]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/wireless/ipw2x00/ipw2200.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/ide
[karo-tx-linux.git] / drivers / net / wireless / ipw2x00 / ipw2200.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26
27   Contact Information:
28   Intel Linux Wireless <ilw@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <net/cfg80211-wext.h>
36 #include "ipw2200.h"
37 #include "ipw.h"
38
39
40 #ifndef KBUILD_EXTMOD
41 #define VK "k"
42 #else
43 #define VK
44 #endif
45
46 #ifdef CONFIG_IPW2200_DEBUG
47 #define VD "d"
48 #else
49 #define VD
50 #endif
51
52 #ifdef CONFIG_IPW2200_MONITOR
53 #define VM "m"
54 #else
55 #define VM
56 #endif
57
58 #ifdef CONFIG_IPW2200_PROMISCUOUS
59 #define VP "p"
60 #else
61 #define VP
62 #endif
63
64 #ifdef CONFIG_IPW2200_RADIOTAP
65 #define VR "r"
66 #else
67 #define VR
68 #endif
69
70 #ifdef CONFIG_IPW2200_QOS
71 #define VQ "q"
72 #else
73 #define VQ
74 #endif
75
76 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
77 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
78 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
79 #define DRV_VERSION     IPW2200_VERSION
80
81 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
82
83 MODULE_DESCRIPTION(DRV_DESCRIPTION);
84 MODULE_VERSION(DRV_VERSION);
85 MODULE_AUTHOR(DRV_COPYRIGHT);
86 MODULE_LICENSE("GPL");
87 MODULE_FIRMWARE("ipw2200-ibss.fw");
88 #ifdef CONFIG_IPW2200_MONITOR
89 MODULE_FIRMWARE("ipw2200-sniffer.fw");
90 #endif
91 MODULE_FIRMWARE("ipw2200-bss.fw");
92
93 static int cmdlog = 0;
94 static int debug = 0;
95 static int default_channel = 0;
96 static int network_mode = 0;
97
98 static u32 ipw_debug_level;
99 static int associate;
100 static int auto_create = 1;
101 static int led_support = 1;
102 static int disable = 0;
103 static int bt_coexist = 0;
104 static int hwcrypto = 0;
105 static int roaming = 1;
106 static const char ipw_modes[] = {
107         'a', 'b', 'g', '?'
108 };
109 static int antenna = CFG_SYS_ANTENNA_BOTH;
110
111 #ifdef CONFIG_IPW2200_PROMISCUOUS
112 static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
113 #endif
114
115 static struct ieee80211_rate ipw2200_rates[] = {
116         { .bitrate = 10 },
117         { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
118         { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
119         { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
120         { .bitrate = 60 },
121         { .bitrate = 90 },
122         { .bitrate = 120 },
123         { .bitrate = 180 },
124         { .bitrate = 240 },
125         { .bitrate = 360 },
126         { .bitrate = 480 },
127         { .bitrate = 540 }
128 };
129
130 #define ipw2200_a_rates         (ipw2200_rates + 4)
131 #define ipw2200_num_a_rates     8
132 #define ipw2200_bg_rates        (ipw2200_rates + 0)
133 #define ipw2200_num_bg_rates    12
134
135 /* Ugly macro to convert literal channel numbers into their mhz equivalents
136  * There are certianly some conditions that will break this (like feeding it '30')
137  * but they shouldn't arise since nothing talks on channel 30. */
138 #define ieee80211chan2mhz(x) \
139         (((x) <= 14) ? \
140         (((x) == 14) ? 2484 : ((x) * 5) + 2407) : \
141         ((x) + 1000) * 5)
142
143 #ifdef CONFIG_IPW2200_QOS
144 static int qos_enable = 0;
145 static int qos_burst_enable = 0;
146 static int qos_no_ack_mask = 0;
147 static int burst_duration_CCK = 0;
148 static int burst_duration_OFDM = 0;
149
150 static struct libipw_qos_parameters def_qos_parameters_OFDM = {
151         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
152          QOS_TX3_CW_MIN_OFDM},
153         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
154          QOS_TX3_CW_MAX_OFDM},
155         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
156         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
157         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
158          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
159 };
160
161 static struct libipw_qos_parameters def_qos_parameters_CCK = {
162         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
163          QOS_TX3_CW_MIN_CCK},
164         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
165          QOS_TX3_CW_MAX_CCK},
166         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
167         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
168         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
169          QOS_TX3_TXOP_LIMIT_CCK}
170 };
171
172 static struct libipw_qos_parameters def_parameters_OFDM = {
173         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
174          DEF_TX3_CW_MIN_OFDM},
175         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
176          DEF_TX3_CW_MAX_OFDM},
177         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
178         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
179         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
180          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
181 };
182
183 static struct libipw_qos_parameters def_parameters_CCK = {
184         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
185          DEF_TX3_CW_MIN_CCK},
186         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
187          DEF_TX3_CW_MAX_CCK},
188         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
189         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
190         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
191          DEF_TX3_TXOP_LIMIT_CCK}
192 };
193
194 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
195
196 static int from_priority_to_tx_queue[] = {
197         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
198         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
199 };
200
201 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
202
203 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
204                                        *qos_param);
205 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
206                                      *qos_param);
207 #endif                          /* CONFIG_IPW2200_QOS */
208
209 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
210 static void ipw_remove_current_network(struct ipw_priv *priv);
211 static void ipw_rx(struct ipw_priv *priv);
212 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
213                                 struct clx2_tx_queue *txq, int qindex);
214 static int ipw_queue_reset(struct ipw_priv *priv);
215
216 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
217                              int len, int sync);
218
219 static void ipw_tx_queue_free(struct ipw_priv *);
220
221 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
222 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
223 static void ipw_rx_queue_replenish(void *);
224 static int ipw_up(struct ipw_priv *);
225 static void ipw_bg_up(struct work_struct *work);
226 static void ipw_down(struct ipw_priv *);
227 static void ipw_bg_down(struct work_struct *work);
228 static int ipw_config(struct ipw_priv *);
229 static int init_supported_rates(struct ipw_priv *priv,
230                                 struct ipw_supported_rates *prates);
231 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
232 static void ipw_send_wep_keys(struct ipw_priv *, int);
233
234 static int snprint_line(char *buf, size_t count,
235                         const u8 * data, u32 len, u32 ofs)
236 {
237         int out, i, j, l;
238         char c;
239
240         out = snprintf(buf, count, "%08X", ofs);
241
242         for (l = 0, i = 0; i < 2; i++) {
243                 out += snprintf(buf + out, count - out, " ");
244                 for (j = 0; j < 8 && l < len; j++, l++)
245                         out += snprintf(buf + out, count - out, "%02X ",
246                                         data[(i * 8 + j)]);
247                 for (; j < 8; j++)
248                         out += snprintf(buf + out, count - out, "   ");
249         }
250
251         out += snprintf(buf + out, count - out, " ");
252         for (l = 0, i = 0; i < 2; i++) {
253                 out += snprintf(buf + out, count - out, " ");
254                 for (j = 0; j < 8 && l < len; j++, l++) {
255                         c = data[(i * 8 + j)];
256                         if (!isascii(c) || !isprint(c))
257                                 c = '.';
258
259                         out += snprintf(buf + out, count - out, "%c", c);
260                 }
261
262                 for (; j < 8; j++)
263                         out += snprintf(buf + out, count - out, " ");
264         }
265
266         return out;
267 }
268
269 static void printk_buf(int level, const u8 * data, u32 len)
270 {
271         char line[81];
272         u32 ofs = 0;
273         if (!(ipw_debug_level & level))
274                 return;
275
276         while (len) {
277                 snprint_line(line, sizeof(line), &data[ofs],
278                              min(len, 16U), ofs);
279                 printk(KERN_DEBUG "%s\n", line);
280                 ofs += 16;
281                 len -= min(len, 16U);
282         }
283 }
284
285 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
286 {
287         size_t out = size;
288         u32 ofs = 0;
289         int total = 0;
290
291         while (size && len) {
292                 out = snprint_line(output, size, &data[ofs],
293                                    min_t(size_t, len, 16U), ofs);
294
295                 ofs += 16;
296                 output += out;
297                 size -= out;
298                 len -= min_t(size_t, len, 16U);
299                 total += out;
300         }
301         return total;
302 }
303
304 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
305 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
306 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
307
308 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
309 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
310 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
311
312 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
313 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
314 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
315 {
316         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
317                      __LINE__, (u32) (b), (u32) (c));
318         _ipw_write_reg8(a, b, c);
319 }
320
321 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
322 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
323 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
324 {
325         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
326                      __LINE__, (u32) (b), (u32) (c));
327         _ipw_write_reg16(a, b, c);
328 }
329
330 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
331 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
332 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
333 {
334         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
335                      __LINE__, (u32) (b), (u32) (c));
336         _ipw_write_reg32(a, b, c);
337 }
338
339 /* 8-bit direct write (low 4K) */
340 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
341                 u8 val)
342 {
343         writeb(val, ipw->hw_base + ofs);
344 }
345
346 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
347 #define ipw_write8(ipw, ofs, val) do { \
348         IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
349                         __LINE__, (u32)(ofs), (u32)(val)); \
350         _ipw_write8(ipw, ofs, val); \
351 } while (0)
352
353 /* 16-bit direct write (low 4K) */
354 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
355                 u16 val)
356 {
357         writew(val, ipw->hw_base + ofs);
358 }
359
360 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
361 #define ipw_write16(ipw, ofs, val) do { \
362         IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
363                         __LINE__, (u32)(ofs), (u32)(val)); \
364         _ipw_write16(ipw, ofs, val); \
365 } while (0)
366
367 /* 32-bit direct write (low 4K) */
368 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
369                 u32 val)
370 {
371         writel(val, ipw->hw_base + ofs);
372 }
373
374 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
375 #define ipw_write32(ipw, ofs, val) do { \
376         IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
377                         __LINE__, (u32)(ofs), (u32)(val)); \
378         _ipw_write32(ipw, ofs, val); \
379 } while (0)
380
381 /* 8-bit direct read (low 4K) */
382 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
383 {
384         return readb(ipw->hw_base + ofs);
385 }
386
387 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
388 #define ipw_read8(ipw, ofs) ({ \
389         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
390                         (u32)(ofs)); \
391         _ipw_read8(ipw, ofs); \
392 })
393
394 /* 16-bit direct read (low 4K) */
395 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
396 {
397         return readw(ipw->hw_base + ofs);
398 }
399
400 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
401 #define ipw_read16(ipw, ofs) ({ \
402         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
403                         (u32)(ofs)); \
404         _ipw_read16(ipw, ofs); \
405 })
406
407 /* 32-bit direct read (low 4K) */
408 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
409 {
410         return readl(ipw->hw_base + ofs);
411 }
412
413 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
414 #define ipw_read32(ipw, ofs) ({ \
415         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
416                         (u32)(ofs)); \
417         _ipw_read32(ipw, ofs); \
418 })
419
420 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
421 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
422 #define ipw_read_indirect(a, b, c, d) ({ \
423         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
424                         __LINE__, (u32)(b), (u32)(d)); \
425         _ipw_read_indirect(a, b, c, d); \
426 })
427
428 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
429 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
430                                 int num);
431 #define ipw_write_indirect(a, b, c, d) do { \
432         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
433                         __LINE__, (u32)(b), (u32)(d)); \
434         _ipw_write_indirect(a, b, c, d); \
435 } while (0)
436
437 /* 32-bit indirect write (above 4K) */
438 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
439 {
440         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
441         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
442         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
443 }
444
445 /* 8-bit indirect write (above 4K) */
446 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
447 {
448         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
449         u32 dif_len = reg - aligned_addr;
450
451         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
452         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
453         _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
454 }
455
456 /* 16-bit indirect write (above 4K) */
457 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
458 {
459         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
460         u32 dif_len = (reg - aligned_addr) & (~0x1ul);
461
462         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
463         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
464         _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
465 }
466
467 /* 8-bit indirect read (above 4K) */
468 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
469 {
470         u32 word;
471         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
472         IPW_DEBUG_IO(" reg = 0x%8X :\n", reg);
473         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
474         return (word >> ((reg & 0x3) * 8)) & 0xff;
475 }
476
477 /* 32-bit indirect read (above 4K) */
478 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
479 {
480         u32 value;
481
482         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
483
484         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
485         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
486         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value);
487         return value;
488 }
489
490 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
491 /*    for area above 1st 4K of SRAM/reg space */
492 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
493                                int num)
494 {
495         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
496         u32 dif_len = addr - aligned_addr;
497         u32 i;
498
499         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
500
501         if (num <= 0) {
502                 return;
503         }
504
505         /* Read the first dword (or portion) byte by byte */
506         if (unlikely(dif_len)) {
507                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
508                 /* Start reading at aligned_addr + dif_len */
509                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
510                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
511                 aligned_addr += 4;
512         }
513
514         /* Read all of the middle dwords as dwords, with auto-increment */
515         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
516         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
517                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
518
519         /* Read the last dword (or portion) byte by byte */
520         if (unlikely(num)) {
521                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
522                 for (i = 0; num > 0; i++, num--)
523                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
524         }
525 }
526
527 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
528 /*    for area above 1st 4K of SRAM/reg space */
529 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
530                                 int num)
531 {
532         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
533         u32 dif_len = addr - aligned_addr;
534         u32 i;
535
536         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
537
538         if (num <= 0) {
539                 return;
540         }
541
542         /* Write the first dword (or portion) byte by byte */
543         if (unlikely(dif_len)) {
544                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
545                 /* Start writing at aligned_addr + dif_len */
546                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
547                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
548                 aligned_addr += 4;
549         }
550
551         /* Write all of the middle dwords as dwords, with auto-increment */
552         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
553         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
554                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
555
556         /* Write the last dword (or portion) byte by byte */
557         if (unlikely(num)) {
558                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
559                 for (i = 0; num > 0; i++, num--, buf++)
560                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
561         }
562 }
563
564 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
565 /*    for 1st 4K of SRAM/regs space */
566 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
567                              int num)
568 {
569         memcpy_toio((priv->hw_base + addr), buf, num);
570 }
571
572 /* Set bit(s) in low 4K of SRAM/regs */
573 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
574 {
575         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
576 }
577
578 /* Clear bit(s) in low 4K of SRAM/regs */
579 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
580 {
581         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
582 }
583
584 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
585 {
586         if (priv->status & STATUS_INT_ENABLED)
587                 return;
588         priv->status |= STATUS_INT_ENABLED;
589         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
590 }
591
592 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
593 {
594         if (!(priv->status & STATUS_INT_ENABLED))
595                 return;
596         priv->status &= ~STATUS_INT_ENABLED;
597         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
598 }
599
600 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
601 {
602         unsigned long flags;
603
604         spin_lock_irqsave(&priv->irq_lock, flags);
605         __ipw_enable_interrupts(priv);
606         spin_unlock_irqrestore(&priv->irq_lock, flags);
607 }
608
609 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
610 {
611         unsigned long flags;
612
613         spin_lock_irqsave(&priv->irq_lock, flags);
614         __ipw_disable_interrupts(priv);
615         spin_unlock_irqrestore(&priv->irq_lock, flags);
616 }
617
618 static char *ipw_error_desc(u32 val)
619 {
620         switch (val) {
621         case IPW_FW_ERROR_OK:
622                 return "ERROR_OK";
623         case IPW_FW_ERROR_FAIL:
624                 return "ERROR_FAIL";
625         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
626                 return "MEMORY_UNDERFLOW";
627         case IPW_FW_ERROR_MEMORY_OVERFLOW:
628                 return "MEMORY_OVERFLOW";
629         case IPW_FW_ERROR_BAD_PARAM:
630                 return "BAD_PARAM";
631         case IPW_FW_ERROR_BAD_CHECKSUM:
632                 return "BAD_CHECKSUM";
633         case IPW_FW_ERROR_NMI_INTERRUPT:
634                 return "NMI_INTERRUPT";
635         case IPW_FW_ERROR_BAD_DATABASE:
636                 return "BAD_DATABASE";
637         case IPW_FW_ERROR_ALLOC_FAIL:
638                 return "ALLOC_FAIL";
639         case IPW_FW_ERROR_DMA_UNDERRUN:
640                 return "DMA_UNDERRUN";
641         case IPW_FW_ERROR_DMA_STATUS:
642                 return "DMA_STATUS";
643         case IPW_FW_ERROR_DINO_ERROR:
644                 return "DINO_ERROR";
645         case IPW_FW_ERROR_EEPROM_ERROR:
646                 return "EEPROM_ERROR";
647         case IPW_FW_ERROR_SYSASSERT:
648                 return "SYSASSERT";
649         case IPW_FW_ERROR_FATAL_ERROR:
650                 return "FATAL_ERROR";
651         default:
652                 return "UNKNOWN_ERROR";
653         }
654 }
655
656 static void ipw_dump_error_log(struct ipw_priv *priv,
657                                struct ipw_fw_error *error)
658 {
659         u32 i;
660
661         if (!error) {
662                 IPW_ERROR("Error allocating and capturing error log.  "
663                           "Nothing to dump.\n");
664                 return;
665         }
666
667         IPW_ERROR("Start IPW Error Log Dump:\n");
668         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
669                   error->status, error->config);
670
671         for (i = 0; i < error->elem_len; i++)
672                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
673                           ipw_error_desc(error->elem[i].desc),
674                           error->elem[i].time,
675                           error->elem[i].blink1,
676                           error->elem[i].blink2,
677                           error->elem[i].link1,
678                           error->elem[i].link2, error->elem[i].data);
679         for (i = 0; i < error->log_len; i++)
680                 IPW_ERROR("%i\t0x%08x\t%i\n",
681                           error->log[i].time,
682                           error->log[i].data, error->log[i].event);
683 }
684
685 static inline int ipw_is_init(struct ipw_priv *priv)
686 {
687         return (priv->status & STATUS_INIT) ? 1 : 0;
688 }
689
690 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
691 {
692         u32 addr, field_info, field_len, field_count, total_len;
693
694         IPW_DEBUG_ORD("ordinal = %i\n", ord);
695
696         if (!priv || !val || !len) {
697                 IPW_DEBUG_ORD("Invalid argument\n");
698                 return -EINVAL;
699         }
700
701         /* verify device ordinal tables have been initialized */
702         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
703                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
704                 return -EINVAL;
705         }
706
707         switch (IPW_ORD_TABLE_ID_MASK & ord) {
708         case IPW_ORD_TABLE_0_MASK:
709                 /*
710                  * TABLE 0: Direct access to a table of 32 bit values
711                  *
712                  * This is a very simple table with the data directly
713                  * read from the table
714                  */
715
716                 /* remove the table id from the ordinal */
717                 ord &= IPW_ORD_TABLE_VALUE_MASK;
718
719                 /* boundary check */
720                 if (ord > priv->table0_len) {
721                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
722                                       "max (%i)\n", ord, priv->table0_len);
723                         return -EINVAL;
724                 }
725
726                 /* verify we have enough room to store the value */
727                 if (*len < sizeof(u32)) {
728                         IPW_DEBUG_ORD("ordinal buffer length too small, "
729                                       "need %zd\n", sizeof(u32));
730                         return -EINVAL;
731                 }
732
733                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
734                               ord, priv->table0_addr + (ord << 2));
735
736                 *len = sizeof(u32);
737                 ord <<= 2;
738                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
739                 break;
740
741         case IPW_ORD_TABLE_1_MASK:
742                 /*
743                  * TABLE 1: Indirect access to a table of 32 bit values
744                  *
745                  * This is a fairly large table of u32 values each
746                  * representing starting addr for the data (which is
747                  * also a u32)
748                  */
749
750                 /* remove the table id from the ordinal */
751                 ord &= IPW_ORD_TABLE_VALUE_MASK;
752
753                 /* boundary check */
754                 if (ord > priv->table1_len) {
755                         IPW_DEBUG_ORD("ordinal value too long\n");
756                         return -EINVAL;
757                 }
758
759                 /* verify we have enough room to store the value */
760                 if (*len < sizeof(u32)) {
761                         IPW_DEBUG_ORD("ordinal buffer length too small, "
762                                       "need %zd\n", sizeof(u32));
763                         return -EINVAL;
764                 }
765
766                 *((u32 *) val) =
767                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
768                 *len = sizeof(u32);
769                 break;
770
771         case IPW_ORD_TABLE_2_MASK:
772                 /*
773                  * TABLE 2: Indirect access to a table of variable sized values
774                  *
775                  * This table consist of six values, each containing
776                  *     - dword containing the starting offset of the data
777                  *     - dword containing the lengh in the first 16bits
778                  *       and the count in the second 16bits
779                  */
780
781                 /* remove the table id from the ordinal */
782                 ord &= IPW_ORD_TABLE_VALUE_MASK;
783
784                 /* boundary check */
785                 if (ord > priv->table2_len) {
786                         IPW_DEBUG_ORD("ordinal value too long\n");
787                         return -EINVAL;
788                 }
789
790                 /* get the address of statistic */
791                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
792
793                 /* get the second DW of statistics ;
794                  * two 16-bit words - first is length, second is count */
795                 field_info =
796                     ipw_read_reg32(priv,
797                                    priv->table2_addr + (ord << 3) +
798                                    sizeof(u32));
799
800                 /* get each entry length */
801                 field_len = *((u16 *) & field_info);
802
803                 /* get number of entries */
804                 field_count = *(((u16 *) & field_info) + 1);
805
806                 /* abort if not enough memory */
807                 total_len = field_len * field_count;
808                 if (total_len > *len) {
809                         *len = total_len;
810                         return -EINVAL;
811                 }
812
813                 *len = total_len;
814                 if (!total_len)
815                         return 0;
816
817                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
818                               "field_info = 0x%08x\n",
819                               addr, total_len, field_info);
820                 ipw_read_indirect(priv, addr, val, total_len);
821                 break;
822
823         default:
824                 IPW_DEBUG_ORD("Invalid ordinal!\n");
825                 return -EINVAL;
826
827         }
828
829         return 0;
830 }
831
832 static void ipw_init_ordinals(struct ipw_priv *priv)
833 {
834         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
835         priv->table0_len = ipw_read32(priv, priv->table0_addr);
836
837         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
838                       priv->table0_addr, priv->table0_len);
839
840         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
841         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
842
843         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
844                       priv->table1_addr, priv->table1_len);
845
846         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
847         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
848         priv->table2_len &= 0x0000ffff; /* use first two bytes */
849
850         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
851                       priv->table2_addr, priv->table2_len);
852
853 }
854
855 static u32 ipw_register_toggle(u32 reg)
856 {
857         reg &= ~IPW_START_STANDBY;
858         if (reg & IPW_GATE_ODMA)
859                 reg &= ~IPW_GATE_ODMA;
860         if (reg & IPW_GATE_IDMA)
861                 reg &= ~IPW_GATE_IDMA;
862         if (reg & IPW_GATE_ADMA)
863                 reg &= ~IPW_GATE_ADMA;
864         return reg;
865 }
866
867 /*
868  * LED behavior:
869  * - On radio ON, turn on any LEDs that require to be on during start
870  * - On initialization, start unassociated blink
871  * - On association, disable unassociated blink
872  * - On disassociation, start unassociated blink
873  * - On radio OFF, turn off any LEDs started during radio on
874  *
875  */
876 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
877 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
878 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
879
880 static void ipw_led_link_on(struct ipw_priv *priv)
881 {
882         unsigned long flags;
883         u32 led;
884
885         /* If configured to not use LEDs, or nic_type is 1,
886          * then we don't toggle a LINK led */
887         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
888                 return;
889
890         spin_lock_irqsave(&priv->lock, flags);
891
892         if (!(priv->status & STATUS_RF_KILL_MASK) &&
893             !(priv->status & STATUS_LED_LINK_ON)) {
894                 IPW_DEBUG_LED("Link LED On\n");
895                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
896                 led |= priv->led_association_on;
897
898                 led = ipw_register_toggle(led);
899
900                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
901                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
902
903                 priv->status |= STATUS_LED_LINK_ON;
904
905                 /* If we aren't associated, schedule turning the LED off */
906                 if (!(priv->status & STATUS_ASSOCIATED))
907                         schedule_delayed_work(&priv->led_link_off,
908                                               LD_TIME_LINK_ON);
909         }
910
911         spin_unlock_irqrestore(&priv->lock, flags);
912 }
913
914 static void ipw_bg_led_link_on(struct work_struct *work)
915 {
916         struct ipw_priv *priv =
917                 container_of(work, struct ipw_priv, led_link_on.work);
918         mutex_lock(&priv->mutex);
919         ipw_led_link_on(priv);
920         mutex_unlock(&priv->mutex);
921 }
922
923 static void ipw_led_link_off(struct ipw_priv *priv)
924 {
925         unsigned long flags;
926         u32 led;
927
928         /* If configured not to use LEDs, or nic type is 1,
929          * then we don't goggle the LINK led. */
930         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
931                 return;
932
933         spin_lock_irqsave(&priv->lock, flags);
934
935         if (priv->status & STATUS_LED_LINK_ON) {
936                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
937                 led &= priv->led_association_off;
938                 led = ipw_register_toggle(led);
939
940                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
941                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
942
943                 IPW_DEBUG_LED("Link LED Off\n");
944
945                 priv->status &= ~STATUS_LED_LINK_ON;
946
947                 /* If we aren't associated and the radio is on, schedule
948                  * turning the LED on (blink while unassociated) */
949                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
950                     !(priv->status & STATUS_ASSOCIATED))
951                         schedule_delayed_work(&priv->led_link_on,
952                                               LD_TIME_LINK_OFF);
953
954         }
955
956         spin_unlock_irqrestore(&priv->lock, flags);
957 }
958
959 static void ipw_bg_led_link_off(struct work_struct *work)
960 {
961         struct ipw_priv *priv =
962                 container_of(work, struct ipw_priv, led_link_off.work);
963         mutex_lock(&priv->mutex);
964         ipw_led_link_off(priv);
965         mutex_unlock(&priv->mutex);
966 }
967
968 static void __ipw_led_activity_on(struct ipw_priv *priv)
969 {
970         u32 led;
971
972         if (priv->config & CFG_NO_LED)
973                 return;
974
975         if (priv->status & STATUS_RF_KILL_MASK)
976                 return;
977
978         if (!(priv->status & STATUS_LED_ACT_ON)) {
979                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
980                 led |= priv->led_activity_on;
981
982                 led = ipw_register_toggle(led);
983
984                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
985                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
986
987                 IPW_DEBUG_LED("Activity LED On\n");
988
989                 priv->status |= STATUS_LED_ACT_ON;
990
991                 cancel_delayed_work(&priv->led_act_off);
992                 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
993         } else {
994                 /* Reschedule LED off for full time period */
995                 cancel_delayed_work(&priv->led_act_off);
996                 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
997         }
998 }
999
1000 #if 0
1001 void ipw_led_activity_on(struct ipw_priv *priv)
1002 {
1003         unsigned long flags;
1004         spin_lock_irqsave(&priv->lock, flags);
1005         __ipw_led_activity_on(priv);
1006         spin_unlock_irqrestore(&priv->lock, flags);
1007 }
1008 #endif  /*  0  */
1009
1010 static void ipw_led_activity_off(struct ipw_priv *priv)
1011 {
1012         unsigned long flags;
1013         u32 led;
1014
1015         if (priv->config & CFG_NO_LED)
1016                 return;
1017
1018         spin_lock_irqsave(&priv->lock, flags);
1019
1020         if (priv->status & STATUS_LED_ACT_ON) {
1021                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1022                 led &= priv->led_activity_off;
1023
1024                 led = ipw_register_toggle(led);
1025
1026                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1027                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1028
1029                 IPW_DEBUG_LED("Activity LED Off\n");
1030
1031                 priv->status &= ~STATUS_LED_ACT_ON;
1032         }
1033
1034         spin_unlock_irqrestore(&priv->lock, flags);
1035 }
1036
1037 static void ipw_bg_led_activity_off(struct work_struct *work)
1038 {
1039         struct ipw_priv *priv =
1040                 container_of(work, struct ipw_priv, led_act_off.work);
1041         mutex_lock(&priv->mutex);
1042         ipw_led_activity_off(priv);
1043         mutex_unlock(&priv->mutex);
1044 }
1045
1046 static void ipw_led_band_on(struct ipw_priv *priv)
1047 {
1048         unsigned long flags;
1049         u32 led;
1050
1051         /* Only nic type 1 supports mode LEDs */
1052         if (priv->config & CFG_NO_LED ||
1053             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1054                 return;
1055
1056         spin_lock_irqsave(&priv->lock, flags);
1057
1058         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1059         if (priv->assoc_network->mode == IEEE_A) {
1060                 led |= priv->led_ofdm_on;
1061                 led &= priv->led_association_off;
1062                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1063         } else if (priv->assoc_network->mode == IEEE_G) {
1064                 led |= priv->led_ofdm_on;
1065                 led |= priv->led_association_on;
1066                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1067         } else {
1068                 led &= priv->led_ofdm_off;
1069                 led |= priv->led_association_on;
1070                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1071         }
1072
1073         led = ipw_register_toggle(led);
1074
1075         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1076         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1077
1078         spin_unlock_irqrestore(&priv->lock, flags);
1079 }
1080
1081 static void ipw_led_band_off(struct ipw_priv *priv)
1082 {
1083         unsigned long flags;
1084         u32 led;
1085
1086         /* Only nic type 1 supports mode LEDs */
1087         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1088                 return;
1089
1090         spin_lock_irqsave(&priv->lock, flags);
1091
1092         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1093         led &= priv->led_ofdm_off;
1094         led &= priv->led_association_off;
1095
1096         led = ipw_register_toggle(led);
1097
1098         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1099         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1100
1101         spin_unlock_irqrestore(&priv->lock, flags);
1102 }
1103
1104 static void ipw_led_radio_on(struct ipw_priv *priv)
1105 {
1106         ipw_led_link_on(priv);
1107 }
1108
1109 static void ipw_led_radio_off(struct ipw_priv *priv)
1110 {
1111         ipw_led_activity_off(priv);
1112         ipw_led_link_off(priv);
1113 }
1114
1115 static void ipw_led_link_up(struct ipw_priv *priv)
1116 {
1117         /* Set the Link Led on for all nic types */
1118         ipw_led_link_on(priv);
1119 }
1120
1121 static void ipw_led_link_down(struct ipw_priv *priv)
1122 {
1123         ipw_led_activity_off(priv);
1124         ipw_led_link_off(priv);
1125
1126         if (priv->status & STATUS_RF_KILL_MASK)
1127                 ipw_led_radio_off(priv);
1128 }
1129
1130 static void ipw_led_init(struct ipw_priv *priv)
1131 {
1132         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1133
1134         /* Set the default PINs for the link and activity leds */
1135         priv->led_activity_on = IPW_ACTIVITY_LED;
1136         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1137
1138         priv->led_association_on = IPW_ASSOCIATED_LED;
1139         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1140
1141         /* Set the default PINs for the OFDM leds */
1142         priv->led_ofdm_on = IPW_OFDM_LED;
1143         priv->led_ofdm_off = ~(IPW_OFDM_LED);
1144
1145         switch (priv->nic_type) {
1146         case EEPROM_NIC_TYPE_1:
1147                 /* In this NIC type, the LEDs are reversed.... */
1148                 priv->led_activity_on = IPW_ASSOCIATED_LED;
1149                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1150                 priv->led_association_on = IPW_ACTIVITY_LED;
1151                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1152
1153                 if (!(priv->config & CFG_NO_LED))
1154                         ipw_led_band_on(priv);
1155
1156                 /* And we don't blink link LEDs for this nic, so
1157                  * just return here */
1158                 return;
1159
1160         case EEPROM_NIC_TYPE_3:
1161         case EEPROM_NIC_TYPE_2:
1162         case EEPROM_NIC_TYPE_4:
1163         case EEPROM_NIC_TYPE_0:
1164                 break;
1165
1166         default:
1167                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1168                                priv->nic_type);
1169                 priv->nic_type = EEPROM_NIC_TYPE_0;
1170                 break;
1171         }
1172
1173         if (!(priv->config & CFG_NO_LED)) {
1174                 if (priv->status & STATUS_ASSOCIATED)
1175                         ipw_led_link_on(priv);
1176                 else
1177                         ipw_led_link_off(priv);
1178         }
1179 }
1180
1181 static void ipw_led_shutdown(struct ipw_priv *priv)
1182 {
1183         ipw_led_activity_off(priv);
1184         ipw_led_link_off(priv);
1185         ipw_led_band_off(priv);
1186         cancel_delayed_work(&priv->led_link_on);
1187         cancel_delayed_work(&priv->led_link_off);
1188         cancel_delayed_work(&priv->led_act_off);
1189 }
1190
1191 /*
1192  * The following adds a new attribute to the sysfs representation
1193  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1194  * used for controlling the debug level.
1195  *
1196  * See the level definitions in ipw for details.
1197  */
1198 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1199 {
1200         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1201 }
1202
1203 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1204                                  size_t count)
1205 {
1206         char *p = (char *)buf;
1207         u32 val;
1208
1209         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1210                 p++;
1211                 if (p[0] == 'x' || p[0] == 'X')
1212                         p++;
1213                 val = simple_strtoul(p, &p, 16);
1214         } else
1215                 val = simple_strtoul(p, &p, 10);
1216         if (p == buf)
1217                 printk(KERN_INFO DRV_NAME
1218                        ": %s is not in hex or decimal form.\n", buf);
1219         else
1220                 ipw_debug_level = val;
1221
1222         return strnlen(buf, count);
1223 }
1224
1225 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1226                    show_debug_level, store_debug_level);
1227
1228 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1229 {
1230         /* length = 1st dword in log */
1231         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1232 }
1233
1234 static void ipw_capture_event_log(struct ipw_priv *priv,
1235                                   u32 log_len, struct ipw_event *log)
1236 {
1237         u32 base;
1238
1239         if (log_len) {
1240                 base = ipw_read32(priv, IPW_EVENT_LOG);
1241                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1242                                   (u8 *) log, sizeof(*log) * log_len);
1243         }
1244 }
1245
1246 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1247 {
1248         struct ipw_fw_error *error;
1249         u32 log_len = ipw_get_event_log_len(priv);
1250         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1251         u32 elem_len = ipw_read_reg32(priv, base);
1252
1253         error = kmalloc(sizeof(*error) +
1254                         sizeof(*error->elem) * elem_len +
1255                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1256         if (!error) {
1257                 IPW_ERROR("Memory allocation for firmware error log "
1258                           "failed.\n");
1259                 return NULL;
1260         }
1261         error->jiffies = jiffies;
1262         error->status = priv->status;
1263         error->config = priv->config;
1264         error->elem_len = elem_len;
1265         error->log_len = log_len;
1266         error->elem = (struct ipw_error_elem *)error->payload;
1267         error->log = (struct ipw_event *)(error->elem + elem_len);
1268
1269         ipw_capture_event_log(priv, log_len, error->log);
1270
1271         if (elem_len)
1272                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1273                                   sizeof(*error->elem) * elem_len);
1274
1275         return error;
1276 }
1277
1278 static ssize_t show_event_log(struct device *d,
1279                               struct device_attribute *attr, char *buf)
1280 {
1281         struct ipw_priv *priv = dev_get_drvdata(d);
1282         u32 log_len = ipw_get_event_log_len(priv);
1283         u32 log_size;
1284         struct ipw_event *log;
1285         u32 len = 0, i;
1286
1287         /* not using min() because of its strict type checking */
1288         log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1289                         sizeof(*log) * log_len : PAGE_SIZE;
1290         log = kzalloc(log_size, GFP_KERNEL);
1291         if (!log) {
1292                 IPW_ERROR("Unable to allocate memory for log\n");
1293                 return 0;
1294         }
1295         log_len = log_size / sizeof(*log);
1296         ipw_capture_event_log(priv, log_len, log);
1297
1298         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1299         for (i = 0; i < log_len; i++)
1300                 len += snprintf(buf + len, PAGE_SIZE - len,
1301                                 "\n%08X%08X%08X",
1302                                 log[i].time, log[i].event, log[i].data);
1303         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1304         kfree(log);
1305         return len;
1306 }
1307
1308 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1309
1310 static ssize_t show_error(struct device *d,
1311                           struct device_attribute *attr, char *buf)
1312 {
1313         struct ipw_priv *priv = dev_get_drvdata(d);
1314         u32 len = 0, i;
1315         if (!priv->error)
1316                 return 0;
1317         len += snprintf(buf + len, PAGE_SIZE - len,
1318                         "%08lX%08X%08X%08X",
1319                         priv->error->jiffies,
1320                         priv->error->status,
1321                         priv->error->config, priv->error->elem_len);
1322         for (i = 0; i < priv->error->elem_len; i++)
1323                 len += snprintf(buf + len, PAGE_SIZE - len,
1324                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1325                                 priv->error->elem[i].time,
1326                                 priv->error->elem[i].desc,
1327                                 priv->error->elem[i].blink1,
1328                                 priv->error->elem[i].blink2,
1329                                 priv->error->elem[i].link1,
1330                                 priv->error->elem[i].link2,
1331                                 priv->error->elem[i].data);
1332
1333         len += snprintf(buf + len, PAGE_SIZE - len,
1334                         "\n%08X", priv->error->log_len);
1335         for (i = 0; i < priv->error->log_len; i++)
1336                 len += snprintf(buf + len, PAGE_SIZE - len,
1337                                 "\n%08X%08X%08X",
1338                                 priv->error->log[i].time,
1339                                 priv->error->log[i].event,
1340                                 priv->error->log[i].data);
1341         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1342         return len;
1343 }
1344
1345 static ssize_t clear_error(struct device *d,
1346                            struct device_attribute *attr,
1347                            const char *buf, size_t count)
1348 {
1349         struct ipw_priv *priv = dev_get_drvdata(d);
1350
1351         kfree(priv->error);
1352         priv->error = NULL;
1353         return count;
1354 }
1355
1356 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1357
1358 static ssize_t show_cmd_log(struct device *d,
1359                             struct device_attribute *attr, char *buf)
1360 {
1361         struct ipw_priv *priv = dev_get_drvdata(d);
1362         u32 len = 0, i;
1363         if (!priv->cmdlog)
1364                 return 0;
1365         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1366              (i != priv->cmdlog_pos) && (len < PAGE_SIZE);
1367              i = (i + 1) % priv->cmdlog_len) {
1368                 len +=
1369                     snprintf(buf + len, PAGE_SIZE - len,
1370                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1371                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1372                              priv->cmdlog[i].cmd.len);
1373                 len +=
1374                     snprintk_buf(buf + len, PAGE_SIZE - len,
1375                                  (u8 *) priv->cmdlog[i].cmd.param,
1376                                  priv->cmdlog[i].cmd.len);
1377                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1378         }
1379         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1380         return len;
1381 }
1382
1383 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1384
1385 #ifdef CONFIG_IPW2200_PROMISCUOUS
1386 static void ipw_prom_free(struct ipw_priv *priv);
1387 static int ipw_prom_alloc(struct ipw_priv *priv);
1388 static ssize_t store_rtap_iface(struct device *d,
1389                          struct device_attribute *attr,
1390                          const char *buf, size_t count)
1391 {
1392         struct ipw_priv *priv = dev_get_drvdata(d);
1393         int rc = 0;
1394
1395         if (count < 1)
1396                 return -EINVAL;
1397
1398         switch (buf[0]) {
1399         case '0':
1400                 if (!rtap_iface)
1401                         return count;
1402
1403                 if (netif_running(priv->prom_net_dev)) {
1404                         IPW_WARNING("Interface is up.  Cannot unregister.\n");
1405                         return count;
1406                 }
1407
1408                 ipw_prom_free(priv);
1409                 rtap_iface = 0;
1410                 break;
1411
1412         case '1':
1413                 if (rtap_iface)
1414                         return count;
1415
1416                 rc = ipw_prom_alloc(priv);
1417                 if (!rc)
1418                         rtap_iface = 1;
1419                 break;
1420
1421         default:
1422                 return -EINVAL;
1423         }
1424
1425         if (rc) {
1426                 IPW_ERROR("Failed to register promiscuous network "
1427                           "device (error %d).\n", rc);
1428         }
1429
1430         return count;
1431 }
1432
1433 static ssize_t show_rtap_iface(struct device *d,
1434                         struct device_attribute *attr,
1435                         char *buf)
1436 {
1437         struct ipw_priv *priv = dev_get_drvdata(d);
1438         if (rtap_iface)
1439                 return sprintf(buf, "%s", priv->prom_net_dev->name);
1440         else {
1441                 buf[0] = '-';
1442                 buf[1] = '1';
1443                 buf[2] = '\0';
1444                 return 3;
1445         }
1446 }
1447
1448 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1449                    store_rtap_iface);
1450
1451 static ssize_t store_rtap_filter(struct device *d,
1452                          struct device_attribute *attr,
1453                          const char *buf, size_t count)
1454 {
1455         struct ipw_priv *priv = dev_get_drvdata(d);
1456
1457         if (!priv->prom_priv) {
1458                 IPW_ERROR("Attempting to set filter without "
1459                           "rtap_iface enabled.\n");
1460                 return -EPERM;
1461         }
1462
1463         priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1464
1465         IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1466                        BIT_ARG16(priv->prom_priv->filter));
1467
1468         return count;
1469 }
1470
1471 static ssize_t show_rtap_filter(struct device *d,
1472                         struct device_attribute *attr,
1473                         char *buf)
1474 {
1475         struct ipw_priv *priv = dev_get_drvdata(d);
1476         return sprintf(buf, "0x%04X",
1477                        priv->prom_priv ? priv->prom_priv->filter : 0);
1478 }
1479
1480 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1481                    store_rtap_filter);
1482 #endif
1483
1484 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1485                              char *buf)
1486 {
1487         struct ipw_priv *priv = dev_get_drvdata(d);
1488         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1489 }
1490
1491 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1492                               const char *buf, size_t count)
1493 {
1494         struct ipw_priv *priv = dev_get_drvdata(d);
1495         struct net_device *dev = priv->net_dev;
1496         char buffer[] = "00000000";
1497         unsigned long len =
1498             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1499         unsigned long val;
1500         char *p = buffer;
1501
1502         IPW_DEBUG_INFO("enter\n");
1503
1504         strncpy(buffer, buf, len);
1505         buffer[len] = 0;
1506
1507         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1508                 p++;
1509                 if (p[0] == 'x' || p[0] == 'X')
1510                         p++;
1511                 val = simple_strtoul(p, &p, 16);
1512         } else
1513                 val = simple_strtoul(p, &p, 10);
1514         if (p == buffer) {
1515                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1516         } else {
1517                 priv->ieee->scan_age = val;
1518                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1519         }
1520
1521         IPW_DEBUG_INFO("exit\n");
1522         return len;
1523 }
1524
1525 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1526
1527 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1528                         char *buf)
1529 {
1530         struct ipw_priv *priv = dev_get_drvdata(d);
1531         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1532 }
1533
1534 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1535                          const char *buf, size_t count)
1536 {
1537         struct ipw_priv *priv = dev_get_drvdata(d);
1538
1539         IPW_DEBUG_INFO("enter\n");
1540
1541         if (count == 0)
1542                 return 0;
1543
1544         if (*buf == 0) {
1545                 IPW_DEBUG_LED("Disabling LED control.\n");
1546                 priv->config |= CFG_NO_LED;
1547                 ipw_led_shutdown(priv);
1548         } else {
1549                 IPW_DEBUG_LED("Enabling LED control.\n");
1550                 priv->config &= ~CFG_NO_LED;
1551                 ipw_led_init(priv);
1552         }
1553
1554         IPW_DEBUG_INFO("exit\n");
1555         return count;
1556 }
1557
1558 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1559
1560 static ssize_t show_status(struct device *d,
1561                            struct device_attribute *attr, char *buf)
1562 {
1563         struct ipw_priv *p = dev_get_drvdata(d);
1564         return sprintf(buf, "0x%08x\n", (int)p->status);
1565 }
1566
1567 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1568
1569 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1570                         char *buf)
1571 {
1572         struct ipw_priv *p = dev_get_drvdata(d);
1573         return sprintf(buf, "0x%08x\n", (int)p->config);
1574 }
1575
1576 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1577
1578 static ssize_t show_nic_type(struct device *d,
1579                              struct device_attribute *attr, char *buf)
1580 {
1581         struct ipw_priv *priv = dev_get_drvdata(d);
1582         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1583 }
1584
1585 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1586
1587 static ssize_t show_ucode_version(struct device *d,
1588                                   struct device_attribute *attr, char *buf)
1589 {
1590         u32 len = sizeof(u32), tmp = 0;
1591         struct ipw_priv *p = dev_get_drvdata(d);
1592
1593         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1594                 return 0;
1595
1596         return sprintf(buf, "0x%08x\n", tmp);
1597 }
1598
1599 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1600
1601 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1602                         char *buf)
1603 {
1604         u32 len = sizeof(u32), tmp = 0;
1605         struct ipw_priv *p = dev_get_drvdata(d);
1606
1607         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1608                 return 0;
1609
1610         return sprintf(buf, "0x%08x\n", tmp);
1611 }
1612
1613 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1614
1615 /*
1616  * Add a device attribute to view/control the delay between eeprom
1617  * operations.
