]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/wireless/realtek/rtlwifi/efuse.c
ide: pdc202xx_new: Replace timeval with ktime_t
[karo-tx-linux.git] / drivers / net / wireless / realtek / rtlwifi / efuse.c
1 /******************************************************************************
2  *
3  * Copyright(c) 2009-2012  Realtek Corporation.
4  *
5  * Tmis program is free software; you can redistribute it and/or modify it
6  * under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * Tmis program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * Tme full GNU General Public License is included in this distribution in the
15  * file called LICENSE.
16  *
17  * Contact Information:
18  * wlanfae <wlanfae@realtek.com>
19  * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
20  * Hsinchu 300, Taiwan.
21  *
22  * Larry Finger <Larry.Finger@lwfinger.net>
23  *
24  *****************************************************************************/
25 #include "wifi.h"
26 #include "efuse.h"
27 #include <linux/export.h>
28
29 static const u8 MAX_PGPKT_SIZE = 9;
30 static const u8 PGPKT_DATA_SIZE = 8;
31 static const int EFUSE_MAX_SIZE = 512;
32
33 static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE[] = {
34         {0, 0, 0, 2},
35         {0, 1, 0, 2},
36         {0, 2, 0, 2},
37         {1, 0, 0, 1},
38         {1, 0, 1, 1},
39         {1, 1, 0, 1},
40         {1, 1, 1, 3},
41         {1, 3, 0, 17},
42         {3, 3, 1, 48},
43         {10, 0, 0, 6},
44         {10, 3, 0, 1},
45         {10, 3, 1, 1},
46         {11, 0, 0, 28}
47 };
48
49 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset,
50                                     u8 *value);
51 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset,
52                                     u16 *value);
53 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset,
54                                     u32 *value);
55 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset,
56                                      u8 value);
57 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset,
58                                      u16 value);
59 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset,
60                                      u32 value);
61 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr,
62                                 u8 data);
63 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse);
64 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset,
65                                 u8 *data);
66 static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset,
67                                  u8 word_en, u8 *data);
68 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
69                                         u8 *targetdata);
70 static u8 enable_efuse_data_write(struct ieee80211_hw *hw,
71                                   u16 efuse_addr, u8 word_en, u8 *data);
72 static void efuse_power_switch(struct ieee80211_hw *hw, u8 write,
73                                u8 pwrstate);
74 static u16 efuse_get_current_size(struct ieee80211_hw *hw);
75 static u8 efuse_calculate_word_cnts(u8 word_en);
76
77 void efuse_initialize(struct ieee80211_hw *hw)
78 {
79         struct rtl_priv *rtlpriv = rtl_priv(hw);
80         u8 bytetemp;
81         u8 temp;
82
83         bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1);
84         temp = bytetemp | 0x20;
85         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp);
86
87         bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1);
88         temp = bytetemp & 0xFE;
89         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp);
90
91         bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3);
92         temp = bytetemp | 0x80;
93         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp);
94
95         rtl_write_byte(rtlpriv, 0x2F8, 0x3);
96
97         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
98
99 }
100
101 u8 efuse_read_1byte(struct ieee80211_hw *hw, u16 address)
102 {
103         struct rtl_priv *rtlpriv = rtl_priv(hw);
104         u8 data;
105         u8 bytetemp;
106         u8 temp;
107         u32 k = 0;
108         const u32 efuse_len =
109                 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
110
111         if (address < efuse_len) {
112                 temp = address & 0xFF;
113                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
114                                temp);
115                 bytetemp = rtl_read_byte(rtlpriv,
116                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
117                 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
118                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
119                                temp);
120
121                 bytetemp = rtl_read_byte(rtlpriv,
122                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
123                 temp = bytetemp & 0x7F;
124                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
125                                temp);
126
127                 bytetemp = rtl_read_byte(rtlpriv,
128                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
129                 while (!(bytetemp & 0x80)) {
130                         bytetemp = rtl_read_byte(rtlpriv,
131                                                  rtlpriv->cfg->
132                                                  maps[EFUSE_CTRL] + 3);
133                         k++;
134                         if (k == 1000) {
135                                 k = 0;
136                                 break;
137                         }
138                 }
139                 data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
140                 return data;
141         } else
142                 return 0xFF;
143
144 }
145 EXPORT_SYMBOL(efuse_read_1byte);
146
147 void efuse_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value)
148 {
149         struct rtl_priv *rtlpriv = rtl_priv(hw);
150         u8 bytetemp;
151         u8 temp;
152         u32 k = 0;
153         const u32 efuse_len =
154                 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
155
156         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr=%x Data =%x\n",
157                  address, value);
158
159         if (address < efuse_len) {
160                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value);
161
162                 temp = address & 0xFF;
163                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
164                                temp);
165                 bytetemp = rtl_read_byte(rtlpriv,
166                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
167
168                 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
169                 rtl_write_byte(rtlpriv,
