le32(opcode);
397         p_hwfn->dmae_info.p_dmae_cmd->opcode_b = cpu_to_le16(opcodeB);
398 }
399
400 u32 qed_dmae_idx_to_go_cmd(u8 idx)
401 {
402         /* All the DMAE 'go' registers form an array in internal memory */
403         return DMAE_REG_GO_C0 + (idx << 2);
404 }
405
406 static int
407 qed_dmae_post_command(struct qed_hwfn *p_hwfn,
408                       struct qed_ptt *p_ptt)
409 {
410         struct dmae_cmd *command = p_hwfn->dmae_info.p_dmae_cmd;
411         u8 idx_cmd = p_hwfn->dmae_info.channel, i;
412         int qed_status = 0;
413
414         /* verify address is not NULL */
415         if ((((command->dst_addr_lo == 0) && (command->dst_addr_hi == 0)) ||
416              ((command->src_addr_lo == 0) && (command->src_addr_hi == 0)))) {
417                 DP_NOTICE(p_hwfn,
418                           "source or destination address 0 idx_cmd=%d\n"
419                           "opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
420                            idx_cmd,
421                            le32_to_cpu(command->opcode),
422                            le16_to_cpu(command->opcode_b),
423                            le16_to_cpu(command->length),
424                            le32_to_cpu(command->src_addr_hi),
425                            le32_to_cpu(command->src_addr_lo),
426                            le32_to_cpu(command->dst_addr_hi),
427                            le32_to_cpu(command->dst_addr_lo));
428
429                 return -EINVAL;
430         }
431
432         DP_VERBOSE(p_hwfn,
433                    NETIF_MSG_HW,
434                    "Posting DMAE command [idx %d]: opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
435                    idx_cmd,
436                    le32_to_cpu(command->opcode),
437                    le16_to_cpu(command->opcode_b),
438                    le16_to_cpu(command->length),
439                    le32_to_cpu(command->src_addr_hi),
440                    le32_to_cpu(command->src_addr_lo),
441                    le32_to_cpu(command->dst_addr_hi),
442                    le32_to_cpu(command->dst_addr_lo));
443
444         /* Copy the command to DMAE - need to do it before every call
445          * for source/dest address no reset.
446          * The first 9 DWs are the command registers, the 10 DW is the
447          * GO register, and the rest are result registers
448          * (which are read only by the client).
449          */
450         for (i = 0; i < DMAE_CMD_SIZE; i++) {
451                 u32 data = (i < DMAE_CMD_SIZE_TO_FILL) ?
452                            *(((u32 *)command) + i) : 0;
453
454                 qed_wr(p_hwfn, p_ptt,
455                        DMAE_REG_CMD_MEM +
456                        (idx_cmd * DMAE_CMD_SIZE * sizeof(u32)) +
457                        (i * sizeof(u32)), data);
458         }
459
460         qed_wr(p_hwfn, p_ptt,
461                qed_dmae_idx_to_go_cmd(idx_cmd),
462                DMAE_GO_VALUE);
463
464         return qed_status;
465 }
466
467 int qed_dmae_info_alloc(struct qed_hwfn *p_hwfn)
468 {
469         dma_addr_t *p_addr = &p_hwfn->dmae_info.completion_word_phys_addr;
470         struct dmae_cmd **p_cmd = &p_hwfn->dmae_info.p_dmae_cmd;
471         u32 **p_buff = &p_hwfn->dmae_info.p_intermediate_buffer;
472         u32 **p_comp = &p_hwfn->dmae_info.p_completion_word;
473
474         *p_comp = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
475                                      sizeof(u32),
476                                      p_addr,
477                                      GFP_KERNEL);
478         if (!*p_comp) {
479                 DP_NOTICE(p_hwfn, "Failed to allocate `p_completion_word'\n");
480                 goto err;
481         }
482
483         p_addr = &p_hwfn->dmae_info.dmae_cmd_phys_addr;
484         *p_cmd = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
485                                     sizeof(struct dmae_cmd),
486                                     p_addr, GFP_KERNEL);
