]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/wireless/ath/ath9k/recv.c
Merge remote-tracking branch 'sound-current/for-linus'
[karo-tx-linux.git] / drivers / net / wireless / ath / ath9k / recv.c
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20
21 #define SKB_CB_ATHBUF(__skb)    (*((struct ath_rxbuf **)__skb->cb))
22
23 static inline bool ath9k_check_auto_sleep(struct ath_softc *sc)
24 {
25         return sc->ps_enabled &&
26                (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP);
27 }
28
29 /*
30  * Setup and link descriptors.
31  *
32  * 11N: we can no longer afford to self link the last descriptor.
33  * MAC acknowledges BA status as long as it copies frames to host
34  * buffer (or rx fifo). This can incorrectly acknowledge packets
35  * to a sender if last desc is self-linked.
36  */
37 static void ath_rx_buf_link(struct ath_softc *sc, struct ath_rxbuf *bf,
38                             bool flush)
39 {
40         struct ath_hw *ah = sc->sc_ah;
41         struct ath_common *common = ath9k_hw_common(ah);
42         struct ath_desc *ds;
43         struct sk_buff *skb;
44
45         ds = bf->bf_desc;
46         ds->ds_link = 0; /* link to null */
47         ds->ds_data = bf->bf_buf_addr;
48
49         /* virtual addr of the beginning of the buffer. */
50         skb = bf->bf_mpdu;
51         BUG_ON(skb == NULL);
52         ds->ds_vdata = skb->data;
53
54         /*
55          * setup rx descriptors. The rx_bufsize here tells the hardware
56          * how much data it can DMA to us and that we are prepared
57          * to process
58          */
59         ath9k_hw_setuprxdesc(ah, ds,
60                              common->rx_bufsize,
61                              0);
62
63         if (sc->rx.rxlink)
64                 *sc->rx.rxlink = bf->bf_daddr;
65         else if (!flush)
66                 ath9k_hw_putrxbuf(ah, bf->bf_daddr);
67
68         sc->rx.rxlink = &ds->ds_link;
69 }
70
71 static void ath_rx_buf_relink(struct ath_softc *sc, struct ath_rxbuf *bf,
72                               bool flush)
73 {
74         if (sc->rx.buf_hold)
75                 ath_rx_buf_link(sc, sc->rx.buf_hold, flush);
76
77         sc->rx.buf_hold = bf;
78 }
79
80 static void ath_setdefantenna(struct ath_softc *sc, u32 antenna)
81 {
82         /* XXX block beacon interrupts */
83         ath9k_hw_setantenna(sc->sc_ah, antenna);
84         sc->rx.defant = antenna;
85         sc->rx.rxotherant = 0;
86 }
87
88 static void ath_opmode_init(struct ath_softc *sc)
89 {
90         struct ath_hw *ah = sc->sc_ah;
91         struct ath_common *common = ath9k_hw_common(ah);
92
93         u32 rfilt, mfilt[2];
94
95         /* configure rx filter */
96         rfilt = ath_calcrxfilter(sc);
97         ath9k_hw_setrxfilter(ah, rfilt);
98
99         /* configure bssid mask */
100         ath_hw_setbssidmask(common);
101
102         /* configure operational mode */
103         ath9k_hw_setopmode(ah);
104
105         /* calculate and install multicast filter */
106         mfilt[0] = mfilt[1] = ~0;
107         ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
108 }
109
110 static bool ath_rx_edma_buf_link(struct ath_softc *sc,
111                                  enum ath9k_rx_qtype qtype)
112 {
113         struct ath_hw *ah = sc->sc_ah;
114         struct ath_rx_edma *rx_edma;
115         struct sk_buff *skb;
116         struct ath_rxbuf *bf;
117
118         rx_edma = &sc->rx.rx_edma[qtype];
119         if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize)
120                 return false;
121
122         bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
123         list_del_init(&bf->list);
124
125         skb = bf->bf_mpdu;
126
127         memset(skb->data, 0, ah->caps.rx_status_len);
128         dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
129                                 ah->caps.rx_status_len, DMA_TO_DEVICE);
130
131         SKB_CB_ATHBUF(skb) = bf;
132         ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype);
133         __skb_queue_tail(&rx_edma->rx_fifo, skb);
134
135         return true;
136 }
137
138 static void ath_rx_addbuffer_edma(struct ath_softc *sc,
139                                   enum ath9k_rx_qtype qtype)
140 {
141         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
142         struct ath_rxbuf *bf, *tbf;
143
144         if (list_empty(&sc->rx.rxbuf)) {
145                 ath_dbg(common, QUEUE, "No free rx buf available\n");
146                 return;
147         }
148
149         list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list)
150                 if (!ath_rx_edma_buf_link(sc, qtype))
151                         break;
152
153 }
154
155 static void ath_rx_remove_buffer(struct ath_softc *sc,
156                                  enum ath9k_rx_qtype qtype)
157 {
158         struct ath_rxbuf *bf;
159         struct ath_rx_edma *rx_edma;
160         struct sk_buff *skb;
161
162         rx_edma = &sc->rx.rx_edma[qtype];
163
164         while ((skb = __skb_dequeue(&rx_edma->rx_fifo)) != NULL) {
165                 bf = SKB_CB_ATHBUF(skb);
166                 BUG_ON(!bf);
167                 list_add_tail(&bf->list, &sc->rx.rxbuf);
168         }
169 }
170
171 static void ath_rx_edma_cleanup(struct ath_softc *sc)
172 {
173         struct ath_hw *ah = sc->sc_ah;
174         struct ath_common *common = ath9k_hw_common(ah);
175         struct ath_rxbuf *bf;
176
177         ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
