]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/regulator/core.c
Merge tag 'mfd-fixes-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd
[karo-tx-linux.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...)                                       \
43         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)                                        \
45         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)                                       \
47         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)                                       \
49         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)                                        \
51         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_list);
55 static LIST_HEAD(regulator_map_list);
56 static LIST_HEAD(regulator_ena_gpio_list);
57 static LIST_HEAD(regulator_supply_alias_list);
58 static bool has_full_constraints;
59
60 static struct dentry *debugfs_root;
61
62 /*
63  * struct regulator_map
64  *
65  * Used to provide symbolic supply names to devices.
66  */
67 struct regulator_map {
68         struct list_head list;
69         const char *dev_name;   /* The dev_name() for the consumer */
70         const char *supply;
71         struct regulator_dev *regulator;
72 };
73
74 /*
75  * struct regulator_enable_gpio
76  *
77  * Management for shared enable GPIO pin
78  */
79 struct regulator_enable_gpio {
80         struct list_head list;
81         struct gpio_desc *gpiod;
82         u32 enable_count;       /* a number of enabled shared GPIO */
83         u32 request_count;      /* a number of requested shared GPIO */
84         unsigned int ena_gpio_invert:1;
85 };
86
87 /*
88  * struct regulator_supply_alias
89  *
90  * Used to map lookups for a supply onto an alternative device.
91  */
92 struct regulator_supply_alias {
93         struct list_head list;
94         struct device *src_dev;
95         const char *src_supply;
96         struct device *alias_dev;
97         const char *alias_supply;
98 };
99
100 static int _regulator_is_enabled(struct regulator_dev *rdev);
101 static int _regulator_disable(struct regulator_dev *rdev);
102 static int _regulator_get_voltage(struct regulator_dev *rdev);
103 static int _regulator_get_current_limit(struct regulator_dev *rdev);
104 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105 static int _notifier_call_chain(struct regulator_dev *rdev,
106                                   unsigned long event, void *data);
107 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
108                                      int min_uV, int max_uV);
109 static struct regulator *create_regulator(struct regulator_dev *rdev,
110                                           struct device *dev,
111                                           const char *supply_name);
112 static void _regulator_put(struct regulator *regulator);
113
114 static struct regulator_dev *dev_to_rdev(struct device *dev)
115 {
116         return container_of(dev, struct regulator_dev, dev);
117 }
118
119 static const char *rdev_get_name(struct regulator_dev *rdev)
120 {
121         if (rdev->constraints && rdev->constraints->name)
122                 return rdev->constraints->name;
123         else if (rdev->desc->name)
124                 return rdev->desc->name;
125         else
126                 return "";
127 }
128
129 static bool have_full_constraints(void)
130 {
131         return has_full_constraints || of_have_populated_dt();
132 }
133
134 /**
135  * of_get_regulator - get a regulator device node based on supply name
136  * @dev: Device pointer for the consumer (of regulator) device
137  * @supply: regulator supply name
138  *
139  * Extract the regulator device node corresponding to the supply name.
140  * returns the device node corresponding to the regulator if found, else
141  * returns NULL.
142  */
143 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
144 {
145         struct device_node *regnode = NULL;
146         char prop_name[32]; /* 32 is max size of property name */
147
148         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
149
150         snprintf(prop_name, 32, "%s-supply", supply);
151         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
152
153         if (!regnode) {
154                 dev_dbg(dev, "Looking up %s property in node %s failed",
155                                 prop_name, dev->of_node->full_name);
156                 return NULL;
157         }
158         return regnode;
159 }
160
161 static int _regulator_can_change_status(struct regulator_dev *rdev)
162 {
163         if (!rdev->constraints)
164                 return 0;
165
166         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
167                 return 1;
168         else
169                 return 0;
170 }
171
172 /* Platform voltage constraint check */
173 static int regulator_check_voltage(struct regulator_dev *rdev,
174                                    int *min_uV, int *max_uV)
175 {
176         BUG_ON(*min_uV > *max_uV);
177
178         if (!rdev->constraints) {
179                 rdev_err(rdev, "no constraints\n");
180                 return -ENODEV;
181         }
182         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
183                 rdev_err(rdev, "operation not allowed\n");
184                 return -EPERM;
185         }
186
187         if (*max_uV > rdev->constraints->max_uV)
188                 *max_uV = rdev->constraints->max_uV;
189         if (*min_uV < rdev->constraints->min_uV)
190                 *min_uV = rdev->constraints->min_uV;
191
192         if (*min_uV > *max_uV) {
193                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
194                          *min_uV, *max_uV);
195                 return -EINVAL;
196         }
197
198         return 0;
199 }
200
201 /* Make sure we select a voltage that suits the needs of all
202  * regulator consumers
203  */
204 static int regulator_check_consumers(struct regulator_dev *rdev,
205                                      int *min_uV, int *max_uV)
206 {
207         struct regulator *regulator;
208
209         list_for_each_entry(regulator, &rdev->consumer_list, list) {
210                 /*
211                  * Assume consumers that didn't say anything are OK
212                  * with anything in the constraint range.
213                  */
214                 if (!regulator->min_uV && !regulator->max_uV)
215                         continue;
216
217                 if (*max_uV > regulator->max_uV)
218                         *max_uV = regulator->max_uV;
219                 if (*min_uV < regulator->min_uV)
220                         *min_uV = regulator->min_uV;
221         }
222
223         if (*min_uV > *max_uV) {
224                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
225                         *min_uV, *max_uV);
226                 return -EINVAL;
227         }
228
229         return 0;
230 }
231
232 /* current constraint check */
233 static int regulator_check_current_limit(struct regulator_dev *rdev,
234                                         int *min_uA, int *max_uA)
235 {
236         BUG_ON(*min_uA > *max_uA);
237
238         if (!rdev->constraints) {
239                 rdev_err(rdev, "no constraints\n");
240                 return -ENODEV;
241         }
242         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
243                 rdev_err(rdev, "operation not allowed\n");
244                 return -EPERM;
245         }
246
247         if (*max_uA > rdev->constraints->max_uA)
248                 *max_uA = rdev->constraints->max_uA;
249         if (*min_uA < rdev->constraints->min_uA)
250                 *min_uA = rdev->constraints->min_uA;
251
252         if (*min_uA > *max_uA) {
253                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
254                          *min_uA, *max_uA);
255                 return -EINVAL;
256         }
257
258         return 0;
259 }
260
261 /* operating mode constraint check */
262 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
263 {
264         switch (*mode) {
265         case REGULATOR_MODE_FAST:
266         case REGULATOR_MODE_NORMAL:
267         case REGULATOR_MODE_IDLE:
268         case REGULATOR_MODE_STANDBY:
269                 break;
270         default:
271                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
272                 return -EINVAL;
273         }
274
275         if (!rdev->constraints) {
276                 rdev_err(rdev, "no constraints\n");
277                 return -ENODEV;
278         }
279         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
280                 rdev_err(rdev, "operation not allowed\n");
281                 return -EPERM;
282         }
283
284         /* The modes are bitmasks, the most power hungry modes having
285          * the lowest values. If the requested mode isn't supported
286          * try higher modes. */
287         while (*mode) {
288                 if (rdev->constraints->valid_modes_mask & *mode)
289                         return 0;
290                 *mode /= 2;
291         }
292
293         return -EINVAL;
294 }
295
296 /* dynamic regulator mode switching constraint check */
297 static int regulator_check_drms(struct regulator_dev *rdev)
298 {
299         if (!rdev->constraints) {
300                 rdev_err(rdev, "no constraints\n");
301                 return -ENODEV;
302         }
303         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
304                 rdev_dbg(rdev, "operation not allowed\n");
305                 return -EPERM;
306         }
307         return 0;
308 }
309
310 static ssize_t regulator_uV_show(struct device *dev,
311                                 struct device_attribute *attr, char *buf)
312 {
313         struct regulator_dev *rdev = dev_get_drvdata(dev);
314         ssize_t ret;
315
316         mutex_lock(&rdev->mutex);
317         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
318         mutex_unlock(&rdev->mutex);
319
320         return ret;
321 }
322 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
323
324 static ssize_t regulator_uA_show(struct device *dev,
325                                 struct device_attribute *attr, char *buf)
326 {
327         struct regulator_dev *rdev = dev_get_drvdata(dev);
328
329         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
330 }
331 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
332
333 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
334                          char *buf)
335 {
336         struct regulator_dev *rdev = dev_get_drvdata(dev);
337
338         return sprintf(buf, "%s\n", rdev_get_name(rdev));
339 }
340 static DEVICE_ATTR_RO(name);
341
342 static ssize_t regulator_print_opmode(char *buf, int mode)
343 {
344         switch (mode) {
345         case REGULATOR_MODE_FAST:
346                 return sprintf(buf, "fast\n");
347         case REGULATOR_MODE_NORMAL:
348                 return sprintf(buf, "normal\n");
349         case REGULATOR_MODE_IDLE:
350                 return sprintf(buf, "idle\n");
351         case REGULATOR_MODE_STANDBY:
352                 return sprintf(buf, "standby\n");
353         }
354         return sprintf(buf, "unknown\n");
355 }
356
357 static ssize_t regulator_opmode_show(struct device *dev,
358                                     struct device_attribute *attr, char *buf)
359 {
360         struct regulator_dev *rdev = dev_get_drvdata(dev);
361
362         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
363 }
364 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
365
366 static ssize_t regulator_print_state(char *buf, int state)
367 {
368         if (state > 0)
369                 return sprintf(buf, "enabled\n");
370         else if (state == 0)
371                 return sprintf(buf, "disabled\n");
372         else
373                 return sprintf(buf, "unknown\n");
374 }
375
376 static ssize_t regulator_state_show(struct device *dev,
377                                    struct device_attribute *attr, char *buf)
378 {
379         struct regulator_dev *rdev = dev_get_drvdata(dev);
380         ssize_t ret;
381
382         mutex_lock(&rdev->mutex);
383         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
384         mutex_unlock(&rdev->mutex);
385
386         return ret;
387 }
388 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
389
390 static ssize_t regulator_status_show(struct device *dev,
391                                    struct device_attribute *attr, char *buf)
392 {
393         struct regulator_dev *rdev = dev_get_drvdata(dev);
394         int status;
395         char *label;
396
397         status = rdev->desc->ops->get_status(rdev);
398         if (status < 0)
399                 return status;
400
401         switch (status) {
402         case REGULATOR_STATUS_OFF:
403                 label = "off";
404                 break;
405         case REGULATOR_STATUS_ON:
406                 label = "on";
407                 break;
408         case REGULATOR_STATUS_ERROR:
409                 label = "error";
410                 break;
411         case REGULATOR_STATUS_FAST:
412                 label = "fast";
413                 break;
414         case REGULATOR_STATUS_NORMAL:
415                 label = "normal";
416                 break;
417         case REGULATOR_STATUS_IDLE:
418                 label = "idle";
419                 break;
420         case REGULATOR_STATUS_STANDBY:
421                 label = "standby";
422                 break;
423         case REGULATOR_STATUS_BYPASS:
424                 label = "bypass";
425                 break;
426         case REGULATOR_STATUS_UNDEFINED:
427                 label = "undefined";
428                 break;
429         default:
430                 return -ERANGE;
431         }
432
433         return sprintf(buf, "%s\n", label);
434 }
435 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
436
437 static ssize_t regulator_min_uA_show(struct device *dev,
438                                     struct device_attribute *attr, char *buf)
439 {
440         struct regulator_dev *rdev = dev_get_drvdata(dev);
441
442         if (!rdev->constraints)
443                 return sprintf(buf, "constraint not defined\n");
444
445         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
446 }
447 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
448
449 static ssize_t regulator_max_uA_show(struct device *dev,
450                                     struct device_attribute *attr, char *buf)
451 {
452         struct regulator_dev *rdev = dev_get_drvdata(dev);
453
454         if (!rdev->constraints)
455                 return sprintf(buf, "constraint not defined\n");
456
457         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
458 }
459 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
460
461 static ssize_t regulator_min_uV_show(struct device *dev,
462                                     struct device_attribute *attr, char *buf)
463 {
464         struct regulator_dev *rdev = dev_get_drvdata(dev);
465
466         if (!rdev->constraints)
467                 return sprintf(buf, "constraint not defined\n");
468
469         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
470 }
471 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
472
473 static ssize_t regulator_max_uV_show(struct device *dev,
474                                     struct device_attribute *attr, char *buf)
475 {
476         struct regulator_dev *rdev = dev_get_drvdata(dev);
477
478         if (!rdev->constraints)
479                 return sprintf(buf, "constraint not defined\n");
480
481         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
482 }
483 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
484
485 static ssize_t regulator_total_uA_show(struct device *dev,
486                                       struct device_attribute *attr, char *buf)
487 {
488         struct regulator_dev *rdev = dev_get_drvdata(dev);
489         struct regulator *regulator;
490         int uA = 0;
491
492         mutex_lock(&rdev->mutex);
493         list_for_each_entry(regulator, &rdev->consumer_list, list)