1618  */
1619 static ssize_t show_eeprom_delay(struct device *d,
1620                                  struct device_attribute *attr, char *buf)
1621 {
1622         struct ipw_priv *p = dev_get_drvdata(d);
1623         int n = p->eeprom_delay;
1624         return sprintf(buf, "%i\n", n);
1625 }
1626 static ssize_t store_eeprom_delay(struct device *d,
1627                                   struct device_attribute *attr,
1628                                   const char *buf, size_t count)
1629 {
1630         struct ipw_priv *p = dev_get_drvdata(d);
1631         sscanf(buf, "%i", &p->eeprom_delay);
1632         return strnlen(buf, count);
1633 }
1634
1635 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1636                    show_eeprom_delay, store_eeprom_delay);
1637
1638 static ssize_t show_command_event_reg(struct device *d,
1639                                       struct device_attribute *attr, char *buf)
1640 {
1641         u32 reg = 0;
1642         struct ipw_priv *p = dev_get_drvdata(d);
1643
1644         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1645         return sprintf(buf, "0x%08x\n", reg);
1646 }
1647 static ssize_t store_command_event_reg(struct device *d,
1648                                        struct device_attribute *attr,
1649                                        const char *buf, size_t count)
1650 {
1651         u32 reg;
1652         struct ipw_priv *p = dev_get_drvdata(d);
1653
1654         sscanf(buf, "%x", &reg);
1655         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1656         return strnlen(buf, count);
1657 }
1658
1659 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1660                    show_command_event_reg, store_command_event_reg);
1661
1662 static ssize_t show_mem_gpio_reg(struct device *d,
1663                                  struct device_attribute *attr, char *buf)
1664 {
1665         u32 reg = 0;
1666         struct ipw_priv *p = dev_get_drvdata(d);
1667
1668         reg = ipw_read_reg32(p, 0x301100);
1669         return sprintf(buf, "0x%08x\n", reg);
1670 }
1671 static ssize_t store_mem_gpio_reg(struct device *d,
1672                                   struct device_attribute *attr,
1673                                   const char *buf, size_t count)
1674 {
1675         u32 reg;
1676         struct ipw_priv *p = dev_get_drvdata(d);
1677
1678         sscanf(buf, "%x", &reg);
1679         ipw_write_reg32(p, 0x301100, reg);
1680         return strnlen(buf, count);
1681 }
1682
1683 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1684                    show_mem_gpio_reg, store_mem_gpio_reg);
1685
1686 static ssize_t show_indirect_dword(struct device *d,
1687                                    struct device_attribute *attr, char *buf)
1688 {
1689         u32 reg = 0;
1690         struct ipw_priv *priv = dev_get_drvdata(d);
1691
1692         if (priv->status & STATUS_INDIRECT_DWORD)
1693                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1694         else
1695                 reg = 0;
1696
1697         return sprintf(buf, "0x%08x\n", reg);
1698 }
1699 static ssize_t store_indirect_dword(struct device *d,
1700                                     struct device_attribute *attr,
1701                                     const char *buf, size_t count)
1702 {
1703         struct ipw_priv *priv = dev_get_drvdata(d);
1704
1705         sscanf(buf, "%x", &priv->indirect_dword);
1706         priv->status |= STATUS_INDIRECT_DWORD;
1707         return strnlen(buf, count);
1708 }
1709
1710 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1711                    show_indirect_dword, store_indirect_dword);
1712
1713 static ssize_t show_indirect_byte(struct device *d,
1714                                   struct device_attribute *attr, char *buf)
1715 {
1716         u8 reg = 0;
1717         struct ipw_priv *priv = dev_get_drvdata(d);
1718
1719         if (priv->status & STATUS_INDIRECT_BYTE)
1720                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1721         else
1722                 reg = 0;
1723
1724         return sprintf(buf, "0x%02x\n", reg);
1725 }
1726 static ssize_t store_indirect_byte(struct device *d,
1727                                    struct device_attribute *attr,
1728                                    const char *buf, size_t count)
1729 {
1730         struct ipw_priv *priv = dev_get_drvdata(d);
1731
1732         sscanf(buf, "%x", &priv->indirect_byte);
1733         priv->status |= STATUS_INDIRECT_BYTE;
1734         return strnlen(buf, count);
1735 }
1736
1737 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1738                    show_indirect_byte, store_indirect_byte);
1739
1740 static ssize_t show_direct_dword(struct device *d,
1741                                  struct device_attribute *attr, char *buf)
1742 {
1743         u32 reg = 0;
1744         struct ipw_priv *priv = dev_get_drvdata(d);
1745
1746         if (priv->status & STATUS_DIRECT_DWORD)
1747                 reg = ipw_read32(priv, priv->direct_dword);
1748         else
1749                 reg = 0;
1750
1751         return sprintf(buf, "0x%08x\n", reg);
1752 }
1753 static ssize_t store_direct_dword(struct device *d,
1754                                   struct device_attribute *attr,
1755                                   const char *buf, size_t count)
1756 {
1757         struct ipw_priv *priv = dev_get_drvdata(d);
1758
1759         sscanf(buf, "%x", &priv->direct_dword);
1760         priv->status |= STATUS_DIRECT_DWORD;
1761         return strnlen(buf, count);
1762 }
1763
1764 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1765                    show_direct_dword, store_direct_dword);
1766
1767 static int rf_kill_active(struct ipw_priv *priv)
1768 {
1769         if (0 == (ipw_read32(priv, 0x30) & 0x10000)) {
1770                 priv->status |= STATUS_RF_KILL_HW;
1771                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1772         } else {
1773                 priv->status &= ~STATUS_RF_KILL_HW;
1774                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1775         }
1776
1777         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1778 }
1779
1780 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1781                             char *buf)
1782 {
1783         /* 0 - RF kill not enabled
1784            1 - SW based RF kill active (sysfs)
1785            2 - HW based RF kill active
1786            3 - Both HW and SW baed RF kill active */
1787         struct ipw_priv *priv = dev_get_drvdata(d);
1788         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1789             (rf_kill_active(priv) ? 0x2 : 0x0);
1790         return sprintf(buf, "%i\n", val);
1791 }
1792
1793 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1794 {
1795         if ((disable_radio ? 1 : 0) ==
1796             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1797                 return 0;
1798
1799         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1800                           disable_radio ? "OFF" : "ON");
1801
1802         if (disable_radio) {
1803                 priv->status |= STATUS_RF_KILL_SW;
1804
1805                 cancel_delayed_work(&priv->request_scan);
1806                 cancel_delayed_work(&priv->request_direct_scan);
1807                 cancel_delayed_work(&priv->request_passive_scan);
1808                 cancel_delayed_work(&priv->scan_event);
1809                 schedule_work(&priv->down);
1810         } else {
1811                 priv->status &= ~STATUS_RF_KILL_SW;
1812                 if (rf_kill_active(priv)) {
1813                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1814                                           "disabled by HW switch\n");
1815                         /* Make sure the RF_KILL check timer is running */
1816                         cancel_delayed_work(&priv->rf_kill);
1817                         schedule_delayed_work(&priv->rf_kill,
1818                                               round_jiffies_relative(2 * HZ));
1819                 } else
1820                         schedule_work(&priv->up);
1821         }
1822
1823         return 1;
1824 }
1825
1826 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1827                              const char *buf, size_t count)
1828 {
1829         struct ipw_priv *priv = dev_get_drvdata(d);
1830
1831         ipw_radio_kill_sw(priv, buf[0] == '1');
1832
1833         return count;
1834 }
1835
1836 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1837
1838 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1839                                char *buf)
1840 {
1841         struct ipw_priv *priv = dev_get_drvdata(d);
1842         int pos = 0, len = 0;
1843         if (priv->config & CFG_SPEED_SCAN) {
1844                 while (priv->speed_scan[pos] != 0)
1845                         len += sprintf(&buf[len], "%d ",
1846                                        priv->speed_scan[pos++]);
1847                 return len + sprintf(&buf[len], "\n");
1848         }
1849
1850         return sprintf(buf, "0\n");
1851 }
1852
1853 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1854                                 const char *buf, size_t count)
1855 {
1856         struct ipw_priv *priv = dev_get_drvdata(d);
1857         int channel, pos = 0;
1858         const char *p = buf;
1859
1860         /* list of space separated channels to scan, optionally ending with 0 */
1861         while ((channel = simple_strtol(p, NULL, 0))) {
1862                 if (pos == MAX_SPEED_SCAN - 1) {
1863                         priv->speed_scan[pos] = 0;
1864                         break;
1865                 }
1866
1867                 if (libipw_is_valid_channel(priv->ieee, channel))
1868                         priv->speed_scan[pos++] = channel;
1869                 else
1870                         IPW_WARNING("Skipping invalid channel request: %d\n",
1871                                     channel);
1872                 p = strchr(p, ' ');
1873                 if (!p)
1874                         break;
1875                 while (*p == ' ' || *p == '\t')
1876                         p++;
1877         }
1878
1879         if (pos == 0)
1880                 priv->config &= ~CFG_SPEED_SCAN;
1881         else {
1882                 priv->speed_scan_pos = 0;
1883                 priv->config |= CFG_SPEED_SCAN;
1884         }
1885
1886         return count;
1887 }
1888
1889 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1890                    store_speed_scan);
1891
1892 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1893                               char *buf)
1894 {
1895         struct ipw_priv *priv = dev_get_drvdata(d);
1896         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1897 }
1898
1899 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1900                                const char *buf, size_t count)
1901 {
1902         struct ipw_priv *priv = dev_get_drvdata(d);
1903         if (buf[0] == '1')
1904                 priv->config |= CFG_NET_STATS;
1905         else
1906                 priv->config &= ~CFG_NET_STATS;
1907
1908         return count;
1909 }
1910
1911 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1912                    show_net_stats, store_net_stats);
1913
1914 static ssize_t show_channels(struct device *d,
1915                              struct device_attribute *attr,
1916                              char *buf)
1917 {
1918         struct ipw_priv *priv = dev_get_drvdata(d);
1919         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1920         int len = 0, i;
1921
1922         len = sprintf(&buf[len],
1923                       "Displaying %d channels in 2.4Ghz band "
1924                       "(802.11bg):\n", geo->bg_channels);
1925
1926         for (i = 0; i < geo->bg_channels; i++) {
1927                 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1928                                geo->bg[i].channel,
1929                                geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ?
1930                                " (radar spectrum)" : "",
1931                                ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) ||
1932                                 (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT))
1933                                ? "" : ", IBSS",
1934                                geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1935                                "passive only" : "active/passive",
1936                                geo->bg[i].flags & LIBIPW_CH_B_ONLY ?
1937                                "B" : "B/G");
1938         }
1939
1940         len += sprintf(&buf[len],
1941                        "Displaying %d channels in 5.2Ghz band "
1942                        "(802.11a):\n", geo->a_channels);
1943         for (i = 0; i < geo->a_channels; i++) {
1944                 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1945                                geo->a[i].channel,
1946                                geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ?
1947                                " (radar spectrum)" : "",
1948                                ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) ||
1949                                 (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT))
1950                                ? "" : ", IBSS",
1951                                geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1952                                "passive only" : "active/passive");
1953         }
1954
1955         return len;
1956 }
1957
1958 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1959
1960 static void notify_wx_assoc_event(struct ipw_priv *priv)
1961 {
1962         union iwreq_data wrqu;
1963         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1964         if (priv->status & STATUS_ASSOCIATED)
1965                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1966         else
1967                 eth_zero_addr(wrqu.ap_addr.sa_data);
1968         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1969 }
1970
1971 static void ipw_irq_tasklet(struct ipw_priv *priv)
1972 {
1973         u32 inta, inta_mask, handled = 0;
1974         unsigned long flags;
1975         int rc = 0;
1976
1977         spin_lock_irqsave(&priv->irq_lock, flags);
1978
1979         inta = ipw_read32(priv, IPW_INTA_RW);
1980         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1981
1982         if (inta == 0xFFFFFFFF) {
1983                 /* Hardware disappeared */
1984                 IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n");
1985                 /* Only handle the cached INTA values */
1986                 inta = 0;
1987         }
1988         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1989
1990         /* Add any cached INTA values that need to be handled */
1991         inta |= priv->isr_inta;
1992
1993         spin_unlock_irqrestore(&priv->irq_lock, flags);
1994
1995         spin_lock_irqsave(&priv->lock, flags);
1996
1997         /* handle all the justifications for the interrupt */
1998         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1999                 ipw_rx(priv);
2000                 handled |= IPW_INTA_BIT_RX_TRANSFER;
2001         }
2002
2003         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
2004                 IPW_DEBUG_HC("Command completed.\n");
2005                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
2006                 priv->status &= ~STATUS_HCMD_ACTIVE;
2007                 wake_up_interruptible(&priv->wait_command_queue);
2008                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
2009         }
2010
2011         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
2012                 IPW_DEBUG_TX("TX_QUEUE_1\n");
2013                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
2014                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
2015         }
2016
2017         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
2018                 IPW_DEBUG_TX("TX_QUEUE_2\n");
2019                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
2020                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
2021         }
2022
2023         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
2024                 IPW_DEBUG_TX("TX_QUEUE_3\n");
2025                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
2026                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
2027         }
2028
2029         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
2030                 IPW_DEBUG_TX("TX_QUEUE_4\n");
2031                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
2032                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
2033         }
2034
2035         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
2036                 IPW_WARNING("STATUS_CHANGE\n");
2037                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
2038         }
2039
2040         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
2041                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
2042                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2043         }
2044
2045         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2046                 IPW_WARNING("HOST_CMD_DONE\n");
2047                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2048         }
2049
2050         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2051                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
2052                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2053         }
2054
2055         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2056                 IPW_WARNING("PHY_OFF_DONE\n");
2057                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2058         }
2059
2060         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2061                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2062                 priv->status |= STATUS_RF_KILL_HW;
2063                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2064                 wake_up_interruptible(&priv->wait_command_queue);
2065                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2066                 cancel_delayed_work(&priv->request_scan);
2067                 cancel_delayed_work(&priv->request_direct_scan);
2068                 cancel_delayed_work(&priv->request_passive_scan);
2069                 cancel_delayed_work(&priv->scan_event);
2070                 schedule_work(&priv->link_down);
2071                 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
2072                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2073         }
2074
2075         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2076                 IPW_WARNING("Firmware error detected.  Restarting.\n");
2077                 if (priv->error) {
2078                         IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2079                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2080                                 struct ipw_fw_error *error =
2081                                     ipw_alloc_error_log(priv);
2082                                 ipw_dump_error_log(priv, error);
2083                                 kfree(error);
2084                         }
2085                 } else {
2086                         priv->error = ipw_alloc_error_log(priv);
2087                         if (priv->error)
2088                                 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2089                         else
2090                                 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2091                                              "log.\n");
2092                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
2093                                 ipw_dump_error_log(priv, priv->error);
2094                 }
2095
2096                 /* XXX: If hardware encryption is for WPA/WPA2,
2097                  * we have to notify the supplicant. */
2098                 if (priv->ieee->sec.encrypt) {
2099                         priv->status &= ~STATUS_ASSOCIATED;
2100                         notify_wx_assoc_event(priv);
2101                 }
2102
2103                 /* Keep the restart process from trying to send host
2104                  * commands by clearing the INIT status bit */
2105                 priv->status &= ~STATUS_INIT;
2106
2107                 /* Cancel currently queued command. */
2108                 priv->status &= ~STATUS_HCMD_ACTIVE;
2109                 wake_up_interruptible(&priv->wait_command_queue);
2110
2111                 schedule_work(&priv->adapter_restart);
2112                 handled |= IPW_INTA_BIT_FATAL_ERROR;
2113         }
2114
2115         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2116                 IPW_ERROR("Parity error\n");
2117                 handled |= IPW_INTA_BIT_PARITY_ERROR;
2118         }
2119
2120         if (handled != inta) {
2121                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2122         }
2123
2124         spin_unlock_irqrestore(&priv->lock, flags);
2125
2126         /* enable all interrupts */
2127         ipw_enable_interrupts(priv);
2128 }
2129
2130 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2131 static char *get_cmd_string(u8 cmd)
2132 {
2133         switch (cmd) {
2134                 IPW_CMD(HOST_COMPLETE);
2135                 IPW_CMD(POWER_DOWN);
2136                 IPW_CMD(SYSTEM_CONFIG);
2137                 IPW_CMD(MULTICAST_ADDRESS);
2138                 IPW_CMD(SSID);
2139                 IPW_CMD(ADAPTER_ADDRESS);
2140                 IPW_CMD(PORT_TYPE);
2141                 IPW_CMD(RTS_THRESHOLD);
2142                 IPW_CMD(FRAG_THRESHOLD);
2143                 IPW_CMD(POWER_MODE);
2144                 IPW_CMD(WEP_KEY);
2145                 IPW_CMD(TGI_TX_KEY);
2146                 IPW_CMD(SCAN_REQUEST);
2147                 IPW_CMD(SCAN_REQUEST_EXT);
2148                 IPW_CMD(ASSOCIATE);
2149                 IPW_CMD(SUPPORTED_RATES);
2150                 IPW_CMD(SCAN_ABORT);
2151                 IPW_CMD(TX_FLUSH);
2152                 IPW_CMD(QOS_PARAMETERS);
2153                 IPW_CMD(DINO_CONFIG);
2154                 IPW_CMD(RSN_CAPABILITIES);
2155                 IPW_CMD(RX_KEY);
2156                 IPW_CMD(CARD_DISABLE);
2157                 IPW_CMD(SEED_NUMBER);
2158                 IPW_CMD(TX_POWER);
2159                 IPW_CMD(COUNTRY_INFO);
2160                 IPW_CMD(AIRONET_INFO);
2161                 IPW_CMD(AP_TX_POWER);
2162                 IPW_CMD(CCKM_INFO);
2163                 IPW_CMD(CCX_VER_INFO);
2164                 IPW_CMD(SET_CALIBRATION);
2165                 IPW_CMD(SENSITIVITY_CALIB);
2166                 IPW_CMD(RETRY_LIMIT);
2167                 IPW_CMD(IPW_PRE_POWER_DOWN);
2168                 IPW_CMD(VAP_BEACON_TEMPLATE);
2169                 IPW_CMD(VAP_DTIM_PERIOD);
2170                 IPW_CMD(EXT_SUPPORTED_RATES);
2171                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2172                 IPW_CMD(VAP_QUIET_INTERVALS);
2173                 IPW_CMD(VAP_CHANNEL_SWITCH);
2174                 IPW_CMD(VAP_MANDATORY_CHANNELS);
2175                 IPW_CMD(VAP_CELL_PWR_LIMIT);
2176                 IPW_CMD(VAP_CF_PARAM_SET);
2177                 IPW_CMD(VAP_SET_BEACONING_STATE);
2178                 IPW_CMD(MEASUREMENT);
2179                 IPW_CMD(POWER_CAPABILITY);
2180                 IPW_CMD(SUPPORTED_CHANNELS);
2181                 IPW_CMD(TPC_REPORT);
2182                 IPW_CMD(WME_INFO);
2183                 IPW_CMD(PRODUCTION_COMMAND);
2184         default:
2185                 return "UNKNOWN";
2186         }
2187 }
2188
2189 #define HOST_COMPLETE_TIMEOUT HZ
2190
2191 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2192 {
2193         int rc = 0;
2194         unsigned long flags;
2195         unsigned long now, end;
2196
2197         spin_lock_irqsave(&priv->lock, flags);
2198         if (priv->status & STATUS_HCMD_ACTIVE) {
2199                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2200                           get_cmd_string(cmd->cmd));
2201                 spin_unlock_irqrestore(&priv->lock, flags);
2202                 return -EAGAIN;
2203         }
2204
2205         priv->status |= STATUS_HCMD_ACTIVE;
2206
2207         if (priv->cmdlog) {
2208                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2209                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2210                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2211                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2212                        cmd->len);
2213                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2214         }
2215
2216         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2217                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2218                      priv->status);
2219
2220 #ifndef DEBUG_CMD_WEP_KEY
2221         if (cmd->cmd == IPW_CMD_WEP_KEY)
2222                 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2223         else
2224 #endif
2225                 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2226
2227         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2228         if (rc) {
2229                 priv->status &= ~STATUS_HCMD_ACTIVE;
2230                 IPW_ERROR("Failed to send %s: Reason %d\n",
2231                           get_cmd_string(cmd->cmd), rc);
2232                 spin_unlock_irqrestore(&priv->lock, flags);
2233                 goto exit;
2234         }
2235         spin_unlock_irqrestore(&priv->lock, flags);
2236
2237         now = jiffies;
2238         end = now + HOST_COMPLETE_TIMEOUT;
2239 again:
2240         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2241                                               !(priv->
2242                                                 status & STATUS_HCMD_ACTIVE),
2243                                               end - now);
2244         if (rc < 0) {
2245                 now = jiffies;
2246                 if (time_before(now, end))
2247                         goto again;
2248                 rc = 0;
2249         }
2250
2251         if (rc == 0) {
2252                 spin_lock_irqsave(&priv->lock, flags);
2253                 if (priv->status & STATUS_HCMD_ACTIVE) {
2254                         IPW_ERROR("Failed to send %s: Command timed out.\n",
2255                                   get_cmd_string(cmd->cmd));
2256                         priv->status &= ~STATUS_HCMD_ACTIVE;
2257                         spin_unlock_irqrestore(&priv->lock, flags);
2258                         rc = -EIO;
2259                         goto exit;
2260                 }
2261                 spin_unlock_irqrestore(&priv->lock, flags);
2262         } else
2263                 rc = 0;
2264
2265         if (priv->status & STATUS_RF_KILL_HW) {
2266                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2267                           get_cmd_string(cmd->cmd));
2268                 rc = -EIO;
2269                 goto exit;
2270         }
2271
2272       exit:
2273         if (priv->cmdlog) {
2274                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2275                 priv->cmdlog_pos %= priv->cmdlog_len;
2276         }
2277         return rc;
2278 }
2279
2280 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2281 {
2282         struct host_cmd cmd = {
2283                 .cmd = command,
2284         };
2285
2286         return __ipw_send_cmd(priv, &cmd);
2287 }
2288
2289 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2290                             void *data)
2291 {
2292         struct host_cmd cmd = {
2293                 .cmd = command,
2294                 .len = len,
2295                 .param = data,
2296         };
2297
2298         return __ipw_send_cmd(priv, &cmd);
2299 }
2300
2301 static int ipw_send_host_complete(struct ipw_priv *priv)
2302 {
2303         if (!priv) {
2304                 IPW_ERROR("Invalid args\n");
2305                 return -1;
2306         }
2307
2308         return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2309 }
2310
2311 static int ipw_send_system_config(struct ipw_priv *priv)
2312 {
2313         return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2314                                 sizeof(priv->sys_config),
2315                                 &priv->sys_config);
2316 }
2317
2318 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2319 {
2320         if (!priv || !ssid) {
2321                 IPW_ERROR("Invalid args\n");
2322                 return -1;
2323         }
2324
2325         return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2326                                 ssid);
2327 }
2328
2329 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2330 {
2331         if (!priv || !mac) {
2332                 IPW_ERROR("Invalid args\n");
2333                 return -1;
2334         }
2335
2336         IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2337                        priv->net_dev->name, mac);
2338
2339         return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2340 }
2341
2342 static void ipw_adapter_restart(void *adapter)
2343 {
2344         struct ipw_priv *priv = adapter;
2345
2346         if (priv->status & STATUS_RF_KILL_MASK)
2347                 return;
2348
2349         ipw_down(priv);
2350
2351         if (priv->assoc_network &&
2352             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2353                 ipw_remove_current_network(priv);
2354
2355         if (ipw_up(priv)) {
2356                 IPW_ERROR("Failed to up device\n");
2357                 return;
2358         }
2359 }
2360
2361 static void ipw_bg_adapter_restart(struct work_struct *work)
2362 {
2363         struct ipw_priv *priv =
2364                 container_of(work, struct ipw_priv, adapter_restart);
2365         mutex_lock(&priv->mutex);
2366         ipw_adapter_restart(priv);
2367         mutex_unlock(&priv->mutex);
2368 }
2369
2370 static void ipw_abort_scan(struct ipw_priv *priv);
2371
2372 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2373
2374 static void ipw_scan_check(void *data)
2375 {
2376         struct ipw_priv *priv = data;
2377
2378         if (priv->status & STATUS_SCAN_ABORTING) {
2379                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2380                                "adapter after (%dms).\n",
2381                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2382                 schedule_work(&priv->adapter_restart);
2383         } else if (priv->status & STATUS_SCANNING) {
2384                 IPW_DEBUG_SCAN("Scan completion watchdog aborting scan "
2385                                "after (%dms).\n",
2386                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2387                 ipw_abort_scan(priv);
2388                 schedule_delayed_work(&priv->scan_check, HZ);
2389         }
2390 }
2391
2392 static void ipw_bg_scan_check(struct work_struct *work)
2393 {
2394         struct ipw_priv *priv =
2395                 container_of(work, struct ipw_priv, scan_check.work);
2396         mutex_lock(&priv->mutex);
2397         ipw_scan_check(priv);
2398         mutex_unlock(&priv->mutex);
2399 }
2400
2401 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2402                                      struct ipw_scan_request_ext *request)
2403 {
2404         return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2405                                 sizeof(*request), request);
2406 }
2407
2408 static int ipw_send_scan_abort(struct ipw_priv *priv)
2409 {
2410         if (!priv) {
2411                 IPW_ERROR("Invalid args\n");
2412                 return -1;
2413         }
2414
2415         return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2416 }
2417
2418 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2419 {
2420         struct ipw_sensitivity_calib calib = {
2421                 .beacon_rssi_raw = cpu_to_le16(sens),
2422         };
2423
2424         return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2425                                 &calib);
2426 }
2427
2428 static int ipw_send_associate(struct ipw_priv *priv,
2429                               struct ipw_associate *associate)
2430 {
2431         if (!priv || !associate) {
2432                 IPW_ERROR("Invalid args\n");
2433                 return -1;
2434         }
2435
2436         return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2437                                 associate);
2438 }
2439
2440 static int ipw_send_supported_rates(struct ipw_priv *priv,
2441                                     struct ipw_supported_rates *rates)
2442 {
2443         if (!priv || !rates) {
2444                 IPW_ERROR("Invalid args\n");
2445                 return -1;
2446         }
2447
2448         return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2449                                 rates);
2450 }
2451
2452 static int ipw_set_random_seed(struct ipw_priv *priv)
2453 {
2454         u32 val;
2455
2456         if (!priv) {
2457                 IPW_ERROR("Invalid args\n");
2458                 return -1;
2459         }
2460
2461         get_random_bytes(&val, sizeof(val));
2462
2463         return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2464 }
2465
2466 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2467 {
2468         __le32 v = cpu_to_le32(phy_off);
2469         if (!priv) {
2470                 IPW_ERROR("Invalid args\n");
2471                 return -1;
2472         }
2473
2474         return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2475 }
2476
2477 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2478 {
2479         if (!priv || !power) {
2480                 IPW_ERROR("Invalid args\n");
2481                 return -1;
2482         }
2483
2484         return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2485 }
2486
2487 static int ipw_set_tx_power(struct ipw_priv *priv)
2488 {
2489         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
2490         struct ipw_tx_power tx_power;
2491         s8 max_power;
2492         int i;
2493
2494         memset(&tx_power, 0, sizeof(tx_power));
2495
2496         /* configure device for 'G' band */
2497         tx_power.ieee_mode = IPW_G_MODE;
2498         tx_power.num_channels = geo->bg_channels;
2499         for (i = 0; i < geo->bg_channels; i++) {
2500                 max_power = geo->bg[i].max_power;
2501                 tx_power.channels_tx_power[i].channel_number =
2502                     geo->bg[i].channel;
2503                 tx_power.channels_tx_power[i].tx_power = max_power ?
2504                     min(max_power, priv->tx_power) : priv->tx_power;
2505         }
2506         if (ipw_send_tx_power(priv, &tx_power))
2507                 return -EIO;
2508
2509         /* configure device to also handle 'B' band */
2510         tx_power.ieee_mode = IPW_B_MODE;
2511         if (ipw_send_tx_power(priv, &tx_power))
2512                 return -EIO;
2513
2514         /* configure device to also handle 'A' band */
2515         if (priv->ieee->abg_true) {
2516                 tx_power.ieee_mode = IPW_A_MODE;
2517                 tx_power.num_channels = geo->a_channels;
2518                 for (i = 0; i < tx_power.num_channels; i++) {
2519                         max_power = geo->a[i].max_power;
2520                         tx_power.channels_tx_power[i].channel_number =
2521                             geo->a[i].channel;
2522                         tx_power.channels_tx_power[i].tx_power = max_power ?
2523                             min(max_power, priv->tx_power) : priv->tx_power;
2524                 }
2525                 if (ipw_send_tx_power(priv, &tx_power))
2526                         return -EIO;
2527         }
2528         return 0;
2529 }
2530
2531 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2532 {
2533         struct ipw_rts_threshold rts_threshold = {
2534                 .rts_threshold = cpu_to_le16(rts),
2535         };
2536
2537         if (!priv) {
2538                 IPW_ERROR("Invalid args\n");
2539                 return -1;
2540         }
2541
2542         return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2543                                 sizeof(rts_threshold), &rts_threshold);
2544 }
2545
2546 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2547 {
2548         struct ipw_frag_threshold frag_threshold = {
2549                 .frag_threshold = cpu_to_le16(frag),
2550         };
2551
2552         if (!priv) {
2553                 IPW_ERROR("Invalid args\n");
2554                 return -1;
2555         }
2556
2557         return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2558                                 sizeof(frag_threshold), &frag_threshold);
2559 }
2560
2561 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2562 {
2563         __le32 param;
2564
2565         if (!priv) {
2566                 IPW_ERROR("Invalid args\n");
2567                 return -1;
2568         }
2569
2570         /* If on battery, set to 3, if AC set to CAM, else user
2571          * level */
2572         switch (mode) {
2573         case IPW_POWER_BATTERY:
2574                 param = cpu_to_le32(IPW_POWER_INDEX_3);
2575                 break;
2576         case IPW_POWER_AC:
2577                 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2578                 break;
2579         default:
2580                 param = cpu_to_le32(mode);
2581                 break;
2582         }
2583
2584         return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2585                                 &param);
2586 }
2587
2588 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2589 {
2590         struct ipw_retry_limit retry_limit = {
2591                 .short_retry_limit = slimit,
2592                 .long_retry_limit = llimit
2593         };
2594
2595         if (!priv) {
2596                 IPW_ERROR("Invalid args\n");
2597                 return -1;
2598         }
2599
2600         return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2601                                 &retry_limit);
2602 }
2603
2604 /*
2605  * The IPW device contains a Microwire compatible EEPROM that stores
2606  * various data like the MAC address.  Usually the firmware has exclusive
2607  * access to the eeprom, but during device initialization (before the
2608  * device driver has sent the HostComplete command to the firmware) the
2609  * device driver has read access to the EEPROM by way of indirect addressing
2610  * through a couple of memory mapped registers.
2611  *
2612  * The following is a simplified implementation for pulling data out of the
2613  * the eeprom, along with some helper functions to find information in
2614  * the per device private data's copy of the eeprom.
2615  *
2616  * NOTE: To better understand how these functions work (i.e what is a chip
2617  *       select and why do have to keep driving the eeprom clock?), read
2618  *       just about any data sheet for a Microwire compatible EEPROM.
2619  */
2620
2621 /* write a 32 bit value into the indirect accessor register */
2622 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2623 {
2624         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2625
2626         /* the eeprom requires some time to complete the operation */
2627         udelay(p->eeprom_delay);
2628 }
2629
2630 /* perform a chip select operation */
2631 static void eeprom_cs(struct ipw_priv *priv)
2632 {
2633         eeprom_write_reg(priv, 0);
2634         eeprom_write_reg(priv, EEPROM_BIT_CS);
2635         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2636         eeprom_write_reg(priv, EEPROM_BIT_CS);
2637 }
2638
2639 /* perform a chip select operation */
2640 static void eeprom_disable_cs(struct ipw_priv *priv)
2641 {
2642         eeprom_write_reg(priv, EEPROM_BIT_CS);
2643         eeprom_write_reg(priv, 0);
2644         eeprom_write_reg(priv, EEPROM_BIT_SK);
2645 }
2646
2647 /* push a single bit down to the eeprom */
2648 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2649 {
2650         int d = (bit ? EEPROM_BIT_DI : 0);
2651         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2652         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2653 }
2654
2655 /* push an opcode followed by an address down to the eeprom */
2656 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2657 {
2658         int i;
2659
2660         eeprom_cs(priv);
2661         eeprom_write_bit(priv, 1);
2662         eeprom_write_bit(priv, op & 2);
2663         eeprom_write_bit(priv, op & 1);
2664         for (i = 7; i >= 0; i--) {
2665                 eeprom_write_bit(priv, addr & (1 << i));
2666         }
2667 }
2668
2669 /* pull 16 bits off the eeprom, one bit at a time */
2670 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2671 {
2672         int i;
2673         u16 r = 0;
2674
2675         /* Send READ Opcode */
2676         eeprom_op(priv, EEPROM_CMD_READ, addr);
2677
2678         /* Send dummy bit */
2679         eeprom_write_reg(priv, EEPROM_BIT_CS);
2680
2681         /* Read the byte off the eeprom one bit at a time */
2682         for (i = 0; i < 16; i++) {
2683                 u32 data = 0;
2684                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2685                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2686                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2687                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2688         }
2689
2690         /* Send another dummy bit */
2691         eeprom_write_reg(priv, 0);
2692         eeprom_disable_cs(priv);
2693
2694         return r;
2695 }
2696
2697 /* helper function for pulling the mac address out of the private */
2698 /* data's copy of the eeprom data                                 */
2699 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2700 {
2701         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], ETH_ALEN);
2702 }
2703
2704 static void ipw_read_eeprom(struct ipw_priv *priv)
2705 {
2706         int i;
2707         __le16 *eeprom = (__le16 *) priv->eeprom;
2708
2709         IPW_DEBUG_TRACE(">>\n");
2710
2711         /* read entire contents of eeprom into private buffer */
2712         for (i = 0; i < 128; i++)
2713                 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2714
2715         IPW_DEBUG_TRACE("<<\n");
2716 }
2717
2718 /*
2719  * Either the device driver (i.e. the host) or the firmware can
2720  * load eeprom data into the designated region in SRAM.  If neither
2721  * happens then the FW will shutdown with a fatal error.
2722  *
2723  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2724  * bit needs region of shared SRAM needs to be non-zero.
2725  */
2726 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2727 {
2728         int i;
2729
2730         IPW_DEBUG_TRACE(">>\n");
2731
2732         /*
2733            If the data looks correct, then copy it to our private
2734            copy.  Otherwise let the firmware know to perform the operation
2735            on its own.
2736          */
2737         if (priv->eeprom[EEPROM_VERSION] != 0) {
2738                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2739
2740                 /* write the eeprom data to sram */
2741                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2742                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2743
2744                 /* Do not load eeprom data on fatal error or suspend */
2745                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2746         } else {
2747                 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2748
2749                 /* Load eeprom data on fatal error or suspend */
2750                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2751         }
2752
2753         IPW_DEBUG_TRACE("<<\n");
2754 }
2755
2756 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2757 {
2758         count >>= 2;
2759         if (!count)
2760                 return;
2761         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2762         while (count--)
2763                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2764 }
2765
2766 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2767 {
2768         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2769                         CB_NUMBER_OF_ELEMENTS_SMALL *
2770                         sizeof(struct command_block));
2771 }
2772
2773 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2774 {                               /* start dma engine but no transfers yet */
2775
2776         IPW_DEBUG_FW(">> :\n");
2777
2778         /* Start the dma */
2779         ipw_fw_dma_reset_command_blocks(priv);
2780
2781         /* Write CB base address */
2782         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2783
2784         IPW_DEBUG_FW("<< :\n");
2785         return 0;
2786 }
2787
2788 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2789 {
2790         u32 control = 0;
2791
2792         IPW_DEBUG_FW(">> :\n");
2793
2794         /* set the Stop and Abort bit */
2795         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2796         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2797         priv->sram_desc.last_cb_index = 0;
2798
2799         IPW_DEBUG_FW("<<\n");
2800 }
2801
2802 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2803                                           struct command_block *cb)
2804 {
2805         u32 address =
2806             IPW_SHARED_SRAM_DMA_CONTROL +
2807             (sizeof(struct command_block) * index);
2808         IPW_DEBUG_FW(">> :\n");
2809
2810         ipw_write_indirect(priv, address, (u8 *) cb,
2811                            (int)sizeof(struct command_block));
2812
2813         IPW_DEBUG_FW("<< :\n");
2814         return 0;
2815
2816 }
2817
2818 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2819 {
2820         u32 control = 0;
2821         u32 index = 0;
2822
2823         IPW_DEBUG_FW(">> :\n");
2824
2825         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2826                 ipw_fw_dma_write_command_block(priv, index,
2827                                                &priv->sram_desc.cb_list[index]);
2828
2829         /* Enable the DMA in the CSR register */
2830         ipw_clear_bit(priv, IPW_RESET_REG,
2831                       IPW_RESET_REG_MASTER_DISABLED |
2832                       IPW_RESET_REG_STOP_MASTER);
2833
2834         /* Set the Start bit. */
2835         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2836         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2837
2838         IPW_DEBUG_FW("<< :\n");
2839         return 0;
2840 }
2841
2842 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2843 {
2844         u32 address;
2845         u32 register_value = 0;
2846         u32 cb_fields_address = 0;
2847
2848         IPW_DEBUG_FW(">> :\n");
2849         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2850         IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address);
2851
2852         /* Read the DMA Controlor register */
2853         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2854         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value);
2855
2856         /* Print the CB values */
2857         cb_fields_address = address;
2858         register_value = ipw_read_reg32(priv, cb_fields_address);
2859         IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value);
2860
2861         cb_fields_address += sizeof(u32);
2862         register_value = ipw_read_reg32(priv, cb_fields_address);
2863         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value);
2864
2865         cb_fields_address += sizeof(u32);
2866         register_value = ipw_read_reg32(priv, cb_fields_address);
2867         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n",
2868                           register_value);
2869
2870         cb_fields_address += sizeof(u32);
2871         register_value = ipw_read_reg32(priv, cb_fields_address);
2872         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value);
2873
2874         IPW_DEBUG_FW(">> :\n");
2875 }
2876
2877 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2878 {
2879         u32 current_cb_address = 0;
2880         u32 current_cb_index = 0;
2881
2882         IPW_DEBUG_FW("<< :\n");
2883         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2884
2885         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2886             sizeof(struct command_block);
2887
2888         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n",
2889                           current_cb_index, current_cb_address);
2890
2891         IPW_DEBUG_FW(">> :\n");
2892         return current_cb_index;
2893
2894 }
2895
2896 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2897                                         u32 src_address,
2898                                         u32 dest_address,
2899                                         u32 length,
2900                                         int interrupt_enabled, int is_last)
2901 {
2902
2903         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2904             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2905             CB_DEST_SIZE_LONG;
2906         struct command_block *cb;
2907         u32 last_cb_element = 0;
2908
2909         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2910                           src_address, dest_address, length);
2911
2912         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2913                 return -1;
2914
2915         last_cb_element = priv->sram_desc.last_cb_index;
2916         cb = &priv->sram_desc.cb_list[last_cb_element];
2917         priv->sram_desc.last_cb_index++;
2918
2919         /* Calculate the new CB control word */
2920         if (interrupt_enabled)
2921                 control |= CB_INT_ENABLED;
2922
2923         if (is_last)
2924                 control |= CB_LAST_VALID;
2925
2926         control |= length;
2927
2928         /* Calculate the CB Element's checksum value */
2929         cb->status = control ^ src_address ^ dest_address;
2930
2931         /* Copy the Source and Destination addresses */
2932         cb->dest_addr = dest_address;
2933         cb->source_addr = src_address;
2934
2935         /* Copy the Control Word last */
2936         cb->control = control;
2937
2938         return 0;
2939 }
2940
2941 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address,
2942                                  int nr, u32 dest_address, u32 len)
2943 {
2944         int ret, i;
2945         u32 size;
2946
2947         IPW_DEBUG_FW(">>\n");
2948         IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2949                           nr, dest_address, len);
2950
2951         for (i = 0; i < nr; i++) {
2952                 size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH);
2953                 ret = ipw_fw_dma_add_command_block(priv, src_address[i],
2954                                                    dest_address +
2955                                                    i * CB_MAX_LENGTH, size,
2956                                                    0, 0);
2957                 if (ret) {
2958                         IPW_DEBUG_FW_INFO(": Failed\n");
2959                         return -1;
2960                 } else
2961                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2962         }
2963
2964         IPW_DEBUG_FW("<<\n");
2965         return 0;
2966 }
2967
2968 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2969 {
2970         u32 current_index = 0, previous_index;
2971         u32 watchdog = 0;
2972
2973         IPW_DEBUG_FW(">> :\n");
2974
2975         current_index = ipw_fw_dma_command_block_index(priv);
2976         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2977                           (int)priv->sram_desc.last_cb_index);
2978
2979         while (current_index < priv->sram_desc.last_cb_index) {
2980                 udelay(50);
2981                 previous_index = current_index;
2982                 current_index = ipw_fw_dma_command_block_index(priv);
2983
2984                 if (previous_index < current_index) {
2985                         watchdog = 0;
2986                         continue;
2987                 }
2988                 if (++watchdog > 400) {
2989                         IPW_DEBUG_FW_INFO("Timeout\n");
2990                         ipw_fw_dma_dump_command_block(priv);
2991                         ipw_fw_dma_abort(priv);
2992                         return -1;
2993                 }
2994         }
2995
2996         ipw_fw_dma_abort(priv);
2997
2998         /*Disable the DMA in the CSR register */
2999         ipw_set_bit(priv, IPW_RESET_REG,
3000                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
3001
3002         IPW_DEBUG_FW("<< dmaWaitSync\n");
3003         return 0;
3004 }
3005
3006 static void ipw_remove_current_network(struct ipw_priv *priv)
3007 {
3008         struct list_head *element, *safe;
3009         struct libipw_network *network = NULL;
3010         unsigned long flags;
3011
3012         spin_lock_irqsave(&priv->ieee->lock, flags);
3013         list_for_each_safe(element, safe, &priv->ieee->network_list) {
3014                 network = list_entry(element, struct libipw_network, list);
3015                 if (ether_addr_equal(network->bssid, priv->bssid)) {
3016                         list_del(element);
3017                         list_add_tail(&network->list,
3018                                       &priv->ieee->network_free_list);
3019                 }
3020         }
3021         spin_unlock_irqrestore(&priv->ieee->lock, flags);
3022 }
3023
3024 /**
3025  * Check that card is still alive.
3026  * Reads debug register from domain0.
3027  * If card is present, pre-defined value should
3028  * be found there.
3029  *
3030  * @param priv
3031  * @return 1 if card is present, 0 otherwise
3032  */
3033 static inline int ipw_alive(struct ipw_priv *priv)
3034 {
3035         return ipw_read32(priv, 0x90) == 0xd55555d5;
3036 }
3037
3038 /* timeout in msec, attempted in 10-msec quanta */
3039 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
3040                                int timeout)
3041 {
3042         int i = 0;
3043
3044         do {
3045                 if ((ipw_read32(priv, addr) & mask) == mask)
3046                         return i;
3047                 mdelay(10);
3048                 i += 10;
3049         } while (i < timeout);
3050
3051         return -ETIME;
3052 }
3053
3054 /* These functions load the firmware and micro code for the operation of
3055  * the ipw hardware.  It assumes the buffer has all the bits for the
3056  * image and the caller is handling the memory allocation and clean up.
3057  */
3058
3059 static int ipw_stop_master(struct ipw_priv *priv)
3060 {
3061         int rc;
3062
3063         IPW_DEBUG_TRACE(">>\n");
3064         /* stop master. typical delay - 0 */
3065         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3066
3067         /* timeout is in msec, polled in 10-msec quanta */
3068         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3069                           IPW_RESET_REG_MASTER_DISABLED, 100);
3070         if (rc < 0) {
3071                 IPW_ERROR("wait for stop master failed after 100ms\n");
3072                 return -1;
3073         }
3074
3075         IPW_DEBUG_INFO("stop master %dms\n", rc);
3076
3077         return rc;
3078 }
3079
3080 static void ipw_arc_release(struct ipw_priv *priv)
3081 {
3082         IPW_DEBUG_TRACE(">>\n");
3083         mdelay(5);
3084
3085         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3086
3087         /* no one knows timing, for safety add some delay */
3088         mdelay(5);
3089 }
3090
3091 struct fw_chunk {
3092         __le32 address;
3093         __le32 length;
3094 };
3095
3096 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3097 {
3098         int rc = 0, i, addr;
3099         u8 cr = 0;
3100         __le16 *image;
3101
3102         image = (__le16 *) data;
3103
3104         IPW_DEBUG_TRACE(">>\n");
3105
3106         rc = ipw_stop_master(priv);
3107
3108         if (rc < 0)
3109                 return rc;
3110
3111         for (addr = IPW_SHARED_LOWER_BOUND;
3112              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3113                 ipw_write32(priv, addr, 0);
3114         }
3115
3116         /* no ucode (yet) */
3117         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3118         /* destroy DMA queues */
3119         /* reset sequence */
3120
3121         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3122         ipw_arc_release(priv);
3123         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3124         mdelay(1);
3125
3126         /* reset PHY */
3127         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3128         mdelay(1);
3129
3130         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3131         mdelay(1);
3132
3133         /* enable ucode store */
3134         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3135         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3136         mdelay(1);
3137
3138         /* write ucode */
3139         /**
3140          * @bug
3141          * Do NOT set indirect address register once and then
3142          * store data to indirect data register in the loop.
3143          * It seems very reasonable, but in this case DINO do not
3144          * accept ucode. It is essential to set address each time.
