]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/sfc/farch.c
Merge remote-tracking branch 'input-current/for-linus'
[karo-tx-linux.git] / drivers / net / ethernet / sfc / farch.c
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/crc32.h>
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "nic.h"
22 #include "farch_regs.h"
23 #include "sriov.h"
24 #include "siena_sriov.h"
25 #include "io.h"
26 #include "workarounds.h"
27
28 /* Falcon-architecture (SFC4000 and SFC9000-family) support */
29
30 /**************************************************************************
31  *
32  * Configurable values
33  *
34  **************************************************************************
35  */
36
37 /* This is set to 16 for a good reason.  In summary, if larger than
38  * 16, the descriptor cache holds more than a default socket
39  * buffer's worth of packets (for UDP we can only have at most one
40  * socket buffer's worth outstanding).  This combined with the fact
41  * that we only get 1 TX event per descriptor cache means the NIC
42  * goes idle.
43  */
44 #define TX_DC_ENTRIES 16
45 #define TX_DC_ENTRIES_ORDER 1
46
47 #define RX_DC_ENTRIES 64
48 #define RX_DC_ENTRIES_ORDER 3
49
50 /* If EFX_MAX_INT_ERRORS internal errors occur within
51  * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
52  * disable it.
53  */
54 #define EFX_INT_ERROR_EXPIRE 3600
55 #define EFX_MAX_INT_ERRORS 5
56
57 /* Depth of RX flush request fifo */
58 #define EFX_RX_FLUSH_COUNT 4
59
60 /* Driver generated events */
61 #define _EFX_CHANNEL_MAGIC_TEST         0x000101
62 #define _EFX_CHANNEL_MAGIC_FILL         0x000102
63 #define _EFX_CHANNEL_MAGIC_RX_DRAIN     0x000103
64 #define _EFX_CHANNEL_MAGIC_TX_DRAIN     0x000104
65
66 #define _EFX_CHANNEL_MAGIC(_code, _data)        ((_code) << 8 | (_data))
67 #define _EFX_CHANNEL_MAGIC_CODE(_magic)         ((_magic) >> 8)
68
69 #define EFX_CHANNEL_MAGIC_TEST(_channel)                                \
70         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
71 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue)                               \
72         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,                     \
73                            efx_rx_queue_index(_rx_queue))
74 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)                           \
75         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,                 \
76                            efx_rx_queue_index(_rx_queue))
77 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)                           \
78         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,                 \
79                            (_tx_queue)->queue)
80
81 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
82
83 /**************************************************************************
84  *
85  * Hardware access
86  *
87  **************************************************************************/
88
89 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
90                                      unsigned int index)
91 {
92         efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
93                         value, index);
94 }
95
96 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
97                                      const efx_oword_t *mask)
98 {
99         return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
100                 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
101 }
102
103 int efx_farch_test_registers(struct efx_nic *efx,
104                              const struct efx_farch_register_test *regs,
105                              size_t n_regs)
106 {
107         unsigned address = 0, i, j;
108         efx_oword_t mask, imask, original, reg, buf;
109
110         for (i = 0; i < n_regs; ++i) {
111                 address = regs[i].address;
112                 mask = imask = regs[i].mask;
113                 EFX_INVERT_OWORD(imask);
114
115                 efx_reado(efx, &original, address);
116
117                 /* bit sweep on and off */
118                 for (j = 0; j < 128; j++) {
119                         if (!EFX_EXTRACT_OWORD32(mask, j, j))
120                                 continue;
121
122                         /* Test this testable bit can be set in isolation */
123                         EFX_AND_OWORD(reg, original, mask);
124                         EFX_SET_OWORD32(reg, j, j, 1);
125
126                         efx_writeo(efx, &reg, address);
127                         efx_reado(efx, &buf, address);
128
129                         if (efx_masked_compare_oword(&reg, &buf, &mask))
130                                 goto fail;
131
132                         /* Test this testable bit can be cleared in isolation */
133                         EFX_OR_OWORD(reg, original, mask);
134                         EFX_SET_OWORD32(reg, j, j, 0);
135
136                         efx_writeo(efx, &reg, address);
137                         efx_reado(efx, &buf, address);
138
139                         if (efx_masked_compare_oword(&reg, &buf, &mask))
140                                 goto fail;
141                 }
142
143                 efx_writeo(efx, &original, address);
144         }
145
146         return 0;
147
148 fail:
149         netif_err(efx, hw, efx->net_dev,
150                   "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
151                   " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
152                   EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
153         return -EIO;
154 }
155
156 /**************************************************************************
157  *
158  * Special buffer handling
159  * Special buffers are used for event queues and the TX and RX
160  * descriptor rings.
161  *
162  *************************************************************************/
163
164 /*
165  * Initialise a special buffer
166  *
167  * This will define a buffer (previously allocated via
168  * efx_alloc_special_buffer()) in the buffer table, allowing
169  * it to be used for event queues, descriptor rings etc.
170  */
171 static void
172 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
173 {
174         efx_qword_t buf_desc;
175         unsigned int index;
176         dma_addr_t dma_addr;
177         int i;
178
179         EFX_BUG_ON_PARANOID(!buffer->buf.addr);
180
181         /* Write buffer descriptors to NIC */
182         for (i = 0; i < buffer->entries; i++) {
183                 index = buffer->index + i;
184                 dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
185                 netif_dbg(efx, probe, efx->net_dev,
186                           "mapping special buffer %d at %llx\n",
187                           index, (unsigned long long)dma_addr);
188                 EFX_POPULATE_QWORD_3(buf_desc,
189                                      FRF_AZ_BUF_ADR_REGION, 0,
190                                      FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
191                                      FRF_AZ_BUF_OWNER_ID_FBUF, 0);
192                 efx_write_buf_tbl(efx, &buf_desc, index);
193         }
194 }
195
196 /* Unmaps a buffer and clears the buffer table entries */
197 static void
198 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
199 {
200         efx_oword_t buf_tbl_upd;
201         unsigned int start = buffer->index;
202         unsigned int end = (buffer->index + buffer->entries - 1);
203
204         if (!buffer->entries)
205                 return;
206
207         netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
208                   buffer->index, buffer->index + buffer->entries - 1);
209
210         EFX_POPULATE_OWORD_4(buf_tbl_upd,
211                              FRF_AZ_BUF_UPD_CMD, 0,
212                              FRF_AZ_BUF_CLR_CMD, 1,
213                              FRF_AZ_BUF_CLR_END_ID, end,
214                              FRF_AZ_BUF_CLR_START_ID, start);
215         efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
216 }
217
218 /*
219  * Allocate a new special buffer
220  *
221  * This allocates memory for a new buffer, clears it and allocates a
222  * new buffer ID range.  It does not write into the buffer table.
223  *
224  * This call will allocate 4KB buffers, since 8KB buffers can't be
225  * used for event queues and descriptor rings.
226  */
227 static int efx_alloc_special_buffer(struct efx_nic *efx,
228                                     struct efx_special_buffer *buffer,
229                                     unsigned int len)
230 {
231 #ifdef CONFIG_SFC_SRIOV
232         struct siena_nic_data *nic_data = efx->nic_data;
233 #endif
234         len = ALIGN(len, EFX_BUF_SIZE);
235
236         if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
237                 return -ENOMEM;
238         buffer->entries = len / EFX_BUF_SIZE;
239         BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
240
241         /* Select new buffer ID */
242         buffer->index = efx->next_buffer_table;
243         efx->next_buffer_table += buffer->entries;
244 #ifdef CONFIG_SFC_SRIOV
245         BUG_ON(efx_siena_sriov_enabled(efx) &&
246                nic_data->vf_buftbl_base < efx->next_buffer_table);
247 #endif
248
249         netif_dbg(efx, probe, efx->net_dev,
250                   "allocating special buffers %d-%d at %llx+%x "
251                   "(virt %p phys %llx)\n", buffer->index,
252                   buffer->index + buffer->entries - 1,
253                   (u64)buffer->buf.dma_addr, len,
254                   buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
255
256         return 0;
257 }
258
259 static void
260 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
261 {
262         if (!buffer->buf.addr)
263                 return;
264
265         netif_dbg(efx, hw, efx->net_dev,
266                   "deallocating special buffers %d-%d at %llx+%x "
267                   "(virt %p phys %llx)\n", buffer->index,
268                   buffer->index + buffer->entries - 1,
269                   (u64)buffer->buf.dma_addr, buffer->buf.len,
270                   buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
271
272         efx_nic_free_buffer(efx, &buffer->buf);
273         buffer->entries = 0;
274 }
275
276 /**************************************************************************
277  *
278  * TX path
279  *
280  **************************************************************************/
281
282 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
283 static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
284 {
285         unsigned write_ptr;
286         efx_dword_t reg;
287
288         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
289         EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
290         efx_writed_page(tx_queue->efx, &reg,
291                         FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
292 }
293
294 /* Write pointer and first descriptor for TX descriptor ring */
295 static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
296                                           const efx_qword_t *txd)
297 {
298         unsigned write_ptr;
299         efx_oword_t reg;
300
301         BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
302         BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
303
304         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
305         EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
306                              FRF_AZ_TX_DESC_WPTR, write_ptr);
307         reg.qword[0] = *txd;
308         efx_writeo_page(tx_queue->efx, &reg,
309                         FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
310 }
311
312
313 /* For each entry inserted into the software descriptor ring, create a
314  * descriptor in the hardware TX descriptor ring (in host memory), and
315  * write a doorbell.
316  */
317 void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
318 {
319         struct efx_tx_buffer *buffer;
320         efx_qword_t *txd;
321         unsigned write_ptr;
322         unsigned old_write_count = tx_queue->write_count;
323
324         tx_queue->xmit_more_available = false;
325         if (unlikely(tx_queue->write_count == tx_queue->insert_count))
326                 return;
327
328         do {
329                 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
330                 buffer = &tx_queue->buffer[write_ptr];
331                 txd = efx_tx_desc(tx_queue, write_ptr);
332                 ++tx_queue->write_count;
333
334                 EFX_BUG_ON_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
335
336                 /* Create TX descriptor ring entry */
337                 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
338                 EFX_POPULATE_QWORD_4(*txd,
339                                      FSF_AZ_TX_KER_CONT,
340                                      buffer->flags & EFX_TX_BUF_CONT,
341                                      FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
342                                      FSF_AZ_TX_KER_BUF_REGION, 0,
343                                      FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
344         } while (tx_queue->write_count != tx_queue->insert_count);
345
346         wmb(); /* Ensure descriptors are written before they are fetched */
347
348         if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
349                 txd = efx_tx_desc(tx_queue,
350                                   old_write_count & tx_queue->ptr_mask);
351                 efx_farch_push_tx_desc(tx_queue, txd);
352                 ++tx_queue->pushes;
353         } else {
354                 efx_farch_notify_tx_desc(tx_queue);
355         }
356 }
357
358 /* Allocate hardware resources for a TX queue */
359 int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
360 {
361         struct efx_nic *efx = tx_queue->efx;
362         unsigned entries;
363
364         entries = tx_queue->ptr_mask + 1;
365         return efx_alloc_special_buffer(efx, &tx_queue->txd,
366                                         entries * sizeof(efx_qword_t));
367 }
368
369 void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
370 {
371         struct efx_nic *efx = tx_queue->efx;
372         efx_oword_t reg;
373
374         /* Pin TX descriptor ring */
375         efx_init_special_buffer(efx, &tx_queue->txd);
376
377         /* Push TX descriptor ring to card */
378         EFX_POPULATE_OWORD_10(reg,
379                               FRF_AZ_TX_DESCQ_EN, 1,
380                               FRF_AZ_TX_ISCSI_DDIG_EN, 0,
381                               FRF_AZ_TX_ISCSI_HDIG_EN, 0,
382                               FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
383                               FRF_AZ_TX_DESCQ_EVQ_ID,
384                               tx_queue->channel->channel,
385                               FRF_AZ_TX_DESCQ_OWNER_ID, 0,
386                               FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
387                               FRF_AZ_TX_DESCQ_SIZE,
388                               __ffs(tx_queue->txd.entries),
389                               FRF_AZ_TX_DESCQ_TYPE, 0,
390                               FRF_BZ_TX_NON_IP_DROP_DIS, 1);
391
392         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
393                 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
394                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
395                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
396                                     !csum);
397         }
398
399         efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
400                          tx_queue->queue);
401
402         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
403                 /* Only 128 bits in this register */
404                 BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
405
406                 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
407                 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
408                         __clear_bit_le(tx_queue->queue, &reg);
409                 else
410                         __set_bit_le(tx_queue->queue, &reg);
411                 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
412         }
413
414         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
415                 EFX_POPULATE_OWORD_1(reg,
416                                      FRF_BZ_TX_PACE,
417                                      (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
418                                      FFE_BZ_TX_PACE_OFF :
419                                      FFE_BZ_TX_PACE_RESERVED);
420                 efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
421                                  tx_queue->queue);
422         }
423 }
424
425 static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
426 {
427         struct efx_nic *efx = tx_queue->efx;
428         efx_oword_t tx_flush_descq;
429
430         WARN_ON(atomic_read(&tx_queue->flush_outstanding));
431         atomic_set(&tx_queue->flush_outstanding, 1);
432
433         EFX_POPULATE_OWORD_2(tx_flush_descq,
434                              FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
435                              FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
436         efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
437 }
438
439 void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
440 {
441         struct efx_nic *efx = tx_queue->efx;
442         efx_oword_t tx_desc_ptr;
443
444         /* Remove TX descriptor ring from card */
445         EFX_ZERO_OWORD(tx_desc_ptr);
446         efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
447                          tx_queue->queue);
448
449         /* Unpin TX descriptor ring */
450         efx_fini_special_buffer(efx, &tx_queue->txd);
451 }
452
453 /* Free buffers backing TX queue */
454 void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
455 {
456         efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
457 }
458
459 /**************************************************************************
460  *
461  * RX path
462  *
463  **************************************************************************/
464
465 /* This creates an entry in the RX descriptor queue */
466 static inline void
467 efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
468 {
469         struct efx_rx_buffer *rx_buf;
470         efx_qword_t *rxd;
471
472         rxd = efx_rx_desc(rx_queue, index);
473         rx_buf = efx_rx_buffer(rx_queue, index);
474         EFX_POPULATE_QWORD_3(*rxd,
475                              FSF_AZ_RX_KER_BUF_SIZE,
476                              rx_buf->len -
477                              rx_queue->efx->type->rx_buffer_padding,
478                              FSF_AZ_RX_KER_BUF_REGION, 0,
479                              FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
480 }
481
482 /* This writes to the RX_DESC_WPTR register for the specified receive
483  * descriptor ring.