494                 uA += regulator->uA_load;
495         mutex_unlock(&rdev->mutex);
496         return sprintf(buf, "%d\n", uA);
497 }
498 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
499
500 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
501                               char *buf)
502 {
503         struct regulator_dev *rdev = dev_get_drvdata(dev);
504         return sprintf(buf, "%d\n", rdev->use_count);
505 }
506 static DEVICE_ATTR_RO(num_users);
507
508 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
509                          char *buf)
510 {
511         struct regulator_dev *rdev = dev_get_drvdata(dev);
512
513         switch (rdev->desc->type) {
514         case REGULATOR_VOLTAGE:
515                 return sprintf(buf, "voltage\n");
516         case REGULATOR_CURRENT:
517                 return sprintf(buf, "current\n");
518         }
519         return sprintf(buf, "unknown\n");
520 }
521 static DEVICE_ATTR_RO(type);
522
523 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
524                                 struct device_attribute *attr, char *buf)
525 {
526         struct regulator_dev *rdev = dev_get_drvdata(dev);
527
528         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
529 }
530 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
531                 regulator_suspend_mem_uV_show, NULL);
532
533 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
534                                 struct device_attribute *attr, char *buf)
535 {
536         struct regulator_dev *rdev = dev_get_drvdata(dev);
537
538         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
539 }
540 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
541                 regulator_suspend_disk_uV_show, NULL);
542
543 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
544                                 struct device_attribute *attr, char *buf)
545 {
546         struct regulator_dev *rdev = dev_get_drvdata(dev);
547
548         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
549 }
550 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
551                 regulator_suspend_standby_uV_show, NULL);
552
553 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
554                                 struct device_attribute *attr, char *buf)
555 {
556         struct regulator_dev *rdev = dev_get_drvdata(dev);
557
558         return regulator_print_opmode(buf,
559                 rdev->constraints->state_mem.mode);
560 }
561 static DEVICE_ATTR(suspend_mem_mode, 0444,
562                 regulator_suspend_mem_mode_show, NULL);
563
564 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
565                                 struct device_attribute *attr, char *buf)
566 {
567         struct regulator_dev *rdev = dev_get_drvdata(dev);
568
569         return regulator_print_opmode(buf,
570                 rdev->constraints->state_disk.mode);
571 }
572 static DEVICE_ATTR(suspend_disk_mode, 0444,
573                 regulator_suspend_disk_mode_show, NULL);
574
575 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
576                                 struct device_attribute *attr, char *buf)
577 {
578         struct regulator_dev *rdev = dev_get_drvdata(dev);
579
580         return regulator_print_opmode(buf,
581                 rdev->constraints->state_standby.mode);
582 }
583 static DEVICE_ATTR(suspend_standby_mode, 0444,
584                 regulator_suspend_standby_mode_show, NULL);
585
586 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
587                                    struct device_attribute *attr, char *buf)
588 {
589         struct regulator_dev *rdev = dev_get_drvdata(dev);
590
591         return regulator_print_state(buf,
592                         rdev->constraints->state_mem.enabled);
593 }
594 static DEVICE_ATTR(suspend_mem_state, 0444,
595                 regulator_suspend_mem_state_show, NULL);
596
597 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
598                                    struct device_attribute *attr, char *buf)
599 {
600         struct regulator_dev *rdev = dev_get_drvdata(dev);
601
602         return regulator_print_state(buf,
603                         rdev->constraints->state_disk.enabled);
604 }
605 static DEVICE_ATTR(suspend_disk_state, 0444,
606                 regulator_suspend_disk_state_show, NULL);
607
608 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
609                                    struct device_attribute *attr, char *buf)
610 {
611         struct regulator_dev *rdev = dev_get_drvdata(dev);
612
613         return regulator_print_state(buf,
614                         rdev->constraints->state_standby.enabled);
615 }
616 static DEVICE_ATTR(suspend_standby_state, 0444,
617                 regulator_suspend_standby_state_show, NULL);
618
619 static ssize_t regulator_bypass_show(struct device *dev,
620                                      struct device_attribute *attr, char *buf)
621 {
622         struct regulator_dev *rdev = dev_get_drvdata(dev);
623         const char *report;
624         bool bypass;
625         int ret;
626
627         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
628
629         if (ret != 0)
630                 report = "unknown";
631         else if (bypass)
632                 report = "enabled";
633         else
634                 report = "disabled";
635
636         return sprintf(buf, "%s\n", report);
637 }
638 static DEVICE_ATTR(bypass, 0444,
639                    regulator_bypass_show, NULL);
640
641 /* Calculate the new optimum regulator operating mode based on the new total
642  * consumer load. All locks held by caller */
643 static int drms_uA_update(struct regulator_dev *rdev)
644 {
645         struct regulator *sibling;
646         int current_uA = 0, output_uV, input_uV, err;
647         unsigned int mode;
648
649         lockdep_assert_held_once(&rdev->mutex);
650
651         /*
652          * first check to see if we can set modes at all, otherwise just
653          * tell the consumer everything is OK.
654          */
655         err = regulator_check_drms(rdev);
656         if (err < 0)
657                 return 0;
658
659         if (!rdev->desc->ops->get_optimum_mode &&
660             !rdev->desc->ops->set_load)
661                 return 0;
662
663         if (!rdev->desc->ops->set_mode &&
664             !rdev->desc->ops->set_load)
665                 return -EINVAL;
666
667         /* get output voltage */
668         output_uV = _regulator_get_voltage(rdev);
669         if (output_uV <= 0) {
670                 rdev_err(rdev, "invalid output voltage found\n");
671                 return -EINVAL;
672         }
673
674         /* get input voltage */
675         input_uV = 0;
676         if (rdev->supply)
677                 input_uV = regulator_get_voltage(rdev->supply);
678         if (input_uV <= 0)
679                 input_uV = rdev->constraints->input_uV;
680         if (input_uV <= 0) {
681                 rdev_err(rdev, "invalid input voltage found\n");
682                 return -EINVAL;
683         }
684
685         /* calc total requested load */
686         list_for_each_entry(sibling, &rdev->consumer_list, list)
687                 current_uA += sibling->uA_load;
688
689         current_uA += rdev->constraints->system_load;
690
691         if (rdev->desc->ops->set_load) {
692                 /* set the optimum mode for our new total regulator load */
693                 err = rdev->desc->ops->set_load(rdev, current_uA);
694                 if (err < 0)
695                         rdev_err(rdev, "failed to set load %d\n", current_uA);
696         } else {
697                 /* now get the optimum mode for our new total regulator load */
698                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
699                                                          output_uV, current_uA);
700
701                 /* check the new mode is allowed */
702                 err = regulator_mode_constrain(rdev, &mode);
703                 if (err < 0) {
704                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
705                                  current_uA, input_uV, output_uV);
706                         return err;
707                 }
708
709                 err = rdev->desc->ops->set_mode(rdev, mode);
710                 if (err < 0)
711                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
712         }
713
714         return err;
715 }
716
717 static int suspend_set_state(struct regulator_dev *rdev,
718         struct regulator_state *rstate)
719 {
720         int ret = 0;
721
722         /* If we have no suspend mode configration don't set anything;
723          * only warn if the driver implements set_suspend_voltage or
724          * set_suspend_mode callback.
725          */
726         if (!rstate->enabled && !rstate->disabled) {
727                 if (rdev->desc->ops->set_suspend_voltage ||
728                     rdev->desc->ops->set_suspend_mode)
729                         rdev_warn(rdev, "No configuration\n");
730                 return 0;
731         }
732
733         if (rstate->enabled && rstate->disabled) {
734                 rdev_err(rdev, "invalid configuration\n");
735                 return -EINVAL;
736         }
737
738         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
739                 ret = rdev->desc->ops->set_suspend_enable(rdev);
740         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
741                 ret = rdev->desc->ops->set_suspend_disable(rdev);
742         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
743                 ret = 0;
744
745         if (ret < 0) {
746                 rdev_err(rdev, "failed to enabled/disable\n");
747                 return ret;
748         }
749
750         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
751                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
752                 if (ret < 0) {
753                         rdev_err(rdev, "failed to set voltage\n");
754                         return ret;
755                 }
756         }
757
758         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
759                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
760                 if (ret < 0) {
761                         rdev_err(rdev, "failed to set mode\n");
762                         return ret;
763                 }
764         }
765         return ret;
766 }
767
768 /* locks held by caller */
769 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
770 {
771         lockdep_assert_held_once(&rdev->mutex);
772
773         if (!rdev->constraints)
774                 return -EINVAL;
775
776         switch (state) {
777         case PM_SUSPEND_STANDBY:
778                 return suspend_set_state(rdev,
779                         &rdev->constraints->state_standby);
780         case PM_SUSPEND_MEM:
781                 return suspend_set_state(rdev,
782                         &rdev->constraints->state_mem);
783         case PM_SUSPEND_MAX:
784                 return suspend_set_state(rdev,
785                         &rdev->constraints->state_disk);
786         default:
787                 return -EINVAL;
788         }
789 }
790
791 static void print_constraints(struct regulator_dev *rdev)
792 {
793         struct regulation_constraints *constraints = rdev->constraints;
794         char buf[160] = "";
795         size_t len = sizeof(buf) - 1;
796         int count = 0;
797         int ret;
798
799         if (constraints->min_uV && constraints->max_uV) {
800                 if (constraints->min_uV == constraints->max_uV)
801                         count += scnprintf(buf + count, len - count, "%d mV ",
802                                            constraints->min_uV / 1000);
803                 else
804                         count += scnprintf(buf + count, len - count,
805                                            "%d <--> %d mV ",
806                                            constraints->min_uV / 1000,
807                                            constraints->max_uV / 1000);
808         }
809
810         if (!constraints->min_uV ||
811             constraints->min_uV != constraints->max_uV) {
812                 ret = _regulator_get_voltage(rdev);
813                 if (ret > 0)
814                         count += scnprintf(buf + count, len - count,
815                                            "at %d mV ", ret / 1000);
816         }
817
818         if (constraints->uV_offset)
819                 count += scnprintf(buf + count, len - count, "%dmV offset ",
820                                    constraints->uV_offset / 1000);
821
822         if (constraints->min_uA && constraints->max_uA) {
823                 if (constraints->min_uA == constraints->max_uA)
824                         count += scnprintf(buf + count, len - count, "%d mA ",
825                                            constraints->min_uA / 1000);
826                 else
827                         count += scnprintf(buf + count, len - count,
828                                            "%d <--> %d mA ",
829                                            constraints->min_uA / 1000,
830                                            constraints->max_uA / 1000);
831         }
832
833         if (!constraints->min_uA ||
834             constraints->min_uA != constraints->max_uA) {
835                 ret = _regulator_get_current_limit(rdev);
836                 if (ret > 0)
837                         count += scnprintf(buf + count, len - count,
838                                            "at %d mA ", ret / 1000);
839         }
840
841         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
842                 count += scnprintf(buf + count, len - count, "fast ");
843         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
844                 count += scnprintf(buf + count, len - count, "normal ");
845         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
846                 count += scnprintf(buf + count, len - count, "idle ");
847         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
848                 count += scnprintf(buf + count, len - count, "standby");
849
850         if (!count)
851                 scnprintf(buf, len, "no parameters");
852
853         rdev_dbg(rdev, "%s\n", buf);
854
855         if ((constraints->min_uV != constraints->max_uV) &&
856             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
857                 rdev_warn(rdev,
858                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
859 }
860
861 static int machine_constraints_voltage(struct regulator_dev *rdev,
862         struct regulation_constraints *constraints)
863 {
864         const struct regulator_ops *ops = rdev->desc->ops;
865         int ret;
866
867         /* do we need to apply the constraint voltage */
868         if (rdev->constraints->apply_uV &&
869             rdev->constraints->min_uV == rdev->constraints->max_uV) {
870                 int current_uV = _regulator_get_voltage(rdev);
871                 if (current_uV < 0) {
872                         rdev_err(rdev,
873                                  "failed to get the current voltage(%d)\n",
874                                  current_uV);
875                         return current_uV;
876                 }
877                 if (current_uV < rdev->constraints->min_uV ||
878                     current_uV > rdev->constraints->max_uV) {
879                         ret = _regulator_do_set_voltage(
880                                 rdev, rdev->constraints->min_uV,
881                                 rdev->constraints->max_uV);
882                         if (ret < 0) {
883                                 rdev_err(rdev,
884                                         "failed to apply %duV constraint(%d)\n",
885                                         rdev->constraints->min_uV, ret);
886                                 return ret;
887                         }
888                 }
889         }
890
891         /* constrain machine-level voltage specs to fit
892          * the actual range supported by this regulator.
