]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/vrf.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/ide
[karo-tx-linux.git] / drivers / net / vrf.c
1 /*
2  * vrf.c: device driver to encapsulate a VRF space
3  *
4  * Copyright (c) 2015 Cumulus Networks. All rights reserved.
5  * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
6  * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
7  *
8  * Based on dummy, team and ipvlan drivers
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  */
15
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ip.h>
21 #include <linux/init.h>
22 #include <linux/moduleparam.h>
23 #include <linux/netfilter.h>
24 #include <linux/rtnetlink.h>
25 #include <net/rtnetlink.h>
26 #include <linux/u64_stats_sync.h>
27 #include <linux/hashtable.h>
28
29 #include <linux/inetdevice.h>
30 #include <net/arp.h>
31 #include <net/ip.h>
32 #include <net/ip_fib.h>
33 #include <net/ip6_fib.h>
34 #include <net/ip6_route.h>
35 #include <net/rtnetlink.h>
36 #include <net/route.h>
37 #include <net/addrconf.h>
38 #include <net/l3mdev.h>
39
40 #define RT_FL_TOS(oldflp4) \
41         ((oldflp4)->flowi4_tos & (IPTOS_RT_MASK | RTO_ONLINK))
42
43 #define DRV_NAME        "vrf"
44 #define DRV_VERSION     "1.0"
45
46 #define vrf_master_get_rcu(dev) \
47         ((struct net_device *)rcu_dereference(dev->rx_handler_data))
48
49 struct slave {
50         struct list_head        list;
51         struct net_device       *dev;
52 };
53
54 struct slave_queue {
55         struct list_head        all_slaves;
56 };
57
58 struct net_vrf {
59         struct slave_queue      queue;
60         struct rtable           *rth;
61         struct rt6_info         *rt6;
62         u32                     tb_id;
63 };
64
65 struct pcpu_dstats {
66         u64                     tx_pkts;
67         u64                     tx_bytes;
68         u64                     tx_drps;
69         u64                     rx_pkts;
70         u64                     rx_bytes;
71         struct u64_stats_sync   syncp;
72 };
73
74 static struct dst_entry *vrf_ip_check(struct dst_entry *dst, u32 cookie)
75 {
76         return dst;
77 }
78
79 static int vrf_ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
80 {
81         return ip_local_out(net, sk, skb);
82 }
83
84 static unsigned int vrf_v4_mtu(const struct dst_entry *dst)
85 {
86         /* TO-DO: return max ethernet size? */
87         return dst->dev->mtu;
88 }
89
90 static void vrf_dst_destroy(struct dst_entry *dst)
91 {
92         /* our dst lives forever - or until the device is closed */
93 }
94
95 static unsigned int vrf_default_advmss(const struct dst_entry *dst)
96 {
97         return 65535 - 40;
98 }
99
100 static struct dst_ops vrf_dst_ops = {
101         .family         = AF_INET,
102         .local_out      = vrf_ip_local_out,
103         .check          = vrf_ip_check,
104         .mtu            = vrf_v4_mtu,
105         .destroy        = vrf_dst_destroy,
106         .default_advmss = vrf_default_advmss,
107 };
108
109 /* neighbor handling is done with actual device; do not want
110  * to flip skb->dev for those ndisc packets. This really fails
111  * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
112  * a start.
