]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/regulator/core.c
Merge remote-tracking branch 'regulator/for-next'
[karo-tx-linux.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...)                                       \
43         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)                                        \
45         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)                                       \
47         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)                                       \
49         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)                                        \
51         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 static struct class regulator_class;
62
63 /*
64  * struct regulator_map
65  *
66  * Used to provide symbolic supply names to devices.
67  */
68 struct regulator_map {
69         struct list_head list;
70         const char *dev_name;   /* The dev_name() for the consumer */
71         const char *supply;
72         struct regulator_dev *regulator;
73 };
74
75 /*
76  * struct regulator_enable_gpio
77  *
78  * Management for shared enable GPIO pin
79  */
80 struct regulator_enable_gpio {
81         struct list_head list;
82         struct gpio_desc *gpiod;
83         u32 enable_count;       /* a number of enabled shared GPIO */
84         u32 request_count;      /* a number of requested shared GPIO */
85         unsigned int ena_gpio_invert:1;
86 };
87
88 /*
89  * struct regulator_supply_alias
90  *
91  * Used to map lookups for a supply onto an alternative device.
92  */
93 struct regulator_supply_alias {
94         struct list_head list;
95         struct device *src_dev;
96         const char *src_supply;
97         struct device *alias_dev;
98         const char *alias_supply;
99 };
100
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107                                   unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109                                      int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111                                           struct device *dev,
112                                           const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
114
115 static struct regulator_dev *dev_to_rdev(struct device *dev)
116 {
117         return container_of(dev, struct regulator_dev, dev);
118 }
119
120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122         if (rdev->constraints && rdev->constraints->name)
123                 return rdev->constraints->name;
124         else if (rdev->desc->name)
125                 return rdev->desc->name;
126         else
127                 return "";
128 }
129
130 static bool have_full_constraints(void)
131 {
132         return has_full_constraints || of_have_populated_dt();
133 }
134
135 /**
136  * regulator_lock_supply - lock a regulator and its supplies
137  * @rdev:         regulator source
138  */
139 static void regulator_lock_supply(struct regulator_dev *rdev)
140 {
141         struct regulator *supply;
142         int i = 0;
143
144         while (1) {
145                 mutex_lock_nested(&rdev->mutex, i++);
146                 supply = rdev->supply;
147
148                 if (!rdev->supply)
149                         return;
150
151                 rdev = supply->rdev;
152         }
153 }
154
155 /**
156  * regulator_unlock_supply - unlock a regulator and its supplies
157  * @rdev:         regulator source
158  */
159 static void regulator_unlock_supply(struct regulator_dev *rdev)
160 {
161         struct regulator *supply;
162
163         while (1) {
164                 mutex_unlock(&rdev->mutex);
165                 supply = rdev->supply;
166
167                 if (!rdev->supply)
168                         return;
169
170                 rdev = supply->rdev;
171         }
172 }
173
174 /**
175  * of_get_regulator - get a regulator device node based on supply name
176  * @dev: Device pointer for the consumer (of regulator) device
177  * @supply: regulator supply name
178  *
179  * Extract the regulator device node corresponding to the supply name.
180  * returns the device node corresponding to the regulator if found, else
181  * returns NULL.
182  */
183 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
184 {
185         struct device_node *regnode = NULL;
186         char prop_name[32]; /* 32 is max size of property name */
187
188         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
189
190         snprintf(prop_name, 32, "%s-supply", supply);
191         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
192
193         if (!regnode) {
194                 dev_dbg(dev, "Looking up %s property in node %s failed",
195                                 prop_name, dev->of_node->full_name);
196                 return NULL;
197         }
198         return regnode;
199 }
200
201 static int _regulator_can_change_status(struct regulator_dev *rdev)
202 {
203         if (!rdev->constraints)
204                 return 0;
205
206         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
207                 return 1;
208         else
209                 return 0;
210 }
211
212 /* Platform voltage constraint check */
213 static int regulator_check_voltage(struct regulator_dev *rdev,
214                                    int *min_uV, int *max_uV)
215 {
216         BUG_ON(*min_uV > *max_uV);
217
218         if (!rdev->constraints) {
219                 rdev_err(rdev, "no constraints\n");
220                 return -ENODEV;
221         }
222         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
223                 rdev_err(rdev, "voltage operation not allowed\n");
224                 return -EPERM;
225         }
226
227         if (*max_uV > rdev->constraints->max_uV)
228                 *max_uV = rdev->constraints->max_uV;
229         if (*min_uV < rdev->constraints->min_uV)
230                 *min_uV = rdev->constraints->min_uV;
231
232         if (*min_uV > *max_uV) {
233                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
234                          *min_uV, *max_uV);
235                 return -EINVAL;
236         }
237
238         return 0;
239 }
240
241 /* Make sure we select a voltage that suits the needs of all
242  * regulator consumers
243  */
244 static int regulator_check_consumers(struct regulator_dev *rdev,
245                                      int *min_uV, int *max_uV)
246 {
247         struct regulator *regulator;
248
249         list_for_each_entry(regulator, &rdev->consumer_list, list) {
250                 /*
251                  * Assume consumers that didn't say anything are OK
252                  * with anything in the constraint range.
253                  */
254                 if (!regulator->min_uV && !regulator->max_uV)
255                         continue;
256
257                 if (*max_uV > regulator->max_uV)
258                         *max_uV = regulator->max_uV;
259                 if (*min_uV < regulator->min_uV)
260                         *min_uV = regulator->min_uV;
261         }
262
263         if (*min_uV > *max_uV) {
264                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
265                         *min_uV, *max_uV);
266                 return -EINVAL;
267         }
268
269         return 0;
270 }
271
272 /* current constraint check */
273 static int regulator_check_current_limit(struct regulator_dev *rdev,
274                                         int *min_uA, int *max_uA)
275 {
276         BUG_ON(*min_uA > *max_uA);
277
278         if (!rdev->constraints) {
279                 rdev_err(rdev, "no constraints\n");
280                 return -ENODEV;
281         }
282         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
283                 rdev_err(rdev, "current operation not allowed\n");
284                 return -EPERM;
285         }
286
287         if (*max_uA > rdev->constraints->max_uA)
288                 *max_uA = rdev->constraints->max_uA;
289         if (*min_uA < rdev->constraints->min_uA)
290                 *min_uA = rdev->constraints->min_uA;
291
292         if (*min_uA > *max_uA) {
293                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
294                          *min_uA, *max_uA);
295                 return -EINVAL;
296         }
297
298         return 0;
299 }
300
301 /* operating mode constraint check */
302 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
303 {
304         switch (*mode) {
305         case REGULATOR_MODE_FAST:
306         case REGULATOR_MODE_NORMAL:
307         case REGULATOR_MODE_IDLE:
308         case REGULATOR_MODE_STANDBY:
309                 break;
310         default:
311                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
312                 return -EINVAL;
313         }
314
315         if (!rdev->constraints) {
316                 rdev_err(rdev, "no constraints\n");
317                 return -ENODEV;
318         }
319         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
320                 rdev_err(rdev, "mode operation not allowed\n");
321                 return -EPERM;
322         }
323
324         /* The modes are bitmasks, the most power hungry modes having
325          * the lowest values. If the requested mode isn't supported
326          * try higher modes. */
327         while (*mode) {
328                 if (rdev->constraints->valid_modes_mask & *mode)
329                         return 0;
330                 *mode /= 2;
331         }
332
333         return -EINVAL;
334 }
335
336 /* dynamic regulator mode switching constraint check */
337 static int regulator_check_drms(struct regulator_dev *rdev)
338 {
339         if (!rdev->constraints) {
340                 rdev_err(rdev, "no constraints\n");
341                 return -ENODEV;
342         }
343         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
344                 rdev_dbg(rdev, "drms operation not allowed\n");
345                 return -EPERM;
346         }
347         return 0;
348 }
349
350 static ssize_t regulator_uV_show(struct device *dev,
351                                 struct device_attribute *attr, char *buf)
352 {
353         struct regulator_dev *rdev = dev_get_drvdata(dev);
354         ssize_t ret;
355
356         mutex_lock(&rdev->mutex);
357         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
358         mutex_unlock(&rdev->mutex);
359
360         return ret;
361 }
362 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
363
364 static ssize_t regulator_uA_show(struct device *dev,
365                                 struct device_attribute *attr, char *buf)
366 {
367         struct regulator_dev *rdev = dev_get_drvdata(dev);
368
369         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
370 }
371 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
372
373 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
374                          char *buf)
375 {
376         struct regulator_dev *rdev = dev_get_drvdata(dev);
377
378         return sprintf(buf, "%s\n", rdev_get_name(rdev));
379 }
380 static DEVICE_ATTR_RO(name);
381
382 static ssize_t regulator_print_opmode(char *buf, int mode)
383 {
384         switch (mode) {
385         case REGULATOR_MODE_FAST:
386                 return sprintf(buf, "fast\n");
387         case REGULATOR_MODE_NORMAL:
388                 return sprintf(buf, "normal\n");
389         case REGULATOR_MODE_IDLE:
390                 return sprintf(buf, "idle\n");
391         case REGULATOR_MODE_STANDBY:
392                 return sprintf(buf, "standby\n");
393         }
394         return sprintf(buf, "unknown\n");
395 }
396
397 static ssize_t regulator_opmode_show(struct device *dev,
398                                     struct device_attribute *attr, char *buf)
399 {
400         struct regulator_dev *rdev = dev_get_drvdata(dev);
401
402         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
403 }
404 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
405
406 static ssize_t regulator_print_state(char *buf, int state)
407 {
408         if (state > 0)
409                 return sprintf(buf, "enabled\n");
410         else if (state == 0)
411                 return sprintf(buf, "disabled\n");
412         else
413                 return sprintf(buf, "unknown\n");
414 }
415
416 static ssize_t regulator_state_show(struct device *dev,
417                                    struct device_attribute *attr, char *buf)
418 {
419         struct regulator_dev *rdev = dev_get_drvdata(dev);
420         ssize_t ret;
421
422         mutex_lock(&rdev->mutex);
423         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
424         mutex_unlock(&rdev->mutex);
425
426         return ret;
427 }
428 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
429
430 static ssize_t regulator_status_show(struct device *dev,
431                                    struct device_attribute *attr, char *buf)
432 {
433         struct regulator_dev *rdev = dev_get_drvdata(dev);
434         int status;
435         char *label;
436
437         status = rdev->desc->ops->get_status(rdev);
438         if (status < 0)
439                 return status;
440
441         switch (status) {
442         case REGULATOR_STATUS_OFF:
443                 label = "off";
444                 break;
445         case REGULATOR_STATUS_ON:
446                 label = "on";
447                 break;
448         case REGULATOR_STATUS_ERROR:
449                 label = "error";
450                 break;
451         case REGULATOR_STATUS_FAST:
452                 label = "fast";
453                 break;
454         case REGULATOR_STATUS_NORMAL:
455                 label = "normal";
456                 break;
457         case REGULATOR_STATUS_IDLE:
458                 label = "idle";
459                 break;
460         case REGULATOR_STATUS_STANDBY:
461                 label = "standby";
462                 break;
463         case REGULATOR_STATUS_BYPASS:
464                 label = "bypass";
465                 break;
466         case REGULATOR_STATUS_UNDEFINED:
467                 label = "undefined";
468                 break;
469         default:
470                 return -ERANGE;
471         }
472
473         return sprintf(buf, "%s\n", label);
474 }
475 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
476
477 static ssize_t regulator_min_uA_show(struct device *dev,
478                                     struct device_attribute *attr, char *buf)
479 {
480         struct regulator_dev *rdev = dev_get_drvdata(dev);
481
482         if (!rdev->constraints)
483                 return sprintf(buf, "constraint not defined\n");
484
485         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
486 }
487 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
488
489 static ssize_t regulator_max_uA_show(struct device *dev,
490                                     struct device_attribute *attr, char *buf)
491 {
492         struct regulator_dev *rdev = dev_get_drvdata(dev);
493
494         if (!rdev->constraints)
495                 return sprintf(buf, "constraint not defined\n");
496
497         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
498 }
499 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
500
501 static ssize_t regulator_min_uV_show(struct device *dev,
502                                     struct device_attribute *attr, char *buf)
503 {
504         struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506         if (!rdev->constraints)
507                 return sprintf(buf, "constraint not defined\n");
508
509         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
510 }
511 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
512
513 static ssize_t regulator_max_uV_show(struct device *dev,
514                                     struct device_attribute *attr, char *buf)
515 {
516         struct regulator_dev *rdev = dev_get_drvdata(dev);
517
518         if (!rdev->constraints)
519                 return sprintf(buf, "constraint not defined\n");
520
521         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
522 }
523 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
524
525 static ssize_t regulator_total_uA_show(struct device *dev,
526                                       struct device_attribute *attr, char *buf)
527 {
528         struct regulator_dev *rdev = dev_get_drvdata(dev);
529         struct regulator *regulator;
530         int uA = 0;
531
532         mutex_lock(&rdev->mutex);
533         list_for_each_entry(regulator, &rdev->consumer_list, list)
534                 uA += regulator->uA_load;
535         mutex_unlock(&rdev->mutex);
536         return sprintf(buf, "%d\n", uA);
537 }
538 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
539
540 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
541                               char *buf)
542 {
543         struct regulator_dev *rdev = dev_get_drvdata(dev);
544         return sprintf(buf, "%d\n", rdev->use_count);
545 }
546 static DEVICE_ATTR_RO(num_users);
547
548 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
549                          char *buf)
550 {
551         struct regulator_dev *rdev = dev_get_drvdata(dev);
552
553         switch (rdev->desc->type) {
554         case REGULATOR_VOLTAGE:
555                 return sprintf(buf, "voltage\n");
556         case REGULATOR_CURRENT:
557                 return sprintf(buf, "current\n");
558         }
559         return sprintf(buf, "unknown\n");
560 }
561 static DEVICE_ATTR_RO(type);
562
563 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
564                                 struct device_attribute *attr, char *buf)
565 {
566         struct regulator_dev *rdev = dev_get_drvdata(dev);
567
568         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
569 }
570 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
571                 regulator_suspend_mem_uV_show, NULL);
572
573 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
574                                 struct device_attribute *attr, char *buf)
575 {
576         struct regulator_dev *rdev = dev_get_drvdata(dev);
577
578         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
579 }
580 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
581                 regulator_suspend_disk_uV_show, NULL);
582
583 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
584                                 struct device_attribute *attr, char *buf)
585 {
586         struct regulator_dev *rdev = dev_get_drvdata(dev);
587
588         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
589 }
590 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
591                 regulator_suspend_standby_uV_show, NULL);
592
593 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
594                                 struct device_attribute *attr, char *buf)
595 {
596         struct regulator_dev *rdev = dev_get_drvdata(dev);
597
598         return regulator_print_opmode(buf,
599                 rdev->constraints->state_mem.mode);
600 }
601 static DEVICE_ATTR(suspend_mem_mode, 0444,
602                 regulator_suspend_mem_mode_show, NULL);
603
604 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
605                                 struct device_attribute *attr, char *buf)
606 {
607         struct regulator_dev *rdev = dev_get_drvdata(dev);
608
609         return regulator_print_opmode(buf,
610                 rdev->constraints->state_disk.mode);
611 }
612 static DEVICE_ATTR(suspend_disk_mode, 0444,
613                 regulator_suspend_disk_mode_show, NULL);
614
615 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
616                                 struct device_attribute *attr, char *buf)
617 {
618         struct regulator_dev *rdev = dev_get_drvdata(dev);
619
620         return regulator_print_opmode(buf,
621                 rdev->constraints->state_standby.mode);
622 }
623 static DEVICE_ATTR(suspend_standby_mode, 0444,
624                 regulator_suspend_standby_mode_show, NULL);
625
626 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
627                                    struct device_attribute *attr, char *buf)
628 {
629         struct regulator_dev *rdev = dev_get_drvdata(dev);
630
631         return regulator_print_state(buf,
632                         rdev->constraints->state_mem.enabled);
633 }
634 static DEVICE_ATTR(suspend_mem_state, 0444,
635                 regulator_suspend_mem_state_show, NULL);
636
637 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
638                                    struct device_attribute *attr, char *buf)
639 {
640         struct regulator_dev *rdev = dev_get_drvdata(dev);
641
642         return regulator_print_state(buf,
643                         rdev->constraints->state_disk.enabled);
644 }
645 static DEVICE_ATTR(suspend_disk_state, 0444,
646                 regulator_suspend_disk_state_show, NULL);
647
648 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
649                                    struct device_attribute *attr, char *buf)
650 {
651         struct regulator_dev *rdev = dev_get_drvdata(dev);
652
653         return regulator_print_state(buf,
654                         rdev->constraints->state_standby.enabled);
655 }
656 static DEVICE_ATTR(suspend_standby_state, 0444,
657                 regulator_suspend_standby_state_show, NULL);
658
659 static ssize_t regulator_bypass_show(struct device *dev,
660                                      struct device_attribute *attr, char *buf)
661 {
662         struct regulator_dev *rdev = dev_get_drvdata(dev);
663         const char *report;
664         bool bypass;
665         int ret;
666
667         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
668
669         if (ret != 0)
670                 report = "unknown";
671         else if (bypass)
672                 report = "enabled";
673         else
674                 report = "disabled";
675
676         return sprintf(buf, "%s\n", report);
677 }
678 static DEVICE_ATTR(bypass, 0444,
679                    regulator_bypass_show, NULL);
680
681 /* Calculate the new optimum regulator operating mode based on the new total
682  * consumer load. All locks held by caller */
683 static int drms_uA_update(struct regulator_dev *rdev)
684 {
685         struct regulator *sibling;
686         int current_uA = 0, output_uV, input_uV, err;
687         unsigned int mode;
688
689         lockdep_assert_held_once(&rdev->mutex);
690
691         /*
692          * first check to see if we can set modes at all, otherwise just
693          * tell the consumer everything is OK.