893          */
894         if (ops->list_voltage && rdev->desc->n_voltages) {
895                 int     count = rdev->desc->n_voltages;
896                 int     i;
897                 int     min_uV = INT_MAX;
898                 int     max_uV = INT_MIN;
899                 int     cmin = constraints->min_uV;
900                 int     cmax = constraints->max_uV;
901
902                 /* it's safe to autoconfigure fixed-voltage supplies
903                    and the constraints are used by list_voltage. */
904                 if (count == 1 && !cmin) {
905                         cmin = 1;
906                         cmax = INT_MAX;
907                         constraints->min_uV = cmin;
908                         constraints->max_uV = cmax;
909                 }
910
911                 /* voltage constraints are optional */
912                 if ((cmin == 0) && (cmax == 0))
913                         return 0;
914
915                 /* else require explicit machine-level constraints */
916                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
917                         rdev_err(rdev, "invalid voltage constraints\n");
918                         return -EINVAL;
919                 }
920
921                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
922                 for (i = 0; i < count; i++) {
923                         int     value;
924
925                         value = ops->list_voltage(rdev, i);
926                         if (value <= 0)
927                                 continue;
928
929                         /* maybe adjust [min_uV..max_uV] */
930                         if (value >= cmin && value < min_uV)
931                                 min_uV = value;
932                         if (value <= cmax && value > max_uV)
933                                 max_uV = value;
934                 }
935
936                 /* final: [min_uV..max_uV] valid iff constraints valid */
937                 if (max_uV < min_uV) {
938                         rdev_err(rdev,
939                                  "unsupportable voltage constraints %u-%uuV\n",
940                                  min_uV, max_uV);
941                         return -EINVAL;
942                 }
943
944                 /* use regulator's subset of machine constraints */
945                 if (constraints->min_uV < min_uV) {
946                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
947                                  constraints->min_uV, min_uV);
948                         constraints->min_uV = min_uV;
949                 }
950                 if (constraints->max_uV > max_uV) {
951                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
952                                  constraints->max_uV, max_uV);
953                         constraints->max_uV = max_uV;
954                 }
955         }
956
957         return 0;
958 }
959
960 static int machine_constraints_current(struct regulator_dev *rdev,
961         struct regulation_constraints *constraints)
962 {
963         const struct regulator_ops *ops = rdev->desc->ops;
964         int ret;
965
966         if (!constraints->min_uA && !constraints->max_uA)
967                 return 0;
968
969         if (constraints->min_uA > constraints->max_uA) {
970                 rdev_err(rdev, "Invalid current constraints\n");
971                 return -EINVAL;
972         }
973
974         if (!ops->set_current_limit || !ops->get_current_limit) {
975                 rdev_warn(rdev, "Operation of current configuration missing\n");
976                 return 0;
977         }
978
979         /* Set regulator current in constraints range */
980         ret = ops->set_current_limit(rdev, constraints->min_uA,
981                         constraints->max_uA);
982         if (ret < 0) {
983                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
984                 return ret;
985         }
986
987         return 0;
988 }
989
990 static int _regulator_do_enable(struct regulator_dev *rdev);
991
992 /**
993  * set_machine_constraints - sets regulator constraints
994  * @rdev: regulator source
995  * @constraints: constraints to apply
996  *
997  * Allows platform initialisation code to define and constrain
998  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
999  * Constraints *must* be set by platform code in order for some
1000  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1001  * set_mode.
1002  */
1003 static int set_machine_constraints(struct regulator_dev *rdev,
1004         const struct regulation_constraints *constraints)
1005 {
1006         int ret = 0;
1007         const struct regulator_ops *ops = rdev->desc->ops;
1008
1009         if (constraints)
1010                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1011                                             GFP_KERNEL);
1012         else
1013                 rdev->constraints = kzalloc(sizeof(*constraints),
1014                                             GFP_KERNEL);
1015         if (!rdev->constraints)
1016                 return -ENOMEM;
1017
1018         ret = machine_constraints_voltage(rdev, rdev->constraints);
1019         if (ret != 0)
1020                 goto out;
1021
1022         ret = machine_constraints_current(rdev, rdev->constraints);
1023         if (ret != 0)
1024                 goto out;
1025
1026         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1027                 ret = ops->set_input_current_limit(rdev,
1028                                                    rdev->constraints->ilim_uA);
1029                 if (ret < 0) {
1030                         rdev_err(rdev, "failed to set input limit\n");
1031                         goto out;
1032                 }
1033         }
1034
1035         /* do we need to setup our suspend state */
1036         if (rdev->constraints->initial_state) {
1037                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1038                 if (ret < 0) {
1039                         rdev_err(rdev, "failed to set suspend state\n");
1040                         goto out;
1041                 }
1042         }
1043
1044         if (rdev->constraints->initial_mode) {
1045                 if (!ops->set_mode) {
1046                         rdev_err(rdev, "no set_mode operation\n");
1047                         ret = -EINVAL;
1048                         goto out;
1049                 }
1050
1051                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1052                 if (ret < 0) {
1053                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1054                         goto out;
1055                 }
1056         }
1057
1058         /* If the constraints say the regulator should be on at this point
1059          * and we have control then make sure it is enabled.
1060          */
1061         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1062                 ret = _regulator_do_enable(rdev);
1063                 if (ret < 0 && ret != -EINVAL) {
1064                         rdev_err(rdev, "failed to enable\n");
1065                         goto out;
1066                 }
1067         }
1068
1069         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1070                 && ops->set_ramp_delay) {
1071                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1072                 if (ret < 0) {
1073                         rdev_err(rdev, "failed to set ramp_delay\n");
1074                         goto out;
1075                 }
1076         }
1077
1078         if (rdev->constraints->pull_down && ops->set_pull_down) {
1079                 ret = ops->set_pull_down(rdev);
1080                 if (ret < 0) {
1081                         rdev_err(rdev, "failed to set pull down\n");
1082                         goto out;
1083                 }
1084         }
1085
1086         if (rdev->constraints->soft_start && ops->set_soft_start) {
1087                 ret = ops->set_soft_start(rdev);
1088                 if (ret < 0) {
1089                         rdev_err(rdev, "failed to set soft start\n");
1090                         goto out;
1091                 }
1092         }
1093
1094         if (rdev->constraints->over_current_protection
1095                 && ops->set_over_current_protection) {
1096                 ret = ops->set_over_current_protection(rdev);
1097                 if (ret < 0) {
1098                         rdev_err(rdev, "failed to set over current protection\n");
1099                         goto out;
1100                 }
1101         }
1102
1103         print_constraints(rdev);
1104         return 0;
1105 out:
1106         kfree(rdev->constraints);
1107         rdev->constraints = NULL;
1108         return ret;
1109 }
1110
1111 /**
1112  * set_supply - set regulator supply regulator
1113  * @rdev: regulator name
1114  * @supply_rdev: supply regulator name
1115  *
1116  * Called by platform initialisation code to set the supply regulator for this
1117  * regulator. This ensures that a regulators supply will also be enabled by the
1118  * core if it's child is enabled.
1119  */
1120 static int set_supply(struct regulator_dev *rdev,
1121                       struct regulator_dev *supply_rdev)
1122 {
1123         int err;
1124
1125         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1126
1127         if (!try_module_get(supply_rdev->owner))
1128                 return -ENODEV;
1129
1130         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1131         if (rdev->supply == NULL) {
1132                 err = -ENOMEM;
1133                 return err;
1134         }
1135         supply_rdev->open_count++;
1136
1137         return 0;
1138 }
1139
1140 /**
1141  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1142  * @rdev:         regulator source
1143  * @consumer_dev_name: dev_name() string for device supply applies to
1144  * @supply:       symbolic name for supply
1145  *
1146  * Allows platform initialisation code to map physical regulator
1147  * sources to symbolic names for supplies for use by devices.  Devices
1148  * should use these symbolic names to request regulators, avoiding the
1149  * need to provide board-specific regulator names as platform data.
