]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/xilinx/xilinx_axienet_main.c
Merge remote-tracking branch 'sound-current/for-linus'
[karo-tx-linux.git] / drivers / net / ethernet / xilinx / xilinx_axienet_main.c
1 /*
2  * Xilinx Axi Ethernet device driver
3  *
4  * Copyright (c) 2008 Nissin Systems Co., Ltd.,  Yoshio Kashiwagi
5  * Copyright (c) 2005-2008 DLA Systems,  David H. Lynch Jr. <dhlii@dlasys.net>
6  * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
7  * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
8  * Copyright (c) 2010 - 2011 PetaLogix
9  * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
10  *
11  * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
12  * and Spartan6.
13  *
14  * TODO:
15  *  - Add Axi Fifo support.
16  *  - Factor out Axi DMA code into separate driver.
17  *  - Test and fix basic multicast filtering.
18  *  - Add support for extended multicast filtering.
19  *  - Test basic VLAN support.
20  *  - Add support for extended VLAN support.
21  */
22
23 #include <linux/delay.h>
24 #include <linux/etherdevice.h>
25 #include <linux/module.h>
26 #include <linux/netdevice.h>
27 #include <linux/of_mdio.h>
28 #include <linux/of_platform.h>
29 #include <linux/of_irq.h>
30 #include <linux/of_address.h>
31 #include <linux/skbuff.h>
32 #include <linux/spinlock.h>
33 #include <linux/phy.h>
34 #include <linux/mii.h>
35 #include <linux/ethtool.h>
36
37 #include "xilinx_axienet.h"
38
39 /* Descriptors defines for Tx and Rx DMA - 2^n for the best performance */
40 #define TX_BD_NUM               64
41 #define RX_BD_NUM               128
42
43 /* Must be shorter than length of ethtool_drvinfo.driver field to fit */
44 #define DRIVER_NAME             "xaxienet"
45 #define DRIVER_DESCRIPTION      "Xilinx Axi Ethernet driver"
46 #define DRIVER_VERSION          "1.00a"
47
48 #define AXIENET_REGS_N          32
49
50 /* Match table for of_platform binding */
51 static const struct of_device_id axienet_of_match[] = {
52         { .compatible = "xlnx,axi-ethernet-1.00.a", },
53         { .compatible = "xlnx,axi-ethernet-1.01.a", },
54         { .compatible = "xlnx,axi-ethernet-2.01.a", },
55         {},
56 };
57
58 MODULE_DEVICE_TABLE(of, axienet_of_match);
59
60 /* Option table for setting up Axi Ethernet hardware options */
61 static struct axienet_option axienet_options[] = {
62         /* Turn on jumbo packet support for both Rx and Tx */
63         {
64                 .opt = XAE_OPTION_JUMBO,
65                 .reg = XAE_TC_OFFSET,
66                 .m_or = XAE_TC_JUM_MASK,
67         }, {
68                 .opt = XAE_OPTION_JUMBO,
69                 .reg = XAE_RCW1_OFFSET,
70                 .m_or = XAE_RCW1_JUM_MASK,
71         }, { /* Turn on VLAN packet support for both Rx and Tx */
72                 .opt = XAE_OPTION_VLAN,
73                 .reg = XAE_TC_OFFSET,
74                 .m_or = XAE_TC_VLAN_MASK,
75         }, {
76                 .opt = XAE_OPTION_VLAN,
77                 .reg = XAE_RCW1_OFFSET,
78                 .m_or = XAE_RCW1_VLAN_MASK,
79         }, { /* Turn on FCS stripping on receive packets */
80                 .opt = XAE_OPTION_FCS_STRIP,
81                 .reg = XAE_RCW1_OFFSET,
82                 .m_or = XAE_RCW1_FCS_MASK,
83         }, { /* Turn on FCS insertion on transmit packets */
84                 .opt = XAE_OPTION_FCS_INSERT,
85                 .reg = XAE_TC_OFFSET,
86                 .m_or = XAE_TC_FCS_MASK,
87         }, { /* Turn off length/type field checking on receive packets */
88                 .opt = XAE_OPTION_LENTYPE_ERR,
89                 .reg = XAE_RCW1_OFFSET,
90                 .m_or = XAE_RCW1_LT_DIS_MASK,
91         }, { /* Turn on Rx flow control */
92                 .opt = XAE_OPTION_FLOW_CONTROL,
93                 .reg = XAE_FCC_OFFSET,
94                 .m_or = XAE_FCC_FCRX_MASK,
95         }, { /* Turn on Tx flow control */
96                 .opt = XAE_OPTION_FLOW_CONTROL,
97                 .reg = XAE_FCC_OFFSET,
98                 .m_or = XAE_FCC_FCTX_MASK,
99         }, { /* Turn on promiscuous frame filtering */
100                 .opt = XAE_OPTION_PROMISC,
101                 .reg = XAE_FMI_OFFSET,
102                 .m_or = XAE_FMI_PM_MASK,
103         }, { /* Enable transmitter */
104                 .opt = XAE_OPTION_TXEN,
105                 .reg = XAE_TC_OFFSET,
106                 .m_or = XAE_TC_TX_MASK,
107         }, { /* Enable receiver */
108                 .opt = XAE_OPTION_RXEN,
109                 .reg = XAE_RCW1_OFFSET,
110                 .m_or = XAE_RCW1_RX_MASK,
111         },
112         {}
113 };
114
115 /**
116  * axienet_dma_in32 - Memory mapped Axi DMA register read
117  * @lp:         Pointer to axienet local structure
118  * @reg:        Address offset from the base address of the Axi DMA core
119  *
120  * Return: The contents of the Axi DMA register
121  *
122  * This function returns the contents of the corresponding Axi DMA register.
123  */
124 static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
125 {
126         return in_be32(lp->dma_regs + reg);
127 }
128
129 /**
130  * axienet_dma_out32 - Memory mapped Axi DMA register write.
131  * @lp:         Pointer to axienet local structure
132  * @reg:        Address offset from the base address of the Axi DMA core
133  * @value:      Value to be written into the Axi DMA register
134  *
135  * This function writes the desired value into the corresponding Axi DMA
136  * register.
137  */
138 static inline void axienet_dma_out32(struct axienet_local *lp,
139                                      off_t reg, u32 value)
140 {
141         out_be32((lp->dma_regs + reg), value);
142 }
143
144 /**
145  * axienet_dma_bd_release - Release buffer descriptor rings
146  * @ndev:       Pointer to the net_device structure
147  *
148  * This function is used to release the descriptors allocated in
149  * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
150  * driver stop api is called.
151  */
152 static void axienet_dma_bd_release(struct net_device *ndev)
153 {
154         int i;
155         struct axienet_local *lp = netdev_priv(ndev);
156
157         for (i = 0; i < RX_BD_NUM; i++) {
158                 dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys,
159                                  lp->max_frm_size, DMA_FROM_DEVICE);
160                 dev_kfree_skb((struct sk_buff *)
161                               (lp->rx_bd_v[i].sw_id_offset));
162         }
163
164         if (lp->rx_bd_v) {
165                 dma_free_coherent(ndev->dev.parent,
166                                   sizeof(*lp->rx_bd_v) * RX_BD_NUM,
167                                   lp->rx_bd_v,
168                                   lp->rx_bd_p);
169         }
170         if (lp->tx_bd_v) {
171                 dma_free_coherent(ndev->dev.parent,
172                                   sizeof(*lp->tx_bd_v) * TX_BD_NUM,
173                                   lp->tx_bd_v,
174                                   lp->tx_bd_p);
175         }
176 }
177
178 /**
179  * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
180  * @ndev:       Pointer to the net_device structure
181  *
182  * Return: 0, on success -ENOMEM, on failure
183  *
184  * This function is called to initialize the Rx and Tx DMA descriptor
185  * rings. This initializes the descriptors with required default values
186  * and is called when Axi Ethernet driver reset is called.