113  */
114 #if IS_ENABLED(CONFIG_IPV6)
115 static bool check_ipv6_frame(const struct sk_buff *skb)
116 {
117         const struct ipv6hdr *ipv6h = (struct ipv6hdr *)skb->data;
118         size_t hlen = sizeof(*ipv6h);
119         bool rc = true;
120
121         if (skb->len < hlen)
122                 goto out;
123
124         if (ipv6h->nexthdr == NEXTHDR_ICMP) {
125                 const struct icmp6hdr *icmph;
126
127                 if (skb->len < hlen + sizeof(*icmph))
128                         goto out;
129
130                 icmph = (struct icmp6hdr *)(skb->data + sizeof(*ipv6h));
131                 switch (icmph->icmp6_type) {
132                 case NDISC_ROUTER_SOLICITATION:
133                 case NDISC_ROUTER_ADVERTISEMENT:
134                 case NDISC_NEIGHBOUR_SOLICITATION:
135                 case NDISC_NEIGHBOUR_ADVERTISEMENT:
136                 case NDISC_REDIRECT:
137                         rc = false;
138                         break;
139                 }
140         }
141
142 out:
143         return rc;
144 }
145 #else
146 static bool check_ipv6_frame(const struct sk_buff *skb)
147 {
148         return false;
149 }
150 #endif
151
152 static bool is_ip_rx_frame(struct sk_buff *skb)
153 {
154         switch (skb->protocol) {
155         case htons(ETH_P_IP):
156                 return true;
157         case htons(ETH_P_IPV6):
158                 return check_ipv6_frame(skb);
159         }
160         return false;
161 }
162
163 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
164 {
165         vrf_dev->stats.tx_errors++;
166         kfree_skb(skb);
167 }
168
169 /* note: already called with rcu_read_lock */
170 static rx_handler_result_t vrf_handle_frame(struct sk_buff **pskb)
171 {
172         struct sk_buff *skb = *pskb;
173
174         if (is_ip_rx_frame(skb)) {
175                 struct net_device *dev = vrf_master_get_rcu(skb->dev);
176                 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
177
178                 u64_stats_update_begin(&dstats->syncp);
179                 dstats->rx_pkts++;
180                 dstats->rx_bytes += skb->len;
181                 u64_stats_update_end(&dstats->syncp);
182
183                 skb->dev = dev;
184
185                 return RX_HANDLER_ANOTHER;
186         }
187         return RX_HANDLER_PASS;
188 }
189
190 static struct rtnl_link_stats64 *vrf_get_stats64(struct net_device *dev,
191                                                  struct rtnl_link_stats64 *stats)
192 {
193         int i;
194
195         for_each_possible_cpu(i) {
196                 const struct pcpu_dstats *dstats;
197                 u64 tbytes, tpkts, tdrops, rbytes, rpkts;
198                 unsigned int start;
199
200                 dstats = per_cpu_ptr(dev->dstats, i);
201                 do {
202                         start = u64_stats_fetch_begin_irq(&dstats->syncp);
203                         tbytes = dstats->tx_bytes;
204                         tpkts = dstats->tx_pkts;
205                         tdrops = dstats->tx_drps;
206                         rbytes = dstats->rx_bytes;
207                         rpkts = dstats->rx_pkts;
208                 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
209                 stats->tx_bytes += tbytes;
210                 stats->tx_packets += tpkts;
211                 stats->tx_dropped += tdrops;
212                 stats->rx_bytes += rbytes;
213                 stats->rx_packets += rpkts;
214         }
215         return stats;
216 }
217
218 #if IS_ENABLED(CONFIG_IPV6)
219 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
220                                            struct net_device *dev)
221 {
222         const struct ipv6hdr *iph = ipv6_hdr(skb);
223         struct net *net = dev_net(skb->dev);
224         struct flowi6 fl6 = {
225                 /* needed to match OIF rule */
226                 .flowi6_oif = dev->ifindex,
227                 .flowi6_iif = LOOPBACK_IFINDEX,
228                 .daddr = iph->daddr,
229                 .saddr = iph->saddr,
230                 .flowlabel = ip6_flowinfo(iph),
231                 .flowi6_mark = skb->mark,
232                 .flowi6_proto = iph->nexthdr,
233                 .flowi6_flags = FLOWI_FLAG_L3MDEV_SRC | FLOWI_FLAG_SKIP_NH_OIF,