170                                rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp);
171
172                 bytetemp = rtl_read_byte(rtlpriv,
173                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
174                 temp = bytetemp | 0x80;
175                 rtl_write_byte(rtlpriv,
176                                rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp);
177
178                 bytetemp = rtl_read_byte(rtlpriv,
179                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
180
181                 while (bytetemp & 0x80) {
182                         bytetemp = rtl_read_byte(rtlpriv,
183                                                  rtlpriv->cfg->
184                                                  maps[EFUSE_CTRL] + 3);
185                         k++;
186                         if (k == 100) {
187                                 k = 0;
188                                 break;
189                         }
190                 }
191         }
192
193 }
194
195 void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf)
196 {
197         struct rtl_priv *rtlpriv = rtl_priv(hw);
198         u32 value32;
199         u8 readbyte;
200         u16 retry;
201
202         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
203                        (_offset & 0xff));
204         readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
205         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
206                        ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
207
208         readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
209         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
210                        (readbyte & 0x7f));
211
212         retry = 0;
213         value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
214         while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
215                 value32 = rtl_read_dword(rtlpriv,
216                                          rtlpriv->cfg->maps[EFUSE_CTRL]);
217                 retry++;
218         }
219
220         udelay(50);
221         value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
222
223         *pbuf = (u8) (value32 & 0xff);
224 }
225 EXPORT_SYMBOL_GPL(read_efuse_byte);
226
227 void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf)
228 {
229         struct rtl_priv *rtlpriv = rtl_priv(hw);
230         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
231         u8 *efuse_tbl;
232         u8 rtemp8[1];
233         u16 efuse_addr = 0;
234         u8 offset, wren;
235         u8 u1temp = 0;
236         u16 i;
237         u16 j;
238         const u16 efuse_max_section =
239                 rtlpriv->cfg->maps[EFUSE_MAX_SECTION_MAP];
240         const u32 efuse_len =
241                 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
242         u16 **efuse_word;
243         u16 efuse_utilized = 0;
244         u8 efuse_usage;
245
246         if ((_offset + _size_byte) > rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]) {
247                 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
248                          "read_efuse(): Invalid offset(%#x) with read bytes(%#x)!!\n",
249                          _offset, _size_byte);
250                 return;
251         }
252
253         /* allocate memory for efuse_tbl and efuse_word */
254         efuse_tbl = kzalloc(rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE] *
255                             sizeof(u8), GFP_ATOMIC);
256         if (!efuse_tbl)
257                 return;
258         efuse_word = kzalloc(EFUSE_MAX_WORD_UNIT * sizeof(u16 *), GFP_ATOMIC);
259         if (!efuse_word)
260                 goto out;
261         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
262                 efuse_word[i] = kzalloc(efuse_max_section * sizeof(u16),
263                                         GFP_ATOMIC);
264                 if (!efuse_word[i])
265                         goto done;
266         }
267
268         for (i = 0; i < efuse_max_section; i++)
269                 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
270                         efuse_word[j][i] = 0xFFFF;
271
272         read_efuse_byte(hw, efuse_addr, rtemp8);
273         if (*rtemp8 != 0xFF) {
274                 efuse_utilized++;
275                 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
276                         "Addr=%d\n", efuse_addr);
277                 efuse_addr++;
278         }
279
280         while ((*rtemp8 != 0xFF) && (efuse_addr < efuse_len)) {
281                 /*  Check PG header for section num.  */
282                 if ((*rtemp8 & 0x1F) == 0x0F) {/* extended header */
283                         u1temp = ((*rtemp8 & 0xE0) >> 5);
284                         read_efuse_byte(hw, efuse_addr, rtemp8);
285
286                         if ((*rtemp8 & 0x0F) == 0x0F) {
287                                 efuse_addr++;
288                                 read_efuse_byte(hw, efuse_addr, rtemp8);
289
290                                 if (*rtemp8 != 0xFF &&
291                                     (efuse_addr < efuse_len)) {
292                                         efuse_addr++;
293                                 }
294                                 continue;
295                         } else {
296                                 offset = ((*rtemp8 & 0xF0) >> 1) | u1temp;
297                                 wren = (*rtemp8 & 0x0F);
298                                 efuse_addr++;
299                         }
300                 } else {
301                         offset = ((*rtemp8 >> 4) & 0x0f);
302                         wren = (*rtemp8 & 0x0f);
303                 }
304
305                 if (offset < efuse_max_section) {
306                         RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
307                                 "offset-%d Worden=%x\n", offset, wren);
308
309                         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
310                                 if (!(wren & 0x01)) {
311                                         RTPRINT(rtlpriv, FEEPROM,
312                                                 EFUSE_READ_ALL,
313                                                 "Addr=%d\n", efuse_addr);
314
315                                         read_efuse_byte(hw, efuse_addr, rtemp8);
316                                         efuse_addr++;
317                                         efuse_utilized++;
318                                         efuse_word[i][offset] =
319                                                          (*rtemp8 & 0xff);
320
321                                         if (efuse_addr >= efuse_len)
322                                                 break;
323
324                                         RTPRINT(rtlpriv, FEEPROM,