484  */
485 void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
486 {
487         struct efx_nic *efx = rx_queue->efx;
488         efx_dword_t reg;
489         unsigned write_ptr;
490
491         while (rx_queue->notified_count != rx_queue->added_count) {
492                 efx_farch_build_rx_desc(
493                         rx_queue,
494                         rx_queue->notified_count & rx_queue->ptr_mask);
495                 ++rx_queue->notified_count;
496         }
497
498         wmb();
499         write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
500         EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
501         efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
502                         efx_rx_queue_index(rx_queue));
503 }
504
505 int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
506 {
507         struct efx_nic *efx = rx_queue->efx;
508         unsigned entries;
509
510         entries = rx_queue->ptr_mask + 1;
511         return efx_alloc_special_buffer(efx, &rx_queue->rxd,
512                                         entries * sizeof(efx_qword_t));
513 }
514
515 void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
516 {
517         efx_oword_t rx_desc_ptr;
518         struct efx_nic *efx = rx_queue->efx;
519         bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
520         bool iscsi_digest_en = is_b0;
521         bool jumbo_en;
522
523         /* For kernel-mode queues in Falcon A1, the JUMBO flag enables
524          * DMA to continue after a PCIe page boundary (and scattering
525          * is not possible).  In Falcon B0 and Siena, it enables
526          * scatter.
527          */
528         jumbo_en = !is_b0 || efx->rx_scatter;
529
530         netif_dbg(efx, hw, efx->net_dev,
531                   "RX queue %d ring in special buffers %d-%d\n",
532                   efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
533                   rx_queue->rxd.index + rx_queue->rxd.entries - 1);
534
535         rx_queue->scatter_n = 0;
536
537         /* Pin RX descriptor ring */
538         efx_init_special_buffer(efx, &rx_queue->rxd);
539
540         /* Push RX descriptor ring to card */
541         EFX_POPULATE_OWORD_10(rx_desc_ptr,
542                               FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
543                               FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
544                               FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
545                               FRF_AZ_RX_DESCQ_EVQ_ID,
546                               efx_rx_queue_channel(rx_queue)->channel,
547                               FRF_AZ_RX_DESCQ_OWNER_ID, 0,
548                               FRF_AZ_RX_DESCQ_LABEL,
549                               efx_rx_queue_index(rx_queue),
550                               FRF_AZ_RX_DESCQ_SIZE,
551                               __ffs(rx_queue->rxd.entries),
552                               FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
553                               FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
554                               FRF_AZ_RX_DESCQ_EN, 1);
555         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
556                          efx_rx_queue_index(rx_queue));
557 }
558
559 static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
560 {
561         struct efx_nic *efx = rx_queue->efx;
562         efx_oword_t rx_flush_descq;
563
564         EFX_POPULATE_OWORD_2(rx_flush_descq,
565                              FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
566                              FRF_AZ_RX_FLUSH_DESCQ,
567                              efx_rx_queue_index(rx_queue));
568         efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
569 }
570
571 void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
572 {
573         efx_oword_t rx_desc_ptr;
574         struct efx_nic *efx = rx_queue->efx;
575
576         /* Remove RX descriptor ring from card */
577         EFX_ZERO_OWORD(rx_desc_ptr);
578         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
579                          efx_rx_queue_index(rx_queue));
580
581         /* Unpin RX descriptor ring */
582         efx_fini_special_buffer(efx, &rx_queue->rxd);
583 }
584
585 /* Free buffers backing RX queue */
586 void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
587 {
588         efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
589 }
590
591 /**************************************************************************
592  *
593  * Flush handling
594  *
595  **************************************************************************/
596
597 /* efx_farch_flush_queues() must be woken up when all flushes are completed,
598  * or more RX flushes can be kicked off.
599  */
600 static bool efx_farch_flush_wake(struct efx_nic *efx)
601 {
602         /* Ensure that all updates are visible to efx_farch_flush_queues() */
603         smp_mb();
604
605         return (atomic_read(&efx->active_queues) == 0 ||
606                 (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
607                  && atomic_read(&efx->rxq_flush_pending) > 0));
608 }
609
610 static bool efx_check_tx_flush_complete(struct efx_nic *efx)
611 {
612         bool i = true;
613         efx_oword_t txd_ptr_tbl;
614         struct efx_channel *channel;
615         struct efx_tx_queue *tx_queue;
616
617         efx_for_each_channel(channel, efx) {
618                 efx_for_each_channel_tx_queue(tx_queue, channel) {
619                         efx_reado_table(efx, &txd_ptr_tbl,
620                                         FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
621                         if (EFX_OWORD_FIELD(txd_ptr_tbl,
622                                             FRF_AZ_TX_DESCQ_FLUSH) ||
623                             EFX_OWORD_FIELD(txd_ptr_tbl,
624                                             FRF_AZ_TX_DESCQ_EN)) {
625                                 netif_dbg(efx, hw, efx->net_dev,
626                                           "flush did not complete on TXQ %d\n",
627                                           tx_queue->queue);
628                                 i = false;
629                         } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
630                                                   1, 0)) {
631                                 /* The flush is complete, but we didn't
632                                  * receive a flush completion event
633                                  */
634                                 netif_dbg(efx, hw, efx->net_dev,
635                                           "flush complete on TXQ %d, so drain "
636                                           "the queue\n", tx_queue->queue);
637                                 /* Don't need to increment active_queues as it
638                                  * has already been incremented for the queues
639                                  * which did not drain
640                                  */
641                                 efx_farch_magic_event(channel,
642                                                       EFX_CHANNEL_MAGIC_TX_DRAIN(
643                                                               tx_queue));
644                         }
645                 }
646         }
647
648         return i;
649 }
650
651 /* Flush all the transmit queues, and continue flushing receive queues until
652  * they're all flushed. Wait for the DRAIN events to be received so that there
653  * are no more RX and TX events left on any channel. */
654 static int efx_farch_do_flush(struct efx_nic *efx)
655 {
656         unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
657         struct efx_channel *channel;
658         struct efx_rx_queue *rx_queue;
659         struct efx_tx_queue *tx_queue;
660         int rc = 0;
661
662         efx_for_each_channel(channel, efx) {
663                 efx_for_each_channel_tx_queue(tx_queue, channel) {
664                         efx_farch_flush_tx_queue(tx_queue);
665                 }
666                 efx_for_each_channel_rx_queue(rx_queue, channel) {
667                         rx_queue->flush_pending = true;
668                         atomic_inc(&efx->rxq_flush_pending);
669                 }
670         }
671
672         while (timeout && atomic_read(&efx->active_queues) > 0) {
673                 /* If SRIOV is enabled, then offload receive queue flushing to
674                  * the firmware (though we will still have to poll for
675                  * completion). If that fails, fall back to the old scheme.
676                  */
677                 if (efx_siena_sriov_enabled(efx)) {
678                         rc = efx_mcdi_flush_rxqs(efx);
679                         if (!rc)
680                                 goto wait;
681                 }
682
683                 /* The hardware supports four concurrent rx flushes, each of
684                  * which may need to be retried if there is an outstanding
685                  * descriptor fetch
686                  */
687                 efx_for_each_channel(channel, efx) {
688                         efx_for_each_channel_rx_queue(rx_queue, channel) {
689                                 if (atomic_read(&efx->rxq_flush_outstanding) >=
690                                     EFX_RX_FLUSH_COUNT)
691                                         break;
692
693                                 if (rx_queue->flush_pending) {
694                                         rx_queue->flush_pending = false;
695                                         atomic_dec(&efx->rxq_flush_pending);
696                                         atomic_inc(&efx->rxq_flush_outstanding);
697                                         efx_farch_flush_rx_queue(rx_queue);
698                                 }
699                         }
700                 }
701
702         wait:
703                 timeout = wait_event_timeout(efx->flush_wq,
704                                              efx_farch_flush_wake(efx),
705                                              timeout);
706         }
707
708         if (atomic_read(&efx->active_queues) &&
709             !efx_check_tx_flush_complete(efx)) {
710                 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
711                           "(rx %d+%d)\n", atomic_read(&efx->active_queues),
712                           atomic_read(&efx->rxq_flush_outstanding),
713                           atomic_read(&efx->rxq_flush_pending));
714                 rc = -ETIMEDOUT;
715
716                 atomic_set(&efx->active_queues, 0);
717                 atomic_set(&efx->rxq_flush_pending, 0);
718                 atomic_set(&efx->rxq_flush_outstanding, 0);
719         }
720
721         return rc;
722 }
723
724 int efx_farch_fini_dmaq(struct efx_nic *efx)
725 {
726         struct efx_channel *channel;
727         struct efx_tx_queue *tx_queue;
728         struct efx_rx_queue *rx_queue;
729         int rc = 0;
730
731         /* Do not attempt to write to the NIC during EEH recovery */
732         if (efx->state != STATE_RECOVERY) {
733                 /* Only perform flush if DMA is enabled */
734                 if (efx->pci_dev->is_busmaster) {
735                         efx->type->prepare_flush(efx);
736                         rc = efx_farch_do_flush(efx);
737                         efx->type->finish_flush(efx);
738                 }
739
740                 efx_for_each_channel(channel, efx) {
741                         efx_for_each_channel_rx_queue(rx_queue, channel)
742                                 efx_farch_rx_fini(rx_queue);
743                         efx_for_each_channel_tx_queue(tx_queue, channel)
744                                 efx_farch_tx_fini(tx_queue);
745                 }
746         }
747
748         return rc;
749 }
750
751 /* Reset queue and flush accounting after FLR
752  *
753  * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
754  * mastering was disabled), in which case we don't receive (RXQ) flush
755  * completion events.  This means that efx->rxq_flush_outstanding remained at 4
756  * after the FLR; also, efx->active_queues was non-zero (as no flush completion
757  * events were received, and we didn't go through efx_check_tx_flush_complete())
758  * If we don't fix this up, on the next call to efx_realloc_channels() we won't
759  * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
760  * for batched flush requests; and the efx->active_queues gets messed up because
761  * we keep incrementing for the newly initialised queues, but it never went to
762  * zero previously.  Then we get a timeout every time we try to restart the
763  * queues, as it doesn't go back to zero when we should be flushing the queues.