187  */
188 static int axienet_dma_bd_init(struct net_device *ndev)
189 {
190         u32 cr;
191         int i;
192         struct sk_buff *skb;
193         struct axienet_local *lp = netdev_priv(ndev);
194
195         /* Reset the indexes which are used for accessing the BDs */
196         lp->tx_bd_ci = 0;
197         lp->tx_bd_tail = 0;
198         lp->rx_bd_ci = 0;
199
200         /* Allocate the Tx and Rx buffer descriptors. */
201         lp->tx_bd_v = dma_zalloc_coherent(ndev->dev.parent,
202                                           sizeof(*lp->tx_bd_v) * TX_BD_NUM,
203                                           &lp->tx_bd_p, GFP_KERNEL);
204         if (!lp->tx_bd_v)
205                 goto out;
206
207         lp->rx_bd_v = dma_zalloc_coherent(ndev->dev.parent,
208                                           sizeof(*lp->rx_bd_v) * RX_BD_NUM,
209                                           &lp->rx_bd_p, GFP_KERNEL);
210         if (!lp->rx_bd_v)
211                 goto out;
212
213         for (i = 0; i < TX_BD_NUM; i++) {
214                 lp->tx_bd_v[i].next = lp->tx_bd_p +
215                                       sizeof(*lp->tx_bd_v) *
216                                       ((i + 1) % TX_BD_NUM);
217         }
218
219         for (i = 0; i < RX_BD_NUM; i++) {
220                 lp->rx_bd_v[i].next = lp->rx_bd_p +
221                                       sizeof(*lp->rx_bd_v) *
222                                       ((i + 1) % RX_BD_NUM);
223
224                 skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
225                 if (!skb)
226                         goto out;
227
228                 lp->rx_bd_v[i].sw_id_offset = (u32) skb;
229                 lp->rx_bd_v[i].phys = dma_map_single(ndev->dev.parent,
230                                                      skb->data,
231                                                      lp->max_frm_size,
232                                                      DMA_FROM_DEVICE);
233                 lp->rx_bd_v[i].cntrl = lp->max_frm_size;
234         }
235
236         /* Start updating the Rx channel control register */
237         cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
238         /* Update the interrupt coalesce count */
239         cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
240               ((lp->coalesce_count_rx) << XAXIDMA_COALESCE_SHIFT));
241         /* Update the delay timer count */
242         cr = ((cr & ~XAXIDMA_DELAY_MASK) |
243               (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
244         /* Enable coalesce, delay timer and error interrupts */
245         cr |= XAXIDMA_IRQ_ALL_MASK;
246         /* Write to the Rx channel control register */
247         axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
248
249         /* Start updating the Tx channel control register */
250         cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
251         /* Update the interrupt coalesce count */
252         cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
253               ((lp->coalesce_count_tx) << XAXIDMA_COALESCE_SHIFT));
254         /* Update the delay timer count */
255         cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
256               (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
257         /* Enable coalesce, delay timer and error interrupts */
258         cr |= XAXIDMA_IRQ_ALL_MASK;
259         /* Write to the Tx channel control register */
260         axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
261
262         /* Populate the tail pointer and bring the Rx Axi DMA engine out of
263          * halted state. This will make the Rx side ready for reception.
264          */
265         axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
266         cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
267         axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
268                           cr | XAXIDMA_CR_RUNSTOP_MASK);
269         axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
270                           (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
271
272         /* Write to the RS (Run-stop) bit in the Tx channel control register.
273          * Tx channel is now ready to run. But only after we write to the
274          * tail pointer register that the Tx channel will start transmitting.
275          */
276         axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
277         cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
278         axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
279                           cr | XAXIDMA_CR_RUNSTOP_MASK);
280
281         return 0;
282 out:
283         axienet_dma_bd_release(ndev);
284         return -ENOMEM;
285 }
286
287 /**
288  * axienet_set_mac_address - Write the MAC address
289  * @ndev:       Pointer to the net_device structure
290  * @address:    6 byte Address to be written as MAC address
291  *
292  * This function is called to initialize the MAC address of the Axi Ethernet
293  * core. It writes to the UAW0 and UAW1 registers of the core.
294  */
295 static void axienet_set_mac_address(struct net_device *ndev, void *address)
296 {
297         struct axienet_local *lp = netdev_priv(ndev);
298
299         if (address)
300                 memcpy(ndev->dev_addr, address, ETH_ALEN);
301         if (!is_valid_ether_addr(ndev->dev_addr))
302                 eth_random_addr(ndev->dev_addr);
303
304         /* Set up unicast MAC address filter set its mac address */
305         axienet_iow(lp, XAE_UAW0_OFFSET,
306                     (ndev->dev_addr[0]) |
307                     (ndev->dev_addr[1] << 8) |
308                     (ndev->dev_addr[2] << 16) |
309                     (ndev->dev_addr[3] << 24));
310         axienet_iow(lp, XAE_UAW1_OFFSET,
311                     (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
312                       ~XAE_UAW1_UNICASTADDR_MASK) |
313                      (ndev->dev_addr[4] |
314                      (ndev->dev_addr[5] << 8))));
315 }
316
317 /**
318  * netdev_set_mac_address - Write the MAC address (from outside the driver)
319  * @ndev:       Pointer to the net_device structure
320  * @p:          6 byte Address to be written as MAC address
321  *
322  * Return: 0 for all conditions. Presently, there is no failure case.
323  *
324  * This function is called to initialize the MAC address of the Axi Ethernet
325  * core. It calls the core specific axienet_set_mac_address. This is the
326  * function that goes into net_device_ops structure entry ndo_set_mac_address.
327  */
328 static int netdev_set_mac_address(struct net_device *ndev, void *p)
329 {
330         struct sockaddr *addr = p;
331         axienet_set_mac_address(ndev, addr->sa_data);
332         return 0;
333 }
334
335 /**
336  * axienet_set_multicast_list - Prepare the multicast table
337  * @ndev:       Pointer to the net_device structure
338  *
339  * This function is called to initialize the multicast table during
340  * initialization. The Axi Ethernet basic multicast support has a four-entry
341  * multicast table which is initialized here. Additionally this function
342  * goes into the net_device_ops structure entry ndo_set_multicast_list. This
343  * means whenever the multicast table entries need to be updated this
344  * function gets called.
345  */
346 static void axienet_set_multicast_list(struct net_device *ndev)
347 {
348         int i;
349         u32 reg, af0reg, af1reg;
350         struct axienet_local *lp = netdev_priv(ndev);
351
352         if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
353             netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
354                 /* We must make the kernel realize we had to move into
355                  * promiscuous mode. If it was a promiscuous mode request
356                  * the flag is already set. If not we set it.
357                  */
358                 ndev->flags |= IFF_PROMISC;
359                 reg = axienet_ior(lp, XAE_FMI_OFFSET);
360                 reg |= XAE_FMI_PM_MASK;
361                 axienet_iow(lp, XAE_FMI_OFFSET, reg);
362                 dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
363         } else if (!netdev_mc_empty(ndev)) {
364                 struct netdev_hw_addr *ha;
365
366                 i = 0;
367                 netdev_for_each_mc_addr(ha, ndev) {
368                         if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
369                                 break;
370
371                         af0reg = (ha->addr[0]);
372                         af0reg |= (ha->addr[1] << 8);
373                         af0reg |= (ha->addr[2] << 16);
374                         af0reg |= (ha->addr[3] << 24);
375
376                         af1reg = (ha->addr[4]);
377                         af1reg |= (ha->addr[5] << 8);
378
379                         reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
380                         reg |= i;
381
382                         axienet_iow(lp, XAE_FMI_OFFSET, reg);
383                         axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
384                         axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
385                         i++;
386                 }
387         } else {
388                 reg = axienet_ior(lp, XAE_FMI_OFFSET);
389                 reg &= ~XAE_FMI_PM_MASK;
390
391                 axienet_iow(lp, XAE_FMI_OFFSET, reg);
392
393                 for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
394                         reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
395                         reg |= i;
396
397                         axienet_iow(lp, XAE_FMI_OFFSET, reg);
398                         axienet_iow(lp, XAE_AF0_OFFSET, 0);
399                         axienet_iow(lp, XAE_AF1_OFFSET, 0);
400                 }
401
402                 dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
403         }
404 }
405
406 /**
407  * axienet_setoptions - Set an Axi Ethernet option
408  * @ndev:       Pointer to the net_device structure
409  * @options:    Option to be enabled/disabled
410  *
411  * The Axi Ethernet core has multiple features which can be selectively turned
412  * on or off. The typical options could be jumbo frame option, basic VLAN
413  * option, promiscuous mode option etc. This function is used to set or clear
414  * these options in the Axi Ethernet hardware. This is done through
415  * axienet_option structure .