325                                                 EFUSE_READ_ALL,
326                                                 "Addr=%d\n", efuse_addr);
327
328                                         read_efuse_byte(hw, efuse_addr, rtemp8);
329                                         efuse_addr++;
330                                         efuse_utilized++;
331                                         efuse_word[i][offset] |=
332                                             (((u16)*rtemp8 << 8) & 0xff00);
333
334                                         if (efuse_addr >= efuse_len)
335                                                 break;
336                                 }
337
338                                 wren >>= 1;
339                         }
340                 }
341
342                 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
343                         "Addr=%d\n", efuse_addr);
344                 read_efuse_byte(hw, efuse_addr, rtemp8);
345                 if (*rtemp8 != 0xFF && (efuse_addr < efuse_len)) {
346                         efuse_utilized++;
347                         efuse_addr++;
348                 }
349         }
350
351         for (i = 0; i < efuse_max_section; i++) {
352                 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
353                         efuse_tbl[(i * 8) + (j * 2)] =
354                             (efuse_word[j][i] & 0xff);
355                         efuse_tbl[(i * 8) + ((j * 2) + 1)] =
356                             ((efuse_word[j][i] >> 8) & 0xff);
357                 }
358         }
359
360         for (i = 0; i < _size_byte; i++)
361                 pbuf[i] = efuse_tbl[_offset + i];
362
363         rtlefuse->efuse_usedbytes = efuse_utilized;
364         efuse_usage = (u8) ((efuse_utilized * 100) / efuse_len);
365         rtlefuse->efuse_usedpercentage = efuse_usage;
366         rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES,
367                                       (u8 *)&efuse_utilized);
368         rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE,
369                                       &efuse_usage);
370 done:
371         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++)
372                 kfree(efuse_word[i]);
373         kfree(efuse_word);
374 out:
375         kfree(efuse_tbl);
376 }
377
378 bool efuse_shadow_update_chk(struct ieee80211_hw *hw)
379 {
380         struct rtl_priv *rtlpriv = rtl_priv(hw);
381         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
382         u8 section_idx, i, Base;
383         u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used;
384         bool wordchanged, result = true;
385
386         for (section_idx = 0; section_idx < 16; section_idx++) {
387                 Base = section_idx * 8;
388                 wordchanged = false;
389
390                 for (i = 0; i < 8; i = i + 2) {
391                         if ((rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i] !=
392                              rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i]) ||
393                             (rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i + 1] !=
394                              rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i +
395                                                                    1])) {
396                                 words_need++;
397                                 wordchanged = true;
398                         }
399                 }
400
401                 if (wordchanged)
402                         hdr_num++;
403         }
404
405         totalbytes = hdr_num + words_need * 2;
406         efuse_used = rtlefuse->efuse_usedbytes;
407
408         if ((totalbytes + efuse_used) >=
409             (EFUSE_MAX_SIZE - rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))
410                 result = false;
411
412         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
413                  "efuse_shadow_update_chk(): totalbytes(%#x), hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
414                  totalbytes, hdr_num, words_need, efuse_used);
415
416         return result;
417 }
418
419 void efuse_shadow_read(struct ieee80211_hw *hw, u8 type,
420                        u16 offset, u32 *value)
421 {
422         if (type == 1)
423                 efuse_shadow_read_1byte(hw, offset, (u8 *)value);
424         else if (type == 2)
425                 efuse_shadow_read_2byte(hw, offset, (u16 *)value);
426         else if (type == 4)
427                 efuse_shadow_read_4byte(hw, offset, value);
428
429 }
430 EXPORT_SYMBOL(efuse_shadow_read);
431
432 void efuse_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset,
433                                 u32 value)
434 {
435         if (type == 1)
436                 efuse_shadow_write_1byte(hw, offset, (u8) value);
437         else if (type == 2)
438                 efuse_shadow_write_2byte(hw, offset, (u16) value);
439         else if (type == 4)
440                 efuse_shadow_write_4byte(hw, offset, value);
441
442 }
443
444 bool efuse_shadow_update(struct ieee80211_hw *hw)
445 {
446         struct rtl_priv *rtlpriv = rtl_priv(hw);
447         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
448         u16 i, offset, base;
449         u8 word_en = 0x0F;
450         u8 first_pg = false;
451
452         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n");
453
454         if (!efuse_shadow_update_chk(hw)) {
455                 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
456                 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
457                        &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
458                        rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
459
460                 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
461                          "efuse out of capacity!!\n");
462                 return false;
463         }
464         efuse_power_switch(hw, true, true);
465
466         for (offset = 0; offset < 16; offset++) {
467
468                 word_en = 0x0F;
469                 base = offset * 8;
470
471                 for (i = 0; i < 8; i++) {
472                         if (first_pg) {
473                                 word_en &= ~(BIT(i / 2));
474
475                                 rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
476                                     rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
477                         } else {
478
479                                 if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
480                                     rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) {
481                                         word_en &= ~(BIT(i / 2));
482