178         ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
179
180         list_for_each_entry(bf, &sc->rx.rxbuf, list) {
181                 if (bf->bf_mpdu) {
182                         dma_unmap_single(sc->dev, bf->bf_buf_addr,
183                                         common->rx_bufsize,
184                                         DMA_BIDIRECTIONAL);
185                         dev_kfree_skb_any(bf->bf_mpdu);
186                         bf->bf_buf_addr = 0;
187                         bf->bf_mpdu = NULL;
188                 }
189         }
190 }
191
192 static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size)
193 {
194         __skb_queue_head_init(&rx_edma->rx_fifo);
195         rx_edma->rx_fifo_hwsize = size;
196 }
197
198 static int ath_rx_edma_init(struct ath_softc *sc, int nbufs)
199 {
200         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
201         struct ath_hw *ah = sc->sc_ah;
202         struct sk_buff *skb;
203         struct ath_rxbuf *bf;
204         int error = 0, i;
205         u32 size;
206
207         ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
208                                     ah->caps.rx_status_len);
209
210         ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP],
211                                ah->caps.rx_lp_qdepth);
212         ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP],
213                                ah->caps.rx_hp_qdepth);
214
215         size = sizeof(struct ath_rxbuf) * nbufs;
216         bf = devm_kzalloc(sc->dev, size, GFP_KERNEL);
217         if (!bf)
218                 return -ENOMEM;
219
220         INIT_LIST_HEAD(&sc->rx.rxbuf);
221
222         for (i = 0; i < nbufs; i++, bf++) {
223                 skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL);
224                 if (!skb) {
225                         error = -ENOMEM;
226                         goto rx_init_fail;
227                 }
228
229                 memset(skb->data, 0, common->rx_bufsize);
230                 bf->bf_mpdu = skb;
231
232                 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
233                                                  common->rx_bufsize,
234                                                  DMA_BIDIRECTIONAL);
235                 if (unlikely(dma_mapping_error(sc->dev,
236                                                 bf->bf_buf_addr))) {
237                                 dev_kfree_skb_any(skb);
238                                 bf->bf_mpdu = NULL;
239                                 bf->bf_buf_addr = 0;
240                                 ath_err(common,
241                                         "dma_mapping_error() on RX init\n");
242                                 error = -ENOMEM;
243                                 goto rx_init_fail;
244                 }
245
246                 list_add_tail(&bf->list, &sc->rx.rxbuf);
247         }
248
249         return 0;
250
251 rx_init_fail:
252         ath_rx_edma_cleanup(sc);
253         return error;
254 }
255
256 static void ath_edma_start_recv(struct ath_softc *sc)
257 {
258         ath9k_hw_rxena(sc->sc_ah);
259         ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP);
260         ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP);
261         ath_opmode_init(sc);
262         ath9k_hw_startpcureceive(sc->sc_ah, sc->cur_chan->offchannel);
263 }
264
265 static void ath_edma_stop_recv(struct ath_softc *sc)
266 {
267         ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
268         ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
269 }
270
271 int ath_rx_init(struct ath_softc *sc, int nbufs)
272 {
273         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
274         struct sk_buff *skb;
275         struct ath_rxbuf *bf;
276         int error = 0;
277
278         spin_lock_init(&sc->sc_pcu_lock);
279
280         common->rx_bufsize = IEEE80211_MAX_MPDU_LEN / 2 +
281                              sc->sc_ah->caps.rx_status_len;
282
283         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
284                 return ath_rx_edma_init(sc, nbufs);
285
286         ath_dbg(common, CONFIG, "cachelsz %u rxbufsize %u\n",
287                 common->cachelsz, common->rx_bufsize);
288
289         /* Initialize rx descriptors */
290
291         error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf,
292                                   "rx", nbufs, 1, 0);
293         if (error != 0) {
294                 ath_err(common,
295                         "failed to allocate rx descriptors: %d\n",
296                         error);
297                 goto err;
298         }
299
300         list_for_each_entry(bf, &sc->rx.rxbuf, list) {
301                 skb = ath_rxbuf_alloc(common, common->rx_bufsize,
302                                       GFP_KERNEL);
303                 if (skb == NULL) {
304                         error = -ENOMEM;
305                         goto err;
306                 }
307
308                 bf->bf_mpdu = skb;
309                 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
310                                                  common->rx_bufsize,
311                                                  DMA_FROM_DEVICE);
312                 if (unlikely(dma_mapping_error(sc->dev,
313                                                bf->bf_buf_addr))) {
314                         dev_kfree_skb_any(skb);
315                         bf->bf_mpdu = NULL;