416  */
417 static void axienet_setoptions(struct net_device *ndev, u32 options)
418 {
419         int reg;
420         struct axienet_local *lp = netdev_priv(ndev);
421         struct axienet_option *tp = &axienet_options[0];
422
423         while (tp->opt) {
424                 reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
425                 if (options & tp->opt)
426                         reg |= tp->m_or;
427                 axienet_iow(lp, tp->reg, reg);
428                 tp++;
429         }
430
431         lp->options |= options;
432 }
433
434 static void __axienet_device_reset(struct axienet_local *lp,
435                                    struct device *dev, off_t offset)
436 {
437         u32 timeout;
438         /* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
439          * process of Axi DMA takes a while to complete as all pending
440          * commands/transfers will be flushed or completed during this
441          * reset process.
442          */
443         axienet_dma_out32(lp, offset, XAXIDMA_CR_RESET_MASK);
444         timeout = DELAY_OF_ONE_MILLISEC;
445         while (axienet_dma_in32(lp, offset) & XAXIDMA_CR_RESET_MASK) {
446                 udelay(1);
447                 if (--timeout == 0) {
448                         netdev_err(lp->ndev, "%s: DMA reset timeout!\n",
449                                    __func__);
450                         break;
451                 }
452         }
453 }
454
455 /**
456  * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
457  * @ndev:       Pointer to the net_device structure
458  *
459  * This function is called to reset and initialize the Axi Ethernet core. This
460  * is typically called during initialization. It does a reset of the Axi DMA
461  * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
462  * areconnected to Axi Ethernet reset lines, this in turn resets the Axi
463  * Ethernet core. No separate hardware reset is done for the Axi Ethernet
464  * core.
465  */
466 static void axienet_device_reset(struct net_device *ndev)
467 {
468         u32 axienet_status;
469         struct axienet_local *lp = netdev_priv(ndev);
470
471         __axienet_device_reset(lp, &ndev->dev, XAXIDMA_TX_CR_OFFSET);
472         __axienet_device_reset(lp, &ndev->dev, XAXIDMA_RX_CR_OFFSET);
473
474         lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
475         lp->options |= XAE_OPTION_VLAN;
476         lp->options &= (~XAE_OPTION_JUMBO);
477
478         if ((ndev->mtu > XAE_MTU) &&
479                 (ndev->mtu <= XAE_JUMBO_MTU)) {
480                 lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
481                                         XAE_TRL_SIZE;
482
483                 if (lp->max_frm_size <= lp->rxmem)
484                         lp->options |= XAE_OPTION_JUMBO;
485         }
486
487         if (axienet_dma_bd_init(ndev)) {
488                 netdev_err(ndev, "%s: descriptor allocation failed\n",
489                            __func__);
490         }
491
492         axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
493         axienet_status &= ~XAE_RCW1_RX_MASK;
494         axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
495
496         axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
497         if (axienet_status & XAE_INT_RXRJECT_MASK)
498                 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
499
500         axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
501
502         /* Sync default options with HW but leave receiver and
503          * transmitter disabled.
504          */
505         axienet_setoptions(ndev, lp->options &
506                            ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
507         axienet_set_mac_address(ndev, NULL);
508         axienet_set_multicast_list(ndev);
509         axienet_setoptions(ndev, lp->options);
510
511         ndev->trans_start = jiffies;
512 }
513
514 /**
515  * axienet_adjust_link - Adjust the PHY link speed/duplex.
516  * @ndev:       Pointer to the net_device structure
517  *
518  * This function is called to change the speed and duplex setting after
519  * auto negotiation is done by the PHY. This is the function that gets
520  * registered with the PHY interface through the "of_phy_connect" call.
521  */
522 static void axienet_adjust_link(struct net_device *ndev)
523 {
524         u32 emmc_reg;
525         u32 link_state;
526         u32 setspeed = 1;
527         struct axienet_local *lp = netdev_priv(ndev);
528         struct phy_device *phy = lp->phy_dev;
529
530         link_state = phy->speed | (phy->duplex << 1) | phy->link;
531         if (lp->last_link != link_state) {
532                 if ((phy->speed == SPEED_10) || (phy->speed == SPEED_100)) {
533                         if (lp->phy_type == XAE_PHY_TYPE_1000BASE_X)
534                                 setspeed = 0;
535                 } else {
536                         if ((phy->speed == SPEED_1000) &&
537                             (lp->phy_type == XAE_PHY_TYPE_MII))
538                                 setspeed = 0;
539                 }
540
541                 if (setspeed == 1) {
542                         emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
543                         emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
544
545                         switch (phy->speed) {
546                         case SPEED_1000:
547                                 emmc_reg |= XAE_EMMC_LINKSPD_1000;
548                                 break;
549                         case SPEED_100:
550                                 emmc_reg |= XAE_EMMC_LINKSPD_100;
551                                 break;
552                         case SPEED_10:
553                                 emmc_reg |= XAE_EMMC_LINKSPD_10;
554                                 break;
555                         default:
556                                 dev_err(&ndev->dev, "Speed other than 10, 100 "
557                                         "or 1Gbps is not supported\n");
558                                 break;
559                         }
560
561                         axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
562                         lp->last_link = link_state;
563                         phy_print_status(phy);
564                 } else {
565                         netdev_err(ndev,
566                                    "Error setting Axi Ethernet mac speed\n");
567                 }
568         }
569 }
570
571 /**
572  * axienet_start_xmit_done - Invoked once a transmit is completed by the
573  * Axi DMA Tx channel.
574  * @ndev:       Pointer to the net_device structure
575  *
576  * This function is invoked from the Axi DMA Tx isr to notify the completion
577  * of transmit operation. It clears fields in the corresponding Tx BDs and
578  * unmaps the corresponding buffer so that CPU can regain ownership of the
579  * buffer. It finally invokes "netif_wake_queue" to restart transmission if
580  * required.
581  */
582 static void axienet_start_xmit_done(struct net_device *ndev)
583 {
584         u32 size = 0;
585         u32 packets = 0;
586         struct axienet_local *lp = netdev_priv(ndev);
587         struct axidma_bd *cur_p;
588         unsigned int status = 0;
589
590         cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
591         status = cur_p->status;
592         while (status & XAXIDMA_BD_STS_COMPLETE_MASK) {
593                 dma_unmap_single(ndev->dev.parent, cur_p->phys,
594                                 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
595                                 DMA_TO_DEVICE);
596                 if (cur_p->app4)
597                         dev_kfree_skb_irq((struct sk_buff *)cur_p->app4);
598                 /*cur_p->phys = 0;*/
599                 cur_p->app0 = 0;
600                 cur_p->app1 = 0;
601                 cur_p->app2 = 0;
602                 cur_p->app4 = 0;
603                 cur_p->status = 0;
604
605                 size += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
606                 packets++;
607
608                 ++lp->tx_bd_ci;
609                 lp->tx_bd_ci %= TX_BD_NUM;
610                 cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
611                 status = cur_p->status;
612         }
613
614         ndev->stats.tx_packets += packets;
615         ndev->stats.tx_bytes += size;
616         netif_wake_queue(ndev);
617 }
618
619 /**
620  * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
621  * @lp:         Pointer to the axienet_local structure
622  * @num_frag:   The number of BDs to check for
623  *
624  * Return: 0, on success
625  *          NETDEV_TX_BUSY, if any of the descriptors are not free
626  *
627  * This function is invoked before BDs are allocated and transmission starts.