764  */
765 void efx_farch_finish_flr(struct efx_nic *efx)
766 {
767         atomic_set(&efx->rxq_flush_pending, 0);
768         atomic_set(&efx->rxq_flush_outstanding, 0);
769         atomic_set(&efx->active_queues, 0);
770 }
771
772
773 /**************************************************************************
774  *
775  * Event queue processing
776  * Event queues are processed by per-channel tasklets.
777  *
778  **************************************************************************/
779
780 /* Update a channel's event queue's read pointer (RPTR) register
781  *
782  * This writes the EVQ_RPTR_REG register for the specified channel's
783  * event queue.
784  */
785 void efx_farch_ev_read_ack(struct efx_channel *channel)
786 {
787         efx_dword_t reg;
788         struct efx_nic *efx = channel->efx;
789
790         EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
791                              channel->eventq_read_ptr & channel->eventq_mask);
792
793         /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
794          * of 4 bytes, but it is really 16 bytes just like later revisions.
795          */
796         efx_writed(efx, &reg,
797                    efx->type->evq_rptr_tbl_base +
798                    FR_BZ_EVQ_RPTR_STEP * channel->channel);
799 }
800
801 /* Use HW to insert a SW defined event */
802 void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
803                               efx_qword_t *event)
804 {
805         efx_oword_t drv_ev_reg;
806
807         BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
808                      FRF_AZ_DRV_EV_DATA_WIDTH != 64);
809         drv_ev_reg.u32[0] = event->u32[0];
810         drv_ev_reg.u32[1] = event->u32[1];
811         drv_ev_reg.u32[2] = 0;
812         drv_ev_reg.u32[3] = 0;
813         EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
814         efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
815 }
816
817 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
818 {
819         efx_qword_t event;
820
821         EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
822                              FSE_AZ_EV_CODE_DRV_GEN_EV,
823                              FSF_AZ_DRV_GEN_EV_MAGIC, magic);
824         efx_farch_generate_event(channel->efx, channel->channel, &event);
825 }
826
827 /* Handle a transmit completion event
828  *
829  * The NIC batches TX completion events; the message we receive is of
830  * the form "complete all TX events up to this index".
831  */
832 static int
833 efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
834 {
835         unsigned int tx_ev_desc_ptr;
836         unsigned int tx_ev_q_label;
837         struct efx_tx_queue *tx_queue;
838         struct efx_nic *efx = channel->efx;
839         int tx_packets = 0;
840
841         if (unlikely(ACCESS_ONCE(efx->reset_pending)))
842                 return 0;
843
844         if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
845                 /* Transmit completion */
846                 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
847                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
848                 tx_queue = efx_channel_get_tx_queue(
849                         channel, tx_ev_q_label % EFX_TXQ_TYPES);
850                 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
851                               tx_queue->ptr_mask);
852                 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
853         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
854                 /* Rewrite the FIFO write pointer */
855                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
856                 tx_queue = efx_channel_get_tx_queue(
857                         channel, tx_ev_q_label % EFX_TXQ_TYPES);
858
859                 netif_tx_lock(efx->net_dev);
860                 efx_farch_notify_tx_desc(tx_queue);
861                 netif_tx_unlock(efx->net_dev);
862         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
863                 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
864         } else {
865                 netif_err(efx, tx_err, efx->net_dev,
866                           "channel %d unexpected TX event "
867                           EFX_QWORD_FMT"\n", channel->channel,
868                           EFX_QWORD_VAL(*event));
869         }
870
871         return tx_packets;
872 }
873
874 /* Detect errors included in the rx_evt_pkt_ok bit. */
875 static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
876                                       const efx_qword_t *event)
877 {
878         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
879         struct efx_nic *efx = rx_queue->efx;
880         bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
881         bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
882         bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
883         bool rx_ev_other_err, rx_ev_pause_frm;
884         bool rx_ev_hdr_type, rx_ev_mcast_pkt;
885         unsigned rx_ev_pkt_type;
886
887         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
888         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
889         rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
890         rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
891         rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
892                                                  FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
893         rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
894                                                   FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
895         rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
896                                                    FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
897         rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
898         rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
899         rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
900                           0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
901         rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
902
903         /* Every error apart from tobe_disc and pause_frm */
904         rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
905                            rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
906                            rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
907
908         /* Count errors that are not in MAC stats.  Ignore expected
909          * checksum errors during self-test. */
910         if (rx_ev_frm_trunc)
911                 ++channel->n_rx_frm_trunc;
912         else if (rx_ev_tobe_disc)
913                 ++channel->n_rx_tobe_disc;
914         else if (!efx->loopback_selftest) {
915                 if (rx_ev_ip_hdr_chksum_err)
916                         ++channel->n_rx_ip_hdr_chksum_err;
917                 else if (rx_ev_tcp_udp_chksum_err)
918                         ++channel->n_rx_tcp_udp_chksum_err;
919         }
920
921         /* TOBE_DISC is expected on unicast mismatches; don't print out an
922          * error message.  FRM_TRUNC indicates RXDP dropped the packet due
923          * to a FIFO overflow.
924          */
925 #ifdef DEBUG
926         if (rx_ev_other_err && net_ratelimit()) {
927                 netif_dbg(efx, rx_err, efx->net_dev,
928                           " RX queue %d unexpected RX event "
929                           EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
930                           efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
931                           rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
932                           rx_ev_ip_hdr_chksum_err ?
933                           " [IP_HDR_CHKSUM_ERR]" : "",
934                           rx_ev_tcp_udp_chksum_err ?
935                           " [TCP_UDP_CHKSUM_ERR]" : "",
936                           rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
937                           rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
938                           rx_ev_drib_nib ? " [DRIB_NIB]" : "",
939                           rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
940                           rx_ev_pause_frm ? " [PAUSE]" : "");
941         }
942 #endif
943
944         /* The frame must be discarded if any of these are true. */
945         return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
946                 rx_ev_tobe_disc | rx_ev_pause_frm) ?
947                 EFX_RX_PKT_DISCARD : 0;
948 }
949
950 /* Handle receive events that are not in-order. Return true if this
951  * can be handled as a partial packet discard, false if it's more
952  * serious.
953  */
954 static bool
955 efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
956 {
957         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
958         struct efx_nic *efx = rx_queue->efx;
959         unsigned expected, dropped;
960
961         if (rx_queue->scatter_n &&
962             index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
963                       rx_queue->ptr_mask)) {
964                 ++channel->n_rx_nodesc_trunc;
965                 return true;
966         }
967
968         expected = rx_queue->removed_count & rx_queue->ptr_mask;
969         dropped = (index - expected) & rx_queue->ptr_mask;
970         netif_info(efx, rx_err, efx->net_dev,
971                    "dropped %d events (index=%d expected=%d)\n",
972                    dropped, index, expected);
973
974         efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
975                            RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
976         return false;
977 }
978
979 /* Handle a packet received event
980  *
981  * The NIC gives a "discard" flag if it's a unicast packet with the
982  * wrong destination address
983  * Also "is multicast" and "matches multicast filter" flags can be used to
984  * discard non-matching multicast packets.
985  */
986 static void
987 efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
988 {
989         unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
990         unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
991         unsigned expected_ptr;
992         bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
993         u16 flags;
994         struct efx_rx_queue *rx_queue;
995         struct efx_nic *efx = channel->efx;
996
997         if (unlikely(ACCESS_ONCE(efx->reset_pending)))
998                 return;
999
1000         rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
1001         rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
1002         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
1003                 channel->channel);
1004
1005         rx_queue = efx_channel_get_rx_queue(channel);
1006
1007         rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
1008         expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
1009                         rx_queue->ptr_mask);
1010
1011         /* Check for partial drops and other errors */
1012         if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
1013             unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
1014                 if (rx_ev_desc_ptr != expected_ptr &&
1015                     !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1016                         return;
1017
1018                 /* Discard all pending fragments */
1019                 if (rx_queue->scatter_n) {
1020                         efx_rx_packet(
1021                                 rx_queue,
1022                                 rx_queue->removed_count & rx_queue->ptr_mask,
1023                                 rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1024                         rx_queue->removed_count += rx_queue->scatter_n;
1025                         rx_queue->scatter_n = 0;
1026                 }
1027
1028                 /* Return if there is no new fragment */
1029                 if (rx_ev_desc_ptr != expected_ptr)
1030                         return;
1031
1032                 /* Discard new fragment if not SOP */
1033                 if (!rx_ev_sop) {
1034                         efx_rx_packet(
1035                                 rx_queue,
1036                                 rx_queue->removed_count & rx_queue->ptr_mask,
1037                                 1, 0, EFX_RX_PKT_DISCARD);
1038                         ++rx_queue->removed_count;
1039                         return;
1040                 }
1041         }
1042
1043         ++rx_queue->scatter_n;
1044         if (rx_ev_cont)
1045                 return;
1046
1047         rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1048         rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1049         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1050
1051         if (likely(rx_ev_pkt_ok)) {
1052                 /* If packet is marked as OK then we can rely on the
1053                  * hardware checksum and classification.
1054                  */
1055                 flags = 0;
1056                 switch (rx_ev_hdr_type) {
1057                 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1058                         flags |= EFX_RX_PKT_TCP;
1059                         /* fall through */
1060                 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1061                         flags |= EFX_RX_PKT_CSUMMED;
1062                         /* fall through */
1063                 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1064                 case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1065                         break;
1066                 }
1067         } else {
1068                 flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1069         }
1070
1071         /* Detect multicast packets that didn't match the filter */
1072         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1073         if (rx_ev_mcast_pkt) {
1074                 unsigned int rx_ev_mcast_hash_match =
1075                         EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1076
1077                 if (unlikely(!rx_ev_mcast_hash_match)) {
1078                         ++channel->n_rx_mcast_mismatch;
1079                         flags |= EFX_RX_PKT_DISCARD;
1080                 }
1081         }
1082
1083         channel->irq_mod_score += 2;
1084
1085         /* Handle received packet */
1086         efx_rx_packet(rx_queue,
1087                       rx_queue->removed_count & rx_queue->ptr_mask,
1088                       rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1089         rx_queue->removed_count += rx_queue->scatter_n;
1090         rx_queue->scatter_n = 0;
1091 }
1092
1093 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1094  * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1095  * of all transmit completions.
1096  */
1097 static void
1098 efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1099 {
1100         struct efx_tx_queue *tx_queue;
1101         int qid;
1102
1103         qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1104         if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1105                 tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1106                                             qid % EFX_TXQ_TYPES);
1107                 if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1108                         efx_farch_magic_event(tx_queue->channel,
1109                                               EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1110                 }
1111         }
1112 }
1113
1114 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1115  * was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1116  * the RX queue back to the mask of RX queues in need of flushing.
1117  */
1118 static void
1119 efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1120 {
1121         struct efx_channel *channel;
1122         struct efx_rx_queue *rx_queue;
1123         int qid;
1124         bool failed;
1125
1126         qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1127         failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1128         if (qid >= efx->n_channels)
1129                 return;
1130         channel = efx_get_channel(efx, qid);
1131         if (!efx_channel_has_rx_queue(channel))
1132                 return;
1133         rx_queue = efx_channel_get_rx_queue(channel);
1134
1135         if (failed) {
1136                 netif_info(efx, hw, efx->net_dev,
1137                            "RXQ %d flush retry\n", qid);
1138                 rx_queue->flush_pending = true;
1139                 atomic_inc(&efx->rxq_flush_pending);
1140         } else {
1141                 efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1142                                       EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1143         }
1144         atomic_dec(&efx->rxq_flush_outstanding);
1145         if (efx_farch_flush_wake(efx))
1146                 wake_up(&efx->flush_wq);
1147 }
1148
1149 static void
1150 efx_farch_handle_drain_event(struct efx_channel *channel)
1151 {
1152         struct efx_nic *efx = channel->efx;
1153
1154         WARN_ON(atomic_read(&efx->active_queues) == 0);
1155         atomic_dec(&efx->active_queues);
1156         if (efx_farch_flush_wake(efx))
1157                 wake_up(&efx->flush_wq);
1158 }
1159
1160 static void efx_farch_handle_generated_event(struct efx_channel *channel,
1161                                              efx_qword_t *event)
1162 {
1163         struct efx_nic *efx = channel->efx;
1164         struct efx_rx_queue *rx_queue =
1165                 efx_channel_has_rx_queue(channel) ?