1150  */
1151 static int set_consumer_device_supply(struct regulator_dev *rdev,
1152                                       const char *consumer_dev_name,
1153                                       const char *supply)
1154 {
1155         struct regulator_map *node;
1156         int has_dev;
1157
1158         if (supply == NULL)
1159                 return -EINVAL;
1160
1161         if (consumer_dev_name != NULL)
1162                 has_dev = 1;
1163         else
1164                 has_dev = 0;
1165
1166         list_for_each_entry(node, &regulator_map_list, list) {
1167                 if (node->dev_name && consumer_dev_name) {
1168                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1169                                 continue;
1170                 } else if (node->dev_name || consumer_dev_name) {
1171                         continue;
1172                 }
1173
1174                 if (strcmp(node->supply, supply) != 0)
1175                         continue;
1176
1177                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1178                          consumer_dev_name,
1179                          dev_name(&node->regulator->dev),
1180                          node->regulator->desc->name,
1181                          supply,
1182                          dev_name(&rdev->dev), rdev_get_name(rdev));
1183                 return -EBUSY;
1184         }
1185
1186         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1187         if (node == NULL)
1188                 return -ENOMEM;
1189
1190         node->regulator = rdev;
1191         node->supply = supply;
1192
1193         if (has_dev) {
1194                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1195                 if (node->dev_name == NULL) {
1196                         kfree(node);
1197                         return -ENOMEM;
1198                 }
1199         }
1200
1201         list_add(&node->list, &regulator_map_list);
1202         return 0;
1203 }
1204
1205 static void unset_regulator_supplies(struct regulator_dev *rdev)
1206 {
1207         struct regulator_map *node, *n;
1208
1209         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1210                 if (rdev == node->regulator) {
1211                         list_del(&node->list);
1212                         kfree(node->dev_name);
1213                         kfree(node);
1214                 }
1215         }
1216 }
1217
1218 #define REG_STR_SIZE    64
1219
1220 static struct regulator *create_regulator(struct regulator_dev *rdev,
1221                                           struct device *dev,
1222                                           const char *supply_name)
1223 {
1224         struct regulator *regulator;
1225         char buf[REG_STR_SIZE];
1226         int err, size;
1227
1228         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1229         if (regulator == NULL)
1230                 return NULL;
1231
1232         mutex_lock(&rdev->mutex);
1233         regulator->rdev = rdev;
1234         list_add(&regulator->list, &rdev->consumer_list);
1235
1236         if (dev) {
1237                 regulator->dev = dev;
1238
1239                 /* Add a link to the device sysfs entry */
1240                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1241                                  dev->kobj.name, supply_name);
1242                 if (size >= REG_STR_SIZE)
1243                         goto overflow_err;
1244
1245                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1246                 if (regulator->supply_name == NULL)
1247                         goto overflow_err;
1248
1249                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1250                                         buf);
1251                 if (err) {
1252                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1253                                   dev->kobj.name, err);
1254                         /* non-fatal */
1255                 }
1256         } else {
1257                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1258                 if (regulator->supply_name == NULL)
1259                         goto overflow_err;
1260         }
1261
1262         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1263                                                 rdev->debugfs);
1264         if (!regulator->debugfs) {
1265                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1266         } else {
1267                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1268                                    &regulator->uA_load);
1269                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1270                                    &regulator->min_uV);
1271                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1272                                    &regulator->max_uV);
1273         }
1274
1275         /*
1276          * Check now if the regulator is an always on regulator - if
1277          * it is then we don't need to do nearly so much work for
1278          * enable/disable calls.
1279          */
1280         if (!_regulator_can_change_status(rdev) &&
1281             _regulator_is_enabled(rdev))
1282                 regulator->always_on = true;
1283
1284         mutex_unlock(&rdev->mutex);
1285         return regulator;
1286 overflow_err:
1287         list_del(&regulator->list);
1288         kfree(regulator);
1289         mutex_unlock(&rdev->mutex);
1290         return NULL;
1291 }
1292
1293 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1294 {
1295         if (rdev->constraints && rdev->constraints->enable_time)
1296                 return rdev->constraints->enable_time;
1297         if (!rdev->desc->ops->enable_time)
1298                 return rdev->desc->enable_time;
1299         return rdev->desc->ops->enable_time(rdev);
1300 }
1301
1302 static struct regulator_supply_alias *regulator_find_supply_alias(
1303                 struct device *dev, const char *supply)
1304 {
1305         struct regulator_supply_alias *map;
1306
1307         list_for_each_entry(map, &regulator_supply_alias_list, list)
1308                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1309                         return map;
1310
1311         return NULL;
1312 }
1313
1314 static void regulator_supply_alias(struct device **dev, const char **supply)
1315 {
1316         struct regulator_supply_alias *map;
1317
1318         map = regulator_find_supply_alias(*dev, *supply);
1319         if (map) {
1320                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1321                                 *supply, map->alias_supply,
1322                                 dev_name(map->alias_dev));
1323                 *dev = map->alias_dev;
1324                 *supply = map->alias_supply;
1325         }
1326 }
1327
1328 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1329                                                   const char *supply,
1330                                                   int *ret)
1331 {
1332         struct regulator_dev *r;
1333         struct device_node *node;
1334         struct regulator_map *map;
1335         const char *devname = NULL;
1336
1337         regulator_supply_alias(&dev, &supply);
1338
1339         /* first do a dt based lookup */
1340         if (dev && dev->of_node) {
1341                 node = of_get_regulator(dev, supply);
1342                 if (node) {
1343                         list_for_each_entry(r, &regulator_list, list)
1344                                 if (r->dev.parent &&
1345                                         node == r->dev.of_node)
1346                                         return r;
1347                         *ret = -EPROBE_DEFER;
1348                         return NULL;
1349                 } else {
1350                         /*
1351                          * If we couldn't even get the node then it's
1352                          * not just that the device didn't register
1353                          * yet, there's no node and we'll never
1354                          * succeed.
1355                          */
1356                         *ret = -ENODEV;
1357                 }
1358         }
1359
1360         /* if not found, try doing it non-dt way */
1361         if (dev)
1362                 devname = dev_name(dev);
1363
1364         list_for_each_entry(r, &regulator_list, list)
1365                 if (strcmp(rdev_get_name(r), supply) == 0)
1366                         return r;
1367
1368         list_for_each_entry(map, &regulator_map_list, list) {
1369                 /* If the mapping has a device set up it must match */
1370                 if (map->dev_name &&
1371                     (!devname || strcmp(map->dev_name, devname)))
1372                         continue;
1373
1374                 if (strcmp(map->supply, supply) == 0)
1375                         return map->regulator;
1376         }
1377
1378
1379         return NULL;
1380 }
1381
1382 static int regulator_resolve_supply(struct regulator_dev *rdev)
1383 {
1384         struct regulator_dev *r;
1385         struct device *dev = rdev->dev.parent;
1386         int ret;
1387
1388         /* No supply to resovle? */
1389         if (!rdev->supply_name)
1390                 return 0;
1391
1392         /* Supply already resolved? */
1393         if (rdev->supply)
1394                 return 0;
1395
1396         r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1397         if (!r) {
1398                 if (ret == -ENODEV) {
1399                         /*
1400                          * No supply was specified for this regulator and
1401                          * there will never be one.
1402                          */
1403                         return 0;
1404                 }
1405
1406                 /* Did the lookup explicitly defer for us? */
1407                 if (ret == -EPROBE_DEFER)
1408                         return ret;
1409
1410                 if (have_full_constraints()) {
1411                         r = dummy_regulator_rdev;
1412                 } else {
1413                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1414                                 rdev->supply_name, rdev->desc->name);
1415                         return -EPROBE_DEFER;
1416                 }
1417         }
1418
1419         /* Recursively resolve the supply of the supply */
1420         ret = regulator_resolve_supply(r);
1421         if (ret < 0)
1422                 return ret;
1423
1424         ret = set_supply(rdev, r);
1425         if (ret < 0)
1426                 return ret;
1427
1428         /* Cascade always-on state to supply */
1429         if (_regulator_is_enabled(rdev) && rdev->supply) {
1430                 ret = regulator_enable(rdev->supply);
1431                 if (ret < 0) {
1432                         _regulator_put(rdev->supply);
1433                         return ret;
1434                 }
1435         }
1436
1437         return 0;
1438 }
1439
1440 /* Internal regulator request function */
1441 static struct regulator *_regulator_get(struct device *dev, const char *id,
1442                                         bool exclusive, bool allow_dummy)
1443 {
1444         struct regulator_dev *rdev;
1445         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1446         const char *devname = NULL;
1447         int ret;
1448
1449         if (id == NULL) {
1450                 pr_err("get() with no identifier\n");
1451                 return ERR_PTR(-EINVAL);
1452         }
1453
1454         if (dev)
1455                 devname = dev_name(dev);
1456
1457         if (have_full_constraints())
1458                 ret = -ENODEV;
1459         else
1460                 ret = -EPROBE_DEFER;
1461
1462         mutex_lock(&regulator_list_mutex);
1463
1464         rdev = regulator_dev_lookup(dev, id, &ret);
1465         if (rdev)
1466                 goto found;
1467
1468         regulator = ERR_PTR(ret);
1469
1470         /*
1471          * If we have return value from dev_lookup fail, we do not expect to
1472          * succeed, so, quit with appropriate error value
1473          */
1474         if (ret && ret != -ENODEV)
1475                 goto out;
1476
1477         if (!devname)
1478                 devname = "deviceless";
1479
1480         /*
1481          * Assume that a regulator is physically present and enabled
1482          * even if it isn't hooked up and just provide a dummy.
1483          */
1484         if (have_full_constraints() && allow_dummy) {
1485                 pr_warn("%s supply %s not found, using dummy regulator\n",
1486                         devname, id);
1487
1488                 rdev = dummy_regulator_rdev;
1489                 goto found;
1490         /* Don't log an error when called from regulator_get_optional() */
1491         } else if (!have_full_constraints() || exclusive) {
1492                 dev_warn(dev, "dummy supplies not allowed\n");
1493         }
1494
1495         mutex_unlock(&regulator_list_mutex);
1496         return regulator;
1497
1498 found:
1499         if (rdev->exclusive) {
1500                 regulator = ERR_PTR(-EPERM);
1501                 goto out;
1502         }
1503
1504         if (exclusive && rdev->open_count) {
1505                 regulator = ERR_PTR(-EBUSY);
1506                 goto out;
1507         }
1508
1509         ret = regulator_resolve_supply(rdev);
1510         if (ret < 0) {
1511                 regulator = ERR_PTR(ret);
1512                 goto out;
1513         }
1514
1515         if (!try_module_get(rdev->owner))
1516                 goto out;
1517
1518         regulator = create_regulator(rdev, dev, id);
1519         if (regulator == NULL) {
1520                 regulator = ERR_PTR(-ENOMEM);
1521                 module_put(rdev->owner);
1522                 goto out;
1523         }
1524
1525         rdev->open_count++;
1526         if (exclusive) {
1527                 rdev->exclusive = 1;
1528
1529                 ret = _regulator_is_enabled(rdev);
1530                 if (ret > 0)
1531                         rdev->use_count = 1;
1532                 else
1533                         rdev->use_count = 0;
1534         }
1535
1536 out:
1537         mutex_unlock(&regulator_list_mutex);
1538
1539         return regulator;
1540 }
1541
1542 /**
1543  * regulator_get - lookup and obtain a reference to a regulator.
1544  * @dev: device for regulator "consumer"
1545  * @id: Supply name or regulator ID.
1546  *
1547  * Returns a struct regulator corresponding to the regulator producer,
1548  * or IS_ERR() condition containing errno.
1549  *
1550  * Use of supply names configured via regulator_set_device_supply() is
1551  * strongly encouraged.  It is recommended that the supply name used
1552  * should match the name used for the supply and/or the relevant
1553  * device pins in the datasheet.
1554  */
1555 struct regulator *regulator_get(struct device *dev, const char *id)
1556 {
1557         return _regulator_get(dev, id, false, true);
1558 }
1559 EXPORT_SYMBOL_GPL(regulator_get);
1560
1561 /**
1562  * regulator_get_exclusive - obtain exclusive access to a regulator.
1563  * @dev: device for regulator "consumer"
1564  * @id: Supply name or regulator ID.
1565  *
1566  * Returns a struct regulator corresponding to the regulator producer,
1567  * or IS_ERR() condition containing errno.  Other consumers will be
1568  * unable to obtain this regulator while this reference is held and the
1569  * use count for the regulator will be initialised to reflect the current
1570  * state of the regulator.
1571  *
1572  * This is intended for use by consumers which cannot tolerate shared
1573  * use of the regulator such as those which need to force the
1574  * regulator off for correct operation of the hardware they are
1575  * controlling.
1576  *
1577  * Use of supply names configured via regulator_set_device_supply() is
1578  * strongly encouraged.  It is recommended that the supply name used
1579  * should match the name used for the supply and/or the relevant
1580  * device pins in the datasheet.
1581  */
1582 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1583 {
1584         return _regulator_get(dev, id, true, false);
1585 }
1586 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1587
1588 /**
1589  * regulator_get_optional - obtain optional access to a regulator.
1590  * @dev: device for regulator "consumer"
1591  * @id: Supply name or regulator ID.
1592  *
1593  * Returns a struct regulator corresponding to the regulator producer,
1594  * or IS_ERR() condition containing errno.