628  * This function returns 0 if a BD or group of BDs can be allocated for
629  * transmission. If the BD or any of the BDs are not free the function
630  * returns a busy status. This is invoked from axienet_start_xmit.
631  */
632 static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
633                                             int num_frag)
634 {
635         struct axidma_bd *cur_p;
636         cur_p = &lp->tx_bd_v[(lp->tx_bd_tail + num_frag) % TX_BD_NUM];
637         if (cur_p->status & XAXIDMA_BD_STS_ALL_MASK)
638                 return NETDEV_TX_BUSY;
639         return 0;
640 }
641
642 /**
643  * axienet_start_xmit - Starts the transmission.
644  * @skb:        sk_buff pointer that contains data to be Txed.
645  * @ndev:       Pointer to net_device structure.
646  *
647  * Return: NETDEV_TX_OK, on success
648  *          NETDEV_TX_BUSY, if any of the descriptors are not free
649  *
650  * This function is invoked from upper layers to initiate transmission. The
651  * function uses the next available free BDs and populates their fields to
652  * start the transmission. Additionally if checksum offloading is supported,
653  * it populates AXI Stream Control fields with appropriate values.
654  */
655 static int axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
656 {
657         u32 ii;
658         u32 num_frag;
659         u32 csum_start_off;
660         u32 csum_index_off;
661         skb_frag_t *frag;
662         dma_addr_t tail_p;
663         struct axienet_local *lp = netdev_priv(ndev);
664         struct axidma_bd *cur_p;
665
666         num_frag = skb_shinfo(skb)->nr_frags;
667         cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
668
669         if (axienet_check_tx_bd_space(lp, num_frag)) {
670                 if (!netif_queue_stopped(ndev))
671                         netif_stop_queue(ndev);
672                 return NETDEV_TX_BUSY;
673         }
674
675         if (skb->ip_summed == CHECKSUM_PARTIAL) {
676                 if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
677                         /* Tx Full Checksum Offload Enabled */
678                         cur_p->app0 |= 2;
679                 } else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
680                         csum_start_off = skb_transport_offset(skb);
681                         csum_index_off = csum_start_off + skb->csum_offset;
682                         /* Tx Partial Checksum Offload Enabled */
683                         cur_p->app0 |= 1;
684                         cur_p->app1 = (csum_start_off << 16) | csum_index_off;
685                 }
686         } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
687                 cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
688         }
689
690         cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
691         cur_p->phys = dma_map_single(ndev->dev.parent, skb->data,
692                                      skb_headlen(skb), DMA_TO_DEVICE);
693
694         for (ii = 0; ii < num_frag; ii++) {
695                 ++lp->tx_bd_tail;
696                 lp->tx_bd_tail %= TX_BD_NUM;
697                 cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
698                 frag = &skb_shinfo(skb)->frags[ii];
699                 cur_p->phys = dma_map_single(ndev->dev.parent,
700                                              skb_frag_address(frag),
701                                              skb_frag_size(frag),
702                                              DMA_TO_DEVICE);
703                 cur_p->cntrl = skb_frag_size(frag);
704         }
705
706         cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
707         cur_p->app4 = (unsigned long)skb;
708
709         tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
710         /* Start the transfer */
711         axienet_dma_out32(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
712         ++lp->tx_bd_tail;
713         lp->tx_bd_tail %= TX_BD_NUM;
714
715         return NETDEV_TX_OK;
716 }
717
718 /**
719  * axienet_recv - Is called from Axi DMA Rx Isr to complete the received
720  *                BD processing.
721  * @ndev:       Pointer to net_device structure.
722  *
723  * This function is invoked from the Axi DMA Rx isr to process the Rx BDs. It
724  * does minimal processing and invokes "netif_rx" to complete further
725  * processing.
726  */
727 static void axienet_recv(struct net_device *ndev)
728 {
729         u32 length;
730         u32 csumstatus;
731         u32 size = 0;
732         u32 packets = 0;
733         dma_addr_t tail_p = 0;
734         struct axienet_local *lp = netdev_priv(ndev);
735         struct sk_buff *skb, *new_skb;
736         struct axidma_bd *cur_p;
737
738         cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
739
740         while ((cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
741                 tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
742                 skb = (struct sk_buff *) (cur_p->sw_id_offset);
743                 length = cur_p->app4 & 0x0000FFFF;
744
745                 dma_unmap_single(ndev->dev.parent, cur_p->phys,
746                                  lp->max_frm_size,
747                                  DMA_FROM_DEVICE);
748
749                 skb_put(skb, length);
750                 skb->protocol = eth_type_trans(skb, ndev);
751                 /*skb_checksum_none_assert(skb);*/
752                 skb->ip_summed = CHECKSUM_NONE;
753
754                 /* if we're doing Rx csum offload, set it up */
755                 if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
756                         csumstatus = (cur_p->app2 &
757                                       XAE_FULL_CSUM_STATUS_MASK) >> 3;
758                         if ((csumstatus == XAE_IP_TCP_CSUM_VALIDATED) ||
759                             (csumstatus == XAE_IP_UDP_CSUM_VALIDATED)) {
760                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
761                         }
762                 } else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
763                            skb->protocol == htons(ETH_P_IP) &&
764                            skb->len > 64) {
765                         skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
766                         skb->ip_summed = CHECKSUM_COMPLETE;
767                 }
768
769                 netif_rx(skb);
770
771                 size += length;
772                 packets++;
773
774                 new_skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
775                 if (!new_skb)
776                         return;
777
778                 cur_p->phys = dma_map_single(ndev->dev.parent, new_skb->data,
779                                              lp->max_frm_size,
780                                              DMA_FROM_DEVICE);
781                 cur_p->cntrl = lp->max_frm_size;
782                 cur_p->status = 0;
783                 cur_p->sw_id_offset = (u32) new_skb;
784
785                 ++lp->rx_bd_ci;
786                 lp->rx_bd_ci %= RX_BD_NUM;
787                 cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
788         }
789
790         ndev->stats.rx_packets += packets;
791         ndev->stats.rx_bytes += size;
792
793         if (tail_p)
794                 axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
795 }
796
797 /**
798  * axienet_tx_irq - Tx Done Isr.
799  * @irq:        irq number
800  * @_ndev:      net_device pointer
801  *
802  * Return: IRQ_HANDLED for all cases.
803  *
804  * This is the Axi DMA Tx done Isr. It invokes "axienet_start_xmit_done"
805  * to complete the BD processing.
806  */
807 static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
808 {
809         u32 cr;
810         unsigned int status;
811         struct net_device *ndev = _ndev;
812         struct axienet_local *lp = netdev_priv(ndev);
813
814         status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
815         if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
816                 axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
817                 axienet_start_xmit_done(lp->ndev);
818                 goto out;
819         }
820         if (!(status & XAXIDMA_IRQ_ALL_MASK))
821                 dev_err(&ndev->dev, "No interrupts asserted in Tx path");
822         if (status & XAXIDMA_IRQ_ERROR_MASK) {
823                 dev_err(&ndev->dev, "DMA Tx error 0x%x\n", status);
824                 dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
825                         (lp->tx_bd_v[lp->tx_bd_ci]).phys);
826
827                 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
828                 /* Disable coalesce, delay timer and error interrupts */
829                 cr &= (~XAXIDMA_IRQ_ALL_MASK);
830                 /* Write to the Tx channel control register */
831                 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
832
833                 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
834                 /* Disable coalesce, delay timer and error interrupts */
835                 cr &= (~XAXIDMA_IRQ_ALL_MASK);
836                 /* Write to the Rx channel control register */
837                 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
838
839                 tasklet_schedule(&lp->dma_err_tasklet);
840                 axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
841         }
842 out:
843         return IRQ_HANDLED;
844 }
845
846 /**
847  * axienet_rx_irq - Rx Isr.