694          */
695         err = regulator_check_drms(rdev);
696         if (err < 0)
697                 return 0;
698
699         if (!rdev->desc->ops->get_optimum_mode &&
700             !rdev->desc->ops->set_load)
701                 return 0;
702
703         if (!rdev->desc->ops->set_mode &&
704             !rdev->desc->ops->set_load)
705                 return -EINVAL;
706
707         /* get output voltage */
708         output_uV = _regulator_get_voltage(rdev);
709         if (output_uV <= 0) {
710                 rdev_err(rdev, "invalid output voltage found\n");
711                 return -EINVAL;
712         }
713
714         /* get input voltage */
715         input_uV = 0;
716         if (rdev->supply)
717                 input_uV = regulator_get_voltage(rdev->supply);
718         if (input_uV <= 0)
719                 input_uV = rdev->constraints->input_uV;
720         if (input_uV <= 0) {
721                 rdev_err(rdev, "invalid input voltage found\n");
722                 return -EINVAL;
723         }
724
725         /* calc total requested load */
726         list_for_each_entry(sibling, &rdev->consumer_list, list)
727                 current_uA += sibling->uA_load;
728
729         current_uA += rdev->constraints->system_load;
730
731         if (rdev->desc->ops->set_load) {
732                 /* set the optimum mode for our new total regulator load */
733                 err = rdev->desc->ops->set_load(rdev, current_uA);
734                 if (err < 0)
735                         rdev_err(rdev, "failed to set load %d\n", current_uA);
736         } else {
737                 /* now get the optimum mode for our new total regulator load */
738                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
739                                                          output_uV, current_uA);
740
741                 /* check the new mode is allowed */
742                 err = regulator_mode_constrain(rdev, &mode);
743                 if (err < 0) {
744                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
745                                  current_uA, input_uV, output_uV);
746                         return err;
747                 }
748
749                 err = rdev->desc->ops->set_mode(rdev, mode);
750                 if (err < 0)
751                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
752         }
753
754         return err;
755 }
756
757 static int suspend_set_state(struct regulator_dev *rdev,
758         struct regulator_state *rstate)
759 {
760         int ret = 0;
761
762         /* If we have no suspend mode configration don't set anything;
763          * only warn if the driver implements set_suspend_voltage or
764          * set_suspend_mode callback.
765          */
766         if (!rstate->enabled && !rstate->disabled) {
767                 if (rdev->desc->ops->set_suspend_voltage ||
768                     rdev->desc->ops->set_suspend_mode)
769                         rdev_warn(rdev, "No configuration\n");
770                 return 0;
771         }
772
773         if (rstate->enabled && rstate->disabled) {
774                 rdev_err(rdev, "invalid configuration\n");
775                 return -EINVAL;
776         }
777
778         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
779                 ret = rdev->desc->ops->set_suspend_enable(rdev);
780         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
781                 ret = rdev->desc->ops->set_suspend_disable(rdev);
782         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
783                 ret = 0;
784
785         if (ret < 0) {
786                 rdev_err(rdev, "failed to enabled/disable\n");
787                 return ret;
788         }
789
790         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
791                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
792                 if (ret < 0) {
793                         rdev_err(rdev, "failed to set voltage\n");
794                         return ret;
795                 }
796         }
797
798         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
799                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
800                 if (ret < 0) {
801                         rdev_err(rdev, "failed to set mode\n");
802                         return ret;
803                 }
804         }
805         return ret;
806 }
807
808 /* locks held by caller */
809 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
810 {
811         lockdep_assert_held_once(&rdev->mutex);
812
813         if (!rdev->constraints)
814                 return -EINVAL;
815
816         switch (state) {
817         case PM_SUSPEND_STANDBY:
818                 return suspend_set_state(rdev,
819                         &rdev->constraints->state_standby);
820         case PM_SUSPEND_MEM:
821                 return suspend_set_state(rdev,
822                         &rdev->constraints->state_mem);
823         case PM_SUSPEND_MAX:
824                 return suspend_set_state(rdev,
825                         &rdev->constraints->state_disk);
826         default:
827                 return -EINVAL;
828         }
829 }
830
831 static void print_constraints(struct regulator_dev *rdev)
832 {
833         struct regulation_constraints *constraints = rdev->constraints;
834         char buf[160] = "";
835         size_t len = sizeof(buf) - 1;
836         int count = 0;
837         int ret;
838
839         if (constraints->min_uV && constraints->max_uV) {
840                 if (constraints->min_uV == constraints->max_uV)
841                         count += scnprintf(buf + count, len - count, "%d mV ",
842                                            constraints->min_uV / 1000);
843                 else
844                         count += scnprintf(buf + count, len - count,
845                                            "%d <--> %d mV ",
846                                            constraints->min_uV / 1000,
847                                            constraints->max_uV / 1000);
848         }
849
850         if (!constraints->min_uV ||
851             constraints->min_uV != constraints->max_uV) {
852                 ret = _regulator_get_voltage(rdev);
853                 if (ret > 0)
854                         count += scnprintf(buf + count, len - count,
855                                            "at %d mV ", ret / 1000);
856         }
857
858         if (constraints->uV_offset)
859                 count += scnprintf(buf + count, len - count, "%dmV offset ",
860                                    constraints->uV_offset / 1000);
861
862         if (constraints->min_uA && constraints->max_uA) {
863                 if (constraints->min_uA == constraints->max_uA)
864                         count += scnprintf(buf + count, len - count, "%d mA ",
865                                            constraints->min_uA / 1000);
866                 else
867                         count += scnprintf(buf + count, len - count,
868                                            "%d <--> %d mA ",
869                                            constraints->min_uA / 1000,
870                                            constraints->max_uA / 1000);
871         }
872
873         if (!constraints->min_uA ||
874             constraints->min_uA != constraints->max_uA) {
875                 ret = _regulator_get_current_limit(rdev);
876                 if (ret > 0)
877                         count += scnprintf(buf + count, len - count,
878                                            "at %d mA ", ret / 1000);
879         }
880
881         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
882                 count += scnprintf(buf + count, len - count, "fast ");
883         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
884                 count += scnprintf(buf + count, len - count, "normal ");
885         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
886                 count += scnprintf(buf + count, len - count, "idle ");
887         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
888                 count += scnprintf(buf + count, len - count, "standby");
889
890         if (!count)
891                 scnprintf(buf, len, "no parameters");
892
893         rdev_dbg(rdev, "%s\n", buf);
894
895         if ((constraints->min_uV != constraints->max_uV) &&
896             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
897                 rdev_warn(rdev,
898                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
899 }
900
901 static int machine_constraints_voltage(struct regulator_dev *rdev,
902         struct regulation_constraints *constraints)
903 {
904         const struct regulator_ops *ops = rdev->desc->ops;
905         int ret;
906
907         /* do we need to apply the constraint voltage */
908         if (rdev->constraints->apply_uV &&
909             rdev->constraints->min_uV == rdev->constraints->max_uV) {
910                 int current_uV = _regulator_get_voltage(rdev);
911                 if (current_uV < 0) {
912                         rdev_err(rdev,
913                                  "failed to get the current voltage(%d)\n",
914                                  current_uV);
915                         return current_uV;
916                 }
917                 if (current_uV < rdev->constraints->min_uV ||
918                     current_uV > rdev->constraints->max_uV) {
919                         ret = _regulator_do_set_voltage(
920                                 rdev, rdev->constraints->min_uV,
921                                 rdev->constraints->max_uV);
922                         if (ret < 0) {
923                                 rdev_err(rdev,
924                                         "failed to apply %duV constraint(%d)\n",
925                                         rdev->constraints->min_uV, ret);
926                                 return ret;
927                         }
928                 }
929         }
930
931         /* constrain machine-level voltage specs to fit
932          * the actual range supported by this regulator.
933          */
934         if (ops->list_voltage && rdev->desc->n_voltages) {
935                 int     count = rdev->desc->n_voltages;
936                 int     i;
937                 int     min_uV = INT_MAX;
938                 int     max_uV = INT_MIN;
939                 int     cmin = constraints->min_uV;
940                 int     cmax = constraints->max_uV;
941
942                 /* it's safe to autoconfigure fixed-voltage supplies
943                    and the constraints are used by list_voltage. */
944                 if (count == 1 && !cmin) {
945                         cmin = 1;
946                         cmax = INT_MAX;
947                         constraints->min_uV = cmin;
948                         constraints->max_uV = cmax;
949                 }
950
951                 /* voltage constraints are optional */
952                 if ((cmin == 0) && (cmax == 0))
953                         return 0;
954
955                 /* else require explicit machine-level constraints */
956                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
957                         rdev_err(rdev, "invalid voltage constraints\n");
958                         return -EINVAL;
959                 }
960
961                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
962                 for (i = 0; i < count; i++) {
963                         int     value;
964
965                         value = ops->list_voltage(rdev, i);
966                         if (value <= 0)
967                                 continue;
968
969                         /* maybe adjust [min_uV..max_uV] */
970                         if (value >= cmin && value < min_uV)
971                                 min_uV = value;
972                         if (value <= cmax && value > max_uV)
973                                 max_uV = value;
974                 }
975
976                 /* final: [min_uV..max_uV] valid iff constraints valid */
977                 if (max_uV < min_uV) {
978                         rdev_err(rdev,
979                                  "unsupportable voltage constraints %u-%uuV\n",
980                                  min_uV, max_uV);
981                         return -EINVAL;
982                 }
983
984                 /* use regulator's subset of machine constraints */
985                 if (constraints->min_uV < min_uV) {
986                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
987                                  constraints->min_uV, min_uV);
988                         constraints->min_uV = min_uV;
989                 }
990                 if (constraints->max_uV > max_uV) {
991                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
992                                  constraints->max_uV, max_uV);
993                         constraints->max_uV = max_uV;
994                 }
995         }
996
997         return 0;
998 }
999
1000 static int machine_constraints_current(struct regulator_dev *rdev,
1001         struct regulation_constraints *constraints)
1002 {
1003         const struct regulator_ops *ops = rdev->desc->ops;
1004         int ret;
1005
1006         if (!constraints->min_uA && !constraints->max_uA)
1007                 return 0;
1008
1009         if (constraints->min_uA > constraints->max_uA) {
1010                 rdev_err(rdev, "Invalid current constraints\n");
1011                 return -EINVAL;
1012         }
1013
1014         if (!ops->set_current_limit || !ops->get_current_limit) {
1015                 rdev_warn(rdev, "Operation of current configuration missing\n");
1016                 return 0;
1017         }
1018
1019         /* Set regulator current in constraints range */
1020         ret = ops->set_current_limit(rdev, constraints->min_uA,
1021                         constraints->max_uA);
1022         if (ret < 0) {
1023                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1024                 return ret;
1025         }
1026
1027         return 0;
1028 }
1029
1030 static int _regulator_do_enable(struct regulator_dev *rdev);
1031
1032 /**
1033  * set_machine_constraints - sets regulator constraints
1034  * @rdev: regulator source
1035  * @constraints: constraints to apply
1036  *
1037  * Allows platform initialisation code to define and constrain
1038  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1039  * Constraints *must* be set by platform code in order for some
1040  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1041  * set_mode.
1042  */
1043 static int set_machine_constraints(struct regulator_dev *rdev,
1044         const struct regulation_constraints *constraints)
1045 {
1046         int ret = 0;
1047         const struct regulator_ops *ops = rdev->desc->ops;
1048
1049         if (constraints)
1050                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1051                                             GFP_KERNEL);
1052         else
1053                 rdev->constraints = kzalloc(sizeof(*constraints),
1054                                             GFP_KERNEL);
1055         if (!rdev->constraints)
1056                 return -ENOMEM;
1057
1058         ret = machine_constraints_voltage(rdev, rdev->constraints);
1059         if (ret != 0)
1060                 goto out;
1061
1062         ret = machine_constraints_current(rdev, rdev->constraints);
1063         if (ret != 0)
1064                 goto out;
1065
1066         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1067                 ret = ops->set_input_current_limit(rdev,
1068                                                    rdev->constraints->ilim_uA);
1069                 if (ret < 0) {
1070                         rdev_err(rdev, "failed to set input limit\n");
1071                         goto out;
1072                 }
1073         }
1074
1075         /* do we need to setup our suspend state */
1076         if (rdev->constraints->initial_state) {
1077                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1078                 if (ret < 0) {
1079                         rdev_err(rdev, "failed to set suspend state\n");
1080                         goto out;
1081                 }
1082         }
1083
1084         if (rdev->constraints->initial_mode) {
1085                 if (!ops->set_mode) {
1086                         rdev_err(rdev, "no set_mode operation\n");
1087                         ret = -EINVAL;
1088                         goto out;
1089                 }
1090
1091                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1092                 if (ret < 0) {
1093                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1094                         goto out;
1095                 }
1096         }
1097
1098         /* If the constraints say the regulator should be on at this point
1099          * and we have control then make sure it is enabled.
1100          */
1101         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1102                 ret = _regulator_do_enable(rdev);
1103                 if (ret < 0 && ret != -EINVAL) {
1104                         rdev_err(rdev, "failed to enable\n");
1105                         goto out;
1106                 }
1107         }
1108
1109         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1110                 && ops->set_ramp_delay) {
1111                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1112                 if (ret < 0) {
1113                         rdev_err(rdev, "failed to set ramp_delay\n");
1114                         goto out;
1115                 }
1116         }
1117
1118         if (rdev->constraints->pull_down && ops->set_pull_down) {
1119                 ret = ops->set_pull_down(rdev);
1120                 if (ret < 0) {
1121                         rdev_err(rdev, "failed to set pull down\n");
1122                         goto out;
1123                 }
1124         }
1125
1126         if (rdev->constraints->soft_start && ops->set_soft_start) {
1127                 ret = ops->set_soft_start(rdev);
1128                 if (ret < 0) {
1129                         rdev_err(rdev, "failed to set soft start\n");
1130                         goto out;
1131                 }
1132         }
1133
1134         if (rdev->constraints->over_current_protection
1135                 && ops->set_over_current_protection) {
1136                 ret = ops->set_over_current_protection(rdev);
1137                 if (ret < 0) {
1138                         rdev_err(rdev, "failed to set over current protection\n");
1139                         goto out;
1140                 }
1141         }
1142
1143         print_constraints(rdev);
1144         return 0;
1145 out:
1146         kfree(rdev->constraints);
1147         rdev->constraints = NULL;
1148         return ret;
1149 }
1150
1151 /**
1152  * set_supply - set regulator supply regulator
1153  * @rdev: regulator name
1154  * @supply_rdev: supply regulator name
1155  *
1156  * Called by platform initialisation code to set the supply regulator for this
1157  * regulator. This ensures that a regulators supply will also be enabled by the
1158  * core if it's child is enabled.
1159  */
1160 static int set_supply(struct regulator_dev *rdev,
1161                       struct regulator_dev *supply_rdev)
1162 {
1163         int err;
1164
1165         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1166
1167         if (!try_module_get(supply_rdev->owner))
1168                 return -ENODEV;
1169
1170         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1171         if (rdev->supply == NULL) {
1172                 err = -ENOMEM;
1173                 return err;
1174         }
1175         supply_rdev->open_count++;
1176
1177         return 0;
1178 }
1179
1180 /**
1181  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1182  * @rdev:         regulator source
1183  * @consumer_dev_name: dev_name() string for device supply applies to
1184  * @supply:       symbolic name for supply
1185  *
1186  * Allows platform initialisation code to map physical regulator
1187  * sources to symbolic names for supplies for use by devices.  Devices
1188  * should use these symbolic names to request regulators, avoiding the
1189  * need to provide board-specific regulator names as platform data.