316                         bf->bf_buf_addr = 0;
317                         ath_err(common,
318                                 "dma_mapping_error() on RX init\n");
319                         error = -ENOMEM;
320                         goto err;
321                 }
322         }
323         sc->rx.rxlink = NULL;
324 err:
325         if (error)
326                 ath_rx_cleanup(sc);
327
328         return error;
329 }
330
331 void ath_rx_cleanup(struct ath_softc *sc)
332 {
333         struct ath_hw *ah = sc->sc_ah;
334         struct ath_common *common = ath9k_hw_common(ah);
335         struct sk_buff *skb;
336         struct ath_rxbuf *bf;
337
338         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
339                 ath_rx_edma_cleanup(sc);
340                 return;
341         }
342
343         list_for_each_entry(bf, &sc->rx.rxbuf, list) {
344                 skb = bf->bf_mpdu;
345                 if (skb) {
346                         dma_unmap_single(sc->dev, bf->bf_buf_addr,
347                                          common->rx_bufsize,
348                                          DMA_FROM_DEVICE);
349                         dev_kfree_skb(skb);
350                         bf->bf_buf_addr = 0;
351                         bf->bf_mpdu = NULL;
352                 }
353         }
354 }
355
356 /*
357  * Calculate the receive filter according to the
358  * operating mode and state:
359  *
360  * o always accept unicast, broadcast, and multicast traffic
361  * o maintain current state of phy error reception (the hal
362  *   may enable phy error frames for noise immunity work)
363  * o probe request frames are accepted only when operating in
364  *   hostap, adhoc, or monitor modes
365  * o enable promiscuous mode according to the interface state
366  * o accept beacons:
367  *   - when operating in adhoc mode so the 802.11 layer creates
368  *     node table entries for peers,
369  *   - when operating in station mode for collecting rssi data when
370  *     the station is otherwise quiet, or
371  *   - when operating as a repeater so we see repeater-sta beacons
372  *   - when scanning
373  */
374
375 u32 ath_calcrxfilter(struct ath_softc *sc)
376 {
377         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
378         u32 rfilt;
379
380         if (config_enabled(CONFIG_ATH9K_TX99))
381                 return 0;
382
383         rfilt = ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST
384                 | ATH9K_RX_FILTER_MCAST;
385
386         /* if operating on a DFS channel, enable radar pulse detection */
387         if (sc->hw->conf.radar_enabled)
388                 rfilt |= ATH9K_RX_FILTER_PHYRADAR | ATH9K_RX_FILTER_PHYERR;
389
390         spin_lock_bh(&sc->chan_lock);
391
392         if (sc->cur_chan->rxfilter & FIF_PROBE_REQ)
393                 rfilt |= ATH9K_RX_FILTER_PROBEREQ;
394
395         if (sc->sc_ah->is_monitoring)
396                 rfilt |= ATH9K_RX_FILTER_PROM;
397
398         if ((sc->cur_chan->rxfilter & FIF_CONTROL) ||
399             sc->sc_ah->dynack.enabled)
400                 rfilt |= ATH9K_RX_FILTER_CONTROL;
401
402         if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) &&
403             (sc->cur_chan->nvifs <= 1) &&
404             !(sc->cur_chan->rxfilter & FIF_BCN_PRBRESP_PROMISC))
405                 rfilt |= ATH9K_RX_FILTER_MYBEACON;
406         else if (sc->sc_ah->opmode != NL80211_IFTYPE_OCB)
407                 rfilt |= ATH9K_RX_FILTER_BEACON;
408
409         if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
410             (sc->cur_chan->rxfilter & FIF_PSPOLL))
411                 rfilt |= ATH9K_RX_FILTER_PSPOLL;
412
413         if (sc->cur_chandef.width != NL80211_CHAN_WIDTH_20_NOHT)
414                 rfilt |= ATH9K_RX_FILTER_COMP_BAR;
415
416         if (sc->cur_chan->nvifs > 1 || (sc->cur_chan->rxfilter & FIF_OTHER_BSS)) {
417                 /* This is needed for older chips */
418                 if (sc->sc_ah->hw_version.macVersion <= AR_SREV_VERSION_9160)
419                         rfilt |= ATH9K_RX_FILTER_PROM;
420                 rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL;
421         }
422
423         if (AR_SREV_9550(sc->sc_ah) || AR_SREV_9531(sc->sc_ah) ||
424             AR_SREV_9561(sc->sc_ah))
425                 rfilt |= ATH9K_RX_FILTER_4ADDRESS;
426
427         if (ath9k_is_chanctx_enabled() &&
428             test_bit(ATH_OP_SCANNING, &common->op_flags))
429                 rfilt |= ATH9K_RX_FILTER_BEACON;
430
431         spin_unlock_bh(&sc->chan_lock);
432
433         return rfilt;
434
435 }
436
437 void ath_startrecv(struct ath_softc *sc)
438 {
439         struct ath_hw *ah = sc->sc_ah;
440         struct ath_rxbuf *bf, *tbf;
441
442         if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
443                 ath_edma_start_recv(sc);
444                 return;
445         }
446
447         if (list_empty(&sc->rx.rxbuf))
448                 goto start_recv;
449
450         sc->rx.buf_hold = NULL;
451         sc->rx.rxlink = NULL;
452         list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) {
453                 ath_rx_buf_link(sc, bf, false);
454         }
455
456         /* We could have deleted elements so the list may be empty now */
457         if (list_empty(&sc->rx.rxbuf))
458                 goto start_recv;
459
460         bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
461         ath9k_hw_putrxbuf(ah, bf->bf_daddr);