848  * @irq:        irq number
849  * @_ndev:      net_device pointer
850  *
851  * Return: IRQ_HANDLED for all cases.
852  *
853  * This is the Axi DMA Rx Isr. It invokes "axienet_recv" to complete the BD
854  * processing.
855  */
856 static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
857 {
858         u32 cr;
859         unsigned int status;
860         struct net_device *ndev = _ndev;
861         struct axienet_local *lp = netdev_priv(ndev);
862
863         status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
864         if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
865                 axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
866                 axienet_recv(lp->ndev);
867                 goto out;
868         }
869         if (!(status & XAXIDMA_IRQ_ALL_MASK))
870                 dev_err(&ndev->dev, "No interrupts asserted in Rx path");
871         if (status & XAXIDMA_IRQ_ERROR_MASK) {
872                 dev_err(&ndev->dev, "DMA Rx error 0x%x\n", status);
873                 dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
874                         (lp->rx_bd_v[lp->rx_bd_ci]).phys);
875
876                 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
877                 /* Disable coalesce, delay timer and error interrupts */
878                 cr &= (~XAXIDMA_IRQ_ALL_MASK);
879                 /* Finally write to the Tx channel control register */
880                 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
881
882                 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
883                 /* Disable coalesce, delay timer and error interrupts */
884                 cr &= (~XAXIDMA_IRQ_ALL_MASK);
885                 /* write to the Rx channel control register */
886                 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
887
888                 tasklet_schedule(&lp->dma_err_tasklet);
889                 axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
890         }
891 out:
892         return IRQ_HANDLED;
893 }
894
895 static void axienet_dma_err_handler(unsigned long data);
896
897 /**
898  * axienet_open - Driver open routine.
899  * @ndev:       Pointer to net_device structure
900  *
901  * Return: 0, on success.
902  *          -ENODEV, if PHY cannot be connected to
903  *          non-zero error value on failure
904  *
905  * This is the driver open routine. It calls phy_start to start the PHY device.
906  * It also allocates interrupt service routines, enables the interrupt lines
907  * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
908  * descriptors are initialized.
909  */
910 static int axienet_open(struct net_device *ndev)
911 {
912         int ret, mdio_mcreg;
913         struct axienet_local *lp = netdev_priv(ndev);
914
915         dev_dbg(&ndev->dev, "axienet_open()\n");
916
917         mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
918         ret = axienet_mdio_wait_until_ready(lp);
919         if (ret < 0)
920                 return ret;
921         /* Disable the MDIO interface till Axi Ethernet Reset is completed.
922          * When we do an Axi Ethernet reset, it resets the complete core
923          * including the MDIO. If MDIO is not disabled when the reset
924          * process is started, MDIO will be broken afterwards.
925          */
926         axienet_iow(lp, XAE_MDIO_MC_OFFSET,
927                     (mdio_mcreg & (~XAE_MDIO_MC_MDIOEN_MASK)));
928         axienet_device_reset(ndev);
929         /* Enable the MDIO */
930         axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
931         ret = axienet_mdio_wait_until_ready(lp);
932         if (ret < 0)
933                 return ret;
934
935         if (lp->phy_node) {
936                 if (lp->phy_type == XAE_PHY_TYPE_GMII) {
937                         lp->phy_dev = of_phy_connect(lp->ndev, lp->phy_node,
938                                              axienet_adjust_link, 0,
939                                              PHY_INTERFACE_MODE_GMII);
940                 } else if (lp->phy_type == XAE_PHY_TYPE_RGMII_2_0) {
941                         lp->phy_dev = of_phy_connect(lp->ndev, lp->phy_node,
942                                              axienet_adjust_link, 0,
943                                              PHY_INTERFACE_MODE_RGMII_ID);
944                 }
945
946                 if (!lp->phy_dev)
947                         dev_err(lp->dev, "of_phy_connect() failed\n");
948                 else
949                         phy_start(lp->phy_dev);
950         }
951
952         /* Enable tasklets for Axi DMA error handling */
953         tasklet_init(&lp->dma_err_tasklet, axienet_dma_err_handler,
954                      (unsigned long) lp);
955
956         /* Enable interrupts for Axi DMA Tx */
957         ret = request_irq(lp->tx_irq, axienet_tx_irq, 0, ndev->name, ndev);
958         if (ret)
959                 goto err_tx_irq;
960         /* Enable interrupts for Axi DMA Rx */
961         ret = request_irq(lp->rx_irq, axienet_rx_irq, 0, ndev->name, ndev);
962         if (ret)
963                 goto err_rx_irq;
964
965         return 0;
966
967 err_rx_irq:
968         free_irq(lp->tx_irq, ndev);
969 err_tx_irq:
970         if (lp->phy_dev)
971                 phy_disconnect(lp->phy_dev);
972         lp->phy_dev = NULL;
973         tasklet_kill(&lp->dma_err_tasklet);
974         dev_err(lp->dev, "request_irq() failed\n");
975         return ret;
976 }
977
978 /**
979  * axienet_stop - Driver stop routine.
980  * @ndev:       Pointer to net_device structure
981  *
982  * Return: 0, on success.
983  *
984  * This is the driver stop routine. It calls phy_disconnect to stop the PHY
985  * device. It also removes the interrupt handlers and disables the interrupts.
986  * The Axi DMA Tx/Rx BDs are released.
987  */
988 static int axienet_stop(struct net_device *ndev)
989 {
990         u32 cr;
991         struct axienet_local *lp = netdev_priv(ndev);
992
993         dev_dbg(&ndev->dev, "axienet_close()\n");
994
995         cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
996         axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
997                           cr & (~XAXIDMA_CR_RUNSTOP_MASK));
998         cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
999         axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1000                           cr & (~XAXIDMA_CR_RUNSTOP_MASK));
1001         axienet_setoptions(ndev, lp->options &
1002                            ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1003
1004         tasklet_kill(&lp->dma_err_tasklet);
1005
1006         free_irq(lp->tx_irq, ndev);
1007         free_irq(lp->rx_irq, ndev);
1008
1009         if (lp->phy_dev)
1010                 phy_disconnect(lp->phy_dev);
1011         lp->phy_dev = NULL;
1012
1013         axienet_dma_bd_release(ndev);
1014         return 0;
1015 }
1016
1017 /**
1018  * axienet_change_mtu - Driver change mtu routine.
1019  * @ndev:       Pointer to net_device structure
1020  * @new_mtu:    New mtu value to be applied
1021  *
1022  * Return: Always returns 0 (success).
1023  *
1024  * This is the change mtu driver routine. It checks if the Axi Ethernet
1025  * hardware supports jumbo frames before changing the mtu. This can be
1026  * called only when the device is not up.
1027  */
1028 static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1029 {
1030         struct axienet_local *lp = netdev_priv(ndev);
1031
1032         if (netif_running(ndev))
1033                 return -EBUSY;
1034
1035         if ((new_mtu + VLAN_ETH_HLEN +
1036                 XAE_TRL_SIZE) > lp->rxmem)
1037                 return -EINVAL;
1038
1039         if ((new_mtu > XAE_JUMBO_MTU) || (new_mtu < 64))
1040                 return -EINVAL;
1041
1042         ndev->mtu = new_mtu;
1043
1044         return 0;
1045 }
1046
1047 #ifdef CONFIG_NET_POLL_CONTROLLER
1048 /**
1049  * axienet_poll_controller - Axi Ethernet poll mechanism.
1050  * @ndev:       Pointer to net_device structure
1051  *
1052  * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1053  * to polling the ISRs and are enabled back after the polling is done.