483                                         rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
484                                             rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
485                                 }
486                         }
487                 }
488
489                 if (word_en != 0x0F) {
490                         u8 tmpdata[8];
491                         memcpy(tmpdata,
492                                &rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base],
493                                8);
494                         RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD,
495                                       "U-efuse\n", tmpdata, 8);
496
497                         if (!efuse_pg_packet_write(hw, (u8) offset, word_en,
498                                                    tmpdata)) {
499                                 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
500                                          "PG section(%#x) fail!!\n", offset);
501                                 break;
502                         }
503                 }
504
505         }
506
507         efuse_power_switch(hw, true, false);
508         efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
509
510         memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
511                &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
512                rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
513
514         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n");
515         return true;
516 }
517
518 void rtl_efuse_shadow_map_update(struct ieee80211_hw *hw)
519 {
520         struct rtl_priv *rtlpriv = rtl_priv(hw);
521         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
522
523         if (rtlefuse->autoload_failflag)
524                 memset((&rtlefuse->efuse_map[EFUSE_INIT_MAP][0]),
525                        0xFF, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
526         else
527                 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
528
529         memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
530                         &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
531                         rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
532
533 }
534 EXPORT_SYMBOL(rtl_efuse_shadow_map_update);
535
536 void efuse_force_write_vendor_Id(struct ieee80211_hw *hw)
537 {
538         u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };
539
540         efuse_power_switch(hw, true, true);
541
542         efuse_pg_packet_write(hw, 1, 0xD, tmpdata);
543
544         efuse_power_switch(hw, true, false);
545
546 }
547
548 void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx)
549 {
550 }
551
552 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw,
553                                     u16 offset, u8 *value)
554 {
555         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
556         *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
557 }
558
559 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw,
560                                     u16 offset, u16 *value)
561 {
562         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
563
564         *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
565         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
566
567 }
568
569 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw,
570                                     u16 offset, u32 *value)
571 {
572         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
573
574         *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
575         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
576         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16;
577         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24;
578 }
579
580 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw,
581                                      u16 offset, u8 value)
582 {
583         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
584
585         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value;
586 }
587
588 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw,
589                                      u16 offset, u16 value)
590 {
591         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
592
593         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF;
594         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8;
595
596 }
597
598 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw,
599                                      u16 offset, u32 value)
600 {
601         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
602
603         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] =
604             (u8) (value & 0x000000FF);
605         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] =
606             (u8) ((value >> 8) & 0x0000FF);
607         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] =
608             (u8) ((value >> 16) & 0x00FF);
609         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] =
610             (u8) ((value >> 24) & 0xFF);
611
612 }
613
614 int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data)
615 {
616         struct rtl_priv *rtlpriv = rtl_priv(hw);
617         u8 tmpidx = 0;
618         int result;
619
620         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
621                        (u8) (addr & 0xff));
622         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
623                        ((u8) ((addr >> 8) & 0x03)) |
624                        (rtl_read_byte(rtlpriv,
625                                       rtlpriv->cfg->maps[EFUSE_CTRL] + 2) &
626                         0xFC));
627
628         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
629
630         while (!(0x80 & rtl_read_byte(rtlpriv,
631                                       rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
632                && (tmpidx < 100)) {
633                 tmpidx++;
634         }
635
636         if (tmpidx < 100) {
637                 *data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
638                 result = true;
639         } else {
640                 *data = 0xff;
641                 result = false;
642         }
643         return result;
644 }
645 EXPORT_SYMBOL(efuse_one_byte_read);
646
647 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data)
648 {
649         struct rtl_priv *rtlpriv = rtl_priv(hw);
650         u8 tmpidx = 0;
651
652         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
653                  "Addr = %x Data=%x\n", addr, data);
654
655         rtl_write_byte(rtlpriv,
656                        rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8) (addr & 0xff));
657         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