462         ath9k_hw_rxena(ah);
463
464 start_recv:
465         ath_opmode_init(sc);
466         ath9k_hw_startpcureceive(ah, sc->cur_chan->offchannel);
467 }
468
469 static void ath_flushrecv(struct ath_softc *sc)
470 {
471         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
472                 ath_rx_tasklet(sc, 1, true);
473         ath_rx_tasklet(sc, 1, false);
474 }
475
476 bool ath_stoprecv(struct ath_softc *sc)
477 {
478         struct ath_hw *ah = sc->sc_ah;
479         bool stopped, reset = false;
480
481         ath9k_hw_abortpcurecv(ah);
482         ath9k_hw_setrxfilter(ah, 0);
483         stopped = ath9k_hw_stopdmarecv(ah, &reset);
484
485         ath_flushrecv(sc);
486
487         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
488                 ath_edma_stop_recv(sc);
489         else
490                 sc->rx.rxlink = NULL;
491
492         if (!(ah->ah_flags & AH_UNPLUGGED) &&
493             unlikely(!stopped)) {
494                 ath_dbg(ath9k_hw_common(sc->sc_ah), RESET,
495                         "Failed to stop Rx DMA\n");
496                 RESET_STAT_INC(sc, RESET_RX_DMA_ERROR);
497         }
498         return stopped && !reset;
499 }
500
501 static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb)
502 {
503         /* Check whether the Beacon frame has DTIM indicating buffered bc/mc */
504         struct ieee80211_mgmt *mgmt;
505         u8 *pos, *end, id, elen;
506         struct ieee80211_tim_ie *tim;
507
508         mgmt = (struct ieee80211_mgmt *)skb->data;
509         pos = mgmt->u.beacon.variable;
510         end = skb->data + skb->len;
511
512         while (pos + 2 < end) {
513                 id = *pos++;
514                 elen = *pos++;
515                 if (pos + elen > end)
516                         break;
517
518                 if (id == WLAN_EID_TIM) {
519                         if (elen < sizeof(*tim))
520                                 break;
521                         tim = (struct ieee80211_tim_ie *) pos;
522                         if (tim->dtim_count != 0)
523                                 break;
524                         return tim->bitmap_ctrl & 0x01;
525                 }
526
527                 pos += elen;
528         }
529
530         return false;
531 }
532
533 static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb)
534 {
535         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
536         bool skip_beacon = false;
537
538         if (skb->len < 24 + 8 + 2 + 2)
539                 return;
540
541         sc->ps_flags &= ~PS_WAIT_FOR_BEACON;
542
543         if (sc->ps_flags & PS_BEACON_SYNC) {
544                 sc->ps_flags &= ~PS_BEACON_SYNC;
545                 ath_dbg(common, PS,
546                         "Reconfigure beacon timers based on synchronized timestamp\n");
547
548 #ifdef CONFIG_ATH9K_CHANNEL_CONTEXT
549                 if (ath9k_is_chanctx_enabled()) {
550                         if (sc->cur_chan == &sc->offchannel.chan)
551                                 skip_beacon = true;
552                 }
553 #endif
554
555                 if (!skip_beacon &&
556                     !(WARN_ON_ONCE(sc->cur_chan->beacon.beacon_interval == 0)))
557                         ath9k_set_beacon(sc);
558
559                 ath9k_p2p_beacon_sync(sc);
560         }
561
562         if (ath_beacon_dtim_pending_cab(skb)) {
563                 /*
564                  * Remain awake waiting for buffered broadcast/multicast
565                  * frames. If the last broadcast/multicast frame is not
566                  * received properly, the next beacon frame will work as
567                  * a backup trigger for returning into NETWORK SLEEP state,
568                  * so we are waiting for it as well.
569                  */
570                 ath_dbg(common, PS,
571                         "Received DTIM beacon indicating buffered broadcast/multicast frame(s)\n");
572                 sc->ps_flags |= PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON;
573                 return;
574         }
575
576         if (sc->ps_flags & PS_WAIT_FOR_CAB) {
577                 /*
578                  * This can happen if a broadcast frame is dropped or the AP
579                  * fails to send a frame indicating that all CAB frames have
580                  * been delivered.
581                  */
582                 sc->ps_flags &= ~PS_WAIT_FOR_CAB;
583                 ath_dbg(common, PS, "PS wait for CAB frames timed out\n");
584         }
585 }
586
587 static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb, bool mybeacon)
588 {
589         struct ieee80211_hdr *hdr;
590         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
591
592         hdr = (struct ieee80211_hdr *)skb->data;
593
594         /* Process Beacon and CAB receive in PS state */
595         if (((sc->ps_flags & PS_WAIT_FOR_BEACON) || ath9k_check_auto_sleep(sc))
596             && mybeacon) {
597                 ath_rx_ps_beacon(sc, skb);
598         } else if ((sc->ps_flags & PS_WAIT_FOR_CAB) &&
599                    (ieee80211_is_data(hdr->frame_control) ||
600                     ieee80211_is_action(hdr->frame_control)) &&
601                    is_multicast_ether_addr(hdr->addr1) &&
602                    !ieee80211_has_moredata(hdr->frame_control)) {
603                 /*
604                  * No more broadcast/multicast frames to be received at this
605                  * point.