234         };
235         int ret = NET_XMIT_DROP;
236         struct dst_entry *dst;
237         struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
238
239         dst = ip6_route_output(net, NULL, &fl6);
240         if (dst == dst_null)
241                 goto err;
242
243         skb_dst_drop(skb);
244         skb_dst_set(skb, dst);
245
246         ret = ip6_local_out(net, skb->sk, skb);
247         if (unlikely(net_xmit_eval(ret)))
248                 dev->stats.tx_errors++;
249         else
250                 ret = NET_XMIT_SUCCESS;
251
252         return ret;
253 err:
254         vrf_tx_error(dev, skb);
255         return NET_XMIT_DROP;
256 }
257 #else
258 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
259                                            struct net_device *dev)
260 {
261         vrf_tx_error(dev, skb);
262         return NET_XMIT_DROP;
263 }
264 #endif
265
266 static int vrf_send_v4_prep(struct sk_buff *skb, struct flowi4 *fl4,
267                             struct net_device *vrf_dev)
268 {
269         struct rtable *rt;
270         int err = 1;
271
272         rt = ip_route_output_flow(dev_net(vrf_dev), fl4, NULL);
273         if (IS_ERR(rt))
274                 goto out;
275
276         /* TO-DO: what about broadcast ? */
277         if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
278                 ip_rt_put(rt);
279                 goto out;
280         }
281
282         skb_dst_drop(skb);
283         skb_dst_set(skb, &rt->dst);
284         err = 0;
285 out:
286         return err;
287 }
288
289 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
290                                            struct net_device *vrf_dev)
291 {
292         struct iphdr *ip4h = ip_hdr(skb);
293         int ret = NET_XMIT_DROP;
294         struct flowi4 fl4 = {
295                 /* needed to match OIF rule */
296                 .flowi4_oif = vrf_dev->ifindex,
297                 .flowi4_iif = LOOPBACK_IFINDEX,
298                 .flowi4_tos = RT_TOS(ip4h->tos),
299                 .flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_L3MDEV_SRC |
300                                 FLOWI_FLAG_SKIP_NH_OIF,
301                 .daddr = ip4h->daddr,
302         };
303
304         if (vrf_send_v4_prep(skb, &fl4, vrf_dev))
305                 goto err;
306
307         if (!ip4h->saddr) {
308                 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
309                                                RT_SCOPE_LINK);
310         }
311
312         ret = ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
313         if (unlikely(net_xmit_eval(ret)))
314                 vrf_dev->stats.tx_errors++;
315         else
316                 ret = NET_XMIT_SUCCESS;
317
318 out:
319         return ret;
320 err:
321         vrf_tx_error(vrf_dev, skb);
322         goto out;
323 }
324
325 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
326 {
327         /* strip the ethernet header added for pass through VRF device */
328         __skb_pull(skb, skb_network_offset(skb));
329
330         switch (skb->protocol) {
331         case htons(ETH_P_IP):
332                 return vrf_process_v4_outbound(skb, dev);
333         case htons(ETH_P_IPV6):
334                 return vrf_process_v6_outbound(skb, dev);
335         default:
336                 vrf_tx_error(dev, skb);
337                 return NET_XMIT_DROP;
338         }
339 }
340
341 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
342 {
343         netdev_tx_t ret = is_ip_tx_frame(skb, dev);
344
345         if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
346                 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
347
348                 u64_stats_update_begin(&dstats->syncp);
349                 dstats->tx_pkts++;
350                 dstats->tx_bytes += skb->len;
351                 u64_stats_update_end(&dstats->syncp);
352         } else {
353                 this_cpu_inc(dev->dstats->tx_drps);
354         }
355
356         return ret;
357 }
358
359 #if IS_ENABLED(CONFIG_IPV6)
360 static struct dst_entry *vrf_ip6_check(struct dst_entry *dst, u32 cookie)
361 {
362         return dst;
363 }
364
365 static struct dst_ops vrf_dst_ops6 = {
366         .family         = AF_INET6,