3145          */
3146         /* load new ipw uCode */
3147         for (i = 0; i < len / 2; i++)
3148                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3149                                 le16_to_cpu(image[i]));
3150
3151         /* enable DINO */
3152         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3153         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3154
3155         /* this is where the igx / win driver deveates from the VAP driver. */
3156
3157         /* wait for alive response */
3158         for (i = 0; i < 100; i++) {
3159                 /* poll for incoming data */
3160                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3161                 if (cr & DINO_RXFIFO_DATA)
3162                         break;
3163                 mdelay(1);
3164         }
3165
3166         if (cr & DINO_RXFIFO_DATA) {
3167                 /* alive_command_responce size is NOT multiple of 4 */
3168                 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3169
3170                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3171                         response_buffer[i] =
3172                             cpu_to_le32(ipw_read_reg32(priv,
3173                                                        IPW_BASEBAND_RX_FIFO_READ));
3174                 memcpy(&priv->dino_alive, response_buffer,
3175                        sizeof(priv->dino_alive));
3176                 if (priv->dino_alive.alive_command == 1
3177                     && priv->dino_alive.ucode_valid == 1) {
3178                         rc = 0;
3179                         IPW_DEBUG_INFO
3180                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3181                              "of %02d/%02d/%02d %02d:%02d\n",
3182                              priv->dino_alive.software_revision,
3183                              priv->dino_alive.software_revision,
3184                              priv->dino_alive.device_identifier,
3185                              priv->dino_alive.device_identifier,
3186                              priv->dino_alive.time_stamp[0],
3187                              priv->dino_alive.time_stamp[1],
3188                              priv->dino_alive.time_stamp[2],
3189                              priv->dino_alive.time_stamp[3],
3190                              priv->dino_alive.time_stamp[4]);
3191                 } else {
3192                         IPW_DEBUG_INFO("Microcode is not alive\n");
3193                         rc = -EINVAL;
3194                 }
3195         } else {
3196                 IPW_DEBUG_INFO("No alive response from DINO\n");
3197                 rc = -ETIME;
3198         }
3199
3200         /* disable DINO, otherwise for some reason
3201            firmware have problem getting alive resp. */
3202         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3203
3204         return rc;
3205 }
3206
3207 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3208 {
3209         int ret = -1;
3210         int offset = 0;
3211         struct fw_chunk *chunk;
3212         int total_nr = 0;
3213         int i;
3214         struct pci_pool *pool;
3215         void **virts;
3216         dma_addr_t *phys;
3217
3218         IPW_DEBUG_TRACE("<< :\n");
3219
3220         virts = kmalloc(sizeof(void *) * CB_NUMBER_OF_ELEMENTS_SMALL,
3221                         GFP_KERNEL);
3222         if (!virts)
3223                 return -ENOMEM;
3224
3225         phys = kmalloc(sizeof(dma_addr_t) * CB_NUMBER_OF_ELEMENTS_SMALL,
3226                         GFP_KERNEL);
3227         if (!phys) {
3228                 kfree(virts);
3229                 return -ENOMEM;
3230         }
3231         pool = pci_pool_create("ipw2200", priv->pci_dev, CB_MAX_LENGTH, 0, 0);
3232         if (!pool) {
3233                 IPW_ERROR("pci_pool_create failed\n");
3234                 kfree(phys);
3235                 kfree(virts);
3236                 return -ENOMEM;
3237         }
3238
3239         /* Start the Dma */
3240         ret = ipw_fw_dma_enable(priv);
3241
3242         /* the DMA is already ready this would be a bug. */
3243         BUG_ON(priv->sram_desc.last_cb_index > 0);
3244
3245         do {
3246                 u32 chunk_len;
3247                 u8 *start;
3248                 int size;
3249                 int nr = 0;
3250
3251                 chunk = (struct fw_chunk *)(data + offset);
3252                 offset += sizeof(struct fw_chunk);
3253                 chunk_len = le32_to_cpu(chunk->length);
3254                 start = data + offset;
3255
3256                 nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH;
3257                 for (i = 0; i < nr; i++) {
3258                         virts[total_nr] = pci_pool_alloc(pool, GFP_KERNEL,
3259                                                          &phys[total_nr]);
3260                         if (!virts[total_nr]) {
3261                                 ret = -ENOMEM;
3262                                 goto out;
3263                         }
3264                         size = min_t(u32, chunk_len - i * CB_MAX_LENGTH,
3265                                      CB_MAX_LENGTH);
3266                         memcpy(virts[total_nr], start, size);
3267                         start += size;
3268                         total_nr++;
3269                         /* We don't support fw chunk larger than 64*8K */
3270                         BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL);
3271                 }
3272
3273                 /* build DMA packet and queue up for sending */
3274                 /* dma to chunk->address, the chunk->length bytes from data +
3275                  * offeset*/
3276                 /* Dma loading */
3277                 ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr],
3278                                             nr, le32_to_cpu(chunk->address),
3279                                             chunk_len);
3280                 if (ret) {
3281                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3282                         goto out;
3283                 }
3284
3285                 offset += chunk_len;
3286         } while (offset < len);
3287
3288         /* Run the DMA and wait for the answer */
3289         ret = ipw_fw_dma_kick(priv);
3290         if (ret) {
3291                 IPW_ERROR("dmaKick Failed\n");
3292                 goto out;
3293         }
3294
3295         ret = ipw_fw_dma_wait(priv);
3296         if (ret) {
3297                 IPW_ERROR("dmaWaitSync Failed\n");
3298                 goto out;
3299         }
3300  out:
3301         for (i = 0; i < total_nr; i++)
3302                 pci_pool_free(pool, virts[i], phys[i]);
3303
3304         pci_pool_destroy(pool);
3305         kfree(phys);
3306         kfree(virts);
3307
3308         return ret;
3309 }
3310
3311 /* stop nic */
3312 static int ipw_stop_nic(struct ipw_priv *priv)
3313 {
3314         int rc = 0;
3315
3316         /* stop */
3317         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3318
3319         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3320                           IPW_RESET_REG_MASTER_DISABLED, 500);
3321         if (rc < 0) {
3322                 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3323                 return rc;
3324         }
3325
3326         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3327
3328         return rc;
3329 }
3330
3331 static void ipw_start_nic(struct ipw_priv *priv)
3332 {
3333         IPW_DEBUG_TRACE(">>\n");
3334
3335         /* prvHwStartNic  release ARC */
3336         ipw_clear_bit(priv, IPW_RESET_REG,
3337                       IPW_RESET_REG_MASTER_DISABLED |
3338                       IPW_RESET_REG_STOP_MASTER |
3339                       CBD_RESET_REG_PRINCETON_RESET);
3340
3341         /* enable power management */
3342         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3343                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3344
3345         IPW_DEBUG_TRACE("<<\n");
3346 }
3347
3348 static int ipw_init_nic(struct ipw_priv *priv)
3349 {
3350         int rc;
3351
3352         IPW_DEBUG_TRACE(">>\n");
3353         /* reset */
3354         /*prvHwInitNic */
3355         /* set "initialization complete" bit to move adapter to D0 state */
3356         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3357
3358         /* low-level PLL activation */
3359         ipw_write32(priv, IPW_READ_INT_REGISTER,
3360                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3361
3362         /* wait for clock stabilization */
3363         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3364                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3365         if (rc < 0)
3366                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3367
3368         /* assert SW reset */
3369         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3370
3371         udelay(10);
3372
3373         /* set "initialization complete" bit to move adapter to D0 state */
3374         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3375
3376         IPW_DEBUG_TRACE(">>\n");
3377         return 0;
3378 }
3379
3380 /* Call this function from process context, it will sleep in request_firmware.
3381  * Probe is an ok place to call this from.
3382  */
3383 static int ipw_reset_nic(struct ipw_priv *priv)
3384 {
3385         int rc = 0;
3386         unsigned long flags;
3387
3388         IPW_DEBUG_TRACE(">>\n");
3389
3390         rc = ipw_init_nic(priv);
3391
3392         spin_lock_irqsave(&priv->lock, flags);
3393         /* Clear the 'host command active' bit... */
3394         priv->status &= ~STATUS_HCMD_ACTIVE;
3395         wake_up_interruptible(&priv->wait_command_queue);
3396         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3397         wake_up_interruptible(&priv->wait_state);
3398         spin_unlock_irqrestore(&priv->lock, flags);
3399
3400         IPW_DEBUG_TRACE("<<\n");
3401         return rc;
3402 }
3403
3404
3405 struct ipw_fw {
3406         __le32 ver;
3407         __le32 boot_size;
3408         __le32 ucode_size;
3409         __le32 fw_size;
3410         u8 data[0];
3411 };
3412
3413 static int ipw_get_fw(struct ipw_priv *priv,
3414                       const struct firmware **raw, const char *name)
3415 {
3416         struct ipw_fw *fw;
3417         int rc;
3418
3419         /* ask firmware_class module to get the boot firmware off disk */
3420         rc = request_firmware(raw, name, &priv->pci_dev->dev);
3421         if (rc < 0) {
3422                 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3423                 return rc;
3424         }
3425
3426         if ((*raw)->size < sizeof(*fw)) {
3427                 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3428                 return -EINVAL;
3429         }
3430
3431         fw = (void *)(*raw)->data;
3432
3433         if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3434             le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3435                 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3436                           name, (*raw)->size);
3437                 return -EINVAL;
3438         }
3439
3440         IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3441                        name,
3442                        le32_to_cpu(fw->ver) >> 16,
3443                        le32_to_cpu(fw->ver) & 0xff,
3444                        (*raw)->size - sizeof(*fw));
3445         return 0;
3446 }
3447
3448 #define IPW_RX_BUF_SIZE (3000)
3449
3450 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3451                                       struct ipw_rx_queue *rxq)
3452 {
3453         unsigned long flags;
3454         int i;
3455
3456         spin_lock_irqsave(&rxq->lock, flags);
3457
3458         INIT_LIST_HEAD(&rxq->rx_free);
3459         INIT_LIST_HEAD(&rxq->rx_used);
3460
3461         /* Fill the rx_used queue with _all_ of the Rx buffers */
3462         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3463                 /* In the reset function, these buffers may have been allocated
3464                  * to an SKB, so we need to unmap and free potential storage */
3465                 if (rxq->pool[i].skb != NULL) {
3466                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3467                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3468                         dev_kfree_skb(rxq->pool[i].skb);
3469                         rxq->pool[i].skb = NULL;
3470                 }
3471                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3472         }
3473
3474         /* Set us so that we have processed and used all buffers, but have
3475          * not restocked the Rx queue with fresh buffers */
3476         rxq->read = rxq->write = 0;
3477         rxq->free_count = 0;
3478         spin_unlock_irqrestore(&rxq->lock, flags);
3479 }
3480
3481 #ifdef CONFIG_PM
3482 static int fw_loaded = 0;
3483 static const struct firmware *raw = NULL;
3484
3485 static void free_firmware(void)
3486 {
3487         if (fw_loaded) {
3488                 release_firmware(raw);
3489                 raw = NULL;
3490                 fw_loaded = 0;
3491         }
3492 }
3493 #else
3494 #define free_firmware() do {} while (0)
3495 #endif
3496
3497 static int ipw_load(struct ipw_priv *priv)
3498 {
3499 #ifndef CONFIG_PM
3500         const struct firmware *raw = NULL;
3501 #endif
3502         struct ipw_fw *fw;
3503         u8 *boot_img, *ucode_img, *fw_img;
3504         u8 *name = NULL;
3505         int rc = 0, retries = 3;
3506
3507         switch (priv->ieee->iw_mode) {
3508         case IW_MODE_ADHOC:
3509                 name = "ipw2200-ibss.fw";
3510                 break;
3511 #ifdef CONFIG_IPW2200_MONITOR
3512         case IW_MODE_MONITOR:
3513                 name = "ipw2200-sniffer.fw";
3514                 break;
3515 #endif
3516         case IW_MODE_INFRA:
3517                 name = "ipw2200-bss.fw";
3518                 break;
3519         }
3520
3521         if (!name) {
3522                 rc = -EINVAL;
3523                 goto error;
3524         }
3525
3526 #ifdef CONFIG_PM
3527         if (!fw_loaded) {
3528 #endif
3529                 rc = ipw_get_fw(priv, &raw, name);
3530                 if (rc < 0)
3531                         goto error;
3532 #ifdef CONFIG_PM
3533         }
3534 #endif
3535
3536         fw = (void *)raw->data;
3537         boot_img = &fw->data[0];
3538         ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3539         fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3540                            le32_to_cpu(fw->ucode_size)];
3541
3542         if (rc < 0)
3543                 goto error;
3544
3545         if (!priv->rxq)
3546                 priv->rxq = ipw_rx_queue_alloc(priv);
3547         else
3548                 ipw_rx_queue_reset(priv, priv->rxq);
3549         if (!priv->rxq) {
3550                 IPW_ERROR("Unable to initialize Rx queue\n");
3551                 rc = -ENOMEM;
3552                 goto error;
3553         }
3554
3555       retry:
3556         /* Ensure interrupts are disabled */
3557         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3558         priv->status &= ~STATUS_INT_ENABLED;
3559
3560         /* ack pending interrupts */
3561         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3562
3563         ipw_stop_nic(priv);
3564
3565         rc = ipw_reset_nic(priv);
3566         if (rc < 0) {
3567                 IPW_ERROR("Unable to reset NIC\n");
3568                 goto error;
3569         }
3570
3571         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3572                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3573
3574         /* DMA the initial boot firmware into the device */
3575         rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3576         if (rc < 0) {
3577                 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3578                 goto error;
3579         }
3580
3581         /* kick start the device */
3582         ipw_start_nic(priv);
3583
3584         /* wait for the device to finish its initial startup sequence */
3585         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3586                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3587         if (rc < 0) {
3588                 IPW_ERROR("device failed to boot initial fw image\n");
3589                 goto error;
3590         }
3591         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3592
3593         /* ack fw init done interrupt */
3594         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3595
3596         /* DMA the ucode into the device */
3597         rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3598         if (rc < 0) {
3599                 IPW_ERROR("Unable to load ucode: %d\n", rc);
3600                 goto error;
3601         }
3602
3603         /* stop nic */
3604         ipw_stop_nic(priv);
3605
3606         /* DMA bss firmware into the device */
3607         rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3608         if (rc < 0) {
3609                 IPW_ERROR("Unable to load firmware: %d\n", rc);
3610                 goto error;
3611         }
3612 #ifdef CONFIG_PM
3613         fw_loaded = 1;
3614 #endif
3615
3616         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3617
3618         rc = ipw_queue_reset(priv);
3619         if (rc < 0) {
3620                 IPW_ERROR("Unable to initialize queues\n");
3621                 goto error;
3622         }
3623
3624         /* Ensure interrupts are disabled */
3625         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3626         /* ack pending interrupts */
3627         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3628
3629         /* kick start the device */
3630         ipw_start_nic(priv);
3631
3632         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3633                 if (retries > 0) {
3634                         IPW_WARNING("Parity error.  Retrying init.\n");
3635                         retries--;
3636                         goto retry;
3637                 }
3638
3639                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3640                 rc = -EIO;
3641                 goto error;
3642         }
3643
3644         /* wait for the device */
3645         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3646                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3647         if (rc < 0) {
3648                 IPW_ERROR("device failed to start within 500ms\n");
3649                 goto error;
3650         }
3651         IPW_DEBUG_INFO("device response after %dms\n", rc);
3652
3653         /* ack fw init done interrupt */
3654         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3655
3656         /* read eeprom data */
3657         priv->eeprom_delay = 1;
3658         ipw_read_eeprom(priv);
3659         /* initialize the eeprom region of sram */
3660         ipw_eeprom_init_sram(priv);
3661
3662         /* enable interrupts */
3663         ipw_enable_interrupts(priv);
3664
3665         /* Ensure our queue has valid packets */
3666         ipw_rx_queue_replenish(priv);
3667
3668         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3669
3670         /* ack pending interrupts */
3671         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3672
3673 #ifndef CONFIG_PM
3674         release_firmware(raw);
3675 #endif
3676         return 0;
3677
3678       error:
3679         if (priv->rxq) {
3680                 ipw_rx_queue_free(priv, priv->rxq);
3681                 priv->rxq = NULL;
3682         }
3683         ipw_tx_queue_free(priv);
3684         release_firmware(raw);
3685 #ifdef CONFIG_PM
3686         fw_loaded = 0;
3687         raw = NULL;
3688 #endif
3689
3690         return rc;
3691 }
3692
3693 /**
3694  * DMA services
3695  *
3696  * Theory of operation
3697  *
3698  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3699  * 2 empty entries always kept in the buffer to protect from overflow.
3700  *
3701  * For Tx queue, there are low mark and high mark limits. If, after queuing
3702  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3703  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3704  * Tx queue resumed.
3705  *
3706  * The IPW operates with six queues, one receive queue in the device's
3707  * sram, one transmit queue for sending commands to the device firmware,
3708  * and four transmit queues for data.
3709  *
3710  * The four transmit queues allow for performing quality of service (qos)
3711  * transmissions as per the 802.11 protocol.  Currently Linux does not
3712  * provide a mechanism to the user for utilizing prioritized queues, so
3713  * we only utilize the first data transmit queue (queue1).
3714  */
3715
3716 /**
3717  * Driver allocates buffers of this size for Rx
3718  */
3719
3720 /**
3721  * ipw_rx_queue_space - Return number of free slots available in queue.
3722  */
3723 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3724 {
3725         int s = q->read - q->write;
3726         if (s <= 0)
3727                 s += RX_QUEUE_SIZE;
3728         /* keep some buffer to not confuse full and empty queue */
3729         s -= 2;
3730         if (s < 0)
3731                 s = 0;
3732         return s;
3733 }
3734
3735 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3736 {
3737         int s = q->last_used - q->first_empty;
3738         if (s <= 0)
3739                 s += q->n_bd;
3740         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3741         if (s < 0)
3742                 s = 0;
3743         return s;
3744 }
3745
3746 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3747 {
3748         return (++index == n_bd) ? 0 : index;
3749 }
3750
3751 /**
3752  * Initialize common DMA queue structure
3753  *
3754  * @param q                queue to init
3755  * @param count            Number of BD's to allocate. Should be power of 2
3756  * @param read_register    Address for 'read' register
3757  *                         (not offset within BAR, full address)
3758  * @param write_register   Address for 'write' register
3759  *                         (not offset within BAR, full address)
3760  * @param base_register    Address for 'base' register
3761  *                         (not offset within BAR, full address)
3762  * @param size             Address for 'size' register
3763  *                         (not offset within BAR, full address)
3764  */
3765 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3766                            int count, u32 read, u32 write, u32 base, u32 size)
3767 {
3768         q->n_bd = count;
3769
3770         q->low_mark = q->n_bd / 4;
3771         if (q->low_mark < 4)
3772                 q->low_mark = 4;
3773
3774         q->high_mark = q->n_bd / 8;
3775         if (q->high_mark < 2)
3776                 q->high_mark = 2;
3777
3778         q->first_empty = q->last_used = 0;
3779         q->reg_r = read;
3780         q->reg_w = write;
3781
3782         ipw_write32(priv, base, q->dma_addr);
3783         ipw_write32(priv, size, count);
3784         ipw_write32(priv, read, 0);
3785         ipw_write32(priv, write, 0);
3786
3787         _ipw_read32(priv, 0x90);
3788 }
3789
3790 static int ipw_queue_tx_init(struct ipw_priv *priv,
3791                              struct clx2_tx_queue *q,
3792                              int count, u32 read, u32 write, u32 base, u32 size)
3793 {
3794         struct pci_dev *dev = priv->pci_dev;
3795
3796         q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3797         if (!q->txb) {
3798                 IPW_ERROR("vmalloc for auxiliary BD structures failed\n");
3799                 return -ENOMEM;
3800         }
3801
3802         q->bd =
3803             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3804         if (!q->bd) {
3805                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3806                           sizeof(q->bd[0]) * count);
3807                 kfree(q->txb);
3808                 q->txb = NULL;
3809                 return -ENOMEM;
3810         }
3811
3812         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3813         return 0;
3814 }
3815
3816 /**
3817  * Free one TFD, those at index [txq->q.last_used].
3818  * Do NOT advance any indexes
3819  *
3820  * @param dev
3821  * @param txq
3822  */
3823 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3824                                   struct clx2_tx_queue *txq)
3825 {
3826         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3827         struct pci_dev *dev = priv->pci_dev;
3828         int i;
3829
3830         /* classify bd */
3831         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3832                 /* nothing to cleanup after for host commands */
3833                 return;
3834
3835         /* sanity check */
3836         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3837                 IPW_ERROR("Too many chunks: %i\n",
3838                           le32_to_cpu(bd->u.data.num_chunks));
3839                 /** @todo issue fatal error, it is quite serious situation */
3840                 return;
3841         }
3842
3843         /* unmap chunks if any */
3844         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3845                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3846                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3847                                  PCI_DMA_TODEVICE);
3848                 if (txq->txb[txq->q.last_used]) {
3849                         libipw_txb_free(txq->txb[txq->q.last_used]);
3850                         txq->txb[txq->q.last_used] = NULL;
3851                 }
3852         }
3853 }
3854
3855 /**
3856  * Deallocate DMA queue.
3857  *
3858  * Empty queue by removing and destroying all BD's.
3859  * Free all buffers.
3860  *
3861  * @param dev
3862  * @param q
3863  */
3864 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3865 {
3866         struct clx2_queue *q = &txq->q;
3867         struct pci_dev *dev = priv->pci_dev;
3868
3869         if (q->n_bd == 0)
3870                 return;
3871
3872         /* first, empty all BD's */
3873         for (; q->first_empty != q->last_used;
3874              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3875                 ipw_queue_tx_free_tfd(priv, txq);
3876         }
3877
3878         /* free buffers belonging to queue itself */
3879         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3880                             q->dma_addr);
3881         kfree(txq->txb);
3882
3883         /* 0 fill whole structure */
3884         memset(txq, 0, sizeof(*txq));
3885 }
3886
3887 /**
3888  * Destroy all DMA queues and structures
3889  *
3890  * @param priv
3891  */
3892 static void ipw_tx_queue_free(struct ipw_priv *priv)
3893 {
3894         /* Tx CMD queue */
3895         ipw_queue_tx_free(priv, &priv->txq_cmd);
3896
3897         /* Tx queues */
3898         ipw_queue_tx_free(priv, &priv->txq[0]);
3899         ipw_queue_tx_free(priv, &priv->txq[1]);
3900         ipw_queue_tx_free(priv, &priv->txq[2]);
3901         ipw_queue_tx_free(priv, &priv->txq[3]);
3902 }
3903
3904 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3905 {
3906         /* First 3 bytes are manufacturer */
3907         bssid[0] = priv->mac_addr[0];
3908         bssid[1] = priv->mac_addr[1];
3909         bssid[2] = priv->mac_addr[2];
3910
3911         /* Last bytes are random */
3912         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3913
3914         bssid[0] &= 0xfe;       /* clear multicast bit */
3915         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3916 }
3917
3918 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3919 {
3920         struct ipw_station_entry entry;
3921         int i;
3922
3923         for (i = 0; i < priv->num_stations; i++) {
3924                 if (ether_addr_equal(priv->stations[i], bssid)) {
3925                         /* Another node is active in network */
3926                         priv->missed_adhoc_beacons = 0;
3927                         if (!(priv->config & CFG_STATIC_CHANNEL))
3928                                 /* when other nodes drop out, we drop out */
3929                                 priv->config &= ~CFG_ADHOC_PERSIST;
3930
3931                         return i;
3932                 }
3933         }
3934
3935         if (i == MAX_STATIONS)
3936                 return IPW_INVALID_STATION;
3937
3938         IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3939
3940         entry.reserved = 0;
3941         entry.support_mode = 0;
3942         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3943         memcpy(priv->stations[i], bssid, ETH_ALEN);
3944         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3945                          &entry, sizeof(entry));
3946         priv->num_stations++;
3947
3948         return i;
3949 }
3950
3951 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3952 {
3953         int i;
3954
3955         for (i = 0; i < priv->num_stations; i++)
3956                 if (ether_addr_equal(priv->stations[i], bssid))
3957                         return i;
3958
3959         return IPW_INVALID_STATION;
3960 }
3961
3962 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3963 {
3964         int err;
3965
3966         if (priv->status & STATUS_ASSOCIATING) {
3967                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3968                 schedule_work(&priv->disassociate);
3969                 return;
3970         }
3971
3972         if (!(priv->status & STATUS_ASSOCIATED)) {
3973                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3974                 return;
3975         }
3976
3977         IPW_DEBUG_ASSOC("Disassocation attempt from %pM "
3978                         "on channel %d.\n",
3979                         priv->assoc_request.bssid,
3980                         priv->assoc_request.channel);
3981
3982         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3983         priv->status |= STATUS_DISASSOCIATING;
3984
3985         if (quiet)
3986                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3987         else
3988                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3989
3990         err = ipw_send_associate(priv, &priv->assoc_request);
3991         if (err) {
3992                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3993                              "failed.\n");
3994                 return;
3995         }
3996
3997 }
3998
3999 static int ipw_disassociate(void *data)
4000 {
4001         struct ipw_priv *priv = data;
4002         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
4003                 return 0;
4004         ipw_send_disassociate(data, 0);
4005         netif_carrier_off(priv->net_dev);
4006         return 1;
4007 }
4008
4009 static void ipw_bg_disassociate(struct work_struct *work)
4010 {
4011         struct ipw_priv *priv =
4012                 container_of(work, struct ipw_priv, disassociate);
4013         mutex_lock(&priv->mutex);
4014         ipw_disassociate(priv);
4015         mutex_unlock(&priv->mutex);
4016 }
4017
4018 static void ipw_system_config(struct work_struct *work)
4019 {
4020         struct ipw_priv *priv =
4021                 container_of(work, struct ipw_priv, system_config);
4022
4023 #ifdef CONFIG_IPW2200_PROMISCUOUS
4024         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
4025                 priv->sys_config.accept_all_data_frames = 1;
4026                 priv->sys_config.accept_non_directed_frames = 1;
4027                 priv->sys_config.accept_all_mgmt_bcpr = 1;
4028                 priv->sys_config.accept_all_mgmt_frames = 1;
4029         }
4030 #endif
4031
4032         ipw_send_system_config(priv);
4033 }
4034
4035 struct ipw_status_code {
4036         u16 status;
4037         const char *reason;
4038 };
4039
4040 static const struct ipw_status_code ipw_status_codes[] = {
4041         {0x00, "Successful"},
4042         {0x01, "Unspecified failure"},
4043         {0x0A, "Cannot support all requested capabilities in the "
4044          "Capability information field"},
4045         {0x0B, "Reassociation denied due to inability to confirm that "
4046          "association exists"},
4047         {0x0C, "Association denied due to reason outside the scope of this "
4048          "standard"},
4049         {0x0D,
4050          "Responding station does not support the specified authentication "
4051          "algorithm"},
4052         {0x0E,
4053          "Received an Authentication frame with authentication sequence "
4054          "transaction sequence number out of expected sequence"},
4055         {0x0F, "Authentication rejected because of challenge failure"},
4056         {0x10, "Authentication rejected due to timeout waiting for next "
4057          "frame in sequence"},
4058         {0x11, "Association denied because AP is unable to handle additional "
4059          "associated stations"},
4060         {0x12,
4061          "Association denied due to requesting station not supporting all "
4062          "of the datarates in the BSSBasicServiceSet Parameter"},
4063         {0x13,
4064          "Association denied due to requesting station not supporting "
4065          "short preamble operation"},
4066         {0x14,
4067          "Association denied due to requesting station not supporting "
4068          "PBCC encoding"},
4069         {0x15,
4070          "Association denied due to requesting station not supporting "
4071          "channel agility"},
4072         {0x19,
4073          "Association denied due to requesting station not supporting "
4074          "short slot operation"},
4075         {0x1A,
4076          "Association denied due to requesting station not supporting "
4077          "DSSS-OFDM operation"},
4078         {0x28, "Invalid Information Element"},
4079         {0x29, "Group Cipher is not valid"},
4080         {0x2A, "Pairwise Cipher is not valid"},
4081         {0x2B, "AKMP is not valid"},
4082         {0x2C, "Unsupported RSN IE version"},
4083         {0x2D, "Invalid RSN IE Capabilities"},
4084         {0x2E, "Cipher suite is rejected per security policy"},
4085 };
4086
4087 static const char *ipw_get_status_code(u16 status)
4088 {
4089         int i;
4090         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
4091                 if (ipw_status_codes[i].status == (status & 0xff))
4092                         return ipw_status_codes[i].reason;
4093         return "Unknown status value.";
4094 }
4095
4096 static void inline average_init(struct average *avg)
4097 {
4098         memset(avg, 0, sizeof(*avg));
4099 }
4100
4101 #define DEPTH_RSSI 8
4102 #define DEPTH_NOISE 16
4103 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4104 {
4105         return ((depth-1)*prev_avg +  val)/depth;
4106 }
4107
4108 static void average_add(struct average *avg, s16 val)
4109 {
4110         avg->sum -= avg->entries[avg->pos];
4111         avg->sum += val;
4112         avg->entries[avg->pos++] = val;
4113         if (unlikely(avg->pos == AVG_ENTRIES)) {
4114                 avg->init = 1;
4115                 avg->pos = 0;
4116         }
4117 }
4118
4119 static s16 average_value(struct average *avg)
4120 {
4121         if (!unlikely(avg->init)) {
4122                 if (avg->pos)
4123                         return avg->sum / avg->pos;
4124                 return 0;
4125         }
4126
4127         return avg->sum / AVG_ENTRIES;
4128 }
4129
4130 static void ipw_reset_stats(struct ipw_priv *priv)
4131 {
4132         u32 len = sizeof(u32);
4133
4134         priv->quality = 0;
4135
4136         average_init(&priv->average_missed_beacons);
4137         priv->exp_avg_rssi = -60;
4138         priv->exp_avg_noise = -85 + 0x100;
4139
4140         priv->last_rate = 0;
4141         priv->last_missed_beacons = 0;
4142         priv->last_rx_packets = 0;
4143         priv->last_tx_packets = 0;
4144         priv->last_tx_failures = 0;
4145
4146         /* Firmware managed, reset only when NIC is restarted, so we have to
4147          * normalize on the current value */
4148         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4149                         &priv->last_rx_err, &len);
4150         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4151                         &priv->last_tx_failures, &len);
4152
4153         /* Driver managed, reset with each association */
4154         priv->missed_adhoc_beacons = 0;
4155         priv->missed_beacons = 0;
4156         priv->tx_packets = 0;
4157         priv->rx_packets = 0;
4158
4159 }
4160
4161 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4162 {
4163         u32 i = 0x80000000;
4164         u32 mask = priv->rates_mask;
4165         /* If currently associated in B mode, restrict the maximum
4166          * rate match to B rates */
4167         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4168                 mask &= LIBIPW_CCK_RATES_MASK;
4169
4170         /* TODO: Verify that the rate is supported by the current rates
4171          * list. */
4172
4173         while (i && !(mask & i))
4174                 i >>= 1;
4175         switch (i) {
4176         case LIBIPW_CCK_RATE_1MB_MASK:
4177                 return 1000000;
4178         case LIBIPW_CCK_RATE_2MB_MASK:
4179                 return 2000000;
4180         case LIBIPW_CCK_RATE_5MB_MASK:
4181                 return 5500000;
4182         case LIBIPW_OFDM_RATE_6MB_MASK:
4183                 return 6000000;
4184         case LIBIPW_OFDM_RATE_9MB_MASK:
4185                 return 9000000;
4186         case LIBIPW_CCK_RATE_11MB_MASK:
4187                 return 11000000;
4188         case LIBIPW_OFDM_RATE_12MB_MASK:
4189                 return 12000000;
4190         case LIBIPW_OFDM_RATE_18MB_MASK:
4191                 return 18000000;
4192         case LIBIPW_OFDM_RATE_24MB_MASK:
4193                 return 24000000;
4194         case LIBIPW_OFDM_RATE_36MB_MASK:
4195                 return 36000000;
4196         case LIBIPW_OFDM_RATE_48MB_MASK:
4197                 return 48000000;
4198         case LIBIPW_OFDM_RATE_54MB_MASK:
4199                 return 54000000;
4200         }
4201
4202         if (priv->ieee->mode == IEEE_B)
4203                 return 11000000;
4204         else
4205                 return 54000000;
4206 }
4207
4208 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4209 {
4210         u32 rate, len = sizeof(rate);
4211         int err;
4212
4213         if (!(priv->status & STATUS_ASSOCIATED))
4214                 return 0;
4215
4216         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4217                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4218                                       &len);
4219                 if (err) {
4220                         IPW_DEBUG_INFO("failed querying ordinals.\n");
4221                         return 0;
4222                 }
4223         } else
4224                 return ipw_get_max_rate(priv);
4225
4226         switch (rate) {
4227         case IPW_TX_RATE_1MB:
4228                 return 1000000;
4229         case IPW_TX_RATE_2MB:
4230                 return 2000000;
4231         case IPW_TX_RATE_5MB:
4232                 return 5500000;
4233         case IPW_TX_RATE_6MB:
4234                 return 6000000;
4235         case IPW_TX_RATE_9MB:
4236                 return 9000000;
4237         case IPW_TX_RATE_11MB:
4238                 return 11000000;
4239         case IPW_TX_RATE_12MB:
4240                 return 12000000;
4241         case IPW_TX_RATE_18MB:
4242                 return 18000000;
4243         case IPW_TX_RATE_24MB:
4244                 return 24000000;
4245         case IPW_TX_RATE_36MB:
4246                 return 36000000;
4247         case IPW_TX_RATE_48MB:
4248                 return 48000000;
4249         case IPW_TX_RATE_54MB:
4250                 return 54000000;
4251         }
4252
4253         return 0;
4254 }
4255
4256 #define IPW_STATS_INTERVAL (2 * HZ)
4257 static void ipw_gather_stats(struct ipw_priv *priv)
4258 {
4259         u32 rx_err, rx_err_delta, rx_packets_delta;
4260         u32 tx_failures, tx_failures_delta, tx_packets_delta;
4261         u32 missed_beacons_percent, missed_beacons_delta;
4262         u32 quality = 0;
4263         u32 len = sizeof(u32);
4264         s16 rssi;
4265         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4266             rate_quality;
4267         u32 max_rate;
4268
4269         if (!(priv->status & STATUS_ASSOCIATED)) {
4270                 priv->quality = 0;
4271                 return;
4272         }
4273
4274         /* Update the statistics */
4275         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4276                         &priv->missed_beacons, &len);
4277         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4278         priv->last_missed_beacons = priv->missed_beacons;
4279         if (priv->assoc_request.beacon_interval) {
4280                 missed_beacons_percent = missed_beacons_delta *
4281                     (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4282                     (IPW_STATS_INTERVAL * 10);
4283         } else {
4284                 missed_beacons_percent = 0;
4285         }
4286         average_add(&priv->average_missed_beacons, missed_beacons_percent);
4287
4288         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4289         rx_err_delta = rx_err - priv->last_rx_err;
4290         priv->last_rx_err = rx_err;
4291
4292         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4293         tx_failures_delta = tx_failures - priv->last_tx_failures;
4294         priv->last_tx_failures = tx_failures;
4295
4296         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4297         priv->last_rx_packets = priv->rx_packets;
4298
4299         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4300         priv->last_tx_packets = priv->tx_packets;
4301
4302         /* Calculate quality based on the following:
4303          *
4304          * Missed beacon: 100% = 0, 0% = 70% missed
4305          * Rate: 60% = 1Mbs, 100% = Max
4306          * Rx and Tx errors represent a straight % of total Rx/Tx
4307          * RSSI: 100% = > -50,  0% = < -80
4308          * Rx errors: 100% = 0, 0% = 50% missed
4309          *
4310          * The lowest computed quality is used.
4311          *
4312          */
4313 #define BEACON_THRESHOLD 5
4314         beacon_quality = 100 - missed_beacons_percent;
4315         if (beacon_quality < BEACON_THRESHOLD)
4316                 beacon_quality = 0;
4317         else
4318                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4319                     (100 - BEACON_THRESHOLD);
4320         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4321                         beacon_quality, missed_beacons_percent);
4322
4323         priv->last_rate = ipw_get_current_rate(priv);
4324         max_rate = ipw_get_max_rate(priv);
4325         rate_quality = priv->last_rate * 40 / max_rate + 60;
4326         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4327                         rate_quality, priv->last_rate / 1000000);
4328
4329         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4330                 rx_quality = 100 - (rx_err_delta * 100) /
4331                     (rx_packets_delta + rx_err_delta);
4332         else
4333                 rx_quality = 100;
4334         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4335                         rx_quality, rx_err_delta, rx_packets_delta);
4336
4337         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4338                 tx_quality = 100 - (tx_failures_delta * 100) /
4339                     (tx_packets_delta + tx_failures_delta);
4340         else
4341                 tx_quality = 100;
4342         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4343                         tx_quality, tx_failures_delta, tx_packets_delta);
4344
4345         rssi = priv->exp_avg_rssi;
4346         signal_quality =
4347             (100 *
4348              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4349              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4350              (priv->ieee->perfect_rssi - rssi) *
4351              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4352               62 * (priv->ieee->perfect_rssi - rssi))) /
4353             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4354              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4355         if (signal_quality > 100)
4356                 signal_quality = 100;
4357         else if (signal_quality < 1)
4358                 signal_quality = 0;
4359
4360         IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4361                         signal_quality, rssi);
4362
4363         quality = min(rx_quality, signal_quality);
4364         quality = min(tx_quality, quality);
4365         quality = min(rate_quality, quality);
4366         quality = min(beacon_quality, quality);
4367         if (quality == beacon_quality)
4368                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4369                                 quality);
4370         if (quality == rate_quality)
4371                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4372                                 quality);
4373         if (quality == tx_quality)
4374                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4375                                 quality);
4376         if (quality == rx_quality)
4377                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4378                                 quality);
4379         if (quality == signal_quality)
4380                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4381                                 quality);
4382
4383         priv->quality = quality;
4384
4385         schedule_delayed_work(&priv->gather_stats, IPW_STATS_INTERVAL);
4386 }
4387
4388 static void ipw_bg_gather_stats(struct work_struct *work)
4389 {
4390         struct ipw_priv *priv =
4391                 container_of(work, struct ipw_priv, gather_stats.work);
4392         mutex_lock(&priv->mutex);
4393         ipw_gather_stats(priv);
4394         mutex_unlock(&priv->mutex);
4395 }
4396
4397 /* Missed beacon behavior:
4398  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4399  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4400  * Above disassociate threshold, give up and stop scanning.
4401  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4402 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4403                                             int missed_count)
4404 {
4405         priv->notif_missed_beacons = missed_count;
4406
4407         if (missed_count > priv->disassociate_threshold &&
4408             priv->status & STATUS_ASSOCIATED) {
4409                 /* If associated and we've hit the missed
4410                  * beacon threshold, disassociate, turn
4411                  * off roaming, and abort any active scans */
4412                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4413                           IPW_DL_STATE | IPW_DL_ASSOC,
4414                           "Missed beacon: %d - disassociate\n", missed_count);
4415                 priv->status &= ~STATUS_ROAMING;
4416                 if (priv->status & STATUS_SCANNING) {
4417                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4418                                   IPW_DL_STATE,
4419                                   "Aborting scan with missed beacon.\n");
4420                         schedule_work(&priv->abort_scan);
4421                 }
4422
4423                 schedule_work(&priv->disassociate);
4424                 return;
4425         }
4426
4427         if (priv->status & STATUS_ROAMING) {
4428                 /* If we are currently roaming, then just
4429                  * print a debug statement... */
4430                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4431                           "Missed beacon: %d - roam in progress\n",
4432                           missed_count);
4433                 return;
4434         }
4435
4436         if (roaming &&
4437             (missed_count > priv->roaming_threshold &&
4438              missed_count <= priv->disassociate_threshold)) {
4439                 /* If we are not already roaming, set the ROAM
4440                  * bit in the status and kick off a scan.
4441                  * This can happen several times before we reach
4442                  * disassociate_threshold. */
4443                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4444                           "Missed beacon: %d - initiate "
4445                           "roaming\n", missed_count);
4446                 if (!(priv->status & STATUS_ROAMING)) {
4447                         priv->status |= STATUS_ROAMING;
4448                         if (!(priv->status & STATUS_SCANNING))
4449                                 schedule_delayed_work(&priv->request_scan, 0);
4450                 }
4451                 return;
4452         }
4453
4454         if (priv->status & STATUS_SCANNING &&
4455             missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4456                 /* Stop scan to keep fw from getting
4457                  * stuck (only if we aren't roaming --
4458                  * otherwise we'll never scan more than 2 or 3
4459                  * channels..) */
4460                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4461                           "Aborting scan with missed beacon.\n");
4462                 schedule_work(&priv->abort_scan);
4463         }
4464
4465         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4466 }
4467
4468 static void ipw_scan_event(struct work_struct *work)
4469 {
4470         union iwreq_data wrqu;
4471
4472         struct ipw_priv *priv =
4473                 container_of(work, struct ipw_priv, scan_event.work);
4474
4475         wrqu.data.length = 0;
4476         wrqu.data.flags = 0;
4477         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4478 }
4479
4480 static void handle_scan_event(struct ipw_priv *priv)
4481 {
4482         /* Only userspace-requested scan completion events go out immediately */
4483         if (!priv->user_requested_scan) {
4484                 schedule_delayed_work(&priv->scan_event,
4485                                       round_jiffies_relative(msecs_to_jiffies(4000)));
4486         } else {
4487                 priv->user_requested_scan = 0;
4488                 mod_delayed_work(system_wq, &priv->scan_event, 0);
4489         }
4490 }
4491
4492 /**
4493  * Handle host notification packet.
4494  * Called from interrupt routine
4495  */
4496 static void ipw_rx_notification(struct ipw_priv *priv,
4497                                        struct ipw_rx_notification *notif)
4498 {
4499         u16 size = le16_to_cpu(notif->size);
4500
4501         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4502
4503         switch (notif->subtype) {
4504         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4505                         struct notif_association *assoc = &notif->u.assoc;
4506
4507                         switch (assoc->state) {
4508                         case CMAS_ASSOCIATED:{
4509                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4510                                                   IPW_DL_ASSOC,
4511                                                   "associated: '%*pE' %pM\n",
4512                                                   priv->essid_len, priv->essid,
4513                                                   priv->bssid);
4514
4515                                         switch (priv->ieee->iw_mode) {
4516                                         case IW_MODE_INFRA:
4517                                                 memcpy(priv->ieee->bssid,
4518                                                        priv->bssid, ETH_ALEN);
4519                                                 break;
4520
4521                                         case IW_MODE_ADHOC:
4522                                                 memcpy(priv->ieee->bssid,
4523                                                        priv->bssid, ETH_ALEN);
4524
4525                                                 /* clear out the station table */
4526                                                 priv->num_stations = 0;
4527
4528                                                 IPW_DEBUG_ASSOC
4529                                                     ("queueing adhoc check\n");
4530                                                 schedule_delayed_work(
4531                                                         &priv->adhoc_check,
4532                                                         le16_to_cpu(priv->
4533                                                         assoc_request.
4534                                                         beacon_interval));
4535                                                 break;
4536                                         }
4537
4538                                         priv->status &= ~STATUS_ASSOCIATING;
4539                                         priv->status |= STATUS_ASSOCIATED;
4540                                         schedule_work(&priv->system_config);
4541
4542 #ifdef CONFIG_IPW2200_QOS
4543 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4544                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4545                                         if ((priv->status & STATUS_AUTH) &&
4546                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4547                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4548                                                 if ((sizeof
4549                                                      (struct
4550                                                       libipw_assoc_response)
4551                                                      <= size)
4552                                                     && (size <= 2314)) {
4553                                                         struct
4554                                                         libipw_rx_stats
4555                                                             stats = {
4556                                                                 .len = size - 1,
4557                                                         };
4558
4559                                                         IPW_DEBUG_QOS
4560                                                             ("QoS Associate "
4561                                                              "size %d\n", size);
4562                                                         libipw_rx_mgt(priv->
4563                                                                          ieee,
4564                                                                          (struct
4565                                                                           libipw_hdr_4addr
4566                                                                           *)
4567                                                                          &notif->u.raw, &stats);
4568                                                 }
4569                                         }
4570 #endif
4571
4572                                         schedule_work(&priv->link_up);
4573
4574                                         break;
4575                                 }
4576
4577                         case CMAS_AUTHENTICATED:{
4578                                         if (priv->
4579                                             status & (STATUS_ASSOCIATED |
4580                                                       STATUS_AUTH)) {
4581                                                 struct notif_authenticate *auth
4582                                                     = &notif->u.auth;
4583                                                 IPW_DEBUG(IPW_DL_NOTIF |
4584                                                           IPW_DL_STATE |
4585                                                           IPW_DL_ASSOC,
4586                                                           "deauthenticated: '%*pE' %pM: (0x%04X) - %s\n",
4587                                                           priv->essid_len,
4588                                                           priv->essid,
4589                                                           priv->bssid,
4590                                                           le16_to_cpu(auth->status),
4591                                                           ipw_get_status_code
4592                                                           (le16_to_cpu
4593                                                            (auth->status)));
4594
4595                                                 priv->status &=
4596                                                     ~(STATUS_ASSOCIATING |
4597                                                       STATUS_AUTH |
4598                                                       STATUS_ASSOCIATED);
4599
4600                                                 schedule_work(&priv->link_down);
4601                                                 break;
4602                                         }
4603
4604                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4605                                                   IPW_DL_ASSOC,
4606                                                   "authenticated: '%*pE' %pM\n",
4607                                                   priv->essid_len, priv->essid,
4608                                                   priv->bssid);
4609                                         break;
4610                                 }
4611
4612                         case CMAS_INIT:{
4613                                         if (priv->status & STATUS_AUTH) {
4614                                                 struct
4615                                                     libipw_assoc_response
4616                                                 *resp;
4617                                                 resp =
4618                                                     (struct
4619                                                      libipw_assoc_response
4620                                                      *)&notif->u.raw;
4621                                                 IPW_DEBUG(IPW_DL_NOTIF |
4622                                                           IPW_DL_STATE |
4623                                                           IPW_DL_ASSOC,
4624                                                           "association failed (0x%04X): %s\n",
4625                                                           le16_to_cpu(resp->status),
4626                                                           ipw_get_status_code
4627                                                           (le16_to_cpu
4628                                                            (resp->status)));
4629                                         }
4630
4631                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4632                                                   IPW_DL_ASSOC,
4633                                                   "disassociated: '%*pE' %pM\n",
4634                                                   priv->essid_len, priv->essid,
4635                                                   priv->bssid);
4636
4637                                         priv->status &=
4638                                             ~(STATUS_DISASSOCIATING |
4639                                               STATUS_ASSOCIATING |
4640                                               STATUS_ASSOCIATED | STATUS_AUTH);
4641                                         if (priv->assoc_network
4642                                             && (priv->assoc_network->
4643                                                 capability &
4644                                                 WLAN_CAPABILITY_IBSS))
4645                                                 ipw_remove_current_network
4646                                                     (priv);
4647
4648                                         schedule_work(&priv->link_down);
4649
4650                                         break;
4651                                 }
4652
4653                         case CMAS_RX_ASSOC_RESP:
4654                                 break;
4655
4656                         default:
4657                                 IPW_ERROR("assoc: unknown (%d)\n",
4658                                           assoc->state);
4659                                 break;
4660                         }
4661
4662                         break;
4663                 }
4664
4665         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4666                         struct notif_authenticate *auth = &notif->u.auth;
4667                         switch (auth->state) {
4668                         case CMAS_AUTHENTICATED:
4669                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4670                                           "authenticated: '%*pE' %pM\n",
4671                                           priv->essid_len, priv->essid,
4672                                           priv->bssid);
4673                                 priv->status |= STATUS_AUTH;
4674                                 break;
4675
4676                         case CMAS_INIT:
4677                                 if (priv->status & STATUS_AUTH) {
4678                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4679                                                   IPW_DL_ASSOC,
4680                                                   "authentication failed (0x%04X): %s\n",
4681                                                   le16_to_cpu(auth->status),
4682                                                   ipw_get_status_code(le16_to_cpu
4683                                                                       (auth->
4684                                                                        status)));
4685                                 }
4686                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4687                                           IPW_DL_ASSOC,
4688                                           "deauthenticated: '%*pE' %pM\n",
4689                                           priv->essid_len, priv->essid,
4690                                           priv->bssid);
4691
4692                                 priv->status &= ~(STATUS_ASSOCIATING |
4693                                                   STATUS_AUTH |
4694                                                   STATUS_ASSOCIATED);
4695
4696                                 schedule_work(&priv->link_down);
4697                                 break;
4698
4699                         case CMAS_TX_AUTH_SEQ_1:
4700                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4701                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4702                                 break;
4703                         case CMAS_RX_AUTH_SEQ_2:
4704                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4705                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4706                                 break;
4707                         case CMAS_AUTH_SEQ_1_PASS:
4708                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4709                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4710                                 break;
4711                         case CMAS_AUTH_SEQ_1_FAIL:
4712                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4713                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4714                                 break;
4715                         case CMAS_TX_AUTH_SEQ_3:
4716                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4717                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4718                                 break;
4719                         case CMAS_RX_AUTH_SEQ_4:
4720                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4721                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4722                                 break;
4723                         case CMAS_AUTH_SEQ_2_PASS:
4724                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4725                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4726                                 break;
4727                         case CMAS_AUTH_SEQ_2_FAIL:
4728                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4729                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4730                                 break;
4731                         case CMAS_TX_ASSOC:
4732                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4733                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4734                                 break;
4735                         case CMAS_RX_ASSOC_RESP:
4736                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4737                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4738
4739                                 break;
4740                         case CMAS_ASSOCIATED:
4741                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4742                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4743                                 break;
4744                         default:
4745                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4746                                                 auth->state);
4747                                 break;
4748                         }
4749                         break;
4750                 }
4751
4752         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4753                         struct notif_channel_result *x =
4754                             &notif->u.channel_result;
4755
4756                         if (size == sizeof(*x)) {
4757                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4758                                                x->channel_num);
4759                         } else {
4760                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4761                                                "(should be %zd)\n",
4762                                                size, sizeof(*x));
4763                         }
4764                         break;
4765                 }
4766
4767         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4768                         struct notif_scan_complete *x = &notif->u.scan_complete;
4769                         if (size == sizeof(*x)) {
4770                                 IPW_DEBUG_SCAN
4771                                     ("Scan completed: type %d, %d channels, "
4772                                      "%d status\n", x->scan_type,
4773                                      x->num_channels, x->status);
4774                         } else {
4775                                 IPW_ERROR("Scan completed of wrong size %d "
4776                                           "(should be %zd)\n",
4777                                           size, sizeof(*x));
4778                         }
4779
4780                         priv->status &=
4781                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4782
4783                         wake_up_interruptible(&priv->wait_state);
4784                         cancel_delayed_work(&priv->scan_check);
4785
4786                         if (priv->status & STATUS_EXIT_PENDING)
4787                                 break;
4788
4789                         priv->ieee->scans++;
4790
4791 #ifdef CONFIG_IPW2200_MONITOR
4792                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4793                                 priv->status |= STATUS_SCAN_FORCED;
4794                                 schedule_delayed_work(&priv->request_scan, 0);
4795                                 break;
4796                         }
4797                         priv->status &= ~STATUS_SCAN_FORCED;
4798 #endif                          /* CONFIG_IPW2200_MONITOR */
4799
4800                         /* Do queued direct scans first */
4801                         if (priv->status & STATUS_DIRECT_SCAN_PENDING)
4802                                 schedule_delayed_work(&priv->request_direct_scan, 0);
4803
4804                         if (!(priv->status & (STATUS_ASSOCIATED |
4805                                               STATUS_ASSOCIATING |
4806                                               STATUS_ROAMING |
4807                                               STATUS_DISASSOCIATING)))
4808                                 schedule_work(&priv->associate);
4809                         else if (priv->status & STATUS_ROAMING) {
4810                                 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4811                                         /* If a scan completed and we are in roam mode, then
4812                                          * the scan that completed was the one requested as a
4813                                          * result of entering roam... so, schedule the
4814                                          * roam work */
4815                                         schedule_work(&priv->roam);
4816                                 else
4817                                         /* Don't schedule if we aborted the scan */
4818                                         priv->status &= ~STATUS_ROAMING;
4819                         } else if (priv->status & STATUS_SCAN_PENDING)
4820                                 schedule_delayed_work(&priv->request_scan, 0);
4821                         else if (priv->config & CFG_BACKGROUND_SCAN
4822                                  && priv->status & STATUS_ASSOCIATED)
4823                                 schedule_delayed_work(&priv->request_scan,
4824                                                       round_jiffies_relative(HZ));
4825
4826                         /* Send an empty event to user space.