606                  */
607                 sc->ps_flags &= ~(PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON);
608                 ath_dbg(common, PS,
609                         "All PS CAB frames received, back to sleep\n");
610         } else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) &&
611                    !is_multicast_ether_addr(hdr->addr1) &&
612                    !ieee80211_has_morefrags(hdr->frame_control)) {
613                 sc->ps_flags &= ~PS_WAIT_FOR_PSPOLL_DATA;
614                 ath_dbg(common, PS,
615                         "Going back to sleep after having received PS-Poll data (0x%lx)\n",
616                         sc->ps_flags & (PS_WAIT_FOR_BEACON |
617                                         PS_WAIT_FOR_CAB |
618                                         PS_WAIT_FOR_PSPOLL_DATA |
619                                         PS_WAIT_FOR_TX_ACK));
620         }
621 }
622
623 static bool ath_edma_get_buffers(struct ath_softc *sc,
624                                  enum ath9k_rx_qtype qtype,
625                                  struct ath_rx_status *rs,
626                                  struct ath_rxbuf **dest)
627 {
628         struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype];
629         struct ath_hw *ah = sc->sc_ah;
630         struct ath_common *common = ath9k_hw_common(ah);
631         struct sk_buff *skb;
632         struct ath_rxbuf *bf;
633         int ret;
634
635         skb = skb_peek(&rx_edma->rx_fifo);
636         if (!skb)
637                 return false;
638
639         bf = SKB_CB_ATHBUF(skb);
640         BUG_ON(!bf);
641
642         dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
643                                 common->rx_bufsize, DMA_FROM_DEVICE);
644
645         ret = ath9k_hw_process_rxdesc_edma(ah, rs, skb->data);
646         if (ret == -EINPROGRESS) {
647                 /*let device gain the buffer again*/
648                 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
649                                 common->rx_bufsize, DMA_FROM_DEVICE);
650                 return false;
651         }
652
653         __skb_unlink(skb, &rx_edma->rx_fifo);
654         if (ret == -EINVAL) {
655                 /* corrupt descriptor, skip this one and the following one */
656                 list_add_tail(&bf->list, &sc->rx.rxbuf);
657                 ath_rx_edma_buf_link(sc, qtype);
658
659                 skb = skb_peek(&rx_edma->rx_fifo);
660                 if (skb) {
661                         bf = SKB_CB_ATHBUF(skb);
662                         BUG_ON(!bf);
663
664                         __skb_unlink(skb, &rx_edma->rx_fifo);
665                         list_add_tail(&bf->list, &sc->rx.rxbuf);
666                         ath_rx_edma_buf_link(sc, qtype);
667                 }
668
669                 bf = NULL;
670         }
671
672         *dest = bf;
673         return true;
674 }
675
676 static struct ath_rxbuf *ath_edma_get_next_rx_buf(struct ath_softc *sc,
677                                                 struct ath_rx_status *rs,
678                                                 enum ath9k_rx_qtype qtype)
679 {
680         struct ath_rxbuf *bf = NULL;
681
682         while (ath_edma_get_buffers(sc, qtype, rs, &bf)) {
683                 if (!bf)
684                         continue;
685
686                 return bf;
687         }
688         return NULL;
689 }
690
691 static struct ath_rxbuf *ath_get_next_rx_buf(struct ath_softc *sc,
692                                            struct ath_rx_status *rs)
693 {
694         struct ath_hw *ah = sc->sc_ah;
695         struct ath_common *common = ath9k_hw_common(ah);
696         struct ath_desc *ds;
697         struct ath_rxbuf *bf;
698         int ret;
699
700         if (list_empty(&sc->rx.rxbuf)) {
701                 sc->rx.rxlink = NULL;
702                 return NULL;
703         }
704
705         bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
706         if (bf == sc->rx.buf_hold)
707                 return NULL;
708
709         ds = bf->bf_desc;
710
711         /*
712          * Must provide the virtual address of the current
713          * descriptor, the physical address, and the virtual
714          * address of the next descriptor in the h/w chain.
715          * This allows the HAL to look ahead to see if the
716          * hardware is done with a descriptor by checking the
717          * done bit in the following descriptor and the address
718          * of the current descriptor the DMA engine is working
719          * on.  All this is necessary because of our use of
720          * a self-linked list to avoid rx overruns.
721          */
722         ret = ath9k_hw_rxprocdesc(ah, ds, rs);
723         if (ret == -EINPROGRESS) {
724                 struct ath_rx_status trs;
725                 struct ath_rxbuf *tbf;
726                 struct ath_desc *tds;
727
728                 memset(&trs, 0, sizeof(trs));
729                 if (list_is_last(&bf->list, &sc->rx.rxbuf)) {
730                         sc->rx.rxlink = NULL;
731                         return NULL;
732                 }
733
734                 tbf = list_entry(bf->list.next, struct ath_rxbuf, list);
735
736                 /*
737                  * On some hardware the descriptor status words could
738                  * get corrupted, including the done bit. Because of
739                  * this, check if the next descriptor's done bit is
740                  * set or not.
741                  *
742                  * If the next descriptor's done bit is set, the current
743                  * descriptor has been corrupted. Force s/w to discard
744                  * this descriptor and continue...
745                  */
746
747                 tds = tbf->bf_desc;
748                 ret = ath9k_hw_rxprocdesc(ah, tds, &trs);
749                 if (ret == -EINPROGRESS)
750                         return NULL;
751
752                 /*
753                  * Re-check previous descriptor, in case it has been filled
754                  * in the mean time.