487         if (!*p_cmd) {
488                 DP_NOTICE(p_hwfn, "Failed to allocate `struct dmae_cmd'\n");
489                 goto err;
490         }
491
492         p_addr = &p_hwfn->dmae_info.intermediate_buffer_phys_addr;
493         *p_buff = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
494                                      sizeof(u32) * DMAE_MAX_RW_SIZE,
495                                      p_addr, GFP_KERNEL);
496         if (!*p_buff) {
497                 DP_NOTICE(p_hwfn, "Failed to allocate `intermediate_buffer'\n");
498                 goto err;
499         }
500
501         p_hwfn->dmae_info.channel = p_hwfn->rel_pf_id;
502
503         return 0;
504 err:
505         qed_dmae_info_free(p_hwfn);
506         return -ENOMEM;
507 }
508
509 void qed_dmae_info_free(struct qed_hwfn *p_hwfn)
510 {
511         dma_addr_t p_phys;
512
513         /* Just make sure no one is in the middle */
514         mutex_lock(&p_hwfn->dmae_info.mutex);
515
516         if (p_hwfn->dmae_info.p_completion_word) {
517                 p_phys = p_hwfn->dmae_info.completion_word_phys_addr;
518                 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
519                                   sizeof(u32),
520                                   p_hwfn->dmae_info.p_completion_word,
521                                   p_phys);
522                 p_hwfn->dmae_info.p_completion_word = NULL;
523         }
524
525         if (p_hwfn->dmae_info.p_dmae_cmd) {
526                 p_phys = p_hwfn->dmae_info.dmae_cmd_phys_addr;
527                 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
528                                   sizeof(struct dmae_cmd),
529                                   p_hwfn->dmae_info.p_dmae_cmd,
530                                   p_phys);
531                 p_hwfn->dmae_info.p_dmae_cmd = NULL;
532         }
533
534         if (p_hwfn->dmae_info.p_intermediate_buffer) {
535                 p_phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr;
536                 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
537                                   sizeof(u32) * DMAE_MAX_RW_SIZE,
538                                   p_hwfn->dmae_info.p_intermediate_buffer,
539                                   p_phys);
540                 p_hwfn->dmae_info.p_intermediate_buffer = NULL;
541         }
542
543         mutex_unlock(&p_hwfn->dmae_info.mutex);
544 }
545
546 static int qed_dmae_operation_wait(struct qed_hwfn *p_hwfn)
547 {
548         u32 wait_cnt = 0;
549         u32 wait_cnt_limit = 10000;
550
551         int qed_status = 0;
552
553         barrier();
554         while (*p_hwfn->dmae_info.p_completion_word != DMAE_COMPLETION_VAL) {
555                 udelay(DMAE_MIN_WAIT_TIME);
556                 if (++wait_cnt > wait_cnt_limit) {
557                         DP_NOTICE(p_hwfn->cdev,
558                                   "Timed-out waiting for operation to complete. Completion word is 0x%08x expected 0x%08x.\n",
559                                   *p_hwfn->dmae_info.p_completion_word,
560                                  DMAE_COMPLETION_VAL);
561                         qed_status = -EBUSY;
562                         break;
563                 }
564
565                 /* to sync the completion_word since we are not
566                  * using the volatile keyword for p_completion_word
567                  */
568                 barrier();
569         }
570
571         if (qed_status == 0)
572                 *p_hwfn->dmae_info.p_completion_word = 0;
573
574         return qed_status;
575 }
576
577 static int qed_dmae_execute_sub_operation(struct qed_hwfn *p_hwfn,
578                                           struct qed_ptt *p_ptt,
579                                           u64 src_addr,
580                                           u64 dst_addr,
581                                           u8 src_type,
582                                           u8 dst_type,