1054  */
1055 static void axienet_poll_controller(struct net_device *ndev)
1056 {
1057         struct axienet_local *lp = netdev_priv(ndev);
1058         disable_irq(lp->tx_irq);
1059         disable_irq(lp->rx_irq);
1060         axienet_rx_irq(lp->tx_irq, ndev);
1061         axienet_tx_irq(lp->rx_irq, ndev);
1062         enable_irq(lp->tx_irq);
1063         enable_irq(lp->rx_irq);
1064 }
1065 #endif
1066
1067 static const struct net_device_ops axienet_netdev_ops = {
1068         .ndo_open = axienet_open,
1069         .ndo_stop = axienet_stop,
1070         .ndo_start_xmit = axienet_start_xmit,
1071         .ndo_change_mtu = axienet_change_mtu,
1072         .ndo_set_mac_address = netdev_set_mac_address,
1073         .ndo_validate_addr = eth_validate_addr,
1074         .ndo_set_rx_mode = axienet_set_multicast_list,
1075 #ifdef CONFIG_NET_POLL_CONTROLLER
1076         .ndo_poll_controller = axienet_poll_controller,
1077 #endif
1078 };
1079
1080 /**
1081  * axienet_ethtools_get_settings - Get Axi Ethernet settings related to PHY.
1082  * @ndev:       Pointer to net_device structure
1083  * @ecmd:       Pointer to ethtool_cmd structure
1084  *
1085  * This implements ethtool command for getting PHY settings. If PHY could
1086  * not be found, the function returns -ENODEV. This function calls the
1087  * relevant PHY ethtool API to get the PHY settings.
1088  * Issue "ethtool ethX" under linux prompt to execute this function.
1089  *
1090  * Return: 0 on success, -ENODEV if PHY doesn't exist
1091  */
1092 static int axienet_ethtools_get_settings(struct net_device *ndev,
1093                                          struct ethtool_cmd *ecmd)
1094 {
1095         struct axienet_local *lp = netdev_priv(ndev);
1096         struct phy_device *phydev = lp->phy_dev;
1097         if (!phydev)
1098                 return -ENODEV;
1099         return phy_ethtool_gset(phydev, ecmd);
1100 }
1101
1102 /**
1103  * axienet_ethtools_set_settings - Set PHY settings as passed in the argument.
1104  * @ndev:       Pointer to net_device structure
1105  * @ecmd:       Pointer to ethtool_cmd structure
1106  *
1107  * This implements ethtool command for setting various PHY settings. If PHY
1108  * could not be found, the function returns -ENODEV. This function calls the
1109  * relevant PHY ethtool API to set the PHY.
1110  * Issue e.g. "ethtool -s ethX speed 1000" under linux prompt to execute this
1111  * function.
1112  *
1113  * Return: 0 on success, -ENODEV if PHY doesn't exist
1114  */
1115 static int axienet_ethtools_set_settings(struct net_device *ndev,
1116                                          struct ethtool_cmd *ecmd)
1117 {
1118         struct axienet_local *lp = netdev_priv(ndev);
1119         struct phy_device *phydev = lp->phy_dev;
1120         if (!phydev)
1121                 return -ENODEV;
1122         return phy_ethtool_sset(phydev, ecmd);
1123 }
1124
1125 /**
1126  * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1127  * @ndev:       Pointer to net_device structure
1128  * @ed:         Pointer to ethtool_drvinfo structure
1129  *
1130  * This implements ethtool command for getting the driver information.
1131  * Issue "ethtool -i ethX" under linux prompt to execute this function.
1132  */
1133 static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1134                                          struct ethtool_drvinfo *ed)
1135 {
1136         strlcpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1137         strlcpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1138 }
1139
1140 /**
1141  * axienet_ethtools_get_regs_len - Get the total regs length present in the
1142  *                                 AxiEthernet core.
1143  * @ndev:       Pointer to net_device structure
1144  *
1145  * This implements ethtool command for getting the total register length
1146  * information.
1147  *
1148  * Return: the total regs length
1149  */
1150 static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1151 {
1152         return sizeof(u32) * AXIENET_REGS_N;
1153 }
1154
1155 /**
1156  * axienet_ethtools_get_regs - Dump the contents of all registers present
1157  *                             in AxiEthernet core.
1158  * @ndev:       Pointer to net_device structure
1159  * @regs:       Pointer to ethtool_regs structure
1160  * @ret:        Void pointer used to return the contents of the registers.
1161  *
1162  * This implements ethtool command for getting the Axi Ethernet register dump.
1163  * Issue "ethtool -d ethX" to execute this function.
1164  */
1165 static void axienet_ethtools_get_regs(struct net_device *ndev,
1166                                       struct ethtool_regs *regs, void *ret)
1167 {
1168         u32 *data = (u32 *) ret;
1169         size_t len = sizeof(u32) * AXIENET_REGS_N;
1170         struct axienet_local *lp = netdev_priv(ndev);
1171
1172         regs->version = 0;
1173         regs->len = len;
1174
1175         memset(data, 0, len);
1176         data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1177         data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1178         data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1179         data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1180         data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1181         data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1182         data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1183         data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1184         data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1185         data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1186         data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1187         data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1188         data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1189         data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1190         data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1191         data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1192         data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1193         data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1194         data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1195         data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1196         data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1197         data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1198         data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1199         data[23] = axienet_ior(lp, XAE_MDIO_MIS_OFFSET);
1200         data[24] = axienet_ior(lp, XAE_MDIO_MIP_OFFSET);
1201         data[25] = axienet_ior(lp, XAE_MDIO_MIE_OFFSET);
1202         data[26] = axienet_ior(lp, XAE_MDIO_MIC_OFFSET);
1203         data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1204         data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1205         data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1206         data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1207         data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1208 }
1209
1210 /**
1211  * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1212  *                                   Tx and Rx paths.
1213  * @ndev:       Pointer to net_device structure
1214  * @epauseparm: Pointer to ethtool_pauseparam structure.
1215  *
1216  * This implements ethtool command for getting axi ethernet pause frame
1217  * setting. Issue "ethtool -a ethX" to execute this function.
1218  */
1219 static void
1220 axienet_ethtools_get_pauseparam(struct net_device *ndev,
1221                                 struct ethtool_pauseparam *epauseparm)
1222 {
1223         u32 regval;
1224         struct axienet_local *lp = netdev_priv(ndev);
1225         epauseparm->autoneg  = 0;
1226         regval = axienet_ior(lp, XAE_FCC_OFFSET);
1227         epauseparm->tx_pause = regval & XAE_FCC_FCTX_MASK;
1228         epauseparm->rx_pause = regval & XAE_FCC_FCRX_MASK;
1229 }
1230
1231 /**
1232  * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1233  *                                   settings.
1234  * @ndev:       Pointer to net_device structure
1235  * @epauseparm:Pointer to ethtool_pauseparam structure
1236  *
1237  * This implements ethtool command for enabling flow control on Rx and Tx
1238  * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1239  * function.
1240  *
1241  * Return: 0 on success, -EFAULT if device is running
1242  */
1243 static int
1244 axienet_ethtools_set_pauseparam(struct net_device *ndev,
1245                                 struct ethtool_pauseparam *epauseparm)
1246 {
1247         u32 regval = 0;
1248         struct axienet_local *lp = netdev_priv(ndev);
1249
1250         if (netif_running(ndev)) {
1251                 netdev_err(ndev,
1252                            "Please stop netif before applying configuration\n");
1253                 return -EFAULT;
1254         }
1255
1256         regval = axienet_ior(lp, XAE_FCC_OFFSET);
1257         if (epauseparm->tx_pause)
1258                 regval |= XAE_FCC_FCTX_MASK;
1259         else
1260                 regval &= ~XAE_FCC_FCTX_MASK;
1261         if (epauseparm->rx_pause)
1262                 regval |= XAE_FCC_FCRX_MASK;
1263         else
1264                 regval &= ~XAE_FCC_FCRX_MASK;
1265         axienet_iow(lp, XAE_FCC_OFFSET, regval);
1266
1267         return 0;
1268 }
1269
1270 /**
1271  * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1272  * @ndev:       Pointer to net_device structure
1273  * @ecoalesce:  Pointer to ethtool_coalesce structure
1274  *
1275  * This implements ethtool command for getting the DMA interrupt coalescing
1276  * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1277  * execute this function.