4827                          * We don't send the received data on the event because
4828                          * it would require us to do complex transcoding, and
4829                          * we want to minimise the work done in the irq handler
4830                          * Use a request to extract the data.
4831                          * Also, we generate this even for any scan, regardless
4832                          * on how the scan was initiated. User space can just
4833                          * sync on periodic scan to get fresh data...
4834                          * Jean II */
4835                         if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4836                                 handle_scan_event(priv);
4837                         break;
4838                 }
4839
4840         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4841                         struct notif_frag_length *x = &notif->u.frag_len;
4842
4843                         if (size == sizeof(*x))
4844                                 IPW_ERROR("Frag length: %d\n",
4845                                           le16_to_cpu(x->frag_length));
4846                         else
4847                                 IPW_ERROR("Frag length of wrong size %d "
4848                                           "(should be %zd)\n",
4849                                           size, sizeof(*x));
4850                         break;
4851                 }
4852
4853         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4854                         struct notif_link_deterioration *x =
4855                             &notif->u.link_deterioration;
4856
4857                         if (size == sizeof(*x)) {
4858                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4859                                         "link deterioration: type %d, cnt %d\n",
4860                                         x->silence_notification_type,
4861                                         x->silence_count);
4862                                 memcpy(&priv->last_link_deterioration, x,
4863                                        sizeof(*x));
4864                         } else {
4865                                 IPW_ERROR("Link Deterioration of wrong size %d "
4866                                           "(should be %zd)\n",
4867                                           size, sizeof(*x));
4868                         }
4869                         break;
4870                 }
4871
4872         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4873                         IPW_ERROR("Dino config\n");
4874                         if (priv->hcmd
4875                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4876                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4877
4878                         break;
4879                 }
4880
4881         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4882                         struct notif_beacon_state *x = &notif->u.beacon_state;
4883                         if (size != sizeof(*x)) {
4884                                 IPW_ERROR
4885                                     ("Beacon state of wrong size %d (should "
4886                                      "be %zd)\n", size, sizeof(*x));
4887                                 break;
4888                         }
4889
4890                         if (le32_to_cpu(x->state) ==
4891                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4892                                 ipw_handle_missed_beacon(priv,
4893                                                          le32_to_cpu(x->
4894                                                                      number));
4895
4896                         break;
4897                 }
4898
4899         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4900                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4901                         if (size == sizeof(*x)) {
4902                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4903                                           "0x%02x station %d\n",
4904                                           x->key_state, x->security_type,
4905                                           x->station_index);
4906                                 break;
4907                         }
4908
4909                         IPW_ERROR
4910                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4911                              size, sizeof(*x));
4912                         break;
4913                 }
4914
4915         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4916                         struct notif_calibration *x = &notif->u.calibration;
4917
4918                         if (size == sizeof(*x)) {
4919                                 memcpy(&priv->calib, x, sizeof(*x));
4920                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4921                                 break;
4922                         }
4923
4924                         IPW_ERROR
4925                             ("Calibration of wrong size %d (should be %zd)\n",
4926                              size, sizeof(*x));
4927                         break;
4928                 }
4929
4930         case HOST_NOTIFICATION_NOISE_STATS:{
4931                         if (size == sizeof(u32)) {
4932                                 priv->exp_avg_noise =
4933                                     exponential_average(priv->exp_avg_noise,
4934                                     (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4935                                     DEPTH_NOISE);
4936                                 break;
4937                         }
4938
4939                         IPW_ERROR
4940                             ("Noise stat is wrong size %d (should be %zd)\n",
4941                              size, sizeof(u32));
4942                         break;
4943                 }
4944
4945         default:
4946                 IPW_DEBUG_NOTIF("Unknown notification: "
4947                                 "subtype=%d,flags=0x%2x,size=%d\n",
4948                                 notif->subtype, notif->flags, size);
4949         }
4950 }
4951
4952 /**
4953  * Destroys all DMA structures and initialise them again
4954  *
4955  * @param priv
4956  * @return error code
4957  */
4958 static int ipw_queue_reset(struct ipw_priv *priv)
4959 {
4960         int rc = 0;
4961         /** @todo customize queue sizes */
4962         int nTx = 64, nTxCmd = 8;
4963         ipw_tx_queue_free(priv);
4964         /* Tx CMD queue */
4965         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4966                                IPW_TX_CMD_QUEUE_READ_INDEX,
4967                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4968                                IPW_TX_CMD_QUEUE_BD_BASE,
4969                                IPW_TX_CMD_QUEUE_BD_SIZE);
4970         if (rc) {
4971                 IPW_ERROR("Tx Cmd queue init failed\n");
4972                 goto error;
4973         }
4974         /* Tx queue(s) */
4975         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4976                                IPW_TX_QUEUE_0_READ_INDEX,
4977                                IPW_TX_QUEUE_0_WRITE_INDEX,
4978                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4979         if (rc) {
4980                 IPW_ERROR("Tx 0 queue init failed\n");
4981                 goto error;
4982         }
4983         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4984                                IPW_TX_QUEUE_1_READ_INDEX,
4985                                IPW_TX_QUEUE_1_WRITE_INDEX,
4986                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4987         if (rc) {
4988                 IPW_ERROR("Tx 1 queue init failed\n");
4989                 goto error;
4990         }
4991         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4992                                IPW_TX_QUEUE_2_READ_INDEX,
4993                                IPW_TX_QUEUE_2_WRITE_INDEX,
4994                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4995         if (rc) {
4996                 IPW_ERROR("Tx 2 queue init failed\n");
4997                 goto error;
4998         }
4999         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
5000                                IPW_TX_QUEUE_3_READ_INDEX,
5001                                IPW_TX_QUEUE_3_WRITE_INDEX,
5002                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
5003         if (rc) {
5004                 IPW_ERROR("Tx 3 queue init failed\n");
5005                 goto error;
5006         }
5007         /* statistics */
5008         priv->rx_bufs_min = 0;
5009         priv->rx_pend_max = 0;
5010         return rc;
5011
5012       error:
5013         ipw_tx_queue_free(priv);
5014         return rc;
5015 }
5016
5017 /**
5018  * Reclaim Tx queue entries no more used by NIC.
5019  *
5020  * When FW advances 'R' index, all entries between old and
5021  * new 'R' index need to be reclaimed. As result, some free space
5022  * forms. If there is enough free space (> low mark), wake Tx queue.
5023  *
5024  * @note Need to protect against garbage in 'R' index
5025  * @param priv
5026  * @param txq
5027  * @param qindex
5028  * @return Number of used entries remains in the queue
5029  */
5030 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
5031                                 struct clx2_tx_queue *txq, int qindex)
5032 {
5033         u32 hw_tail;
5034         int used;
5035         struct clx2_queue *q = &txq->q;
5036
5037         hw_tail = ipw_read32(priv, q->reg_r);
5038         if (hw_tail >= q->n_bd) {
5039                 IPW_ERROR
5040                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
5041                      hw_tail, q->n_bd);
5042                 goto done;
5043         }
5044         for (; q->last_used != hw_tail;
5045              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
5046                 ipw_queue_tx_free_tfd(priv, txq);
5047                 priv->tx_packets++;
5048         }
5049       done:
5050         if ((ipw_tx_queue_space(q) > q->low_mark) &&
5051             (qindex >= 0))
5052                 netif_wake_queue(priv->net_dev);
5053         used = q->first_empty - q->last_used;
5054         if (used < 0)
5055                 used += q->n_bd;
5056
5057         return used;
5058 }
5059
5060 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
5061                              int len, int sync)
5062 {
5063         struct clx2_tx_queue *txq = &priv->txq_cmd;
5064         struct clx2_queue *q = &txq->q;
5065         struct tfd_frame *tfd;
5066
5067         if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5068                 IPW_ERROR("No space for Tx\n");
5069                 return -EBUSY;
5070         }
5071
5072         tfd = &txq->bd[q->first_empty];
5073         txq->txb[q->first_empty] = NULL;
5074
5075         memset(tfd, 0, sizeof(*tfd));
5076         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5077         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5078         priv->hcmd_seq++;
5079         tfd->u.cmd.index = hcmd;
5080         tfd->u.cmd.length = len;
5081         memcpy(tfd->u.cmd.payload, buf, len);
5082         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5083         ipw_write32(priv, q->reg_w, q->first_empty);
5084         _ipw_read32(priv, 0x90);
5085
5086         return 0;
5087 }
5088
5089 /*
5090  * Rx theory of operation
5091  *
5092  * The host allocates 32 DMA target addresses and passes the host address
5093  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5094  * 0 to 31
5095  *
5096  * Rx Queue Indexes
5097  * The host/firmware share two index registers for managing the Rx buffers.
5098  *
5099  * The READ index maps to the first position that the firmware may be writing
5100  * to -- the driver can read up to (but not including) this position and get
5101  * good data.
5102  * The READ index is managed by the firmware once the card is enabled.
5103  *
5104  * The WRITE index maps to the last position the driver has read from -- the
5105  * position preceding WRITE is the last slot the firmware can place a packet.
5106  *
5107  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5108  * WRITE = READ.
5109  *
5110  * During initialization the host sets up the READ queue position to the first
5111  * INDEX position, and WRITE to the last (READ - 1 wrapped)
5112  *
5113  * When the firmware places a packet in a buffer it will advance the READ index
5114  * and fire the RX interrupt.  The driver can then query the READ index and
5115  * process as many packets as possible, moving the WRITE index forward as it
5116  * resets the Rx queue buffers with new memory.
5117  *
5118  * The management in the driver is as follows:
5119  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
5120  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5121  *   to replensish the ipw->rxq->rx_free.
5122  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5123  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
5124  *   'processed' and 'read' driver indexes as well)
5125  * + A received packet is processed and handed to the kernel network stack,
5126  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
5127  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5128  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5129  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
5130  *   were enough free buffers and RX_STALLED is set it is cleared.
5131  *
5132  *
5133  * Driver sequence:
5134  *
5135  * ipw_rx_queue_alloc()       Allocates rx_free
5136  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
5137  *                            ipw_rx_queue_restock
5138  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
5139  *                            queue, updates firmware pointers, and updates
5140  *                            the WRITE index.  If insufficient rx_free buffers
5141  *                            are available, schedules ipw_rx_queue_replenish
5142  *
5143  * -- enable interrupts --
5144  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
5145  *                            READ INDEX, detaching the SKB from the pool.
5146  *                            Moves the packet buffer from queue to rx_used.
5147  *                            Calls ipw_rx_queue_restock to refill any empty
5148  *                            slots.
5149  * ...
5150  *
5151  */
5152
5153 /*
5154  * If there are slots in the RX queue that  need to be restocked,
5155  * and we have free pre-allocated buffers, fill the ranks as much
5156  * as we can pulling from rx_free.
5157  *
5158  * This moves the 'write' index forward to catch up with 'processed', and
5159  * also updates the memory address in the firmware to reference the new
5160  * target buffer.
5161  */
5162 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5163 {
5164         struct ipw_rx_queue *rxq = priv->rxq;
5165         struct list_head *element;
5166         struct ipw_rx_mem_buffer *rxb;
5167         unsigned long flags;
5168         int write;
5169
5170         spin_lock_irqsave(&rxq->lock, flags);
5171         write = rxq->write;
5172         while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5173                 element = rxq->rx_free.next;
5174                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5175                 list_del(element);
5176
5177                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5178                             rxb->dma_addr);
5179                 rxq->queue[rxq->write] = rxb;
5180                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5181                 rxq->free_count--;
5182         }
5183         spin_unlock_irqrestore(&rxq->lock, flags);
5184
5185         /* If the pre-allocated buffer pool is dropping low, schedule to
5186          * refill it */
5187         if (rxq->free_count <= RX_LOW_WATERMARK)
5188                 schedule_work(&priv->rx_replenish);
5189
5190         /* If we've added more space for the firmware to place data, tell it */
5191         if (write != rxq->write)
5192                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5193 }
5194
5195 /*
5196  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5197  * Also restock the Rx queue via ipw_rx_queue_restock.
5198  *
5199  * This is called as a scheduled work item (except for during intialization)
5200  */
5201 static void ipw_rx_queue_replenish(void *data)
5202 {
5203         struct ipw_priv *priv = data;
5204         struct ipw_rx_queue *rxq = priv->rxq;
5205         struct list_head *element;
5206         struct ipw_rx_mem_buffer *rxb;
5207         unsigned long flags;
5208
5209         spin_lock_irqsave(&rxq->lock, flags);
5210         while (!list_empty(&rxq->rx_used)) {
5211                 element = rxq->rx_used.next;
5212                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5213                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5214                 if (!rxb->skb) {
5215                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5216                                priv->net_dev->name);
5217                         /* We don't reschedule replenish work here -- we will
5218                          * call the restock method and if it still needs
5219                          * more buffers it will schedule replenish */
5220                         break;
5221                 }
5222                 list_del(element);
5223
5224                 rxb->dma_addr =
5225                     pci_map_single(priv->pci_dev, rxb->skb->data,
5226                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5227
5228                 list_add_tail(&rxb->list, &rxq->rx_free);
5229                 rxq->free_count++;
5230         }
5231         spin_unlock_irqrestore(&rxq->lock, flags);
5232
5233         ipw_rx_queue_restock(priv);
5234 }
5235
5236 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5237 {
5238         struct ipw_priv *priv =
5239                 container_of(work, struct ipw_priv, rx_replenish);
5240         mutex_lock(&priv->mutex);
5241         ipw_rx_queue_replenish(priv);
5242         mutex_unlock(&priv->mutex);
5243 }
5244
5245 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5246  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5247  * This free routine walks the list of POOL entries and if SKB is set to
5248  * non NULL it is unmapped and freed
5249  */
5250 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5251 {
5252         int i;
5253
5254         if (!rxq)
5255                 return;
5256
5257         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5258                 if (rxq->pool[i].skb != NULL) {
5259                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5260                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5261                         dev_kfree_skb(rxq->pool[i].skb);
5262                 }
5263         }
5264
5265         kfree(rxq);
5266 }
5267
5268 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5269 {
5270         struct ipw_rx_queue *rxq;
5271         int i;
5272
5273         rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5274         if (unlikely(!rxq)) {
5275                 IPW_ERROR("memory allocation failed\n");
5276                 return NULL;
5277         }
5278         spin_lock_init(&rxq->lock);
5279         INIT_LIST_HEAD(&rxq->rx_free);
5280         INIT_LIST_HEAD(&rxq->rx_used);
5281
5282         /* Fill the rx_used queue with _all_ of the Rx buffers */
5283         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5284                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5285
5286         /* Set us so that we have processed and used all buffers, but have
5287          * not restocked the Rx queue with fresh buffers */
5288         rxq->read = rxq->write = 0;
5289         rxq->free_count = 0;
5290
5291         return rxq;
5292 }
5293
5294 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5295 {
5296         rate &= ~LIBIPW_BASIC_RATE_MASK;
5297         if (ieee_mode == IEEE_A) {
5298                 switch (rate) {
5299                 case LIBIPW_OFDM_RATE_6MB:
5300                         return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ?
5301                             1 : 0;
5302                 case LIBIPW_OFDM_RATE_9MB:
5303                         return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ?
5304                             1 : 0;
5305                 case LIBIPW_OFDM_RATE_12MB:
5306                         return priv->
5307                             rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5308                 case LIBIPW_OFDM_RATE_18MB:
5309                         return priv->
5310                             rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5311                 case LIBIPW_OFDM_RATE_24MB:
5312                         return priv->
5313                             rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5314                 case LIBIPW_OFDM_RATE_36MB:
5315                         return priv->
5316                             rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5317                 case LIBIPW_OFDM_RATE_48MB:
5318                         return priv->
5319                             rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5320                 case LIBIPW_OFDM_RATE_54MB:
5321                         return priv->
5322                             rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5323                 default:
5324                         return 0;
5325                 }
5326         }
5327
5328         /* B and G mixed */
5329         switch (rate) {
5330         case LIBIPW_CCK_RATE_1MB:
5331                 return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0;
5332         case LIBIPW_CCK_RATE_2MB:
5333                 return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0;
5334         case LIBIPW_CCK_RATE_5MB:
5335                 return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0;
5336         case LIBIPW_CCK_RATE_11MB:
5337                 return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0;
5338         }
5339
5340         /* If we are limited to B modulations, bail at this point */
5341         if (ieee_mode == IEEE_B)
5342                 return 0;
5343
5344         /* G */
5345         switch (rate) {
5346         case LIBIPW_OFDM_RATE_6MB:
5347                 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0;
5348         case LIBIPW_OFDM_RATE_9MB:
5349                 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0;
5350         case LIBIPW_OFDM_RATE_12MB:
5351                 return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5352         case LIBIPW_OFDM_RATE_18MB:
5353                 return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5354         case LIBIPW_OFDM_RATE_24MB:
5355                 return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5356         case LIBIPW_OFDM_RATE_36MB:
5357                 return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5358         case LIBIPW_OFDM_RATE_48MB:
5359                 return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5360         case LIBIPW_OFDM_RATE_54MB:
5361                 return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5362         }
5363
5364         return 0;
5365 }
5366
5367 static int ipw_compatible_rates(struct ipw_priv *priv,
5368                                 const struct libipw_network *network,
5369                                 struct ipw_supported_rates *rates)
5370 {
5371         int num_rates, i;
5372
5373         memset(rates, 0, sizeof(*rates));
5374         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5375         rates->num_rates = 0;
5376         for (i = 0; i < num_rates; i++) {
5377                 if (!ipw_is_rate_in_mask(priv, network->mode,
5378                                          network->rates[i])) {
5379
5380                         if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) {
5381                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5382                                                "rate %02X\n",
5383                                                network->rates[i]);
5384                                 rates->supported_rates[rates->num_rates++] =
5385                                     network->rates[i];
5386                                 continue;
5387                         }
5388
5389                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5390                                        network->rates[i], priv->rates_mask);
5391                         continue;
5392                 }
5393
5394                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5395         }
5396
5397         num_rates = min(network->rates_ex_len,
5398                         (u8) (IPW_MAX_RATES - num_rates));
5399         for (i = 0; i < num_rates; i++) {
5400                 if (!ipw_is_rate_in_mask(priv, network->mode,
5401                                          network->rates_ex[i])) {
5402                         if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) {
5403                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5404                                                "rate %02X\n",
5405                                                network->rates_ex[i]);
5406                                 rates->supported_rates[rates->num_rates++] =
5407                                     network->rates[i];
5408                                 continue;
5409                         }
5410
5411                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5412                                        network->rates_ex[i], priv->rates_mask);
5413                         continue;
5414                 }
5415
5416                 rates->supported_rates[rates->num_rates++] =
5417                     network->rates_ex[i];
5418         }
5419
5420         return 1;
5421 }
5422
5423 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5424                                   const struct ipw_supported_rates *src)
5425 {
5426         u8 i;
5427         for (i = 0; i < src->num_rates; i++)
5428                 dest->supported_rates[i] = src->supported_rates[i];
5429         dest->num_rates = src->num_rates;
5430 }
5431
5432 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5433  * mask should ever be used -- right now all callers to add the scan rates are
5434  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5435 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5436                                    u8 modulation, u32 rate_mask)
5437 {
5438         u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5439             LIBIPW_BASIC_RATE_MASK : 0;
5440
5441         if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK)
5442                 rates->supported_rates[rates->num_rates++] =
5443                     LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB;
5444
5445         if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK)
5446                 rates->supported_rates[rates->num_rates++] =
5447                     LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB;
5448
5449         if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK)
5450                 rates->supported_rates[rates->num_rates++] = basic_mask |
5451                     LIBIPW_CCK_RATE_5MB;
5452
5453         if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK)
5454                 rates->supported_rates[rates->num_rates++] = basic_mask |
5455                     LIBIPW_CCK_RATE_11MB;
5456 }
5457
5458 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5459                                     u8 modulation, u32 rate_mask)
5460 {
5461         u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5462             LIBIPW_BASIC_RATE_MASK : 0;
5463
5464         if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK)
5465                 rates->supported_rates[rates->num_rates++] = basic_mask |
5466                     LIBIPW_OFDM_RATE_6MB;
5467
5468         if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK)
5469                 rates->supported_rates[rates->num_rates++] =
5470                     LIBIPW_OFDM_RATE_9MB;
5471
5472         if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK)
5473                 rates->supported_rates[rates->num_rates++] = basic_mask |
5474                     LIBIPW_OFDM_RATE_12MB;
5475
5476         if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK)
5477                 rates->supported_rates[rates->num_rates++] =
5478                     LIBIPW_OFDM_RATE_18MB;
5479
5480         if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK)
5481                 rates->supported_rates[rates->num_rates++] = basic_mask |
5482                     LIBIPW_OFDM_RATE_24MB;
5483
5484         if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK)
5485                 rates->supported_rates[rates->num_rates++] =
5486                     LIBIPW_OFDM_RATE_36MB;
5487
5488         if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK)
5489                 rates->supported_rates[rates->num_rates++] =
5490                     LIBIPW_OFDM_RATE_48MB;
5491
5492         if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK)
5493                 rates->supported_rates[rates->num_rates++] =
5494                     LIBIPW_OFDM_RATE_54MB;
5495 }
5496
5497 struct ipw_network_match {
5498         struct libipw_network *network;
5499         struct ipw_supported_rates rates;
5500 };
5501
5502 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5503                                   struct ipw_network_match *match,
5504                                   struct libipw_network *network,
5505                                   int roaming)
5506 {
5507         struct ipw_supported_rates rates;
5508
5509         /* Verify that this network's capability is compatible with the
5510          * current mode (AdHoc or Infrastructure) */
5511         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5512              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5513                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5514                                 network->ssid_len, network->ssid,
5515                                 network->bssid);
5516                 return 0;
5517         }
5518
5519         if (unlikely(roaming)) {
5520                 /* If we are roaming, then ensure check if this is a valid
5521                  * network to try and roam to */
5522                 if ((network->ssid_len != match->network->ssid_len) ||
5523                     memcmp(network->ssid, match->network->ssid,
5524                            network->ssid_len)) {
5525                         IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5526                                         network->ssid_len, network->ssid,
5527                                         network->bssid);
5528                         return 0;
5529                 }
5530         } else {
5531                 /* If an ESSID has been configured then compare the broadcast
5532                  * ESSID to ours */
5533                 if ((priv->config & CFG_STATIC_ESSID) &&
5534                     ((network->ssid_len != priv->essid_len) ||
5535                      memcmp(network->ssid, priv->essid,
5536                             min(network->ssid_len, priv->essid_len)))) {
5537                         IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5538                                         network->ssid_len, network->ssid,
5539                                         network->bssid, priv->essid_len,
5540                                         priv->essid);
5541                         return 0;
5542                 }
5543         }
5544
5545         /* If the old network rate is better than this one, don't bother
5546          * testing everything else. */
5547
5548         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5549                 IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5550                                 match->network->ssid_len, match->network->ssid);
5551                 return 0;
5552         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5553                 IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5554                                 match->network->ssid_len, match->network->ssid);
5555                 return 0;
5556         }
5557
5558         /* Now go through and see if the requested network is valid... */
5559         if (priv->ieee->scan_age != 0 &&
5560             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5561                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5562                                 network->ssid_len, network->ssid,
5563                                 network->bssid,
5564                                 jiffies_to_msecs(jiffies -
5565                                                  network->last_scanned));
5566                 return 0;
5567         }
5568
5569         if ((priv->config & CFG_STATIC_CHANNEL) &&
5570             (network->channel != priv->channel)) {
5571                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5572                                 network->ssid_len, network->ssid,
5573                                 network->bssid,
5574                                 network->channel, priv->channel);
5575                 return 0;
5576         }
5577
5578         /* Verify privacy compatibility */
5579         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5580             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5581                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5582                                 network->ssid_len, network->ssid,
5583                                 network->bssid,
5584                                 priv->
5585                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5586                                 network->
5587                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5588                                 "off");
5589                 return 0;
5590         }
5591
5592         if (ether_addr_equal(network->bssid, priv->bssid)) {
5593                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of the same BSSID match: %pM.\n",
5594                                 network->ssid_len, network->ssid,
5595                                 network->bssid, priv->bssid);
5596                 return 0;
5597         }
5598
5599         /* Filter out any incompatible freq / mode combinations */
5600         if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5601                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5602                                 network->ssid_len, network->ssid,
5603                                 network->bssid);
5604                 return 0;
5605         }
5606
5607         /* Ensure that the rates supported by the driver are compatible with
5608          * this AP, including verification of basic rates (mandatory) */
5609         if (!ipw_compatible_rates(priv, network, &rates)) {
5610                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5611                                 network->ssid_len, network->ssid,
5612                                 network->bssid);
5613                 return 0;
5614         }
5615
5616         if (rates.num_rates == 0) {
5617                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5618                                 network->ssid_len, network->ssid,
5619                                 network->bssid);
5620                 return 0;
5621         }
5622
5623         /* TODO: Perform any further minimal comparititive tests.  We do not
5624          * want to put too much policy logic here; intelligent scan selection
5625          * should occur within a generic IEEE 802.11 user space tool.  */
5626
5627         /* Set up 'new' AP to this network */
5628         ipw_copy_rates(&match->rates, &rates);
5629         match->network = network;
5630         IPW_DEBUG_MERGE("Network '%*pE (%pM)' is a viable match.\n",
5631                         network->ssid_len, network->ssid, network->bssid);
5632
5633         return 1;
5634 }
5635
5636 static void ipw_merge_adhoc_network(struct work_struct *work)
5637 {
5638         struct ipw_priv *priv =
5639                 container_of(work, struct ipw_priv, merge_networks);
5640         struct libipw_network *network = NULL;
5641         struct ipw_network_match match = {
5642                 .network = priv->assoc_network
5643         };
5644
5645         if ((priv->status & STATUS_ASSOCIATED) &&
5646             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5647                 /* First pass through ROAM process -- look for a better
5648                  * network */
5649                 unsigned long flags;
5650
5651                 spin_lock_irqsave(&priv->ieee->lock, flags);
5652                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5653                         if (network != priv->assoc_network)
5654                                 ipw_find_adhoc_network(priv, &match, network,
5655                                                        1);
5656                 }
5657                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5658
5659                 if (match.network == priv->assoc_network) {
5660                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5661                                         "merge to.\n");
5662                         return;
5663                 }
5664
5665                 mutex_lock(&priv->mutex);
5666                 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5667                         IPW_DEBUG_MERGE("remove network %*pE\n",
5668                                         priv->essid_len, priv->essid);
5669                         ipw_remove_current_network(priv);
5670                 }
5671
5672                 ipw_disassociate(priv);
5673                 priv->assoc_network = match.network;
5674                 mutex_unlock(&priv->mutex);
5675                 return;
5676         }
5677 }
5678
5679 static int ipw_best_network(struct ipw_priv *priv,
5680                             struct ipw_network_match *match,
5681                             struct libipw_network *network, int roaming)
5682 {
5683         struct ipw_supported_rates rates;
5684
5685         /* Verify that this network's capability is compatible with the
5686          * current mode (AdHoc or Infrastructure) */
5687         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5688              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5689             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5690              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5691                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5692                                 network->ssid_len, network->ssid,
5693                                 network->bssid);
5694                 return 0;
5695         }
5696
5697         if (unlikely(roaming)) {
5698                 /* If we are roaming, then ensure check if this is a valid
5699                  * network to try and roam to */
5700                 if ((network->ssid_len != match->network->ssid_len) ||
5701                     memcmp(network->ssid, match->network->ssid,
5702                            network->ssid_len)) {
5703                         IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5704                                         network->ssid_len, network->ssid,
5705                                         network->bssid);
5706                         return 0;
5707                 }
5708         } else {
5709                 /* If an ESSID has been configured then compare the broadcast
5710                  * ESSID to ours */
5711                 if ((priv->config & CFG_STATIC_ESSID) &&
5712                     ((network->ssid_len != priv->essid_len) ||
5713                      memcmp(network->ssid, priv->essid,
5714                             min(network->ssid_len, priv->essid_len)))) {
5715                         IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5716                                         network->ssid_len, network->ssid,
5717                                         network->bssid, priv->essid_len,
5718                                         priv->essid);
5719                         return 0;
5720                 }
5721         }
5722
5723         /* If the old network rate is better than this one, don't bother
5724          * testing everything else. */
5725         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5726                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because '%*pE (%pM)' has a stronger signal.\n",
5727                                 network->ssid_len, network->ssid,
5728                                 network->bssid, match->network->ssid_len,
5729                                 match->network->ssid, match->network->bssid);
5730                 return 0;
5731         }
5732
5733         /* If this network has already had an association attempt within the
5734          * last 3 seconds, do not try and associate again... */
5735         if (network->last_associate &&
5736             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5737                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of storming (%ums since last assoc attempt).\n",
5738                                 network->ssid_len, network->ssid,
5739                                 network->bssid,
5740                                 jiffies_to_msecs(jiffies -
5741                                                  network->last_associate));
5742                 return 0;
5743         }
5744
5745         /* Now go through and see if the requested network is valid... */
5746         if (priv->ieee->scan_age != 0 &&
5747             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5748                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5749                                 network->ssid_len, network->ssid,
5750                                 network->bssid,
5751                                 jiffies_to_msecs(jiffies -
5752                                                  network->last_scanned));
5753                 return 0;
5754         }
5755
5756         if ((priv->config & CFG_STATIC_CHANNEL) &&
5757             (network->channel != priv->channel)) {
5758                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5759                                 network->ssid_len, network->ssid,
5760                                 network->bssid,
5761                                 network->channel, priv->channel);
5762                 return 0;
5763         }
5764
5765         /* Verify privacy compatibility */
5766         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5767             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5768                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5769                                 network->ssid_len, network->ssid,
5770                                 network->bssid,
5771                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5772                                 "off",
5773                                 network->capability &
5774                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5775                 return 0;
5776         }
5777
5778         if ((priv->config & CFG_STATIC_BSSID) &&
5779             !ether_addr_equal(network->bssid, priv->bssid)) {
5780                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of BSSID mismatch: %pM.\n",
5781                                 network->ssid_len, network->ssid,
5782                                 network->bssid, priv->bssid);
5783                 return 0;
5784         }
5785
5786         /* Filter out any incompatible freq / mode combinations */
5787         if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5788                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5789                                 network->ssid_len, network->ssid,
5790                                 network->bssid);
5791                 return 0;
5792         }
5793
5794         /* Filter out invalid channel in current GEO */
5795         if (!libipw_is_valid_channel(priv->ieee, network->channel)) {
5796                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid channel in current GEO\n",
5797                                 network->ssid_len, network->ssid,
5798                                 network->bssid);
5799                 return 0;
5800         }
5801
5802         /* Ensure that the rates supported by the driver are compatible with
5803          * this AP, including verification of basic rates (mandatory) */
5804         if (!ipw_compatible_rates(priv, network, &rates)) {
5805                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5806                                 network->ssid_len, network->ssid,
5807                                 network->bssid);
5808                 return 0;
5809         }
5810
5811         if (rates.num_rates == 0) {
5812                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5813                                 network->ssid_len, network->ssid,
5814                                 network->bssid);
5815                 return 0;
5816         }
5817
5818         /* TODO: Perform any further minimal comparititive tests.  We do not
5819          * want to put too much policy logic here; intelligent scan selection
5820          * should occur within a generic IEEE 802.11 user space tool.  */
5821
5822         /* Set up 'new' AP to this network */
5823         ipw_copy_rates(&match->rates, &rates);
5824         match->network = network;
5825
5826         IPW_DEBUG_ASSOC("Network '%*pE (%pM)' is a viable match.\n",
5827                         network->ssid_len, network->ssid, network->bssid);
5828
5829         return 1;
5830 }
5831
5832 static void ipw_adhoc_create(struct ipw_priv *priv,
5833                              struct libipw_network *network)
5834 {
5835         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
5836         int i;
5837
5838         /*
5839          * For the purposes of scanning, we can set our wireless mode
5840          * to trigger scans across combinations of bands, but when it
5841          * comes to creating a new ad-hoc network, we have tell the FW
5842          * exactly which band to use.
5843          *
5844          * We also have the possibility of an invalid channel for the
5845          * chossen band.  Attempting to create a new ad-hoc network
5846          * with an invalid channel for wireless mode will trigger a
5847          * FW fatal error.
5848          *
5849          */
5850         switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
5851         case LIBIPW_52GHZ_BAND:
5852                 network->mode = IEEE_A;
5853                 i = libipw_channel_to_index(priv->ieee, priv->channel);
5854                 BUG_ON(i == -1);
5855                 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5856                         IPW_WARNING("Overriding invalid channel\n");
5857                         priv->channel = geo->a[0].channel;
5858                 }
5859                 break;
5860
5861         case LIBIPW_24GHZ_BAND:
5862                 if (priv->ieee->mode & IEEE_G)
5863                         network->mode = IEEE_G;
5864                 else
5865                         network->mode = IEEE_B;
5866                 i = libipw_channel_to_index(priv->ieee, priv->channel);
5867                 BUG_ON(i == -1);
5868                 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5869                         IPW_WARNING("Overriding invalid channel\n");
5870                         priv->channel = geo->bg[0].channel;
5871                 }
5872                 break;
5873
5874         default:
5875                 IPW_WARNING("Overriding invalid channel\n");
5876                 if (priv->ieee->mode & IEEE_A) {
5877                         network->mode = IEEE_A;
5878                         priv->channel = geo->a[0].channel;
5879                 } else if (priv->ieee->mode & IEEE_G) {
5880                         network->mode = IEEE_G;
5881                         priv->channel = geo->bg[0].channel;
5882                 } else {
5883                         network->mode = IEEE_B;
5884                         priv->channel = geo->bg[0].channel;
5885                 }
5886                 break;
5887         }
5888
5889         network->channel = priv->channel;
5890         priv->config |= CFG_ADHOC_PERSIST;
5891         ipw_create_bssid(priv, network->bssid);
5892         network->ssid_len = priv->essid_len;
5893         memcpy(network->ssid, priv->essid, priv->essid_len);
5894         memset(&network->stats, 0, sizeof(network->stats));
5895         network->capability = WLAN_CAPABILITY_IBSS;
5896         if (!(priv->config & CFG_PREAMBLE_LONG))
5897                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5898         if (priv->capability & CAP_PRIVACY_ON)
5899                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5900         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5901         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5902         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5903         memcpy(network->rates_ex,
5904                &priv->rates.supported_rates[network->rates_len],
5905                network->rates_ex_len);
5906         network->last_scanned = 0;
5907         network->flags = 0;
5908         network->last_associate = 0;
5909         network->time_stamp[0] = 0;
5910         network->time_stamp[1] = 0;
5911         network->beacon_interval = 100; /* Default */
5912         network->listen_interval = 10;  /* Default */
5913         network->atim_window = 0;       /* Default */
5914         network->wpa_ie_len = 0;
5915         network->rsn_ie_len = 0;
5916 }
5917
5918 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5919 {
5920         struct ipw_tgi_tx_key key;
5921
5922         if (!(priv->ieee->sec.flags & (1 << index)))
5923                 return;
5924
5925         key.key_id = index;
5926         memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5927         key.security_type = type;
5928         key.station_index = 0;  /* always 0 for BSS */
5929         key.flags = 0;
5930         /* 0 for new key; previous value of counter (after fatal error) */
5931         key.tx_counter[0] = cpu_to_le32(0);
5932         key.tx_counter[1] = cpu_to_le32(0);
5933
5934         ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5935 }
5936
5937 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5938 {
5939         struct ipw_wep_key key;
5940         int i;
5941
5942         key.cmd_id = DINO_CMD_WEP_KEY;
5943         key.seq_num = 0;
5944
5945         /* Note: AES keys cannot be set for multiple times.
5946          * Only set it at the first time. */
5947         for (i = 0; i < 4; i++) {
5948                 key.key_index = i | type;
5949                 if (!(priv->ieee->sec.flags & (1 << i))) {
5950                         key.key_size = 0;
5951                         continue;
5952                 }
5953
5954                 key.key_size = priv->ieee->sec.key_sizes[i];
5955                 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5956
5957                 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5958         }
5959 }
5960
5961 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5962 {
5963         if (priv->ieee->host_encrypt)
5964                 return;
5965
5966         switch (level) {
5967         case SEC_LEVEL_3:
5968                 priv->sys_config.disable_unicast_decryption = 0;
5969                 priv->ieee->host_decrypt = 0;
5970                 break;
5971         case SEC_LEVEL_2:
5972                 priv->sys_config.disable_unicast_decryption = 1;
5973                 priv->ieee->host_decrypt = 1;
5974                 break;
5975         case SEC_LEVEL_1:
5976                 priv->sys_config.disable_unicast_decryption = 0;
5977                 priv->ieee->host_decrypt = 0;
5978                 break;
5979         case SEC_LEVEL_0:
5980                 priv->sys_config.disable_unicast_decryption = 1;
5981                 break;
5982         default:
5983                 break;
5984         }
5985 }
5986
5987 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5988 {
5989         if (priv->ieee->host_encrypt)
5990                 return;
5991
5992         switch (level) {
5993         case SEC_LEVEL_3:
5994                 priv->sys_config.disable_multicast_decryption = 0;
5995                 break;
5996         case SEC_LEVEL_2:
5997                 priv->sys_config.disable_multicast_decryption = 1;
5998                 break;
5999         case SEC_LEVEL_1:
6000                 priv->sys_config.disable_multicast_decryption = 0;
6001                 break;
6002         case SEC_LEVEL_0:
6003                 priv->sys_config.disable_multicast_decryption = 1;
6004                 break;
6005         default:
6006                 break;
6007         }
6008 }
6009
6010 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6011 {
6012         switch (priv->ieee->sec.level) {
6013         case SEC_LEVEL_3:
6014                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6015                         ipw_send_tgi_tx_key(priv,
6016                                             DCT_FLAG_EXT_SECURITY_CCM,
6017                                             priv->ieee->sec.active_key);
6018
6019                 if (!priv->ieee->host_mc_decrypt)
6020                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6021                 break;
6022         case SEC_LEVEL_2:
6023                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6024                         ipw_send_tgi_tx_key(priv,
6025                                             DCT_FLAG_EXT_SECURITY_TKIP,
6026                                             priv->ieee->sec.active_key);
6027                 break;
6028         case SEC_LEVEL_1:
6029                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6030                 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6031                 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6032                 break;
6033         case SEC_LEVEL_0:
6034         default:
6035                 break;
6036         }
6037 }
6038
6039 static void ipw_adhoc_check(void *data)
6040 {
6041         struct ipw_priv *priv = data;
6042
6043         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6044             !(priv->config & CFG_ADHOC_PERSIST)) {
6045                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6046                           IPW_DL_STATE | IPW_DL_ASSOC,
6047                           "Missed beacon: %d - disassociate\n",
6048                           priv->missed_adhoc_beacons);
6049                 ipw_remove_current_network(priv);
6050                 ipw_disassociate(priv);
6051                 return;
6052         }
6053
6054         schedule_delayed_work(&priv->adhoc_check,
6055                               le16_to_cpu(priv->assoc_request.beacon_interval));
6056 }
6057
6058 static void ipw_bg_adhoc_check(struct work_struct *work)
6059 {
6060         struct ipw_priv *priv =
6061                 container_of(work, struct ipw_priv, adhoc_check.work);
6062         mutex_lock(&priv->mutex);
6063         ipw_adhoc_check(priv);
6064         mutex_unlock(&priv->mutex);
6065 }
6066
6067 static void ipw_debug_config(struct ipw_priv *priv)
6068 {
6069         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6070                        "[CFG 0x%08X]\n", priv->config);
6071         if (priv->config & CFG_STATIC_CHANNEL)
6072                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6073         else
6074                 IPW_DEBUG_INFO("Channel unlocked.\n");
6075         if (priv->config & CFG_STATIC_ESSID)
6076                 IPW_DEBUG_INFO("ESSID locked to '%*pE'\n",
6077                                priv->essid_len, priv->essid);
6078         else
6079                 IPW_DEBUG_INFO("ESSID unlocked.\n");
6080         if (priv->config & CFG_STATIC_BSSID)
6081                 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6082         else
6083                 IPW_DEBUG_INFO("BSSID unlocked.\n");
6084         if (priv->capability & CAP_PRIVACY_ON)
6085                 IPW_DEBUG_INFO("PRIVACY on\n");
6086         else
6087                 IPW_DEBUG_INFO("PRIVACY off\n");
6088         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6089 }
6090
6091 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6092 {
6093         /* TODO: Verify that this works... */
6094         struct ipw_fixed_rate fr;
6095         u32 reg;
6096         u16 mask = 0;
6097         u16 new_tx_rates = priv->rates_mask;
6098
6099         /* Identify 'current FW band' and match it with the fixed
6100          * Tx rates */
6101
6102         switch (priv->ieee->freq_band) {
6103         case LIBIPW_52GHZ_BAND: /* A only */
6104                 /* IEEE_A */
6105                 if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) {
6106                         /* Invalid fixed rate mask */
6107                         IPW_DEBUG_WX
6108                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6109                         new_tx_rates = 0;
6110                         break;
6111                 }
6112
6113                 new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A;
6114                 break;
6115
6116         default:                /* 2.4Ghz or Mixed */
6117                 /* IEEE_B */
6118                 if (mode == IEEE_B) {
6119                         if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) {
6120                                 /* Invalid fixed rate mask */
6121                                 IPW_DEBUG_WX
6122                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6123                                 new_tx_rates = 0;
6124                         }
6125                         break;
6126                 }
6127
6128                 /* IEEE_G */
6129                 if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK |
6130                                     LIBIPW_OFDM_RATES_MASK)) {
6131                         /* Invalid fixed rate mask */
6132                         IPW_DEBUG_WX
6133                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6134                         new_tx_rates = 0;
6135                         break;
6136                 }
6137
6138                 if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) {
6139                         mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1);
6140                         new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK;
6141                 }
6142
6143                 if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) {
6144                         mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1);
6145                         new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK;
6146                 }
6147
6148                 if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) {
6149                         mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1);
6150                         new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK;
6151                 }
6152
6153                 new_tx_rates |= mask;
6154                 break;
6155         }
6156
6157         fr.tx_rates = cpu_to_le16(new_tx_rates);
6158
6159         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6160         ipw_write_reg32(priv, reg, *(u32 *) & fr);
6161 }
6162
6163 static void ipw_abort_scan(struct ipw_priv *priv)
6164 {
6165         int err;
6166
6167         if (priv->status & STATUS_SCAN_ABORTING) {
6168                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6169                 return;
6170         }
6171         priv->status |= STATUS_SCAN_ABORTING;
6172
6173         err = ipw_send_scan_abort(priv);
6174         if (err)
6175                 IPW_DEBUG_HC("Request to abort scan failed.\n");
6176 }
6177
6178 static void ipw_add_scan_channels(struct ipw_priv *priv,
6179                                   struct ipw_scan_request_ext *scan,
6180                                   int scan_type)
6181 {
6182         int channel_index = 0;
6183         const struct libipw_geo *geo;
6184         int i;
6185
6186         geo = libipw_get_geo(priv->ieee);
6187
6188         if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) {
6189                 int start = channel_index;
6190                 for (i = 0; i < geo->a_channels; i++) {
6191                         if ((priv->status & STATUS_ASSOCIATED) &&
6192                             geo->a[i].channel == priv->channel)
6193                                 continue;
6194                         channel_index++;
6195                         scan->channels_list[channel_index] = geo->a[i].channel;
6196                         ipw_set_scan_type(scan, channel_index,
6197                                           geo->a[i].
6198                                           flags & LIBIPW_CH_PASSIVE_ONLY ?
6199                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6200                                           scan_type);
6201                 }
6202
6203                 if (start != channel_index) {
6204                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6205                             (channel_index - start);
6206                         channel_index++;
6207                 }
6208         }
6209
6210         if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) {
6211                 int start = channel_index;
6212                 if (priv->config & CFG_SPEED_SCAN) {
6213                         int index;
6214                         u8 channels[LIBIPW_24GHZ_CHANNELS] = {
6215                                 /* nop out the list */
6216                                 [0] = 0
6217                         };
6218
6219                         u8 channel;
6220                         while (channel_index < IPW_SCAN_CHANNELS - 1) {
6221                                 channel =
6222                                     priv->speed_scan[priv->speed_scan_pos];
6223                                 if (channel == 0) {
6224                                         priv->speed_scan_pos = 0;
6225                                         channel = priv->speed_scan[0];
6226                                 }
6227                                 if ((priv->status & STATUS_ASSOCIATED) &&
6228                                     channel == priv->channel) {
6229                                         priv->speed_scan_pos++;
6230                                         continue;
6231                                 }
6232
6233                                 /* If this channel has already been
6234                                  * added in scan, break from loop
6235                                  * and this will be the first channel
6236                                  * in the next scan.