1595  *
1596  * This is intended for use by consumers for devices which can have
1597  * some supplies unconnected in normal use, such as some MMC devices.
1598  * It can allow the regulator core to provide stub supplies for other
1599  * supplies requested using normal regulator_get() calls without
1600  * disrupting the operation of drivers that can handle absent
1601  * supplies.
1602  *
1603  * Use of supply names configured via regulator_set_device_supply() is
1604  * strongly encouraged.  It is recommended that the supply name used
1605  * should match the name used for the supply and/or the relevant
1606  * device pins in the datasheet.
1607  */
1608 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1609 {
1610         return _regulator_get(dev, id, false, false);
1611 }
1612 EXPORT_SYMBOL_GPL(regulator_get_optional);
1613
1614 /* regulator_list_mutex lock held by regulator_put() */
1615 static void _regulator_put(struct regulator *regulator)
1616 {
1617         struct regulator_dev *rdev;
1618
1619         if (IS_ERR_OR_NULL(regulator))
1620                 return;
1621
1622         lockdep_assert_held_once(&regulator_list_mutex);
1623
1624         rdev = regulator->rdev;
1625
1626         debugfs_remove_recursive(regulator->debugfs);
1627
1628         /* remove any sysfs entries */
1629         if (regulator->dev)
1630                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1631         mutex_lock(&rdev->mutex);
1632         list_del(&regulator->list);
1633
1634         rdev->open_count--;
1635         rdev->exclusive = 0;
1636         mutex_unlock(&rdev->mutex);
1637
1638         kfree(regulator->supply_name);
1639         kfree(regulator);
1640
1641         module_put(rdev->owner);
1642 }
1643
1644 /**
1645  * regulator_put - "free" the regulator source
1646  * @regulator: regulator source
1647  *
1648  * Note: drivers must ensure that all regulator_enable calls made on this
1649  * regulator source are balanced by regulator_disable calls prior to calling
1650  * this function.
1651  */
1652 void regulator_put(struct regulator *regulator)
1653 {
1654         mutex_lock(&regulator_list_mutex);
1655         _regulator_put(regulator);
1656         mutex_unlock(&regulator_list_mutex);
1657 }
1658 EXPORT_SYMBOL_GPL(regulator_put);
1659
1660 /**
1661  * regulator_register_supply_alias - Provide device alias for supply lookup
1662  *
1663  * @dev: device that will be given as the regulator "consumer"
1664  * @id: Supply name or regulator ID
1665  * @alias_dev: device that should be used to lookup the supply
1666  * @alias_id: Supply name or regulator ID that should be used to lookup the
1667  * supply
1668  *
1669  * All lookups for id on dev will instead be conducted for alias_id on
1670  * alias_dev.
1671  */
1672 int regulator_register_supply_alias(struct device *dev, const char *id,
1673                                     struct device *alias_dev,
1674                                     const char *alias_id)
1675 {
1676         struct regulator_supply_alias *map;
1677
1678         map = regulator_find_supply_alias(dev, id);
1679         if (map)
1680                 return -EEXIST;
1681
1682         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1683         if (!map)
1684                 return -ENOMEM;
1685
1686         map->src_dev = dev;
1687         map->src_supply = id;
1688         map->alias_dev = alias_dev;
1689         map->alias_supply = alias_id;
1690
1691         list_add(&map->list, &regulator_supply_alias_list);
1692
1693         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1694                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1695
1696         return 0;
1697 }
1698 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1699
1700 /**
1701  * regulator_unregister_supply_alias - Remove device alias
1702  *
1703  * @dev: device that will be given as the regulator "consumer"
1704  * @id: Supply name or regulator ID
1705  *
1706  * Remove a lookup alias if one exists for id on dev.
1707  */
1708 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1709 {
1710         struct regulator_supply_alias *map;
1711
1712         map = regulator_find_supply_alias(dev, id);
1713         if (map) {
1714                 list_del(&map->list);
1715                 kfree(map);
1716         }
1717 }
1718 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1719
1720 /**
1721  * regulator_bulk_register_supply_alias - register multiple aliases
1722  *
1723  * @dev: device that will be given as the regulator "consumer"
1724  * @id: List of supply names or regulator IDs
1725  * @alias_dev: device that should be used to lookup the supply
1726  * @alias_id: List of supply names or regulator IDs that should be used to
1727  * lookup the supply
1728  * @num_id: Number of aliases to register
1729  *
1730  * @return 0 on success, an errno on failure.
1731  *
1732  * This helper function allows drivers to register several supply
1733  * aliases in one operation.  If any of the aliases cannot be
1734  * registered any aliases that were registered will be removed
1735  * before returning to the caller.
1736  */
1737 int regulator_bulk_register_supply_alias(struct device *dev,
1738                                          const char *const *id,
1739                                          struct device *alias_dev,
1740                                          const char *const *alias_id,
1741                                          int num_id)
1742 {
1743         int i;
1744         int ret;
1745
1746         for (i = 0; i < num_id; ++i) {
1747                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1748                                                       alias_id[i]);
1749                 if (ret < 0)
1750                         goto err;
1751         }
1752
1753         return 0;
1754
1755 err:
1756         dev_err(dev,
1757                 "Failed to create supply alias %s,%s -> %s,%s\n",
1758                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1759
1760         while (--i >= 0)
1761                 regulator_unregister_supply_alias(dev, id[i]);
1762
1763         return ret;
1764 }
1765 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1766
1767 /**
1768  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1769  *
1770  * @dev: device that will be given as the regulator "consumer"
1771  * @id: List of supply names or regulator IDs
1772  * @num_id: Number of aliases to unregister
1773  *
1774  * This helper function allows drivers to unregister several supply
1775  * aliases in one operation.
1776  */
1777 void regulator_bulk_unregister_supply_alias(struct device *dev,
1778                                             const char *const *id,
1779                                             int num_id)
1780 {
1781         int i;
1782
1783         for (i = 0; i < num_id; ++i)
1784                 regulator_unregister_supply_alias(dev, id[i]);
1785 }
1786 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1787
1788
1789 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1790 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1791                                 const struct regulator_config *config)
1792 {
1793         struct regulator_enable_gpio *pin;
1794         struct gpio_desc *gpiod;
1795         int ret;
1796
1797         gpiod = gpio_to_desc(config->ena_gpio);
1798
1799         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1800                 if (pin->gpiod == gpiod) {
1801                         rdev_dbg(rdev, "GPIO %d is already used\n",
1802                                 config->ena_gpio);
1803                         goto update_ena_gpio_to_rdev;
1804                 }
1805         }
1806
1807         ret = gpio_request_one(config->ena_gpio,
1808                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1809                                 rdev_get_name(rdev));
1810         if (ret)
1811                 return ret;
1812
1813         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1814         if (pin == NULL) {
1815                 gpio_free(config->ena_gpio);
1816                 return -ENOMEM;
1817         }
1818
1819         pin->gpiod = gpiod;
1820         pin->ena_gpio_invert = config->ena_gpio_invert;
1821         list_add(&pin->list, &regulator_ena_gpio_list);
1822
1823 update_ena_gpio_to_rdev:
1824         pin->request_count++;
1825         rdev->ena_pin = pin;
1826         return 0;
1827 }
1828
1829 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1830 {
1831         struct regulator_enable_gpio *pin, *n;
1832
1833         if (!rdev->ena_pin)
1834                 return;
1835
1836         /* Free the GPIO only in case of no use */
1837         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1838                 if (pin->gpiod == rdev->ena_pin->gpiod) {
1839                         if (pin->request_count <= 1) {
1840                                 pin->request_count = 0;
1841                                 gpiod_put(pin->gpiod);
1842                                 list_del(&pin->list);
1843                                 kfree(pin);
1844                                 rdev->ena_pin = NULL;
1845                                 return;
1846                         } else {
1847                                 pin->request_count--;
1848                         }
1849                 }
1850         }
1851 }
1852
1853 /**
1854  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1855  * @rdev: regulator_dev structure
1856  * @enable: enable GPIO at initial use?
1857  *
1858  * GPIO is enabled in case of initial use. (enable_count is 0)
1859  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1860  */
1861 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1862 {
1863         struct regulator_enable_gpio *pin = rdev->ena_pin;
1864
1865         if (!pin)
1866                 return -EINVAL;
1867
1868         if (enable) {
1869                 /* Enable GPIO at initial use */
1870                 if (pin->enable_count == 0)
1871                         gpiod_set_value_cansleep(pin->gpiod,
1872                                                  !pin->ena_gpio_invert);
1873
1874                 pin->enable_count++;
1875         } else {
1876                 if (pin->enable_count > 1) {
1877                         pin->enable_count--;
1878                         return 0;
1879                 }
1880
1881                 /* Disable GPIO if not used */
1882                 if (pin->enable_count <= 1) {
1883                         gpiod_set_value_cansleep(pin->gpiod,
1884                                                  pin->ena_gpio_invert);
1885                         pin->enable_count = 0;
1886                 }
1887         }
1888
1889         return 0;
1890 }
1891
1892 /**
1893  * _regulator_enable_delay - a delay helper function
1894  * @delay: time to delay in microseconds
1895  *
1896  * Delay for the requested amount of time as per the guidelines in:
1897  *
1898  *     Documentation/timers/timers-howto.txt
1899  *
1900  * The assumption here is that regulators will never be enabled in
1901  * atomic context and therefore sleeping functions can be used.
1902  */
1903 static void _regulator_enable_delay(unsigned int delay)
1904 {
1905         unsigned int ms = delay / 1000;
1906         unsigned int us = delay % 1000;
1907
1908         if (ms > 0) {
1909                 /*
1910                  * For small enough values, handle super-millisecond
1911                  * delays in the usleep_range() call below.
1912                  */
1913                 if (ms < 20)
1914                         us += ms * 1000;
1915                 else
1916                         msleep(ms);
1917         }
1918
1919         /*
1920          * Give the scheduler some room to coalesce with any other
1921          * wakeup sources. For delays shorter than 10 us, don't even
1922          * bother setting up high-resolution timers and just busy-
1923          * loop.
1924          */
1925         if (us >= 10)
1926                 usleep_range(us, us + 100);
1927         else
1928                 udelay(us);
1929 }
1930
1931 static int _regulator_do_enable(struct regulator_dev *rdev)
1932 {
1933         int ret, delay;
1934
1935         /* Query before enabling in case configuration dependent.  */
1936         ret = _regulator_get_enable_time(rdev);
1937         if (ret >= 0) {
1938                 delay = ret;
1939         } else {
1940                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1941                 delay = 0;
1942         }
1943
1944         trace_regulator_enable(rdev_get_name(rdev));
1945
1946         if (rdev->desc->off_on_delay) {
1947                 /* if needed, keep a distance of off_on_delay from last time
1948                  * this regulator was disabled.
1949                  */
1950                 unsigned long start_jiffy = jiffies;
1951                 unsigned long intended, max_delay, remaining;
1952
1953                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
1954                 intended = rdev->last_off_jiffy + max_delay;
1955
1956                 if (time_before(start_jiffy, intended)) {
1957                         /* calc remaining jiffies to deal with one-time
1958                          * timer wrapping.
1959                          * in case of multiple timer wrapping, either it can be
1960                          * detected by out-of-range remaining, or it cannot be
1961                          * detected and we gets a panelty of
1962                          * _regulator_enable_delay().