1166                 efx_channel_get_rx_queue(channel) : NULL;
1167         unsigned magic, code;
1168
1169         magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1170         code = _EFX_CHANNEL_MAGIC_CODE(magic);
1171
1172         if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1173                 channel->event_test_cpu = raw_smp_processor_id();
1174         } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1175                 /* The queue must be empty, so we won't receive any rx
1176                  * events, so efx_process_channel() won't refill the
1177                  * queue. Refill it here */
1178                 efx_fast_push_rx_descriptors(rx_queue, true);
1179         } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1180                 efx_farch_handle_drain_event(channel);
1181         } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1182                 efx_farch_handle_drain_event(channel);
1183         } else {
1184                 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1185                           "generated event "EFX_QWORD_FMT"\n",
1186                           channel->channel, EFX_QWORD_VAL(*event));
1187         }
1188 }
1189
1190 static void
1191 efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1192 {
1193         struct efx_nic *efx = channel->efx;
1194         unsigned int ev_sub_code;
1195         unsigned int ev_sub_data;
1196
1197         ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1198         ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1199
1200         switch (ev_sub_code) {
1201         case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1202                 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1203                            channel->channel, ev_sub_data);
1204                 efx_farch_handle_tx_flush_done(efx, event);
1205 #ifdef CONFIG_SFC_SRIOV
1206                 efx_siena_sriov_tx_flush_done(efx, event);
1207 #endif
1208                 break;
1209         case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1210                 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1211                            channel->channel, ev_sub_data);
1212                 efx_farch_handle_rx_flush_done(efx, event);
1213 #ifdef CONFIG_SFC_SRIOV
1214                 efx_siena_sriov_rx_flush_done(efx, event);
1215 #endif
1216                 break;
1217         case FSE_AZ_EVQ_INIT_DONE_EV:
1218                 netif_dbg(efx, hw, efx->net_dev,
1219                           "channel %d EVQ %d initialised\n",
1220                           channel->channel, ev_sub_data);
1221                 break;
1222         case FSE_AZ_SRM_UPD_DONE_EV:
1223                 netif_vdbg(efx, hw, efx->net_dev,
1224                            "channel %d SRAM update done\n", channel->channel);
1225                 break;
1226         case FSE_AZ_WAKE_UP_EV:
1227                 netif_vdbg(efx, hw, efx->net_dev,
1228                            "channel %d RXQ %d wakeup event\n",
1229                            channel->channel, ev_sub_data);
1230                 break;
1231         case FSE_AZ_TIMER_EV:
1232                 netif_vdbg(efx, hw, efx->net_dev,
1233                            "channel %d RX queue %d timer expired\n",
1234                            channel->channel, ev_sub_data);
1235                 break;
1236         case FSE_AA_RX_RECOVER_EV:
1237                 netif_err(efx, rx_err, efx->net_dev,
1238                           "channel %d seen DRIVER RX_RESET event. "
1239                         "Resetting.\n", channel->channel);
1240                 atomic_inc(&efx->rx_reset);
1241                 efx_schedule_reset(efx,
1242                                    EFX_WORKAROUND_6555(efx) ?
1243                                    RESET_TYPE_RX_RECOVERY :
1244                                    RESET_TYPE_DISABLE);
1245                 break;
1246         case FSE_BZ_RX_DSC_ERROR_EV:
1247                 if (ev_sub_data < EFX_VI_BASE) {
1248                         netif_err(efx, rx_err, efx->net_dev,
1249                                   "RX DMA Q %d reports descriptor fetch error."
1250                                   " RX Q %d is disabled.\n", ev_sub_data,
1251                                   ev_sub_data);
1252                         efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1253                 }
1254 #ifdef CONFIG_SFC_SRIOV
1255                 else
1256                         efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1257 #endif
1258                 break;
1259         case FSE_BZ_TX_DSC_ERROR_EV:
1260                 if (ev_sub_data < EFX_VI_BASE) {
1261                         netif_err(efx, tx_err, efx->net_dev,
1262                                   "TX DMA Q %d reports descriptor fetch error."
1263                                   " TX Q %d is disabled.\n", ev_sub_data,
1264                                   ev_sub_data);
1265                         efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1266                 }
1267 #ifdef CONFIG_SFC_SRIOV
1268                 else
1269                         efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1270 #endif
1271                 break;
1272         default:
1273                 netif_vdbg(efx, hw, efx->net_dev,
1274                            "channel %d unknown driver event code %d "
1275                            "data %04x\n", channel->channel, ev_sub_code,
1276                            ev_sub_data);
1277                 break;
1278         }
1279 }
1280
1281 int efx_farch_ev_process(struct efx_channel *channel, int budget)
1282 {
1283         struct efx_nic *efx = channel->efx;
1284         unsigned int read_ptr;
1285         efx_qword_t event, *p_event;
1286         int ev_code;
1287         int tx_packets = 0;
1288         int spent = 0;
1289
1290         if (budget <= 0)
1291                 return spent;
1292
1293         read_ptr = channel->eventq_read_ptr;
1294
1295         for (;;) {
1296                 p_event = efx_event(channel, read_ptr);
1297                 event = *p_event;
1298
1299                 if (!efx_event_present(&event))
1300                         /* End of events */
1301                         break;
1302
1303                 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1304                            "channel %d event is "EFX_QWORD_FMT"\n",
1305                            channel->channel, EFX_QWORD_VAL(event));
1306
1307                 /* Clear this event by marking it all ones */
1308                 EFX_SET_QWORD(*p_event);
1309
1310                 ++read_ptr;
1311
1312                 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1313
1314                 switch (ev_code) {
1315                 case FSE_AZ_EV_CODE_RX_EV:
1316                         efx_farch_handle_rx_event(channel, &event);
1317                         if (++spent == budget)
1318                                 goto out;
1319                         break;
1320                 case FSE_AZ_EV_CODE_TX_EV:
1321                         tx_packets += efx_farch_handle_tx_event(channel,
1322                                                                 &event);
1323                         if (tx_packets > efx->txq_entries) {
1324                                 spent = budget;
1325                                 goto out;
1326                         }
1327                         break;
1328                 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1329                         efx_farch_handle_generated_event(channel, &event);
1330                         break;
1331                 case FSE_AZ_EV_CODE_DRIVER_EV:
1332                         efx_farch_handle_driver_event(channel, &event);
1333                         break;
1334 #ifdef CONFIG_SFC_SRIOV
1335                 case FSE_CZ_EV_CODE_USER_EV:
1336                         efx_siena_sriov_event(channel, &event);
1337                         break;
1338 #endif
1339                 case FSE_CZ_EV_CODE_MCDI_EV:
1340                         efx_mcdi_process_event(channel, &event);
1341                         break;
1342                 case FSE_AZ_EV_CODE_GLOBAL_EV:
1343                         if (efx->type->handle_global_event &&
1344                             efx->type->handle_global_event(channel, &event))
1345                                 break;
1346                         /* else fall through */
1347                 default:
1348                         netif_err(channel->efx, hw, channel->efx->net_dev,
1349                                   "channel %d unknown event type %d (data "
1350                                   EFX_QWORD_FMT ")\n", channel->channel,
1351                                   ev_code, EFX_QWORD_VAL(event));
1352                 }
1353         }
1354
1355 out:
1356         channel->eventq_read_ptr = read_ptr;
1357         return spent;
1358 }
1359
1360 /* Allocate buffer table entries for event queue */
1361 int efx_farch_ev_probe(struct efx_channel *channel)
1362 {
1363         struct efx_nic *efx = channel->efx;
1364         unsigned entries;
1365
1366         entries = channel->eventq_mask + 1;
1367         return efx_alloc_special_buffer(efx, &channel->eventq,
1368                                         entries * sizeof(efx_qword_t));
1369 }
1370
1371 int efx_farch_ev_init(struct efx_channel *channel)
1372 {
1373         efx_oword_t reg;
1374         struct efx_nic *efx = channel->efx;
1375
1376         netif_dbg(efx, hw, efx->net_dev,
1377                   "channel %d event queue in special buffers %d-%d\n",
1378                   channel->channel, channel->eventq.index,
1379                   channel->eventq.index + channel->eventq.entries - 1);
1380
1381         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1382                 EFX_POPULATE_OWORD_3(reg,
1383                                      FRF_CZ_TIMER_Q_EN, 1,
1384                                      FRF_CZ_HOST_NOTIFY_MODE, 0,
1385                                      FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1386                 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1387         }
1388
1389         /* Pin event queue buffer */
1390         efx_init_special_buffer(efx, &channel->eventq);
1391
1392         /* Fill event queue with all ones (i.e. empty events) */
1393         memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1394
1395         /* Push event queue to card */
1396         EFX_POPULATE_OWORD_3(reg,
1397                              FRF_AZ_EVQ_EN, 1,
1398                              FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1399                              FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1400         efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1401                          channel->channel);
1402
1403         return 0;
1404 }
1405
1406 void efx_farch_ev_fini(struct efx_channel *channel)
1407 {
1408         efx_oword_t reg;
1409         struct efx_nic *efx = channel->efx;
1410
1411         /* Remove event queue from card */
1412         EFX_ZERO_OWORD(reg);
1413         efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1414                          channel->channel);
1415         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1416                 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1417
1418         /* Unpin event queue */
1419         efx_fini_special_buffer(efx, &channel->eventq);
1420 }
1421
1422 /* Free buffers backing event queue */
1423 void efx_farch_ev_remove(struct efx_channel *channel)
1424 {
1425         efx_free_special_buffer(channel->efx, &channel->eventq);
1426 }
1427
1428
1429 void efx_farch_ev_test_generate(struct efx_channel *channel)
1430 {
1431         efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1432 }
1433
1434 void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1435 {
1436         efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1437                               EFX_CHANNEL_MAGIC_FILL(rx_queue));
1438 }
1439
1440 /**************************************************************************
1441  *
1442  * Hardware interrupts
1443  * The hardware interrupt handler does very little work; all the event
1444  * queue processing is carried out by per-channel tasklets.
1445  *
1446  **************************************************************************/
1447
1448 /* Enable/disable/generate interrupts */
1449 static inline void efx_farch_interrupts(struct efx_nic *efx,
1450                                       bool enabled, bool force)
1451 {
1452         efx_oword_t int_en_reg_ker;
1453
1454         EFX_POPULATE_OWORD_3(int_en_reg_ker,
1455                              FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1456                              FRF_AZ_KER_INT_KER, force,
1457                              FRF_AZ_DRV_INT_EN_KER, enabled);
1458         efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1459 }
1460
1461 void efx_farch_irq_enable_master(struct efx_nic *efx)
1462 {
1463         EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1464         wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1465
1466         efx_farch_interrupts(efx, true, false);
1467 }
1468
1469 void efx_farch_irq_disable_master(struct efx_nic *efx)
1470 {
1471         /* Disable interrupts */
1472         efx_farch_interrupts(efx, false, false);
1473 }
1474
1475 /* Generate a test interrupt
1476  * Interrupt must already have been enabled, otherwise nasty things
1477  * may happen.