367         .local_out      = ip6_local_out,
368         .check          = vrf_ip6_check,
369         .mtu            = vrf_v4_mtu,
370         .destroy        = vrf_dst_destroy,
371         .default_advmss = vrf_default_advmss,
372 };
373
374 static int init_dst_ops6_kmem_cachep(void)
375 {
376         vrf_dst_ops6.kmem_cachep = kmem_cache_create("vrf_ip6_dst_cache",
377                                                      sizeof(struct rt6_info),
378                                                      0,
379                                                      SLAB_HWCACHE_ALIGN,
380                                                      NULL);
381
382         if (!vrf_dst_ops6.kmem_cachep)
383                 return -ENOMEM;
384
385         return 0;
386 }
387
388 static void free_dst_ops6_kmem_cachep(void)
389 {
390         kmem_cache_destroy(vrf_dst_ops6.kmem_cachep);
391 }
392
393 static int vrf_input6(struct sk_buff *skb)
394 {
395         skb->dev->stats.rx_errors++;
396         kfree_skb(skb);
397         return 0;
398 }
399
400 /* modelled after ip6_finish_output2 */
401 static int vrf_finish_output6(struct net *net, struct sock *sk,
402                               struct sk_buff *skb)
403 {
404         struct dst_entry *dst = skb_dst(skb);
405         struct net_device *dev = dst->dev;
406         struct neighbour *neigh;
407         struct in6_addr *nexthop;
408         int ret;
409
410         skb->protocol = htons(ETH_P_IPV6);
411         skb->dev = dev;
412
413         rcu_read_lock_bh();
414         nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
415         neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
416         if (unlikely(!neigh))
417                 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
418         if (!IS_ERR(neigh)) {
419                 ret = dst_neigh_output(dst, neigh, skb);
420                 rcu_read_unlock_bh();
421                 return ret;
422         }
423         rcu_read_unlock_bh();
424
425         IP6_INC_STATS(dev_net(dst->dev),
426                       ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
427         kfree_skb(skb);
428         return -EINVAL;
429 }
430
431 /* modelled after ip6_output */
432 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
433 {
434         return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
435                             net, sk, skb, NULL, skb_dst(skb)->dev,
436                             vrf_finish_output6,
437                             !(IP6CB(skb)->flags & IP6SKB_REROUTED));
438 }
439
440 static void vrf_rt6_destroy(struct net_vrf *vrf)
441 {
442         dst_destroy(&vrf->rt6->dst);
443         free_percpu(vrf->rt6->rt6i_pcpu);
444         vrf->rt6 = NULL;
445 }
446
447 static int vrf_rt6_create(struct net_device *dev)
448 {
449         struct net_vrf *vrf = netdev_priv(dev);
450         struct dst_entry *dst;
451         struct rt6_info *rt6;
452         int cpu;
453         int rc = -ENOMEM;
454
455         rt6 = dst_alloc(&vrf_dst_ops6, dev, 0,
456                         DST_OBSOLETE_NONE,
457                         (DST_HOST | DST_NOPOLICY | DST_NOXFRM));
458         if (!rt6)
459                 goto out;
460
461         dst = &rt6->dst;
462
463         rt6->rt6i_pcpu = alloc_percpu_gfp(struct rt6_info *, GFP_KERNEL);
464         if (!rt6->rt6i_pcpu) {
465                 dst_destroy(dst);
466                 goto out;
467         }
468         for_each_possible_cpu(cpu) {
469                 struct rt6_info **p = per_cpu_ptr(rt6->rt6i_pcpu, cpu);
470                 *p =  NULL;
471         }
472
473         memset(dst + 1, 0, sizeof(*rt6) - sizeof(*dst));
474
475         INIT_LIST_HEAD(&rt6->rt6i_siblings);
476         INIT_LIST_HEAD(&rt6->rt6i_uncached);
477
478         rt6->dst.input  = vrf_input6;
479         rt6->dst.output = vrf_output6;
480
481         rt6->rt6i_table = fib6_get_table(dev_net(dev), vrf->tb_id);
482
483         atomic_set(&rt6->dst.__refcnt, 2);
484
485         vrf->rt6 = rt6;
486         rc = 0;
487 out:
488         return rc;
489 }
490 #else
491 static int init_dst_ops6_kmem_cachep(void)
492 {
493         return 0;
494 }
495
496 static void free_dst_ops6_kmem_cachep(void)
497 {
498 }
499
500 static void vrf_rt6_destroy(struct net_vrf *vrf)