1278  *
1279  * Return: 0 always
1280  */
1281 static int axienet_ethtools_get_coalesce(struct net_device *ndev,
1282                                          struct ethtool_coalesce *ecoalesce)
1283 {
1284         u32 regval = 0;
1285         struct axienet_local *lp = netdev_priv(ndev);
1286         regval = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1287         ecoalesce->rx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1288                                              >> XAXIDMA_COALESCE_SHIFT;
1289         regval = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1290         ecoalesce->tx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1291                                              >> XAXIDMA_COALESCE_SHIFT;
1292         return 0;
1293 }
1294
1295 /**
1296  * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1297  * @ndev:       Pointer to net_device structure
1298  * @ecoalesce:  Pointer to ethtool_coalesce structure
1299  *
1300  * This implements ethtool command for setting the DMA interrupt coalescing
1301  * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1302  * prompt to execute this function.
1303  *
1304  * Return: 0, on success, Non-zero error value on failure.
1305  */
1306 static int axienet_ethtools_set_coalesce(struct net_device *ndev,
1307                                          struct ethtool_coalesce *ecoalesce)
1308 {
1309         struct axienet_local *lp = netdev_priv(ndev);
1310
1311         if (netif_running(ndev)) {
1312                 netdev_err(ndev,
1313                            "Please stop netif before applying configuration\n");
1314                 return -EFAULT;
1315         }
1316
1317         if ((ecoalesce->rx_coalesce_usecs) ||
1318             (ecoalesce->rx_coalesce_usecs_irq) ||
1319             (ecoalesce->rx_max_coalesced_frames_irq) ||
1320             (ecoalesce->tx_coalesce_usecs) ||
1321             (ecoalesce->tx_coalesce_usecs_irq) ||
1322             (ecoalesce->tx_max_coalesced_frames_irq) ||
1323             (ecoalesce->stats_block_coalesce_usecs) ||
1324             (ecoalesce->use_adaptive_rx_coalesce) ||
1325             (ecoalesce->use_adaptive_tx_coalesce) ||
1326             (ecoalesce->pkt_rate_low) ||
1327             (ecoalesce->rx_coalesce_usecs_low) ||
1328             (ecoalesce->rx_max_coalesced_frames_low) ||
1329             (ecoalesce->tx_coalesce_usecs_low) ||
1330             (ecoalesce->tx_max_coalesced_frames_low) ||
1331             (ecoalesce->pkt_rate_high) ||
1332             (ecoalesce->rx_coalesce_usecs_high) ||
1333             (ecoalesce->rx_max_coalesced_frames_high) ||
1334             (ecoalesce->tx_coalesce_usecs_high) ||
1335             (ecoalesce->tx_max_coalesced_frames_high) ||
1336             (ecoalesce->rate_sample_interval))
1337                 return -EOPNOTSUPP;
1338         if (ecoalesce->rx_max_coalesced_frames)
1339                 lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1340         if (ecoalesce->tx_max_coalesced_frames)
1341                 lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1342
1343         return 0;
1344 }
1345
1346 static struct ethtool_ops axienet_ethtool_ops = {
1347         .get_settings   = axienet_ethtools_get_settings,
1348         .set_settings   = axienet_ethtools_set_settings,
1349         .get_drvinfo    = axienet_ethtools_get_drvinfo,
1350         .get_regs_len   = axienet_ethtools_get_regs_len,
1351         .get_regs       = axienet_ethtools_get_regs,
1352         .get_link       = ethtool_op_get_link,
1353         .get_pauseparam = axienet_ethtools_get_pauseparam,
1354         .set_pauseparam = axienet_ethtools_set_pauseparam,
1355         .get_coalesce   = axienet_ethtools_get_coalesce,
1356         .set_coalesce   = axienet_ethtools_set_coalesce,
1357 };
1358
1359 /**
1360  * axienet_dma_err_handler - Tasklet handler for Axi DMA Error
1361  * @data:       Data passed
1362  *
1363  * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1364  * Tx/Rx BDs.
1365  */
1366 static void axienet_dma_err_handler(unsigned long data)
1367 {
1368         u32 axienet_status;
1369         u32 cr, i;
1370         int mdio_mcreg;
1371         struct axienet_local *lp = (struct axienet_local *) data;
1372         struct net_device *ndev = lp->ndev;
1373         struct axidma_bd *cur_p;
1374
1375         axienet_setoptions(ndev, lp->options &
1376                            ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1377         mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1378         axienet_mdio_wait_until_ready(lp);
1379         /* Disable the MDIO interface till Axi Ethernet Reset is completed.
1380          * When we do an Axi Ethernet reset, it resets the complete core
1381          * including the MDIO. So if MDIO is not disabled when the reset
1382          * process is started, MDIO will be broken afterwards.
1383          */
1384         axienet_iow(lp, XAE_MDIO_MC_OFFSET, (mdio_mcreg &
1385                     ~XAE_MDIO_MC_MDIOEN_MASK));
1386
1387         __axienet_device_reset(lp, &ndev->dev, XAXIDMA_TX_CR_OFFSET);
1388         __axienet_device_reset(lp, &ndev->dev, XAXIDMA_RX_CR_OFFSET);
1389
1390         axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
1391         axienet_mdio_wait_until_ready(lp);
1392
1393         for (i = 0; i < TX_BD_NUM; i++) {
1394                 cur_p = &lp->tx_bd_v[i];
1395                 if (cur_p->phys)
1396                         dma_unmap_single(ndev->dev.parent, cur_p->phys,
1397                                          (cur_p->cntrl &
1398                                           XAXIDMA_BD_CTRL_LENGTH_MASK),
1399                                          DMA_TO_DEVICE);
1400                 if (cur_p->app4)
1401                         dev_kfree_skb_irq((struct sk_buff *) cur_p->app4);
1402                 cur_p->phys = 0;
1403                 cur_p->cntrl = 0;
1404                 cur_p->status = 0;
1405                 cur_p->app0 = 0;
1406                 cur_p->app1 = 0;
1407                 cur_p->app2 = 0;
1408                 cur_p->app3 = 0;
1409                 cur_p->app4 = 0;
1410                 cur_p->sw_id_offset = 0;
1411         }
1412
1413         for (i = 0; i < RX_BD_NUM; i++) {
1414                 cur_p = &lp->rx_bd_v[i];
1415                 cur_p->status = 0;
1416                 cur_p->app0 = 0;
1417                 cur_p->app1 = 0;
1418                 cur_p->app2 = 0;
1419                 cur_p->app3 = 0;
1420                 cur_p->app4 = 0;
1421         }
1422
1423         lp->tx_bd_ci = 0;
1424         lp->tx_bd_tail = 0;
1425         lp->rx_bd_ci = 0;
1426
1427         /* Start updating the Rx channel control register */
1428         cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1429         /* Update the interrupt coalesce count */
1430         cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
1431               (XAXIDMA_DFT_RX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1432         /* Update the delay timer count */
1433         cr = ((cr & ~XAXIDMA_DELAY_MASK) |
1434               (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1435         /* Enable coalesce, delay timer and error interrupts */
1436         cr |= XAXIDMA_IRQ_ALL_MASK;
1437         /* Finally write to the Rx channel control register */
1438         axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1439
1440         /* Start updating the Tx channel control register */
1441         cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1442         /* Update the interrupt coalesce count */
1443         cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
1444               (XAXIDMA_DFT_TX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1445         /* Update the delay timer count */
1446         cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
1447               (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1448         /* Enable coalesce, delay timer and error interrupts */
1449         cr |= XAXIDMA_IRQ_ALL_MASK;
1450         /* Finally write to the Tx channel control register */
1451         axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1452
1453         /* Populate the tail pointer and bring the Rx Axi DMA engine out of
1454          * halted state. This will make the Rx side ready for reception.