583                                           u32 length)
584 {
585         dma_addr_t phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr;
586         struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd;
587         int qed_status = 0;
588
589         switch (src_type) {
590         case QED_DMAE_ADDRESS_GRC:
591         case QED_DMAE_ADDRESS_HOST_PHYS:
592                 cmd->src_addr_hi = cpu_to_le32(upper_32_bits(src_addr));
593                 cmd->src_addr_lo = cpu_to_le32(lower_32_bits(src_addr));
594                 break;
595         /* for virtual source addresses we use the intermediate buffer. */
596         case QED_DMAE_ADDRESS_HOST_VIRT:
597                 cmd->src_addr_hi = cpu_to_le32(upper_32_bits(phys));
598                 cmd->src_addr_lo = cpu_to_le32(lower_32_bits(phys));
599                 memcpy(&p_hwfn->dmae_info.p_intermediate_buffer[0],
600                        (void *)(uintptr_t)src_addr,
601                        length * sizeof(u32));
602                 break;
603         default:
604                 return -EINVAL;
605         }
606
607         switch (dst_type) {
608         case QED_DMAE_ADDRESS_GRC:
609         case QED_DMAE_ADDRESS_HOST_PHYS:
610                 cmd->dst_addr_hi = cpu_to_le32(upper_32_bits(dst_addr));
611                 cmd->dst_addr_lo = cpu_to_le32(lower_32_bits(dst_addr));
612                 break;
613         /* for virtual source addresses we use the intermediate buffer. */
614         case QED_DMAE_ADDRESS_HOST_VIRT:
615                 cmd->dst_addr_hi = cpu_to_le32(upper_32_bits(phys));
616                 cmd->dst_addr_lo = cpu_to_le32(lower_32_bits(phys));
617                 break;
618         default:
619                 return -EINVAL;
620         }
621
622         cmd->length = cpu_to_le16((u16)length);
623
624         qed_dmae_post_command(p_hwfn, p_ptt);
625
626         qed_status = qed_dmae_operation_wait(p_hwfn);
627
628         if (qed_status) {
629                 DP_NOTICE(p_hwfn,
630                           "qed_dmae_host2grc: Wait Failed. source_addr 0x%llx, grc_addr 0x%llx, size_in_dwords 0x%x\n",
631                           src_addr,
632                           dst_addr,
633                           length);
634                 return qed_status;
635         }
636
637         if (dst_type == QED_DMAE_ADDRESS_HOST_VIRT)
638                 memcpy((void *)(uintptr_t)(dst_addr),
639                        &p_hwfn->dmae_info.p_intermediate_buffer[0],
640                        length * sizeof(u32));
641
642         return 0;
643 }
644
645 static int qed_dmae_execute_command(struct qed_hwfn *p_hwfn,
646                                     struct qed_ptt *p_ptt,
647                                     u64 src_addr, u64 dst_addr,
648                                     u8 src_type, u8 dst_type,
649                                     u32 size_in_dwords,
650                                     struct qed_dmae_params *p_params)
651 {
652         dma_addr_t phys = p_hwfn->dmae_info.completion_word_phys_addr;
653         u16 length_cur = 0, i = 0, cnt_split = 0, length_mod = 0;
654         struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd;
655         u64 src_addr_split = 0, dst_addr_split = 0;
656         u16 length_limit = DMAE_MAX_RW_SIZE;
657         int qed_status = 0;
658         u32 offset = 0;
659
660         qed_dmae_opcode(p_hwfn,
661                         (src_type == QED_DMAE_ADDRESS_GRC),
662                         (dst_type == QED_DMAE_ADDRESS_GRC),
663                         p_params);
664
665         cmd->comp_addr_lo = cpu_to_le32(lower_32_bits(phys));
666         cmd->comp_addr_hi = cpu_to_le32(upper_32_bits(phys));
667         cmd->comp_val = cpu_to_le32(DMAE_COMPLETION_VAL);
668
669         /* Check if the grc_addr is valid like < MAX_GRC_OFFSET */
670         cnt_split = size_in_dwords / length_limit;
671         length_mod = size_in_dwords % length_limit;
672
673         src_addr_split = src_addr;
674         dst_addr_split = dst_addr;
675