1478  */
1479 void efx_farch_irq_test_generate(struct efx_nic *efx)
1480 {
1481         efx_farch_interrupts(efx, true, true);
1482 }
1483
1484 /* Process a fatal interrupt
1485  * Disable bus mastering ASAP and schedule a reset
1486  */
1487 irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1488 {
1489         struct falcon_nic_data *nic_data = efx->nic_data;
1490         efx_oword_t *int_ker = efx->irq_status.addr;
1491         efx_oword_t fatal_intr;
1492         int error, mem_perr;
1493
1494         efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1495         error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1496
1497         netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1498                   EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1499                   EFX_OWORD_VAL(fatal_intr),
1500                   error ? "disabling bus mastering" : "no recognised error");
1501
1502         /* If this is a memory parity error dump which blocks are offending */
1503         mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1504                     EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1505         if (mem_perr) {
1506                 efx_oword_t reg;
1507                 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1508                 netif_err(efx, hw, efx->net_dev,
1509                           "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1510                           EFX_OWORD_VAL(reg));
1511         }
1512
1513         /* Disable both devices */
1514         pci_clear_master(efx->pci_dev);
1515         if (efx_nic_is_dual_func(efx))
1516                 pci_clear_master(nic_data->pci_dev2);
1517         efx_farch_irq_disable_master(efx);
1518
1519         /* Count errors and reset or disable the NIC accordingly */
1520         if (efx->int_error_count == 0 ||
1521             time_after(jiffies, efx->int_error_expire)) {
1522                 efx->int_error_count = 0;
1523                 efx->int_error_expire =
1524                         jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1525         }
1526         if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1527                 netif_err(efx, hw, efx->net_dev,
1528                           "SYSTEM ERROR - reset scheduled\n");
1529                 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1530         } else {
1531                 netif_err(efx, hw, efx->net_dev,
1532                           "SYSTEM ERROR - max number of errors seen."
1533                           "NIC will be disabled\n");
1534                 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1535         }
1536
1537         return IRQ_HANDLED;
1538 }
1539
1540 /* Handle a legacy interrupt
1541  * Acknowledges the interrupt and schedule event queue processing.
1542  */
1543 irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1544 {
1545         struct efx_nic *efx = dev_id;
1546         bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1547         efx_oword_t *int_ker = efx->irq_status.addr;
1548         irqreturn_t result = IRQ_NONE;
1549         struct efx_channel *channel;
1550         efx_dword_t reg;
1551         u32 queues;
1552         int syserr;
1553
1554         /* Read the ISR which also ACKs the interrupts */
1555         efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1556         queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1557
1558         /* Legacy interrupts are disabled too late by the EEH kernel
1559          * code. Disable them earlier.
1560          * If an EEH error occurred, the read will have returned all ones.
1561          */
1562         if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1563             !efx->eeh_disabled_legacy_irq) {
1564                 disable_irq_nosync(efx->legacy_irq);
1565                 efx->eeh_disabled_legacy_irq = true;
1566         }
1567
1568         /* Handle non-event-queue sources */
1569         if (queues & (1U << efx->irq_level) && soft_enabled) {
1570                 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1571                 if (unlikely(syserr))
1572                         return efx_farch_fatal_interrupt(efx);
1573                 efx->last_irq_cpu = raw_smp_processor_id();
1574         }
1575
1576         if (queues != 0) {
1577                 efx->irq_zero_count = 0;
1578
1579                 /* Schedule processing of any interrupting queues */
1580                 if (likely(soft_enabled)) {
1581                         efx_for_each_channel(channel, efx) {
1582                                 if (queues & 1)
1583                                         efx_schedule_channel_irq(channel);
1584                                 queues >>= 1;
1585                         }
1586                 }
1587                 result = IRQ_HANDLED;
1588
1589         } else {
1590                 efx_qword_t *event;
1591
1592                 /* Legacy ISR read can return zero once (SF bug 15783) */
1593
1594                 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1595                  * because this might be a shared interrupt. */
1596                 if (efx->irq_zero_count++ == 0)
1597                         result = IRQ_HANDLED;
1598
1599                 /* Ensure we schedule or rearm all event queues */
1600                 if (likely(soft_enabled)) {
1601                         efx_for_each_channel(channel, efx) {
1602                                 event = efx_event(channel,
1603                                                   channel->eventq_read_ptr);
1604                                 if (efx_event_present(event))
1605                                         efx_schedule_channel_irq(channel);
1606                                 else
1607                                         efx_farch_ev_read_ack(channel);
1608                         }
1609                 }
1610         }
1611
1612         if (result == IRQ_HANDLED)
1613                 netif_vdbg(efx, intr, efx->net_dev,
1614                            "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1615                            irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1616
1617         return result;
1618 }
1619
1620 /* Handle an MSI interrupt
1621  *
1622  * Handle an MSI hardware interrupt.  This routine schedules event
1623  * queue processing.  No interrupt acknowledgement cycle is necessary.
1624  * Also, we never need to check that the interrupt is for us, since
1625  * MSI interrupts cannot be shared.
1626  */
1627 irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1628 {
1629         struct efx_msi_context *context = dev_id;
1630         struct efx_nic *efx = context->efx;
1631         efx_oword_t *int_ker = efx->irq_status.addr;
1632         int syserr;
1633
1634         netif_vdbg(efx, intr, efx->net_dev,
1635                    "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1636                    irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1637
1638         if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
1639                 return IRQ_HANDLED;
1640
1641         /* Handle non-event-queue sources */
1642         if (context->index == efx->irq_level) {
1643                 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1644                 if (unlikely(syserr))
1645                         return efx_farch_fatal_interrupt(efx);
1646                 efx->last_irq_cpu = raw_smp_processor_id();
1647         }
1648
1649         /* Schedule processing of the channel */
1650         efx_schedule_channel_irq(efx->channel[context->index]);
1651
1652         return IRQ_HANDLED;
1653 }
1654
1655 /* Setup RSS indirection table.
1656  * This maps from the hash value of the packet to RXQ
1657  */
1658 void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1659 {
1660         size_t i = 0;
1661         efx_dword_t dword;
1662
1663         BUG_ON(efx_nic_rev(efx) < EFX_REV_FALCON_B0);
1664
1665         BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1666                      FR_BZ_RX_INDIRECTION_TBL_ROWS);
1667
1668         for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1669                 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1670                                      efx->rx_indir_table[i]);
1671                 efx_writed(efx, &dword,
1672                            FR_BZ_RX_INDIRECTION_TBL +
1673                            FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1674         }
1675 }
1676
1677 /* Looks at available SRAM resources and works out how many queues we
1678  * can support, and where things like descriptor caches should live.
1679  *
1680  * SRAM is split up as follows:
1681  * 0                          buftbl entries for channels
1682  * efx->vf_buftbl_base        buftbl entries for SR-IOV
1683  * efx->rx_dc_base            RX descriptor caches
1684  * efx->tx_dc_base            TX descriptor caches
1685  */
1686 void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1687 {
1688         unsigned vi_count, buftbl_min;
1689
1690 #ifdef CONFIG_SFC_SRIOV
1691         struct siena_nic_data *nic_data = efx->nic_data;
1692 #endif
1693
1694         /* Account for the buffer table entries backing the datapath channels
1695          * and the descriptor caches for those channels.
1696          */
1697         buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1698                        efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1699                        efx->n_channels * EFX_MAX_EVQ_SIZE)
1700                       * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1701         vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1702
1703 #ifdef CONFIG_SFC_SRIOV
1704         if (efx->type->sriov_wanted) {
1705                 if (efx->type->sriov_wanted(efx)) {
1706                         unsigned vi_dc_entries, buftbl_free;
1707                         unsigned entries_per_vf, vf_limit;
1708
1709                         nic_data->vf_buftbl_base = buftbl_min;
1710
1711                         vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1712                         vi_count = max(vi_count, EFX_VI_BASE);
1713                         buftbl_free = (sram_lim_qw - buftbl_min -
1714                                        vi_count * vi_dc_entries);
1715
1716                         entries_per_vf = ((vi_dc_entries +
1717                                            EFX_VF_BUFTBL_PER_VI) *
1718                                           efx_vf_size(efx));
1719                         vf_limit = min(buftbl_free / entries_per_vf,
1720                                        (1024U - EFX_VI_BASE) >> efx->vi_scale);
1721
1722                         if (efx->vf_count > vf_limit) {
1723                                 netif_err(efx, probe, efx->net_dev,
1724                                           "Reducing VF count from from %d to %d\n",
1725                                           efx->vf_count, vf_limit);
1726                                 efx->vf_count = vf_limit;
1727                         }
1728                         vi_count += efx->vf_count * efx_vf_size(efx);
1729                 }
1730         }
1731 #endif
1732
1733         efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1734         efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1735 }
1736
1737 u32 efx_farch_fpga_ver(struct efx_nic *efx)
1738 {
1739         efx_oword_t altera_build;
1740         efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1741         return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1742 }
1743
1744 void efx_farch_init_common(struct efx_nic *efx)
1745 {
1746         efx_oword_t temp;
1747
1748         /* Set positions of descriptor caches in SRAM. */
1749         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1750         efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1751         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1752         efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1753
1754         /* Set TX descriptor cache size. */
1755         BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1756         EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1757         efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1758
1759         /* Set RX descriptor cache size.  Set low watermark to size-8, as
1760          * this allows most efficient prefetching.
1761          */
1762         BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1763         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1764         efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1765         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1766         efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1767
1768         /* Program INT_KER address */
1769         EFX_POPULATE_OWORD_2(temp,
1770                              FRF_AZ_NORM_INT_VEC_DIS_KER,
1771                              EFX_INT_MODE_USE_MSI(efx),
1772                              FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1773         efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1774
1775         if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1776                 /* Use an interrupt level unused by event queues */
1777                 efx->irq_level = 0x1f;
1778         else
1779                 /* Use a valid MSI-X vector */
1780                 efx->irq_level = 0;
1781
1782         /* Enable all the genuinely fatal interrupts.  (They are still
1783          * masked by the overall interrupt mask, controlled by
1784          * falcon_interrupts()).
1785          *
1786          * Note: All other fatal interrupts are enabled
1787          */
1788         EFX_POPULATE_OWORD_3(temp,
1789                              FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1790                              FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1791                              FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1792         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1793                 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1794         EFX_INVERT_OWORD(temp);
1795         efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1796
1797         /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1798          * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1799          */
1800         efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1801         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1802         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1803         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1804         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1805         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1806         /* Enable SW_EV to inherit in char driver - assume harmless here */
1807         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1808         /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1809         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1810         /* Disable hardware watchdog which can misfire */
1811         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1812         /* Squash TX of packets of 16 bytes or less */
1813         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1814                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1815         efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1816
1817         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1818                 EFX_POPULATE_OWORD_4(temp,
1819                                      /* Default values */
1820                                      FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1821                                      FRF_BZ_TX_PACE_SB_AF, 0xb,
1822                                      FRF_BZ_TX_PACE_FB_BASE, 0,
1823                                      /* Allow large pace values in the
1824                                       * fast bin. */
1825                                      FRF_BZ_TX_PACE_BIN_TH,
1826                                      FFE_BZ_TX_PACE_RESERVED);
1827                 efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1828         }
1829 }
1830
1831 /**************************************************************************
1832  *
1833  * Filter tables
1834  *
1835  **************************************************************************
1836  */
1837
1838 /* "Fudge factors" - difference between programmed value and actual depth.
1839  * Due to pipelined implementation we need to program H/W with a value that
1840  * is larger than the hop limit we want.
1841  */
1842 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1843 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1844
1845 /* Hard maximum search limit.  Hardware will time-out beyond 200-something.
1846  * We also need to avoid infinite loops in efx_farch_filter_search() when the
1847  * table is full.