1455          */
1456         axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
1457         cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1458         axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
1459                           cr | XAXIDMA_CR_RUNSTOP_MASK);
1460         axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
1461                           (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
1462
1463         /* Write to the RS (Run-stop) bit in the Tx channel control register.
1464          * Tx channel is now ready to run. But only after we write to the
1465          * tail pointer register that the Tx channel will start transmitting
1466          */
1467         axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
1468         cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1469         axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1470                           cr | XAXIDMA_CR_RUNSTOP_MASK);
1471
1472         axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1473         axienet_status &= ~XAE_RCW1_RX_MASK;
1474         axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1475
1476         axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1477         if (axienet_status & XAE_INT_RXRJECT_MASK)
1478                 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1479         axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1480
1481         /* Sync default options with HW but leave receiver and
1482          * transmitter disabled.
1483          */
1484         axienet_setoptions(ndev, lp->options &
1485                            ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1486         axienet_set_mac_address(ndev, NULL);
1487         axienet_set_multicast_list(ndev);
1488         axienet_setoptions(ndev, lp->options);
1489 }
1490
1491 /**
1492  * axienet_probe - Axi Ethernet probe function.
1493  * @pdev:       Pointer to platform device structure.
1494  *
1495  * Return: 0, on success
1496  *          Non-zero error value on failure.
1497  *
1498  * This is the probe routine for Axi Ethernet driver. This is called before
1499  * any other driver routines are invoked. It allocates and sets up the Ethernet
1500  * device. Parses through device tree and populates fields of
1501  * axienet_local. It registers the Ethernet device.
1502  */
1503 static int axienet_probe(struct platform_device *pdev)
1504 {
1505         int ret;
1506         struct device_node *np;
1507         struct axienet_local *lp;
1508         struct net_device *ndev;
1509         u8 mac_addr[6];
1510         struct resource *ethres, dmares;
1511         u32 value;
1512
1513         ndev = alloc_etherdev(sizeof(*lp));
1514         if (!ndev)
1515                 return -ENOMEM;
1516
1517         platform_set_drvdata(pdev, ndev);
1518
1519         SET_NETDEV_DEV(ndev, &pdev->dev);
1520         ndev->flags &= ~IFF_MULTICAST;  /* clear multicast */
1521         ndev->features = NETIF_F_SG;
1522         ndev->netdev_ops = &axienet_netdev_ops;
1523         ndev->ethtool_ops = &axienet_ethtool_ops;
1524
1525         lp = netdev_priv(ndev);
1526         lp->ndev = ndev;
1527         lp->dev = &pdev->dev;
1528         lp->options = XAE_OPTION_DEFAULTS;
1529         /* Map device registers */
1530         ethres = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1531         lp->regs = devm_ioremap_resource(&pdev->dev, ethres);
1532         if (IS_ERR(lp->regs)) {
1533                 dev_err(&pdev->dev, "could not map Axi Ethernet regs.\n");
1534                 ret = PTR_ERR(lp->regs);
1535                 goto free_netdev;
1536         }
1537
1538         /* Setup checksum offload, but default to off if not specified */
1539         lp->features = 0;
1540
1541         ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
1542         if (!ret) {
1543                 switch (value) {
1544                 case 1:
1545                         lp->csum_offload_on_tx_path =
1546                                 XAE_FEATURE_PARTIAL_TX_CSUM;
1547                         lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1548                         /* Can checksum TCP/UDP over IPv4. */
1549                         ndev->features |= NETIF_F_IP_CSUM;
1550                         break;
1551                 case 2:
1552                         lp->csum_offload_on_tx_path =
1553                                 XAE_FEATURE_FULL_TX_CSUM;
1554                         lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1555                         /* Can checksum TCP/UDP over IPv4. */
1556                         ndev->features |= NETIF_F_IP_CSUM;
1557                         break;
1558                 default:
1559                         lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1560                 }
1561         }
1562         ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
1563         if (!ret) {
1564                 switch (value) {
1565                 case 1:
1566                         lp->csum_offload_on_rx_path =
1567                                 XAE_FEATURE_PARTIAL_RX_CSUM;
1568                         lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1569                         break;
1570                 case 2:
1571                         lp->csum_offload_on_rx_path =
1572                                 XAE_FEATURE_FULL_RX_CSUM;
1573                         lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1574                         break;
1575                 default:
1576                         lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1577                 }
1578         }
1579         /* For supporting jumbo frames, the Axi Ethernet hardware must have
1580          * a larger Rx/Tx Memory. Typically, the size must be large so that
1581          * we can enable jumbo option and start supporting jumbo frames.
1582          * Here we check for memory allocated for Rx/Tx in the hardware from
1583          * the device-tree and accordingly set flags.
1584          */
1585         of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
1586         of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &lp->phy_type);
1587
1588         /* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
1589         np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
1590         if (IS_ERR(np)) {
1591                 dev_err(&pdev->dev, "could not find DMA node\n");
1592                 ret = PTR_ERR(np);
1593                 goto free_netdev;
1594         }
1595         ret = of_address_to_resource(np, 0, &dmares);
1596         if (ret) {
1597                 dev_err(&pdev->dev, "unable to get DMA resource\n");
1598                 goto free_netdev;
1599         }
1600         lp->dma_regs = devm_ioremap_resource(&pdev->dev, &dmares);
1601         if (IS_ERR(lp->dma_regs)) {
1602                 dev_err(&pdev->dev, "could not map DMA regs\n");
1603                 ret = PTR_ERR(lp->dma_regs);
1604                 goto free_netdev;
1605         }
1606         lp->rx_irq = irq_of_parse_and_map(np, 1);
1607         lp->tx_irq = irq_of_parse_and_map(np, 0);
1608         of_node_put(np);
1609         if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
1610                 dev_err(&pdev->dev, "could not determine irqs\n");
1611                 ret = -ENOMEM;
1612                 goto free_netdev;
1613         }
1614
1615         /* Retrieve the MAC address */
1616         ret = of_property_read_u8_array(pdev->dev.of_node,
1617                                         "local-mac-address", mac_addr, 6);
1618         if (ret) {
1619                 dev_err(&pdev->dev, "could not find MAC address\n");
1620                 goto free_netdev;
1621         }
1622         axienet_set_mac_address(ndev, (void *)mac_addr);
1623
1624         lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
1625         lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
1626
1627         lp->phy_node = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
1628         if (lp->phy_node) {
1629                 ret = axienet_mdio_setup(lp, pdev->dev.of_node);
1630                 if (ret)
1631                         dev_warn(&pdev->dev, "error registering MDIO bus\n");
1632         }
1633
1634         ret = register_netdev(lp->ndev);
1635         if (ret) {
1636                 dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
1637                 goto free_netdev;
1638         }
1639
1640         return 0;
1641
1642 free_netdev:
1643         free_netdev(ndev);
1644
1645         return ret;
1646 }
1647
1648 static int axienet_remove(struct platform_device *pdev)
1649 {
1650         struct net_device *ndev = platform_get_drvdata(pdev);
1651         struct axienet_local *lp = netdev_priv(ndev);
1652
1653         axienet_mdio_teardown(lp);
1654         unregister_netdev(ndev);
1655
1656         of_node_put(lp->phy_node);
1657         lp->phy_node = NULL;
1658
1659         free_netdev(ndev);
1660
1661         return 0;
1662 }
1663
1664 static struct platform_driver axienet_driver = {
1665         .probe = axienet_probe,
1666         .remove = axienet_remove,
1667         .driver = {
1668                  .name = "xilinx_axienet",
1669                  .of_match_table = axienet_of_match,
1670         },
1671 };
1672
1673 module_platform_driver(axienet_driver);
1674
1675 MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
1676 MODULE_AUTHOR("Xilinx");
1677 MODULE_LICENSE("GPL");