676         for (i = 0; i <= cnt_split; i++) {
677                 offset = length_limit * i;
678
679                 if (!(p_params->flags & QED_DMAE_FLAG_RW_REPL_SRC)) {
680                         if (src_type == QED_DMAE_ADDRESS_GRC)
681                                 src_addr_split = src_addr + offset;
682                         else
683                                 src_addr_split = src_addr + (offset * 4);
684                 }
685
686                 if (dst_type == QED_DMAE_ADDRESS_GRC)
687                         dst_addr_split = dst_addr + offset;
688                 else
689                         dst_addr_split = dst_addr + (offset * 4);
690
691                 length_cur = (cnt_split == i) ? length_mod : length_limit;
692
693                 /* might be zero on last iteration */
694                 if (!length_cur)
695                         continue;
696
697                 qed_status = qed_dmae_execute_sub_operation(p_hwfn,
698                                                             p_ptt,
699                                                             src_addr_split,
700                                                             dst_addr_split,
701                                                             src_type,
702                                                             dst_type,
703                                                             length_cur);
704                 if (qed_status) {
705                         DP_NOTICE(p_hwfn,
706                                   "qed_dmae_execute_sub_operation Failed with error 0x%x. source_addr 0x%llx, destination addr 0x%llx, size_in_dwords 0x%x\n",
707                                   qed_status,
708                                   src_addr,
709                                   dst_addr,
710                                   length_cur);
711                         break;
712                 }
713         }
714
715         return qed_status;
716 }
717
718 int qed_dmae_host2grc(struct qed_hwfn *p_hwfn,
719                       struct qed_ptt *p_ptt,
720                       u64 source_addr,
721                       u32 grc_addr,
722                       u32 size_in_dwords,
723                       u32 flags)
724 {
725         u32 grc_addr_in_dw = grc_addr / sizeof(u32);
726         struct qed_dmae_params params;
727         int rc;
728
729         memset(&params, 0, sizeof(struct qed_dmae_params));
730         params.flags = flags;
731
732         mutex_lock(&p_hwfn->dmae_info.mutex);
733
734         rc = qed_dmae_execute_command(p_hwfn, p_ptt, source_addr,
735                                       grc_addr_in_dw,
736                                       QED_DMAE_ADDRESS_HOST_VIRT,
737                                       QED_DMAE_ADDRESS_GRC,
738                                       size_in_dwords, &params);
739
740         mutex_unlock(&p_hwfn->dmae_info.mutex);
741
742         return rc;
743 }
744
745 u16 qed_get_qm_pq(struct qed_hwfn *p_hwfn,
746                   enum protocol_type proto,
747                   union qed_qm_pq_params *p_params)
748 {
749         u16 pq_id = 0;
750
751         if ((proto == PROTOCOLID_CORE || proto == PROTOCOLID_ETH) &&
752             !p_params) {
753                 DP_NOTICE(p_hwfn,
754                           "Protocol %d received NULL PQ params\n",
755                           proto);
756                 return 0;
757         }
758
759         switch (proto) {
760         case PROTOCOLID_CORE:
761                 if (p_params->core.tc == LB_TC)
762                         pq_id = p_hwfn->qm_info.pure_lb_pq;
763                 else
764                         pq_id = p_hwfn->qm_info.offload_pq;
765                 break;
766         case PROTOCOLID_ETH:
767                 pq_id = p_params->eth.tc;
768                 break;
769         default:
770                 pq_id = 0;
771         }
772
773         pq_id = CM_TX_PQ_BASE + pq_id + RESC_START(p_hwfn, QED_PQ);
774
775         return pq_id;
776 }