755                  */
756                 ret = ath9k_hw_rxprocdesc(ah, ds, rs);
757                 if (ret == -EINPROGRESS) {
758                         /*
759                          * mark descriptor as zero-length and set the 'more'
760                          * flag to ensure that both buffers get discarded
761                          */
762                         rs->rs_datalen = 0;
763                         rs->rs_more = true;
764                 }
765         }
766
767         list_del(&bf->list);
768         if (!bf->bf_mpdu)
769                 return bf;
770
771         /*
772          * Synchronize the DMA transfer with CPU before
773          * 1. accessing the frame
774          * 2. requeueing the same buffer to h/w
775          */
776         dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
777                         common->rx_bufsize,
778                         DMA_FROM_DEVICE);
779
780         return bf;
781 }
782
783 static void ath9k_process_tsf(struct ath_rx_status *rs,
784                               struct ieee80211_rx_status *rxs,
785                               u64 tsf)
786 {
787         u32 tsf_lower = tsf & 0xffffffff;
788
789         rxs->mactime = (tsf & ~0xffffffffULL) | rs->rs_tstamp;
790         if (rs->rs_tstamp > tsf_lower &&
791             unlikely(rs->rs_tstamp - tsf_lower > 0x10000000))
792                 rxs->mactime -= 0x100000000ULL;
793
794         if (rs->rs_tstamp < tsf_lower &&
795             unlikely(tsf_lower - rs->rs_tstamp > 0x10000000))
796                 rxs->mactime += 0x100000000ULL;
797 }
798
799 /*
800  * For Decrypt or Demic errors, we only mark packet status here and always push
801  * up the frame up to let mac80211 handle the actual error case, be it no
802  * decryption key or real decryption error. This let us keep statistics there.
803  */
804 static int ath9k_rx_skb_preprocess(struct ath_softc *sc,
805                                    struct sk_buff *skb,
806                                    struct ath_rx_status *rx_stats,
807                                    struct ieee80211_rx_status *rx_status,
808                                    bool *decrypt_error, u64 tsf)
809 {
810         struct ieee80211_hw *hw = sc->hw;
811         struct ath_hw *ah = sc->sc_ah;
812         struct ath_common *common = ath9k_hw_common(ah);
813         struct ieee80211_hdr *hdr;
814         bool discard_current = sc->rx.discard_next;
815
816         /*
817          * Discard corrupt descriptors which are marked in
818          * ath_get_next_rx_buf().
819          */
820         if (discard_current)
821                 goto corrupt;
822
823         sc->rx.discard_next = false;
824
825         /*
826          * Discard zero-length packets.
827          */
828         if (!rx_stats->rs_datalen) {
829                 RX_STAT_INC(rx_len_err);
830                 goto corrupt;
831         }
832
833         /*
834          * rs_status follows rs_datalen so if rs_datalen is too large
835          * we can take a hint that hardware corrupted it, so ignore
836          * those frames.
837          */
838         if (rx_stats->rs_datalen > (common->rx_bufsize - ah->caps.rx_status_len)) {
839                 RX_STAT_INC(rx_len_err);
840                 goto corrupt;
841         }
842
843         /* Only use status info from the last fragment */
844         if (rx_stats->rs_more)
845                 return 0;
846
847         /*
848          * Return immediately if the RX descriptor has been marked
849          * as corrupt based on the various error bits.
850          *
851          * This is different from the other corrupt descriptor
852          * condition handled above.
853          */
854         if (rx_stats->rs_status & ATH9K_RXERR_CORRUPT_DESC)
855                 goto corrupt;
856
857         hdr = (struct ieee80211_hdr *) (skb->data + ah->caps.rx_status_len);
858
859         ath9k_process_tsf(rx_stats, rx_status, tsf);
860         ath_debug_stat_rx(sc, rx_stats);
861
862         /*
863          * Process PHY errors and return so that the packet
864          * can be dropped.
865          */
866         if (rx_stats->rs_status & ATH9K_RXERR_PHY) {
867                 ath9k_dfs_process_phyerr(sc, hdr, rx_stats, rx_status->mactime);
868                 if (ath_cmn_process_fft(&sc->spec_priv, hdr, rx_stats, rx_status->mactime))
869                         RX_STAT_INC(rx_spectral);
870
871                 return -EINVAL;
872         }
873
874         /*
875          * everything but the rate is checked here, the rate check is done
876          * separately to avoid doing two lookups for a rate for each frame.
877          */
878         spin_lock_bh(&sc->chan_lock);
879         if (!ath9k_cmn_rx_accept(common, hdr, rx_status, rx_stats, decrypt_error,
880                                  sc->cur_chan->rxfilter)) {
881                 spin_unlock_bh(&sc->chan_lock);
882                 return -EINVAL;
883         }
884         spin_unlock_bh(&sc->chan_lock);
885
886         if (ath_is_mybeacon(common, hdr)) {
887                 RX_STAT_INC(rx_beacons);
888                 rx_stats->is_mybeacon = true;
889         }
890
891         /*
892          * This shouldn't happen, but have a safety check anyway.
893          */
894         if (WARN_ON(!ah->curchan))
895                 return -EINVAL;
896
897         if (ath9k_cmn_process_rate(common, hw, rx_stats, rx_status)) {
898                 /*
899                  * No valid hardware bitrate found -- we should not get here
900                  * because hardware has already validated this frame as OK.