1963                          */
1964                         remaining = intended - start_jiffy;
1965                         if (remaining <= max_delay)
1966                                 _regulator_enable_delay(
1967                                                 jiffies_to_usecs(remaining));
1968                 }
1969         }
1970
1971         if (rdev->ena_pin) {
1972                 if (!rdev->ena_gpio_state) {
1973                         ret = regulator_ena_gpio_ctrl(rdev, true);
1974                         if (ret < 0)
1975                                 return ret;
1976                         rdev->ena_gpio_state = 1;
1977                 }
1978         } else if (rdev->desc->ops->enable) {
1979                 ret = rdev->desc->ops->enable(rdev);
1980                 if (ret < 0)
1981                         return ret;
1982         } else {
1983                 return -EINVAL;
1984         }
1985
1986         /* Allow the regulator to ramp; it would be useful to extend
1987          * this for bulk operations so that the regulators can ramp
1988          * together.  */
1989         trace_regulator_enable_delay(rdev_get_name(rdev));
1990
1991         _regulator_enable_delay(delay);
1992
1993         trace_regulator_enable_complete(rdev_get_name(rdev));
1994
1995         return 0;
1996 }
1997
1998 /* locks held by regulator_enable() */
1999 static int _regulator_enable(struct regulator_dev *rdev)
2000 {
2001         int ret;
2002
2003         lockdep_assert_held_once(&rdev->mutex);
2004
2005         /* check voltage and requested load before enabling */
2006         if (rdev->constraints &&
2007             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
2008                 drms_uA_update(rdev);
2009
2010         if (rdev->use_count == 0) {
2011                 /* The regulator may on if it's not switchable or left on */
2012                 ret = _regulator_is_enabled(rdev);
2013                 if (ret == -EINVAL || ret == 0) {
2014                         if (!_regulator_can_change_status(rdev))
2015                                 return -EPERM;
2016
2017                         ret = _regulator_do_enable(rdev);
2018                         if (ret < 0)
2019                                 return ret;
2020
2021                 } else if (ret < 0) {
2022                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2023                         return ret;
2024                 }
2025                 /* Fallthrough on positive return values - already enabled */
2026         }
2027
2028         rdev->use_count++;
2029
2030         return 0;
2031 }
2032
2033 /**
2034  * regulator_enable - enable regulator output
2035  * @regulator: regulator source
2036  *
2037  * Request that the regulator be enabled with the regulator output at
2038  * the predefined voltage or current value.  Calls to regulator_enable()
2039  * must be balanced with calls to regulator_disable().
2040  *
2041  * NOTE: the output value can be set by other drivers, boot loader or may be
2042  * hardwired in the regulator.
2043  */
2044 int regulator_enable(struct regulator *regulator)
2045 {
2046         struct regulator_dev *rdev = regulator->rdev;
2047         int ret = 0;
2048
2049         if (regulator->always_on)
2050                 return 0;
2051
2052         if (rdev->supply) {
2053                 ret = regulator_enable(rdev->supply);
2054                 if (ret != 0)
2055                         return ret;
2056         }
2057
2058         mutex_lock(&rdev->mutex);
2059         ret = _regulator_enable(rdev);
2060         mutex_unlock(&rdev->mutex);
2061
2062         if (ret != 0 && rdev->supply)
2063                 regulator_disable(rdev->supply);
2064
2065         return ret;
2066 }
2067 EXPORT_SYMBOL_GPL(regulator_enable);
2068
2069 static int _regulator_do_disable(struct regulator_dev *rdev)
2070 {
2071         int ret;
2072
2073         trace_regulator_disable(rdev_get_name(rdev));
2074
2075         if (rdev->ena_pin) {
2076                 if (rdev->ena_gpio_state) {
2077                         ret = regulator_ena_gpio_ctrl(rdev, false);
2078                         if (ret < 0)
2079                                 return ret;
2080                         rdev->ena_gpio_state = 0;
2081                 }
2082
2083         } else if (rdev->desc->ops->disable) {
2084                 ret = rdev->desc->ops->disable(rdev);
2085                 if (ret != 0)
2086                         return ret;
2087         }
2088
2089         /* cares about last_off_jiffy only if off_on_delay is required by
2090          * device.
2091          */
2092         if (rdev->desc->off_on_delay)
2093                 rdev->last_off_jiffy = jiffies;
2094
2095         trace_regulator_disable_complete(rdev_get_name(rdev));
2096
2097         return 0;
2098 }
2099
2100 /* locks held by regulator_disable() */
2101 static int _regulator_disable(struct regulator_dev *rdev)
2102 {
2103         int ret = 0;
2104
2105         lockdep_assert_held_once(&rdev->mutex);
2106
2107         if (WARN(rdev->use_count <= 0,
2108                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2109                 return -EIO;
2110
2111         /* are we the last user and permitted to disable ? */
2112         if (rdev->use_count == 1 &&
2113             (rdev->constraints && !rdev->constraints->always_on)) {
2114
2115                 /* we are last user */
2116                 if (_regulator_can_change_status(rdev)) {
2117                         ret = _notifier_call_chain(rdev,
2118                                                    REGULATOR_EVENT_PRE_DISABLE,
2119                                                    NULL);
2120                         if (ret & NOTIFY_STOP_MASK)
2121                                 return -EINVAL;
2122
2123                         ret = _regulator_do_disable(rdev);
2124                         if (ret < 0) {
2125                                 rdev_err(rdev, "failed to disable\n");
2126                                 _notifier_call_chain(rdev,
2127                                                 REGULATOR_EVENT_ABORT_DISABLE,
2128                                                 NULL);
2129                                 return ret;
2130                         }
2131                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2132                                         NULL);
2133                 }
2134
2135                 rdev->use_count = 0;
2136         } else if (rdev->use_count > 1) {
2137
2138                 if (rdev->constraints &&
2139                         (rdev->constraints->valid_ops_mask &
2140                         REGULATOR_CHANGE_DRMS))
2141                         drms_uA_update(rdev);
2142
2143                 rdev->use_count--;
2144         }
2145
2146         return ret;
2147 }
2148
2149 /**
2150  * regulator_disable - disable regulator output
2151  * @regulator: regulator source
2152  *
2153  * Disable the regulator output voltage or current.  Calls to
2154  * regulator_enable() must be balanced with calls to
2155  * regulator_disable().
2156  *
2157  * NOTE: this will only disable the regulator output if no other consumer
2158  * devices have it enabled, the regulator device supports disabling and
2159  * machine constraints permit this operation.
2160  */
2161 int regulator_disable(struct regulator *regulator)
2162 {
2163         struct regulator_dev *rdev = regulator->rdev;
2164         int ret = 0;
2165
2166         if (regulator->always_on)
2167                 return 0;
2168
2169         mutex_lock(&rdev->mutex);
2170         ret = _regulator_disable(rdev);
2171         mutex_unlock(&rdev->mutex);
2172
2173         if (ret == 0 && rdev->supply)
2174                 regulator_disable(rdev->supply);
2175
2176         return ret;
2177 }
2178 EXPORT_SYMBOL_GPL(regulator_disable);
2179
2180 /* locks held by regulator_force_disable() */
2181 static int _regulator_force_disable(struct regulator_dev *rdev)
2182 {
2183         int ret = 0;
2184
2185         lockdep_assert_held_once(&rdev->mutex);
2186
2187         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2188                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2189         if (ret & NOTIFY_STOP_MASK)
2190                 return -EINVAL;
2191
2192         ret = _regulator_do_disable(rdev);
2193         if (ret < 0) {
2194                 rdev_err(rdev, "failed to force disable\n");
2195                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2196                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2197                 return ret;
2198         }
2199
2200         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2201                         REGULATOR_EVENT_DISABLE, NULL);
2202
2203         return 0;
2204 }
2205
2206 /**
2207  * regulator_force_disable - force disable regulator output
2208  * @regulator: regulator source
2209  *
2210  * Forcibly disable the regulator output voltage or current.
2211  * NOTE: this *will* disable the regulator output even if other consumer
2212  * devices have it enabled. This should be used for situations when device
2213  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2214  */
2215 int regulator_force_disable(struct regulator *regulator)
2216 {
2217         struct regulator_dev *rdev = regulator->rdev;
2218         int ret;
2219
2220         mutex_lock(&rdev->mutex);
2221         regulator->uA_load = 0;
2222         ret = _regulator_force_disable(regulator->rdev);
2223         mutex_unlock(&rdev->mutex);
2224
2225         if (rdev->supply)
2226                 while (rdev->open_count--)
2227                         regulator_disable(rdev->supply);
2228
2229         return ret;
2230 }
2231 EXPORT_SYMBOL_GPL(regulator_force_disable);
2232
2233 static void regulator_disable_work(struct work_struct *work)
2234 {
2235         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2236                                                   disable_work.work);
2237         int count, i, ret;
2238
2239         mutex_lock(&rdev->mutex);
2240
2241         BUG_ON(!rdev->deferred_disables);
2242
2243         count = rdev->deferred_disables;
2244         rdev->deferred_disables = 0;
2245
2246         for (i = 0; i < count; i++) {
2247                 ret = _regulator_disable(rdev);
2248                 if (ret != 0)
2249                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2250         }
2251
2252         mutex_unlock(&rdev->mutex);
2253
2254         if (rdev->supply) {
2255                 for (i = 0; i < count; i++) {
2256                         ret = regulator_disable(rdev->supply);
2257                         if (ret != 0) {
2258                                 rdev_err(rdev,
2259                                          "Supply disable failed: %d\n", ret);
2260                         }
2261                 }
2262         }
2263 }
2264
2265 /**
2266  * regulator_disable_deferred - disable regulator output with delay
2267  * @regulator: regulator source
2268  * @ms: miliseconds until the regulator is disabled
2269  *
2270  * Execute regulator_disable() on the regulator after a delay.  This
2271  * is intended for use with devices that require some time to quiesce.
2272  *
2273  * NOTE: this will only disable the regulator output if no other consumer
2274  * devices have it enabled, the regulator device supports disabling and
2275  * machine constraints permit this operation.
2276  */
2277 int regulator_disable_deferred(struct regulator *regulator, int ms)
2278 {
2279         struct regulator_dev *rdev = regulator->rdev;
2280         int ret;
2281
2282         if (regulator->always_on)
2283                 return 0;
2284
2285         if (!ms)
2286                 return regulator_disable(regulator);
2287
2288         mutex_lock(&rdev->mutex);
2289         rdev->deferred_disables++;
2290         mutex_unlock(&rdev->mutex);
2291
2292         ret = queue_delayed_work(system_power_efficient_wq,
2293                                  &rdev->disable_work,
2294                                  msecs_to_jiffies(ms));
2295         if (ret < 0)
2296                 return ret;
2297         else
2298                 return 0;
2299 }
2300 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2301
2302 static int _regulator_is_enabled(struct regulator_dev *rdev)
2303 {
2304         /* A GPIO control always takes precedence */
2305         if (rdev->ena_pin)
2306                 return rdev->ena_gpio_state;
2307
2308         /* If we don't know then assume that the regulator is always on */
2309         if (!rdev->desc->ops->is_enabled)
2310                 return 1;
2311
2312         return rdev->desc->ops->is_enabled(rdev);
2313 }
2314
2315 /**
2316  * regulator_is_enabled - is the regulator output enabled
2317  * @regulator: regulator source
2318  *
2319  * Returns positive if the regulator driver backing the source/client
2320  * has requested that the device be enabled, zero if it hasn't, else a
2321  * negative errno code.
2322  *
2323  * Note that the device backing this regulator handle can have multiple
2324  * users, so it might be enabled even if regulator_enable() was never
2325  * called for this particular source.
2326  */
2327 int regulator_is_enabled(struct regulator *regulator)
2328 {
2329         int ret;
2330
2331         if (regulator->always_on)
2332                 return 1;
2333
2334         mutex_lock(&regulator->rdev->mutex);
2335         ret = _regulator_is_enabled(regulator->rdev);
2336         mutex_unlock(&regulator->rdev->mutex);
2337
2338         return ret;
2339 }
2340 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2341
2342 /**
2343  * regulator_can_change_voltage - check if regulator can change voltage
2344  * @regulator: regulator source
2345  *
2346  * Returns positive if the regulator driver backing the source/client
2347  * can change its voltage, false otherwise. Useful for detecting fixed
2348  * or dummy regulators and disabling voltage change logic in the client
2349  * driver.