1848  */
1849 #define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1850
1851 /* Don't try very hard to find space for performance hints, as this is
1852  * counter-productive. */
1853 #define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1854
1855 enum efx_farch_filter_type {
1856         EFX_FARCH_FILTER_TCP_FULL = 0,
1857         EFX_FARCH_FILTER_TCP_WILD,
1858         EFX_FARCH_FILTER_UDP_FULL,
1859         EFX_FARCH_FILTER_UDP_WILD,
1860         EFX_FARCH_FILTER_MAC_FULL = 4,
1861         EFX_FARCH_FILTER_MAC_WILD,
1862         EFX_FARCH_FILTER_UC_DEF = 8,
1863         EFX_FARCH_FILTER_MC_DEF,
1864         EFX_FARCH_FILTER_TYPE_COUNT,            /* number of specific types */
1865 };
1866
1867 enum efx_farch_filter_table_id {
1868         EFX_FARCH_FILTER_TABLE_RX_IP = 0,
1869         EFX_FARCH_FILTER_TABLE_RX_MAC,
1870         EFX_FARCH_FILTER_TABLE_RX_DEF,
1871         EFX_FARCH_FILTER_TABLE_TX_MAC,
1872         EFX_FARCH_FILTER_TABLE_COUNT,
1873 };
1874
1875 enum efx_farch_filter_index {
1876         EFX_FARCH_FILTER_INDEX_UC_DEF,
1877         EFX_FARCH_FILTER_INDEX_MC_DEF,
1878         EFX_FARCH_FILTER_SIZE_RX_DEF,
1879 };
1880
1881 struct efx_farch_filter_spec {
1882         u8      type:4;
1883         u8      priority:4;
1884         u8      flags;
1885         u16     dmaq_id;
1886         u32     data[3];
1887 };
1888
1889 struct efx_farch_filter_table {
1890         enum efx_farch_filter_table_id id;
1891         u32             offset;         /* address of table relative to BAR */
1892         unsigned        size;           /* number of entries */
1893         unsigned        step;           /* step between entries */
1894         unsigned        used;           /* number currently used */
1895         unsigned long   *used_bitmap;
1896         struct efx_farch_filter_spec *spec;
1897         unsigned        search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
1898 };
1899
1900 struct efx_farch_filter_state {
1901         struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
1902 };
1903
1904 static void
1905 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
1906                                    struct efx_farch_filter_table *table,
1907                                    unsigned int filter_idx);
1908
1909 /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1910  * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
1911 static u16 efx_farch_filter_hash(u32 key)
1912 {
1913         u16 tmp;
1914
1915         /* First 16 rounds */
1916         tmp = 0x1fff ^ key >> 16;
1917         tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1918         tmp = tmp ^ tmp >> 9;
1919         /* Last 16 rounds */
1920         tmp = tmp ^ tmp << 13 ^ key;
1921         tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1922         return tmp ^ tmp >> 9;
1923 }
1924
1925 /* To allow for hash collisions, filter search continues at these
1926  * increments from the first possible entry selected by the hash. */
1927 static u16 efx_farch_filter_increment(u32 key)
1928 {
1929         return key * 2 - 1;
1930 }
1931
1932 static enum efx_farch_filter_table_id
1933 efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
1934 {
1935         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1936                      (EFX_FARCH_FILTER_TCP_FULL >> 2));
1937         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1938                      (EFX_FARCH_FILTER_TCP_WILD >> 2));
1939         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1940                      (EFX_FARCH_FILTER_UDP_FULL >> 2));
1941         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1942                      (EFX_FARCH_FILTER_UDP_WILD >> 2));
1943         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1944                      (EFX_FARCH_FILTER_MAC_FULL >> 2));
1945         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1946                      (EFX_FARCH_FILTER_MAC_WILD >> 2));
1947         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
1948                      EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
1949         return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
1950 }
1951
1952 static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
1953 {
1954         struct efx_farch_filter_state *state = efx->filter_state;
1955         struct efx_farch_filter_table *table;
1956         efx_oword_t filter_ctl;
1957
1958         efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1959
1960         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
1961         EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1962                             table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
1963                             EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1964         EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1965                             table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
1966                             EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1967         EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1968                             table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
1969                             EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1970         EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1971                             table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
1972                             EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1973
1974         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
1975         if (table->size) {
1976                 EFX_SET_OWORD_FIELD(
1977                         filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1978                         table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1979                         EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1980                 EFX_SET_OWORD_FIELD(
1981                         filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1982                         table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1983                         EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1984         }
1985
1986         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
1987         if (table->size) {
1988                 EFX_SET_OWORD_FIELD(
1989                         filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1990                         table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1991                 EFX_SET_OWORD_FIELD(
1992                         filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1993                         !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1994                            EFX_FILTER_FLAG_RX_RSS));
1995                 EFX_SET_OWORD_FIELD(
1996                         filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1997                         table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1998                 EFX_SET_OWORD_FIELD(
1999                         filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
2000                         !!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
2001                            EFX_FILTER_FLAG_RX_RSS));
2002
2003                 /* There is a single bit to enable RX scatter for all
2004                  * unmatched packets.  Only set it if scatter is
2005                  * enabled in both filter specs.
2006                  */
2007                 EFX_SET_OWORD_FIELD(
2008                         filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
2009                         !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
2010                            table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
2011                            EFX_FILTER_FLAG_RX_SCATTER));
2012         } else if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2013                 /* We don't expose 'default' filters because unmatched
2014                  * packets always go to the queue number found in the
2015                  * RSS table.  But we still need to set the RX scatter
2016                  * bit here.
2017                  */
2018                 EFX_SET_OWORD_FIELD(
2019                         filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
2020                         efx->rx_scatter);
2021         }
2022
2023         efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
2024 }
2025
2026 static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
2027 {
2028         struct efx_farch_filter_state *state = efx->filter_state;
2029         struct efx_farch_filter_table *table;
2030         efx_oword_t tx_cfg;
2031
2032         efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
2033
2034         table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2035         if (table->size) {
2036                 EFX_SET_OWORD_FIELD(
2037                         tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
2038                         table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
2039                         EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
2040                 EFX_SET_OWORD_FIELD(
2041                         tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
2042                         table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
2043                         EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
2044         }
2045
2046         efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
2047 }
2048
2049 static int
2050 efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
2051                                const struct efx_filter_spec *gen_spec)
2052 {
2053         bool is_full = false;
2054
2055         if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) &&
2056             gen_spec->rss_context != EFX_FILTER_RSS_CONTEXT_DEFAULT)
2057                 return -EINVAL;
2058
2059         spec->priority = gen_spec->priority;
2060         spec->flags = gen_spec->flags;
2061         spec->dmaq_id = gen_spec->dmaq_id;
2062
2063         switch (gen_spec->match_flags) {
2064         case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2065               EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
2066               EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
2067                 is_full = true;
2068                 /* fall through */
2069         case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2070               EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
2071                 __be32 rhost, host1, host2;
2072                 __be16 rport, port1, port2;
2073
2074                 EFX_BUG_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
2075
2076                 if (gen_spec->ether_type != htons(ETH_P_IP))
2077                         return -EPROTONOSUPPORT;
2078                 if (gen_spec->loc_port == 0 ||
2079                     (is_full && gen_spec->rem_port == 0))
2080                         return -EADDRNOTAVAIL;
2081                 switch (gen_spec->ip_proto) {
2082                 case IPPROTO_TCP:
2083                         spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
2084                                       EFX_FARCH_FILTER_TCP_WILD);
2085                         break;
2086                 case IPPROTO_UDP:
2087                         spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
2088                                       EFX_FARCH_FILTER_UDP_WILD);
2089                         break;
2090                 default:
2091                         return -EPROTONOSUPPORT;
2092                 }
2093
2094                 /* Filter is constructed in terms of source and destination,
2095                  * with the odd wrinkle that the ports are swapped in a UDP
2096                  * wildcard filter.  We need to convert from local and remote
2097                  * (= zero for wildcard) addresses.
2098                  */
2099                 rhost = is_full ? gen_spec->rem_host[0] : 0;
2100                 rport = is_full ? gen_spec->rem_port : 0;
2101                 host1 = rhost;
2102                 host2 = gen_spec->loc_host[0];
2103                 if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2104                         port1 = gen_spec->loc_port;
2105                         port2 = rport;
2106                 } else {
2107                         port1 = rport;
2108                         port2 = gen_spec->loc_port;
2109                 }
2110                 spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2111                 spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2112                 spec->data[2] = ntohl(host2);
2113
2114                 break;
2115         }
2116
2117         case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
2118                 is_full = true;
2119                 /* fall through */
2120         case EFX_FILTER_MATCH_LOC_MAC:
2121                 spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
2122                               EFX_FARCH_FILTER_MAC_WILD);
2123                 spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2124                 spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2125                                  gen_spec->loc_mac[3] << 16 |
2126                                  gen_spec->loc_mac[4] << 8 |
2127                                  gen_spec->loc_mac[5]);
2128                 spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2129                                  gen_spec->loc_mac[1]);
2130                 break;
2131
2132         case EFX_FILTER_MATCH_LOC_MAC_IG:
2133                 spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2134                               EFX_FARCH_FILTER_MC_DEF :
2135                               EFX_FARCH_FILTER_UC_DEF);
2136                 memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2137                 break;
2138
2139         default:
2140                 return -EPROTONOSUPPORT;
2141         }
2142
2143         return 0;
2144 }
2145
2146 static void
2147 efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
2148                              const struct efx_farch_filter_spec *spec)
2149 {
2150         bool is_full = false;
2151
2152         /* *gen_spec should be completely initialised, to be consistent
2153          * with efx_filter_init_{rx,tx}() and in case we want to copy
2154          * it back to userland.
2155          */
2156         memset(gen_spec, 0, sizeof(*gen_spec));
2157
2158         gen_spec->priority = spec->priority;
2159         gen_spec->flags = spec->flags;
2160         gen_spec->dmaq_id = spec->dmaq_id;
2161
2162         switch (spec->type) {
2163         case EFX_FARCH_FILTER_TCP_FULL:
2164         case EFX_FARCH_FILTER_UDP_FULL:
2165                 is_full = true;
2166                 /* fall through */
2167         case EFX_FARCH_FILTER_TCP_WILD:
2168         case EFX_FARCH_FILTER_UDP_WILD: {
2169                 __be32 host1, host2;
2170                 __be16 port1, port2;
2171
2172                 gen_spec->match_flags =
2173                         EFX_FILTER_MATCH_ETHER_TYPE |
2174                         EFX_FILTER_MATCH_IP_PROTO |
2175                         EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
2176                 if (is_full)
2177                         gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
2178                                                   EFX_FILTER_MATCH_REM_PORT);
2179                 gen_spec->ether_type = htons(ETH_P_IP);
2180                 gen_spec->ip_proto =
2181                         (spec->type == EFX_FARCH_FILTER_TCP_FULL ||
2182                          spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
2183                         IPPROTO_TCP : IPPROTO_UDP;
2184
2185                 host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2186                 port1 = htons(spec->data[0]);
2187                 host2 = htonl(spec->data[2]);
2188                 port2 = htons(spec->data[1] >> 16);
2189                 if (spec->flags & EFX_FILTER_FLAG_TX) {
2190                         gen_spec->loc_host[0] = host1;
2191                         gen_spec->rem_host[0] = host2;
2192                 } else {
2193                         gen_spec->loc_host[0] = host2;
2194                         gen_spec->rem_host[0] = host1;
2195                 }
2196                 if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
2197                     (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2198                         gen_spec->loc_port = port1;
2199                         gen_spec->rem_port = port2;
2200                 } else {
2201                         gen_spec->loc_port = port2;
2202                         gen_spec->rem_port = port1;
2203                 }
2204
2205                 break;
2206         }
2207
2208         case EFX_FARCH_FILTER_MAC_FULL:
2209                 is_full = true;
2210                 /* fall through */
2211         case EFX_FARCH_FILTER_MAC_WILD:
2212                 gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
2213                 if (is_full)
2214                         gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
2215                 gen_spec->loc_mac[0] = spec->data[2] >> 8;
2216                 gen_spec->loc_mac[1] = spec->data[2];
2217                 gen_spec->loc_mac[2] = spec->data[1] >> 24;
2218                 gen_spec->loc_mac[3] = spec->data[1] >> 16;
2219                 gen_spec->loc_mac[4] = spec->data[1] >> 8;
2220                 gen_spec->loc_mac[5] = spec->data[1];
2221                 gen_spec->outer_vid = htons(spec->data[0]);
2222                 break;
2223
2224         case EFX_FARCH_FILTER_UC_DEF:
2225         case EFX_FARCH_FILTER_MC_DEF:
2226                 gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
2227                 gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
2228                 break;
2229
2230         default:
2231                 WARN_ON(1);
2232                 break;
2233         }
2234 }
2235
2236 static void
2237 efx_farch_filter_init_rx_auto(struct efx_nic *efx,
2238                               struct efx_farch_filter_spec *spec)
2239 {
2240         /* If there's only one channel then disable RSS for non VF
2241          * traffic, thereby allowing VFs to use RSS when the PF can't.