901                  */
902                 ath_dbg(common, ANY, "unsupported hw bitrate detected 0x%02x using 1 Mbit\n",
903                         rx_stats->rs_rate);
904                 RX_STAT_INC(rx_rate_err);
905                 return -EINVAL;
906         }
907
908         if (ath9k_is_chanctx_enabled()) {
909                 if (rx_stats->is_mybeacon)
910                         ath_chanctx_beacon_recv_ev(sc,
911                                            ATH_CHANCTX_EVENT_BEACON_RECEIVED);
912         }
913
914         ath9k_cmn_process_rssi(common, hw, rx_stats, rx_status);
915
916         rx_status->band = ah->curchan->chan->band;
917         rx_status->freq = ah->curchan->chan->center_freq;
918         rx_status->antenna = rx_stats->rs_antenna;
919         rx_status->flag |= RX_FLAG_MACTIME_END;
920
921 #ifdef CONFIG_ATH9K_BTCOEX_SUPPORT
922         if (ieee80211_is_data_present(hdr->frame_control) &&
923             !ieee80211_is_qos_nullfunc(hdr->frame_control))
924                 sc->rx.num_pkts++;
925 #endif
926
927         return 0;
928
929 corrupt:
930         sc->rx.discard_next = rx_stats->rs_more;
931         return -EINVAL;
932 }
933
934 /*
935  * Run the LNA combining algorithm only in these cases:
936  *
937  * Standalone WLAN cards with both LNA/Antenna diversity
938  * enabled in the EEPROM.
939  *
940  * WLAN+BT cards which are in the supported card list
941  * in ath_pci_id_table and the user has loaded the
942  * driver with "bt_ant_diversity" set to true.
943  */
944 static void ath9k_antenna_check(struct ath_softc *sc,
945                                 struct ath_rx_status *rs)
946 {
947         struct ath_hw *ah = sc->sc_ah;
948         struct ath9k_hw_capabilities *pCap = &ah->caps;
949         struct ath_common *common = ath9k_hw_common(ah);
950
951         if (!(ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB))
952                 return;
953
954         /*
955          * Change the default rx antenna if rx diversity
956          * chooses the other antenna 3 times in a row.
957          */
958         if (sc->rx.defant != rs->rs_antenna) {
959                 if (++sc->rx.rxotherant >= 3)
960                         ath_setdefantenna(sc, rs->rs_antenna);
961         } else {
962                 sc->rx.rxotherant = 0;
963         }
964
965         if (pCap->hw_caps & ATH9K_HW_CAP_BT_ANT_DIV) {
966                 if (common->bt_ant_diversity)
967                         ath_ant_comb_scan(sc, rs);
968         } else {
969                 ath_ant_comb_scan(sc, rs);
970         }
971 }
972
973 static void ath9k_apply_ampdu_details(struct ath_softc *sc,
974         struct ath_rx_status *rs, struct ieee80211_rx_status *rxs)
975 {
976         if (rs->rs_isaggr) {
977                 rxs->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
978
979                 rxs->ampdu_reference = sc->rx.ampdu_ref;
980
981                 if (!rs->rs_moreaggr) {
982                         rxs->flag |= RX_FLAG_AMPDU_IS_LAST;
983                         sc->rx.ampdu_ref++;
984                 }
985
986                 if (rs->rs_flags & ATH9K_RX_DELIM_CRC_PRE)
987                         rxs->flag |= RX_FLAG_AMPDU_DELIM_CRC_ERROR;
988         }
989 }
990
991 int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp)
992 {
993         struct ath_rxbuf *bf;
994         struct sk_buff *skb = NULL, *requeue_skb, *hdr_skb;
995         struct ieee80211_rx_status *rxs;
996         struct ath_hw *ah = sc->sc_ah;
997         struct ath_common *common = ath9k_hw_common(ah);
998         struct ieee80211_hw *hw = sc->hw;
999         int retval;
1000         struct ath_rx_status rs;
1001         enum ath9k_rx_qtype qtype;
1002         bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1003         int dma_type;
1004         u64 tsf = 0;
1005         unsigned long flags;
1006         dma_addr_t new_buf_addr;
1007         unsigned int budget = 512;
1008         struct ieee80211_hdr *hdr;
1009
1010         if (edma)
1011                 dma_type = DMA_BIDIRECTIONAL;
1012         else
1013                 dma_type = DMA_FROM_DEVICE;
1014
1015         qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP;
1016
1017         tsf = ath9k_hw_gettsf64(ah);
1018
1019         do {
1020                 bool decrypt_error = false;
1021
1022                 memset(&rs, 0, sizeof(rs));
1023                 if (edma)
1024                         bf = ath_edma_get_next_rx_buf(sc, &rs, qtype);
1025                 else
1026                         bf = ath_get_next_rx_buf(sc, &rs);
1027
1028                 if (!bf)
1029                         break;
1030
1031                 skb = bf->bf_mpdu;
1032                 if (!skb)
1033                         continue;
1034
1035                 /*
1036                  * Take frame header from the first fragment and RX status from
1037                  * the last one.