1190  */
1191 static int set_consumer_device_supply(struct regulator_dev *rdev,
1192                                       const char *consumer_dev_name,
1193                                       const char *supply)
1194 {
1195         struct regulator_map *node;
1196         int has_dev;
1197
1198         if (supply == NULL)
1199                 return -EINVAL;
1200
1201         if (consumer_dev_name != NULL)
1202                 has_dev = 1;
1203         else
1204                 has_dev = 0;
1205
1206         list_for_each_entry(node, &regulator_map_list, list) {
1207                 if (node->dev_name && consumer_dev_name) {
1208                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1209                                 continue;
1210                 } else if (node->dev_name || consumer_dev_name) {
1211                         continue;
1212                 }
1213
1214                 if (strcmp(node->supply, supply) != 0)
1215                         continue;
1216
1217                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1218                          consumer_dev_name,
1219                          dev_name(&node->regulator->dev),
1220                          node->regulator->desc->name,
1221                          supply,
1222                          dev_name(&rdev->dev), rdev_get_name(rdev));
1223                 return -EBUSY;
1224         }
1225
1226         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1227         if (node == NULL)
1228                 return -ENOMEM;
1229
1230         node->regulator = rdev;
1231         node->supply = supply;
1232
1233         if (has_dev) {
1234                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1235                 if (node->dev_name == NULL) {
1236                         kfree(node);
1237                         return -ENOMEM;
1238                 }
1239         }
1240
1241         list_add(&node->list, &regulator_map_list);
1242         return 0;
1243 }
1244
1245 static void unset_regulator_supplies(struct regulator_dev *rdev)
1246 {
1247         struct regulator_map *node, *n;
1248
1249         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1250                 if (rdev == node->regulator) {
1251                         list_del(&node->list);
1252                         kfree(node->dev_name);
1253                         kfree(node);
1254                 }
1255         }
1256 }
1257
1258 #define REG_STR_SIZE    64
1259
1260 static struct regulator *create_regulator(struct regulator_dev *rdev,
1261                                           struct device *dev,
1262                                           const char *supply_name)
1263 {
1264         struct regulator *regulator;
1265         char buf[REG_STR_SIZE];
1266         int err, size;
1267
1268         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1269         if (regulator == NULL)
1270                 return NULL;
1271
1272         mutex_lock(&rdev->mutex);
1273         regulator->rdev = rdev;
1274         list_add(&regulator->list, &rdev->consumer_list);
1275
1276         if (dev) {
1277                 regulator->dev = dev;
1278
1279                 /* Add a link to the device sysfs entry */
1280                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1281                                  dev->kobj.name, supply_name);
1282                 if (size >= REG_STR_SIZE)
1283                         goto overflow_err;
1284
1285                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1286                 if (regulator->supply_name == NULL)
1287                         goto overflow_err;
1288
1289                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1290                                         buf);
1291                 if (err) {
1292                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1293                                   dev->kobj.name, err);
1294                         /* non-fatal */
1295                 }
1296         } else {
1297                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1298                 if (regulator->supply_name == NULL)
1299                         goto overflow_err;
1300         }
1301
1302         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1303                                                 rdev->debugfs);
1304         if (!regulator->debugfs) {
1305                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1306         } else {
1307                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1308                                    &regulator->uA_load);
1309                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1310                                    &regulator->min_uV);
1311                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1312                                    &regulator->max_uV);
1313         }
1314
1315         /*
1316          * Check now if the regulator is an always on regulator - if
1317          * it is then we don't need to do nearly so much work for
1318          * enable/disable calls.
1319          */
1320         if (!_regulator_can_change_status(rdev) &&
1321             _regulator_is_enabled(rdev))
1322                 regulator->always_on = true;
1323
1324         mutex_unlock(&rdev->mutex);
1325         return regulator;
1326 overflow_err:
1327         list_del(&regulator->list);
1328         kfree(regulator);
1329         mutex_unlock(&rdev->mutex);
1330         return NULL;
1331 }
1332
1333 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1334 {
1335         if (rdev->constraints && rdev->constraints->enable_time)
1336                 return rdev->constraints->enable_time;
1337         if (!rdev->desc->ops->enable_time)
1338                 return rdev->desc->enable_time;
1339         return rdev->desc->ops->enable_time(rdev);
1340 }
1341
1342 static struct regulator_supply_alias *regulator_find_supply_alias(
1343                 struct device *dev, const char *supply)
1344 {
1345         struct regulator_supply_alias *map;
1346
1347         list_for_each_entry(map, &regulator_supply_alias_list, list)
1348                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1349                         return map;
1350
1351         return NULL;
1352 }
1353
1354 static void regulator_supply_alias(struct device **dev, const char **supply)
1355 {
1356         struct regulator_supply_alias *map;
1357
1358         map = regulator_find_supply_alias(*dev, *supply);
1359         if (map) {
1360                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1361                                 *supply, map->alias_supply,
1362                                 dev_name(map->alias_dev));
1363                 *dev = map->alias_dev;
1364                 *supply = map->alias_supply;
1365         }
1366 }
1367
1368 static int of_node_match(struct device *dev, const void *data)
1369 {
1370         return dev->of_node == data;
1371 }
1372
1373 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1374 {
1375         struct device *dev;
1376
1377         dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1378
1379         return dev ? dev_to_rdev(dev) : NULL;
1380 }
1381
1382 static int regulator_match(struct device *dev, const void *data)
1383 {
1384         struct regulator_dev *r = dev_to_rdev(dev);
1385
1386         return strcmp(rdev_get_name(r), data) == 0;
1387 }
1388
1389 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1390 {
1391         struct device *dev;
1392
1393         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1394
1395         return dev ? dev_to_rdev(dev) : NULL;
1396 }
1397
1398 /**
1399  * regulator_dev_lookup - lookup a regulator device.
1400  * @dev: device for regulator "consumer".
1401  * @supply: Supply name or regulator ID.
1402  * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1403  * lookup could succeed in the future.
1404  *
1405  * If successful, returns a struct regulator_dev that corresponds to the name
1406  * @supply and with the embedded struct device refcount incremented by one,
1407  * or NULL on failure. The refcount must be dropped by calling put_device().
1408  */
1409 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1410                                                   const char *supply,
1411                                                   int *ret)
1412 {
1413         struct regulator_dev *r;
1414         struct device_node *node;
1415         struct regulator_map *map;
1416         const char *devname = NULL;
1417
1418         regulator_supply_alias(&dev, &supply);
1419
1420         /* first do a dt based lookup */
1421         if (dev && dev->of_node) {
1422                 node = of_get_regulator(dev, supply);
1423                 if (node) {
1424                         r = of_find_regulator_by_node(node);
1425                         if (r)
1426                                 return r;
1427                         *ret = -EPROBE_DEFER;
1428                         return NULL;
1429                 } else {
1430                         /*
1431                          * If we couldn't even get the node then it's
1432                          * not just that the device didn't register
1433                          * yet, there's no node and we'll never
1434                          * succeed.
1435                          */
1436                         *ret = -ENODEV;
1437                 }
1438         }
1439
1440         /* if not found, try doing it non-dt way */
1441         if (dev)
1442                 devname = dev_name(dev);
1443
1444         r = regulator_lookup_by_name(supply);
1445         if (r)
1446                 return r;
1447
1448         mutex_lock(&regulator_list_mutex);
1449         list_for_each_entry(map, &regulator_map_list, list) {
1450                 /* If the mapping has a device set up it must match */
1451                 if (map->dev_name &&
1452                     (!devname || strcmp(map->dev_name, devname)))
1453                         continue;
1454
1455                 if (strcmp(map->supply, supply) == 0 &&
1456                     get_device(&map->regulator->dev)) {
1457                         mutex_unlock(&regulator_list_mutex);
1458                         return map->regulator;
1459                 }
1460         }
1461         mutex_unlock(&regulator_list_mutex);
1462
1463         return NULL;
1464 }
1465
1466 static int regulator_resolve_supply(struct regulator_dev *rdev)
1467 {
1468         struct regulator_dev *r;
1469         struct device *dev = rdev->dev.parent;
1470         int ret;
1471
1472         /* No supply to resovle? */
1473         if (!rdev->supply_name)
1474                 return 0;
1475
1476         /* Supply already resolved? */
1477         if (rdev->supply)
1478                 return 0;
1479
1480         r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1481         if (!r) {
1482                 if (ret == -ENODEV) {
1483                         /*
1484                          * No supply was specified for this regulator and
1485                          * there will never be one.
1486                          */
1487                         return 0;
1488                 }
1489
1490                 /* Did the lookup explicitly defer for us? */
1491                 if (ret == -EPROBE_DEFER)
1492                         return ret;
1493
1494                 if (have_full_constraints()) {
1495                         r = dummy_regulator_rdev;
1496                         get_device(&r->dev);
1497                 } else {
1498                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1499                                 rdev->supply_name, rdev->desc->name);
1500                         return -EPROBE_DEFER;
1501                 }
1502         }
1503
1504         /* Recursively resolve the supply of the supply */
1505         ret = regulator_resolve_supply(r);
1506         if (ret < 0) {
1507                 put_device(&r->dev);
1508                 return ret;
1509         }
1510
1511         ret = set_supply(rdev, r);
1512         if (ret < 0) {
1513                 put_device(&r->dev);
1514                 return ret;
1515         }
1516
1517         /* Cascade always-on state to supply */
1518         if (_regulator_is_enabled(rdev) && rdev->supply) {
1519                 ret = regulator_enable(rdev->supply);
1520                 if (ret < 0) {
1521                         _regulator_put(rdev->supply);
1522                         return ret;
1523                 }
1524         }
1525
1526         return 0;
1527 }
1528
1529 /* Internal regulator request function */
1530 static struct regulator *_regulator_get(struct device *dev, const char *id,
1531                                         bool exclusive, bool allow_dummy)
1532 {
1533         struct regulator_dev *rdev;
1534         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1535         const char *devname = NULL;
1536         int ret;
1537
1538         if (id == NULL) {
1539                 pr_err("get() with no identifier\n");
1540                 return ERR_PTR(-EINVAL);
1541         }
1542
1543         if (dev)
1544                 devname = dev_name(dev);
1545
1546         if (have_full_constraints())
1547                 ret = -ENODEV;
1548         else
1549                 ret = -EPROBE_DEFER;
1550
1551         rdev = regulator_dev_lookup(dev, id, &ret);
1552         if (rdev)
1553                 goto found;
1554
1555         regulator = ERR_PTR(ret);
1556
1557         /*
1558          * If we have return value from dev_lookup fail, we do not expect to
1559          * succeed, so, quit with appropriate error value
1560          */
1561         if (ret && ret != -ENODEV)
1562                 return regulator;
1563
1564         if (!devname)
1565                 devname = "deviceless";
1566
1567         /*
1568          * Assume that a regulator is physically present and enabled
1569          * even if it isn't hooked up and just provide a dummy.
1570          */
1571         if (have_full_constraints() && allow_dummy) {
1572                 pr_warn("%s supply %s not found, using dummy regulator\n",
1573                         devname, id);
1574
1575                 rdev = dummy_regulator_rdev;
1576                 get_device(&rdev->dev);
1577                 goto found;
1578         /* Don't log an error when called from regulator_get_optional() */
1579         } else if (!have_full_constraints() || exclusive) {
1580                 dev_warn(dev, "dummy supplies not allowed\n");
1581         }
1582
1583         return regulator;
1584
1585 found:
1586         if (rdev->exclusive) {
1587                 regulator = ERR_PTR(-EPERM);
1588                 put_device(&rdev->dev);
1589                 return regulator;
1590         }
1591
1592         if (exclusive && rdev->open_count) {
1593                 regulator = ERR_PTR(-EBUSY);
1594                 put_device(&rdev->dev);
1595                 return regulator;
1596         }
1597
1598         ret = regulator_resolve_supply(rdev);
1599         if (ret < 0) {
1600                 regulator = ERR_PTR(ret);
1601                 put_device(&rdev->dev);
1602                 return regulator;
1603         }
1604
1605         if (!try_module_get(rdev->owner)) {
1606                 put_device(&rdev->dev);
1607                 return regulator;
1608         }
1609
1610         regulator = create_regulator(rdev, dev, id);
1611         if (regulator == NULL) {
1612                 regulator = ERR_PTR(-ENOMEM);
1613                 put_device(&rdev->dev);
1614                 module_put(rdev->owner);
1615                 return regulator;
1616         }
1617
1618         rdev->open_count++;
1619         if (exclusive) {
1620                 rdev->exclusive = 1;
1621
1622                 ret = _regulator_is_enabled(rdev);
1623                 if (ret > 0)
1624                         rdev->use_count = 1;
1625                 else
1626                         rdev->use_count = 0;
1627         }
1628
1629         return regulator;
1630 }
1631
1632 /**
1633  * regulator_get - lookup and obtain a reference to a regulator.
1634  * @dev: device for regulator "consumer"
1635  * @id: Supply name or regulator ID.
1636  *
1637  * Returns a struct regulator corresponding to the regulator producer,
1638  * or IS_ERR() condition containing errno.
1639  *
1640  * Use of supply names configured via regulator_set_device_supply() is
1641  * strongly encouraged.  It is recommended that the supply name used
1642  * should match the name used for the supply and/or the relevant
1643  * device pins in the datasheet.
1644  */
1645 struct regulator *regulator_get(struct device *dev, const char *id)
1646 {
1647         return _regulator_get(dev, id, false, true);
1648 }
1649 EXPORT_SYMBOL_GPL(regulator_get);
1650
1651 /**
1652  * regulator_get_exclusive - obtain exclusive access to a regulator.
1653  * @dev: device for regulator "consumer"
1654  * @id: Supply name or regulator ID.
1655  *
1656  * Returns a struct regulator corresponding to the regulator producer,
1657  * or IS_ERR() condition containing errno.  Other consumers will be
1658  * unable to obtain this regulator while this reference is held and the
1659  * use count for the regulator will be initialised to reflect the current
1660  * state of the regulator.
1661  *
1662  * This is intended for use by consumers which cannot tolerate shared
1663  * use of the regulator such as those which need to force the
1664  * regulator off for correct operation of the hardware they are
1665  * controlling.
1666  *
1667  * Use of supply names configured via regulator_set_device_supply() is
1668  * strongly encouraged.  It is recommended that the supply name used
1669  * should match the name used for the supply and/or the relevant
1670  * device pins in the datasheet.
1671  */
1672 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1673 {
1674         return _regulator_get(dev, id, true, false);
1675 }
1676 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1677
1678 /**
1679  * regulator_get_optional - obtain optional access to a regulator.
1680  * @dev: device for regulator "consumer"
1681  * @id: Supply name or regulator ID.
1682  *
1683  * Returns a struct regulator corresponding to the regulator producer,
1684  * or IS_ERR() condition containing errno.
1685  *
1686  * This is intended for use by consumers for devices which can have
1687  * some supplies unconnected in normal use, such as some MMC devices.
1688  * It can allow the regulator core to provide stub supplies for other
1689  * supplies requested using normal regulator_get() calls without
1690  * disrupting the operation of drivers that can handle absent
1691  * supplies.
1692  *
1693  * Use of supply names configured via regulator_set_device_supply() is
1694  * strongly encouraged.  It is recommended that the supply name used
1695  * should match the name used for the supply and/or the relevant
1696  * device pins in the datasheet.
1697  */
1698 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1699 {
1700         return _regulator_get(dev, id, false, false);
1701 }
1702 EXPORT_SYMBOL_GPL(regulator_get_optional);
1703
1704 /* regulator_list_mutex lock held by regulator_put() */
1705 static void _regulator_put(struct regulator *regulator)
1706 {
1707         struct regulator_dev *rdev;
1708
1709         if (IS_ERR_OR_NULL(regulator))
1710                 return;
1711
1712         lockdep_assert_held_once(&regulator_list_mutex);
1713
1714         rdev = regulator->rdev;
1715
1716         debugfs_remove_recursive(regulator->debugfs);
1717
1718         /* remove any sysfs entries */
1719         if (regulator->dev)
1720                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1721         mutex_lock(&rdev->mutex);
1722         list_del(&regulator->list);
1723
1724         rdev->open_count--;
1725         rdev->exclusive = 0;
1726         put_device(&rdev->dev);
1727         mutex_unlock(&rdev->mutex);
1728
1729         kfree(regulator->supply_name);
1730         kfree(regulator);
1731
1732         module_put(rdev->owner);
1733 }
1734
1735 /**
1736  * regulator_put - "free" the regulator source
1737  * @regulator: regulator source
1738  *
1739  * Note: drivers must ensure that all regulator_enable calls made on this
1740  * regulator source are balanced by regulator_disable calls prior to calling
1741  * this function.