501 {
502 }
503
504 static int vrf_rt6_create(struct net_device *dev)
505 {
506         return 0;
507 }
508 #endif
509
510 /* modelled after ip_finish_output2 */
511 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
512 {
513         struct dst_entry *dst = skb_dst(skb);
514         struct rtable *rt = (struct rtable *)dst;
515         struct net_device *dev = dst->dev;
516         unsigned int hh_len = LL_RESERVED_SPACE(dev);
517         struct neighbour *neigh;
518         u32 nexthop;
519         int ret = -EINVAL;
520
521         /* Be paranoid, rather than too clever. */
522         if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
523                 struct sk_buff *skb2;
524
525                 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
526                 if (!skb2) {
527                         ret = -ENOMEM;
528                         goto err;
529                 }
530                 if (skb->sk)
531                         skb_set_owner_w(skb2, skb->sk);
532
533                 consume_skb(skb);
534                 skb = skb2;
535         }
536
537         rcu_read_lock_bh();
538
539         nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr);
540         neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
541         if (unlikely(!neigh))
542                 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
543         if (!IS_ERR(neigh))
544                 ret = dst_neigh_output(dst, neigh, skb);
545
546         rcu_read_unlock_bh();
547 err:
548         if (unlikely(ret < 0))
549                 vrf_tx_error(skb->dev, skb);
550         return ret;
551 }
552
553 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
554 {
555         struct net_device *dev = skb_dst(skb)->dev;
556
557         IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
558
559         skb->dev = dev;
560         skb->protocol = htons(ETH_P_IP);
561
562         return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
563                             net, sk, skb, NULL, dev,
564                             vrf_finish_output,
565                             !(IPCB(skb)->flags & IPSKB_REROUTED));
566 }
567
568 static void vrf_rtable_destroy(struct net_vrf *vrf)
569 {
570         struct dst_entry *dst = (struct dst_entry *)vrf->rth;
571
572         dst_destroy(dst);
573         vrf->rth = NULL;
574 }
575
576 static struct rtable *vrf_rtable_create(struct net_device *dev)
577 {
578         struct net_vrf *vrf = netdev_priv(dev);
579         struct rtable *rth;
580
581         rth = dst_alloc(&vrf_dst_ops, dev, 2,
582                         DST_OBSOLETE_NONE,
583                         (DST_HOST | DST_NOPOLICY | DST_NOXFRM));
584         if (rth) {
585                 rth->dst.output = vrf_output;
586                 rth->rt_genid   = rt_genid_ipv4(dev_net(dev));
587                 rth->rt_flags   = 0;
588                 rth->rt_type    = RTN_UNICAST;
589                 rth->rt_is_input = 0;
590                 rth->rt_iif     = 0;
591                 rth->rt_pmtu    = 0;
592                 rth->rt_gateway = 0;
593                 rth->rt_uses_gateway = 0;
594                 rth->rt_table_id = vrf->tb_id;
595                 INIT_LIST_HEAD(&rth->rt_uncached);
596                 rth->rt_uncached_list = NULL;
597         }
598
599         return rth;
600 }
601
602 /**************************** device handling ********************/
603
604 /* cycle interface to flush neighbor cache and move routes across tables */
605 static void cycle_netdev(struct net_device *dev)
606 {
607         unsigned int flags = dev->flags;
608         int ret;
609
610         if (!netif_running(dev))
611                 return;
612
613         ret = dev_change_flags(dev, flags & ~IFF_UP);
614         if (ret >= 0)
615                 ret = dev_change_flags(dev, flags);
616
617         if (ret < 0) {
618                 netdev_err(dev,
619                            "Failed to cycle device %s; route tables might be wrong!\n",
620                            dev->name);
621         }
622 }
623
624 static struct slave *__vrf_find_slave_dev(struct slave_queue *queue,
625                                           struct net_device *dev)
626 {
627         struct list_head *head = &queue->all_slaves;