2242          */
2243         spec->priority = EFX_FILTER_PRI_AUTO;
2244         spec->flags = (EFX_FILTER_FLAG_RX |
2245                        (efx->n_rx_channels > 1 ? EFX_FILTER_FLAG_RX_RSS : 0) |
2246                        (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
2247         spec->dmaq_id = 0;
2248 }
2249
2250 /* Build a filter entry and return its n-tuple key. */
2251 static u32 efx_farch_filter_build(efx_oword_t *filter,
2252                                   struct efx_farch_filter_spec *spec)
2253 {
2254         u32 data3;
2255
2256         switch (efx_farch_filter_spec_table_id(spec)) {
2257         case EFX_FARCH_FILTER_TABLE_RX_IP: {
2258                 bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
2259                                spec->type == EFX_FARCH_FILTER_UDP_WILD);
2260                 EFX_POPULATE_OWORD_7(
2261                         *filter,
2262                         FRF_BZ_RSS_EN,
2263                         !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2264                         FRF_BZ_SCATTER_EN,
2265                         !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2266                         FRF_BZ_TCP_UDP, is_udp,
2267                         FRF_BZ_RXQ_ID, spec->dmaq_id,
2268                         EFX_DWORD_2, spec->data[2],
2269                         EFX_DWORD_1, spec->data[1],
2270                         EFX_DWORD_0, spec->data[0]);
2271                 data3 = is_udp;
2272                 break;
2273         }
2274
2275         case EFX_FARCH_FILTER_TABLE_RX_MAC: {
2276                 bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2277                 EFX_POPULATE_OWORD_7(
2278                         *filter,
2279                         FRF_CZ_RMFT_RSS_EN,
2280                         !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2281                         FRF_CZ_RMFT_SCATTER_EN,
2282                         !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2283                         FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2284                         FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2285                         FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2286                         FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2287                         FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2288                 data3 = is_wild;
2289                 break;
2290         }
2291
2292         case EFX_FARCH_FILTER_TABLE_TX_MAC: {
2293                 bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2294                 EFX_POPULATE_OWORD_5(*filter,
2295                                      FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2296                                      FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2297                                      FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2298                                      FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2299                                      FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2300                 data3 = is_wild | spec->dmaq_id << 1;
2301                 break;
2302         }
2303
2304         default:
2305                 BUG();
2306         }
2307
2308         return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2309 }
2310
2311 static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
2312                                    const struct efx_farch_filter_spec *right)
2313 {
2314         if (left->type != right->type ||
2315             memcmp(left->data, right->data, sizeof(left->data)))
2316                 return false;
2317
2318         if (left->flags & EFX_FILTER_FLAG_TX &&
2319             left->dmaq_id != right->dmaq_id)
2320                 return false;
2321
2322         return true;
2323 }
2324
2325 /*
2326  * Construct/deconstruct external filter IDs.  At least the RX filter
2327  * IDs must be ordered by matching priority, for RX NFC semantics.
2328  *
2329  * Deconstruction needs to be robust against invalid IDs so that
2330  * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2331  * accept user-provided IDs.
2332  */
2333
2334 #define EFX_FARCH_FILTER_MATCH_PRI_COUNT        5
2335
2336 static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
2337         [EFX_FARCH_FILTER_TCP_FULL]     = 0,
2338         [EFX_FARCH_FILTER_UDP_FULL]     = 0,
2339         [EFX_FARCH_FILTER_TCP_WILD]     = 1,
2340         [EFX_FARCH_FILTER_UDP_WILD]     = 1,
2341         [EFX_FARCH_FILTER_MAC_FULL]     = 2,
2342         [EFX_FARCH_FILTER_MAC_WILD]     = 3,
2343         [EFX_FARCH_FILTER_UC_DEF]       = 4,
2344         [EFX_FARCH_FILTER_MC_DEF]       = 4,
2345 };
2346
2347 static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
2348         EFX_FARCH_FILTER_TABLE_RX_IP,   /* RX match pri 0 */
2349         EFX_FARCH_FILTER_TABLE_RX_IP,
2350         EFX_FARCH_FILTER_TABLE_RX_MAC,
2351         EFX_FARCH_FILTER_TABLE_RX_MAC,
2352         EFX_FARCH_FILTER_TABLE_RX_DEF,  /* RX match pri 4 */
2353         EFX_FARCH_FILTER_TABLE_TX_MAC,  /* TX match pri 0 */
2354         EFX_FARCH_FILTER_TABLE_TX_MAC,  /* TX match pri 1 */
2355 };
2356
2357 #define EFX_FARCH_FILTER_INDEX_WIDTH 13
2358 #define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2359
2360 static inline u32
2361 efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
2362                          unsigned int index)
2363 {
2364         unsigned int range;
2365
2366         range = efx_farch_filter_type_match_pri[spec->type];
2367         if (!(spec->flags & EFX_FILTER_FLAG_RX))
2368                 range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
2369
2370         return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
2371 }
2372
2373 static inline enum efx_farch_filter_table_id
2374 efx_farch_filter_id_table_id(u32 id)
2375 {
2376         unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
2377
2378         if (range < ARRAY_SIZE(efx_farch_filter_range_table))
2379                 return efx_farch_filter_range_table[range];
2380         else
2381                 return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
2382 }
2383
2384 static inline unsigned int efx_farch_filter_id_index(u32 id)
2385 {
2386         return id & EFX_FARCH_FILTER_INDEX_MASK;
2387 }
2388
2389 u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
2390 {
2391         struct efx_farch_filter_state *state = efx->filter_state;
2392         unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2393         enum efx_farch_filter_table_id table_id;
2394
2395         do {
2396                 table_id = efx_farch_filter_range_table[range];
2397                 if (state->table[table_id].size != 0)
2398                         return range << EFX_FARCH_FILTER_INDEX_WIDTH |
2399                                 state->table[table_id].size;
2400         } while (range--);
2401
2402         return 0;
2403 }
2404
2405 s32 efx_farch_filter_insert(struct efx_nic *efx,
2406                             struct efx_filter_spec *gen_spec,
2407                             bool replace_equal)
2408 {
2409         struct efx_farch_filter_state *state = efx->filter_state;
2410         struct efx_farch_filter_table *table;
2411         struct efx_farch_filter_spec spec;
2412         efx_oword_t filter;
2413         int rep_index, ins_index;
2414         unsigned int depth = 0;
2415         int rc;
2416
2417         rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
2418         if (rc)
2419                 return rc;
2420
2421         table = &state->table[efx_farch_filter_spec_table_id(&spec)];
2422         if (table->size == 0)
2423                 return -EINVAL;
2424
2425         netif_vdbg(efx, hw, efx->net_dev,
2426                    "%s: type %d search_limit=%d", __func__, spec.type,
2427                    table->search_limit[spec.type]);
2428
2429         if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2430                 /* One filter spec per type */
2431                 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
2432                 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
2433                              EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
2434                 rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
2435                 ins_index = rep_index;
2436
2437                 spin_lock_bh(&efx->filter_lock);
2438         } else {
2439                 /* Search concurrently for
2440                  * (1) a filter to be replaced (rep_index): any filter
2441                  *     with the same match values, up to the current
2442                  *     search depth for this type, and
2443                  * (2) the insertion point (ins_index): (1) or any
2444                  *     free slot before it or up to the maximum search
2445                  *     depth for this priority
2446                  * We fail if we cannot find (2).
2447                  *
2448                  * We can stop once either
2449                  * (a) we find (1), in which case we have definitely
2450                  *     found (2) as well; or
2451                  * (b) we have searched exhaustively for (1), and have
2452                  *     either found (2) or searched exhaustively for it
2453                  */
2454                 u32 key = efx_farch_filter_build(&filter, &spec);
2455                 unsigned int hash = efx_farch_filter_hash(key);
2456                 unsigned int incr = efx_farch_filter_increment(key);
2457                 unsigned int max_rep_depth = table->search_limit[spec.type];
2458                 unsigned int max_ins_depth =
2459                         spec.priority <= EFX_FILTER_PRI_HINT ?
2460                         EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2461                         EFX_FARCH_FILTER_CTL_SRCH_MAX;
2462                 unsigned int i = hash & (table->size - 1);
2463
2464                 ins_index = -1;
2465                 depth = 1;
2466
2467                 spin_lock_bh(&efx->filter_lock);
2468
2469                 for (;;) {
2470                         if (!test_bit(i, table->used_bitmap)) {
2471                                 if (ins_index < 0)
2472                                         ins_index = i;
2473                         } else if (efx_farch_filter_equal(&spec,
2474                                                           &table->spec[i])) {
2475                                 /* Case (a) */
2476                                 if (ins_index < 0)
2477                                         ins_index = i;
2478                                 rep_index = i;
2479                                 break;
2480                         }
2481
2482                         if (depth >= max_rep_depth &&
2483                             (ins_index >= 0 || depth >= max_ins_depth)) {
2484                                 /* Case (b) */
2485                                 if (ins_index < 0) {
2486                                         rc = -EBUSY;
2487                                         goto out;
2488                                 }
2489                                 rep_index = -1;
2490                                 break;
2491                         }
2492
2493                         i = (i + incr) & (table->size - 1);
2494                         ++depth;
2495                 }
2496         }
2497
2498         /* If we found a filter to be replaced, check whether we
2499          * should do so
2500          */
2501         if (rep_index >= 0) {
2502                 struct efx_farch_filter_spec *saved_spec =
2503                         &table->spec[rep_index];
2504
2505                 if (spec.priority == saved_spec->priority && !replace_equal) {
2506                         rc = -EEXIST;
2507                         goto out;
2508                 }
2509                 if (spec.priority < saved_spec->priority) {
2510                         rc = -EPERM;
2511                         goto out;
2512                 }
2513                 if (saved_spec->priority == EFX_FILTER_PRI_AUTO ||
2514                     saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO)
2515                         spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2516         }
2517
2518         /* Insert the filter */
2519         if (ins_index != rep_index) {
2520                 __set_bit(ins_index, table->used_bitmap);
2521                 ++table->used;
2522         }
2523         table->spec[ins_index] = spec;
2524
2525         if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2526                 efx_farch_filter_push_rx_config(efx);
2527         } else {
2528                 if (table->search_limit[spec.type] < depth) {
2529                         table->search_limit[spec.type] = depth;
2530                         if (spec.flags & EFX_FILTER_FLAG_TX)
2531                                 efx_farch_filter_push_tx_limits(efx);
2532                         else
2533                                 efx_farch_filter_push_rx_config(efx);
2534                 }
2535
2536                 efx_writeo(efx, &filter,
2537                            table->offset + table->step * ins_index);
2538
2539                 /* If we were able to replace a filter by inserting
2540                  * at a lower depth, clear the replaced filter
2541                  */
2542                 if (ins_index != rep_index && rep_index >= 0)
2543                         efx_farch_filter_table_clear_entry(efx, table,
2544                                                            rep_index);
2545         }
2546
2547         netif_vdbg(efx, hw, efx->net_dev,
2548                    "%s: filter type %d index %d rxq %u set",
2549                    __func__, spec.type, ins_index, spec.dmaq_id);
2550         rc = efx_farch_filter_make_id(&spec, ins_index);
2551
2552 out:
2553         spin_unlock_bh(&efx->filter_lock);
2554         return rc;
2555 }
2556
2557 static void
2558 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
2559                                    struct efx_farch_filter_table *table,
2560                                    unsigned int filter_idx)
2561 {
2562         static efx_oword_t filter;
2563
2564         EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2565         BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2566
2567         __clear_bit(filter_idx, table->used_bitmap);
2568         --table->used;
2569         memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2570
2571         efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
2572
2573         /* If this filter required a greater search depth than
2574          * any other, the search limit for its type can now be
2575          * decreased.  However, it is hard to determine that
2576          * unless the table has become completely empty - in
2577          * which case, all its search limits can be set to 0.