658                        (rtl_read_byte(rtlpriv,
659                          rtlpriv->cfg->maps[EFUSE_CTRL] +
660                          2) & 0xFC) | (u8) ((addr >> 8) & 0x03));
661
662         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data);
663         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2);
664
665         while ((0x80 & rtl_read_byte(rtlpriv,
666                                      rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
667                && (tmpidx < 100)) {
668                 tmpidx++;
669         }
670
671         if (tmpidx < 100)
672                 return true;
673         return false;
674 }
675
676 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse)
677 {
678         struct rtl_priv *rtlpriv = rtl_priv(hw);
679         efuse_power_switch(hw, false, true);
680         read_efuse(hw, 0, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE], efuse);
681         efuse_power_switch(hw, false, false);
682 }
683
684 static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
685                                 u8 efuse_data, u8 offset, u8 *tmpdata,
686                                 u8 *readstate)
687 {
688         bool dataempty = true;
689         u8 hoffset;
690         u8 tmpidx;
691         u8 hworden;
692         u8 word_cnts;
693
694         hoffset = (efuse_data >> 4) & 0x0F;
695         hworden = efuse_data & 0x0F;
696         word_cnts = efuse_calculate_word_cnts(hworden);
697
698         if (hoffset == offset) {
699                 for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) {
700                         if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx,
701                                                 &efuse_data)) {
702                                 tmpdata[tmpidx] = efuse_data;
703                                 if (efuse_data != 0xff)
704                                         dataempty = false;
705                         }
706                 }
707
708                 if (!dataempty) {
709                         *readstate = PG_STATE_DATA;
710                 } else {
711                         *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
712                         *readstate = PG_STATE_HEADER;
713                 }
714
715         } else {
716                 *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
717                 *readstate = PG_STATE_HEADER;
718         }
719 }
720
721 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data)
722 {
723         u8 readstate = PG_STATE_HEADER;
724
725         bool continual = true;
726
727         u8 efuse_data, word_cnts = 0;
728         u16 efuse_addr = 0;
729         u8 tmpdata[8];
730
731         if (data == NULL)
732                 return false;
733         if (offset > 15)
734                 return false;
735
736         memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
737         memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
738
739         while (continual && (efuse_addr < EFUSE_MAX_SIZE)) {
740                 if (readstate & PG_STATE_HEADER) {
741                         if (efuse_one_byte_read(hw, efuse_addr, &efuse_data)
742                             && (efuse_data != 0xFF))
743                                 efuse_read_data_case1(hw, &efuse_addr,
744                                                       efuse_data, offset,
745                                                       tmpdata, &readstate);
746                         else
747                                 continual = false;
748                 } else if (readstate & PG_STATE_DATA) {
749                         efuse_word_enable_data_read(0, tmpdata, data);
750                         efuse_addr = efuse_addr + (word_cnts * 2) + 1;
751                         readstate = PG_STATE_HEADER;
752                 }
753
754         }
755
756         if ((data[0] == 0xff) && (data[1] == 0xff) &&
757             (data[2] == 0xff) && (data[3] == 0xff) &&
758             (data[4] == 0xff) && (data[5] == 0xff) &&
759             (data[6] == 0xff) && (data[7] == 0xff))
760                 return false;
761         else
762                 return true;
763
764 }
765
766 static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
767                                    u8 efuse_data, u8 offset,
768                                    int *continual, u8 *write_state,
769                                    struct pgpkt_struct *target_pkt,
770                                    int *repeat_times, int *result, u8 word_en)
771 {
772         struct rtl_priv *rtlpriv = rtl_priv(hw);
773         struct pgpkt_struct tmp_pkt;
774         int dataempty = true;
775         u8 originaldata[8 * sizeof(u8)];
776         u8 badworden = 0x0F;
777         u8 match_word_en, tmp_word_en;
778         u8 tmpindex;
779         u8 tmp_header = efuse_data;
780         u8 tmp_word_cnts;
781
782         tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
783         tmp_pkt.word_en = tmp_header & 0x0F;
784         tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
785
786         if (tmp_pkt.offset != target_pkt->offset) {
787                 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
788                 *write_state = PG_STATE_HEADER;
789         } else {
790                 for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) {
791                         if (efuse_one_byte_read(hw,
792                                                 (*efuse_addr + 1 + tmpindex),
793                                                 &efuse_data) &&
794                             (efuse_data != 0xFF))
795                                 dataempty = false;
796                 }
797
798                 if (!dataempty) {
799                         *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
800                         *write_state = PG_STATE_HEADER;
801                 } else {
802                         match_word_en = 0x0F;
803                         if (!((target_pkt->word_en & BIT(0)) |
804                             (tmp_pkt.word_en & BIT(0))))
805                                 match_word_en &= (~BIT(0));
806
807                         if (!((target_pkt->word_en & BIT(1)) |
808                             (tmp_pkt.word_en & BIT(1))))
809                                 match_word_en &= (~BIT(1));
810
811                         if (!((target_pkt->word_en & BIT(2)) |
812                             (tmp_pkt.word_en & BIT(2))))
813                                 match_word_en &= (~BIT(2));
814
815                         if (!((target_pkt->word_en & BIT(3)) |
816                             (tmp_pkt.word_en & BIT(3))))
817                                 match_word_en &= (~BIT(3));
818
819                         if ((match_word_en & 0x0F) != 0x0F) {