628         struct slave *slave;
629
630         list_for_each_entry(slave, head, list) {
631                 if (slave->dev == dev)
632                         return slave;
633         }
634
635         return NULL;
636 }
637
638 /* inverse of __vrf_insert_slave */
639 static void __vrf_remove_slave(struct slave_queue *queue, struct slave *slave)
640 {
641         list_del(&slave->list);
642 }
643
644 static void __vrf_insert_slave(struct slave_queue *queue, struct slave *slave)
645 {
646         list_add(&slave->list, &queue->all_slaves);
647 }
648
649 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
650 {
651         struct slave *slave = kzalloc(sizeof(*slave), GFP_KERNEL);
652         struct net_vrf *vrf = netdev_priv(dev);
653         struct slave_queue *queue = &vrf->queue;
654         int ret = -ENOMEM;
655
656         if (!slave)
657                 goto out_fail;
658
659         slave->dev = port_dev;
660
661         /* register the packet handler for slave ports */
662         ret = netdev_rx_handler_register(port_dev, vrf_handle_frame, dev);
663         if (ret) {
664                 netdev_err(port_dev,
665                            "Device %s failed to register rx_handler\n",
666                            port_dev->name);
667                 goto out_fail;
668         }
669
670         ret = netdev_master_upper_dev_link(port_dev, dev);
671         if (ret < 0)
672                 goto out_unregister;
673
674         port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
675         __vrf_insert_slave(queue, slave);
676         cycle_netdev(port_dev);
677
678         return 0;
679
680 out_unregister:
681         netdev_rx_handler_unregister(port_dev);
682 out_fail:
683         kfree(slave);
684         return ret;
685 }
686
687 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
688 {
689         if (netif_is_l3_master(port_dev) || netif_is_l3_slave(port_dev))
690                 return -EINVAL;
691
692         return do_vrf_add_slave(dev, port_dev);
693 }
694
695 /* inverse of do_vrf_add_slave */
696 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
697 {
698         struct net_vrf *vrf = netdev_priv(dev);
699         struct slave_queue *queue = &vrf->queue;
700         struct slave *slave;
701
702         netdev_upper_dev_unlink(port_dev, dev);
703         port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
704
705         netdev_rx_handler_unregister(port_dev);
706
707         cycle_netdev(port_dev);
708
709         slave = __vrf_find_slave_dev(queue, port_dev);
710         if (slave)
711                 __vrf_remove_slave(queue, slave);
712
713         kfree(slave);
714
715         return 0;
716 }
717
718 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
719 {
720         return do_vrf_del_slave(dev, port_dev);
721 }
722
723 static void vrf_dev_uninit(struct net_device *dev)
724 {
725         struct net_vrf *vrf = netdev_priv(dev);
726         struct slave_queue *queue = &vrf->queue;
727         struct list_head *head = &queue->all_slaves;
728         struct slave *slave, *next;
729
730         vrf_rtable_destroy(vrf);
731         vrf_rt6_destroy(vrf);
732
733         list_for_each_entry_safe(slave, next, head, list)
734                 vrf_del_slave(dev, slave->dev);
735
736         free_percpu(dev->dstats);
737         dev->dstats = NULL;
738 }
739
740 static int vrf_dev_init(struct net_device *dev)
741 {
742         struct net_vrf *vrf = netdev_priv(dev);
743
744         INIT_LIST_HEAD(&vrf->queue.all_slaves);
745
746         dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
747         if (!dev->dstats)
748                 goto out_nomem;
749
750         /* create the default dst which points back to us */
751         vrf->rth = vrf_rtable_create(dev);
752         if (!vrf->rth)
753                 goto out_stats;
754
755         if (vrf_rt6_create(dev) != 0)
756                 goto out_rth;
757
758         dev->flags = IFF_MASTER | IFF_NOARP;
759
760         return 0;
761
762 out_rth:
763         vrf_rtable_destroy(vrf);
764 out_stats:
765         free_percpu(dev->dstats);
766         dev->dstats = NULL;
767 out_nomem:
768         return -ENOMEM;
769 }
770
771 static const struct net_device_ops vrf_netdev_ops = {
772         .ndo_init               = vrf_dev_init,