6237                                  */
6238                                 if (channels[channel - 1] != 0)
6239                                         break;
6240
6241                                 channels[channel - 1] = 1;
6242                                 priv->speed_scan_pos++;
6243                                 channel_index++;
6244                                 scan->channels_list[channel_index] = channel;
6245                                 index =
6246                                     libipw_channel_to_index(priv->ieee, channel);
6247                                 ipw_set_scan_type(scan, channel_index,
6248                                                   geo->bg[index].
6249                                                   flags &
6250                                                   LIBIPW_CH_PASSIVE_ONLY ?
6251                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6252                                                   : scan_type);
6253                         }
6254                 } else {
6255                         for (i = 0; i < geo->bg_channels; i++) {
6256                                 if ((priv->status & STATUS_ASSOCIATED) &&
6257                                     geo->bg[i].channel == priv->channel)
6258                                         continue;
6259                                 channel_index++;
6260                                 scan->channels_list[channel_index] =
6261                                     geo->bg[i].channel;
6262                                 ipw_set_scan_type(scan, channel_index,
6263                                                   geo->bg[i].
6264                                                   flags &
6265                                                   LIBIPW_CH_PASSIVE_ONLY ?
6266                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6267                                                   : scan_type);
6268                         }
6269                 }
6270
6271                 if (start != channel_index) {
6272                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6273                             (channel_index - start);
6274                 }
6275         }
6276 }
6277
6278 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6279 {
6280         /* staying on passive channels longer than the DTIM interval during a
6281          * scan, while associated, causes the firmware to cancel the scan
6282          * without notification. Hence, don't stay on passive channels longer
6283          * than the beacon interval.
6284          */
6285         if (priv->status & STATUS_ASSOCIATED
6286             && priv->assoc_network->beacon_interval > 10)
6287                 return priv->assoc_network->beacon_interval - 10;
6288         else
6289                 return 120;
6290 }
6291
6292 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6293 {
6294         struct ipw_scan_request_ext scan;
6295         int err = 0, scan_type;
6296
6297         if (!(priv->status & STATUS_INIT) ||
6298             (priv->status & STATUS_EXIT_PENDING))
6299                 return 0;
6300
6301         mutex_lock(&priv->mutex);
6302
6303         if (direct && (priv->direct_scan_ssid_len == 0)) {
6304                 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6305                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6306                 goto done;
6307         }
6308
6309         if (priv->status & STATUS_SCANNING) {
6310                 IPW_DEBUG_HC("Concurrent scan requested.  Queuing.\n");
6311                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6312                                         STATUS_SCAN_PENDING;
6313                 goto done;
6314         }
6315
6316         if (!(priv->status & STATUS_SCAN_FORCED) &&
6317             priv->status & STATUS_SCAN_ABORTING) {
6318                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6319                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6320                                         STATUS_SCAN_PENDING;
6321                 goto done;
6322         }
6323
6324         if (priv->status & STATUS_RF_KILL_MASK) {
6325                 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6326                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6327                                         STATUS_SCAN_PENDING;
6328                 goto done;
6329         }
6330
6331         memset(&scan, 0, sizeof(scan));
6332         scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee));
6333
6334         if (type == IW_SCAN_TYPE_PASSIVE) {
6335                 IPW_DEBUG_WX("use passive scanning\n");
6336                 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6337                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6338                         cpu_to_le16(ipw_passive_dwell_time(priv));
6339                 ipw_add_scan_channels(priv, &scan, scan_type);
6340                 goto send_request;
6341         }
6342
6343         /* Use active scan by default. */
6344         if (priv->config & CFG_SPEED_SCAN)
6345                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6346                         cpu_to_le16(30);
6347         else
6348                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6349                         cpu_to_le16(20);
6350
6351         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6352                 cpu_to_le16(20);
6353
6354         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6355                 cpu_to_le16(ipw_passive_dwell_time(priv));
6356         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6357
6358 #ifdef CONFIG_IPW2200_MONITOR
6359         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6360                 u8 channel;
6361                 u8 band = 0;
6362
6363                 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
6364                 case LIBIPW_52GHZ_BAND:
6365                         band = (u8) (IPW_A_MODE << 6) | 1;
6366                         channel = priv->channel;
6367                         break;
6368
6369                 case LIBIPW_24GHZ_BAND:
6370                         band = (u8) (IPW_B_MODE << 6) | 1;
6371                         channel = priv->channel;
6372                         break;
6373
6374                 default:
6375                         band = (u8) (IPW_B_MODE << 6) | 1;
6376                         channel = 9;
6377                         break;
6378                 }
6379
6380                 scan.channels_list[0] = band;
6381                 scan.channels_list[1] = channel;
6382                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6383
6384                 /* NOTE:  The card will sit on this channel for this time
6385                  * period.  Scan aborts are timing sensitive and frequently
6386                  * result in firmware restarts.  As such, it is best to
6387                  * set a small dwell_time here and just keep re-issuing
6388                  * scans.  Otherwise fast channel hopping will not actually
6389                  * hop channels.
6390                  *
6391                  * TODO: Move SPEED SCAN support to all modes and bands */
6392                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6393                         cpu_to_le16(2000);
6394         } else {
6395 #endif                          /* CONFIG_IPW2200_MONITOR */
6396                 /* Honor direct scans first, otherwise if we are roaming make
6397                  * this a direct scan for the current network.  Finally,
6398                  * ensure that every other scan is a fast channel hop scan */
6399                 if (direct) {
6400                         err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6401                                             priv->direct_scan_ssid_len);
6402                         if (err) {
6403                                 IPW_DEBUG_HC("Attempt to send SSID command  "
6404                                              "failed\n");
6405                                 goto done;
6406                         }
6407
6408                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6409                 } else if ((priv->status & STATUS_ROAMING)
6410                            || (!(priv->status & STATUS_ASSOCIATED)
6411                                && (priv->config & CFG_STATIC_ESSID)
6412                                && (le32_to_cpu(scan.full_scan_index) % 2))) {
6413                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6414                         if (err) {
6415                                 IPW_DEBUG_HC("Attempt to send SSID command "
6416                                              "failed.\n");
6417                                 goto done;
6418                         }
6419
6420                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6421                 } else
6422                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6423
6424                 ipw_add_scan_channels(priv, &scan, scan_type);
6425 #ifdef CONFIG_IPW2200_MONITOR
6426         }
6427 #endif
6428
6429 send_request:
6430         err = ipw_send_scan_request_ext(priv, &scan);
6431         if (err) {
6432                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6433                 goto done;
6434         }
6435
6436         priv->status |= STATUS_SCANNING;
6437         if (direct) {
6438                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6439                 priv->direct_scan_ssid_len = 0;
6440         } else
6441                 priv->status &= ~STATUS_SCAN_PENDING;
6442
6443         schedule_delayed_work(&priv->scan_check, IPW_SCAN_CHECK_WATCHDOG);
6444 done:
6445         mutex_unlock(&priv->mutex);
6446         return err;
6447 }
6448
6449 static void ipw_request_passive_scan(struct work_struct *work)
6450 {
6451         struct ipw_priv *priv =
6452                 container_of(work, struct ipw_priv, request_passive_scan.work);
6453         ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6454 }
6455
6456 static void ipw_request_scan(struct work_struct *work)
6457 {
6458         struct ipw_priv *priv =
6459                 container_of(work, struct ipw_priv, request_scan.work);
6460         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6461 }
6462
6463 static void ipw_request_direct_scan(struct work_struct *work)
6464 {
6465         struct ipw_priv *priv =
6466                 container_of(work, struct ipw_priv, request_direct_scan.work);
6467         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6468 }
6469
6470 static void ipw_bg_abort_scan(struct work_struct *work)
6471 {
6472         struct ipw_priv *priv =
6473                 container_of(work, struct ipw_priv, abort_scan);
6474         mutex_lock(&priv->mutex);
6475         ipw_abort_scan(priv);
6476         mutex_unlock(&priv->mutex);
6477 }
6478
6479 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6480 {
6481         /* This is called when wpa_supplicant loads and closes the driver
6482          * interface. */
6483         priv->ieee->wpa_enabled = value;
6484         return 0;
6485 }
6486
6487 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6488 {
6489         struct libipw_device *ieee = priv->ieee;
6490         struct libipw_security sec = {
6491                 .flags = SEC_AUTH_MODE,
6492         };
6493         int ret = 0;
6494
6495         if (value & IW_AUTH_ALG_SHARED_KEY) {
6496                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6497                 ieee->open_wep = 0;
6498         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6499                 sec.auth_mode = WLAN_AUTH_OPEN;
6500                 ieee->open_wep = 1;
6501         } else if (value & IW_AUTH_ALG_LEAP) {
6502                 sec.auth_mode = WLAN_AUTH_LEAP;
6503                 ieee->open_wep = 1;
6504         } else
6505                 return -EINVAL;
6506
6507         if (ieee->set_security)
6508                 ieee->set_security(ieee->dev, &sec);
6509         else
6510                 ret = -EOPNOTSUPP;
6511
6512         return ret;
6513 }
6514
6515 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6516                                 int wpa_ie_len)
6517 {
6518         /* make sure WPA is enabled */
6519         ipw_wpa_enable(priv, 1);
6520 }
6521
6522 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6523                             char *capabilities, int length)
6524 {
6525         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6526
6527         return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6528                                 capabilities);
6529 }
6530
6531 /*
6532  * WE-18 support
6533  */
6534
6535 /* SIOCSIWGENIE */
6536 static int ipw_wx_set_genie(struct net_device *dev,
6537                             struct iw_request_info *info,
6538                             union iwreq_data *wrqu, char *extra)
6539 {
6540         struct ipw_priv *priv = libipw_priv(dev);
6541         struct libipw_device *ieee = priv->ieee;
6542         u8 *buf;
6543         int err = 0;
6544
6545         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6546             (wrqu->data.length && extra == NULL))
6547                 return -EINVAL;
6548
6549         if (wrqu->data.length) {
6550                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
6551                 if (buf == NULL) {
6552                         err = -ENOMEM;
6553                         goto out;
6554                 }
6555
6556                 kfree(ieee->wpa_ie);
6557                 ieee->wpa_ie = buf;
6558                 ieee->wpa_ie_len = wrqu->data.length;
6559         } else {
6560                 kfree(ieee->wpa_ie);
6561                 ieee->wpa_ie = NULL;
6562                 ieee->wpa_ie_len = 0;
6563         }
6564
6565         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6566       out:
6567         return err;
6568 }
6569
6570 /* SIOCGIWGENIE */
6571 static int ipw_wx_get_genie(struct net_device *dev,
6572                             struct iw_request_info *info,
6573                             union iwreq_data *wrqu, char *extra)
6574 {
6575         struct ipw_priv *priv = libipw_priv(dev);
6576         struct libipw_device *ieee = priv->ieee;
6577         int err = 0;
6578
6579         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6580                 wrqu->data.length = 0;
6581                 goto out;
6582         }
6583
6584         if (wrqu->data.length < ieee->wpa_ie_len) {
6585                 err = -E2BIG;
6586                 goto out;
6587         }
6588
6589         wrqu->data.length = ieee->wpa_ie_len;
6590         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6591
6592       out:
6593         return err;
6594 }
6595
6596 static int wext_cipher2level(int cipher)
6597 {
6598         switch (cipher) {
6599         case IW_AUTH_CIPHER_NONE:
6600                 return SEC_LEVEL_0;
6601         case IW_AUTH_CIPHER_WEP40:
6602         case IW_AUTH_CIPHER_WEP104:
6603                 return SEC_LEVEL_1;
6604         case IW_AUTH_CIPHER_TKIP:
6605                 return SEC_LEVEL_2;
6606         case IW_AUTH_CIPHER_CCMP:
6607                 return SEC_LEVEL_3;
6608         default:
6609                 return -1;
6610         }
6611 }
6612
6613 /* SIOCSIWAUTH */
6614 static int ipw_wx_set_auth(struct net_device *dev,
6615                            struct iw_request_info *info,
6616                            union iwreq_data *wrqu, char *extra)
6617 {
6618         struct ipw_priv *priv = libipw_priv(dev);
6619         struct libipw_device *ieee = priv->ieee;
6620         struct iw_param *param = &wrqu->param;
6621         struct lib80211_crypt_data *crypt;
6622         unsigned long flags;
6623         int ret = 0;
6624
6625         switch (param->flags & IW_AUTH_INDEX) {
6626         case IW_AUTH_WPA_VERSION:
6627                 break;
6628         case IW_AUTH_CIPHER_PAIRWISE:
6629                 ipw_set_hw_decrypt_unicast(priv,
6630                                            wext_cipher2level(param->value));
6631                 break;
6632         case IW_AUTH_CIPHER_GROUP:
6633                 ipw_set_hw_decrypt_multicast(priv,
6634                                              wext_cipher2level(param->value));
6635                 break;
6636         case IW_AUTH_KEY_MGMT:
6637                 /*
6638                  * ipw2200 does not use these parameters
6639                  */
6640                 break;
6641
6642         case IW_AUTH_TKIP_COUNTERMEASURES:
6643                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6644                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6645                         break;
6646
6647                 flags = crypt->ops->get_flags(crypt->priv);
6648
6649                 if (param->value)
6650                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6651                 else
6652                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6653
6654                 crypt->ops->set_flags(flags, crypt->priv);
6655
6656                 break;
6657
6658         case IW_AUTH_DROP_UNENCRYPTED:{
6659                         /* HACK:
6660                          *
6661                          * wpa_supplicant calls set_wpa_enabled when the driver
6662                          * is loaded and unloaded, regardless of if WPA is being
6663                          * used.  No other calls are made which can be used to
6664                          * determine if encryption will be used or not prior to
6665                          * association being expected.  If encryption is not being
6666                          * used, drop_unencrypted is set to false, else true -- we
6667                          * can use this to determine if the CAP_PRIVACY_ON bit should
6668                          * be set.
6669                          */
6670                         struct libipw_security sec = {
6671                                 .flags = SEC_ENABLED,
6672                                 .enabled = param->value,
6673                         };
6674                         priv->ieee->drop_unencrypted = param->value;
6675                         /* We only change SEC_LEVEL for open mode. Others
6676                          * are set by ipw_wpa_set_encryption.
6677                          */
6678                         if (!param->value) {
6679                                 sec.flags |= SEC_LEVEL;
6680                                 sec.level = SEC_LEVEL_0;
6681                         } else {
6682                                 sec.flags |= SEC_LEVEL;
6683                                 sec.level = SEC_LEVEL_1;
6684                         }
6685                         if (priv->ieee->set_security)
6686                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6687                         break;
6688                 }
6689
6690         case IW_AUTH_80211_AUTH_ALG:
6691                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6692                 break;
6693
6694         case IW_AUTH_WPA_ENABLED:
6695                 ret = ipw_wpa_enable(priv, param->value);
6696                 ipw_disassociate(priv);
6697                 break;
6698
6699         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6700                 ieee->ieee802_1x = param->value;
6701                 break;
6702
6703         case IW_AUTH_PRIVACY_INVOKED:
6704                 ieee->privacy_invoked = param->value;
6705                 break;
6706
6707         default:
6708                 return -EOPNOTSUPP;
6709         }
6710         return ret;
6711 }
6712
6713 /* SIOCGIWAUTH */
6714 static int ipw_wx_get_auth(struct net_device *dev,
6715                            struct iw_request_info *info,
6716                            union iwreq_data *wrqu, char *extra)
6717 {
6718         struct ipw_priv *priv = libipw_priv(dev);
6719         struct libipw_device *ieee = priv->ieee;
6720         struct lib80211_crypt_data *crypt;
6721         struct iw_param *param = &wrqu->param;
6722
6723         switch (param->flags & IW_AUTH_INDEX) {
6724         case IW_AUTH_WPA_VERSION:
6725         case IW_AUTH_CIPHER_PAIRWISE:
6726         case IW_AUTH_CIPHER_GROUP:
6727         case IW_AUTH_KEY_MGMT:
6728                 /*
6729                  * wpa_supplicant will control these internally
6730                  */
6731                 return -EOPNOTSUPP;
6732
6733         case IW_AUTH_TKIP_COUNTERMEASURES:
6734                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6735                 if (!crypt || !crypt->ops->get_flags)
6736                         break;
6737
6738                 param->value = (crypt->ops->get_flags(crypt->priv) &
6739                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6740
6741                 break;
6742
6743         case IW_AUTH_DROP_UNENCRYPTED:
6744                 param->value = ieee->drop_unencrypted;
6745                 break;
6746
6747         case IW_AUTH_80211_AUTH_ALG:
6748                 param->value = ieee->sec.auth_mode;
6749                 break;
6750
6751         case IW_AUTH_WPA_ENABLED:
6752                 param->value = ieee->wpa_enabled;
6753                 break;
6754
6755         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6756                 param->value = ieee->ieee802_1x;
6757                 break;
6758
6759         case IW_AUTH_ROAMING_CONTROL:
6760         case IW_AUTH_PRIVACY_INVOKED:
6761                 param->value = ieee->privacy_invoked;
6762                 break;
6763
6764         default:
6765                 return -EOPNOTSUPP;
6766         }
6767         return 0;
6768 }
6769
6770 /* SIOCSIWENCODEEXT */
6771 static int ipw_wx_set_encodeext(struct net_device *dev,
6772                                 struct iw_request_info *info,
6773                                 union iwreq_data *wrqu, char *extra)
6774 {
6775         struct ipw_priv *priv = libipw_priv(dev);
6776         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6777
6778         if (hwcrypto) {
6779                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6780                         /* IPW HW can't build TKIP MIC,
6781                            host decryption still needed */
6782                         if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6783                                 priv->ieee->host_mc_decrypt = 1;
6784                         else {
6785                                 priv->ieee->host_encrypt = 0;
6786                                 priv->ieee->host_encrypt_msdu = 1;
6787                                 priv->ieee->host_decrypt = 1;
6788                         }
6789                 } else {
6790                         priv->ieee->host_encrypt = 0;
6791                         priv->ieee->host_encrypt_msdu = 0;
6792                         priv->ieee->host_decrypt = 0;
6793                         priv->ieee->host_mc_decrypt = 0;
6794                 }
6795         }
6796
6797         return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6798 }
6799
6800 /* SIOCGIWENCODEEXT */
6801 static int ipw_wx_get_encodeext(struct net_device *dev,
6802                                 struct iw_request_info *info,
6803                                 union iwreq_data *wrqu, char *extra)
6804 {
6805         struct ipw_priv *priv = libipw_priv(dev);
6806         return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6807 }
6808
6809 /* SIOCSIWMLME */
6810 static int ipw_wx_set_mlme(struct net_device *dev,
6811                            struct iw_request_info *info,
6812                            union iwreq_data *wrqu, char *extra)
6813 {
6814         struct ipw_priv *priv = libipw_priv(dev);
6815         struct iw_mlme *mlme = (struct iw_mlme *)extra;
6816         __le16 reason;
6817
6818         reason = cpu_to_le16(mlme->reason_code);
6819
6820         switch (mlme->cmd) {
6821         case IW_MLME_DEAUTH:
6822                 /* silently ignore */
6823                 break;
6824
6825         case IW_MLME_DISASSOC:
6826                 ipw_disassociate(priv);
6827                 break;
6828
6829         default:
6830                 return -EOPNOTSUPP;
6831         }
6832         return 0;
6833 }
6834
6835 #ifdef CONFIG_IPW2200_QOS
6836
6837 /* QoS */
6838 /*
6839 * get the modulation type of the current network or
6840 * the card current mode
6841 */
6842 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6843 {
6844         u8 mode = 0;
6845
6846         if (priv->status & STATUS_ASSOCIATED) {
6847                 unsigned long flags;
6848
6849                 spin_lock_irqsave(&priv->ieee->lock, flags);
6850                 mode = priv->assoc_network->mode;
6851                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6852         } else {
6853                 mode = priv->ieee->mode;
6854         }
6855         IPW_DEBUG_QOS("QoS network/card mode %d\n", mode);
6856         return mode;
6857 }
6858
6859 /*
6860 * Handle management frame beacon and probe response
6861 */
6862 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6863                                          int active_network,
6864                                          struct libipw_network *network)
6865 {
6866         u32 size = sizeof(struct libipw_qos_parameters);
6867
6868         if (network->capability & WLAN_CAPABILITY_IBSS)
6869                 network->qos_data.active = network->qos_data.supported;
6870
6871         if (network->flags & NETWORK_HAS_QOS_MASK) {
6872                 if (active_network &&
6873                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6874                         network->qos_data.active = network->qos_data.supported;
6875
6876                 if ((network->qos_data.active == 1) && (active_network == 1) &&
6877                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6878                     (network->qos_data.old_param_count !=
6879                      network->qos_data.param_count)) {
6880                         network->qos_data.old_param_count =
6881                             network->qos_data.param_count;
6882                         schedule_work(&priv->qos_activate);
6883                         IPW_DEBUG_QOS("QoS parameters change call "
6884                                       "qos_activate\n");
6885                 }
6886         } else {
6887                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6888                         memcpy(&network->qos_data.parameters,
6889                                &def_parameters_CCK, size);
6890                 else
6891                         memcpy(&network->qos_data.parameters,
6892                                &def_parameters_OFDM, size);
6893
6894                 if ((network->qos_data.active == 1) && (active_network == 1)) {
6895                         IPW_DEBUG_QOS("QoS was disabled call qos_activate\n");
6896                         schedule_work(&priv->qos_activate);
6897                 }
6898
6899                 network->qos_data.active = 0;
6900                 network->qos_data.supported = 0;
6901         }
6902         if ((priv->status & STATUS_ASSOCIATED) &&
6903             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6904                 if (!ether_addr_equal(network->bssid, priv->bssid))
6905                         if (network->capability & WLAN_CAPABILITY_IBSS)
6906                                 if ((network->ssid_len ==
6907                                      priv->assoc_network->ssid_len) &&
6908                                     !memcmp(network->ssid,
6909                                             priv->assoc_network->ssid,
6910                                             network->ssid_len)) {
6911                                         schedule_work(&priv->merge_networks);
6912                                 }
6913         }
6914
6915         return 0;
6916 }
6917
6918 /*
6919 * This function set up the firmware to support QoS. It sends
6920 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6921 */
6922 static int ipw_qos_activate(struct ipw_priv *priv,
6923                             struct libipw_qos_data *qos_network_data)
6924 {
6925         int err;
6926         struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS];
6927         struct libipw_qos_parameters *active_one = NULL;
6928         u32 size = sizeof(struct libipw_qos_parameters);
6929         u32 burst_duration;
6930         int i;
6931         u8 type;
6932
6933         type = ipw_qos_current_mode(priv);
6934
6935         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6936         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6937         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6938         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6939
6940         if (qos_network_data == NULL) {
6941                 if (type == IEEE_B) {
6942                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6943                         active_one = &def_parameters_CCK;
6944                 } else
6945                         active_one = &def_parameters_OFDM;
6946
6947                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6948                 burst_duration = ipw_qos_get_burst_duration(priv);
6949                 for (i = 0; i < QOS_QUEUE_NUM; i++)
6950                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6951                             cpu_to_le16(burst_duration);
6952         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6953                 if (type == IEEE_B) {
6954                         IPW_DEBUG_QOS("QoS activate IBSS network mode %d\n",
6955                                       type);
6956                         if (priv->qos_data.qos_enable == 0)
6957                                 active_one = &def_parameters_CCK;
6958                         else
6959                                 active_one = priv->qos_data.def_qos_parm_CCK;
6960                 } else {
6961                         if (priv->qos_data.qos_enable == 0)
6962                                 active_one = &def_parameters_OFDM;
6963                         else
6964                                 active_one = priv->qos_data.def_qos_parm_OFDM;
6965                 }
6966                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6967         } else {
6968                 unsigned long flags;
6969                 int active;
6970
6971                 spin_lock_irqsave(&priv->ieee->lock, flags);
6972                 active_one = &(qos_network_data->parameters);
6973                 qos_network_data->old_param_count =
6974                     qos_network_data->param_count;
6975                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6976                 active = qos_network_data->supported;
6977                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6978
6979                 if (active == 0) {
6980                         burst_duration = ipw_qos_get_burst_duration(priv);
6981                         for (i = 0; i < QOS_QUEUE_NUM; i++)
6982                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
6983                                     tx_op_limit[i] = cpu_to_le16(burst_duration);
6984                 }
6985         }
6986
6987         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6988         err = ipw_send_qos_params_command(priv, &qos_parameters[0]);
6989         if (err)
6990                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6991
6992         return err;
6993 }
6994
6995 /*
6996 * send IPW_CMD_WME_INFO to the firmware
6997 */
6998 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6999 {
7000         int ret = 0;
7001         struct libipw_qos_information_element qos_info;
7002
7003         if (priv == NULL)
7004                 return -1;
7005
7006         qos_info.elementID = QOS_ELEMENT_ID;
7007         qos_info.length = sizeof(struct libipw_qos_information_element) - 2;
7008
7009         qos_info.version = QOS_VERSION_1;
7010         qos_info.ac_info = 0;
7011
7012         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7013         qos_info.qui_type = QOS_OUI_TYPE;
7014         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7015
7016         ret = ipw_send_qos_info_command(priv, &qos_info);
7017         if (ret != 0) {
7018                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7019         }
7020         return ret;
7021 }
7022
7023 /*
7024 * Set the QoS parameter with the association request structure
7025 */
7026 static int ipw_qos_association(struct ipw_priv *priv,
7027                                struct libipw_network *network)
7028 {
7029         int err = 0;
7030         struct libipw_qos_data *qos_data = NULL;
7031         struct libipw_qos_data ibss_data = {
7032                 .supported = 1,
7033                 .active = 1,
7034         };
7035
7036         switch (priv->ieee->iw_mode) {
7037         case IW_MODE_ADHOC:
7038                 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7039
7040                 qos_data = &ibss_data;
7041                 break;
7042
7043         case IW_MODE_INFRA:
7044                 qos_data = &network->qos_data;
7045                 break;
7046
7047         default:
7048                 BUG();
7049                 break;
7050         }
7051
7052         err = ipw_qos_activate(priv, qos_data);
7053         if (err) {
7054                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7055                 return err;
7056         }
7057
7058         if (priv->qos_data.qos_enable && qos_data->supported) {
7059                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7060                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7061                 return ipw_qos_set_info_element(priv);
7062         }
7063
7064         return 0;
7065 }
7066
7067 /*
7068 * handling the beaconing responses. if we get different QoS setting
7069 * off the network from the associated setting, adjust the QoS
7070 * setting
7071 */
7072 static int ipw_qos_association_resp(struct ipw_priv *priv,
7073                                     struct libipw_network *network)
7074 {
7075         int ret = 0;
7076         unsigned long flags;
7077         u32 size = sizeof(struct libipw_qos_parameters);
7078         int set_qos_param = 0;
7079
7080         if ((priv == NULL) || (network == NULL) ||
7081             (priv->assoc_network == NULL))
7082                 return ret;
7083
7084         if (!(priv->status & STATUS_ASSOCIATED))
7085                 return ret;
7086
7087         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7088                 return ret;
7089
7090         spin_lock_irqsave(&priv->ieee->lock, flags);
7091         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7092                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7093                        sizeof(struct libipw_qos_data));
7094                 priv->assoc_network->qos_data.active = 1;
7095                 if ((network->qos_data.old_param_count !=
7096                      network->qos_data.param_count)) {
7097                         set_qos_param = 1;
7098                         network->qos_data.old_param_count =
7099                             network->qos_data.param_count;
7100                 }
7101
7102         } else {
7103                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7104                         memcpy(&priv->assoc_network->qos_data.parameters,
7105                                &def_parameters_CCK, size);
7106                 else
7107                         memcpy(&priv->assoc_network->qos_data.parameters,
7108                                &def_parameters_OFDM, size);
7109                 priv->assoc_network->qos_data.active = 0;
7110                 priv->assoc_network->qos_data.supported = 0;
7111                 set_qos_param = 1;
7112         }
7113
7114         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7115
7116         if (set_qos_param == 1)
7117                 schedule_work(&priv->qos_activate);
7118
7119         return ret;
7120 }
7121
7122 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7123 {
7124         u32 ret = 0;
7125
7126         if ((priv == NULL))
7127                 return 0;
7128
7129         if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION))
7130                 ret = priv->qos_data.burst_duration_CCK;
7131         else
7132                 ret = priv->qos_data.burst_duration_OFDM;
7133
7134         return ret;
7135 }
7136
7137 /*
7138 * Initialize the setting of QoS global
7139 */
7140 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7141                          int burst_enable, u32 burst_duration_CCK,
7142                          u32 burst_duration_OFDM)
7143 {
7144         priv->qos_data.qos_enable = enable;
7145
7146         if (priv->qos_data.qos_enable) {
7147                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7148                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7149                 IPW_DEBUG_QOS("QoS is enabled\n");
7150         } else {
7151                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7152                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7153                 IPW_DEBUG_QOS("QoS is not enabled\n");
7154         }
7155
7156         priv->qos_data.burst_enable = burst_enable;
7157
7158         if (burst_enable) {
7159                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7160                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7161         } else {
7162                 priv->qos_data.burst_duration_CCK = 0;
7163                 priv->qos_data.burst_duration_OFDM = 0;
7164         }
7165 }
7166
7167 /*
7168 * map the packet priority to the right TX Queue
7169 */
7170 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7171 {
7172         if (priority > 7 || !priv->qos_data.qos_enable)
7173                 priority = 0;
7174
7175         return from_priority_to_tx_queue[priority] - 1;
7176 }
7177
7178 static int ipw_is_qos_active(struct net_device *dev,
7179                              struct sk_buff *skb)
7180 {
7181         struct ipw_priv *priv = libipw_priv(dev);
7182         struct libipw_qos_data *qos_data = NULL;
7183         int active, supported;
7184         u8 *daddr = skb->data + ETH_ALEN;
7185         int unicast = !is_multicast_ether_addr(daddr);
7186
7187         if (!(priv->status & STATUS_ASSOCIATED))
7188                 return 0;
7189
7190         qos_data = &priv->assoc_network->qos_data;
7191
7192         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7193                 if (unicast == 0)
7194                         qos_data->active = 0;
7195                 else
7196                         qos_data->active = qos_data->supported;
7197         }
7198         active = qos_data->active;
7199         supported = qos_data->supported;
7200         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7201                       "unicast %d\n",
7202                       priv->qos_data.qos_enable, active, supported, unicast);
7203         if (active && priv->qos_data.qos_enable)
7204                 return 1;
7205
7206         return 0;
7207
7208 }
7209 /*
7210 * add QoS parameter to the TX command
7211 */
7212 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7213                                         u16 priority,
7214                                         struct tfd_data *tfd)
7215 {
7216         int tx_queue_id = 0;
7217
7218
7219         tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7220         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7221
7222         if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7223                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7224                 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7225         }
7226         return 0;
7227 }
7228
7229 /*
7230 * background support to run QoS activate functionality
7231 */
7232 static void ipw_bg_qos_activate(struct work_struct *work)
7233 {
7234         struct ipw_priv *priv =
7235                 container_of(work, struct ipw_priv, qos_activate);
7236
7237         mutex_lock(&priv->mutex);
7238
7239         if (priv->status & STATUS_ASSOCIATED)
7240                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7241
7242         mutex_unlock(&priv->mutex);
7243 }
7244
7245 static int ipw_handle_probe_response(struct net_device *dev,
7246                                      struct libipw_probe_response *resp,
7247                                      struct libipw_network *network)
7248 {
7249         struct ipw_priv *priv = libipw_priv(dev);
7250         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7251                               (network == priv->assoc_network));
7252
7253         ipw_qos_handle_probe_response(priv, active_network, network);
7254
7255         return 0;
7256 }
7257
7258 static int ipw_handle_beacon(struct net_device *dev,
7259                              struct libipw_beacon *resp,
7260                              struct libipw_network *network)
7261 {
7262         struct ipw_priv *priv = libipw_priv(dev);
7263         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7264                               (network == priv->assoc_network));
7265
7266         ipw_qos_handle_probe_response(priv, active_network, network);
7267
7268         return 0;
7269 }
7270
7271 static int ipw_handle_assoc_response(struct net_device *dev,
7272                                      struct libipw_assoc_response *resp,
7273                                      struct libipw_network *network)
7274 {
7275         struct ipw_priv *priv = libipw_priv(dev);
7276         ipw_qos_association_resp(priv, network);
7277         return 0;
7278 }
7279
7280 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
7281                                        *qos_param)
7282 {
7283         return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7284                                 sizeof(*qos_param) * 3, qos_param);
7285 }
7286
7287 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
7288                                      *qos_param)
7289 {
7290         return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7291                                 qos_param);
7292 }
7293
7294 #endif                          /* CONFIG_IPW2200_QOS */
7295
7296 static int ipw_associate_network(struct ipw_priv *priv,
7297                                  struct libipw_network *network,
7298                                  struct ipw_supported_rates *rates, int roaming)
7299 {
7300         int err;
7301
7302         if (priv->config & CFG_FIXED_RATE)
7303                 ipw_set_fixed_rate(priv, network->mode);
7304
7305         if (!(priv->config & CFG_STATIC_ESSID)) {
7306                 priv->essid_len = min(network->ssid_len,
7307                                       (u8) IW_ESSID_MAX_SIZE);
7308                 memcpy(priv->essid, network->ssid, priv->essid_len);
7309         }
7310
7311         network->last_associate = jiffies;
7312
7313         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7314         priv->assoc_request.channel = network->channel;
7315         priv->assoc_request.auth_key = 0;
7316
7317         if ((priv->capability & CAP_PRIVACY_ON) &&
7318             (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7319                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7320                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7321
7322                 if (priv->ieee->sec.level == SEC_LEVEL_1)
7323                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7324
7325         } else if ((priv->capability & CAP_PRIVACY_ON) &&
7326                    (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7327                 priv->assoc_request.auth_type = AUTH_LEAP;
7328         else
7329                 priv->assoc_request.auth_type = AUTH_OPEN;
7330
7331         if (priv->ieee->wpa_ie_len) {
7332                 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7333                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7334                                  priv->ieee->wpa_ie_len);
7335         }
7336
7337         /*
7338          * It is valid for our ieee device to support multiple modes, but
7339          * when it comes to associating to a given network we have to choose
7340          * just one mode.
7341          */
7342         if (network->mode & priv->ieee->mode & IEEE_A)
7343                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7344         else if (network->mode & priv->ieee->mode & IEEE_G)
7345                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7346         else if (network->mode & priv->ieee->mode & IEEE_B)
7347                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7348
7349         priv->assoc_request.capability = cpu_to_le16(network->capability);
7350         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7351             && !(priv->config & CFG_PREAMBLE_LONG)) {
7352                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7353         } else {
7354                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7355
7356                 /* Clear the short preamble if we won't be supporting it */
7357                 priv->assoc_request.capability &=
7358                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7359         }
7360
7361         /* Clear capability bits that aren't used in Ad Hoc */
7362         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7363                 priv->assoc_request.capability &=
7364                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7365
7366         IPW_DEBUG_ASSOC("%ssociation attempt: '%*pE', channel %d, 802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7367                         roaming ? "Rea" : "A",
7368                         priv->essid_len, priv->essid,
7369                         network->channel,
7370                         ipw_modes[priv->assoc_request.ieee_mode],
7371                         rates->num_rates,
7372                         (priv->assoc_request.preamble_length ==
7373                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7374                         network->capability &
7375                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7376                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7377                         priv->capability & CAP_PRIVACY_ON ?
7378                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7379                          "(open)") : "",
7380                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7381                         priv->capability & CAP_PRIVACY_ON ?
7382                         '1' + priv->ieee->sec.active_key : '.',
7383                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7384
7385         priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7386         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7387             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7388                 priv->assoc_request.assoc_type = HC_IBSS_START;
7389                 priv->assoc_request.assoc_tsf_msw = 0;
7390                 priv->assoc_request.assoc_tsf_lsw = 0;
7391         } else {
7392                 if (unlikely(roaming))
7393                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7394                 else
7395                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7396                 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7397                 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7398         }
7399
7400         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7401
7402         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7403                 eth_broadcast_addr(priv->assoc_request.dest);
7404                 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7405         } else {
7406                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7407                 priv->assoc_request.atim_window = 0;
7408         }
7409
7410         priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7411
7412         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7413         if (err) {
7414                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7415                 return err;
7416         }
7417
7418         rates->ieee_mode = priv->assoc_request.ieee_mode;
7419         rates->purpose = IPW_RATE_CONNECT;
7420         ipw_send_supported_rates(priv, rates);
7421
7422         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7423                 priv->sys_config.dot11g_auto_detection = 1;
7424         else
7425                 priv->sys_config.dot11g_auto_detection = 0;
7426
7427         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7428                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7429         else
7430                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7431
7432         err = ipw_send_system_config(priv);
7433         if (err) {
7434                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7435                 return err;
7436         }
7437
7438         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7439         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7440         if (err) {
7441                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7442                 return err;
7443         }
7444
7445         /*
7446          * If preemption is enabled, it is possible for the association
7447          * to complete before we return from ipw_send_associate.  Therefore
7448          * we have to be sure and update our priviate data first.
7449          */
7450         priv->channel = network->channel;
7451         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7452         priv->status |= STATUS_ASSOCIATING;
7453         priv->status &= ~STATUS_SECURITY_UPDATED;
7454
7455         priv->assoc_network = network;
7456
7457 #ifdef CONFIG_IPW2200_QOS
7458         ipw_qos_association(priv, network);
7459 #endif
7460
7461         err = ipw_send_associate(priv, &priv->assoc_request);
7462         if (err) {
7463                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7464                 return err;
7465         }
7466
7467         IPW_DEBUG(IPW_DL_STATE, "associating: '%*pE' %pM\n",
7468                   priv->essid_len, priv->essid, priv->bssid);
7469
7470         return 0;
7471 }
7472
7473 static void ipw_roam(void *data)
7474 {
7475         struct ipw_priv *priv = data;
7476         struct libipw_network *network = NULL;
7477         struct ipw_network_match match = {
7478                 .network = priv->assoc_network
7479         };
7480
7481         /* The roaming process is as follows:
7482          *
7483          * 1.  Missed beacon threshold triggers the roaming process by
7484          *     setting the status ROAM bit and requesting a scan.
7485          * 2.  When the scan completes, it schedules the ROAM work
7486          * 3.  The ROAM work looks at all of the known networks for one that
7487          *     is a better network than the currently associated.  If none
7488          *     found, the ROAM process is over (ROAM bit cleared)
7489          * 4.  If a better network is found, a disassociation request is
7490          *     sent.
7491          * 5.  When the disassociation completes, the roam work is again
7492          *     scheduled.  The second time through, the driver is no longer
7493          *     associated, and the newly selected network is sent an
7494          *     association request.
7495          * 6.  At this point ,the roaming process is complete and the ROAM
7496          *     status bit is cleared.
7497          */
7498
7499         /* If we are no longer associated, and the roaming bit is no longer
7500          * set, then we are not actively roaming, so just return */
7501         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7502                 return;
7503
7504         if (priv->status & STATUS_ASSOCIATED) {
7505                 /* First pass through ROAM process -- look for a better
7506                  * network */
7507                 unsigned long flags;
7508                 u8 rssi = priv->assoc_network->stats.rssi;
7509                 priv->assoc_network->stats.rssi = -128;
7510                 spin_lock_irqsave(&priv->ieee->lock, flags);
7511                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7512                         if (network != priv->assoc_network)
7513                                 ipw_best_network(priv, &match, network, 1);
7514                 }
7515                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7516                 priv->assoc_network->stats.rssi = rssi;
7517
7518                 if (match.network == priv->assoc_network) {
7519                         IPW_DEBUG_ASSOC("No better APs in this network to "
7520                                         "roam to.\n");
7521                         priv->status &= ~STATUS_ROAMING;
7522                         ipw_debug_config(priv);
7523                         return;
7524                 }
7525
7526                 ipw_send_disassociate(priv, 1);
7527                 priv->assoc_network = match.network;
7528
7529                 return;
7530         }
7531
7532         /* Second pass through ROAM process -- request association */
7533         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7534         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7535         priv->status &= ~STATUS_ROAMING;
7536 }
7537
7538 static void ipw_bg_roam(struct work_struct *work)
7539 {
7540         struct ipw_priv *priv =
7541                 container_of(work, struct ipw_priv, roam);
7542         mutex_lock(&priv->mutex);
7543         ipw_roam(priv);
7544         mutex_unlock(&priv->mutex);
7545 }
7546
7547 static int ipw_associate(void *data)
7548 {
7549         struct ipw_priv *priv = data;
7550
7551         struct libipw_network *network = NULL;
7552         struct ipw_network_match match = {
7553                 .network = NULL
7554         };
7555         struct ipw_supported_rates *rates;
7556         struct list_head *element;
7557         unsigned long flags;
7558
7559         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7560                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7561                 return 0;
7562         }
7563
7564         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7565                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7566                                 "progress)\n");
7567                 return 0;
7568         }
7569
7570         if (priv->status & STATUS_DISASSOCIATING) {
7571                 IPW_DEBUG_ASSOC("Not attempting association (in "
7572                                 "disassociating)\n ");
7573                 schedule_work(&priv->associate);
7574                 return 0;
7575         }
7576
7577         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7578                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7579                                 "initialized)\n");
7580                 return 0;
7581         }
7582
7583         if (!(priv->config & CFG_ASSOCIATE) &&
7584             !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7585                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7586                 return 0;
7587         }
7588
7589         /* Protect our use of the network_list */
7590         spin_lock_irqsave(&priv->ieee->lock, flags);
7591         list_for_each_entry(network, &priv->ieee->network_list, list)
7592             ipw_best_network(priv, &match, network, 0);
7593
7594         network = match.network;
7595         rates = &match.rates;
7596
7597         if (network == NULL &&
7598             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7599             priv->config & CFG_ADHOC_CREATE &&
7600             priv->config & CFG_STATIC_ESSID &&
7601             priv->config & CFG_STATIC_CHANNEL) {
7602                 /* Use oldest network if the free list is empty */
7603                 if (list_empty(&priv->ieee->network_free_list)) {
7604                         struct libipw_network *oldest = NULL;
7605                         struct libipw_network *target;
7606
7607                         list_for_each_entry(target, &priv->ieee->network_list, list) {
7608                                 if ((oldest == NULL) ||
7609                                     (target->last_scanned < oldest->last_scanned))
7610                                         oldest = target;
7611                         }
7612
7613                         /* If there are no more slots, expire the oldest */
7614                         list_del(&oldest->list);
7615                         target = oldest;
7616                         IPW_DEBUG_ASSOC("Expired '%*pE' (%pM) from network list.\n",
7617                                         target->ssid_len, target->ssid,
7618                                         target->bssid);
7619                         list_add_tail(&target->list,
7620                                       &priv->ieee->network_free_list);
7621                 }
7622
7623                 element = priv->ieee->network_free_list.next;
7624                 network = list_entry(element, struct libipw_network, list);
7625                 ipw_adhoc_create(priv, network);
7626                 rates = &priv->rates;
7627                 list_del(element);
7628                 list_add_tail(&network->list, &priv->ieee->network_list);
7629         }
7630         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7631
7632         /* If we reached the end of the list, then we don't have any valid
7633          * matching APs */
7634         if (!network) {
7635                 ipw_debug_config(priv);
7636
7637                 if (!(priv->status & STATUS_SCANNING)) {
7638                         if (!(priv->config & CFG_SPEED_SCAN))
7639                                 schedule_delayed_work(&priv->request_scan,
7640                                                       SCAN_INTERVAL);
7641                         else
7642                                 schedule_delayed_work(&priv->request_scan, 0);
7643                 }
7644
7645                 return 0;
7646         }
7647
7648         ipw_associate_network(priv, network, rates, 0);
7649
7650         return 1;
7651 }
7652
7653 static void ipw_bg_associate(struct work_struct *work)
7654 {
7655         struct ipw_priv *priv =
7656                 container_of(work, struct ipw_priv, associate);
7657         mutex_lock(&priv->mutex);
7658         ipw_associate(priv);
7659         mutex_unlock(&priv->mutex);
7660 }
7661
7662 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7663                                       struct sk_buff *skb)
7664 {
7665         struct ieee80211_hdr *hdr;
7666         u16 fc;
7667
7668         hdr = (struct ieee80211_hdr *)skb->data;
7669         fc = le16_to_cpu(hdr->frame_control);
7670         if (!(fc & IEEE80211_FCTL_PROTECTED))
7671                 return;
7672
7673         fc &= ~IEEE80211_FCTL_PROTECTED;
7674         hdr->frame_control = cpu_to_le16(fc);
7675         switch (priv->ieee->sec.level) {
7676         case SEC_LEVEL_3:
7677                 /* Remove CCMP HDR */
7678                 memmove(skb->data + LIBIPW_3ADDR_LEN,
7679                         skb->data + LIBIPW_3ADDR_LEN + 8,
7680                         skb->len - LIBIPW_3ADDR_LEN - 8);
7681                 skb_trim(skb, skb->len - 16);   /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7682                 break;
7683         case SEC_LEVEL_2:
7684                 break;
7685         case SEC_LEVEL_1:
7686                 /* Remove IV */
7687                 memmove(skb->data + LIBIPW_3ADDR_LEN,
7688                         skb->data + LIBIPW_3ADDR_LEN + 4,
7689                         skb->len - LIBIPW_3ADDR_LEN - 4);
7690                 skb_trim(skb, skb->len - 8);    /* IV + ICV */
7691                 break;
7692         case SEC_LEVEL_0:
7693                 break;
7694         default:
7695                 printk(KERN_ERR "Unknown security level %d\n",
7696                        priv->ieee->sec.level);
7697                 break;
7698         }
7699 }
7700
7701 static void ipw_handle_data_packet(struct ipw_priv *priv,
7702                                    struct ipw_rx_mem_buffer *rxb,
7703                                    struct libipw_rx_stats *stats)
7704 {
7705         struct net_device *dev = priv->net_dev;
7706         struct libipw_hdr_4addr *hdr;
7707         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7708
7709         /* We received data from the HW, so stop the watchdog */
7710         dev->trans_start = jiffies;
7711
7712         /* We only process data packets if the
7713          * interface is open */
7714         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7715                      skb_tailroom(rxb->skb))) {
7716                 dev->stats.rx_errors++;
7717                 priv->wstats.discard.misc++;
7718                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7719                 return;
7720         } else if (unlikely(!netif_running(priv->net_dev))) {
7721                 dev->stats.rx_dropped++;
7722                 priv->wstats.discard.misc++;
7723                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7724                 return;
7725         }
7726
7727         /* Advance skb->data to the start of the actual payload */
7728         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7729
7730         /* Set the size of the skb to the size of the frame */
7731         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7732
7733         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7734
7735         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7736         hdr = (struct libipw_hdr_4addr *)rxb->skb->data;
7737         if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7738             (is_multicast_ether_addr(hdr->addr1) ?