820                                 badworden =
821                                   enable_efuse_data_write(hw,
822                                                           *efuse_addr + 1,
823                                                           tmp_pkt.word_en,
824                                                           target_pkt->data);
825
826                                 if (0x0F != (badworden & 0x0F)) {
827                                         u8 reorg_offset = offset;
828                                         u8 reorg_worden = badworden;
829                                         efuse_pg_packet_write(hw, reorg_offset,
830                                                               reorg_worden,
831                                                               originaldata);
832                                 }
833
834                                 tmp_word_en = 0x0F;
835                                 if ((target_pkt->word_en & BIT(0)) ^
836                                     (match_word_en & BIT(0)))
837                                         tmp_word_en &= (~BIT(0));
838
839                                 if ((target_pkt->word_en & BIT(1)) ^
840                                     (match_word_en & BIT(1)))
841                                         tmp_word_en &= (~BIT(1));
842
843                                 if ((target_pkt->word_en & BIT(2)) ^
844                                     (match_word_en & BIT(2)))
845                                         tmp_word_en &= (~BIT(2));
846
847                                 if ((target_pkt->word_en & BIT(3)) ^
848                                     (match_word_en & BIT(3)))
849                                         tmp_word_en &= (~BIT(3));
850
851                                 if ((tmp_word_en & 0x0F) != 0x0F) {
852                                         *efuse_addr = efuse_get_current_size(hw);
853                                         target_pkt->offset = offset;
854                                         target_pkt->word_en = tmp_word_en;
855                                 } else {
856                                         *continual = false;
857                                 }
858                                 *write_state = PG_STATE_HEADER;
859                                 *repeat_times += 1;
860                                 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
861                                         *continual = false;
862                                         *result = false;
863                                 }
864                         } else {
865                                 *efuse_addr += (2 * tmp_word_cnts) + 1;
866                                 target_pkt->offset = offset;
867                                 target_pkt->word_en = word_en;
868                                 *write_state = PG_STATE_HEADER;
869                         }
870                 }
871         }
872         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse PG_STATE_HEADER-1\n");
873 }
874
875 static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr,
876                                    int *continual, u8 *write_state,
877                                    struct pgpkt_struct target_pkt,
878                                    int *repeat_times, int *result)
879 {
880         struct rtl_priv *rtlpriv = rtl_priv(hw);
881         struct pgpkt_struct tmp_pkt;
882         u8 pg_header;
883         u8 tmp_header;
884         u8 originaldata[8 * sizeof(u8)];
885         u8 tmp_word_cnts;
886         u8 badworden = 0x0F;
887
888         pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en;
889         efuse_one_byte_write(hw, *efuse_addr, pg_header);
890         efuse_one_byte_read(hw, *efuse_addr, &tmp_header);
891
892         if (tmp_header == pg_header) {
893                 *write_state = PG_STATE_DATA;
894         } else if (tmp_header == 0xFF) {
895                 *write_state = PG_STATE_HEADER;
896                 *repeat_times += 1;
897                 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
898                         *continual = false;
899                         *result = false;
900                 }
901         } else {
902                 tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
903                 tmp_pkt.word_en = tmp_header & 0x0F;
904
905                 tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
906
907                 memset(originaldata, 0xff,  8 * sizeof(u8));
908
909                 if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) {
910                         badworden = enable_efuse_data_write(hw,
911                                                             *efuse_addr + 1,
912                                                             tmp_pkt.word_en,
913                                                             originaldata);
914
915                         if (0x0F != (badworden & 0x0F)) {
916                                 u8 reorg_offset = tmp_pkt.offset;
917                                 u8 reorg_worden = badworden;
918                                 efuse_pg_packet_write(hw, reorg_offset,
919                                                       reorg_worden,
920                                                       originaldata);
921                                 *efuse_addr = efuse_get_current_size(hw);
922                         } else {
923                                 *efuse_addr = *efuse_addr +
924                                               (tmp_word_cnts * 2) + 1;
925                         }
926                 } else {
927                         *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
928                 }
929
930                 *write_state = PG_STATE_HEADER;
931                 *repeat_times += 1;
932                 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
933                         *continual = false;
934                         *result = false;
935                 }
936
937                 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
938                         "efuse PG_STATE_HEADER-2\n");
939         }
940 }
941
942 static int efuse_pg_packet_write(struct ieee80211_hw *hw,
943                                  u8 offset, u8 word_en, u8 *data)
944 {
945         struct rtl_priv *rtlpriv = rtl_priv(hw);
946         struct pgpkt_struct target_pkt;
947         u8 write_state = PG_STATE_HEADER;
948         int continual = true, dataempty = true, result = true;
949         u16 efuse_addr = 0;
950         u8 efuse_data;
951         u8 target_word_cnts = 0;
952         u8 badworden = 0x0F;
953         static int repeat_times;
954
955         if (efuse_get_current_size(hw) >= (EFUSE_MAX_SIZE -
956                 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