773         .ndo_uninit             = vrf_dev_uninit,
774         .ndo_start_xmit         = vrf_xmit,
775         .ndo_get_stats64        = vrf_get_stats64,
776         .ndo_add_slave          = vrf_add_slave,
777         .ndo_del_slave          = vrf_del_slave,
778 };
779
780 static u32 vrf_fib_table(const struct net_device *dev)
781 {
782         struct net_vrf *vrf = netdev_priv(dev);
783
784         return vrf->tb_id;
785 }
786
787 static struct rtable *vrf_get_rtable(const struct net_device *dev,
788                                      const struct flowi4 *fl4)
789 {
790         struct rtable *rth = NULL;
791
792         if (!(fl4->flowi4_flags & FLOWI_FLAG_L3MDEV_SRC)) {
793                 struct net_vrf *vrf = netdev_priv(dev);
794
795                 rth = vrf->rth;
796                 atomic_inc(&rth->dst.__refcnt);
797         }
798
799         return rth;
800 }
801
802 /* called under rcu_read_lock */
803 static void vrf_get_saddr(struct net_device *dev, struct flowi4 *fl4)
804 {
805         struct fib_result res = { .tclassid = 0 };
806         struct net *net = dev_net(dev);
807         u32 orig_tos = fl4->flowi4_tos;
808         u8 flags = fl4->flowi4_flags;
809         u8 scope = fl4->flowi4_scope;
810         u8 tos = RT_FL_TOS(fl4);
811
812         if (unlikely(!fl4->daddr))
813                 return;
814
815         fl4->flowi4_flags |= FLOWI_FLAG_SKIP_NH_OIF;
816         fl4->flowi4_iif = LOOPBACK_IFINDEX;
817         fl4->flowi4_tos = tos & IPTOS_RT_MASK;
818         fl4->flowi4_scope = ((tos & RTO_ONLINK) ?
819                              RT_SCOPE_LINK : RT_SCOPE_UNIVERSE);
820
821         if (!fib_lookup(net, fl4, &res, 0)) {
822                 if (res.type == RTN_LOCAL)
823                         fl4->saddr = res.fi->fib_prefsrc ? : fl4->daddr;
824                 else
825                         fib_select_path(net, &res, fl4, -1);
826         }
827
828         fl4->flowi4_flags = flags;
829         fl4->flowi4_tos = orig_tos;
830         fl4->flowi4_scope = scope;
831 }
832
833 #if IS_ENABLED(CONFIG_IPV6)
834 static struct dst_entry *vrf_get_rt6_dst(const struct net_device *dev,
835                                          const struct flowi6 *fl6)
836 {
837         struct rt6_info *rt = NULL;
838
839         if (!(fl6->flowi6_flags & FLOWI_FLAG_L3MDEV_SRC)) {
840                 struct net_vrf *vrf = netdev_priv(dev);
841
842                 rt = vrf->rt6;
843                 atomic_inc(&rt->dst.__refcnt);
844         }
845
846         return (struct dst_entry *)rt;
847 }
848 #endif
849
850 static const struct l3mdev_ops vrf_l3mdev_ops = {
851         .l3mdev_fib_table       = vrf_fib_table,
852         .l3mdev_get_rtable      = vrf_get_rtable,
853         .l3mdev_get_saddr       = vrf_get_saddr,
854 #if IS_ENABLED(CONFIG_IPV6)
855         .l3mdev_get_rt6_dst     = vrf_get_rt6_dst,
856 #endif
857 };
858
859 static void vrf_get_drvinfo(struct net_device *dev,
860                             struct ethtool_drvinfo *info)
861 {
862         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
863         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
864 }
865
866 static const struct ethtool_ops vrf_ethtool_ops = {
867         .get_drvinfo    = vrf_get_drvinfo,
868 };
869
870 static void vrf_setup(struct net_device *dev)
871 {
872         ether_setup(dev);
873
874         /* Initialize the device structure. */
875         dev->netdev_ops = &vrf_netdev_ops;
876         dev->l3mdev_ops = &vrf_l3mdev_ops;
877         dev->ethtool_ops = &vrf_ethtool_ops;
878         dev->destructor = free_netdev;
879
880         /* Fill in device structure with ethernet-generic values. */
881         eth_hw_addr_random(dev);
882
883         /* don't acquire vrf device's netif_tx_lock when transmitting */
884         dev->features |= NETIF_F_LLTX;
885
886         /* don't allow vrf devices to change network namespaces. */
887         dev->features |= NETIF_F_NETNS_LOCAL;
888 }
889
890 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[])
891 {
892         if (tb[IFLA_ADDRESS]) {
893                 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
894                         return -EINVAL;
895                 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