1742  */
1743 void regulator_put(struct regulator *regulator)
1744 {
1745         mutex_lock(&regulator_list_mutex);
1746         _regulator_put(regulator);
1747         mutex_unlock(&regulator_list_mutex);
1748 }
1749 EXPORT_SYMBOL_GPL(regulator_put);
1750
1751 /**
1752  * regulator_register_supply_alias - Provide device alias for supply lookup
1753  *
1754  * @dev: device that will be given as the regulator "consumer"
1755  * @id: Supply name or regulator ID
1756  * @alias_dev: device that should be used to lookup the supply
1757  * @alias_id: Supply name or regulator ID that should be used to lookup the
1758  * supply
1759  *
1760  * All lookups for id on dev will instead be conducted for alias_id on
1761  * alias_dev.
1762  */
1763 int regulator_register_supply_alias(struct device *dev, const char *id,
1764                                     struct device *alias_dev,
1765                                     const char *alias_id)
1766 {
1767         struct regulator_supply_alias *map;
1768
1769         map = regulator_find_supply_alias(dev, id);
1770         if (map)
1771                 return -EEXIST;
1772
1773         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1774         if (!map)
1775                 return -ENOMEM;
1776
1777         map->src_dev = dev;
1778         map->src_supply = id;
1779         map->alias_dev = alias_dev;
1780         map->alias_supply = alias_id;
1781
1782         list_add(&map->list, &regulator_supply_alias_list);
1783
1784         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1785                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1786
1787         return 0;
1788 }
1789 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1790
1791 /**
1792  * regulator_unregister_supply_alias - Remove device alias
1793  *
1794  * @dev: device that will be given as the regulator "consumer"
1795  * @id: Supply name or regulator ID
1796  *
1797  * Remove a lookup alias if one exists for id on dev.
1798  */
1799 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1800 {
1801         struct regulator_supply_alias *map;
1802
1803         map = regulator_find_supply_alias(dev, id);
1804         if (map) {
1805                 list_del(&map->list);
1806                 kfree(map);
1807         }
1808 }
1809 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1810
1811 /**
1812  * regulator_bulk_register_supply_alias - register multiple aliases
1813  *
1814  * @dev: device that will be given as the regulator "consumer"
1815  * @id: List of supply names or regulator IDs
1816  * @alias_dev: device that should be used to lookup the supply
1817  * @alias_id: List of supply names or regulator IDs that should be used to
1818  * lookup the supply
1819  * @num_id: Number of aliases to register
1820  *
1821  * @return 0 on success, an errno on failure.
1822  *
1823  * This helper function allows drivers to register several supply
1824  * aliases in one operation.  If any of the aliases cannot be
1825  * registered any aliases that were registered will be removed
1826  * before returning to the caller.
1827  */
1828 int regulator_bulk_register_supply_alias(struct device *dev,
1829                                          const char *const *id,
1830                                          struct device *alias_dev,
1831                                          const char *const *alias_id,
1832                                          int num_id)
1833 {
1834         int i;
1835         int ret;
1836
1837         for (i = 0; i < num_id; ++i) {
1838                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1839                                                       alias_id[i]);
1840                 if (ret < 0)
1841                         goto err;
1842         }
1843
1844         return 0;
1845
1846 err:
1847         dev_err(dev,
1848                 "Failed to create supply alias %s,%s -> %s,%s\n",
1849                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1850
1851         while (--i >= 0)
1852                 regulator_unregister_supply_alias(dev, id[i]);
1853
1854         return ret;
1855 }
1856 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1857
1858 /**
1859  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1860  *
1861  * @dev: device that will be given as the regulator "consumer"
1862  * @id: List of supply names or regulator IDs
1863  * @num_id: Number of aliases to unregister
1864  *
1865  * This helper function allows drivers to unregister several supply
1866  * aliases in one operation.
1867  */
1868 void regulator_bulk_unregister_supply_alias(struct device *dev,
1869                                             const char *const *id,
1870                                             int num_id)
1871 {
1872         int i;
1873
1874         for (i = 0; i < num_id; ++i)
1875                 regulator_unregister_supply_alias(dev, id[i]);
1876 }
1877 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1878
1879
1880 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1881 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1882                                 const struct regulator_config *config)
1883 {
1884         struct regulator_enable_gpio *pin;
1885         struct gpio_desc *gpiod;
1886         int ret;
1887
1888         gpiod = gpio_to_desc(config->ena_gpio);
1889
1890         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1891                 if (pin->gpiod == gpiod) {
1892                         rdev_dbg(rdev, "GPIO %d is already used\n",
1893                                 config->ena_gpio);
1894                         goto update_ena_gpio_to_rdev;
1895                 }
1896         }
1897
1898         ret = gpio_request_one(config->ena_gpio,
1899                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1900                                 rdev_get_name(rdev));
1901         if (ret)
1902                 return ret;
1903
1904         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1905         if (pin == NULL) {
1906                 gpio_free(config->ena_gpio);
1907                 return -ENOMEM;
1908         }
1909
1910         pin->gpiod = gpiod;
1911         pin->ena_gpio_invert = config->ena_gpio_invert;
1912         list_add(&pin->list, &regulator_ena_gpio_list);
1913
1914 update_ena_gpio_to_rdev:
1915         pin->request_count++;
1916         rdev->ena_pin = pin;
1917         return 0;
1918 }
1919
1920 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1921 {
1922         struct regulator_enable_gpio *pin, *n;
1923
1924         if (!rdev->ena_pin)
1925                 return;
1926
1927         /* Free the GPIO only in case of no use */
1928         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1929                 if (pin->gpiod == rdev->ena_pin->gpiod) {
1930                         if (pin->request_count <= 1) {
1931                                 pin->request_count = 0;
1932                                 gpiod_put(pin->gpiod);
1933                                 list_del(&pin->list);
1934                                 kfree(pin);
1935                                 rdev->ena_pin = NULL;
1936                                 return;
1937                         } else {
1938                                 pin->request_count--;
1939                         }
1940                 }
1941         }
1942 }
1943
1944 /**
1945  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1946  * @rdev: regulator_dev structure
1947  * @enable: enable GPIO at initial use?
1948  *
1949  * GPIO is enabled in case of initial use. (enable_count is 0)
1950  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1951  */
1952 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1953 {
1954         struct regulator_enable_gpio *pin = rdev->ena_pin;
1955
1956         if (!pin)
1957                 return -EINVAL;
1958
1959         if (enable) {
1960                 /* Enable GPIO at initial use */
1961                 if (pin->enable_count == 0)
1962                         gpiod_set_value_cansleep(pin->gpiod,
1963                                                  !pin->ena_gpio_invert);
1964
1965                 pin->enable_count++;
1966         } else {
1967                 if (pin->enable_count > 1) {
1968                         pin->enable_count--;
1969                         return 0;
1970                 }
1971
1972                 /* Disable GPIO if not used */
1973                 if (pin->enable_count <= 1) {
1974                         gpiod_set_value_cansleep(pin->gpiod,
1975                                                  pin->ena_gpio_invert);
1976                         pin->enable_count = 0;
1977                 }
1978         }
1979
1980         return 0;
1981 }
1982
1983 /**
1984  * _regulator_enable_delay - a delay helper function
1985  * @delay: time to delay in microseconds
1986  *
1987  * Delay for the requested amount of time as per the guidelines in:
1988  *
1989  *     Documentation/timers/timers-howto.txt
1990  *
1991  * The assumption here is that regulators will never be enabled in
1992  * atomic context and therefore sleeping functions can be used.
1993  */
1994 static void _regulator_enable_delay(unsigned int delay)
1995 {
1996         unsigned int ms = delay / 1000;
1997         unsigned int us = delay % 1000;
1998
1999         if (ms > 0) {
2000                 /*
2001                  * For small enough values, handle super-millisecond
2002                  * delays in the usleep_range() call below.
2003                  */
2004                 if (ms < 20)
2005                         us += ms * 1000;
2006                 else
2007                         msleep(ms);
2008         }
2009
2010         /*
2011          * Give the scheduler some room to coalesce with any other
2012          * wakeup sources. For delays shorter than 10 us, don't even
2013          * bother setting up high-resolution timers and just busy-
2014          * loop.
2015          */
2016         if (us >= 10)
2017                 usleep_range(us, us + 100);
2018         else
2019                 udelay(us);
2020 }
2021
2022 static int _regulator_do_enable(struct regulator_dev *rdev)
2023 {
2024         int ret, delay;
2025
2026         /* Query before enabling in case configuration dependent.  */
2027         ret = _regulator_get_enable_time(rdev);
2028         if (ret >= 0) {
2029                 delay = ret;
2030         } else {
2031                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2032                 delay = 0;
2033         }
2034
2035         trace_regulator_enable(rdev_get_name(rdev));
2036
2037         if (rdev->desc->off_on_delay) {
2038                 /* if needed, keep a distance of off_on_delay from last time
2039                  * this regulator was disabled.
2040                  */
2041                 unsigned long start_jiffy = jiffies;
2042                 unsigned long intended, max_delay, remaining;
2043
2044                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2045                 intended = rdev->last_off_jiffy + max_delay;
2046
2047                 if (time_before(start_jiffy, intended)) {
2048                         /* calc remaining jiffies to deal with one-time
2049                          * timer wrapping.
2050                          * in case of multiple timer wrapping, either it can be
2051                          * detected by out-of-range remaining, or it cannot be
2052                          * detected and we gets a panelty of
2053                          * _regulator_enable_delay().
2054                          */
2055                         remaining = intended - start_jiffy;
2056                         if (remaining <= max_delay)
2057                                 _regulator_enable_delay(
2058                                                 jiffies_to_usecs(remaining));
2059                 }
2060         }
2061
2062         if (rdev->ena_pin) {
2063                 if (!rdev->ena_gpio_state) {
2064                         ret = regulator_ena_gpio_ctrl(rdev, true);
2065                         if (ret < 0)
2066                                 return ret;
2067                         rdev->ena_gpio_state = 1;
2068                 }
2069         } else if (rdev->desc->ops->enable) {
2070                 ret = rdev->desc->ops->enable(rdev);
2071                 if (ret < 0)
2072                         return ret;
2073         } else {
2074                 return -EINVAL;
2075         }
2076
2077         /* Allow the regulator to ramp; it would be useful to extend
2078          * this for bulk operations so that the regulators can ramp
2079          * together.  */
2080         trace_regulator_enable_delay(rdev_get_name(rdev));
2081
2082         _regulator_enable_delay(delay);
2083
2084         trace_regulator_enable_complete(rdev_get_name(rdev));
2085
2086         return 0;
2087 }
2088
2089 /* locks held by regulator_enable() */
2090 static int _regulator_enable(struct regulator_dev *rdev)
2091 {
2092         int ret;
2093
2094         lockdep_assert_held_once(&rdev->mutex);
2095
2096         /* check voltage and requested load before enabling */
2097         if (rdev->constraints &&
2098             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
2099                 drms_uA_update(rdev);
2100
2101         if (rdev->use_count == 0) {
2102                 /* The regulator may on if it's not switchable or left on */
2103                 ret = _regulator_is_enabled(rdev);
2104                 if (ret == -EINVAL || ret == 0) {
2105                         if (!_regulator_can_change_status(rdev))
2106                                 return -EPERM;
2107
2108                         ret = _regulator_do_enable(rdev);
2109                         if (ret < 0)
2110                                 return ret;
2111
2112                 } else if (ret < 0) {
2113                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2114                         return ret;
2115                 }
2116                 /* Fallthrough on positive return values - already enabled */
2117         }
2118
2119         rdev->use_count++;
2120
2121         return 0;
2122 }
2123
2124 /**
2125  * regulator_enable - enable regulator output
2126  * @regulator: regulator source
2127  *
2128  * Request that the regulator be enabled with the regulator output at
2129  * the predefined voltage or current value.  Calls to regulator_enable()
2130  * must be balanced with calls to regulator_disable().
2131  *
2132  * NOTE: the output value can be set by other drivers, boot loader or may be
2133  * hardwired in the regulator.
2134  */
2135 int regulator_enable(struct regulator *regulator)
2136 {
2137         struct regulator_dev *rdev = regulator->rdev;
2138         int ret = 0;
2139
2140         if (regulator->always_on)
2141                 return 0;
2142
2143         if (rdev->supply) {
2144                 ret = regulator_enable(rdev->supply);
2145                 if (ret != 0)
2146                         return ret;
2147         }
2148
2149         mutex_lock(&rdev->mutex);
2150         ret = _regulator_enable(rdev);
2151         mutex_unlock(&rdev->mutex);
2152
2153         if (ret != 0 && rdev->supply)
2154                 regulator_disable(rdev->supply);
2155
2156         return ret;
2157 }
2158 EXPORT_SYMBOL_GPL(regulator_enable);
2159
2160 static int _regulator_do_disable(struct regulator_dev *rdev)
2161 {
2162         int ret;
2163
2164         trace_regulator_disable(rdev_get_name(rdev));
2165
2166         if (rdev->ena_pin) {
2167                 if (rdev->ena_gpio_state) {
2168                         ret = regulator_ena_gpio_ctrl(rdev, false);
2169                         if (ret < 0)
2170                                 return ret;
2171                         rdev->ena_gpio_state = 0;
2172                 }
2173
2174         } else if (rdev->desc->ops->disable) {
2175                 ret = rdev->desc->ops->disable(rdev);
2176                 if (ret != 0)
2177                         return ret;
2178         }
2179
2180         /* cares about last_off_jiffy only if off_on_delay is required by
2181          * device.
2182          */
2183         if (rdev->desc->off_on_delay)
2184                 rdev->last_off_jiffy = jiffies;
2185
2186         trace_regulator_disable_complete(rdev_get_name(rdev));
2187
2188         return 0;
2189 }
2190
2191 /* locks held by regulator_disable() */
2192 static int _regulator_disable(struct regulator_dev *rdev)
2193 {
2194         int ret = 0;
2195
2196         lockdep_assert_held_once(&rdev->mutex);
2197
2198         if (WARN(rdev->use_count <= 0,
2199                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2200                 return -EIO;
2201
2202         /* are we the last user and permitted to disable ? */
2203         if (rdev->use_count == 1 &&
2204             (rdev->constraints && !rdev->constraints->always_on)) {
2205
2206                 /* we are last user */
2207                 if (_regulator_can_change_status(rdev)) {
2208                         ret = _notifier_call_chain(rdev,
2209                                                    REGULATOR_EVENT_PRE_DISABLE,
2210                                                    NULL);
2211                         if (ret & NOTIFY_STOP_MASK)
2212                                 return -EINVAL;
2213
2214                         ret = _regulator_do_disable(rdev);
2215                         if (ret < 0) {
2216                                 rdev_err(rdev, "failed to disable\n");
2217                                 _notifier_call_chain(rdev,
2218                                                 REGULATOR_EVENT_ABORT_DISABLE,
2219                                                 NULL);
2220                                 return ret;
2221                         }
2222                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2223                                         NULL);
2224                 }
2225
2226                 rdev->use_count = 0;
2227         } else if (rdev->use_count > 1) {
2228
2229                 if (rdev->constraints &&
2230                         (rdev->constraints->valid_ops_mask &
2231                         REGULATOR_CHANGE_DRMS))
2232                         drms_uA_update(rdev);
2233
2234                 rdev->use_count--;
2235         }
2236
2237         return ret;
2238 }
2239
2240 /**
2241  * regulator_disable - disable regulator output
2242  * @regulator: regulator source
2243  *
2244  * Disable the regulator output voltage or current.  Calls to
2245  * regulator_enable() must be balanced with calls to
2246  * regulator_disable().
2247  *
2248  * NOTE: this will only disable the regulator output if no other consumer
2249  * devices have it enabled, the regulator device supports disabling and
2250  * machine constraints permit this operation.
2251  */
2252 int regulator_disable(struct regulator *regulator)
2253 {
2254         struct regulator_dev *rdev = regulator->rdev;
2255         int ret = 0;
2256
2257         if (regulator->always_on)
2258                 return 0;
2259
2260         mutex_lock(&rdev->mutex);
2261         ret = _regulator_disable(rdev);
2262         mutex_unlock(&rdev->mutex);
2263
2264         if (ret == 0 && rdev->supply)
2265                 regulator_disable(rdev->supply);
2266
2267         return ret;
2268 }
2269 EXPORT_SYMBOL_GPL(regulator_disable);
2270
2271 /* locks held by regulator_force_disable() */
2272 static int _regulator_force_disable(struct regulator_dev *rdev)
2273 {
2274         int ret = 0;
2275
2276         lockdep_assert_held_once(&rdev->mutex);
2277
2278         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2279                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2280         if (ret & NOTIFY_STOP_MASK)
2281                 return -EINVAL;
2282
2283         ret = _regulator_do_disable(rdev);
2284         if (ret < 0) {
2285                 rdev_err(rdev, "failed to force disable\n");
2286                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2287                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2288                 return ret;
2289         }
2290
2291         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2292                         REGULATOR_EVENT_DISABLE, NULL);
2293
2294         return 0;
2295 }
2296
2297 /**
2298  * regulator_force_disable - force disable regulator output
2299  * @regulator: regulator source
2300  *
2301  * Forcibly disable the regulator output voltage or current.