7739              !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7740                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7741
7742         if (!libipw_rx(priv->ieee, rxb->skb, stats))
7743                 dev->stats.rx_errors++;
7744         else {                  /* libipw_rx succeeded, so it now owns the SKB */
7745                 rxb->skb = NULL;
7746                 __ipw_led_activity_on(priv);
7747         }
7748 }
7749
7750 #ifdef CONFIG_IPW2200_RADIOTAP
7751 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7752                                            struct ipw_rx_mem_buffer *rxb,
7753                                            struct libipw_rx_stats *stats)
7754 {
7755         struct net_device *dev = priv->net_dev;
7756         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7757         struct ipw_rx_frame *frame = &pkt->u.frame;
7758
7759         /* initial pull of some data */
7760         u16 received_channel = frame->received_channel;
7761         u8 antennaAndPhy = frame->antennaAndPhy;
7762         s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7763         u16 pktrate = frame->rate;
7764
7765         /* Magic struct that slots into the radiotap header -- no reason
7766          * to build this manually element by element, we can write it much
7767          * more efficiently than we can parse it. ORDER MATTERS HERE */
7768         struct ipw_rt_hdr *ipw_rt;
7769
7770         unsigned short len = le16_to_cpu(pkt->u.frame.length);
7771
7772         /* We received data from the HW, so stop the watchdog */
7773         dev->trans_start = jiffies;
7774
7775         /* We only process data packets if the
7776          * interface is open */
7777         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7778                      skb_tailroom(rxb->skb))) {
7779                 dev->stats.rx_errors++;
7780                 priv->wstats.discard.misc++;
7781                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7782                 return;
7783         } else if (unlikely(!netif_running(priv->net_dev))) {
7784                 dev->stats.rx_dropped++;
7785                 priv->wstats.discard.misc++;
7786                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7787                 return;
7788         }
7789
7790         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7791          * that now */
7792         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7793                 /* FIXME: Should alloc bigger skb instead */
7794                 dev->stats.rx_dropped++;
7795                 priv->wstats.discard.misc++;
7796                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7797                 return;
7798         }
7799
7800         /* copy the frame itself */
7801         memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7802                 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7803
7804         ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7805
7806         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7807         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7808         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7809
7810         /* Big bitfield of all the fields we provide in radiotap */
7811         ipw_rt->rt_hdr.it_present = cpu_to_le32(
7812              (1 << IEEE80211_RADIOTAP_TSFT) |
7813              (1 << IEEE80211_RADIOTAP_FLAGS) |
7814              (1 << IEEE80211_RADIOTAP_RATE) |
7815              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7816              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7817              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7818              (1 << IEEE80211_RADIOTAP_ANTENNA));
7819
7820         /* Zero the flags, we'll add to them as we go */
7821         ipw_rt->rt_flags = 0;
7822         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7823                                frame->parent_tsf[2] << 16 |
7824                                frame->parent_tsf[1] << 8  |
7825                                frame->parent_tsf[0]);
7826
7827         /* Convert signal to DBM */
7828         ipw_rt->rt_dbmsignal = antsignal;
7829         ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise);
7830
7831         /* Convert the channel data and set the flags */
7832         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7833         if (received_channel > 14) {    /* 802.11a */
7834                 ipw_rt->rt_chbitmask =
7835                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7836         } else if (antennaAndPhy & 32) {        /* 802.11b */
7837                 ipw_rt->rt_chbitmask =
7838                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7839         } else {                /* 802.11g */
7840                 ipw_rt->rt_chbitmask =
7841                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7842         }
7843
7844         /* set the rate in multiples of 500k/s */
7845         switch (pktrate) {
7846         case IPW_TX_RATE_1MB:
7847                 ipw_rt->rt_rate = 2;
7848                 break;
7849         case IPW_TX_RATE_2MB:
7850                 ipw_rt->rt_rate = 4;
7851                 break;
7852         case IPW_TX_RATE_5MB:
7853                 ipw_rt->rt_rate = 10;
7854                 break;
7855         case IPW_TX_RATE_6MB:
7856                 ipw_rt->rt_rate = 12;
7857                 break;
7858         case IPW_TX_RATE_9MB:
7859                 ipw_rt->rt_rate = 18;
7860                 break;
7861         case IPW_TX_RATE_11MB:
7862                 ipw_rt->rt_rate = 22;
7863                 break;
7864         case IPW_TX_RATE_12MB:
7865                 ipw_rt->rt_rate = 24;
7866                 break;
7867         case IPW_TX_RATE_18MB:
7868                 ipw_rt->rt_rate = 36;
7869                 break;
7870         case IPW_TX_RATE_24MB:
7871                 ipw_rt->rt_rate = 48;
7872                 break;
7873         case IPW_TX_RATE_36MB:
7874                 ipw_rt->rt_rate = 72;
7875                 break;
7876         case IPW_TX_RATE_48MB:
7877                 ipw_rt->rt_rate = 96;
7878                 break;
7879         case IPW_TX_RATE_54MB:
7880                 ipw_rt->rt_rate = 108;
7881                 break;
7882         default:
7883                 ipw_rt->rt_rate = 0;
7884                 break;
7885         }
7886
7887         /* antenna number */
7888         ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
7889
7890         /* set the preamble flag if we have it */
7891         if ((antennaAndPhy & 64))
7892                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7893
7894         /* Set the size of the skb to the size of the frame */
7895         skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7896
7897         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7898
7899         if (!libipw_rx(priv->ieee, rxb->skb, stats))
7900                 dev->stats.rx_errors++;
7901         else {                  /* libipw_rx succeeded, so it now owns the SKB */
7902                 rxb->skb = NULL;
7903                 /* no LED during capture */
7904         }
7905 }
7906 #endif
7907
7908 #ifdef CONFIG_IPW2200_PROMISCUOUS
7909 #define libipw_is_probe_response(fc) \
7910    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7911     (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7912
7913 #define libipw_is_management(fc) \
7914    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7915
7916 #define libipw_is_control(fc) \
7917    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7918
7919 #define libipw_is_data(fc) \
7920    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7921
7922 #define libipw_is_assoc_request(fc) \
7923    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7924
7925 #define libipw_is_reassoc_request(fc) \
7926    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7927
7928 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7929                                       struct ipw_rx_mem_buffer *rxb,
7930                                       struct libipw_rx_stats *stats)
7931 {
7932         struct net_device *dev = priv->prom_net_dev;
7933         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7934         struct ipw_rx_frame *frame = &pkt->u.frame;
7935         struct ipw_rt_hdr *ipw_rt;
7936
7937         /* First cache any information we need before we overwrite
7938          * the information provided in the skb from the hardware */
7939         struct ieee80211_hdr *hdr;
7940         u16 channel = frame->received_channel;
7941         u8 phy_flags = frame->antennaAndPhy;
7942         s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7943         s8 noise = (s8) le16_to_cpu(frame->noise);
7944         u8 rate = frame->rate;
7945         unsigned short len = le16_to_cpu(pkt->u.frame.length);
7946         struct sk_buff *skb;
7947         int hdr_only = 0;
7948         u16 filter = priv->prom_priv->filter;
7949
7950         /* If the filter is set to not include Rx frames then return */
7951         if (filter & IPW_PROM_NO_RX)
7952                 return;
7953
7954         /* We received data from the HW, so stop the watchdog */
7955         dev->trans_start = jiffies;
7956
7957         if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7958                 dev->stats.rx_errors++;
7959                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7960                 return;
7961         }
7962
7963         /* We only process data packets if the interface is open */
7964         if (unlikely(!netif_running(dev))) {
7965                 dev->stats.rx_dropped++;
7966                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7967                 return;
7968         }
7969
7970         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7971          * that now */
7972         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7973                 /* FIXME: Should alloc bigger skb instead */
7974                 dev->stats.rx_dropped++;
7975                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7976                 return;
7977         }
7978
7979         hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7980         if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
7981                 if (filter & IPW_PROM_NO_MGMT)
7982                         return;
7983                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7984                         hdr_only = 1;
7985         } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
7986                 if (filter & IPW_PROM_NO_CTL)
7987                         return;
7988                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
7989                         hdr_only = 1;
7990         } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
7991                 if (filter & IPW_PROM_NO_DATA)
7992                         return;
7993                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
7994                         hdr_only = 1;
7995         }
7996
7997         /* Copy the SKB since this is for the promiscuous side */
7998         skb = skb_copy(rxb->skb, GFP_ATOMIC);
7999         if (skb == NULL) {
8000                 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
8001                 return;
8002         }
8003
8004         /* copy the frame data to write after where the radiotap header goes */
8005         ipw_rt = (void *)skb->data;
8006
8007         if (hdr_only)
8008                 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
8009
8010         memcpy(ipw_rt->payload, hdr, len);
8011
8012         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8013         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
8014         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt));   /* total header+data */
8015
8016         /* Set the size of the skb to the size of the frame */
8017         skb_put(skb, sizeof(*ipw_rt) + len);
8018
8019         /* Big bitfield of all the fields we provide in radiotap */
8020         ipw_rt->rt_hdr.it_present = cpu_to_le32(
8021              (1 << IEEE80211_RADIOTAP_TSFT) |
8022              (1 << IEEE80211_RADIOTAP_FLAGS) |
8023              (1 << IEEE80211_RADIOTAP_RATE) |
8024              (1 << IEEE80211_RADIOTAP_CHANNEL) |
8025              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8026              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8027              (1 << IEEE80211_RADIOTAP_ANTENNA));
8028
8029         /* Zero the flags, we'll add to them as we go */
8030         ipw_rt->rt_flags = 0;
8031         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8032                                frame->parent_tsf[2] << 16 |
8033                                frame->parent_tsf[1] << 8  |
8034                                frame->parent_tsf[0]);
8035
8036         /* Convert to DBM */
8037         ipw_rt->rt_dbmsignal = signal;
8038         ipw_rt->rt_dbmnoise = noise;
8039
8040         /* Convert the channel data and set the flags */
8041         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8042         if (channel > 14) {     /* 802.11a */
8043                 ipw_rt->rt_chbitmask =
8044                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8045         } else if (phy_flags & (1 << 5)) {      /* 802.11b */
8046                 ipw_rt->rt_chbitmask =
8047                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8048         } else {                /* 802.11g */
8049                 ipw_rt->rt_chbitmask =
8050                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8051         }
8052
8053         /* set the rate in multiples of 500k/s */
8054         switch (rate) {
8055         case IPW_TX_RATE_1MB:
8056                 ipw_rt->rt_rate = 2;
8057                 break;
8058         case IPW_TX_RATE_2MB:
8059                 ipw_rt->rt_rate = 4;
8060                 break;
8061         case IPW_TX_RATE_5MB:
8062                 ipw_rt->rt_rate = 10;
8063                 break;
8064         case IPW_TX_RATE_6MB:
8065                 ipw_rt->rt_rate = 12;
8066                 break;
8067         case IPW_TX_RATE_9MB:
8068                 ipw_rt->rt_rate = 18;
8069                 break;
8070         case IPW_TX_RATE_11MB:
8071                 ipw_rt->rt_rate = 22;
8072                 break;
8073         case IPW_TX_RATE_12MB:
8074                 ipw_rt->rt_rate = 24;
8075                 break;
8076         case IPW_TX_RATE_18MB:
8077                 ipw_rt->rt_rate = 36;
8078                 break;
8079         case IPW_TX_RATE_24MB:
8080                 ipw_rt->rt_rate = 48;
8081                 break;
8082         case IPW_TX_RATE_36MB:
8083                 ipw_rt->rt_rate = 72;
8084                 break;
8085         case IPW_TX_RATE_48MB:
8086                 ipw_rt->rt_rate = 96;
8087                 break;
8088         case IPW_TX_RATE_54MB:
8089                 ipw_rt->rt_rate = 108;
8090                 break;
8091         default:
8092                 ipw_rt->rt_rate = 0;
8093                 break;
8094         }
8095
8096         /* antenna number */
8097         ipw_rt->rt_antenna = (phy_flags & 3);
8098
8099         /* set the preamble flag if we have it */
8100         if (phy_flags & (1 << 6))
8101                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8102
8103         IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8104
8105         if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) {
8106                 dev->stats.rx_errors++;
8107                 dev_kfree_skb_any(skb);
8108         }
8109 }
8110 #endif
8111
8112 static int is_network_packet(struct ipw_priv *priv,
8113                                     struct libipw_hdr_4addr *header)
8114 {
8115         /* Filter incoming packets to determine if they are targeted toward
8116          * this network, discarding packets coming from ourselves */
8117         switch (priv->ieee->iw_mode) {
8118         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
8119                 /* packets from our adapter are dropped (echo) */
8120                 if (ether_addr_equal(header->addr2, priv->net_dev->dev_addr))
8121                         return 0;
8122
8123                 /* {broad,multi}cast packets to our BSSID go through */
8124                 if (is_multicast_ether_addr(header->addr1))
8125                         return ether_addr_equal(header->addr3, priv->bssid);
8126
8127                 /* packets to our adapter go through */
8128                 return ether_addr_equal(header->addr1,
8129                                         priv->net_dev->dev_addr);
8130
8131         case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
8132                 /* packets from our adapter are dropped (echo) */
8133                 if (ether_addr_equal(header->addr3, priv->net_dev->dev_addr))
8134                         return 0;
8135
8136                 /* {broad,multi}cast packets to our BSS go through */
8137                 if (is_multicast_ether_addr(header->addr1))
8138                         return ether_addr_equal(header->addr2, priv->bssid);
8139
8140                 /* packets to our adapter go through */
8141                 return ether_addr_equal(header->addr1,
8142                                         priv->net_dev->dev_addr);
8143         }
8144
8145         return 1;
8146 }
8147
8148 #define IPW_PACKET_RETRY_TIME HZ
8149
8150 static  int is_duplicate_packet(struct ipw_priv *priv,
8151                                       struct libipw_hdr_4addr *header)
8152 {
8153         u16 sc = le16_to_cpu(header->seq_ctl);
8154         u16 seq = WLAN_GET_SEQ_SEQ(sc);
8155         u16 frag = WLAN_GET_SEQ_FRAG(sc);
8156         u16 *last_seq, *last_frag;
8157         unsigned long *last_time;
8158
8159         switch (priv->ieee->iw_mode) {
8160         case IW_MODE_ADHOC:
8161                 {
8162                         struct list_head *p;
8163                         struct ipw_ibss_seq *entry = NULL;
8164                         u8 *mac = header->addr2;
8165                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8166
8167                         list_for_each(p, &priv->ibss_mac_hash[index]) {
8168                                 entry =
8169                                     list_entry(p, struct ipw_ibss_seq, list);
8170                                 if (ether_addr_equal(entry->mac, mac))
8171                                         break;
8172                         }
8173                         if (p == &priv->ibss_mac_hash[index]) {
8174                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8175                                 if (!entry) {
8176                                         IPW_ERROR
8177                                             ("Cannot malloc new mac entry\n");
8178                                         return 0;
8179                                 }
8180                                 memcpy(entry->mac, mac, ETH_ALEN);
8181                                 entry->seq_num = seq;
8182                                 entry->frag_num = frag;
8183                                 entry->packet_time = jiffies;
8184                                 list_add(&entry->list,
8185                                          &priv->ibss_mac_hash[index]);
8186                                 return 0;
8187                         }
8188                         last_seq = &entry->seq_num;
8189                         last_frag = &entry->frag_num;
8190                         last_time = &entry->packet_time;
8191                         break;
8192                 }
8193         case IW_MODE_INFRA:
8194                 last_seq = &priv->last_seq_num;
8195                 last_frag = &priv->last_frag_num;
8196                 last_time = &priv->last_packet_time;
8197                 break;
8198         default:
8199                 return 0;
8200         }
8201         if ((*last_seq == seq) &&
8202             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8203                 if (*last_frag == frag)
8204                         goto drop;
8205                 if (*last_frag + 1 != frag)
8206                         /* out-of-order fragment */
8207                         goto drop;
8208         } else
8209                 *last_seq = seq;
8210
8211         *last_frag = frag;
8212         *last_time = jiffies;
8213         return 0;
8214
8215       drop:
8216         /* Comment this line now since we observed the card receives
8217          * duplicate packets but the FCTL_RETRY bit is not set in the
8218          * IBSS mode with fragmentation enabled.
8219          BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8220         return 1;
8221 }
8222
8223 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8224                                    struct ipw_rx_mem_buffer *rxb,
8225                                    struct libipw_rx_stats *stats)
8226 {
8227         struct sk_buff *skb = rxb->skb;
8228         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8229         struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *)
8230             (skb->data + IPW_RX_FRAME_SIZE);
8231
8232         libipw_rx_mgt(priv->ieee, header, stats);
8233
8234         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8235             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8236               IEEE80211_STYPE_PROBE_RESP) ||
8237              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8238               IEEE80211_STYPE_BEACON))) {
8239                 if (ether_addr_equal(header->addr3, priv->bssid))
8240                         ipw_add_station(priv, header->addr2);
8241         }
8242
8243         if (priv->config & CFG_NET_STATS) {
8244                 IPW_DEBUG_HC("sending stat packet\n");
8245
8246                 /* Set the size of the skb to the size of the full
8247                  * ipw header and 802.11 frame */
8248                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8249                         IPW_RX_FRAME_SIZE);
8250
8251                 /* Advance past the ipw packet header to the 802.11 frame */
8252                 skb_pull(skb, IPW_RX_FRAME_SIZE);
8253
8254                 /* Push the libipw_rx_stats before the 802.11 frame */
8255                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8256
8257                 skb->dev = priv->ieee->dev;
8258
8259                 /* Point raw at the libipw_stats */
8260                 skb_reset_mac_header(skb);
8261
8262                 skb->pkt_type = PACKET_OTHERHOST;
8263                 skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8264                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8265                 netif_rx(skb);
8266                 rxb->skb = NULL;
8267         }
8268 }
8269
8270 /*
8271  * Main entry function for receiving a packet with 80211 headers.  This
8272  * should be called when ever the FW has notified us that there is a new
8273  * skb in the receive queue.
8274  */
8275 static void ipw_rx(struct ipw_priv *priv)
8276 {
8277         struct ipw_rx_mem_buffer *rxb;
8278         struct ipw_rx_packet *pkt;
8279         struct libipw_hdr_4addr *header;
8280         u32 r, w, i;
8281         u8 network_packet;
8282         u8 fill_rx = 0;
8283
8284         r = ipw_read32(priv, IPW_RX_READ_INDEX);
8285         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8286         i = priv->rxq->read;
8287
8288         if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8289                 fill_rx = 1;
8290
8291         while (i != r) {
8292                 rxb = priv->rxq->queue[i];
8293                 if (unlikely(rxb == NULL)) {
8294                         printk(KERN_CRIT "Queue not allocated!\n");
8295                         break;
8296                 }
8297                 priv->rxq->queue[i] = NULL;
8298
8299                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8300                                             IPW_RX_BUF_SIZE,
8301                                             PCI_DMA_FROMDEVICE);
8302
8303                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8304                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8305                              pkt->header.message_type,
8306                              pkt->header.rx_seq_num, pkt->header.control_bits);
8307
8308                 switch (pkt->header.message_type) {
8309                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
8310                                 struct libipw_rx_stats stats = {
8311                                         .rssi = pkt->u.frame.rssi_dbm -
8312                                             IPW_RSSI_TO_DBM,
8313                                         .signal =
8314                                             pkt->u.frame.rssi_dbm -
8315                                             IPW_RSSI_TO_DBM + 0x100,
8316                                         .noise =
8317                                             le16_to_cpu(pkt->u.frame.noise),
8318                                         .rate = pkt->u.frame.rate,
8319                                         .mac_time = jiffies,
8320                                         .received_channel =
8321                                             pkt->u.frame.received_channel,
8322                                         .freq =
8323                                             (pkt->u.frame.
8324                                              control & (1 << 0)) ?
8325                                             LIBIPW_24GHZ_BAND :
8326                                             LIBIPW_52GHZ_BAND,
8327                                         .len = le16_to_cpu(pkt->u.frame.length),
8328                                 };
8329
8330                                 if (stats.rssi != 0)
8331                                         stats.mask |= LIBIPW_STATMASK_RSSI;
8332                                 if (stats.signal != 0)
8333                                         stats.mask |= LIBIPW_STATMASK_SIGNAL;
8334                                 if (stats.noise != 0)
8335                                         stats.mask |= LIBIPW_STATMASK_NOISE;
8336                                 if (stats.rate != 0)
8337                                         stats.mask |= LIBIPW_STATMASK_RATE;
8338
8339                                 priv->rx_packets++;
8340
8341 #ifdef CONFIG_IPW2200_PROMISCUOUS
8342         if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8343                 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8344 #endif
8345
8346 #ifdef CONFIG_IPW2200_MONITOR
8347                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8348 #ifdef CONFIG_IPW2200_RADIOTAP
8349
8350                 ipw_handle_data_packet_monitor(priv,
8351                                                rxb,
8352                                                &stats);
8353 #else
8354                 ipw_handle_data_packet(priv, rxb,
8355                                        &stats);
8356 #endif
8357                                         break;
8358                                 }
8359 #endif
8360
8361                                 header =
8362                                     (struct libipw_hdr_4addr *)(rxb->skb->
8363                                                                    data +
8364                                                                    IPW_RX_FRAME_SIZE);
8365                                 /* TODO: Check Ad-Hoc dest/source and make sure
8366                                  * that we are actually parsing these packets
8367                                  * correctly -- we should probably use the
8368                                  * frame control of the packet and disregard
8369                                  * the current iw_mode */
8370
8371                                 network_packet =
8372                                     is_network_packet(priv, header);
8373                                 if (network_packet && priv->assoc_network) {
8374                                         priv->assoc_network->stats.rssi =
8375                                             stats.rssi;
8376                                         priv->exp_avg_rssi =
8377                                             exponential_average(priv->exp_avg_rssi,
8378                                             stats.rssi, DEPTH_RSSI);
8379                                 }
8380
8381                                 IPW_DEBUG_RX("Frame: len=%u\n",
8382                                              le16_to_cpu(pkt->u.frame.length));
8383
8384                                 if (le16_to_cpu(pkt->u.frame.length) <
8385                                     libipw_get_hdrlen(le16_to_cpu(
8386                                                     header->frame_ctl))) {
8387                                         IPW_DEBUG_DROP
8388                                             ("Received packet is too small. "
8389                                              "Dropping.\n");
8390                                         priv->net_dev->stats.rx_errors++;
8391                                         priv->wstats.discard.misc++;
8392                                         break;
8393                                 }
8394
8395                                 switch (WLAN_FC_GET_TYPE
8396                                         (le16_to_cpu(header->frame_ctl))) {
8397
8398                                 case IEEE80211_FTYPE_MGMT:
8399                                         ipw_handle_mgmt_packet(priv, rxb,
8400                                                                &stats);
8401                                         break;
8402
8403                                 case IEEE80211_FTYPE_CTL:
8404                                         break;
8405
8406                                 case IEEE80211_FTYPE_DATA:
8407                                         if (unlikely(!network_packet ||
8408                                                      is_duplicate_packet(priv,
8409                                                                          header)))
8410                                         {
8411                                                 IPW_DEBUG_DROP("Dropping: "
8412                                                                "%pM, "
8413                                                                "%pM, "
8414                                                                "%pM\n",
8415                                                                header->addr1,
8416                                                                header->addr2,
8417                                                                header->addr3);
8418                                                 break;
8419                                         }
8420
8421                                         ipw_handle_data_packet(priv, rxb,
8422                                                                &stats);
8423
8424                                         break;
8425                                 }
8426                                 break;
8427                         }
8428
8429                 case RX_HOST_NOTIFICATION_TYPE:{
8430                                 IPW_DEBUG_RX
8431                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
8432                                      pkt->u.notification.subtype,
8433                                      pkt->u.notification.flags,
8434                                      le16_to_cpu(pkt->u.notification.size));
8435                                 ipw_rx_notification(priv, &pkt->u.notification);
8436                                 break;
8437                         }
8438
8439                 default:
8440                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8441                                      pkt->header.message_type);
8442                         break;
8443                 }
8444
8445                 /* For now we just don't re-use anything.  We can tweak this
8446                  * later to try and re-use notification packets and SKBs that
8447                  * fail to Rx correctly */
8448                 if (rxb->skb != NULL) {
8449                         dev_kfree_skb_any(rxb->skb);
8450                         rxb->skb = NULL;
8451                 }
8452
8453                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8454                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8455                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8456
8457                 i = (i + 1) % RX_QUEUE_SIZE;
8458
8459                 /* If there are a lot of unsued frames, restock the Rx queue
8460                  * so the ucode won't assert */
8461                 if (fill_rx) {
8462                         priv->rxq->read = i;
8463                         ipw_rx_queue_replenish(priv);
8464                 }
8465         }
8466
8467         /* Backtrack one entry */
8468         priv->rxq->read = i;
8469         ipw_rx_queue_restock(priv);
8470 }
8471
8472 #define DEFAULT_RTS_THRESHOLD     2304U
8473 #define MIN_RTS_THRESHOLD         1U
8474 #define MAX_RTS_THRESHOLD         2304U
8475 #define DEFAULT_BEACON_INTERVAL   100U
8476 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8477 #define DEFAULT_LONG_RETRY_LIMIT  4U
8478
8479 /**
8480  * ipw_sw_reset
8481  * @option: options to control different reset behaviour
8482  *          0 = reset everything except the 'disable' module_param
8483  *          1 = reset everything and print out driver info (for probe only)
8484  *          2 = reset everything
8485  */
8486 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8487 {
8488         int band, modulation;
8489         int old_mode = priv->ieee->iw_mode;
8490
8491         /* Initialize module parameter values here */
8492         priv->config = 0;
8493
8494         /* We default to disabling the LED code as right now it causes
8495          * too many systems to lock up... */
8496         if (!led_support)
8497                 priv->config |= CFG_NO_LED;
8498
8499         if (associate)
8500                 priv->config |= CFG_ASSOCIATE;
8501         else
8502                 IPW_DEBUG_INFO("Auto associate disabled.\n");
8503
8504         if (auto_create)
8505                 priv->config |= CFG_ADHOC_CREATE;
8506         else
8507                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8508
8509         priv->config &= ~CFG_STATIC_ESSID;
8510         priv->essid_len = 0;
8511         memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8512
8513         if (disable && option) {
8514                 priv->status |= STATUS_RF_KILL_SW;
8515                 IPW_DEBUG_INFO("Radio disabled.\n");
8516         }
8517
8518         if (default_channel != 0) {
8519                 priv->config |= CFG_STATIC_CHANNEL;
8520                 priv->channel = default_channel;
8521                 IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel);
8522                 /* TODO: Validate that provided channel is in range */
8523         }
8524 #ifdef CONFIG_IPW2200_QOS
8525         ipw_qos_init(priv, qos_enable, qos_burst_enable,
8526                      burst_duration_CCK, burst_duration_OFDM);
8527 #endif                          /* CONFIG_IPW2200_QOS */
8528
8529         switch (network_mode) {
8530         case 1:
8531                 priv->ieee->iw_mode = IW_MODE_ADHOC;
8532                 priv->net_dev->type = ARPHRD_ETHER;
8533
8534                 break;
8535 #ifdef CONFIG_IPW2200_MONITOR
8536         case 2:
8537                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8538 #ifdef CONFIG_IPW2200_RADIOTAP
8539                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8540 #else
8541                 priv->net_dev->type = ARPHRD_IEEE80211;
8542 #endif
8543                 break;
8544 #endif
8545         default:
8546         case 0:
8547                 priv->net_dev->type = ARPHRD_ETHER;
8548                 priv->ieee->iw_mode = IW_MODE_INFRA;
8549                 break;
8550         }
8551
8552         if (hwcrypto) {
8553                 priv->ieee->host_encrypt = 0;
8554                 priv->ieee->host_encrypt_msdu = 0;
8555                 priv->ieee->host_decrypt = 0;
8556                 priv->ieee->host_mc_decrypt = 0;
8557         }
8558         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8559
8560         /* IPW2200/2915 is abled to do hardware fragmentation. */
8561         priv->ieee->host_open_frag = 0;
8562
8563         if ((priv->pci_dev->device == 0x4223) ||
8564             (priv->pci_dev->device == 0x4224)) {
8565                 if (option == 1)
8566                         printk(KERN_INFO DRV_NAME
8567                                ": Detected Intel PRO/Wireless 2915ABG Network "
8568                                "Connection\n");
8569                 priv->ieee->abg_true = 1;
8570                 band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND;
8571                 modulation = LIBIPW_OFDM_MODULATION |
8572                     LIBIPW_CCK_MODULATION;
8573                 priv->adapter = IPW_2915ABG;
8574                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8575         } else {
8576                 if (option == 1)
8577                         printk(KERN_INFO DRV_NAME
8578                                ": Detected Intel PRO/Wireless 2200BG Network "
8579                                "Connection\n");
8580
8581                 priv->ieee->abg_true = 0;
8582                 band = LIBIPW_24GHZ_BAND;
8583                 modulation = LIBIPW_OFDM_MODULATION |
8584                     LIBIPW_CCK_MODULATION;
8585                 priv->adapter = IPW_2200BG;
8586                 priv->ieee->mode = IEEE_G | IEEE_B;
8587         }
8588
8589         priv->ieee->freq_band = band;
8590         priv->ieee->modulation = modulation;
8591
8592         priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK;
8593
8594         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8595         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8596
8597         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8598         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8599         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8600
8601         /* If power management is turned on, default to AC mode */
8602         priv->power_mode = IPW_POWER_AC;
8603         priv->tx_power = IPW_TX_POWER_DEFAULT;
8604
8605         return old_mode == priv->ieee->iw_mode;
8606 }
8607
8608 /*
8609  * This file defines the Wireless Extension handlers.  It does not
8610  * define any methods of hardware manipulation and relies on the
8611  * functions defined in ipw_main to provide the HW interaction.
8612  *
8613  * The exception to this is the use of the ipw_get_ordinal()
8614  * function used to poll the hardware vs. making unnecessary calls.
8615  *
8616  */
8617
8618 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8619 {
8620         if (channel == 0) {
8621                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8622                 priv->config &= ~CFG_STATIC_CHANNEL;
8623                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8624                                 "parameters.\n");
8625                 ipw_associate(priv);
8626                 return 0;
8627         }
8628
8629         priv->config |= CFG_STATIC_CHANNEL;
8630
8631         if (priv->channel == channel) {
8632                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8633                                channel);
8634                 return 0;
8635         }
8636
8637         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8638         priv->channel = channel;
8639
8640 #ifdef CONFIG_IPW2200_MONITOR
8641         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8642                 int i;
8643                 if (priv->status & STATUS_SCANNING) {
8644                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8645                                        "channel change.\n");
8646                         ipw_abort_scan(priv);
8647                 }
8648
8649                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8650                         udelay(10);
8651
8652                 if (priv->status & STATUS_SCANNING)
8653                         IPW_DEBUG_SCAN("Still scanning...\n");
8654                 else
8655                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8656                                        1000 - i);
8657
8658                 return 0;
8659         }
8660 #endif                          /* CONFIG_IPW2200_MONITOR */
8661
8662         /* Network configuration changed -- force [re]association */
8663         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8664         if (!ipw_disassociate(priv))
8665                 ipw_associate(priv);
8666
8667         return 0;
8668 }
8669
8670 static int ipw_wx_set_freq(struct net_device *dev,
8671                            struct iw_request_info *info,
8672                            union iwreq_data *wrqu, char *extra)
8673 {
8674         struct ipw_priv *priv = libipw_priv(dev);
8675         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8676         struct iw_freq *fwrq = &wrqu->freq;
8677         int ret = 0, i;
8678         u8 channel, flags;
8679         int band;
8680
8681         if (fwrq->m == 0) {
8682                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8683                 mutex_lock(&priv->mutex);
8684                 ret = ipw_set_channel(priv, 0);
8685                 mutex_unlock(&priv->mutex);
8686                 return ret;
8687         }
8688         /* if setting by freq convert to channel */
8689         if (fwrq->e == 1) {
8690                 channel = libipw_freq_to_channel(priv->ieee, fwrq->m);
8691                 if (channel == 0)
8692                         return -EINVAL;
8693         } else
8694                 channel = fwrq->m;
8695
8696         if (!(band = libipw_is_valid_channel(priv->ieee, channel)))
8697                 return -EINVAL;
8698
8699         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8700                 i = libipw_channel_to_index(priv->ieee, channel);
8701                 if (i == -1)
8702                         return -EINVAL;
8703
8704                 flags = (band == LIBIPW_24GHZ_BAND) ?
8705                     geo->bg[i].flags : geo->a[i].flags;
8706                 if (flags & LIBIPW_CH_PASSIVE_ONLY) {
8707                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8708                         return -EINVAL;
8709                 }
8710         }
8711
8712         IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
8713         mutex_lock(&priv->mutex);
8714         ret = ipw_set_channel(priv, channel);
8715         mutex_unlock(&priv->mutex);
8716         return ret;
8717 }
8718
8719 static int ipw_wx_get_freq(struct net_device *dev,
8720                            struct iw_request_info *info,
8721                            union iwreq_data *wrqu, char *extra)
8722 {
8723         struct ipw_priv *priv = libipw_priv(dev);
8724
8725         wrqu->freq.e = 0;
8726
8727         /* If we are associated, trying to associate, or have a statically
8728          * configured CHANNEL then return that; otherwise return ANY */
8729         mutex_lock(&priv->mutex);
8730         if (priv->config & CFG_STATIC_CHANNEL ||
8731             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8732                 int i;
8733
8734                 i = libipw_channel_to_index(priv->ieee, priv->channel);
8735                 BUG_ON(i == -1);
8736                 wrqu->freq.e = 1;
8737
8738                 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
8739                 case LIBIPW_52GHZ_BAND:
8740                         wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8741                         break;
8742
8743                 case LIBIPW_24GHZ_BAND:
8744                         wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8745                         break;
8746
8747                 default:
8748                         BUG();
8749                 }
8750         } else
8751                 wrqu->freq.m = 0;
8752
8753         mutex_unlock(&priv->mutex);
8754         IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
8755         return 0;
8756 }
8757
8758 static int ipw_wx_set_mode(struct net_device *dev,
8759                            struct iw_request_info *info,
8760                            union iwreq_data *wrqu, char *extra)
8761 {
8762         struct ipw_priv *priv = libipw_priv(dev);
8763         int err = 0;
8764
8765         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8766
8767         switch (wrqu->mode) {
8768 #ifdef CONFIG_IPW2200_MONITOR
8769         case IW_MODE_MONITOR:
8770 #endif
8771         case IW_MODE_ADHOC:
8772         case IW_MODE_INFRA:
8773                 break;
8774         case IW_MODE_AUTO:
8775                 wrqu->mode = IW_MODE_INFRA;
8776                 break;
8777         default:
8778                 return -EINVAL;
8779         }
8780         if (wrqu->mode == priv->ieee->iw_mode)
8781                 return 0;
8782
8783         mutex_lock(&priv->mutex);
8784
8785         ipw_sw_reset(priv, 0);
8786
8787 #ifdef CONFIG_IPW2200_MONITOR
8788         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8789                 priv->net_dev->type = ARPHRD_ETHER;
8790
8791         if (wrqu->mode == IW_MODE_MONITOR)
8792 #ifdef CONFIG_IPW2200_RADIOTAP
8793                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8794 #else
8795                 priv->net_dev->type = ARPHRD_IEEE80211;
8796 #endif
8797 #endif                          /* CONFIG_IPW2200_MONITOR */
8798
8799         /* Free the existing firmware and reset the fw_loaded
8800          * flag so ipw_load() will bring in the new firmware */
8801         free_firmware();
8802
8803         priv->ieee->iw_mode = wrqu->mode;
8804
8805         schedule_work(&priv->adapter_restart);
8806         mutex_unlock(&priv->mutex);
8807         return err;
8808 }
8809
8810 static int ipw_wx_get_mode(struct net_device *dev,
8811                            struct iw_request_info *info,
8812                            union iwreq_data *wrqu, char *extra)
8813 {
8814         struct ipw_priv *priv = libipw_priv(dev);
8815         mutex_lock(&priv->mutex);
8816         wrqu->mode = priv->ieee->iw_mode;
8817         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8818         mutex_unlock(&priv->mutex);
8819         return 0;
8820 }
8821
8822 /* Values are in microsecond */
8823 static const s32 timeout_duration[] = {
8824         350000,
8825         250000,
8826         75000,
8827         37000,
8828         25000,
8829 };
8830
8831 static const s32 period_duration[] = {
8832         400000,
8833         700000,
8834         1000000,
8835         1000000,
8836         1000000
8837 };
8838
8839 static int ipw_wx_get_range(struct net_device *dev,
8840                             struct iw_request_info *info,
8841                             union iwreq_data *wrqu, char *extra)
8842 {
8843         struct ipw_priv *priv = libipw_priv(dev);
8844         struct iw_range *range = (struct iw_range *)extra;
8845         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8846         int i = 0, j;
8847
8848         wrqu->data.length = sizeof(*range);
8849         memset(range, 0, sizeof(*range));
8850
8851         /* 54Mbs == ~27 Mb/s real (802.11g) */
8852         range->throughput = 27 * 1000 * 1000;
8853
8854         range->max_qual.qual = 100;
8855         /* TODO: Find real max RSSI and stick here */
8856         range->max_qual.level = 0;
8857         range->max_qual.noise = 0;
8858         range->max_qual.updated = 7;    /* Updated all three */
8859
8860         range->avg_qual.qual = 70;
8861         /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8862         range->avg_qual.level = 0;      /* FIXME to real average level */
8863         range->avg_qual.noise = 0;
8864         range->avg_qual.updated = 7;    /* Updated all three */
8865         mutex_lock(&priv->mutex);
8866         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8867
8868         for (i = 0; i < range->num_bitrates; i++)
8869                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8870                     500000;
8871
8872         range->max_rts = DEFAULT_RTS_THRESHOLD;
8873         range->min_frag = MIN_FRAG_THRESHOLD;
8874         range->max_frag = MAX_FRAG_THRESHOLD;
8875
8876         range->encoding_size[0] = 5;
8877         range->encoding_size[1] = 13;
8878         range->num_encoding_sizes = 2;
8879         range->max_encoding_tokens = WEP_KEYS;
8880
8881         /* Set the Wireless Extension versions */
8882         range->we_version_compiled = WIRELESS_EXT;
8883         range->we_version_source = 18;
8884
8885         i = 0;
8886         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8887                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8888                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8889                             (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8890                                 continue;
8891
8892                         range->freq[i].i = geo->bg[j].channel;
8893                         range->freq[i].m = geo->bg[j].freq * 100000;
8894                         range->freq[i].e = 1;
8895                         i++;
8896                 }
8897         }
8898
8899         if (priv->ieee->mode & IEEE_A) {
8900                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8901                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8902                             (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8903                                 continue;
8904
8905                         range->freq[i].i = geo->a[j].channel;
8906                         range->freq[i].m = geo->a[j].freq * 100000;
8907                         range->freq[i].e = 1;
8908                         i++;
8909                 }
8910         }
8911
8912         range->num_channels = i;
8913         range->num_frequency = i;
8914
8915         mutex_unlock(&priv->mutex);
8916
8917         /* Event capability (kernel + driver) */
8918         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8919                                 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8920                                 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8921                                 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8922         range->event_capa[1] = IW_EVENT_CAPA_K_1;
8923
8924         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8925                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8926
8927         range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8928
8929         IPW_DEBUG_WX("GET Range\n");
8930         return 0;
8931 }
8932
8933 static int ipw_wx_set_wap(struct net_device *dev,
8934                           struct iw_request_info *info,
8935                           union iwreq_data *wrqu, char *extra)
8936 {
8937         struct ipw_priv *priv = libipw_priv(dev);
8938
8939         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8940                 return -EINVAL;
8941         mutex_lock(&priv->mutex);
8942         if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
8943             is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
8944                 /* we disable mandatory BSSID association */
8945                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8946                 priv->config &= ~CFG_STATIC_BSSID;
8947                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8948                                 "parameters.\n");
8949                 ipw_associate(priv);
8950                 mutex_unlock(&priv->mutex);
8951                 return 0;
8952         }
8953
8954         priv->config |= CFG_STATIC_BSSID;
8955         if (ether_addr_equal(priv->bssid, wrqu->ap_addr.sa_data)) {
8956                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8957                 mutex_unlock(&priv->mutex);
8958                 return 0;
8959         }
8960
8961         IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
8962                      wrqu->ap_addr.sa_data);
8963
8964         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8965
8966         /* Network configuration changed -- force [re]association */
8967         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8968         if (!ipw_disassociate(priv))
8969                 ipw_associate(priv);
8970
8971         mutex_unlock(&priv->mutex);
8972         return 0;
8973 }
8974
8975 static int ipw_wx_get_wap(struct net_device *dev,
8976                           struct iw_request_info *info,
8977                           union iwreq_data *wrqu, char *extra)
8978 {
8979         struct ipw_priv *priv = libipw_priv(dev);
8980
8981         /* If we are associated, trying to associate, or have a statically
8982          * configured BSSID then return that; otherwise return ANY */
8983         mutex_lock(&priv->mutex);
8984         if (priv->config & CFG_STATIC_BSSID ||
8985             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8986                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8987                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8988         } else
8989                 eth_zero_addr(wrqu->ap_addr.sa_data);
8990
8991         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
8992                      wrqu->ap_addr.sa_data);
8993         mutex_unlock(&priv->mutex);
8994         return 0;
8995 }
8996
8997 static int ipw_wx_set_essid(struct net_device *dev,
8998                             struct iw_request_info *info,
8999                             union iwreq_data *wrqu, char *extra)
9000 {
9001         struct ipw_priv *priv = libipw_priv(dev);
9002         int length;
9003
9004         mutex_lock(&priv->mutex);
9005
9006         if (!wrqu->essid.flags)
9007         {
9008                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9009                 ipw_disassociate(priv);
9010                 priv->config &= ~CFG_STATIC_ESSID;
9011                 ipw_associate(priv);
9012                 mutex_unlock(&priv->mutex);
9013                 return 0;
9014         }
9015
9016         length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9017
9018         priv->config |= CFG_STATIC_ESSID;
9019
9020         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9021             && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9022                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9023                 mutex_unlock(&priv->mutex);
9024                 return 0;
9025         }
9026
9027         IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, extra, length);
9028
9029         priv->essid_len = length;
9030         memcpy(priv->essid, extra, priv->essid_len);
9031
9032         /* Network configuration changed -- force [re]association */
9033         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9034         if (!ipw_disassociate(priv))
9035                 ipw_associate(priv);
9036
9037         mutex_unlock(&priv->mutex);
9038         return 0;
9039 }
9040
9041 static int ipw_wx_get_essid(struct net_device *dev,
9042                             struct iw_request_info *info,
9043                             union iwreq_data *wrqu, char *extra)
9044 {
9045         struct ipw_priv *priv = libipw_priv(dev);
9046
9047         /* If we are associated, trying to associate, or have a statically
9048          * configured ESSID then return that; otherwise return ANY */
9049         mutex_lock(&priv->mutex);
9050         if (priv->config & CFG_STATIC_ESSID ||
9051             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9052                 IPW_DEBUG_WX("Getting essid: '%*pE'\n",
9053                              priv->essid_len, priv->essid);
9054                 memcpy(extra, priv->essid, priv->essid_len);
9055                 wrqu->essid.length = priv->essid_len;
9056                 wrqu->essid.flags = 1;  /* active */
9057         } else {
9058                 IPW_DEBUG_WX("Getting essid: ANY\n");
9059                 wrqu->essid.length = 0;
9060                 wrqu->essid.flags = 0;  /* active */
9061         }
9062         mutex_unlock(&priv->mutex);
9063         return 0;
9064 }
9065
9066 static int ipw_wx_set_nick(struct net_device *dev,
9067                            struct iw_request_info *info,
9068                            union iwreq_data *wrqu, char *extra)
9069 {
9070         struct ipw_priv *priv = libipw_priv(dev);
9071
9072         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9073         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9074                 return -E2BIG;
9075         mutex_lock(&priv->mutex);
9076         wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
9077         memset(priv->nick, 0, sizeof(priv->nick));
9078         memcpy(priv->nick, extra, wrqu->data.length);
9079         IPW_DEBUG_TRACE("<<\n");
9080         mutex_unlock(&priv->mutex);
9081         return 0;
9082
9083 }
9084
9085 static int ipw_wx_get_nick(struct net_device *dev,
9086                            struct iw_request_info *info,
9087                            union iwreq_data *wrqu, char *extra)
9088 {
9089         struct ipw_priv *priv = libipw_priv(dev);
9090         IPW_DEBUG_WX("Getting nick\n");
9091         mutex_lock(&priv->mutex);
9092         wrqu->data.length = strlen(priv->nick);
9093         memcpy(extra, priv->nick, wrqu->data.length);
9094         wrqu->data.flags = 1;   /* active */
9095         mutex_unlock(&priv->mutex);
9096         return 0;
9097 }
9098
9099 static int ipw_wx_set_sens(struct net_device *dev,
9100                             struct iw_request_info *info,
9101                             union iwreq_data *wrqu, char *extra)
9102 {
9103         struct ipw_priv *priv = libipw_priv(dev);
9104         int err = 0;
9105
9106         IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9107         IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9108         mutex_lock(&priv->mutex);
9109
9110         if (wrqu->sens.fixed == 0)
9111         {
9112                 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9113                 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9114                 goto out;
9115         }
9116         if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9117             (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9118                 err = -EINVAL;
9119                 goto out;
9120         }
9121
9122         priv->roaming_threshold = wrqu->sens.value;
9123         priv->disassociate_threshold = 3*wrqu->sens.value;
9124       out:
9125         mutex_unlock(&priv->mutex);
9126         return err;
9127 }
9128
9129 static int ipw_wx_get_sens(struct net_device *dev,
9130                             struct iw_request_info *info,
9131                             union iwreq_data *wrqu, char *extra)
9132 {
9133         struct ipw_priv *priv = libipw_priv(dev);
9134         mutex_lock(&priv->mutex);
9135         wrqu->sens.fixed = 1;
9136         wrqu->sens.value = priv->roaming_threshold;
9137         mutex_unlock(&priv->mutex);
9138
9139         IPW_DEBUG_WX("GET roaming threshold -> %s %d\n",
9140                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9141
9142         return 0;
9143 }
9144
9145 static int ipw_wx_set_rate(struct net_device *dev,
9146                            struct iw_request_info *info,
9147                            union iwreq_data *wrqu, char *extra)
9148 {
9149         /* TODO: We should use semaphores or locks for access to priv */
9150         struct ipw_priv *priv = libipw_priv(dev);
9151         u32 target_rate = wrqu->bitrate.value;
9152         u32 fixed, mask;
9153
9154         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9155         /* value = X, fixed = 1 means only rate X */
9156         /* value = X, fixed = 0 means all rates lower equal X */
9157
9158         if (target_rate == -1) {
9159                 fixed = 0;
9160                 mask = LIBIPW_DEFAULT_RATES_MASK;
9161                 /* Now we should reassociate */
9162                 goto apply;
9163         }
9164
9165         mask = 0;
9166         fixed = wrqu->bitrate.fixed;
9167
9168         if (target_rate == 1000000 || !fixed)
9169                 mask |= LIBIPW_CCK_RATE_1MB_MASK;
9170         if (target_rate == 1000000)
9171                 goto apply;
9172
9173         if (target_rate == 2000000 || !fixed)
9174                 mask |= LIBIPW_CCK_RATE_2MB_MASK;
9175         if (target_rate == 2000000)
9176                 goto apply;
9177
9178         if (target_rate == 5500000 || !fixed)
9179                 mask |= LIBIPW_CCK_RATE_5MB_MASK;
9180         if (target_rate == 5500000)
9181                 goto apply;
9182
9183         if (target_rate == 6000000 || !fixed)
9184                 mask |= LIBIPW_OFDM_RATE_6MB_MASK;
9185         if (target_rate == 6000000)
9186                 goto apply;
9187
9188         if (target_rate == 9000000 || !fixed)
9189                 mask |= LIBIPW_OFDM_RATE_9MB_MASK;
9190         if (target_rate == 9000000)
9191                 goto apply;
9192
9193         if (target_rate == 11000000 || !fixed)
9194                 mask |= LIBIPW_CCK_RATE_11MB_MASK;
9195         if (target_rate == 11000000)
9196                 goto apply;
9197
9198         if (target_rate == 12000000 || !fixed)
9199                 mask |= LIBIPW_OFDM_RATE_12MB_MASK;
9200         if (target_rate == 12000000)
9201                 goto apply;
9202
9203         if (target_rate == 18000000 || !fixed)
9204                 mask |= LIBIPW_OFDM_RATE_18MB_MASK;
9205         if (target_rate == 18000000)
9206                 goto apply;
9207
9208         if (target_rate == 24000000 || !fixed)
9209                 mask |= LIBIPW_OFDM_RATE_24MB_MASK;
9210         if (target_rate == 24000000)
9211                 goto apply;
9212
9213         if (target_rate == 36000000 || !fixed)
9214                 mask |= LIBIPW_OFDM_RATE_36MB_MASK;
9215         if (target_rate == 36000000)
9216                 goto apply;
9217
9218         if (target_rate == 48000000 || !fixed)
9219                 mask |= LIBIPW_OFDM_RATE_48MB_MASK;
9220         if (target_rate == 48000000)
9221                 goto apply;
9222
9223         if (target_rate == 54000000 || !fixed)
9224                 mask |= LIBIPW_OFDM_RATE_54MB_MASK;
9225         if (target_rate == 54000000)
9226                 goto apply;
9227
9228         IPW_DEBUG_WX("invalid rate specified, returning error\n");
9229         return -EINVAL;
9230
9231       apply:
9232         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9233                      mask, fixed ? "fixed" : "sub-rates");
9234         mutex_lock(&priv->mutex);
9235         if (mask == LIBIPW_DEFAULT_RATES_MASK) {
9236                 priv->config &= ~CFG_FIXED_RATE;
9237                 ipw_set_fixed_rate(priv, priv->ieee->mode);
9238         } else
9239                 priv->config |= CFG_FIXED_RATE;
9240
9241         if (priv->rates_mask == mask) {
9242                 IPW_DEBUG_WX("Mask set to current mask.\n");
9243                 mutex_unlock(&priv->mutex);
9244                 return 0;
9245         }
9246
9247         priv->rates_mask = mask;
9248
9249         /* Network configuration changed -- force [re]association */
9250         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9251         if (!ipw_disassociate(priv))
9252                 ipw_associate(priv);
9253
9254         mutex_unlock(&priv->mutex);
9255         return 0;
9256 }
9257
9258 static int ipw_wx_get_rate(struct net_device *dev,
9259                            struct iw_request_info *info,
9260                            union iwreq_data *wrqu, char *extra)
9261 {
9262         struct ipw_priv *priv = libipw_priv(dev);
9263         mutex_lock(&priv->mutex);
9264         wrqu->bitrate.value = priv->last_rate;
9265         wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9266         mutex_unlock(&priv->mutex);
9267         IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
9268         return 0;
9269 }
9270
9271 static int ipw_wx_set_rts(struct net_device *dev,
9272                           struct iw_request_info *info,
9273                           union iwreq_data *wrqu, char *extra)
9274 {
9275         struct ipw_priv *priv = libipw_priv(dev);
9276         mutex_lock(&priv->mutex);
9277         if (wrqu->rts.disabled || !wrqu->rts.fixed)
9278                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9279         else {
9280                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9281                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
9282                         mutex_unlock(&priv->mutex);
9283                         return -EINVAL;