957                 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
958                         "efuse_pg_packet_write error\n");
959                 return false;
960         }
961
962         target_pkt.offset = offset;
963         target_pkt.word_en = word_en;
964
965         memset(target_pkt.data, 0xFF,  8 * sizeof(u8));
966
967         efuse_word_enable_data_read(word_en, data, target_pkt.data);
968         target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en);
969
970         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse Power ON\n");
971
972         while (continual && (efuse_addr < (EFUSE_MAX_SIZE -
973                 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))) {
974
975                 if (write_state == PG_STATE_HEADER) {
976                         dataempty = true;
977                         badworden = 0x0F;
978                         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
979                                 "efuse PG_STATE_HEADER\n");
980
981                         if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
982                             (efuse_data != 0xFF))
983                                 efuse_write_data_case1(hw, &efuse_addr,
984                                                        efuse_data, offset,
985                                                        &continual,
986                                                        &write_state,
987                                                        &target_pkt,
988                                                        &repeat_times, &result,
989                                                        word_en);
990                         else
991                                 efuse_write_data_case2(hw, &efuse_addr,
992                                                        &continual,
993                                                        &write_state,
994                                                        target_pkt,
995                                                        &repeat_times,
996                                                        &result);
997
998                 } else if (write_state == PG_STATE_DATA) {
999                         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
1000                                 "efuse PG_STATE_DATA\n");
1001                         badworden = 0x0f;
1002                         badworden =
1003                             enable_efuse_data_write(hw, efuse_addr + 1,
1004                                                     target_pkt.word_en,
1005                                                     target_pkt.data);
1006
1007                         if ((badworden & 0x0F) == 0x0F) {
1008                                 continual = false;
1009                         } else {
1010                                 efuse_addr =
1011                                     efuse_addr + (2 * target_word_cnts) + 1;
1012
1013                                 target_pkt.offset = offset;
1014                                 target_pkt.word_en = badworden;
1015                                 target_word_cnts =
1016                                     efuse_calculate_word_cnts(target_pkt.
1017                                                               word_en);
1018                                 write_state = PG_STATE_HEADER;
1019                                 repeat_times++;
1020                                 if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
1021                                         continual = false;
1022                                         result = false;
1023                                 }
1024                                 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
1025                                         "efuse PG_STATE_HEADER-3\n");
1026                         }
1027                 }
1028         }
1029
1030         if (efuse_addr >= (EFUSE_MAX_SIZE -
1031                 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
1032                 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1033                          "efuse_addr(%#x) Out of size!!\n", efuse_addr);
1034         }
1035
1036         return true;
1037 }
1038
1039 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
1040                                         u8 *targetdata)
1041 {
1042         if (!(word_en & BIT(0))) {
1043                 targetdata[0] = sourdata[0];
1044                 targetdata[1] = sourdata[1];
1045         }
1046
1047         if (!(word_en & BIT(1))) {
1048                 targetdata[2] = sourdata[2];
1049                 targetdata[3] = sourdata[3];
1050         }
1051
1052         if (!(word_en & BIT(2))) {
1053                 targetdata[4] = sourdata[4];
1054                 targetdata[5] = sourdata[5];
1055         }
1056
1057         if (!(word_en & BIT(3))) {
1058                 targetdata[6] = sourdata[6];
1059                 targetdata[7] = sourdata[7];
1060         }
1061 }
1062
1063 static u8 enable_efuse_data_write(struct ieee80211_hw *hw,
1064                                   u16 efuse_addr, u8 word_en, u8 *data)
1065 {
1066         struct rtl_priv *rtlpriv = rtl_priv(hw);
1067         u16 tmpaddr;
1068         u16 start_addr = efuse_addr;
1069         u8 badworden = 0x0F;
1070         u8 tmpdata[8];
1071
1072         memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
1073         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1074                  "word_en = %x efuse_addr=%x\n", word_en, efuse_addr);
1075
1076         if (!(word_en & BIT(0))) {
1077                 tmpaddr = start_addr;
1078                 efuse_one_byte_write(hw, start_addr++, data[0]);
1079                 efuse_one_byte_write(hw, start_addr++, data[1]);
1080
1081                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]);
1082                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]);
1083                 if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
1084                         badworden &= (~BIT(0));
1085         }
1086
1087         if (!(word_en & BIT(1))) {
1088                 tmpaddr = start_addr;
1089                 efuse_one_byte_write(hw, start_addr++, data[2]);
1090                 efuse_one_byte_write(hw, start_addr++, data[3]);
1091
1092                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]);
1093                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]);
1094                 if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
1095                         badworden &= (~BIT(1));
1096         }
1097
1098         if (!(word_en & BIT(2))) {
1099                 tmpaddr = start_addr;
1100                 efuse_one_byte_write(hw, start_addr++, data[4]);
1101                 efuse_one_byte_write(hw, start_addr++, data[5]);