2302  * NOTE: this *will* disable the regulator output even if other consumer
2303  * devices have it enabled. This should be used for situations when device
2304  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2305  */
2306 int regulator_force_disable(struct regulator *regulator)
2307 {
2308         struct regulator_dev *rdev = regulator->rdev;
2309         int ret;
2310
2311         mutex_lock(&rdev->mutex);
2312         regulator->uA_load = 0;
2313         ret = _regulator_force_disable(regulator->rdev);
2314         mutex_unlock(&rdev->mutex);
2315
2316         if (rdev->supply)
2317                 while (rdev->open_count--)
2318                         regulator_disable(rdev->supply);
2319
2320         return ret;
2321 }
2322 EXPORT_SYMBOL_GPL(regulator_force_disable);
2323
2324 static void regulator_disable_work(struct work_struct *work)
2325 {
2326         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2327                                                   disable_work.work);
2328         int count, i, ret;
2329
2330         mutex_lock(&rdev->mutex);
2331
2332         BUG_ON(!rdev->deferred_disables);
2333
2334         count = rdev->deferred_disables;
2335         rdev->deferred_disables = 0;
2336
2337         for (i = 0; i < count; i++) {
2338                 ret = _regulator_disable(rdev);
2339                 if (ret != 0)
2340                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2341         }
2342
2343         mutex_unlock(&rdev->mutex);
2344
2345         if (rdev->supply) {
2346                 for (i = 0; i < count; i++) {
2347                         ret = regulator_disable(rdev->supply);
2348                         if (ret != 0) {
2349                                 rdev_err(rdev,
2350                                          "Supply disable failed: %d\n", ret);
2351                         }
2352                 }
2353         }
2354 }
2355
2356 /**
2357  * regulator_disable_deferred - disable regulator output with delay
2358  * @regulator: regulator source
2359  * @ms: miliseconds until the regulator is disabled
2360  *
2361  * Execute regulator_disable() on the regulator after a delay.  This
2362  * is intended for use with devices that require some time to quiesce.
2363  *
2364  * NOTE: this will only disable the regulator output if no other consumer
2365  * devices have it enabled, the regulator device supports disabling and
2366  * machine constraints permit this operation.
2367  */
2368 int regulator_disable_deferred(struct regulator *regulator, int ms)
2369 {
2370         struct regulator_dev *rdev = regulator->rdev;
2371         int ret;
2372
2373         if (regulator->always_on)
2374                 return 0;
2375
2376         if (!ms)
2377                 return regulator_disable(regulator);
2378
2379         mutex_lock(&rdev->mutex);
2380         rdev->deferred_disables++;
2381         mutex_unlock(&rdev->mutex);
2382
2383         ret = queue_delayed_work(system_power_efficient_wq,
2384                                  &rdev->disable_work,
2385                                  msecs_to_jiffies(ms));
2386         if (ret < 0)
2387                 return ret;
2388         else
2389                 return 0;
2390 }
2391 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2392
2393 static int _regulator_is_enabled(struct regulator_dev *rdev)
2394 {
2395         /* A GPIO control always takes precedence */
2396         if (rdev->ena_pin)
2397                 return rdev->ena_gpio_state;
2398
2399         /* If we don't know then assume that the regulator is always on */
2400         if (!rdev->desc->ops->is_enabled)
2401                 return 1;
2402
2403         return rdev->desc->ops->is_enabled(rdev);
2404 }
2405
2406 static int _regulator_list_voltage(struct regulator *regulator,
2407                                     unsigned selector, int lock)
2408 {
2409         struct regulator_dev *rdev = regulator->rdev;
2410         const struct regulator_ops *ops = rdev->desc->ops;
2411         int ret;
2412
2413         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2414                 return rdev->desc->fixed_uV;
2415
2416         if (ops->list_voltage) {
2417                 if (selector >= rdev->desc->n_voltages)
2418                         return -EINVAL;
2419                 if (lock)
2420                         mutex_lock(&rdev->mutex);
2421                 ret = ops->list_voltage(rdev, selector);
2422                 if (lock)
2423                         mutex_unlock(&rdev->mutex);
2424         } else if (rdev->supply) {
2425                 ret = _regulator_list_voltage(rdev->supply, selector, lock);
2426         } else {
2427                 return -EINVAL;
2428         }
2429
2430         if (ret > 0) {
2431                 if (ret < rdev->constraints->min_uV)
2432                         ret = 0;
2433                 else if (ret > rdev->constraints->max_uV)
2434                         ret = 0;
2435         }
2436
2437         return ret;
2438 }
2439
2440 /**
2441  * regulator_is_enabled - is the regulator output enabled
2442  * @regulator: regulator source
2443  *
2444  * Returns positive if the regulator driver backing the source/client
2445  * has requested that the device be enabled, zero if it hasn't, else a
2446  * negative errno code.
2447  *
2448  * Note that the device backing this regulator handle can have multiple
2449  * users, so it might be enabled even if regulator_enable() was never
2450  * called for this particular source.
2451  */
2452 int regulator_is_enabled(struct regulator *regulator)
2453 {
2454         int ret;
2455
2456         if (regulator->always_on)
2457                 return 1;
2458
2459         mutex_lock(&regulator->rdev->mutex);
2460         ret = _regulator_is_enabled(regulator->rdev);
2461         mutex_unlock(&regulator->rdev->mutex);
2462
2463         return ret;
2464 }
2465 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2466
2467 /**
2468  * regulator_can_change_voltage - check if regulator can change voltage
2469  * @regulator: regulator source
2470  *
2471  * Returns positive if the regulator driver backing the source/client
2472  * can change its voltage, false otherwise. Useful for detecting fixed
2473  * or dummy regulators and disabling voltage change logic in the client
2474  * driver.
2475  */
2476 int regulator_can_change_voltage(struct regulator *regulator)
2477 {
2478         struct regulator_dev    *rdev = regulator->rdev;
2479
2480         if (rdev->constraints &&
2481             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2482                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2483                         return 1;
2484
2485                 if (rdev->desc->continuous_voltage_range &&
2486                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
2487                     rdev->constraints->min_uV != rdev->constraints->max_uV)
2488                         return 1;
2489         }
2490
2491         return 0;
2492 }
2493 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2494
2495 /**
2496  * regulator_count_voltages - count regulator_list_voltage() selectors
2497  * @regulator: regulator source
2498  *
2499  * Returns number of selectors, or negative errno.  Selectors are
2500  * numbered starting at zero, and typically correspond to bitfields
2501  * in hardware registers.
2502  */
2503 int regulator_count_voltages(struct regulator *regulator)
2504 {
2505         struct regulator_dev    *rdev = regulator->rdev;
2506
2507         if (rdev->desc->n_voltages)
2508                 return rdev->desc->n_voltages;
2509
2510         if (!rdev->supply)
2511                 return -EINVAL;
2512
2513         return regulator_count_voltages(rdev->supply);
2514 }
2515 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2516
2517 /**
2518  * regulator_list_voltage - enumerate supported voltages
2519  * @regulator: regulator source
2520  * @selector: identify voltage to list
2521  * Context: can sleep
2522  *
2523  * Returns a voltage that can be passed to @regulator_set_voltage(),
2524  * zero if this selector code can't be used on this system, or a
2525  * negative errno.
2526  */
2527 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2528 {
2529         return _regulator_list_voltage(regulator, selector, 1);
2530 }
2531 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2532
2533 /**
2534  * regulator_get_regmap - get the regulator's register map
2535  * @regulator: regulator source
2536  *
2537  * Returns the register map for the given regulator, or an ERR_PTR value
2538  * if the regulator doesn't use regmap.
2539  */
2540 struct regmap *regulator_get_regmap(struct regulator *regulator)
2541 {
2542         struct regmap *map = regulator->rdev->regmap;
2543
2544         return map ? map : ERR_PTR(-EOPNOTSUPP);
2545 }
2546
2547 /**
2548  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2549  * @regulator: regulator source
2550  * @vsel_reg: voltage selector register, output parameter
2551  * @vsel_mask: mask for voltage selector bitfield, output parameter
2552  *
2553  * Returns the hardware register offset and bitmask used for setting the
2554  * regulator voltage. This might be useful when configuring voltage-scaling
2555  * hardware or firmware that can make I2C requests behind the kernel's back,
2556  * for example.
2557  *
2558  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2559  * and 0 is returned, otherwise a negative errno is returned.
2560  */
2561 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2562                                          unsigned *vsel_reg,
2563                                          unsigned *vsel_mask)
2564 {
2565         struct regulator_dev *rdev = regulator->rdev;
2566         const struct regulator_ops *ops = rdev->desc->ops;
2567
2568         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2569                 return -EOPNOTSUPP;
2570
2571          *vsel_reg = rdev->desc->vsel_reg;
2572          *vsel_mask = rdev->desc->vsel_mask;
2573
2574          return 0;
2575 }
2576 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2577
2578 /**
2579  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2580  * @regulator: regulator source
2581  * @selector: identify voltage to list
2582  *
2583  * Converts the selector to a hardware-specific voltage selector that can be
2584  * directly written to the regulator registers. The address of the voltage
2585  * register can be determined by calling @regulator_get_hardware_vsel_register.
2586  *
2587  * On error a negative errno is returned.
2588  */
2589 int regulator_list_hardware_vsel(struct regulator *regulator,
2590                                  unsigned selector)
2591 {
2592         struct regulator_dev *rdev = regulator->rdev;
2593         const struct regulator_ops *ops = rdev->desc->ops;
2594
2595         if (selector >= rdev->desc->n_voltages)
2596                 return -EINVAL;
2597         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2598                 return -EOPNOTSUPP;
2599
2600         return selector;
2601 }
2602 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2603
2604 /**
2605  * regulator_get_linear_step - return the voltage step size between VSEL values
2606  * @regulator: regulator source
2607  *
2608  * Returns the voltage step size between VSEL values for linear
2609  * regulators, or return 0 if the regulator isn't a linear regulator.
2610  */
2611 unsigned int regulator_get_linear_step(struct regulator *regulator)
2612 {
2613         struct regulator_dev *rdev = regulator->rdev;
2614
2615         return rdev->desc->uV_step;
2616 }
2617 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2618
2619 /**
2620  * regulator_is_supported_voltage - check if a voltage range can be supported
2621  *
2622  * @regulator: Regulator to check.
2623  * @min_uV: Minimum required voltage in uV.
2624  * @max_uV: Maximum required voltage in uV.
2625  *
2626  * Returns a boolean or a negative error code.
2627  */
2628 int regulator_is_supported_voltage(struct regulator *regulator,
2629                                    int min_uV, int max_uV)
2630 {
2631         struct regulator_dev *rdev = regulator->rdev;
2632         int i, voltages, ret;
2633
2634         /* If we can't change voltage check the current voltage */
2635         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2636                 ret = regulator_get_voltage(regulator);
2637                 if (ret >= 0)
2638                         return min_uV <= ret && ret <= max_uV;
2639                 else
2640                         return ret;
2641         }
2642
2643         /* Any voltage within constrains range is fine? */
2644         if (rdev->desc->continuous_voltage_range)
2645                 return min_uV >= rdev->constraints->min_uV &&
2646                                 max_uV <= rdev->constraints->max_uV;
2647
2648         ret = regulator_count_voltages(regulator);
2649         if (ret < 0)
2650                 return ret;
2651         voltages = ret;
2652
2653         for (i = 0; i < voltages; i++) {
2654                 ret = regulator_list_voltage(regulator, i);
2655
2656                 if (ret >= min_uV && ret <= max_uV)
2657                         return 1;
2658         }
2659
2660         return 0;
2661 }
2662 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2663
2664 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2665                                  int max_uV)
2666 {
2667         const struct regulator_desc *desc = rdev->desc;
2668
2669         if (desc->ops->map_voltage)
2670                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2671
2672         if (desc->ops->list_voltage == regulator_list_voltage_linear)
2673                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2674
2675         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2676                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2677
2678         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2679 }
2680
2681 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2682                                        int min_uV, int max_uV,
2683                                        unsigned *selector)
2684 {
2685         struct pre_voltage_change_data data;
2686         int ret;
2687
2688         data.old_uV = _regulator_get_voltage(rdev);
2689         data.min_uV = min_uV;
2690         data.max_uV = max_uV;
2691         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2692                                    &data);
2693         if (ret & NOTIFY_STOP_MASK)
2694                 return -EINVAL;
2695
2696         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2697         if (ret >= 0)
2698                 return ret;
2699
2700         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2701                              (void *)data.old_uV);
2702
2703         return ret;
2704 }
2705
2706 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2707                                            int uV, unsigned selector)
2708 {
2709         struct pre_voltage_change_data data;
2710         int ret;
2711
2712         data.old_uV = _regulator_get_voltage(rdev);
2713         data.min_uV = uV;
2714         data.max_uV = uV;
2715         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2716                                    &data);
2717         if (ret & NOTIFY_STOP_MASK)
2718                 return -EINVAL;
2719
2720         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2721         if (ret >= 0)
2722                 return ret;
2723
2724         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2725                              (void *)data.old_uV);
2726
2727         return ret;
2728 }
2729
2730 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2731                                      int min_uV, int max_uV)
2732 {
2733         int ret;
2734         int delay = 0;
2735         int best_val = 0;
2736         unsigned int selector;
2737         int old_selector = -1;
2738
2739         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2740
2741         min_uV += rdev->constraints->uV_offset;
2742         max_uV += rdev->constraints->uV_offset;
2743
2744         /*
2745          * If we can't obtain the old selector there is not enough
2746          * info to call set_voltage_time_sel().
2747          */
2748         if (_regulator_is_enabled(rdev) &&
2749             rdev->desc->ops->set_voltage_time_sel &&
2750             rdev->desc->ops->get_voltage_sel) {
2751                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2752                 if (old_selector < 0)
2753                         return old_selector;
2754         }
2755
2756         if (rdev->desc->ops->set_voltage) {
2757                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2758                                                   &selector);
2759
2760                 if (ret >= 0) {
2761                         if (rdev->desc->ops->list_voltage)
2762                                 best_val = rdev->desc->ops->list_voltage(rdev,
2763                                                                          selector);
2764                         else
2765                                 best_val = _regulator_get_voltage(rdev);
2766                 }
2767
2768         } else if (rdev->desc->ops->set_voltage_sel) {
2769                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2770                 if (ret >= 0) {
2771                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2772                         if (min_uV <= best_val && max_uV >= best_val) {
2773                                 selector = ret;
2774                                 if (old_selector == selector)
2775                                         ret = 0;
2776                                 else
2777                                         ret = _regulator_call_set_voltage_sel(
2778                                                 rdev, best_val, selector);
2779                         } else {
2780                                 ret = -EINVAL;
2781                         }
2782                 }
2783         } else {
2784                 ret = -EINVAL;
2785         }
2786
2787         /* Call set_voltage_time_sel if successfully obtained old_selector */
2788         if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2789                 && old_selector != selector) {
2790
2791                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2792                                                 old_selector, selector);
2793                 if (delay < 0) {
2794                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2795                                   delay);
2796                         delay = 0;
2797                 }
2798
2799                 /* Insert any necessary delays */
2800                 if (delay >= 1000) {
2801                         mdelay(delay / 1000);
2802                         udelay(delay % 1000);
2803                 } else if (delay) {
2804                         udelay(delay);
2805                 }
2806         }
2807
2808         if (ret == 0 && best_val >= 0) {
2809                 unsigned long data = best_val;
2810
2811                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2812                                      (void *)data);
2813         }
2814
2815         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2816
2817         return ret;
2818 }
2819
2820 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2821                                           int min_uV, int max_uV)
2822 {
2823         struct regulator_dev *rdev = regulator->rdev;
2824         int ret = 0;
2825         int old_min_uV, old_max_uV;
2826         int current_uV;
2827         int best_supply_uV = 0;
2828         int supply_change_uV = 0;
2829
2830         /* If we're setting the same range as last time the change
2831          * should be a noop (some cpufreq implementations use the same
2832          * voltage for multiple frequencies, for example).
2833          */
2834         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2835                 goto out;
2836
2837         /* If we're trying to set a range that overlaps the current voltage,
2838          * return successfully even though the regulator does not support
2839          * changing the voltage.