896                         return -EADDRNOTAVAIL;
897         }
898         return 0;
899 }
900
901 static void vrf_dellink(struct net_device *dev, struct list_head *head)
902 {
903         unregister_netdevice_queue(dev, head);
904 }
905
906 static int vrf_newlink(struct net *src_net, struct net_device *dev,
907                        struct nlattr *tb[], struct nlattr *data[])
908 {
909         struct net_vrf *vrf = netdev_priv(dev);
910         int err;
911
912         if (!data || !data[IFLA_VRF_TABLE])
913                 return -EINVAL;
914
915         vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
916
917         dev->priv_flags |= IFF_L3MDEV_MASTER;
918
919         err = register_netdevice(dev);
920         if (err < 0)
921                 goto out_fail;
922
923         return 0;
924
925 out_fail:
926         free_netdev(dev);
927         return err;
928 }
929
930 static size_t vrf_nl_getsize(const struct net_device *dev)
931 {
932         return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
933 }
934
935 static int vrf_fillinfo(struct sk_buff *skb,
936                         const struct net_device *dev)
937 {
938         struct net_vrf *vrf = netdev_priv(dev);
939
940         return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
941 }
942
943 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
944         [IFLA_VRF_TABLE] = { .type = NLA_U32 },
945 };
946
947 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
948         .kind           = DRV_NAME,
949         .priv_size      = sizeof(struct net_vrf),
950
951         .get_size       = vrf_nl_getsize,
952         .policy         = vrf_nl_policy,
953         .validate       = vrf_validate,
954         .fill_info      = vrf_fillinfo,
955
956         .newlink        = vrf_newlink,
957         .dellink        = vrf_dellink,
958         .setup          = vrf_setup,
959         .maxtype        = IFLA_VRF_MAX,
960 };
961
962 static int vrf_device_event(struct notifier_block *unused,
963                             unsigned long event, void *ptr)
964 {
965         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
966
967         /* only care about unregister events to drop slave references */
968         if (event == NETDEV_UNREGISTER) {
969                 struct net_device *vrf_dev;
970
971                 if (!netif_is_l3_slave(dev))
972                         goto out;
973
974                 vrf_dev = netdev_master_upper_dev_get(dev);
975                 vrf_del_slave(vrf_dev, dev);
976         }
977 out:
978         return NOTIFY_DONE;
979 }
980
981 static struct notifier_block vrf_notifier_block __read_mostly = {
982         .notifier_call = vrf_device_event,
983 };
984
985 static int __init vrf_init_module(void)
986 {
987         int rc;
988
989         vrf_dst_ops.kmem_cachep =
990                 kmem_cache_create("vrf_ip_dst_cache",
991                                   sizeof(struct rtable), 0,
992                                   SLAB_HWCACHE_ALIGN,
993                                   NULL);
994
995         if (!vrf_dst_ops.kmem_cachep)
996                 return -ENOMEM;
997
998         rc = init_dst_ops6_kmem_cachep();
999         if (rc != 0)
1000                 goto error2;
1001
1002         register_netdevice_notifier(&vrf_notifier_block);
1003
1004         rc = rtnl_link_register(&vrf_link_ops);
1005         if (rc < 0)
1006                 goto error;
1007
1008         return 0;
1009
1010 error:
1011         unregister_netdevice_notifier(&vrf_notifier_block);
1012         free_dst_ops6_kmem_cachep();
1013 error2:
1014         kmem_cache_destroy(vrf_dst_ops.kmem_cachep);
1015         return rc;
1016 }
1017
1018 static void __exit vrf_cleanup_module(void)
1019 {
1020         rtnl_link_unregister(&vrf_link_ops);
1021         unregister_netdevice_notifier(&vrf_notifier_block);
1022         kmem_cache_destroy(vrf_dst_ops.kmem_cachep);
1023         free_dst_ops6_kmem_cachep();
1024 }
1025
1026 module_init(vrf_init_module);
1027 module_exit(vrf_cleanup_module);
1028 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
1029 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
1030 MODULE_LICENSE("GPL");
1031 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1032 MODULE_VERSION(DRV_VERSION);