1102
1103                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]);
1104                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]);
1105                 if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
1106                         badworden &= (~BIT(2));
1107         }
1108
1109         if (!(word_en & BIT(3))) {
1110                 tmpaddr = start_addr;
1111                 efuse_one_byte_write(hw, start_addr++, data[6]);
1112                 efuse_one_byte_write(hw, start_addr++, data[7]);
1113
1114                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]);
1115                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]);
1116                 if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
1117                         badworden &= (~BIT(3));
1118         }
1119
1120         return badworden;
1121 }
1122
1123 static void efuse_power_switch(struct ieee80211_hw *hw, u8 write, u8 pwrstate)
1124 {
1125         struct rtl_priv *rtlpriv = rtl_priv(hw);
1126         struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1127         u8 tempval;
1128         u16 tmpV16;
1129
1130         if (pwrstate && (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE)) {
1131
1132                 if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE &&
1133                     rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE) {
1134                         rtl_write_byte(rtlpriv,
1135                                        rtlpriv->cfg->maps[EFUSE_ACCESS], 0x69);
1136                 } else {
1137                         tmpV16 =
1138                           rtl_read_word(rtlpriv,
1139                                         rtlpriv->cfg->maps[SYS_ISO_CTRL]);
1140                         if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) {
1141                                 tmpV16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V];
1142                                 rtl_write_word(rtlpriv,
1143                                                rtlpriv->cfg->maps[SYS_ISO_CTRL],
1144                                                tmpV16);
1145                         }
1146                 }
1147                 tmpV16 = rtl_read_word(rtlpriv,
1148                                        rtlpriv->cfg->maps[SYS_FUNC_EN]);
1149                 if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) {
1150                         tmpV16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR];
1151                         rtl_write_word(rtlpriv,
1152                                        rtlpriv->cfg->maps[SYS_FUNC_EN], tmpV16);
1153                 }
1154
1155                 tmpV16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]);
1156                 if ((!(tmpV16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) ||
1157                     (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) {
1158                         tmpV16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] |
1159                                    rtlpriv->cfg->maps[EFUSE_ANA8M]);
1160                         rtl_write_word(rtlpriv,
1161                                        rtlpriv->cfg->maps[SYS_CLK], tmpV16);
1162                 }
1163         }
1164
1165         if (pwrstate) {
1166                 if (write) {
1167                         tempval = rtl_read_byte(rtlpriv,
1168                                                 rtlpriv->cfg->maps[EFUSE_TEST] +
1169                                                 3);
1170
1171                         if (rtlhal->hw_type == HARDWARE_TYPE_RTL8812AE) {
1172                                 tempval &= ~(BIT(3) | BIT(4) | BIT(5) | BIT(6));
1173                                 tempval |= (VOLTAGE_V25 << 3);
1174                         } else if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) {
1175                                 tempval &= 0x0F;
1176                                 tempval |= (VOLTAGE_V25 << 4);
1177                         }
1178
1179                         rtl_write_byte(rtlpriv,
1180                                        rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1181                                        (tempval | 0x80));
1182                 }
1183
1184                 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1185                         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1186                                        0x03);
1187                 }
1188         } else {
1189                 if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE &&
1190                     rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE)
1191                         rtl_write_byte(rtlpriv,
1192                                        rtlpriv->cfg->maps[EFUSE_ACCESS], 0);
1193
1194                 if (write) {
1195                         tempval = rtl_read_byte(rtlpriv,
1196                                                 rtlpriv->cfg->maps[EFUSE_TEST] +
1197                                                 3);
1198                         rtl_write_byte(rtlpriv,
1199                                        rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1200                                        (tempval & 0x7F));
1201                 }
1202
1203                 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1204                         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1205                                        0x02);
1206                 }
1207         }
1208 }
1209
1210 static u16 efuse_get_current_size(struct ieee80211_hw *hw)
1211 {
1212         int continual = true;
1213         u16 efuse_addr = 0;
1214         u8 hoffset, hworden;
1215         u8 efuse_data, word_cnts;
1216
1217         while (continual && efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
1218                (efuse_addr < EFUSE_MAX_SIZE)) {
1219                 if (efuse_data != 0xFF) {
1220                         hoffset = (efuse_data >> 4) & 0x0F;
1221                         hworden = efuse_data & 0x0F;
1222                         word_cnts = efuse_calculate_word_cnts(hworden);
1223                         efuse_addr = efuse_addr + (word_cnts * 2) + 1;
1224                 } else {
1225                         continual = false;
1226                 }
1227         }
1228
1229         return efuse_addr;
1230 }
1231
1232 static u8 efuse_calculate_word_cnts(u8 word_en)
1233 {
1234         u8 word_cnts = 0;
1235         if (!(word_en & BIT(0)))
1236                 word_cnts++;
1237         if (!(word_en & BIT(1)))
1238                 word_cnts++;
1239         if (!(word_en & BIT(2)))
1240                 word_cnts++;
1241         if (!(word_en & BIT(3)))
1242                 word_cnts++;
1243         return word_cnts;
1244 }
1245