2840          */
2841         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2842                 current_uV = _regulator_get_voltage(rdev);
2843                 if (min_uV <= current_uV && current_uV <= max_uV) {
2844                         regulator->min_uV = min_uV;
2845                         regulator->max_uV = max_uV;
2846                         goto out;
2847                 }
2848         }
2849
2850         /* sanity check */
2851         if (!rdev->desc->ops->set_voltage &&
2852             !rdev->desc->ops->set_voltage_sel) {
2853                 ret = -EINVAL;
2854                 goto out;
2855         }
2856
2857         /* constraints check */
2858         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2859         if (ret < 0)
2860                 goto out;
2861
2862         /* restore original values in case of error */
2863         old_min_uV = regulator->min_uV;
2864         old_max_uV = regulator->max_uV;
2865         regulator->min_uV = min_uV;
2866         regulator->max_uV = max_uV;
2867
2868         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2869         if (ret < 0)
2870                 goto out2;
2871
2872         if (rdev->supply && (rdev->desc->min_dropout_uV ||
2873                                 !rdev->desc->ops->get_voltage)) {
2874                 int current_supply_uV;
2875                 int selector;
2876
2877                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
2878                 if (selector < 0) {
2879                         ret = selector;
2880                         goto out2;
2881                 }
2882
2883                 best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2884                 if (best_supply_uV < 0) {
2885                         ret = best_supply_uV;
2886                         goto out2;
2887                 }
2888
2889                 best_supply_uV += rdev->desc->min_dropout_uV;
2890
2891                 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2892                 if (current_supply_uV < 0) {
2893                         ret = current_supply_uV;
2894                         goto out2;
2895                 }
2896
2897                 supply_change_uV = best_supply_uV - current_supply_uV;
2898         }
2899
2900         if (supply_change_uV > 0) {
2901                 ret = regulator_set_voltage_unlocked(rdev->supply,
2902                                 best_supply_uV, INT_MAX);
2903                 if (ret) {
2904                         dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2905                                         ret);
2906                         goto out2;
2907                 }
2908         }
2909
2910         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2911         if (ret < 0)
2912                 goto out2;
2913
2914         if (supply_change_uV < 0) {
2915                 ret = regulator_set_voltage_unlocked(rdev->supply,
2916                                 best_supply_uV, INT_MAX);
2917                 if (ret)
2918                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2919                                         ret);
2920                 /* No need to fail here */
2921                 ret = 0;
2922         }
2923
2924 out:
2925         return ret;
2926 out2:
2927         regulator->min_uV = old_min_uV;
2928         regulator->max_uV = old_max_uV;
2929
2930         return ret;
2931 }
2932
2933 /**
2934  * regulator_set_voltage - set regulator output voltage
2935  * @regulator: regulator source
2936  * @min_uV: Minimum required voltage in uV
2937  * @max_uV: Maximum acceptable voltage in uV
2938  *
2939  * Sets a voltage regulator to the desired output voltage. This can be set
2940  * during any regulator state. IOW, regulator can be disabled or enabled.
2941  *
2942  * If the regulator is enabled then the voltage will change to the new value
2943  * immediately otherwise if the regulator is disabled the regulator will
2944  * output at the new voltage when enabled.
2945  *
2946  * NOTE: If the regulator is shared between several devices then the lowest
2947  * request voltage that meets the system constraints will be used.
2948  * Regulator system constraints must be set for this regulator before
2949  * calling this function otherwise this call will fail.
2950  */
2951 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2952 {
2953         int ret = 0;
2954
2955         regulator_lock_supply(regulator->rdev);
2956
2957         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
2958
2959         regulator_unlock_supply(regulator->rdev);
2960
2961         return ret;
2962 }
2963 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2964
2965 /**
2966  * regulator_set_voltage_time - get raise/fall time
2967  * @regulator: regulator source
2968  * @old_uV: starting voltage in microvolts
2969  * @new_uV: target voltage in microvolts
2970  *
2971  * Provided with the starting and ending voltage, this function attempts to
2972  * calculate the time in microseconds required to rise or fall to this new
2973  * voltage.
2974  */
2975 int regulator_set_voltage_time(struct regulator *regulator,
2976                                int old_uV, int new_uV)
2977 {
2978         struct regulator_dev *rdev = regulator->rdev;
2979         const struct regulator_ops *ops = rdev->desc->ops;
2980         int old_sel = -1;
2981         int new_sel = -1;
2982         int voltage;
2983         int i;
2984
2985         /* Currently requires operations to do this */
2986         if (!ops->list_voltage || !ops->set_voltage_time_sel
2987             || !rdev->desc->n_voltages)
2988                 return -EINVAL;
2989
2990         for (i = 0; i < rdev->desc->n_voltages; i++) {
2991                 /* We only look for exact voltage matches here */
2992                 voltage = regulator_list_voltage(regulator, i);
2993                 if (voltage < 0)
2994                         return -EINVAL;
2995                 if (voltage == 0)
2996                         continue;
2997                 if (voltage == old_uV)
2998                         old_sel = i;
2999                 if (voltage == new_uV)
3000                         new_sel = i;
3001         }
3002
3003         if (old_sel < 0 || new_sel < 0)
3004                 return -EINVAL;
3005
3006         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3007 }
3008 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3009
3010 /**
3011  * regulator_set_voltage_time_sel - get raise/fall time
3012  * @rdev: regulator source device
3013  * @old_selector: selector for starting voltage
3014  * @new_selector: selector for target voltage
3015  *
3016  * Provided with the starting and target voltage selectors, this function
3017  * returns time in microseconds required to rise or fall to this new voltage
3018  *
3019  * Drivers providing ramp_delay in regulation_constraints can use this as their
3020  * set_voltage_time_sel() operation.
3021  */
3022 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3023                                    unsigned int old_selector,
3024                                    unsigned int new_selector)
3025 {
3026         unsigned int ramp_delay = 0;
3027         int old_volt, new_volt;
3028
3029         if (rdev->constraints->ramp_delay)
3030                 ramp_delay = rdev->constraints->ramp_delay;
3031         else if (rdev->desc->ramp_delay)
3032                 ramp_delay = rdev->desc->ramp_delay;
3033
3034         if (ramp_delay == 0) {
3035                 rdev_warn(rdev, "ramp_delay not set\n");
3036                 return 0;
3037         }
3038
3039         /* sanity check */
3040         if (!rdev->desc->ops->list_voltage)
3041                 return -EINVAL;
3042
3043         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3044         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3045
3046         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
3047 }
3048 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3049
3050 /**
3051  * regulator_sync_voltage - re-apply last regulator output voltage
3052  * @regulator: regulator source
3053  *
3054  * Re-apply the last configured voltage.  This is intended to be used
3055  * where some external control source the consumer is cooperating with
3056  * has caused the configured voltage to change.
3057  */
3058 int regulator_sync_voltage(struct regulator *regulator)
3059 {
3060         struct regulator_dev *rdev = regulator->rdev;
3061         int ret, min_uV, max_uV;
3062
3063         mutex_lock(&rdev->mutex);
3064
3065         if (!rdev->desc->ops->set_voltage &&
3066             !rdev->desc->ops->set_voltage_sel) {
3067                 ret = -EINVAL;
3068                 goto out;
3069         }
3070
3071         /* This is only going to work if we've had a voltage configured. */
3072         if (!regulator->min_uV && !regulator->max_uV) {
3073                 ret = -EINVAL;
3074                 goto out;
3075         }
3076
3077         min_uV = regulator->min_uV;
3078         max_uV = regulator->max_uV;
3079
3080         /* This should be a paranoia check... */
3081         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3082         if (ret < 0)
3083                 goto out;
3084
3085         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3086         if (ret < 0)
3087                 goto out;
3088
3089         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3090
3091 out:
3092         mutex_unlock(&rdev->mutex);
3093         return ret;
3094 }
3095 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3096
3097 static int _regulator_get_voltage(struct regulator_dev *rdev)
3098 {
3099         int sel, ret;
3100
3101         if (rdev->desc->ops->get_voltage_sel) {
3102                 sel = rdev->desc->ops->get_voltage_sel(rdev);
3103                 if (sel < 0)
3104                         return sel;
3105                 ret = rdev->desc->ops->list_voltage(rdev, sel);
3106         } else if (rdev->desc->ops->get_voltage) {
3107                 ret = rdev->desc->ops->get_voltage(rdev);
3108         } else if (rdev->desc->ops->list_voltage) {
3109                 ret = rdev->desc->ops->list_voltage(rdev, 0);
3110         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3111                 ret = rdev->desc->fixed_uV;
3112         } else if (rdev->supply) {
3113                 ret = _regulator_get_voltage(rdev->supply->rdev);
3114         } else {
3115                 return -EINVAL;
3116         }
3117
3118         if (ret < 0)
3119                 return ret;
3120         return ret - rdev->constraints->uV_offset;
3121 }
3122
3123 /**
3124  * regulator_get_voltage - get regulator output voltage
3125  * @regulator: regulator source
3126  *
3127  * This returns the current regulator voltage in uV.
3128  *
3129  * NOTE: If the regulator is disabled it will return the voltage value. This
3130  * function should not be used to determine regulator state.
3131  */
3132 int regulator_get_voltage(struct regulator *regulator)
3133 {
3134         int ret;
3135
3136         regulator_lock_supply(regulator->rdev);
3137
3138         ret = _regulator_get_voltage(regulator->rdev);
3139
3140         regulator_unlock_supply(regulator->rdev);
3141
3142         return ret;
3143 }
3144 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3145
3146 /**
3147  * regulator_set_current_limit - set regulator output current limit
3148  * @regulator: regulator source
3149  * @min_uA: Minimum supported current in uA
3150  * @max_uA: Maximum supported current in uA
3151  *
3152  * Sets current sink to the desired output current. This can be set during
3153  * any regulator state. IOW, regulator can be disabled or enabled.
3154  *
3155  * If the regulator is enabled then the current will change to the new value
3156  * immediately otherwise if the regulator is disabled the regulator will
3157  * output at the new current when enabled.
3158  *
3159  * NOTE: Regulator system constraints must be set for this regulator before
3160  * calling this function otherwise this call will fail.
3161  */
3162 int regulator_set_current_limit(struct regulator *regulator,
3163                                int min_uA, int max_uA)
3164 {
3165         struct regulator_dev *rdev = regulator->rdev;
3166         int ret;
3167
3168         mutex_lock(&rdev->mutex);
3169
3170         /* sanity check */
3171         if (!rdev->desc->ops->set_current_limit) {
3172                 ret = -EINVAL;
3173                 goto out;
3174         }
3175
3176         /* constraints check */
3177         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3178         if (ret < 0)
3179                 goto out;
3180
3181         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3182 out:
3183         mutex_unlock(&rdev->mutex);
3184         return ret;
3185 }
3186 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3187
3188 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3189 {
3190         int ret;
3191
3192         mutex_lock(&rdev->mutex);
3193
3194         /* sanity check */
3195         if (!rdev->desc->ops->get_current_limit) {
3196                 ret = -EINVAL;
3197                 goto out;
3198         }
3199
3200         ret = rdev->desc->ops->get_current_limit(rdev);
3201 out:
3202         mutex_unlock(&rdev->mutex);
3203         return ret;
3204 }
3205
3206 /**
3207  * regulator_get_current_limit - get regulator output current
3208  * @regulator: regulator source
3209  *
3210  * This returns the current supplied by the specified current sink in uA.
3211  *
3212  * NOTE: If the regulator is disabled it will return the current value. This
3213  * function should not be used to determine regulator state.
3214  */
3215 int regulator_get_current_limit(struct regulator *regulator)
3216 {
3217         return _regulator_get_current_limit(regulator->rdev);
3218 }
3219 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3220
3221 /**
3222  * regulator_set_mode - set regulator operating mode
3223  * @regulator: regulator source
3224  * @mode: operating mode - one of the REGULATOR_MODE constants
3225  *
3226  * Set regulator operating mode to increase regulator efficiency or improve
3227  * regulation performance.
3228  *
3229  * NOTE: Regulator system constraints must be set for this regulator before
3230  * calling this function otherwise this call will fail.
3231  */
3232 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3233 {
3234         struct regulator_dev *rdev = regulator->rdev;
3235         int ret;
3236         int regulator_curr_mode;
3237
3238         mutex_lock(&rdev->mutex);
3239
3240         /* sanity check */
3241         if (!rdev->desc->ops->set_mode) {
3242                 ret = -EINVAL;
3243                 goto out;
3244         }
3245
3246         /* return if the same mode is requested */
3247         if (rdev->desc->ops->get_mode) {
3248                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3249                 if (regulator_curr_mode == mode) {
3250                         ret = 0;
3251                         goto out;
3252                 }
3253         }
3254
3255         /* constraints check */
3256         ret = regulator_mode_constrain(rdev, &mode);
3257         if (ret < 0)
3258                 goto out;
3259
3260         ret = rdev->desc->ops->set_mode(rdev, mode);
3261 out:
3262         mutex_unlock(&rdev->mutex);
3263         return ret;
3264 }
3265 EXPORT_SYMBOL_GPL(regulator_set_mode);
3266
3267 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3268 {
3269         int ret;
3270
3271         mutex_lock(&rdev->mutex);
3272
3273         /* sanity check */
3274         if (!rdev->desc->ops->get_mode) {
3275                 ret = -EINVAL;
3276                 goto out;
3277         }
3278
3279         ret = rdev->desc->ops->get_mode(rdev);
3280 out:
3281         mutex_unlock(&rdev->mutex);
3282         return ret;
3283 }
3284
3285 /**
3286  * regulator_get_mode - get regulator operating mode
3287  * @regulator: regulator source
3288  *
3289  * Get the current regulator operating mode.
3290  */
3291 unsigned int regulator_get_mode(struct regulator *regulator)
3292 {
3293         return _regulator_get_mode(regulator->rdev);
3294 }
3295 EXPORT_SYMBOL_GPL(regulator_get_mode);
3296
3297 /**
3298  * regulator_set_load - set regulator load
3299  * @regulator: regulator source
3300  * @uA_load: load current
3301  *
3302  * Notifies the regulator core of a new device load. This is then used by
3303  * DRMS (if enabled by constraints) to set the most efficient regulator
3304  * operating mode for the new regulator loading.
3305  *
3306  * Consumer devices notify their supply regulator of the maximum power
3307  * they will require (can be taken from device datasheet in the power
3308  * consumption tables) when they change operational status and hence power
3309  * state. Examples of operational state changes that can affect power
3310  * consumption are :-
3311  *
3312  *    o Device is opened / closed.
3313  *    o Device I/O is about to begin or has just finished.
3314  *    o Device is idling in between work.
3315  *
3316  * This information is also exported via sysfs to userspace.
3317  *
3318  * DRMS will sum the total requested load on the regulator and change
3319  * to the most efficient operating mode if platform constraints allow.
3320  *
3321  * On error a negative errno is returned.
3322  */
3323 int regulator_set_load(struct regulator *regulator, int uA_load)
3324 {
3325         struct regulator_dev *rdev = regulator->rdev;
3326         int ret;
3327
3328         mutex_lock(&rdev->mutex);
3329         regulator->uA_load = uA_load;
3330         ret = drms_uA_update(rdev);
3331         mutex_unlock(&rdev->mutex);
3332
3333         return ret;
3334 }
3335 EXPORT_SYMBOL_GPL(regulator_set_load);
3336
3337 /**
3338  * regulator_allow_bypass - allow the regulator to go into bypass mode
3339  *
3340  * @regulator: Regulator to configure
3341  * @enable: enable or disable bypass mode
3342  *
3343  * Allow the regulator to go into bypass mode if all other consumers
3344  * for the regulator also enable bypass mode and the machine
3345  * constraints allow this.  Bypass mode means that the regulator is
3346  * simply passing the input directly to the output with no regulation.
3347  */
3348 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3349 {
3350         struct regulator_dev *rdev = regulator->rdev;
3351         int ret = 0;
3352
3353         if (!rdev->desc->ops->set_bypass)
3354                 return 0;
3355
3356         if (rdev->constraints &&
3357             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3358                 return 0;
3359
3360         mutex_lock(&rdev->mutex);
3361
3362         if (enable && !regulator->bypass) {
3363                 rdev->bypass_count++;
3364
3365                 if (rdev->bypass_count == rdev->open_count) {
3366                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3367                         if (ret != 0)
3368                                 rdev->bypass_count--;
3369                 }
3370
3371         } else if (!enable && regulator->bypass) {
3372                 rdev->bypass_count--;
3373
3374                 if (rdev->bypass_count != rdev->open_count) {
3375                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3376                         if (ret != 0)
3377                                 rdev->bypass_count++;
3378                 }
3379         }
3380
3381         if (ret == 0)
3382                 regulator->bypass = enable;
3383
3384         mutex_unlock(&rdev->mutex);
3385
3386         return ret;
3387 }
3388 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3389
3390 /**
3391  * regulator_register_notifier - register regulator event notifier
3392  * @regulator: regulator source
3393  * @nb: notifier block
3394  *
3395  * Register notifier block to receive regulator events.