1038                  */
1039                 if (sc->rx.frag)
1040                         hdr_skb = sc->rx.frag;
1041                 else
1042                         hdr_skb = skb;
1043
1044                 rxs = IEEE80211_SKB_RXCB(hdr_skb);
1045                 memset(rxs, 0, sizeof(struct ieee80211_rx_status));
1046
1047                 retval = ath9k_rx_skb_preprocess(sc, hdr_skb, &rs, rxs,
1048                                                  &decrypt_error, tsf);
1049                 if (retval)
1050                         goto requeue_drop_frag;
1051
1052                 /* Ensure we always have an skb to requeue once we are done
1053                  * processing the current buffer's skb */
1054                 requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC);
1055
1056                 /* If there is no memory we ignore the current RX'd frame,
1057                  * tell hardware it can give us a new frame using the old
1058                  * skb and put it at the tail of the sc->rx.rxbuf list for
1059                  * processing. */
1060                 if (!requeue_skb) {
1061                         RX_STAT_INC(rx_oom_err);
1062                         goto requeue_drop_frag;
1063                 }
1064
1065                 /* We will now give hardware our shiny new allocated skb */
1066                 new_buf_addr = dma_map_single(sc->dev, requeue_skb->data,
1067                                               common->rx_bufsize, dma_type);
1068                 if (unlikely(dma_mapping_error(sc->dev, new_buf_addr))) {
1069                         dev_kfree_skb_any(requeue_skb);
1070                         goto requeue_drop_frag;
1071                 }
1072
1073                 /* Unmap the frame */
1074                 dma_unmap_single(sc->dev, bf->bf_buf_addr,
1075                                  common->rx_bufsize, dma_type);
1076
1077                 bf->bf_mpdu = requeue_skb;
1078                 bf->bf_buf_addr = new_buf_addr;
1079
1080                 skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len);
1081                 if (ah->caps.rx_status_len)
1082                         skb_pull(skb, ah->caps.rx_status_len);
1083
1084                 if (!rs.rs_more)
1085                         ath9k_cmn_rx_skb_postprocess(common, hdr_skb, &rs,
1086                                                      rxs, decrypt_error);
1087
1088                 if (rs.rs_more) {
1089                         RX_STAT_INC(rx_frags);
1090                         /*
1091                          * rs_more indicates chained descriptors which can be
1092                          * used to link buffers together for a sort of
1093                          * scatter-gather operation.
1094                          */
1095                         if (sc->rx.frag) {
1096                                 /* too many fragments - cannot handle frame */
1097                                 dev_kfree_skb_any(sc->rx.frag);
1098                                 dev_kfree_skb_any(skb);
1099                                 RX_STAT_INC(rx_too_many_frags_err);
1100                                 skb = NULL;
1101                         }
1102                         sc->rx.frag = skb;
1103                         goto requeue;
1104                 }
1105
1106                 if (sc->rx.frag) {
1107                         int space = skb->len - skb_tailroom(hdr_skb);
1108
1109                         if (pskb_expand_head(hdr_skb, 0, space, GFP_ATOMIC) < 0) {
1110                                 dev_kfree_skb(skb);
1111                                 RX_STAT_INC(rx_oom_err);
1112                                 goto requeue_drop_frag;
1113                         }
1114
1115                         sc->rx.frag = NULL;
1116
1117                         skb_copy_from_linear_data(skb, skb_put(hdr_skb, skb->len),
1118                                                   skb->len);
1119                         dev_kfree_skb_any(skb);
1120                         skb = hdr_skb;
1121                 }
1122
1123                 if (rxs->flag & RX_FLAG_MMIC_STRIPPED)
1124                         skb_trim(skb, skb->len - 8);
1125
1126                 spin_lock_irqsave(&sc->sc_pm_lock, flags);
1127                 if ((sc->ps_flags & (PS_WAIT_FOR_BEACON |
1128                                      PS_WAIT_FOR_CAB |
1129                                      PS_WAIT_FOR_PSPOLL_DATA)) ||
1130                     ath9k_check_auto_sleep(sc))
1131                         ath_rx_ps(sc, skb, rs.is_mybeacon);
1132                 spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
1133
1134                 ath9k_antenna_check(sc, &rs);
1135                 ath9k_apply_ampdu_details(sc, &rs, rxs);
1136                 ath_debug_rate_stats(sc, &rs, skb);
1137
1138                 hdr = (struct ieee80211_hdr *)skb->data;
1139                 if (ieee80211_is_ack(hdr->frame_control))
1140                         ath_dynack_sample_ack_ts(sc->sc_ah, skb, rs.rs_tstamp);
1141
1142                 ieee80211_rx(hw, skb);
1143
1144 requeue_drop_frag:
1145                 if (sc->rx.frag) {
1146                         dev_kfree_skb_any(sc->rx.frag);
1147                         sc->rx.frag = NULL;
1148                 }
1149 requeue:
1150                 list_add_tail(&bf->list, &sc->rx.rxbuf);
1151
1152                 if (!edma) {
1153                         ath_rx_buf_relink(sc, bf, flush);
1154                         if (!flush)
1155                                 ath9k_hw_rxena(ah);
1156                 } else if (!flush) {
1157                         ath_rx_edma_buf_link(sc, qtype);
1158                 }
1159
1160                 if (!budget--)
1161                         break;
1162         } while (1);
1163
1164         if (!(ah->imask & ATH9K_INT_RXEOL)) {
1165                 ah->imask |= (ATH9K_INT_RXEOL | ATH9K_INT_RXORN);
1166                 ath9k_hw_set_interrupts(ah);
1167         }
1168
1169         return 0;
1170 }