2350  */
2351 int regulator_can_change_voltage(struct regulator *regulator)
2352 {
2353         struct regulator_dev    *rdev = regulator->rdev;
2354
2355         if (rdev->constraints &&
2356             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2357                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2358                         return 1;
2359
2360                 if (rdev->desc->continuous_voltage_range &&
2361                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
2362                     rdev->constraints->min_uV != rdev->constraints->max_uV)
2363                         return 1;
2364         }
2365
2366         return 0;
2367 }
2368 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2369
2370 /**
2371  * regulator_count_voltages - count regulator_list_voltage() selectors
2372  * @regulator: regulator source
2373  *
2374  * Returns number of selectors, or negative errno.  Selectors are
2375  * numbered starting at zero, and typically correspond to bitfields
2376  * in hardware registers.
2377  */
2378 int regulator_count_voltages(struct regulator *regulator)
2379 {
2380         struct regulator_dev    *rdev = regulator->rdev;
2381
2382         if (rdev->desc->n_voltages)
2383                 return rdev->desc->n_voltages;
2384
2385         if (!rdev->supply)
2386                 return -EINVAL;
2387
2388         return regulator_count_voltages(rdev->supply);
2389 }
2390 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2391
2392 /**
2393  * regulator_list_voltage - enumerate supported voltages
2394  * @regulator: regulator source
2395  * @selector: identify voltage to list
2396  * Context: can sleep
2397  *
2398  * Returns a voltage that can be passed to @regulator_set_voltage(),
2399  * zero if this selector code can't be used on this system, or a
2400  * negative errno.
2401  */
2402 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2403 {
2404         struct regulator_dev *rdev = regulator->rdev;
2405         const struct regulator_ops *ops = rdev->desc->ops;
2406         int ret;
2407
2408         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2409                 return rdev->desc->fixed_uV;
2410
2411         if (ops->list_voltage) {
2412                 if (selector >= rdev->desc->n_voltages)
2413                         return -EINVAL;
2414                 mutex_lock(&rdev->mutex);
2415                 ret = ops->list_voltage(rdev, selector);
2416                 mutex_unlock(&rdev->mutex);
2417         } else if (rdev->supply) {
2418                 ret = regulator_list_voltage(rdev->supply, selector);
2419         } else {
2420                 return -EINVAL;
2421         }
2422
2423         if (ret > 0) {
2424                 if (ret < rdev->constraints->min_uV)
2425                         ret = 0;
2426                 else if (ret > rdev->constraints->max_uV)
2427                         ret = 0;
2428         }
2429
2430         return ret;
2431 }
2432 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2433
2434 /**
2435  * regulator_get_regmap - get the regulator's register map
2436  * @regulator: regulator source
2437  *
2438  * Returns the register map for the given regulator, or an ERR_PTR value
2439  * if the regulator doesn't use regmap.
2440  */
2441 struct regmap *regulator_get_regmap(struct regulator *regulator)
2442 {
2443         struct regmap *map = regulator->rdev->regmap;
2444
2445         return map ? map : ERR_PTR(-EOPNOTSUPP);
2446 }
2447
2448 /**
2449  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2450  * @regulator: regulator source
2451  * @vsel_reg: voltage selector register, output parameter
2452  * @vsel_mask: mask for voltage selector bitfield, output parameter
2453  *
2454  * Returns the hardware register offset and bitmask used for setting the
2455  * regulator voltage. This might be useful when configuring voltage-scaling
2456  * hardware or firmware that can make I2C requests behind the kernel's back,
2457  * for example.
2458  *
2459  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2460  * and 0 is returned, otherwise a negative errno is returned.
2461  */
2462 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2463                                          unsigned *vsel_reg,
2464                                          unsigned *vsel_mask)
2465 {
2466         struct regulator_dev *rdev = regulator->rdev;
2467         const struct regulator_ops *ops = rdev->desc->ops;
2468
2469         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2470                 return -EOPNOTSUPP;
2471
2472          *vsel_reg = rdev->desc->vsel_reg;
2473          *vsel_mask = rdev->desc->vsel_mask;
2474
2475          return 0;
2476 }
2477 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2478
2479 /**
2480  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2481  * @regulator: regulator source
2482  * @selector: identify voltage to list
2483  *
2484  * Converts the selector to a hardware-specific voltage selector that can be
2485  * directly written to the regulator registers. The address of the voltage
2486  * register can be determined by calling @regulator_get_hardware_vsel_register.
2487  *
2488  * On error a negative errno is returned.
2489  */
2490 int regulator_list_hardware_vsel(struct regulator *regulator,
2491                                  unsigned selector)
2492 {
2493         struct regulator_dev *rdev = regulator->rdev;
2494         const struct regulator_ops *ops = rdev->desc->ops;
2495
2496         if (selector >= rdev->desc->n_voltages)
2497                 return -EINVAL;
2498         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2499                 return -EOPNOTSUPP;
2500
2501         return selector;
2502 }
2503 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2504
2505 /**
2506  * regulator_get_linear_step - return the voltage step size between VSEL values
2507  * @regulator: regulator source
2508  *
2509  * Returns the voltage step size between VSEL values for linear
2510  * regulators, or return 0 if the regulator isn't a linear regulator.
2511  */
2512 unsigned int regulator_get_linear_step(struct regulator *regulator)
2513 {
2514         struct regulator_dev *rdev = regulator->rdev;
2515
2516         return rdev->desc->uV_step;
2517 }
2518 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2519
2520 /**
2521  * regulator_is_supported_voltage - check if a voltage range can be supported
2522  *
2523  * @regulator: Regulator to check.
2524  * @min_uV: Minimum required voltage in uV.
2525  * @max_uV: Maximum required voltage in uV.
2526  *
2527  * Returns a boolean or a negative error code.
2528  */
2529 int regulator_is_supported_voltage(struct regulator *regulator,
2530                                    int min_uV, int max_uV)
2531 {
2532         struct regulator_dev *rdev = regulator->rdev;
2533         int i, voltages, ret;
2534
2535         /* If we can't change voltage check the current voltage */
2536         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2537                 ret = regulator_get_voltage(regulator);
2538                 if (ret >= 0)
2539                         return min_uV <= ret && ret <= max_uV;
2540                 else
2541                         return ret;
2542         }
2543
2544         /* Any voltage within constrains range is fine? */
2545         if (rdev->desc->continuous_voltage_range)
2546                 return min_uV >= rdev->constraints->min_uV &&
2547                                 max_uV <= rdev->constraints->max_uV;
2548
2549         ret = regulator_count_voltages(regulator);
2550         if (ret < 0)
2551                 return ret;
2552         voltages = ret;
2553
2554         for (i = 0; i < voltages; i++) {
2555                 ret = regulator_list_voltage(regulator, i);
2556
2557                 if (ret >= min_uV && ret <= max_uV)
2558                         return 1;
2559         }
2560
2561         return 0;
2562 }
2563 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2564
2565 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2566                                        int min_uV, int max_uV,
2567                                        unsigned *selector)
2568 {
2569         struct pre_voltage_change_data data;
2570         int ret;
2571
2572         data.old_uV = _regulator_get_voltage(rdev);
2573         data.min_uV = min_uV;
2574         data.max_uV = max_uV;
2575         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2576                                    &data);
2577         if (ret & NOTIFY_STOP_MASK)
2578                 return -EINVAL;
2579
2580         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2581         if (ret >= 0)
2582                 return ret;
2583
2584         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2585                              (void *)data.old_uV);
2586
2587         return ret;
2588 }
2589
2590 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2591                                            int uV, unsigned selector)
2592 {
2593         struct pre_voltage_change_data data;
2594         int ret;
2595
2596         data.old_uV = _regulator_get_voltage(rdev);
2597         data.min_uV = uV;
2598         data.max_uV = uV;
2599         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2600                                    &data);
2601         if (ret & NOTIFY_STOP_MASK)
2602                 return -EINVAL;
2603
2604         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2605         if (ret >= 0)
2606                 return ret;
2607
2608         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2609                              (void *)data.old_uV);
2610
2611         return ret;
2612 }
2613
2614 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2615                                      int min_uV, int max_uV)
2616 {
2617         int ret;
2618         int delay = 0;
2619         int best_val = 0;
2620         unsigned int selector;
2621         int old_selector = -1;
2622
2623         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2624
2625         min_uV += rdev->constraints->uV_offset;
2626         max_uV += rdev->constraints->uV_offset;
2627
2628         /*
2629          * If we can't obtain the old selector there is not enough
2630          * info to call set_voltage_time_sel().
2631          */
2632         if (_regulator_is_enabled(rdev) &&
2633             rdev->desc->ops->set_voltage_time_sel &&
2634             rdev->desc->ops->get_voltage_sel) {
2635                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2636                 if (old_selector < 0)
2637                         return old_selector;
2638         }
2639
2640         if (rdev->desc->ops->set_voltage) {
2641                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2642                                                   &selector);
2643
2644                 if (ret >= 0) {
2645                         if (rdev->desc->ops->list_voltage)
2646                                 best_val = rdev->desc->ops->list_voltage(rdev,
2647                                                                          selector);
2648                         else
2649                                 best_val = _regulator_get_voltage(rdev);
2650                 }
2651
2652         } else if (rdev->desc->ops->set_voltage_sel) {
2653                 if (rdev->desc->ops->map_voltage) {
2654                         ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2655                                                            max_uV);
2656                 } else {
2657                         if (rdev->desc->ops->list_voltage ==
2658                             regulator_list_voltage_linear)
2659                                 ret = regulator_map_voltage_linear(rdev,
2660                                                                 min_uV, max_uV);
2661                         else if (rdev->desc->ops->list_voltage ==
2662                                  regulator_list_voltage_linear_range)
2663                                 ret = regulator_map_voltage_linear_range(rdev,
2664                                                                 min_uV, max_uV);
2665                         else
2666                                 ret = regulator_map_voltage_iterate(rdev,
2667                                                                 min_uV, max_uV);
2668                 }
2669
2670                 if (ret >= 0) {
2671                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2672                         if (min_uV <= best_val && max_uV >= best_val) {
2673                                 selector = ret;
2674                                 if (old_selector == selector)
2675                                         ret = 0;
2676                                 else
2677                                         ret = _regulator_call_set_voltage_sel(
2678                                                 rdev, best_val, selector);
2679                         } else {
2680                                 ret = -EINVAL;
2681                         }
2682                 }
2683         } else {
2684                 ret = -EINVAL;
2685         }
2686
2687         /* Call set_voltage_time_sel if successfully obtained old_selector */
2688         if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2689                 && old_selector != selector) {
2690
2691                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2692                                                 old_selector, selector);
2693                 if (delay < 0) {
2694                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2695                                   delay);
2696                         delay = 0;
2697                 }
2698
2699                 /* Insert any necessary delays */
2700                 if (delay >= 1000) {
2701                         mdelay(delay / 1000);
2702                         udelay(delay % 1000);
2703                 } else if (delay) {
2704                         udelay(delay);
2705                 }
2706         }
2707
2708         if (ret == 0 && best_val >= 0) {
2709                 unsigned long data = best_val;
2710
2711                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2712                                      (void *)data);
2713         }
2714
2715         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2716
2717         return ret;
2718 }
2719
2720 /**
2721  * regulator_set_voltage - set regulator output voltage
2722  * @regulator: regulator source
2723  * @min_uV: Minimum required voltage in uV
2724  * @max_uV: Maximum acceptable voltage in uV
2725  *
2726  * Sets a voltage regulator to the desired output voltage. This can be set
2727  * during any regulator state. IOW, regulator can be disabled or enabled.