3396  */
3397 int regulator_register_notifier(struct regulator *regulator,
3398                               struct notifier_block *nb)
3399 {
3400         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3401                                                 nb);
3402 }
3403 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3404
3405 /**
3406  * regulator_unregister_notifier - unregister regulator event notifier
3407  * @regulator: regulator source
3408  * @nb: notifier block
3409  *
3410  * Unregister regulator event notifier block.
3411  */
3412 int regulator_unregister_notifier(struct regulator *regulator,
3413                                 struct notifier_block *nb)
3414 {
3415         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3416                                                   nb);
3417 }
3418 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3419
3420 /* notify regulator consumers and downstream regulator consumers.
3421  * Note mutex must be held by caller.
3422  */
3423 static int _notifier_call_chain(struct regulator_dev *rdev,
3424                                   unsigned long event, void *data)
3425 {
3426         /* call rdev chain first */
3427         return blocking_notifier_call_chain(&rdev->notifier, event, data);
3428 }
3429
3430 /**
3431  * regulator_bulk_get - get multiple regulator consumers
3432  *
3433  * @dev:           Device to supply
3434  * @num_consumers: Number of consumers to register
3435  * @consumers:     Configuration of consumers; clients are stored here.
3436  *
3437  * @return 0 on success, an errno on failure.
3438  *
3439  * This helper function allows drivers to get several regulator
3440  * consumers in one operation.  If any of the regulators cannot be
3441  * acquired then any regulators that were allocated will be freed
3442  * before returning to the caller.
3443  */
3444 int regulator_bulk_get(struct device *dev, int num_consumers,
3445                        struct regulator_bulk_data *consumers)
3446 {
3447         int i;
3448         int ret;
3449
3450         for (i = 0; i < num_consumers; i++)
3451                 consumers[i].consumer = NULL;
3452
3453         for (i = 0; i < num_consumers; i++) {
3454                 consumers[i].consumer = regulator_get(dev,
3455                                                       consumers[i].supply);
3456                 if (IS_ERR(consumers[i].consumer)) {
3457                         ret = PTR_ERR(consumers[i].consumer);
3458                         dev_err(dev, "Failed to get supply '%s': %d\n",
3459                                 consumers[i].supply, ret);
3460                         consumers[i].consumer = NULL;
3461                         goto err;
3462                 }
3463         }
3464
3465         return 0;
3466
3467 err:
3468         while (--i >= 0)
3469                 regulator_put(consumers[i].consumer);
3470
3471         return ret;
3472 }
3473 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3474
3475 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3476 {
3477         struct regulator_bulk_data *bulk = data;
3478
3479         bulk->ret = regulator_enable(bulk->consumer);
3480 }
3481
3482 /**
3483  * regulator_bulk_enable - enable multiple regulator consumers
3484  *
3485  * @num_consumers: Number of consumers
3486  * @consumers:     Consumer data; clients are stored here.
3487  * @return         0 on success, an errno on failure
3488  *
3489  * This convenience API allows consumers to enable multiple regulator
3490  * clients in a single API call.  If any consumers cannot be enabled
3491  * then any others that were enabled will be disabled again prior to
3492  * return.
3493  */
3494 int regulator_bulk_enable(int num_consumers,
3495                           struct regulator_bulk_data *consumers)
3496 {
3497         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3498         int i;
3499         int ret = 0;
3500
3501         for (i = 0; i < num_consumers; i++) {
3502                 if (consumers[i].consumer->always_on)
3503                         consumers[i].ret = 0;
3504                 else
3505                         async_schedule_domain(regulator_bulk_enable_async,
3506                                               &consumers[i], &async_domain);
3507         }
3508
3509         async_synchronize_full_domain(&async_domain);
3510
3511         /* If any consumer failed we need to unwind any that succeeded */
3512         for (i = 0; i < num_consumers; i++) {
3513                 if (consumers[i].ret != 0) {
3514                         ret = consumers[i].ret;
3515                         goto err;
3516                 }
3517         }
3518
3519         return 0;
3520
3521 err:
3522         for (i = 0; i < num_consumers; i++) {
3523                 if (consumers[i].ret < 0)
3524                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3525                                consumers[i].ret);
3526                 else
3527                         regulator_disable(consumers[i].consumer);
3528         }
3529
3530         return ret;
3531 }
3532 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3533
3534 /**
3535  * regulator_bulk_disable - disable multiple regulator consumers
3536  *
3537  * @num_consumers: Number of consumers
3538  * @consumers:     Consumer data; clients are stored here.
3539  * @return         0 on success, an errno on failure
3540  *
3541  * This convenience API allows consumers to disable multiple regulator
3542  * clients in a single API call.  If any consumers cannot be disabled
3543  * then any others that were disabled will be enabled again prior to
3544  * return.
3545  */
3546 int regulator_bulk_disable(int num_consumers,
3547                            struct regulator_bulk_data *consumers)
3548 {
3549         int i;
3550         int ret, r;
3551
3552         for (i = num_consumers - 1; i >= 0; --i) {
3553                 ret = regulator_disable(consumers[i].consumer);
3554                 if (ret != 0)
3555                         goto err;
3556         }
3557
3558         return 0;
3559
3560 err:
3561         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3562         for (++i; i < num_consumers; ++i) {
3563                 r = regulator_enable(consumers[i].consumer);
3564                 if (r != 0)
3565                         pr_err("Failed to reename %s: %d\n",
3566                                consumers[i].supply, r);
3567         }
3568
3569         return ret;
3570 }
3571 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3572
3573 /**
3574  * regulator_bulk_force_disable - force disable multiple regulator consumers
3575  *
3576  * @num_consumers: Number of consumers
3577  * @consumers:     Consumer data; clients are stored here.
3578  * @return         0 on success, an errno on failure
3579  *
3580  * This convenience API allows consumers to forcibly disable multiple regulator
3581  * clients in a single API call.
3582  * NOTE: This should be used for situations when device damage will
3583  * likely occur if the regulators are not disabled (e.g. over temp).
3584  * Although regulator_force_disable function call for some consumers can
3585  * return error numbers, the function is called for all consumers.
3586  */
3587 int regulator_bulk_force_disable(int num_consumers,
3588                            struct regulator_bulk_data *consumers)
3589 {
3590         int i;
3591         int ret;
3592
3593         for (i = 0; i < num_consumers; i++)
3594                 consumers[i].ret =
3595                             regulator_force_disable(consumers[i].consumer);
3596
3597         for (i = 0; i < num_consumers; i++) {
3598                 if (consumers[i].ret != 0) {
3599                         ret = consumers[i].ret;
3600                         goto out;
3601                 }
3602         }
3603
3604         return 0;
3605 out:
3606         return ret;
3607 }
3608 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3609
3610 /**
3611  * regulator_bulk_free - free multiple regulator consumers
3612  *
3613  * @num_consumers: Number of consumers
3614  * @consumers:     Consumer data; clients are stored here.
3615  *
3616  * This convenience API allows consumers to free multiple regulator
3617  * clients in a single API call.
3618  */
3619 void regulator_bulk_free(int num_consumers,
3620                          struct regulator_bulk_data *consumers)
3621 {
3622         int i;
3623
3624         for (i = 0; i < num_consumers; i++) {
3625                 regulator_put(consumers[i].consumer);
3626                 consumers[i].consumer = NULL;
3627         }
3628 }
3629 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3630
3631 /**
3632  * regulator_notifier_call_chain - call regulator event notifier
3633  * @rdev: regulator source
3634  * @event: notifier block
3635  * @data: callback-specific data.
3636  *
3637  * Called by regulator drivers to notify clients a regulator event has
3638  * occurred. We also notify regulator clients downstream.
3639  * Note lock must be held by caller.
3640  */
3641 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3642                                   unsigned long event, void *data)
3643 {
3644         lockdep_assert_held_once(&rdev->mutex);
3645
3646         _notifier_call_chain(rdev, event, data);
3647         return NOTIFY_DONE;
3648
3649 }
3650 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3651
3652 /**
3653  * regulator_mode_to_status - convert a regulator mode into a status
3654  *
3655  * @mode: Mode to convert
3656  *
3657  * Convert a regulator mode into a status.
3658  */
3659 int regulator_mode_to_status(unsigned int mode)
3660 {
3661         switch (mode) {
3662         case REGULATOR_MODE_FAST:
3663                 return REGULATOR_STATUS_FAST;
3664         case REGULATOR_MODE_NORMAL:
3665                 return REGULATOR_STATUS_NORMAL;
3666         case REGULATOR_MODE_IDLE:
3667                 return REGULATOR_STATUS_IDLE;
3668         case REGULATOR_MODE_STANDBY:
3669                 return REGULATOR_STATUS_STANDBY;
3670         default:
3671                 return REGULATOR_STATUS_UNDEFINED;
3672         }
3673 }
3674 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3675
3676 static struct attribute *regulator_dev_attrs[] = {
3677         &dev_attr_name.attr,
3678         &dev_attr_num_users.attr,
3679         &dev_attr_type.attr,
3680         &dev_attr_microvolts.attr,
3681         &dev_attr_microamps.attr,
3682         &dev_attr_opmode.attr,
3683         &dev_attr_state.attr,
3684         &dev_attr_status.attr,
3685         &dev_attr_bypass.attr,
3686         &dev_attr_requested_microamps.attr,
3687         &dev_attr_min_microvolts.attr,
3688         &dev_attr_max_microvolts.attr,
3689         &dev_attr_min_microamps.attr,
3690         &dev_attr_max_microamps.attr,
3691         &dev_attr_suspend_standby_state.attr,
3692         &dev_attr_suspend_mem_state.attr,
3693         &dev_attr_suspend_disk_state.attr,
3694         &dev_attr_suspend_standby_microvolts.attr,
3695         &dev_attr_suspend_mem_microvolts.attr,
3696         &dev_attr_suspend_disk_microvolts.attr,
3697         &dev_attr_suspend_standby_mode.attr,
3698         &dev_attr_suspend_mem_mode.attr,
3699         &dev_attr_suspend_disk_mode.attr,
3700         NULL
3701 };
3702
3703 /*
3704  * To avoid cluttering sysfs (and memory) with useless state, only
3705  * create attributes that can be meaningfully displayed.
3706  */
3707 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3708                                          struct attribute *attr, int idx)
3709 {
3710         struct device *dev = kobj_to_dev(kobj);
3711         struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev);
3712         const struct regulator_ops *ops = rdev->desc->ops;
3713         umode_t mode = attr->mode;
3714
3715         /* these three are always present */
3716         if (attr == &dev_attr_name.attr ||
3717             attr == &dev_attr_num_users.attr ||
3718             attr == &dev_attr_type.attr)
3719                 return mode;
3720
3721         /* some attributes need specific methods to be displayed */
3722         if (attr == &dev_attr_microvolts.attr) {
3723                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3724                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3725                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3726                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3727                         return mode;
3728                 return 0;
3729         }
3730
3731         if (attr == &dev_attr_microamps.attr)
3732                 return ops->get_current_limit ? mode : 0;
3733
3734         if (attr == &dev_attr_opmode.attr)
3735                 return ops->get_mode ? mode : 0;
3736
3737         if (attr == &dev_attr_state.attr)
3738                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3739
3740         if (attr == &dev_attr_status.attr)
3741                 return ops->get_status ? mode : 0;
3742
3743         if (attr == &dev_attr_bypass.attr)
3744                 return ops->get_bypass ? mode : 0;
3745
3746         /* some attributes are type-specific */
3747         if (attr == &dev_attr_requested_microamps.attr)
3748                 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3749
3750         /* constraints need specific supporting methods */
3751         if (attr == &dev_attr_min_microvolts.attr ||
3752             attr == &dev_attr_max_microvolts.attr)
3753                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3754
3755         if (attr == &dev_attr_min_microamps.attr ||
3756             attr == &dev_attr_max_microamps.attr)
3757                 return ops->set_current_limit ? mode : 0;
3758
3759         if (attr == &dev_attr_suspend_standby_state.attr ||
3760             attr == &dev_attr_suspend_mem_state.attr ||
3761             attr == &dev_attr_suspend_disk_state.attr)
3762                 return mode;
3763
3764         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3765             attr == &dev_attr_suspend_mem_microvolts.attr ||
3766             attr == &dev_attr_suspend_disk_microvolts.attr)
3767                 return ops->set_suspend_voltage ? mode : 0;
3768
3769         if (attr == &dev_attr_suspend_standby_mode.attr ||
3770             attr == &dev_attr_suspend_mem_mode.attr ||
3771             attr == &dev_attr_suspend_disk_mode.attr)
3772                 return ops->set_suspend_mode ? mode : 0;
3773
3774         return mode;
3775 }
3776
3777 static const struct attribute_group regulator_dev_group = {
3778         .attrs = regulator_dev_attrs,
3779         .is_visible = regulator_attr_is_visible,
3780 };
3781
3782 static const struct attribute_group *regulator_dev_groups[] = {
3783         &regulator_dev_group,
3784         NULL
3785 };
3786
3787 static void regulator_dev_release(struct device *dev)
3788 {
3789         struct regulator_dev *rdev = dev_get_drvdata(dev);
3790
3791         kfree(rdev->constraints);
3792         of_node_put(rdev->dev.of_node);
3793         kfree(rdev);
3794 }
3795
3796 static struct class regulator_class = {
3797         .name = "regulator",
3798         .dev_release = regulator_dev_release,
3799         .dev_groups = regulator_dev_groups,
3800 };
3801
3802 static void rdev_init_debugfs(struct regulator_dev *rdev)
3803 {
3804         struct device *parent = rdev->dev.parent;
3805         const char *rname = rdev_get_name(rdev);
3806         char name[NAME_MAX];
3807
3808         /* Avoid duplicate debugfs directory names */
3809         if (parent && rname == rdev->desc->name) {
3810                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3811                          rname);
3812                 rname = name;
3813         }
3814
3815         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3816         if (!rdev->debugfs) {
3817                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3818                 return;
3819         }
3820
3821         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3822                            &rdev->use_count);
3823         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3824                            &rdev->open_count);
3825         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3826                            &rdev->bypass_count);
3827 }
3828
3829 /**
3830  * regulator_register - register regulator
3831  * @regulator_desc: regulator to register
3832  * @cfg: runtime configuration for regulator
3833  *
3834  * Called by regulator drivers to register a regulator.
3835  * Returns a valid pointer to struct regulator_dev on success
3836  * or an ERR_PTR() on error.
3837  */
3838 struct regulator_dev *
3839 regulator_register(const struct regulator_desc *regulator_desc,
3840                    const struct regulator_config *cfg)
3841 {
3842         const struct regulation_constraints *constraints = NULL;
3843         const struct regulator_init_data *init_data;
3844         struct regulator_config *config = NULL;
3845         static atomic_t regulator_no = ATOMIC_INIT(-1);
3846         struct regulator_dev *rdev;
3847         struct device *dev;
3848         int ret, i;
3849
3850         if (regulator_desc == NULL || cfg == NULL)
3851                 return ERR_PTR(-EINVAL);
3852
3853         dev = cfg->dev;
3854         WARN_ON(!dev);
3855
3856         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3857                 return ERR_PTR(-EINVAL);
3858
3859         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3860             regulator_desc->type != REGULATOR_CURRENT)
3861                 return ERR_PTR(-EINVAL);
3862
3863         /* Only one of each should be implemented */
3864         WARN_ON(regulator_desc->ops->get_voltage &&
3865                 regulator_desc->ops->get_voltage_sel);
3866         WARN_ON(regulator_desc->ops->set_voltage &&
3867                 regulator_desc->ops->set_voltage_sel);
3868
3869         /* If we're using selectors we must implement list_voltage. */
3870         if (regulator_desc->ops->get_voltage_sel &&
3871             !regulator_desc->ops->list_voltage) {
3872                 return ERR_PTR(-EINVAL);
3873         }
3874         if (regulator_desc->ops->set_voltage_sel &&
3875             !regulator_desc->ops->list_voltage) {
3876                 return ERR_PTR(-EINVAL);
3877         }
3878
3879         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3880         if (rdev == NULL)
3881                 return ERR_PTR(-ENOMEM);
3882
3883         /*
3884          * Duplicate the config so the driver could override it after
3885          * parsing init data.