9284                 }
9285                 priv->rts_threshold = wrqu->rts.value;
9286         }
9287
9288         ipw_send_rts_threshold(priv, priv->rts_threshold);
9289         mutex_unlock(&priv->mutex);
9290         IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold);
9291         return 0;
9292 }
9293
9294 static int ipw_wx_get_rts(struct net_device *dev,
9295                           struct iw_request_info *info,
9296                           union iwreq_data *wrqu, char *extra)
9297 {
9298         struct ipw_priv *priv = libipw_priv(dev);
9299         mutex_lock(&priv->mutex);
9300         wrqu->rts.value = priv->rts_threshold;
9301         wrqu->rts.fixed = 0;    /* no auto select */
9302         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9303         mutex_unlock(&priv->mutex);
9304         IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value);
9305         return 0;
9306 }
9307
9308 static int ipw_wx_set_txpow(struct net_device *dev,
9309                             struct iw_request_info *info,
9310                             union iwreq_data *wrqu, char *extra)
9311 {
9312         struct ipw_priv *priv = libipw_priv(dev);
9313         int err = 0;
9314
9315         mutex_lock(&priv->mutex);
9316         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9317                 err = -EINPROGRESS;
9318                 goto out;
9319         }
9320
9321         if (!wrqu->power.fixed)
9322                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9323
9324         if (wrqu->power.flags != IW_TXPOW_DBM) {
9325                 err = -EINVAL;
9326                 goto out;
9327         }
9328
9329         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9330             (wrqu->power.value < IPW_TX_POWER_MIN)) {
9331                 err = -EINVAL;
9332                 goto out;
9333         }
9334
9335         priv->tx_power = wrqu->power.value;
9336         err = ipw_set_tx_power(priv);
9337       out:
9338         mutex_unlock(&priv->mutex);
9339         return err;
9340 }
9341
9342 static int ipw_wx_get_txpow(struct net_device *dev,
9343                             struct iw_request_info *info,
9344                             union iwreq_data *wrqu, char *extra)
9345 {
9346         struct ipw_priv *priv = libipw_priv(dev);
9347         mutex_lock(&priv->mutex);
9348         wrqu->power.value = priv->tx_power;
9349         wrqu->power.fixed = 1;
9350         wrqu->power.flags = IW_TXPOW_DBM;
9351         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9352         mutex_unlock(&priv->mutex);
9353
9354         IPW_DEBUG_WX("GET TX Power -> %s %d\n",
9355                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9356
9357         return 0;
9358 }
9359
9360 static int ipw_wx_set_frag(struct net_device *dev,
9361                            struct iw_request_info *info,
9362                            union iwreq_data *wrqu, char *extra)
9363 {
9364         struct ipw_priv *priv = libipw_priv(dev);
9365         mutex_lock(&priv->mutex);
9366         if (wrqu->frag.disabled || !wrqu->frag.fixed)
9367                 priv->ieee->fts = DEFAULT_FTS;
9368         else {
9369                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9370                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9371                         mutex_unlock(&priv->mutex);
9372                         return -EINVAL;
9373                 }
9374
9375                 priv->ieee->fts = wrqu->frag.value & ~0x1;
9376         }
9377
9378         ipw_send_frag_threshold(priv, wrqu->frag.value);
9379         mutex_unlock(&priv->mutex);
9380         IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value);
9381         return 0;
9382 }
9383
9384 static int ipw_wx_get_frag(struct net_device *dev,
9385                            struct iw_request_info *info,
9386                            union iwreq_data *wrqu, char *extra)
9387 {
9388         struct ipw_priv *priv = libipw_priv(dev);
9389         mutex_lock(&priv->mutex);
9390         wrqu->frag.value = priv->ieee->fts;
9391         wrqu->frag.fixed = 0;   /* no auto select */
9392         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9393         mutex_unlock(&priv->mutex);
9394         IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
9395
9396         return 0;
9397 }
9398
9399 static int ipw_wx_set_retry(struct net_device *dev,
9400                             struct iw_request_info *info,
9401                             union iwreq_data *wrqu, char *extra)
9402 {
9403         struct ipw_priv *priv = libipw_priv(dev);
9404
9405         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9406                 return -EINVAL;
9407
9408         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9409                 return 0;
9410
9411         if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9412                 return -EINVAL;
9413
9414         mutex_lock(&priv->mutex);
9415         if (wrqu->retry.flags & IW_RETRY_SHORT)
9416                 priv->short_retry_limit = (u8) wrqu->retry.value;
9417         else if (wrqu->retry.flags & IW_RETRY_LONG)
9418                 priv->long_retry_limit = (u8) wrqu->retry.value;
9419         else {
9420                 priv->short_retry_limit = (u8) wrqu->retry.value;
9421                 priv->long_retry_limit = (u8) wrqu->retry.value;
9422         }
9423
9424         ipw_send_retry_limit(priv, priv->short_retry_limit,
9425                              priv->long_retry_limit);
9426         mutex_unlock(&priv->mutex);
9427         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9428                      priv->short_retry_limit, priv->long_retry_limit);
9429         return 0;
9430 }
9431
9432 static int ipw_wx_get_retry(struct net_device *dev,
9433                             struct iw_request_info *info,
9434                             union iwreq_data *wrqu, char *extra)
9435 {
9436         struct ipw_priv *priv = libipw_priv(dev);
9437
9438         mutex_lock(&priv->mutex);
9439         wrqu->retry.disabled = 0;
9440
9441         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9442                 mutex_unlock(&priv->mutex);
9443                 return -EINVAL;
9444         }
9445
9446         if (wrqu->retry.flags & IW_RETRY_LONG) {
9447                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9448                 wrqu->retry.value = priv->long_retry_limit;
9449         } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9450                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9451                 wrqu->retry.value = priv->short_retry_limit;
9452         } else {
9453                 wrqu->retry.flags = IW_RETRY_LIMIT;
9454                 wrqu->retry.value = priv->short_retry_limit;
9455         }
9456         mutex_unlock(&priv->mutex);
9457
9458         IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value);
9459
9460         return 0;
9461 }
9462
9463 static int ipw_wx_set_scan(struct net_device *dev,
9464                            struct iw_request_info *info,
9465                            union iwreq_data *wrqu, char *extra)
9466 {
9467         struct ipw_priv *priv = libipw_priv(dev);
9468         struct iw_scan_req *req = (struct iw_scan_req *)extra;
9469         struct delayed_work *work = NULL;
9470
9471         mutex_lock(&priv->mutex);
9472
9473         priv->user_requested_scan = 1;
9474
9475         if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9476                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9477                         int len = min((int)req->essid_len,
9478                                       (int)sizeof(priv->direct_scan_ssid));
9479                         memcpy(priv->direct_scan_ssid, req->essid, len);
9480                         priv->direct_scan_ssid_len = len;
9481                         work = &priv->request_direct_scan;
9482                 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9483                         work = &priv->request_passive_scan;
9484                 }
9485         } else {
9486                 /* Normal active broadcast scan */
9487                 work = &priv->request_scan;
9488         }
9489
9490         mutex_unlock(&priv->mutex);
9491
9492         IPW_DEBUG_WX("Start scan\n");
9493
9494         schedule_delayed_work(work, 0);
9495
9496         return 0;
9497 }
9498
9499 static int ipw_wx_get_scan(struct net_device *dev,
9500                            struct iw_request_info *info,
9501                            union iwreq_data *wrqu, char *extra)
9502 {
9503         struct ipw_priv *priv = libipw_priv(dev);
9504         return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
9505 }
9506
9507 static int ipw_wx_set_encode(struct net_device *dev,
9508                              struct iw_request_info *info,
9509                              union iwreq_data *wrqu, char *key)
9510 {
9511         struct ipw_priv *priv = libipw_priv(dev);
9512         int ret;
9513         u32 cap = priv->capability;
9514
9515         mutex_lock(&priv->mutex);
9516         ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key);
9517
9518         /* In IBSS mode, we need to notify the firmware to update
9519          * the beacon info after we changed the capability. */
9520         if (cap != priv->capability &&
9521             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9522             priv->status & STATUS_ASSOCIATED)
9523                 ipw_disassociate(priv);
9524
9525         mutex_unlock(&priv->mutex);
9526         return ret;
9527 }
9528
9529 static int ipw_wx_get_encode(struct net_device *dev,
9530                              struct iw_request_info *info,
9531                              union iwreq_data *wrqu, char *key)
9532 {
9533         struct ipw_priv *priv = libipw_priv(dev);
9534         return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
9535 }
9536
9537 static int ipw_wx_set_power(struct net_device *dev,
9538                             struct iw_request_info *info,
9539                             union iwreq_data *wrqu, char *extra)
9540 {
9541         struct ipw_priv *priv = libipw_priv(dev);
9542         int err;
9543         mutex_lock(&priv->mutex);
9544         if (wrqu->power.disabled) {
9545                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9546                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9547                 if (err) {
9548                         IPW_DEBUG_WX("failed setting power mode.\n");
9549                         mutex_unlock(&priv->mutex);
9550                         return err;
9551                 }
9552                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9553                 mutex_unlock(&priv->mutex);
9554                 return 0;
9555         }
9556
9557         switch (wrqu->power.flags & IW_POWER_MODE) {
9558         case IW_POWER_ON:       /* If not specified */
9559         case IW_POWER_MODE:     /* If set all mask */
9560         case IW_POWER_ALL_R:    /* If explicitly state all */
9561                 break;
9562         default:                /* Otherwise we don't support it */
9563                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9564                              wrqu->power.flags);
9565                 mutex_unlock(&priv->mutex);
9566                 return -EOPNOTSUPP;
9567         }
9568
9569         /* If the user hasn't specified a power management mode yet, default
9570          * to BATTERY */
9571         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9572                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9573         else
9574                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9575
9576         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9577         if (err) {
9578                 IPW_DEBUG_WX("failed setting power mode.\n");
9579                 mutex_unlock(&priv->mutex);
9580                 return err;
9581         }
9582
9583         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9584         mutex_unlock(&priv->mutex);
9585         return 0;
9586 }
9587
9588 static int ipw_wx_get_power(struct net_device *dev,
9589                             struct iw_request_info *info,
9590                             union iwreq_data *wrqu, char *extra)
9591 {
9592         struct ipw_priv *priv = libipw_priv(dev);
9593         mutex_lock(&priv->mutex);
9594         if (!(priv->power_mode & IPW_POWER_ENABLED))
9595                 wrqu->power.disabled = 1;
9596         else
9597                 wrqu->power.disabled = 0;
9598
9599         mutex_unlock(&priv->mutex);
9600         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9601
9602         return 0;
9603 }
9604
9605 static int ipw_wx_set_powermode(struct net_device *dev,
9606                                 struct iw_request_info *info,
9607                                 union iwreq_data *wrqu, char *extra)
9608 {
9609         struct ipw_priv *priv = libipw_priv(dev);
9610         int mode = *(int *)extra;
9611         int err;
9612
9613         mutex_lock(&priv->mutex);
9614         if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9615                 mode = IPW_POWER_AC;
9616
9617         if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9618                 err = ipw_send_power_mode(priv, mode);
9619                 if (err) {
9620                         IPW_DEBUG_WX("failed setting power mode.\n");
9621                         mutex_unlock(&priv->mutex);
9622                         return err;
9623                 }
9624                 priv->power_mode = IPW_POWER_ENABLED | mode;
9625         }
9626         mutex_unlock(&priv->mutex);
9627         return 0;
9628 }
9629
9630 #define MAX_WX_STRING 80
9631 static int ipw_wx_get_powermode(struct net_device *dev,
9632                                 struct iw_request_info *info,
9633                                 union iwreq_data *wrqu, char *extra)
9634 {
9635         struct ipw_priv *priv = libipw_priv(dev);
9636         int level = IPW_POWER_LEVEL(priv->power_mode);
9637         char *p = extra;
9638
9639         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9640
9641         switch (level) {
9642         case IPW_POWER_AC:
9643                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9644                 break;
9645         case IPW_POWER_BATTERY:
9646                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9647                 break;
9648         default:
9649                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9650                               "(Timeout %dms, Period %dms)",
9651                               timeout_duration[level - 1] / 1000,
9652                               period_duration[level - 1] / 1000);
9653         }
9654
9655         if (!(priv->power_mode & IPW_POWER_ENABLED))
9656                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9657
9658         wrqu->data.length = p - extra + 1;
9659
9660         return 0;
9661 }
9662
9663 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9664                                     struct iw_request_info *info,
9665                                     union iwreq_data *wrqu, char *extra)
9666 {
9667         struct ipw_priv *priv = libipw_priv(dev);
9668         int mode = *(int *)extra;
9669         u8 band = 0, modulation = 0;
9670
9671         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9672                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9673                 return -EINVAL;
9674         }
9675         mutex_lock(&priv->mutex);
9676         if (priv->adapter == IPW_2915ABG) {
9677                 priv->ieee->abg_true = 1;
9678                 if (mode & IEEE_A) {
9679                         band |= LIBIPW_52GHZ_BAND;
9680                         modulation |= LIBIPW_OFDM_MODULATION;
9681                 } else
9682                         priv->ieee->abg_true = 0;
9683         } else {
9684                 if (mode & IEEE_A) {
9685                         IPW_WARNING("Attempt to set 2200BG into "
9686                                     "802.11a mode\n");
9687                         mutex_unlock(&priv->mutex);
9688                         return -EINVAL;
9689                 }
9690
9691                 priv->ieee->abg_true = 0;
9692         }
9693
9694         if (mode & IEEE_B) {
9695                 band |= LIBIPW_24GHZ_BAND;
9696                 modulation |= LIBIPW_CCK_MODULATION;
9697         } else
9698                 priv->ieee->abg_true = 0;
9699
9700         if (mode & IEEE_G) {
9701                 band |= LIBIPW_24GHZ_BAND;
9702                 modulation |= LIBIPW_OFDM_MODULATION;
9703         } else
9704                 priv->ieee->abg_true = 0;
9705
9706         priv->ieee->mode = mode;
9707         priv->ieee->freq_band = band;
9708         priv->ieee->modulation = modulation;
9709         init_supported_rates(priv, &priv->rates);
9710
9711         /* Network configuration changed -- force [re]association */
9712         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9713         if (!ipw_disassociate(priv)) {
9714                 ipw_send_supported_rates(priv, &priv->rates);
9715                 ipw_associate(priv);
9716         }
9717
9718         /* Update the band LEDs */
9719         ipw_led_band_on(priv);
9720
9721         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9722                      mode & IEEE_A ? 'a' : '.',
9723                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9724         mutex_unlock(&priv->mutex);
9725         return 0;
9726 }
9727
9728 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9729                                     struct iw_request_info *info,
9730                                     union iwreq_data *wrqu, char *extra)
9731 {
9732         struct ipw_priv *priv = libipw_priv(dev);
9733         mutex_lock(&priv->mutex);
9734         switch (priv->ieee->mode) {
9735         case IEEE_A:
9736                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9737                 break;
9738         case IEEE_B:
9739                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9740                 break;
9741         case IEEE_A | IEEE_B:
9742                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9743                 break;
9744         case IEEE_G:
9745                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9746                 break;
9747         case IEEE_A | IEEE_G:
9748                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9749                 break;
9750         case IEEE_B | IEEE_G:
9751                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9752                 break;
9753         case IEEE_A | IEEE_B | IEEE_G:
9754                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9755                 break;
9756         default:
9757                 strncpy(extra, "unknown", MAX_WX_STRING);
9758                 break;
9759         }
9760         extra[MAX_WX_STRING - 1] = '\0';
9761
9762         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9763
9764         wrqu->data.length = strlen(extra) + 1;
9765         mutex_unlock(&priv->mutex);
9766
9767         return 0;
9768 }
9769
9770 static int ipw_wx_set_preamble(struct net_device *dev,
9771                                struct iw_request_info *info,
9772                                union iwreq_data *wrqu, char *extra)
9773 {
9774         struct ipw_priv *priv = libipw_priv(dev);
9775         int mode = *(int *)extra;
9776         mutex_lock(&priv->mutex);
9777         /* Switching from SHORT -> LONG requires a disassociation */
9778         if (mode == 1) {
9779                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9780                         priv->config |= CFG_PREAMBLE_LONG;
9781
9782                         /* Network configuration changed -- force [re]association */
9783                         IPW_DEBUG_ASSOC
9784                             ("[re]association triggered due to preamble change.\n");
9785                         if (!ipw_disassociate(priv))
9786                                 ipw_associate(priv);
9787                 }
9788                 goto done;
9789         }
9790
9791         if (mode == 0) {
9792                 priv->config &= ~CFG_PREAMBLE_LONG;
9793                 goto done;
9794         }
9795         mutex_unlock(&priv->mutex);
9796         return -EINVAL;
9797
9798       done:
9799         mutex_unlock(&priv->mutex);
9800         return 0;
9801 }
9802
9803 static int ipw_wx_get_preamble(struct net_device *dev,
9804                                struct iw_request_info *info,
9805                                union iwreq_data *wrqu, char *extra)
9806 {
9807         struct ipw_priv *priv = libipw_priv(dev);
9808         mutex_lock(&priv->mutex);
9809         if (priv->config & CFG_PREAMBLE_LONG)
9810                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9811         else
9812                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9813         mutex_unlock(&priv->mutex);
9814         return 0;
9815 }
9816
9817 #ifdef CONFIG_IPW2200_MONITOR
9818 static int ipw_wx_set_monitor(struct net_device *dev,
9819                               struct iw_request_info *info,
9820                               union iwreq_data *wrqu, char *extra)
9821 {
9822         struct ipw_priv *priv = libipw_priv(dev);
9823         int *parms = (int *)extra;
9824         int enable = (parms[0] > 0);
9825         mutex_lock(&priv->mutex);
9826         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9827         if (enable) {
9828                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9829 #ifdef CONFIG_IPW2200_RADIOTAP
9830                         priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9831 #else
9832                         priv->net_dev->type = ARPHRD_IEEE80211;
9833 #endif
9834                         schedule_work(&priv->adapter_restart);
9835                 }
9836
9837                 ipw_set_channel(priv, parms[1]);
9838         } else {
9839                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9840                         mutex_unlock(&priv->mutex);
9841                         return 0;
9842                 }
9843                 priv->net_dev->type = ARPHRD_ETHER;
9844                 schedule_work(&priv->adapter_restart);
9845         }
9846         mutex_unlock(&priv->mutex);
9847         return 0;
9848 }
9849
9850 #endif                          /* CONFIG_IPW2200_MONITOR */
9851
9852 static int ipw_wx_reset(struct net_device *dev,
9853                         struct iw_request_info *info,
9854                         union iwreq_data *wrqu, char *extra)
9855 {
9856         struct ipw_priv *priv = libipw_priv(dev);
9857         IPW_DEBUG_WX("RESET\n");
9858         schedule_work(&priv->adapter_restart);
9859         return 0;
9860 }
9861
9862 static int ipw_wx_sw_reset(struct net_device *dev,
9863                            struct iw_request_info *info,
9864                            union iwreq_data *wrqu, char *extra)
9865 {
9866         struct ipw_priv *priv = libipw_priv(dev);
9867         union iwreq_data wrqu_sec = {
9868                 .encoding = {
9869                              .flags = IW_ENCODE_DISABLED,
9870                              },
9871         };
9872         int ret;
9873
9874         IPW_DEBUG_WX("SW_RESET\n");
9875
9876         mutex_lock(&priv->mutex);
9877
9878         ret = ipw_sw_reset(priv, 2);
9879         if (!ret) {
9880                 free_firmware();
9881                 ipw_adapter_restart(priv);
9882         }
9883
9884         /* The SW reset bit might have been toggled on by the 'disable'
9885          * module parameter, so take appropriate action */
9886         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9887
9888         mutex_unlock(&priv->mutex);
9889         libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9890         mutex_lock(&priv->mutex);
9891
9892         if (!(priv->status & STATUS_RF_KILL_MASK)) {
9893                 /* Configuration likely changed -- force [re]association */
9894                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9895                                 "reset.\n");
9896                 if (!ipw_disassociate(priv))
9897                         ipw_associate(priv);
9898         }
9899
9900         mutex_unlock(&priv->mutex);
9901
9902         return 0;
9903 }
9904
9905 /* Rebase the WE IOCTLs to zero for the handler array */
9906 static iw_handler ipw_wx_handlers[] = {
9907         IW_HANDLER(SIOCGIWNAME, (iw_handler)cfg80211_wext_giwname),
9908         IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq),
9909         IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq),
9910         IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode),
9911         IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode),
9912         IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens),
9913         IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens),
9914         IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range),
9915         IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap),
9916         IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap),
9917         IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan),
9918         IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan),
9919         IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid),
9920         IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid),
9921         IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick),
9922         IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick),
9923         IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate),
9924         IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate),
9925         IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts),
9926         IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts),
9927         IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag),
9928         IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag),
9929         IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow),
9930         IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow),
9931         IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry),
9932         IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry),
9933         IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode),
9934         IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode),
9935         IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power),
9936         IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power),
9937         IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy),
9938         IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy),
9939         IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy),
9940         IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy),
9941         IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie),
9942         IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie),
9943         IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme),
9944         IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth),
9945         IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth),
9946         IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext),
9947         IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext),
9948 };
9949
9950 enum {
9951         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9952         IPW_PRIV_GET_POWER,
9953         IPW_PRIV_SET_MODE,
9954         IPW_PRIV_GET_MODE,
9955         IPW_PRIV_SET_PREAMBLE,
9956         IPW_PRIV_GET_PREAMBLE,
9957         IPW_PRIV_RESET,
9958         IPW_PRIV_SW_RESET,
9959 #ifdef CONFIG_IPW2200_MONITOR
9960         IPW_PRIV_SET_MONITOR,
9961 #endif
9962 };
9963
9964 static struct iw_priv_args ipw_priv_args[] = {
9965         {
9966          .cmd = IPW_PRIV_SET_POWER,
9967          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9968          .name = "set_power"},
9969         {
9970          .cmd = IPW_PRIV_GET_POWER,
9971          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9972          .name = "get_power"},
9973         {
9974          .cmd = IPW_PRIV_SET_MODE,
9975          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9976          .name = "set_mode"},
9977         {
9978          .cmd = IPW_PRIV_GET_MODE,
9979          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9980          .name = "get_mode"},
9981         {
9982          .cmd = IPW_PRIV_SET_PREAMBLE,
9983          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9984          .name = "set_preamble"},
9985         {
9986          .cmd = IPW_PRIV_GET_PREAMBLE,
9987          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9988          .name = "get_preamble"},
9989         {
9990          IPW_PRIV_RESET,
9991          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9992         {
9993          IPW_PRIV_SW_RESET,
9994          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9995 #ifdef CONFIG_IPW2200_MONITOR
9996         {
9997          IPW_PRIV_SET_MONITOR,
9998          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9999 #endif                          /* CONFIG_IPW2200_MONITOR */
10000 };
10001
10002 static iw_handler ipw_priv_handler[] = {
10003         ipw_wx_set_powermode,
10004         ipw_wx_get_powermode,
10005         ipw_wx_set_wireless_mode,
10006         ipw_wx_get_wireless_mode,
10007         ipw_wx_set_preamble,
10008         ipw_wx_get_preamble,
10009         ipw_wx_reset,
10010         ipw_wx_sw_reset,
10011 #ifdef CONFIG_IPW2200_MONITOR
10012         ipw_wx_set_monitor,
10013 #endif
10014 };
10015
10016 static struct iw_handler_def ipw_wx_handler_def = {
10017         .standard = ipw_wx_handlers,
10018         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10019         .num_private = ARRAY_SIZE(ipw_priv_handler),
10020         .num_private_args = ARRAY_SIZE(ipw_priv_args),
10021         .private = ipw_priv_handler,
10022         .private_args = ipw_priv_args,
10023         .get_wireless_stats = ipw_get_wireless_stats,
10024 };
10025
10026 /*
10027  * Get wireless statistics.
10028  * Called by /proc/net/wireless
10029  * Also called by SIOCGIWSTATS
10030  */
10031 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10032 {
10033         struct ipw_priv *priv = libipw_priv(dev);
10034         struct iw_statistics *wstats;
10035
10036         wstats = &priv->wstats;
10037
10038         /* if hw is disabled, then ipw_get_ordinal() can't be called.
10039          * netdev->get_wireless_stats seems to be called before fw is
10040          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
10041          * and associated; if not associcated, the values are all meaningless
10042          * anyway, so set them all to NULL and INVALID */
10043         if (!(priv->status & STATUS_ASSOCIATED)) {
10044                 wstats->miss.beacon = 0;
10045                 wstats->discard.retries = 0;
10046                 wstats->qual.qual = 0;
10047                 wstats->qual.level = 0;
10048                 wstats->qual.noise = 0;
10049                 wstats->qual.updated = 7;
10050                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10051                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10052                 return wstats;
10053         }
10054
10055         wstats->qual.qual = priv->quality;
10056         wstats->qual.level = priv->exp_avg_rssi;
10057         wstats->qual.noise = priv->exp_avg_noise;
10058         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10059             IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10060
10061         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10062         wstats->discard.retries = priv->last_tx_failures;
10063         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10064
10065 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10066         goto fail_get_ordinal;
10067         wstats->discard.retries += tx_retry; */
10068
10069         return wstats;
10070 }
10071
10072 /* net device stuff */
10073
10074 static  void init_sys_config(struct ipw_sys_config *sys_config)
10075 {
10076         memset(sys_config, 0, sizeof(struct ipw_sys_config));
10077         sys_config->bt_coexistence = 0;
10078         sys_config->answer_broadcast_ssid_probe = 0;
10079         sys_config->accept_all_data_frames = 0;
10080         sys_config->accept_non_directed_frames = 1;
10081         sys_config->exclude_unicast_unencrypted = 0;
10082         sys_config->disable_unicast_decryption = 1;
10083         sys_config->exclude_multicast_unencrypted = 0;
10084         sys_config->disable_multicast_decryption = 1;
10085         if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10086                 antenna = CFG_SYS_ANTENNA_BOTH;
10087         sys_config->antenna_diversity = antenna;
10088         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
10089         sys_config->dot11g_auto_detection = 0;
10090         sys_config->enable_cts_to_self = 0;
10091         sys_config->bt_coexist_collision_thr = 0;
10092         sys_config->pass_noise_stats_to_host = 1;       /* 1 -- fix for 256 */
10093         sys_config->silence_threshold = 0x1e;
10094 }
10095
10096 static int ipw_net_open(struct net_device *dev)
10097 {
10098         IPW_DEBUG_INFO("dev->open\n");
10099         netif_start_queue(dev);
10100         return 0;
10101 }
10102
10103 static int ipw_net_stop(struct net_device *dev)
10104 {
10105         IPW_DEBUG_INFO("dev->close\n");
10106         netif_stop_queue(dev);
10107         return 0;
10108 }
10109
10110 /*
10111 todo:
10112
10113 modify to send one tfd per fragment instead of using chunking.  otherwise
10114 we need to heavily modify the libipw_skb_to_txb.
10115 */
10116
10117 static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb,
10118                              int pri)
10119 {
10120         struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *)
10121             txb->fragments[0]->data;
10122         int i = 0;
10123         struct tfd_frame *tfd;
10124 #ifdef CONFIG_IPW2200_QOS
10125         int tx_id = ipw_get_tx_queue_number(priv, pri);
10126         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10127 #else
10128         struct clx2_tx_queue *txq = &priv->txq[0];
10129 #endif
10130         struct clx2_queue *q = &txq->q;
10131         u8 id, hdr_len, unicast;
10132         int fc;
10133
10134         if (!(priv->status & STATUS_ASSOCIATED))
10135                 goto drop;
10136
10137         hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10138         switch (priv->ieee->iw_mode) {
10139         case IW_MODE_ADHOC:
10140                 unicast = !is_multicast_ether_addr(hdr->addr1);
10141                 id = ipw_find_station(priv, hdr->addr1);
10142                 if (id == IPW_INVALID_STATION) {
10143                         id = ipw_add_station(priv, hdr->addr1);
10144                         if (id == IPW_INVALID_STATION) {
10145                                 IPW_WARNING("Attempt to send data to "
10146                                             "invalid cell: %pM\n",
10147                                             hdr->addr1);
10148                                 goto drop;
10149                         }
10150                 }
10151                 break;
10152
10153         case IW_MODE_INFRA:
10154         default:
10155                 unicast = !is_multicast_ether_addr(hdr->addr3);
10156                 id = 0;
10157                 break;
10158         }
10159
10160         tfd = &txq->bd[q->first_empty];
10161         txq->txb[q->first_empty] = txb;
10162         memset(tfd, 0, sizeof(*tfd));
10163         tfd->u.data.station_number = id;
10164
10165         tfd->control_flags.message_type = TX_FRAME_TYPE;
10166         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10167
10168         tfd->u.data.cmd_id = DINO_CMD_TX;
10169         tfd->u.data.len = cpu_to_le16(txb->payload_size);
10170
10171         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10172                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10173         else
10174                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10175
10176         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10177                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10178
10179         fc = le16_to_cpu(hdr->frame_ctl);
10180         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10181
10182         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10183
10184         if (likely(unicast))
10185                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10186
10187         if (txb->encrypted && !priv->ieee->host_encrypt) {
10188                 switch (priv->ieee->sec.level) {
10189                 case SEC_LEVEL_3:
10190                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10191                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10192                         /* XXX: ACK flag must be set for CCMP even if it
10193                          * is a multicast/broadcast packet, because CCMP
10194                          * group communication encrypted by GTK is
10195                          * actually done by the AP. */
10196                         if (!unicast)
10197                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10198
10199                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10200                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10201                         tfd->u.data.key_index = 0;
10202                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10203                         break;
10204                 case SEC_LEVEL_2:
10205                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10206                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10207                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10208                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10209                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10210                         break;
10211                 case SEC_LEVEL_1:
10212                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10213                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10214                         tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10215                         if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10216                             40)
10217                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10218                         else
10219                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10220                         break;
10221                 case SEC_LEVEL_0:
10222                         break;
10223                 default:
10224                         printk(KERN_ERR "Unknown security level %d\n",
10225                                priv->ieee->sec.level);
10226                         break;
10227                 }
10228         } else
10229                 /* No hardware encryption */
10230                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10231
10232 #ifdef CONFIG_IPW2200_QOS
10233         if (fc & IEEE80211_STYPE_QOS_DATA)
10234                 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10235 #endif                          /* CONFIG_IPW2200_QOS */
10236
10237         /* payload */
10238         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10239                                                  txb->nr_frags));
10240         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10241                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10242         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10243                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10244                                i, le32_to_cpu(tfd->u.data.num_chunks),
10245                                txb->fragments[i]->len - hdr_len);
10246                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10247                              i, tfd->u.data.num_chunks,
10248                              txb->fragments[i]->len - hdr_len);
10249                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10250                            txb->fragments[i]->len - hdr_len);
10251
10252                 tfd->u.data.chunk_ptr[i] =
10253                     cpu_to_le32(pci_map_single
10254                                 (priv->pci_dev,
10255                                  txb->fragments[i]->data + hdr_len,
10256                                  txb->fragments[i]->len - hdr_len,
10257                                  PCI_DMA_TODEVICE));
10258                 tfd->u.data.chunk_len[i] =
10259                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
10260         }
10261
10262         if (i != txb->nr_frags) {
10263                 struct sk_buff *skb;
10264                 u16 remaining_bytes = 0;
10265                 int j;
10266
10267                 for (j = i; j < txb->nr_frags; j++)
10268                         remaining_bytes += txb->fragments[j]->len - hdr_len;
10269
10270                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10271                        remaining_bytes);
10272                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10273                 if (skb != NULL) {
10274                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10275                         for (j = i; j < txb->nr_frags; j++) {
10276                                 int size = txb->fragments[j]->len - hdr_len;
10277
10278                                 printk(KERN_INFO "Adding frag %d %d...\n",
10279                                        j, size);
10280                                 memcpy(skb_put(skb, size),
10281                                        txb->fragments[j]->data + hdr_len, size);
10282                         }
10283                         dev_kfree_skb_any(txb->fragments[i]);
10284                         txb->fragments[i] = skb;
10285                         tfd->u.data.chunk_ptr[i] =
10286                             cpu_to_le32(pci_map_single
10287                                         (priv->pci_dev, skb->data,
10288                                          remaining_bytes,
10289                                          PCI_DMA_TODEVICE));
10290
10291                         le32_add_cpu(&tfd->u.data.num_chunks, 1);
10292                 }
10293         }
10294
10295         /* kick DMA */
10296         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10297         ipw_write32(priv, q->reg_w, q->first_empty);
10298
10299         if (ipw_tx_queue_space(q) < q->high_mark)
10300                 netif_stop_queue(priv->net_dev);
10301
10302         return NETDEV_TX_OK;
10303
10304       drop:
10305         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10306         libipw_txb_free(txb);
10307         return NETDEV_TX_OK;
10308 }
10309
10310 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10311 {
10312         struct ipw_priv *priv = libipw_priv(dev);
10313 #ifdef CONFIG_IPW2200_QOS
10314         int tx_id = ipw_get_tx_queue_number(priv, pri);
10315         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10316 #else
10317         struct clx2_tx_queue *txq = &priv->txq[0];
10318 #endif                          /* CONFIG_IPW2200_QOS */
10319
10320         if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10321                 return 1;
10322
10323         return 0;
10324 }
10325
10326 #ifdef CONFIG_IPW2200_PROMISCUOUS
10327 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10328                                       struct libipw_txb *txb)
10329 {
10330         struct libipw_rx_stats dummystats;
10331         struct ieee80211_hdr *hdr;
10332         u8 n;
10333         u16 filter = priv->prom_priv->filter;
10334         int hdr_only = 0;
10335
10336         if (filter & IPW_PROM_NO_TX)
10337                 return;
10338
10339         memset(&dummystats, 0, sizeof(dummystats));
10340
10341         /* Filtering of fragment chains is done against the first fragment */
10342         hdr = (void *)txb->fragments[0]->data;
10343         if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
10344                 if (filter & IPW_PROM_NO_MGMT)
10345                         return;
10346                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10347                         hdr_only = 1;
10348         } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
10349                 if (filter & IPW_PROM_NO_CTL)
10350                         return;
10351                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10352                         hdr_only = 1;
10353         } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
10354                 if (filter & IPW_PROM_NO_DATA)
10355                         return;
10356                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10357                         hdr_only = 1;
10358         }
10359
10360         for(n=0; n<txb->nr_frags; ++n) {
10361                 struct sk_buff *src = txb->fragments[n];
10362                 struct sk_buff *dst;
10363                 struct ieee80211_radiotap_header *rt_hdr;
10364                 int len;
10365
10366                 if (hdr_only) {
10367                         hdr = (void *)src->data;
10368                         len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
10369                 } else
10370                         len = src->len;
10371
10372                 dst = alloc_skb(len + sizeof(*rt_hdr) + sizeof(u16)*2, GFP_ATOMIC);
10373                 if (!dst)
10374                         continue;
10375
10376                 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10377
10378                 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10379                 rt_hdr->it_pad = 0;
10380                 rt_hdr->it_present = 0; /* after all, it's just an idea */
10381                 rt_hdr->it_present |=  cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10382
10383                 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10384                         ieee80211chan2mhz(priv->channel));
10385                 if (priv->channel > 14)         /* 802.11a */
10386                         *(__le16*)skb_put(dst, sizeof(u16)) =
10387                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10388                                              IEEE80211_CHAN_5GHZ);
10389                 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10390                         *(__le16*)skb_put(dst, sizeof(u16)) =
10391                                 cpu_to_le16(IEEE80211_CHAN_CCK |
10392                                              IEEE80211_CHAN_2GHZ);
10393                 else            /* 802.11g */
10394                         *(__le16*)skb_put(dst, sizeof(u16)) =
10395                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10396                                  IEEE80211_CHAN_2GHZ);
10397
10398                 rt_hdr->it_len = cpu_to_le16(dst->len);
10399
10400                 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10401
10402                 if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats))
10403                         dev_kfree_skb_any(dst);
10404         }
10405 }
10406 #endif
10407
10408 static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb,
10409                                            struct net_device *dev, int pri)
10410 {
10411         struct ipw_priv *priv = libipw_priv(dev);
10412         unsigned long flags;
10413         netdev_tx_t ret;
10414
10415         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10416         spin_lock_irqsave(&priv->lock, flags);
10417
10418 #ifdef CONFIG_IPW2200_PROMISCUOUS
10419         if (rtap_iface && netif_running(priv->prom_net_dev))
10420                 ipw_handle_promiscuous_tx(priv, txb);
10421 #endif
10422
10423         ret = ipw_tx_skb(priv, txb, pri);
10424         if (ret == NETDEV_TX_OK)
10425                 __ipw_led_activity_on(priv);
10426         spin_unlock_irqrestore(&priv->lock, flags);
10427
10428         return ret;
10429 }
10430
10431 static void ipw_net_set_multicast_list(struct net_device *dev)
10432 {
10433
10434 }
10435
10436 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10437 {
10438         struct ipw_priv *priv = libipw_priv(dev);
10439         struct sockaddr *addr = p;
10440
10441         if (!is_valid_ether_addr(addr->sa_data))
10442                 return -EADDRNOTAVAIL;
10443         mutex_lock(&priv->mutex);
10444         priv->config |= CFG_CUSTOM_MAC;
10445         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10446         printk(KERN_INFO "%s: Setting MAC to %pM\n",
10447                priv->net_dev->name, priv->mac_addr);
10448         schedule_work(&priv->adapter_restart);
10449         mutex_unlock(&priv->mutex);
10450         return 0;
10451 }
10452
10453 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10454                                     struct ethtool_drvinfo *info)
10455 {
10456         struct ipw_priv *p = libipw_priv(dev);
10457         char vers[64];
10458         char date[32];
10459         u32 len;
10460
10461         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
10462         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
10463
10464         len = sizeof(vers);
10465         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10466         len = sizeof(date);
10467         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10468
10469         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10470                  vers, date);
10471         strlcpy(info->bus_info, pci_name(p->pci_dev),
10472                 sizeof(info->bus_info));
10473 }
10474
10475 static u32 ipw_ethtool_get_link(struct net_device *dev)
10476 {
10477         struct ipw_priv *priv = libipw_priv(dev);
10478         return (priv->status & STATUS_ASSOCIATED) != 0;
10479 }
10480
10481 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10482 {
10483         return IPW_EEPROM_IMAGE_SIZE;
10484 }
10485
10486 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10487                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10488 {
10489         struct ipw_priv *p = libipw_priv(dev);
10490
10491         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10492                 return -EINVAL;
10493         mutex_lock(&p->mutex);
10494         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10495         mutex_unlock(&p->mutex);
10496         return 0;
10497 }
10498
10499 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10500                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10501 {
10502         struct ipw_priv *p = libipw_priv(dev);
10503         int i;
10504
10505         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10506                 return -EINVAL;
10507         mutex_lock(&p->mutex);
10508         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10509         for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10510                 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10511         mutex_unlock(&p->mutex);
10512         return 0;
10513 }
10514
10515 static const struct ethtool_ops ipw_ethtool_ops = {
10516         .get_link = ipw_ethtool_get_link,
10517         .get_drvinfo = ipw_ethtool_get_drvinfo,
10518         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10519         .get_eeprom = ipw_ethtool_get_eeprom,
10520         .set_eeprom = ipw_ethtool_set_eeprom,
10521 };
10522
10523 static irqreturn_t ipw_isr(int irq, void *data)
10524 {
10525         struct ipw_priv *priv = data;
10526         u32 inta, inta_mask;
10527
10528         if (!priv)
10529                 return IRQ_NONE;
10530
10531         spin_lock(&priv->irq_lock);
10532
10533         if (!(priv->status & STATUS_INT_ENABLED)) {
10534                 /* IRQ is disabled */
10535                 goto none;
10536         }
10537
10538         inta = ipw_read32(priv, IPW_INTA_RW);
10539         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10540
10541         if (inta == 0xFFFFFFFF) {
10542                 /* Hardware disappeared */
10543                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10544                 goto none;
10545         }
10546
10547         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10548                 /* Shared interrupt */
10549                 goto none;
10550         }
10551
10552         /* tell the device to stop sending interrupts */
10553         __ipw_disable_interrupts(priv);
10554
10555         /* ack current interrupts */
10556         inta &= (IPW_INTA_MASK_ALL & inta_mask);
10557         ipw_write32(priv, IPW_INTA_RW, inta);
10558
10559         /* Cache INTA value for our tasklet */
10560         priv->isr_inta = inta;
10561
10562         tasklet_schedule(&priv->irq_tasklet);
10563
10564         spin_unlock(&priv->irq_lock);
10565
10566         return IRQ_HANDLED;
10567       none:
10568         spin_unlock(&priv->irq_lock);
10569         return IRQ_NONE;
10570 }
10571
10572 static void ipw_rf_kill(void *adapter)
10573 {
10574         struct ipw_priv *priv = adapter;
10575         unsigned long flags;
10576
10577         spin_lock_irqsave(&priv->lock, flags);
10578
10579         if (rf_kill_active(priv)) {
10580                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10581                 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
10582                 goto exit_unlock;
10583         }
10584
10585         /* RF Kill is now disabled, so bring the device back up */
10586
10587         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10588                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10589                                   "device\n");
10590
10591                 /* we can not do an adapter restart while inside an irq lock */
10592                 schedule_work(&priv->adapter_restart);
10593         } else
10594                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10595                                   "enabled\n");
10596
10597       exit_unlock:
10598         spin_unlock_irqrestore(&priv->lock, flags);
10599 }
10600
10601 static void ipw_bg_rf_kill(struct work_struct *work)
10602 {
10603         struct ipw_priv *priv =
10604                 container_of(work, struct ipw_priv, rf_kill.work);
10605         mutex_lock(&priv->mutex);
10606         ipw_rf_kill(priv);
10607         mutex_unlock(&priv->mutex);
10608 }
10609
10610 static void ipw_link_up(struct ipw_priv *priv)
10611 {
10612         priv->last_seq_num = -1;
10613         priv->last_frag_num = -1;
10614         priv->last_packet_time = 0;
10615
10616         netif_carrier_on(priv->net_dev);
10617
10618         cancel_delayed_work(&priv->request_scan);
10619         cancel_delayed_work(&priv->request_direct_scan);
10620         cancel_delayed_work(&priv->request_passive_scan);
10621         cancel_delayed_work(&priv->scan_event);
10622         ipw_reset_stats(priv);
10623         /* Ensure the rate is updated immediately */
10624         priv->last_rate = ipw_get_current_rate(priv);
10625         ipw_gather_stats(priv);
10626         ipw_led_link_up(priv);
10627         notify_wx_assoc_event(priv);
10628
10629         if (priv->config & CFG_BACKGROUND_SCAN)
10630                 schedule_delayed_work(&priv->request_scan, HZ);
10631 }
10632
10633 static void ipw_bg_link_up(struct work_struct *work)
10634 {
10635         struct ipw_priv *priv =
10636                 container_of(work, struct ipw_priv, link_up);
10637         mutex_lock(&priv->mutex);
10638         ipw_link_up(priv);
10639         mutex_unlock(&priv->mutex);
10640 }
10641
10642 static void ipw_link_down(struct ipw_priv *priv)
10643 {
10644         ipw_led_link_down(priv);
10645         netif_carrier_off(priv->net_dev);
10646         notify_wx_assoc_event(priv);
10647
10648         /* Cancel any queued work ... */
10649         cancel_delayed_work(&priv->request_scan);
10650         cancel_delayed_work(&priv->request_direct_scan);
10651         cancel_delayed_work(&priv->request_passive_scan);
10652         cancel_delayed_work(&priv->adhoc_check);
10653         cancel_delayed_work(&priv->gather_stats);
10654
10655         ipw_reset_stats(priv);
10656
10657         if (!(priv->status & STATUS_EXIT_PENDING)) {
10658                 /* Queue up another scan... */
10659                 schedule_delayed_work(&priv->request_scan, 0);
10660         } else
10661                 cancel_delayed_work(&priv->scan_event);
10662 }
10663
10664 static void ipw_bg_link_down(struct work_struct *work)
10665 {
10666         struct ipw_priv *priv =
10667                 container_of(work, struct ipw_priv, link_down);
10668         mutex_lock(&priv->mutex);
10669         ipw_link_down(priv);
10670         mutex_unlock(&priv->mutex);
10671 }
10672
10673 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10674 {
10675         int ret = 0;
10676
10677         init_waitqueue_head(&priv->wait_command_queue);
10678         init_waitqueue_head(&priv->wait_state);
10679
10680         INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10681         INIT_WORK(&priv->associate, ipw_bg_associate);
10682         INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10683         INIT_WORK(&priv->system_config, ipw_system_config);
10684         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10685         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10686         INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10687         INIT_WORK(&priv->up, ipw_bg_up);
10688         INIT_WORK(&priv->down, ipw_bg_down);
10689         INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10690         INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10691         INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10692         INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10693         INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10694         INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10695         INIT_WORK(&priv->roam, ipw_bg_roam);
10696         INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10697         INIT_WORK(&priv->link_up, ipw_bg_link_up);
10698         INIT_WORK(&priv->link_down, ipw_bg_link_down);
10699         INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10700         INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10701         INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10702         INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10703
10704 #ifdef CONFIG_IPW2200_QOS
10705         INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10706 #endif                          /* CONFIG_IPW2200_QOS */
10707
10708         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10709                      ipw_irq_tasklet, (unsigned long)priv);
10710
10711         return ret;
10712 }
10713
10714 static void shim__set_security(struct net_device *dev,
10715                                struct libipw_security *sec)
10716 {
10717         struct ipw_priv *priv = libipw_priv(dev);
10718         int i;
10719         for (i = 0; i < 4; i++) {
10720                 if (sec->flags & (1 << i)) {
10721                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10722                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10723                         if (sec->key_sizes[i] == 0)
10724                                 priv->ieee->sec.flags &= ~(1 << i);
10725                         else {
10726                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10727                                        sec->key_sizes[i]);
10728                                 priv->ieee->sec.flags |= (1 << i);
10729                         }
10730                         priv->status |= STATUS_SECURITY_UPDATED;
10731                 } else if (sec->level != SEC_LEVEL_1)
10732                         priv->ieee->sec.flags &= ~(1 << i);
10733         }
10734
10735         if (sec->flags & SEC_ACTIVE_KEY) {
10736                 if (sec->active_key <= 3) {
10737                         priv->ieee->sec.active_key = sec->active_key;
10738                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10739                 } else
10740                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10741                 priv->status |= STATUS_SECURITY_UPDATED;
10742         } else
10743                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10744
10745         if ((sec->flags & SEC_AUTH_MODE) &&
10746             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10747                 priv->ieee->sec.auth_mode = sec->auth_mode;
10748                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10749                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10750                         priv->capability |= CAP_SHARED_KEY;
10751                 else
10752                         priv->capability &= ~CAP_SHARED_KEY;
10753                 priv->status |= STATUS_SECURITY_UPDATED;
10754         }
10755
10756         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10757                 priv->ieee->sec.flags |= SEC_ENABLED;
10758                 priv->ieee->sec.enabled = sec->enabled;
10759                 priv->status |= STATUS_SECURITY_UPDATED;
10760                 if (sec->enabled)
10761                         priv->capability |= CAP_PRIVACY_ON;
10762                 else
10763                         priv->capability &= ~CAP_PRIVACY_ON;
10764         }
10765
10766         if (sec->flags & SEC_ENCRYPT)
10767                 priv->ieee->sec.encrypt = sec->encrypt;
10768
10769         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10770                 priv->ieee->sec.level = sec->level;
10771                 priv->ieee->sec.flags |= SEC_LEVEL;
10772                 priv->status |= STATUS_SECURITY_UPDATED;
10773         }
10774
10775         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10776                 ipw_set_hwcrypto_keys(priv);
10777
10778         /* To match current functionality of ipw2100 (which works well w/
10779          * various supplicants, we don't force a disassociate if the
10780          * privacy capability changes ... */
10781 #if 0
10782         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10783             (((priv->assoc_request.capability &
10784                cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10785              (!(priv->assoc_request.capability &
10786                 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10787                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10788                                 "change.\n");
10789                 ipw_disassociate(priv);
10790         }
10791 #endif
10792 }
10793
10794 static int init_supported_rates(struct ipw_priv *priv,
10795                                 struct ipw_supported_rates *rates)
10796 {
10797         /* TODO: Mask out rates based on priv->rates_mask */
10798
10799         memset(rates, 0, sizeof(*rates));
10800         /* configure supported rates */
10801         switch (priv->ieee->freq_band) {
10802         case LIBIPW_52GHZ_BAND:
10803                 rates->ieee_mode = IPW_A_MODE;
10804                 rates->purpose = IPW_RATE_CAPABILITIES;
10805                 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10806                                         LIBIPW_OFDM_DEFAULT_RATES_MASK);
10807                 break;
10808
10809         default:                /* Mixed or 2.4Ghz */
10810                 rates->ieee_mode = IPW_G_MODE;
10811                 rates->purpose = IPW_RATE_CAPABILITIES;
10812                 ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION,
10813                                        LIBIPW_CCK_DEFAULT_RATES_MASK);
10814                 if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) {
10815                         ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10816                                                 LIBIPW_OFDM_DEFAULT_RATES_MASK);
10817                 }
10818                 break;
10819         }
10820
10821         return 0;
10822 }
10823
10824 static int ipw_config(struct ipw_priv *priv)
10825 {
10826         /* This is only called from ipw_up, which resets/reloads the firmware
10827            so, we don't need to first disable the card before we configure
10828            it */
10829         if (ipw_set_tx_power(priv))
10830                 goto error;
10831
10832         /* initialize adapter address */
10833         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10834                 goto error;
10835
10836         /* set basic system config settings */
10837         init_sys_config(&priv->sys_config);
10838
10839         /* Support Bluetooth if we have BT h/w on board, and user wants to.