2578          */
2579         if (unlikely(table->used == 0)) {
2580                 memset(table->search_limit, 0, sizeof(table->search_limit));
2581                 if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
2582                         efx_farch_filter_push_tx_limits(efx);
2583                 else
2584                         efx_farch_filter_push_rx_config(efx);
2585         }
2586 }
2587
2588 static int efx_farch_filter_remove(struct efx_nic *efx,
2589                                    struct efx_farch_filter_table *table,
2590                                    unsigned int filter_idx,
2591                                    enum efx_filter_priority priority)
2592 {
2593         struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
2594
2595         if (!test_bit(filter_idx, table->used_bitmap) ||
2596             spec->priority != priority)
2597                 return -ENOENT;
2598
2599         if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2600                 efx_farch_filter_init_rx_auto(efx, spec);
2601                 efx_farch_filter_push_rx_config(efx);
2602         } else {
2603                 efx_farch_filter_table_clear_entry(efx, table, filter_idx);
2604         }
2605
2606         return 0;
2607 }
2608
2609 int efx_farch_filter_remove_safe(struct efx_nic *efx,
2610                                  enum efx_filter_priority priority,
2611                                  u32 filter_id)
2612 {
2613         struct efx_farch_filter_state *state = efx->filter_state;
2614         enum efx_farch_filter_table_id table_id;
2615         struct efx_farch_filter_table *table;
2616         unsigned int filter_idx;
2617         struct efx_farch_filter_spec *spec;
2618         int rc;
2619
2620         table_id = efx_farch_filter_id_table_id(filter_id);
2621         if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2622                 return -ENOENT;
2623         table = &state->table[table_id];
2624
2625         filter_idx = efx_farch_filter_id_index(filter_id);
2626         if (filter_idx >= table->size)
2627                 return -ENOENT;
2628         spec = &table->spec[filter_idx];
2629
2630         spin_lock_bh(&efx->filter_lock);
2631         rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
2632         spin_unlock_bh(&efx->filter_lock);
2633
2634         return rc;
2635 }
2636
2637 int efx_farch_filter_get_safe(struct efx_nic *efx,
2638                               enum efx_filter_priority priority,
2639                               u32 filter_id, struct efx_filter_spec *spec_buf)
2640 {
2641         struct efx_farch_filter_state *state = efx->filter_state;
2642         enum efx_farch_filter_table_id table_id;
2643         struct efx_farch_filter_table *table;
2644         struct efx_farch_filter_spec *spec;
2645         unsigned int filter_idx;
2646         int rc;
2647
2648         table_id = efx_farch_filter_id_table_id(filter_id);
2649         if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2650                 return -ENOENT;
2651         table = &state->table[table_id];
2652
2653         filter_idx = efx_farch_filter_id_index(filter_id);
2654         if (filter_idx >= table->size)
2655                 return -ENOENT;
2656         spec = &table->spec[filter_idx];
2657
2658         spin_lock_bh(&efx->filter_lock);
2659
2660         if (test_bit(filter_idx, table->used_bitmap) &&
2661             spec->priority == priority) {
2662                 efx_farch_filter_to_gen_spec(spec_buf, spec);
2663                 rc = 0;
2664         } else {
2665                 rc = -ENOENT;
2666         }
2667
2668         spin_unlock_bh(&efx->filter_lock);
2669
2670         return rc;
2671 }
2672
2673 static void
2674 efx_farch_filter_table_clear(struct efx_nic *efx,
2675                              enum efx_farch_filter_table_id table_id,
2676                              enum efx_filter_priority priority)
2677 {
2678         struct efx_farch_filter_state *state = efx->filter_state;
2679         struct efx_farch_filter_table *table = &state->table[table_id];
2680         unsigned int filter_idx;
2681
2682         spin_lock_bh(&efx->filter_lock);
2683         for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2684                 if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO)
2685                         efx_farch_filter_remove(efx, table,
2686                                                 filter_idx, priority);
2687         }
2688         spin_unlock_bh(&efx->filter_lock);
2689 }
2690
2691 int efx_farch_filter_clear_rx(struct efx_nic *efx,
2692                                enum efx_filter_priority priority)
2693 {
2694         efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
2695                                      priority);
2696         efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
2697                                      priority);
2698         efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
2699                                      priority);
2700         return 0;
2701 }
2702
2703 u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
2704                                    enum efx_filter_priority priority)
2705 {
2706         struct efx_farch_filter_state *state = efx->filter_state;
2707         enum efx_farch_filter_table_id table_id;
2708         struct efx_farch_filter_table *table;
2709         unsigned int filter_idx;
2710         u32 count = 0;
2711
2712         spin_lock_bh(&efx->filter_lock);
2713
2714         for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2715              table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2716              table_id++) {
2717                 table = &state->table[table_id];
2718                 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2719                         if (test_bit(filter_idx, table->used_bitmap) &&
2720                             table->spec[filter_idx].priority == priority)
2721                                 ++count;
2722                 }
2723         }
2724
2725         spin_unlock_bh(&efx->filter_lock);
2726
2727         return count;
2728 }
2729
2730 s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
2731                                 enum efx_filter_priority priority,
2732                                 u32 *buf, u32 size)
2733 {
2734         struct efx_farch_filter_state *state = efx->filter_state;
2735         enum efx_farch_filter_table_id table_id;
2736         struct efx_farch_filter_table *table;
2737         unsigned int filter_idx;
2738         s32 count = 0;
2739
2740         spin_lock_bh(&efx->filter_lock);
2741
2742         for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2743              table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2744              table_id++) {
2745                 table = &state->table[table_id];
2746                 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2747                         if (test_bit(filter_idx, table->used_bitmap) &&
2748                             table->spec[filter_idx].priority == priority) {
2749                                 if (count == size) {
2750                                         count = -EMSGSIZE;
2751                                         goto out;
2752                                 }
2753                                 buf[count++] = efx_farch_filter_make_id(
2754                                         &table->spec[filter_idx], filter_idx);
2755                         }
2756                 }
2757         }
2758 out:
2759         spin_unlock_bh(&efx->filter_lock);
2760
2761         return count;
2762 }
2763
2764 /* Restore filter stater after reset */
2765 void efx_farch_filter_table_restore(struct efx_nic *efx)
2766 {
2767         struct efx_farch_filter_state *state = efx->filter_state;
2768         enum efx_farch_filter_table_id table_id;
2769         struct efx_farch_filter_table *table;
2770         efx_oword_t filter;
2771         unsigned int filter_idx;
2772
2773         spin_lock_bh(&efx->filter_lock);
2774
2775         for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2776                 table = &state->table[table_id];
2777
2778                 /* Check whether this is a regular register table */
2779                 if (table->step == 0)
2780                         continue;
2781
2782                 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2783                         if (!test_bit(filter_idx, table->used_bitmap))
2784                                 continue;
2785                         efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2786                         efx_writeo(efx, &filter,
2787                                    table->offset + table->step * filter_idx);
2788                 }
2789         }
2790
2791         efx_farch_filter_push_rx_config(efx);
2792         efx_farch_filter_push_tx_limits(efx);
2793
2794         spin_unlock_bh(&efx->filter_lock);
2795 }
2796
2797 void efx_farch_filter_table_remove(struct efx_nic *efx)
2798 {
2799         struct efx_farch_filter_state *state = efx->filter_state;
2800         enum efx_farch_filter_table_id table_id;
2801
2802         for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2803                 kfree(state->table[table_id].used_bitmap);
2804                 vfree(state->table[table_id].spec);
2805         }
2806         kfree(state);
2807 }
2808
2809 int efx_farch_filter_table_probe(struct efx_nic *efx)
2810 {
2811         struct efx_farch_filter_state *state;
2812         struct efx_farch_filter_table *table;
2813         unsigned table_id;
2814
2815         state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
2816         if (!state)
2817                 return -ENOMEM;
2818         efx->filter_state = state;
2819
2820         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2821                 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2822                 table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
2823                 table->offset = FR_BZ_RX_FILTER_TBL0;
2824                 table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2825                 table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2826         }
2827
2828         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
2829                 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
2830                 table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
2831                 table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
2832                 table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
2833                 table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
2834
2835                 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2836                 table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
2837                 table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
2838
2839                 table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2840                 table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
2841                 table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
2842                 table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
2843                 table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
2844         }
2845
2846         for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2847                 table = &state->table[table_id];
2848                 if (table->size == 0)
2849                         continue;
2850                 table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2851                                              sizeof(unsigned long),
2852                                              GFP_KERNEL);
2853                 if (!table->used_bitmap)
2854                         goto fail;
2855                 table->spec = vzalloc(table->size * sizeof(*table->spec));
2856                 if (!table->spec)
2857                         goto fail;
2858         }
2859
2860         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2861         if (table->size) {
2862                 /* RX default filters must always exist */
2863                 struct efx_farch_filter_spec *spec;
2864                 unsigned i;
2865
2866                 for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
2867                         spec = &table->spec[i];
2868                         spec->type = EFX_FARCH_FILTER_UC_DEF + i;
2869                         efx_farch_filter_init_rx_auto(efx, spec);
2870                         __set_bit(i, table->used_bitmap);
2871                 }
2872         }
2873
2874         efx_farch_filter_push_rx_config(efx);
2875
2876         return 0;
2877
2878 fail:
2879         efx_farch_filter_table_remove(efx);
2880         return -ENOMEM;
2881 }
2882
2883 /* Update scatter enable flags for filters pointing to our own RX queues */
2884 void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
2885 {
2886         struct efx_farch_filter_state *state = efx->filter_state;
2887         enum efx_farch_filter_table_id table_id;
2888         struct efx_farch_filter_table *table;
2889         efx_oword_t filter;
2890         unsigned int filter_idx;
2891
2892         spin_lock_bh(&efx->filter_lock);
2893
2894         for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2895              table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2896              table_id++) {
2897                 table = &state->table[table_id];
2898
2899                 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2900                         if (!test_bit(filter_idx, table->used_bitmap) ||
2901                             table->spec[filter_idx].dmaq_id >=
2902                             efx->n_rx_channels)
2903                                 continue;
2904
2905                         if (efx->rx_scatter)
2906                                 table->spec[filter_idx].flags |=
2907                                         EFX_FILTER_FLAG_RX_SCATTER;
2908                         else
2909                                 table->spec[filter_idx].flags &=
2910                                         ~EFX_FILTER_FLAG_RX_SCATTER;
2911
2912                         if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
2913                                 /* Pushed by efx_farch_filter_push_rx_config() */
2914                                 continue;
2915
2916                         efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2917                         efx_writeo(efx, &filter,
2918                                    table->offset + table->step * filter_idx);
2919                 }
2920         }
2921
2922         efx_farch_filter_push_rx_config(efx);
2923
2924         spin_unlock_bh(&efx->filter_lock);
2925 }
2926
2927 #ifdef CONFIG_RFS_ACCEL
2928
2929 s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
2930                                 struct efx_filter_spec *gen_spec)
2931 {
2932         return efx_farch_filter_insert(efx, gen_spec, true);
2933 }
2934
2935 bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2936                                      unsigned int index)
2937 {
2938         struct efx_farch_filter_state *state = efx->filter_state;
2939         struct efx_farch_filter_table *table =
2940                 &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2941
2942         if (test_bit(index, table->used_bitmap) &&
2943             table->spec[index].priority == EFX_FILTER_PRI_HINT &&
2944             rps_may_expire_flow(efx->net_dev, table->spec[index].dmaq_id,
2945                                 flow_id, index)) {
2946                 efx_farch_filter_table_clear_entry(efx, table, index);
2947                 return true;
2948         }
2949
2950         return false;
2951 }
2952
2953 #endif /* CONFIG_RFS_ACCEL */
2954
2955 void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
2956 {
2957         struct net_device *net_dev = efx->net_dev;
2958         struct netdev_hw_addr *ha;
2959         union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2960         u32 crc;
2961         int bit;
2962
2963         if (!efx_dev_registered(efx))
2964                 return;
2965
2966         netif_addr_lock_bh(net_dev);
2967
2968         efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2969
2970         /* Build multicast hash table */
2971         if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2972                 memset(mc_hash, 0xff, sizeof(*mc_hash));
2973         } else {
2974                 memset(mc_hash, 0x00, sizeof(*mc_hash));
2975                 netdev_for_each_mc_addr(ha, net_dev) {
2976                         crc = ether_crc_le(ETH_ALEN, ha->addr);
2977                         bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2978                         __set_bit_le(bit, mc_hash);
2979                 }
2980
2981                 /* Broadcast packets go through the multicast hash filter.
2982                  * ether_crc_le() of the broadcast address is 0xbe2612ff
2983                  * so we always add bit 0xff to the mask.
2984                  */
2985                 __set_bit_le(0xff, mc_hash);
2986         }
2987
2988         netif_addr_unlock_bh(net_dev);
2989 }