3886          */
3887         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3888         if (config == NULL) {
3889                 kfree(rdev);
3890                 return ERR_PTR(-ENOMEM);
3891         }
3892
3893         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3894                                                &rdev->dev.of_node);
3895         if (!init_data) {
3896                 init_data = config->init_data;
3897                 rdev->dev.of_node = of_node_get(config->of_node);
3898         }
3899
3900         mutex_lock(&regulator_list_mutex);
3901
3902         mutex_init(&rdev->mutex);
3903         rdev->reg_data = config->driver_data;
3904         rdev->owner = regulator_desc->owner;
3905         rdev->desc = regulator_desc;
3906         if (config->regmap)
3907                 rdev->regmap = config->regmap;
3908         else if (dev_get_regmap(dev, NULL))
3909                 rdev->regmap = dev_get_regmap(dev, NULL);
3910         else if (dev->parent)
3911                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3912         INIT_LIST_HEAD(&rdev->consumer_list);
3913         INIT_LIST_HEAD(&rdev->list);
3914         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3915         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3916
3917         /* preform any regulator specific init */
3918         if (init_data && init_data->regulator_init) {
3919                 ret = init_data->regulator_init(rdev->reg_data);
3920                 if (ret < 0)
3921                         goto clean;
3922         }
3923
3924         /* register with sysfs */
3925         rdev->dev.class = &regulator_class;
3926         rdev->dev.parent = dev;
3927         dev_set_name(&rdev->dev, "regulator.%lu",
3928                     (unsigned long) atomic_inc_return(&regulator_no));
3929         ret = device_register(&rdev->dev);
3930         if (ret != 0) {
3931                 put_device(&rdev->dev);
3932                 goto clean;
3933         }
3934
3935         dev_set_drvdata(&rdev->dev, rdev);
3936
3937         if ((config->ena_gpio || config->ena_gpio_initialized) &&
3938             gpio_is_valid(config->ena_gpio)) {
3939                 ret = regulator_ena_gpio_request(rdev, config);
3940                 if (ret != 0) {
3941                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3942                                  config->ena_gpio, ret);
3943                         goto wash;
3944                 }
3945         }
3946
3947         /* set regulator constraints */
3948         if (init_data)
3949                 constraints = &init_data->constraints;
3950
3951         ret = set_machine_constraints(rdev, constraints);
3952         if (ret < 0)
3953                 goto scrub;
3954
3955         if (init_data && init_data->supply_regulator)
3956                 rdev->supply_name = init_data->supply_regulator;
3957         else if (regulator_desc->supply_name)
3958                 rdev->supply_name = regulator_desc->supply_name;
3959
3960         /* add consumers devices */
3961         if (init_data) {
3962                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3963                         ret = set_consumer_device_supply(rdev,
3964                                 init_data->consumer_supplies[i].dev_name,
3965                                 init_data->consumer_supplies[i].supply);
3966                         if (ret < 0) {
3967                                 dev_err(dev, "Failed to set supply %s\n",
3968                                         init_data->consumer_supplies[i].supply);
3969                                 goto unset_supplies;
3970                         }
3971                 }
3972         }
3973
3974         rdev_init_debugfs(rdev);
3975 out:
3976         mutex_unlock(&regulator_list_mutex);
3977         kfree(config);
3978         return rdev;
3979
3980 unset_supplies:
3981         unset_regulator_supplies(rdev);
3982
3983 scrub:
3984         regulator_ena_gpio_free(rdev);
3985         kfree(rdev->constraints);
3986 wash:
3987         device_unregister(&rdev->dev);
3988         /* device core frees rdev */
3989         rdev = ERR_PTR(ret);
3990         goto out;
3991
3992 clean:
3993         kfree(rdev);
3994         rdev = ERR_PTR(ret);
3995         goto out;
3996 }
3997 EXPORT_SYMBOL_GPL(regulator_register);
3998
3999 /**
4000  * regulator_unregister - unregister regulator
4001  * @rdev: regulator to unregister
4002  *
4003  * Called by regulator drivers to unregister a regulator.
4004  */
4005 void regulator_unregister(struct regulator_dev *rdev)
4006 {
4007         if (rdev == NULL)
4008                 return;
4009
4010         if (rdev->supply) {
4011                 while (rdev->use_count--)
4012                         regulator_disable(rdev->supply);
4013                 regulator_put(rdev->supply);
4014         }
4015         mutex_lock(&regulator_list_mutex);
4016         debugfs_remove_recursive(rdev->debugfs);
4017         flush_work(&rdev->disable_work.work);
4018         WARN_ON(rdev->open_count);
4019         unset_regulator_supplies(rdev);
4020         list_del(&rdev->list);
4021         mutex_unlock(&regulator_list_mutex);
4022         regulator_ena_gpio_free(rdev);
4023         device_unregister(&rdev->dev);
4024 }
4025 EXPORT_SYMBOL_GPL(regulator_unregister);
4026
4027 static int _regulator_suspend_prepare(struct device *dev, void *data)
4028 {
4029         struct regulator_dev *rdev = dev_to_rdev(dev);
4030         const suspend_state_t *state = data;
4031         int ret;
4032
4033         mutex_lock(&rdev->mutex);
4034         ret = suspend_prepare(rdev, *state);
4035         mutex_unlock(&rdev->mutex);
4036
4037         return ret;
4038 }
4039
4040 /**
4041  * regulator_suspend_prepare - prepare regulators for system wide suspend
4042  * @state: system suspend state
4043  *
4044  * Configure each regulator with it's suspend operating parameters for state.
4045  * This will usually be called by machine suspend code prior to supending.
4046  */
4047 int regulator_suspend_prepare(suspend_state_t state)
4048 {
4049         /* ON is handled by regulator active state */
4050         if (state == PM_SUSPEND_ON)
4051                 return -EINVAL;
4052
4053         return class_for_each_device(&regulator_class, NULL, &state,
4054                                      _regulator_suspend_prepare);
4055 }
4056 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4057
4058 static int _regulator_suspend_finish(struct device *dev, void *data)
4059 {
4060         struct regulator_dev *rdev = dev_to_rdev(dev);
4061         int ret;
4062
4063         mutex_lock(&rdev->mutex);
4064         if (rdev->use_count > 0  || rdev->constraints->always_on) {
4065                 if (!_regulator_is_enabled(rdev)) {
4066                         ret = _regulator_do_enable(rdev);
4067                         if (ret)
4068                                 dev_err(dev,
4069                                         "Failed to resume regulator %d\n",
4070                                         ret);
4071                 }
4072         } else {
4073                 if (!have_full_constraints())
4074                         goto unlock;
4075                 if (!_regulator_is_enabled(rdev))
4076                         goto unlock;
4077
4078                 ret = _regulator_do_disable(rdev);
4079                 if (ret)
4080                         dev_err(dev, "Failed to suspend regulator %d\n", ret);
4081         }
4082 unlock:
4083         mutex_unlock(&rdev->mutex);
4084
4085         /* Keep processing regulators in spite of any errors */
4086         return 0;
4087 }
4088
4089 /**
4090  * regulator_suspend_finish - resume regulators from system wide suspend
4091  *
4092  * Turn on regulators that might be turned off by regulator_suspend_prepare
4093  * and that should be turned on according to the regulators properties.
4094  */
4095 int regulator_suspend_finish(void)
4096 {
4097         return class_for_each_device(&regulator_class, NULL, NULL,
4098                                      _regulator_suspend_finish);
4099 }
4100 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4101
4102 /**
4103  * regulator_has_full_constraints - the system has fully specified constraints
4104  *
4105  * Calling this function will cause the regulator API to disable all
4106  * regulators which have a zero use count and don't have an always_on
4107  * constraint in a late_initcall.
4108  *
4109  * The intention is that this will become the default behaviour in a
4110  * future kernel release so users are encouraged to use this facility
4111  * now.
4112  */
4113 void regulator_has_full_constraints(void)
4114 {
4115         has_full_constraints = 1;
4116 }
4117 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4118
4119 /**
4120  * rdev_get_drvdata - get rdev regulator driver data
4121  * @rdev: regulator
4122  *
4123  * Get rdev regulator driver private data. This call can be used in the
4124  * regulator driver context.
4125  */
4126 void *rdev_get_drvdata(struct regulator_dev *rdev)
4127 {
4128         return rdev->reg_data;
4129 }
4130 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4131
4132 /**
4133  * regulator_get_drvdata - get regulator driver data
4134  * @regulator: regulator
4135  *
4136  * Get regulator driver private data. This call can be used in the consumer
4137  * driver context when non API regulator specific functions need to be called.
4138  */
4139 void *regulator_get_drvdata(struct regulator *regulator)
4140 {
4141         return regulator->rdev->reg_data;
4142 }
4143 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4144
4145 /**
4146  * regulator_set_drvdata - set regulator driver data
4147  * @regulator: regulator
4148  * @data: data
4149  */
4150 void regulator_set_drvdata(struct regulator *regulator, void *data)
4151 {
4152         regulator->rdev->reg_data = data;
4153 }
4154 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4155
4156 /**
4157  * regulator_get_id - get regulator ID
4158  * @rdev: regulator
4159  */
4160 int rdev_get_id(struct regulator_dev *rdev)
4161 {
4162         return rdev->desc->id;
4163 }
4164 EXPORT_SYMBOL_GPL(rdev_get_id);
4165
4166 struct device *rdev_get_dev(struct regulator_dev *rdev)
4167 {
4168         return &rdev->dev;
4169 }
4170 EXPORT_SYMBOL_GPL(rdev_get_dev);
4171
4172 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4173 {
4174         return reg_init_data->driver_data;
4175 }
4176 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4177
4178 #ifdef CONFIG_DEBUG_FS
4179 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4180                                     size_t count, loff_t *ppos)
4181 {
4182         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4183         ssize_t len, ret = 0;
4184         struct regulator_map *map;
4185
4186         if (!buf)
4187                 return -ENOMEM;
4188
4189         list_for_each_entry(map, &regulator_map_list, list) {
4190                 len = snprintf(buf + ret, PAGE_SIZE - ret,
4191                                "%s -> %s.%s\n",
4192                                rdev_get_name(map->regulator), map->dev_name,
4193                                map->supply);
4194                 if (len >= 0)
4195                         ret += len;
4196                 if (ret > PAGE_SIZE) {
4197                         ret = PAGE_SIZE;
4198                         break;
4199                 }
4200         }
4201
4202         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4203
4204         kfree(buf);
4205
4206         return ret;
4207 }
4208 #endif
4209
4210 static const struct file_operations supply_map_fops = {
4211 #ifdef CONFIG_DEBUG_FS
4212         .read = supply_map_read_file,
4213         .llseek = default_llseek,
4214 #endif
4215 };
4216
4217 #ifdef CONFIG_DEBUG_FS
4218 struct summary_data {
4219         struct seq_file *s;
4220         struct regulator_dev *parent;
4221         int level;
4222 };
4223
4224 static void regulator_summary_show_subtree(struct seq_file *s,
4225                                            struct regulator_dev *rdev,
4226                                            int level);
4227
4228 static int regulator_summary_show_children(struct device *dev, void *data)
4229 {
4230         struct regulator_dev *rdev = dev_to_rdev(dev);
4231         struct summary_data *summary_data = data;
4232
4233         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4234                 regulator_summary_show_subtree(summary_data->s, rdev,
4235                                                summary_data->level + 1);
4236
4237         return 0;
4238 }
4239
4240 static void regulator_summary_show_subtree(struct seq_file *s,
4241                                            struct regulator_dev *rdev,
4242                                            int level)
4243 {
4244         struct regulation_constraints *c;
4245         struct regulator *consumer;
4246         struct summary_data summary_data;
4247
4248         if (!rdev)
4249                 return;
4250
4251         seq_printf(s, "%*s%-*s %3d %4d %6d ",
4252                    level * 3 + 1, "",
4253                    30 - level * 3, rdev_get_name(rdev),
4254                    rdev->use_count, rdev->open_count, rdev->bypass_count);
4255
4256         seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4257         seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4258
4259         c = rdev->constraints;
4260         if (c) {
4261                 switch (rdev->desc->type) {
4262                 case REGULATOR_VOLTAGE:
4263                         seq_printf(s, "%5dmV %5dmV ",
4264                                    c->min_uV / 1000, c->max_uV / 1000);
4265                         break;
4266                 case REGULATOR_CURRENT:
4267                         seq_printf(s, "%5dmA %5dmA ",
4268                                    c->min_uA / 1000, c->max_uA / 1000);
4269                         break;
4270                 }
4271         }
4272
4273         seq_puts(s, "\n");
4274
4275         list_for_each_entry(consumer, &rdev->consumer_list, list) {
4276                 if (consumer->dev->class == &regulator_class)
4277                         continue;
4278
4279                 seq_printf(s, "%*s%-*s ",
4280                            (level + 1) * 3 + 1, "",
4281                            30 - (level + 1) * 3, dev_name(consumer->dev));
4282
4283                 switch (rdev->desc->type) {
4284                 case REGULATOR_VOLTAGE:
4285                         seq_printf(s, "%37dmV %5dmV",
4286                                    consumer->min_uV / 1000,
4287                                    consumer->max_uV / 1000);
4288                         break;
4289                 case REGULATOR_CURRENT:
4290                         break;
4291                 }
4292
4293                 seq_puts(s, "\n");
4294         }
4295
4296         summary_data.s = s;
4297         summary_data.level = level;
4298         summary_data.parent = rdev;
4299
4300         class_for_each_device(&regulator_class, NULL, &summary_data,
4301                               regulator_summary_show_children);
4302 }
4303
4304 static int regulator_summary_show_roots(struct device *dev, void *data)
4305 {
4306         struct regulator_dev *rdev = dev_to_rdev(dev);
4307         struct seq_file *s = data;
4308
4309         if (!rdev->supply)
4310                 regulator_summary_show_subtree(s, rdev, 0);
4311
4312         return 0;
4313 }
4314
4315 static int regulator_summary_show(struct seq_file *s, void *data)
4316 {
4317         seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4318         seq_puts(s, "-------------------------------------------------------------------------------\n");
4319
4320         class_for_each_device(&regulator_class, NULL, s,
4321                               regulator_summary_show_roots);
4322
4323         return 0;
4324 }
4325
4326 static int regulator_summary_open(struct inode *inode, struct file *file)
4327 {
4328         return single_open(file, regulator_summary_show, inode->i_private);
4329 }
4330 #endif
4331
4332 static const struct file_operations regulator_summary_fops = {
4333 #ifdef CONFIG_DEBUG_FS
4334         .open           = regulator_summary_open,
4335         .read           = seq_read,
4336         .llseek         = seq_lseek,
4337         .release        = single_release,
4338 #endif
4339 };
4340
4341 static int __init regulator_init(void)
4342 {
4343         int ret;
4344
4345         ret = class_register(&regulator_class);
4346
4347         debugfs_root = debugfs_create_dir("regulator", NULL);
4348         if (!debugfs_root)
4349                 pr_warn("regulator: Failed to create debugfs directory\n");
4350
4351         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4352                             &supply_map_fops);
4353
4354         debugfs_create_file("regulator_summary", 0444, debugfs_root,
4355                             NULL, &regulator_summary_fops);
4356
4357         regulator_dummy_init();
4358
4359         return ret;
4360 }
4361
4362 /* init early to allow our consumers to complete system booting */
4363 core_initcall(regulator_init);
4364
4365 static int __init regulator_late_cleanup(struct device *dev, void *data)
4366 {
4367         struct regulator_dev *rdev = dev_to_rdev(dev);
4368         const struct regulator_ops *ops = rdev->desc->ops;
4369         struct regulation_constraints *c = rdev->constraints;
4370         int enabled, ret;
4371
4372         if (c && c->always_on)
4373                 return 0;
4374
4375         if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4376                 return 0;
4377
4378         mutex_lock(&rdev->mutex);
4379
4380         if (rdev->use_count)
4381                 goto unlock;
4382
4383         /* If we can't read the status assume it's on. */
4384         if (ops->is_enabled)
4385                 enabled = ops->is_enabled(rdev);
4386         else
4387                 enabled = 1;
4388
4389         if (!enabled)
4390                 goto unlock;
4391
4392         if (have_full_constraints()) {
4393                 /* We log since this may kill the system if it goes
4394                  * wrong. */
4395                 rdev_info(rdev, "disabling\n");
4396                 ret = _regulator_do_disable(rdev);
4397                 if (ret != 0)
4398                         rdev_err(rdev, "couldn't disable: %d\n", ret);
4399         } else {
4400                 /* The intention is that in future we will
4401                  * assume that full constraints are provided
4402                  * so warn even if we aren't going to do
4403                  * anything here.
4404                  */
4405                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4406         }
4407
4408 unlock:
4409         mutex_unlock(&rdev->mutex);
4410
4411         return 0;
4412 }
4413
4414 static int __init regulator_init_complete(void)
4415 {
4416         /*
4417          * Since DT doesn't provide an idiomatic mechanism for
4418          * enabling full constraints and since it's much more natural
4419          * with DT to provide them just assume that a DT enabled
4420          * system has full constraints.
4421          */
4422         if (of_have_populated_dt())
4423                 has_full_constraints = true;
4424
4425         /* If we have a full configuration then disable any regulators
4426          * we have permission to change the status for and which are
4427          * not in use or always_on.  This is effectively the default
4428          * for DT and ACPI as they have full constraints.
4429          */
4430         class_for_each_device(&regulator_class, NULL, NULL,
4431                               regulator_late_cleanup);
4432
4433         return 0;
4434 }
4435 late_initcall_sync(regulator_init_complete);