10840          * Does not support BT priority yet (don't abort or defer our Tx) */
10841         if (bt_coexist) {
10842                 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10843
10844                 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10845                         priv->sys_config.bt_coexistence
10846                             |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10847                 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10848                         priv->sys_config.bt_coexistence
10849                             |= CFG_BT_COEXISTENCE_OOB;
10850         }
10851
10852 #ifdef CONFIG_IPW2200_PROMISCUOUS
10853         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10854                 priv->sys_config.accept_all_data_frames = 1;
10855                 priv->sys_config.accept_non_directed_frames = 1;
10856                 priv->sys_config.accept_all_mgmt_bcpr = 1;
10857                 priv->sys_config.accept_all_mgmt_frames = 1;
10858         }
10859 #endif
10860
10861         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10862                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10863         else
10864                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10865
10866         if (ipw_send_system_config(priv))
10867                 goto error;
10868
10869         init_supported_rates(priv, &priv->rates);
10870         if (ipw_send_supported_rates(priv, &priv->rates))
10871                 goto error;
10872
10873         /* Set request-to-send threshold */
10874         if (priv->rts_threshold) {
10875                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10876                         goto error;
10877         }
10878 #ifdef CONFIG_IPW2200_QOS
10879         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10880         ipw_qos_activate(priv, NULL);
10881 #endif                          /* CONFIG_IPW2200_QOS */
10882
10883         if (ipw_set_random_seed(priv))
10884                 goto error;
10885
10886         /* final state transition to the RUN state */
10887         if (ipw_send_host_complete(priv))
10888                 goto error;
10889
10890         priv->status |= STATUS_INIT;
10891
10892         ipw_led_init(priv);
10893         ipw_led_radio_on(priv);
10894         priv->notif_missed_beacons = 0;
10895
10896         /* Set hardware WEP key if it is configured. */
10897         if ((priv->capability & CAP_PRIVACY_ON) &&
10898             (priv->ieee->sec.level == SEC_LEVEL_1) &&
10899             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10900                 ipw_set_hwcrypto_keys(priv);
10901
10902         return 0;
10903
10904       error:
10905         return -EIO;
10906 }
10907
10908 /*
10909  * NOTE:
10910  *
10911  * These tables have been tested in conjunction with the
10912  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10913  *
10914  * Altering this values, using it on other hardware, or in geographies
10915  * not intended for resale of the above mentioned Intel adapters has
10916  * not been tested.
10917  *
10918  * Remember to update the table in README.ipw2200 when changing this
10919  * table.
10920  *
10921  */
10922 static const struct libipw_geo ipw_geos[] = {
10923         {                       /* Restricted */
10924          "---",
10925          .bg_channels = 11,
10926          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10927                 {2427, 4}, {2432, 5}, {2437, 6},
10928                 {2442, 7}, {2447, 8}, {2452, 9},
10929                 {2457, 10}, {2462, 11}},
10930          },
10931
10932         {                       /* Custom US/Canada */
10933          "ZZF",
10934          .bg_channels = 11,
10935          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10936                 {2427, 4}, {2432, 5}, {2437, 6},
10937                 {2442, 7}, {2447, 8}, {2452, 9},
10938                 {2457, 10}, {2462, 11}},
10939          .a_channels = 8,
10940          .a = {{5180, 36},
10941                {5200, 40},
10942                {5220, 44},
10943                {5240, 48},
10944                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10945                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10946                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10947                {5320, 64, LIBIPW_CH_PASSIVE_ONLY}},
10948          },
10949
10950         {                       /* Rest of World */
10951          "ZZD",
10952          .bg_channels = 13,
10953          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10954                 {2427, 4}, {2432, 5}, {2437, 6},
10955                 {2442, 7}, {2447, 8}, {2452, 9},
10956                 {2457, 10}, {2462, 11}, {2467, 12},
10957                 {2472, 13}},
10958          },
10959
10960         {                       /* Custom USA & Europe & High */
10961          "ZZA",
10962          .bg_channels = 11,
10963          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10964                 {2427, 4}, {2432, 5}, {2437, 6},
10965                 {2442, 7}, {2447, 8}, {2452, 9},
10966                 {2457, 10}, {2462, 11}},
10967          .a_channels = 13,
10968          .a = {{5180, 36},
10969                {5200, 40},
10970                {5220, 44},
10971                {5240, 48},
10972                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10973                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10974                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10975                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10976                {5745, 149},
10977                {5765, 153},
10978                {5785, 157},
10979                {5805, 161},
10980                {5825, 165}},
10981          },
10982
10983         {                       /* Custom NA & Europe */
10984          "ZZB",
10985          .bg_channels = 11,
10986          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10987                 {2427, 4}, {2432, 5}, {2437, 6},
10988                 {2442, 7}, {2447, 8}, {2452, 9},
10989                 {2457, 10}, {2462, 11}},
10990          .a_channels = 13,
10991          .a = {{5180, 36},
10992                {5200, 40},
10993                {5220, 44},
10994                {5240, 48},
10995                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10996                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10997                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10998                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10999                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11000                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11001                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11002                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11003                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11004          },
11005
11006         {                       /* Custom Japan */
11007          "ZZC",
11008          .bg_channels = 11,
11009          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11010                 {2427, 4}, {2432, 5}, {2437, 6},
11011                 {2442, 7}, {2447, 8}, {2452, 9},
11012                 {2457, 10}, {2462, 11}},
11013          .a_channels = 4,
11014          .a = {{5170, 34}, {5190, 38},
11015                {5210, 42}, {5230, 46}},
11016          },
11017
11018         {                       /* Custom */
11019          "ZZM",
11020          .bg_channels = 11,
11021          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11022                 {2427, 4}, {2432, 5}, {2437, 6},
11023                 {2442, 7}, {2447, 8}, {2452, 9},
11024                 {2457, 10}, {2462, 11}},
11025          },
11026
11027         {                       /* Europe */
11028          "ZZE",
11029          .bg_channels = 13,
11030          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11031                 {2427, 4}, {2432, 5}, {2437, 6},
11032                 {2442, 7}, {2447, 8}, {2452, 9},
11033                 {2457, 10}, {2462, 11}, {2467, 12},
11034                 {2472, 13}},
11035          .a_channels = 19,
11036          .a = {{5180, 36},
11037                {5200, 40},
11038                {5220, 44},
11039                {5240, 48},
11040                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11041                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11042                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11043                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11044                {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11045                {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11046                {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11047                {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11048                {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11049                {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11050                {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11051                {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11052                {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11053                {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11054                {5700, 140, LIBIPW_CH_PASSIVE_ONLY}},
11055          },
11056
11057         {                       /* Custom Japan */
11058          "ZZJ",
11059          .bg_channels = 14,
11060          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11061                 {2427, 4}, {2432, 5}, {2437, 6},
11062                 {2442, 7}, {2447, 8}, {2452, 9},
11063                 {2457, 10}, {2462, 11}, {2467, 12},
11064                 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}},
11065          .a_channels = 4,
11066          .a = {{5170, 34}, {5190, 38},
11067                {5210, 42}, {5230, 46}},
11068          },
11069
11070         {                       /* Rest of World */
11071          "ZZR",
11072          .bg_channels = 14,
11073          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11074                 {2427, 4}, {2432, 5}, {2437, 6},
11075                 {2442, 7}, {2447, 8}, {2452, 9},
11076                 {2457, 10}, {2462, 11}, {2467, 12},
11077                 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY |
11078                              LIBIPW_CH_PASSIVE_ONLY}},
11079          },
11080
11081         {                       /* High Band */
11082          "ZZH",
11083          .bg_channels = 13,
11084          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11085                 {2427, 4}, {2432, 5}, {2437, 6},
11086                 {2442, 7}, {2447, 8}, {2452, 9},
11087                 {2457, 10}, {2462, 11},
11088                 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11089                 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11090          .a_channels = 4,
11091          .a = {{5745, 149}, {5765, 153},
11092                {5785, 157}, {5805, 161}},
11093          },
11094
11095         {                       /* Custom Europe */
11096          "ZZG",
11097          .bg_channels = 13,
11098          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11099                 {2427, 4}, {2432, 5}, {2437, 6},
11100                 {2442, 7}, {2447, 8}, {2452, 9},
11101                 {2457, 10}, {2462, 11},
11102                 {2467, 12}, {2472, 13}},
11103          .a_channels = 4,
11104          .a = {{5180, 36}, {5200, 40},
11105                {5220, 44}, {5240, 48}},
11106          },
11107
11108         {                       /* Europe */
11109          "ZZK",
11110          .bg_channels = 13,
11111          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11112                 {2427, 4}, {2432, 5}, {2437, 6},
11113                 {2442, 7}, {2447, 8}, {2452, 9},
11114                 {2457, 10}, {2462, 11},
11115                 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11116                 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11117          .a_channels = 24,
11118          .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11119                {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11120                {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11121                {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11122                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11123                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11124                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11125                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11126                {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11127                {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11128                {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11129                {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11130                {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11131                {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11132                {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11133                {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11134                {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11135                {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11136                {5700, 140, LIBIPW_CH_PASSIVE_ONLY},
11137                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11138                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11139                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11140                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11141                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11142          },
11143
11144         {                       /* Europe */
11145          "ZZL",
11146          .bg_channels = 11,
11147          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11148                 {2427, 4}, {2432, 5}, {2437, 6},
11149                 {2442, 7}, {2447, 8}, {2452, 9},
11150                 {2457, 10}, {2462, 11}},
11151          .a_channels = 13,
11152          .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11153                {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11154                {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11155                {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11156                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11157                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11158                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11159                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11160                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11161                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11162                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11163                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11164                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11165          }
11166 };
11167
11168 static void ipw_set_geo(struct ipw_priv *priv)
11169 {
11170         int j;
11171
11172         for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11173                 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11174                             ipw_geos[j].name, 3))
11175                         break;
11176         }
11177
11178         if (j == ARRAY_SIZE(ipw_geos)) {
11179                 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11180                             priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11181                             priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11182                             priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11183                 j = 0;
11184         }
11185
11186         libipw_set_geo(priv->ieee, &ipw_geos[j]);
11187 }
11188
11189 #define MAX_HW_RESTARTS 5
11190 static int ipw_up(struct ipw_priv *priv)
11191 {
11192         int rc, i;
11193
11194         /* Age scan list entries found before suspend */
11195         if (priv->suspend_time) {
11196                 libipw_networks_age(priv->ieee, priv->suspend_time);
11197                 priv->suspend_time = 0;
11198         }
11199
11200         if (priv->status & STATUS_EXIT_PENDING)
11201                 return -EIO;
11202
11203         if (cmdlog && !priv->cmdlog) {
11204                 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11205                                        GFP_KERNEL);
11206                 if (priv->cmdlog == NULL) {
11207                         IPW_ERROR("Error allocating %d command log entries.\n",
11208                                   cmdlog);
11209                         return -ENOMEM;
11210                 } else {
11211                         priv->cmdlog_len = cmdlog;
11212                 }
11213         }
11214
11215         for (i = 0; i < MAX_HW_RESTARTS; i++) {
11216                 /* Load the microcode, firmware, and eeprom.
11217                  * Also start the clocks. */
11218                 rc = ipw_load(priv);
11219                 if (rc) {
11220                         IPW_ERROR("Unable to load firmware: %d\n", rc);
11221                         return rc;
11222                 }
11223
11224                 ipw_init_ordinals(priv);
11225                 if (!(priv->config & CFG_CUSTOM_MAC))
11226                         eeprom_parse_mac(priv, priv->mac_addr);
11227                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11228
11229                 ipw_set_geo(priv);
11230
11231                 if (priv->status & STATUS_RF_KILL_SW) {
11232                         IPW_WARNING("Radio disabled by module parameter.\n");
11233                         return 0;
11234                 } else if (rf_kill_active(priv)) {
11235                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11236                                     "Kill switch must be turned off for "
11237                                     "wireless networking to work.\n");
11238                         schedule_delayed_work(&priv->rf_kill, 2 * HZ);
11239                         return 0;
11240                 }
11241
11242                 rc = ipw_config(priv);
11243                 if (!rc) {
11244                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
11245
11246                         /* If configure to try and auto-associate, kick
11247                          * off a scan. */
11248                         schedule_delayed_work(&priv->request_scan, 0);
11249
11250                         return 0;
11251                 }
11252
11253                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11254                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11255                                i, MAX_HW_RESTARTS);
11256
11257                 /* We had an error bringing up the hardware, so take it
11258                  * all the way back down so we can try again */
11259                 ipw_down(priv);
11260         }
11261
11262         /* tried to restart and config the device for as long as our
11263          * patience could withstand */
11264         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11265
11266         return -EIO;
11267 }
11268
11269 static void ipw_bg_up(struct work_struct *work)
11270 {
11271         struct ipw_priv *priv =
11272                 container_of(work, struct ipw_priv, up);
11273         mutex_lock(&priv->mutex);
11274         ipw_up(priv);
11275         mutex_unlock(&priv->mutex);
11276 }
11277
11278 static void ipw_deinit(struct ipw_priv *priv)
11279 {
11280         int i;
11281
11282         if (priv->status & STATUS_SCANNING) {
11283                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11284                 ipw_abort_scan(priv);
11285         }
11286
11287         if (priv->status & STATUS_ASSOCIATED) {
11288                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11289                 ipw_disassociate(priv);
11290         }
11291
11292         ipw_led_shutdown(priv);
11293
11294         /* Wait up to 1s for status to change to not scanning and not
11295          * associated (disassociation can take a while for a ful 802.11
11296          * exchange */
11297         for (i = 1000; i && (priv->status &
11298                              (STATUS_DISASSOCIATING |
11299                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11300                 udelay(10);
11301
11302         if (priv->status & (STATUS_DISASSOCIATING |
11303                             STATUS_ASSOCIATED | STATUS_SCANNING))
11304                 IPW_DEBUG_INFO("Still associated or scanning...\n");
11305         else
11306                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11307
11308         /* Attempt to disable the card */
11309         ipw_send_card_disable(priv, 0);
11310
11311         priv->status &= ~STATUS_INIT;
11312 }
11313
11314 static void ipw_down(struct ipw_priv *priv)
11315 {
11316         int exit_pending = priv->status & STATUS_EXIT_PENDING;
11317
11318         priv->status |= STATUS_EXIT_PENDING;
11319
11320         if (ipw_is_init(priv))
11321                 ipw_deinit(priv);
11322
11323         /* Wipe out the EXIT_PENDING status bit if we are not actually
11324          * exiting the module */
11325         if (!exit_pending)
11326                 priv->status &= ~STATUS_EXIT_PENDING;
11327
11328         /* tell the device to stop sending interrupts */
11329         ipw_disable_interrupts(priv);
11330
11331         /* Clear all bits but the RF Kill */
11332         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11333         netif_carrier_off(priv->net_dev);
11334
11335         ipw_stop_nic(priv);
11336
11337         ipw_led_radio_off(priv);
11338 }
11339
11340 static void ipw_bg_down(struct work_struct *work)
11341 {
11342         struct ipw_priv *priv =
11343                 container_of(work, struct ipw_priv, down);
11344         mutex_lock(&priv->mutex);
11345         ipw_down(priv);
11346         mutex_unlock(&priv->mutex);
11347 }
11348
11349 static int ipw_wdev_init(struct net_device *dev)
11350 {
11351         int i, rc = 0;
11352         struct ipw_priv *priv = libipw_priv(dev);
11353         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
11354         struct wireless_dev *wdev = &priv->ieee->wdev;
11355
11356         memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
11357
11358         /* fill-out priv->ieee->bg_band */
11359         if (geo->bg_channels) {
11360                 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
11361
11362                 bg_band->band = IEEE80211_BAND_2GHZ;
11363                 bg_band->n_channels = geo->bg_channels;
11364                 bg_band->channels = kcalloc(geo->bg_channels,
11365                                             sizeof(struct ieee80211_channel),
11366                                             GFP_KERNEL);
11367                 if (!bg_band->channels) {
11368                         rc = -ENOMEM;
11369                         goto out;
11370                 }
11371                 /* translate geo->bg to bg_band.channels */
11372                 for (i = 0; i < geo->bg_channels; i++) {
11373                         bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
11374                         bg_band->channels[i].center_freq = geo->bg[i].freq;
11375                         bg_band->channels[i].hw_value = geo->bg[i].channel;
11376                         bg_band->channels[i].max_power = geo->bg[i].max_power;
11377                         if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11378                                 bg_band->channels[i].flags |=
11379                                         IEEE80211_CHAN_NO_IR;
11380                         if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
11381                                 bg_band->channels[i].flags |=
11382                                         IEEE80211_CHAN_NO_IR;
11383                         if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
11384                                 bg_band->channels[i].flags |=
11385                                         IEEE80211_CHAN_RADAR;
11386                         /* No equivalent for LIBIPW_CH_80211H_RULES,
11387                            LIBIPW_CH_UNIFORM_SPREADING, or
11388                            LIBIPW_CH_B_ONLY... */
11389                 }
11390                 /* point at bitrate info */
11391                 bg_band->bitrates = ipw2200_bg_rates;
11392                 bg_band->n_bitrates = ipw2200_num_bg_rates;
11393
11394                 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
11395         }
11396
11397         /* fill-out priv->ieee->a_band */
11398         if (geo->a_channels) {
11399                 struct ieee80211_supported_band *a_band = &priv->ieee->a_band;
11400
11401                 a_band->band = IEEE80211_BAND_5GHZ;
11402                 a_band->n_channels = geo->a_channels;
11403                 a_band->channels = kcalloc(geo->a_channels,
11404                                            sizeof(struct ieee80211_channel),
11405                                            GFP_KERNEL);
11406                 if (!a_band->channels) {
11407                         rc = -ENOMEM;
11408                         goto out;
11409                 }
11410                 /* translate geo->a to a_band.channels */
11411                 for (i = 0; i < geo->a_channels; i++) {
11412                         a_band->channels[i].band = IEEE80211_BAND_5GHZ;
11413                         a_band->channels[i].center_freq = geo->a[i].freq;
11414                         a_band->channels[i].hw_value = geo->a[i].channel;
11415                         a_band->channels[i].max_power = geo->a[i].max_power;
11416                         if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11417                                 a_band->channels[i].flags |=
11418                                         IEEE80211_CHAN_NO_IR;
11419                         if (geo->a[i].flags & LIBIPW_CH_NO_IBSS)
11420                                 a_band->channels[i].flags |=
11421                                         IEEE80211_CHAN_NO_IR;
11422                         if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)
11423                                 a_band->channels[i].flags |=
11424                                         IEEE80211_CHAN_RADAR;
11425                         /* No equivalent for LIBIPW_CH_80211H_RULES,
11426                            LIBIPW_CH_UNIFORM_SPREADING, or
11427                            LIBIPW_CH_B_ONLY... */
11428                 }
11429                 /* point at bitrate info */
11430                 a_band->bitrates = ipw2200_a_rates;
11431                 a_band->n_bitrates = ipw2200_num_a_rates;
11432
11433                 wdev->wiphy->bands[IEEE80211_BAND_5GHZ] = a_band;
11434         }
11435
11436         wdev->wiphy->cipher_suites = ipw_cipher_suites;
11437         wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
11438
11439         set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
11440
11441         /* With that information in place, we can now register the wiphy... */
11442         if (wiphy_register(wdev->wiphy))
11443                 rc = -EIO;
11444 out:
11445         return rc;
11446 }
11447
11448 /* PCI driver stuff */
11449 static const struct pci_device_id card_ids[] = {
11450         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11451         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11452         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11453         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11454         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11455         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11456         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11457         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11458         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11459         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11460         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11461         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11462         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11463         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11464         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11465         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11466         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11467         {PCI_VDEVICE(INTEL, 0x104f), 0},
11468         {PCI_VDEVICE(INTEL, 0x4220), 0},        /* BG */
11469         {PCI_VDEVICE(INTEL, 0x4221), 0},        /* BG */
11470         {PCI_VDEVICE(INTEL, 0x4223), 0},        /* ABG */
11471         {PCI_VDEVICE(INTEL, 0x4224), 0},        /* ABG */
11472
11473         /* required last entry */
11474         {0,}
11475 };
11476
11477 MODULE_DEVICE_TABLE(pci, card_ids);
11478
11479 static struct attribute *ipw_sysfs_entries[] = {
11480         &dev_attr_rf_kill.attr,
11481         &dev_attr_direct_dword.attr,
11482         &dev_attr_indirect_byte.attr,
11483         &dev_attr_indirect_dword.attr,
11484         &dev_attr_mem_gpio_reg.attr,
11485         &dev_attr_command_event_reg.attr,
11486         &dev_attr_nic_type.attr,
11487         &dev_attr_status.attr,
11488         &dev_attr_cfg.attr,
11489         &dev_attr_error.attr,
11490         &dev_attr_event_log.attr,
11491         &dev_attr_cmd_log.attr,
11492         &dev_attr_eeprom_delay.attr,
11493         &dev_attr_ucode_version.attr,
11494         &dev_attr_rtc.attr,
11495         &dev_attr_scan_age.attr,
11496         &dev_attr_led.attr,
11497         &dev_attr_speed_scan.attr,
11498         &dev_attr_net_stats.attr,
11499         &dev_attr_channels.attr,
11500 #ifdef CONFIG_IPW2200_PROMISCUOUS
11501         &dev_attr_rtap_iface.attr,
11502         &dev_attr_rtap_filter.attr,
11503 #endif
11504         NULL
11505 };
11506
11507 static struct attribute_group ipw_attribute_group = {
11508         .name = NULL,           /* put in device directory */
11509         .attrs = ipw_sysfs_entries,
11510 };
11511
11512 #ifdef CONFIG_IPW2200_PROMISCUOUS
11513 static int ipw_prom_open(struct net_device *dev)
11514 {
11515         struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11516         struct ipw_priv *priv = prom_priv->priv;
11517
11518         IPW_DEBUG_INFO("prom dev->open\n");
11519         netif_carrier_off(dev);
11520
11521         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11522                 priv->sys_config.accept_all_data_frames = 1;
11523                 priv->sys_config.accept_non_directed_frames = 1;
11524                 priv->sys_config.accept_all_mgmt_bcpr = 1;
11525                 priv->sys_config.accept_all_mgmt_frames = 1;
11526
11527                 ipw_send_system_config(priv);
11528         }
11529
11530         return 0;
11531 }
11532
11533 static int ipw_prom_stop(struct net_device *dev)
11534 {
11535         struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11536         struct ipw_priv *priv = prom_priv->priv;
11537
11538         IPW_DEBUG_INFO("prom dev->stop\n");
11539
11540         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11541                 priv->sys_config.accept_all_data_frames = 0;
11542                 priv->sys_config.accept_non_directed_frames = 0;
11543                 priv->sys_config.accept_all_mgmt_bcpr = 0;
11544                 priv->sys_config.accept_all_mgmt_frames = 0;
11545
11546                 ipw_send_system_config(priv);
11547         }
11548
11549         return 0;
11550 }
11551
11552 static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb,
11553                                             struct net_device *dev)
11554 {
11555         IPW_DEBUG_INFO("prom dev->xmit\n");
11556         dev_kfree_skb(skb);
11557         return NETDEV_TX_OK;
11558 }
11559
11560 static const struct net_device_ops ipw_prom_netdev_ops = {
11561         .ndo_open               = ipw_prom_open,
11562         .ndo_stop               = ipw_prom_stop,
11563         .ndo_start_xmit         = ipw_prom_hard_start_xmit,
11564         .ndo_change_mtu         = libipw_change_mtu,
11565         .ndo_set_mac_address    = eth_mac_addr,
11566         .ndo_validate_addr      = eth_validate_addr,
11567 };
11568
11569 static int ipw_prom_alloc(struct ipw_priv *priv)
11570 {
11571         int rc = 0;
11572
11573         if (priv->prom_net_dev)
11574                 return -EPERM;
11575
11576         priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1);
11577         if (priv->prom_net_dev == NULL)
11578                 return -ENOMEM;
11579
11580         priv->prom_priv = libipw_priv(priv->prom_net_dev);
11581         priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11582         priv->prom_priv->priv = priv;
11583
11584         strcpy(priv->prom_net_dev->name, "rtap%d");
11585         memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11586
11587         priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11588         priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11589
11590         priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11591         SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11592
11593         rc = register_netdev(priv->prom_net_dev);
11594         if (rc) {
11595                 free_libipw(priv->prom_net_dev, 1);
11596                 priv->prom_net_dev = NULL;
11597                 return rc;
11598         }
11599
11600         return 0;
11601 }
11602
11603 static void ipw_prom_free(struct ipw_priv *priv)
11604 {
11605         if (!priv->prom_net_dev)
11606                 return;
11607
11608         unregister_netdev(priv->prom_net_dev);
11609         free_libipw(priv->prom_net_dev, 1);
11610
11611         priv->prom_net_dev = NULL;
11612 }
11613
11614 #endif
11615
11616 static const struct net_device_ops ipw_netdev_ops = {
11617         .ndo_open               = ipw_net_open,
11618         .ndo_stop               = ipw_net_stop,
11619         .ndo_set_rx_mode        = ipw_net_set_multicast_list,
11620         .ndo_set_mac_address    = ipw_net_set_mac_address,
11621         .ndo_start_xmit         = libipw_xmit,
11622         .ndo_change_mtu         = libipw_change_mtu,
11623         .ndo_validate_addr      = eth_validate_addr,
11624 };
11625
11626 static int ipw_pci_probe(struct pci_dev *pdev,
11627                                    const struct pci_device_id *ent)
11628 {
11629         int err = 0;
11630         struct net_device *net_dev;
11631         void __iomem *base;
11632         u32 length, val;
11633         struct ipw_priv *priv;
11634         int i;
11635
11636         net_dev = alloc_libipw(sizeof(struct ipw_priv), 0);
11637         if (net_dev == NULL) {
11638                 err = -ENOMEM;
11639                 goto out;
11640         }
11641
11642         priv = libipw_priv(net_dev);
11643         priv->ieee = netdev_priv(net_dev);
11644
11645         priv->net_dev = net_dev;
11646         priv->pci_dev = pdev;
11647         ipw_debug_level = debug;
11648         spin_lock_init(&priv->irq_lock);
11649         spin_lock_init(&priv->lock);
11650         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11651                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11652
11653         mutex_init(&priv->mutex);
11654         if (pci_enable_device(pdev)) {
11655                 err = -ENODEV;
11656                 goto out_free_libipw;
11657         }
11658
11659         pci_set_master(pdev);
11660
11661         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
11662         if (!err)
11663                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
11664         if (err) {
11665                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11666                 goto out_pci_disable_device;
11667         }
11668
11669         pci_set_drvdata(pdev, priv);
11670
11671         err = pci_request_regions(pdev, DRV_NAME);
11672         if (err)
11673                 goto out_pci_disable_device;
11674
11675         /* We disable the RETRY_TIMEOUT register (0x41) to keep
11676          * PCI Tx retries from interfering with C3 CPU state */
11677         pci_read_config_dword(pdev, 0x40, &val);
11678         if ((val & 0x0000ff00) != 0)
11679                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11680
11681         length = pci_resource_len(pdev, 0);
11682         priv->hw_len = length;
11683
11684         base = pci_ioremap_bar(pdev, 0);
11685         if (!base) {
11686                 err = -ENODEV;
11687                 goto out_pci_release_regions;
11688         }
11689
11690         priv->hw_base = base;
11691         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11692         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11693
11694         err = ipw_setup_deferred_work(priv);
11695         if (err) {
11696                 IPW_ERROR("Unable to setup deferred work\n");
11697                 goto out_iounmap;
11698         }
11699
11700         ipw_sw_reset(priv, 1);
11701
11702         err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11703         if (err) {
11704                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11705                 goto out_iounmap;
11706         }
11707
11708         SET_NETDEV_DEV(net_dev, &pdev->dev);
11709
11710         mutex_lock(&priv->mutex);
11711
11712         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11713         priv->ieee->set_security = shim__set_security;
11714         priv->ieee->is_queue_full = ipw_net_is_queue_full;
11715
11716 #ifdef CONFIG_IPW2200_QOS
11717         priv->ieee->is_qos_active = ipw_is_qos_active;
11718         priv->ieee->handle_probe_response = ipw_handle_beacon;
11719         priv->ieee->handle_beacon = ipw_handle_probe_response;
11720         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11721 #endif                          /* CONFIG_IPW2200_QOS */
11722
11723         priv->ieee->perfect_rssi = -20;
11724         priv->ieee->worst_rssi = -85;
11725
11726         net_dev->netdev_ops = &ipw_netdev_ops;
11727         priv->wireless_data.spy_data = &priv->ieee->spy_data;
11728         net_dev->wireless_data = &priv->wireless_data;
11729         net_dev->wireless_handlers = &ipw_wx_handler_def;
11730         net_dev->ethtool_ops = &ipw_ethtool_ops;
11731
11732         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11733         if (err) {
11734                 IPW_ERROR("failed to create sysfs device attributes\n");
11735                 mutex_unlock(&priv->mutex);
11736                 goto out_release_irq;
11737         }
11738
11739         if (ipw_up(priv)) {
11740                 mutex_unlock(&priv->mutex);
11741                 err = -EIO;
11742                 goto out_remove_sysfs;
11743         }
11744
11745         mutex_unlock(&priv->mutex);
11746
11747         err = ipw_wdev_init(net_dev);
11748         if (err) {
11749                 IPW_ERROR("failed to register wireless device\n");
11750                 goto out_remove_sysfs;
11751         }
11752
11753         err = register_netdev(net_dev);
11754         if (err) {
11755                 IPW_ERROR("failed to register network device\n");
11756                 goto out_unregister_wiphy;
11757         }
11758
11759 #ifdef CONFIG_IPW2200_PROMISCUOUS
11760         if (rtap_iface) {
11761                 err = ipw_prom_alloc(priv);
11762                 if (err) {
11763                         IPW_ERROR("Failed to register promiscuous network "
11764                                   "device (error %d).\n", err);
11765                         unregister_netdev(priv->net_dev);
11766                         goto out_unregister_wiphy;
11767                 }
11768         }
11769 #endif
11770
11771         printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11772                "channels, %d 802.11a channels)\n",
11773                priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11774                priv->ieee->geo.a_channels);
11775
11776         return 0;
11777
11778       out_unregister_wiphy:
11779         wiphy_unregister(priv->ieee->wdev.wiphy);
11780         kfree(priv->ieee->a_band.channels);
11781         kfree(priv->ieee->bg_band.channels);
11782       out_remove_sysfs:
11783         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11784       out_release_irq:
11785         free_irq(pdev->irq, priv);
11786       out_iounmap:
11787         iounmap(priv->hw_base);
11788       out_pci_release_regions:
11789         pci_release_regions(pdev);
11790       out_pci_disable_device:
11791         pci_disable_device(pdev);
11792       out_free_libipw:
11793         free_libipw(priv->net_dev, 0);
11794       out:
11795         return err;
11796 }
11797
11798 static void ipw_pci_remove(struct pci_dev *pdev)
11799 {
11800         struct ipw_priv *priv = pci_get_drvdata(pdev);
11801         struct list_head *p, *q;
11802         int i;
11803
11804         if (!priv)
11805                 return;
11806
11807         mutex_lock(&priv->mutex);
11808
11809         priv->status |= STATUS_EXIT_PENDING;
11810         ipw_down(priv);
11811         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11812
11813         mutex_unlock(&priv->mutex);
11814
11815         unregister_netdev(priv->net_dev);
11816
11817         if (priv->rxq) {
11818                 ipw_rx_queue_free(priv, priv->rxq);
11819                 priv->rxq = NULL;
11820         }
11821         ipw_tx_queue_free(priv);
11822
11823         if (priv->cmdlog) {
11824                 kfree(priv->cmdlog);
11825                 priv->cmdlog = NULL;
11826         }
11827
11828         /* make sure all works are inactive */
11829         cancel_delayed_work_sync(&priv->adhoc_check);
11830         cancel_work_sync(&priv->associate);
11831         cancel_work_sync(&priv->disassociate);
11832         cancel_work_sync(&priv->system_config);
11833         cancel_work_sync(&priv->rx_replenish);
11834         cancel_work_sync(&priv->adapter_restart);
11835         cancel_delayed_work_sync(&priv->rf_kill);
11836         cancel_work_sync(&priv->up);
11837         cancel_work_sync(&priv->down);
11838         cancel_delayed_work_sync(&priv->request_scan);
11839         cancel_delayed_work_sync(&priv->request_direct_scan);
11840         cancel_delayed_work_sync(&priv->request_passive_scan);
11841         cancel_delayed_work_sync(&priv->scan_event);
11842         cancel_delayed_work_sync(&priv->gather_stats);
11843         cancel_work_sync(&priv->abort_scan);
11844         cancel_work_sync(&priv->roam);
11845         cancel_delayed_work_sync(&priv->scan_check);
11846         cancel_work_sync(&priv->link_up);
11847         cancel_work_sync(&priv->link_down);
11848         cancel_delayed_work_sync(&priv->led_link_on);
11849         cancel_delayed_work_sync(&priv->led_link_off);
11850         cancel_delayed_work_sync(&priv->led_act_off);
11851         cancel_work_sync(&priv->merge_networks);
11852
11853         /* Free MAC hash list for ADHOC */
11854         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11855                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11856                         list_del(p);
11857                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11858                 }
11859         }
11860
11861         kfree(priv->error);
11862         priv->error = NULL;
11863
11864 #ifdef CONFIG_IPW2200_PROMISCUOUS
11865         ipw_prom_free(priv);
11866 #endif
11867
11868         free_irq(pdev->irq, priv);
11869         iounmap(priv->hw_base);
11870         pci_release_regions(pdev);
11871         pci_disable_device(pdev);
11872         /* wiphy_unregister needs to be here, before free_libipw */
11873         wiphy_unregister(priv->ieee->wdev.wiphy);
11874         kfree(priv->ieee->a_band.channels);
11875         kfree(priv->ieee->bg_band.channels);
11876         free_libipw(priv->net_dev, 0);
11877         free_firmware();
11878 }
11879
11880 #ifdef CONFIG_PM
11881 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11882 {
11883         struct ipw_priv *priv = pci_get_drvdata(pdev);
11884         struct net_device *dev = priv->net_dev;
11885
11886         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11887
11888         /* Take down the device; powers it off, etc. */
11889         ipw_down(priv);
11890
11891         /* Remove the PRESENT state of the device */
11892         netif_device_detach(dev);
11893
11894         pci_save_state(pdev);
11895         pci_disable_device(pdev);
11896         pci_set_power_state(pdev, pci_choose_state(pdev, state));
11897
11898         priv->suspend_at = get_seconds();
11899
11900         return 0;
11901 }
11902
11903 static int ipw_pci_resume(struct pci_dev *pdev)
11904 {
11905         struct ipw_priv *priv = pci_get_drvdata(pdev);
11906         struct net_device *dev = priv->net_dev;
11907         int err;
11908         u32 val;
11909
11910         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11911
11912         pci_set_power_state(pdev, PCI_D0);
11913         err = pci_enable_device(pdev);
11914         if (err) {
11915                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11916                        dev->name);
11917                 return err;
11918         }
11919         pci_restore_state(pdev);
11920
11921         /*
11922          * Suspend/Resume resets the PCI configuration space, so we have to
11923          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11924          * from interfering with C3 CPU state. pci_restore_state won't help
11925          * here since it only restores the first 64 bytes pci config header.
11926          */
11927         pci_read_config_dword(pdev, 0x40, &val);
11928         if ((val & 0x0000ff00) != 0)
11929                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11930
11931         /* Set the device back into the PRESENT state; this will also wake
11932          * the queue of needed */
11933         netif_device_attach(dev);
11934
11935         priv->suspend_time = get_seconds() - priv->suspend_at;
11936
11937         /* Bring the device back up */
11938         schedule_work(&priv->up);
11939
11940         return 0;
11941 }
11942 #endif
11943
11944 static void ipw_pci_shutdown(struct pci_dev *pdev)
11945 {
11946         struct ipw_priv *priv = pci_get_drvdata(pdev);
11947
11948         /* Take down the device; powers it off, etc. */
11949         ipw_down(priv);
11950
11951         pci_disable_device(pdev);
11952 }
11953
11954 /* driver initialization stuff */
11955 static struct pci_driver ipw_driver = {
11956         .name = DRV_NAME,
11957         .id_table = card_ids,
11958         .probe = ipw_pci_probe,
11959         .remove = ipw_pci_remove,
11960 #ifdef CONFIG_PM
11961         .suspend = ipw_pci_suspend,
11962         .resume = ipw_pci_resume,
11963 #endif
11964         .shutdown = ipw_pci_shutdown,
11965 };
11966
11967 static int __init ipw_init(void)
11968 {
11969         int ret;
11970
11971         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11972         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11973
11974         ret = pci_register_driver(&ipw_driver);
11975         if (ret) {
11976                 IPW_ERROR("Unable to initialize PCI module\n");
11977                 return ret;
11978         }
11979
11980         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11981         if (ret) {
11982                 IPW_ERROR("Unable to create driver sysfs file\n");
11983                 pci_unregister_driver(&ipw_driver);
11984                 return ret;
11985         }
11986
11987         return ret;
11988 }
11989
11990 static void __exit ipw_exit(void)
11991 {
11992         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11993         pci_unregister_driver(&ipw_driver);
11994 }
11995
11996 module_param(disable, int, 0444);
11997 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11998
11999 module_param(associate, int, 0444);
12000 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
12001
12002 module_param(auto_create, int, 0444);
12003 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
12004
12005 module_param_named(led, led_support, int, 0444);
12006 MODULE_PARM_DESC(led, "enable led control on some systems (default 1 on)");
12007
12008 module_param(debug, int, 0444);
12009 MODULE_PARM_DESC(debug, "debug output mask");
12010
12011 module_param_named(channel, default_channel, int, 0444);
12012 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
12013
12014 #ifdef CONFIG_IPW2200_PROMISCUOUS
12015 module_param(rtap_iface, int, 0444);
12016 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
12017 #endif
12018
12019 #ifdef CONFIG_IPW2200_QOS
12020 module_param(qos_enable, int, 0444);
12021 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
12022
12023 module_param(qos_burst_enable, int, 0444);
12024 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
12025
12026 module_param(qos_no_ack_mask, int, 0444);
12027 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
12028
12029 module_param(burst_duration_CCK, int, 0444);
12030 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
12031
12032 module_param(burst_duration_OFDM, int, 0444);
12033 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
12034 #endif                          /* CONFIG_IPW2200_QOS */
12035
12036 #ifdef CONFIG_IPW2200_MONITOR
12037 module_param_named(mode, network_mode, int, 0444);
12038 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
12039 #else
12040 module_param_named(mode, network_mode, int, 0444);
12041 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
12042 #endif
12043
12044 module_param(bt_coexist, int, 0444);
12045 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
12046
12047 module_param(hwcrypto, int, 0444);
12048 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
12049
12050 module_param(cmdlog, int, 0444);
12051 MODULE_PARM_DESC(cmdlog,
12052                  "allocate a ring buffer for logging firmware commands");
12053
12054 module_param(roaming, int, 0444);
12055 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12056
12057 module_param(antenna, int, 0444);
12058 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12059
12060 module_exit(ipw_exit);
12061 module_init(ipw_init);