2728  *
2729  * If the regulator is enabled then the voltage will change to the new value
2730  * immediately otherwise if the regulator is disabled the regulator will
2731  * output at the new voltage when enabled.
2732  *
2733  * NOTE: If the regulator is shared between several devices then the lowest
2734  * request voltage that meets the system constraints will be used.
2735  * Regulator system constraints must be set for this regulator before
2736  * calling this function otherwise this call will fail.
2737  */
2738 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2739 {
2740         struct regulator_dev *rdev = regulator->rdev;
2741         int ret = 0;
2742         int old_min_uV, old_max_uV;
2743         int current_uV;
2744
2745         mutex_lock(&rdev->mutex);
2746
2747         /* If we're setting the same range as last time the change
2748          * should be a noop (some cpufreq implementations use the same
2749          * voltage for multiple frequencies, for example).
2750          */
2751         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2752                 goto out;
2753
2754         /* If we're trying to set a range that overlaps the current voltage,
2755          * return successfully even though the regulator does not support
2756          * changing the voltage.
2757          */
2758         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2759                 current_uV = _regulator_get_voltage(rdev);
2760                 if (min_uV <= current_uV && current_uV <= max_uV) {
2761                         regulator->min_uV = min_uV;
2762                         regulator->max_uV = max_uV;
2763                         goto out;
2764                 }
2765         }
2766
2767         /* sanity check */
2768         if (!rdev->desc->ops->set_voltage &&
2769             !rdev->desc->ops->set_voltage_sel) {
2770                 ret = -EINVAL;
2771                 goto out;
2772         }
2773
2774         /* constraints check */
2775         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2776         if (ret < 0)
2777                 goto out;
2778
2779         /* restore original values in case of error */
2780         old_min_uV = regulator->min_uV;
2781         old_max_uV = regulator->max_uV;
2782         regulator->min_uV = min_uV;
2783         regulator->max_uV = max_uV;
2784
2785         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2786         if (ret < 0)
2787                 goto out2;
2788
2789         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2790         if (ret < 0)
2791                 goto out2;
2792
2793 out:
2794         mutex_unlock(&rdev->mutex);
2795         return ret;
2796 out2:
2797         regulator->min_uV = old_min_uV;
2798         regulator->max_uV = old_max_uV;
2799         mutex_unlock(&rdev->mutex);
2800         return ret;
2801 }
2802 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2803
2804 /**
2805  * regulator_set_voltage_time - get raise/fall time
2806  * @regulator: regulator source
2807  * @old_uV: starting voltage in microvolts
2808  * @new_uV: target voltage in microvolts
2809  *
2810  * Provided with the starting and ending voltage, this function attempts to
2811  * calculate the time in microseconds required to rise or fall to this new
2812  * voltage.
2813  */
2814 int regulator_set_voltage_time(struct regulator *regulator,
2815                                int old_uV, int new_uV)
2816 {
2817         struct regulator_dev *rdev = regulator->rdev;
2818         const struct regulator_ops *ops = rdev->desc->ops;
2819         int old_sel = -1;
2820         int new_sel = -1;
2821         int voltage;
2822         int i;
2823
2824         /* Currently requires operations to do this */
2825         if (!ops->list_voltage || !ops->set_voltage_time_sel
2826             || !rdev->desc->n_voltages)
2827                 return -EINVAL;
2828
2829         for (i = 0; i < rdev->desc->n_voltages; i++) {
2830                 /* We only look for exact voltage matches here */
2831                 voltage = regulator_list_voltage(regulator, i);
2832                 if (voltage < 0)
2833                         return -EINVAL;
2834                 if (voltage == 0)
2835                         continue;
2836                 if (voltage == old_uV)
2837                         old_sel = i;
2838                 if (voltage == new_uV)
2839                         new_sel = i;
2840         }
2841
2842         if (old_sel < 0 || new_sel < 0)
2843                 return -EINVAL;
2844
2845         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2846 }
2847 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2848
2849 /**
2850  * regulator_set_voltage_time_sel - get raise/fall time
2851  * @rdev: regulator source device
2852  * @old_selector: selector for starting voltage
2853  * @new_selector: selector for target voltage
2854  *
2855  * Provided with the starting and target voltage selectors, this function
2856  * returns time in microseconds required to rise or fall to this new voltage
2857  *
2858  * Drivers providing ramp_delay in regulation_constraints can use this as their
2859  * set_voltage_time_sel() operation.
2860  */
2861 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2862                                    unsigned int old_selector,
2863                                    unsigned int new_selector)
2864 {
2865         unsigned int ramp_delay = 0;
2866         int old_volt, new_volt;
2867
2868         if (rdev->constraints->ramp_delay)
2869                 ramp_delay = rdev->constraints->ramp_delay;
2870         else if (rdev->desc->ramp_delay)
2871                 ramp_delay = rdev->desc->ramp_delay;
2872
2873         if (ramp_delay == 0) {
2874                 rdev_warn(rdev, "ramp_delay not set\n");
2875                 return 0;
2876         }
2877
2878         /* sanity check */
2879         if (!rdev->desc->ops->list_voltage)
2880                 return -EINVAL;
2881
2882         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2883         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2884
2885         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2886 }
2887 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2888
2889 /**
2890  * regulator_sync_voltage - re-apply last regulator output voltage
2891  * @regulator: regulator source
2892  *
2893  * Re-apply the last configured voltage.  This is intended to be used
2894  * where some external control source the consumer is cooperating with
2895  * has caused the configured voltage to change.
2896  */
2897 int regulator_sync_voltage(struct regulator *regulator)
2898 {
2899         struct regulator_dev *rdev = regulator->rdev;
2900         int ret, min_uV, max_uV;
2901
2902         mutex_lock(&rdev->mutex);
2903
2904         if (!rdev->desc->ops->set_voltage &&
2905             !rdev->desc->ops->set_voltage_sel) {
2906                 ret = -EINVAL;
2907                 goto out;
2908         }
2909
2910         /* This is only going to work if we've had a voltage configured. */
2911         if (!regulator->min_uV && !regulator->max_uV) {
2912                 ret = -EINVAL;
2913                 goto out;
2914         }
2915
2916         min_uV = regulator->min_uV;
2917         max_uV = regulator->max_uV;
2918
2919         /* This should be a paranoia check... */
2920         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2921         if (ret < 0)
2922                 goto out;
2923
2924         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2925         if (ret < 0)
2926                 goto out;
2927
2928         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2929
2930 out:
2931         mutex_unlock(&rdev->mutex);
2932         return ret;
2933 }
2934 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2935
2936 static int _regulator_get_voltage(struct regulator_dev *rdev)
2937 {
2938         int sel, ret;
2939
2940         if (rdev->desc->ops->get_voltage_sel) {
2941                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2942                 if (sel < 0)
2943                         return sel;
2944                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2945         } else if (rdev->desc->ops->get_voltage) {
2946                 ret = rdev->desc->ops->get_voltage(rdev);
2947         } else if (rdev->desc->ops->list_voltage) {
2948                 ret = rdev->desc->ops->list_voltage(rdev, 0);
2949         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2950                 ret = rdev->desc->fixed_uV;
2951         } else if (rdev->supply) {
2952                 ret = regulator_get_voltage(rdev->supply);
2953         } else {
2954                 return -EINVAL;
2955         }
2956
2957         if (ret < 0)
2958                 return ret;
2959         return ret - rdev->constraints->uV_offset;
2960 }
2961
2962 /**
2963  * regulator_get_voltage - get regulator output voltage
2964  * @regulator: regulator source
2965  *
2966  * This returns the current regulator voltage in uV.
2967  *
2968  * NOTE: If the regulator is disabled it will return the voltage value. This
2969  * function should not be used to determine regulator state.
2970  */
2971 int regulator_get_voltage(struct regulator *regulator)
2972 {
2973         int ret;
2974
2975         mutex_lock(&regulator->rdev->mutex);
2976
2977         ret = _regulator_get_voltage(regulator->rdev);
2978
2979         mutex_unlock(&regulator->rdev->mutex);
2980
2981         return ret;
2982 }
2983 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2984
2985 /**
2986  * regulator_set_current_limit - set regulator output current limit
2987  * @regulator: regulator source
2988  * @min_uA: Minimum supported current in uA
2989  * @max_uA: Maximum supported current in uA
2990  *
2991  * Sets current sink to the desired output current. This can be set during
2992  * any regulator state. IOW, regulator can be disabled or enabled.
2993  *
2994  * If the regulator is enabled then the current will change to the new value
2995  * immediately otherwise if the regulator is disabled the regulator will
2996  * output at the new current when enabled.
2997  *
2998  * NOTE: Regulator system constraints must be set for this regulator before
2999  * calling this function otherwise this call will fail.
3000  */
3001 int regulator_set_current_limit(struct regulator *regulator,
3002                                int min_uA, int max_uA)
3003 {
3004         struct regulator_dev *rdev = regulator->rdev;
3005         int ret;
3006
3007         mutex_lock(&rdev->mutex);
3008
3009         /* sanity check */
3010         if (!rdev->desc->ops->set_current_limit) {
3011                 ret = -EINVAL;
3012                 goto out;
3013         }
3014
3015         /* constraints check */
3016         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3017         if (ret < 0)
3018                 goto out;
3019
3020         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3021 out:
3022         mutex_unlock(&rdev->mutex);
3023         return ret;
3024 }
3025 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3026
3027 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3028 {
3029         int ret;
3030
3031         mutex_lock(&rdev->mutex);
3032
3033         /* sanity check */
3034         if (!rdev->desc->ops->get_current_limit) {
3035                 ret = -EINVAL;
3036                 goto out;
3037         }
3038
3039         ret = rdev->desc->ops->get_current_limit(rdev);
3040 out:
3041         mutex_unlock(&rdev->mutex);
3042         return ret;
3043 }
3044
3045 /**
3046  * regulator_get_current_limit - get regulator output current
3047  * @regulator: regulator source
3048  *
3049  * This returns the current supplied by the specified current sink in uA.
3050  *
3051  * NOTE: If the regulator is disabled it will return the current value. This
3052  * function should not be used to determine regulator state.
3053  */
3054 int regulator_get_current_limit(struct regulator *regulator)
3055 {
3056         return _regulator_get_current_limit(regulator->rdev);
3057 }
3058 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3059
3060 /**
3061  * regulator_set_mode - set regulator operating mode
3062  * @regulator: regulator source
3063  * @mode: operating mode - one of the REGULATOR_MODE constants
3064  *
3065  * Set regulator operating mode to increase regulator efficiency or improve
3066  * regulation performance.
3067  *
3068  * NOTE: Regulator system constraints must be set for this regulator before
3069  * calling this function otherwise this call will fail.
3070  */
3071 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3072 {
3073         struct regulator_dev *rdev = regulator->rdev;
3074         int ret;
3075         int regulator_curr_mode;
3076
3077         mutex_lock(&rdev->mutex);
3078
3079         /* sanity check */
3080         if (!rdev->desc->ops->set_mode) {
3081                 ret = -EINVAL;
3082                 goto out;
3083         }
3084
3085         /* return if the same mode is requested */
3086         if (rdev->desc->ops->get_mode) {
3087                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3088                 if (regulator_curr_mode == mode) {
3089                         ret = 0;
3090                         goto out;
3091                 }
3092         }
3093
3094         /* constraints check */
3095         ret = regulator_mode_constrain(rdev, &mode);
3096         if (ret < 0)
3097                 goto out;
3098
3099         ret = rdev->desc->ops->set_mode(rdev, mode);
3100 out:
3101         mutex_unlock(&rdev->mutex);
3102         return ret;
3103 }
3104 EXPORT_SYMBOL_GPL(regulator_set_mode);
3105
3106 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3107 {
3108         int ret;
3109
3110         mutex_lock(&rdev->mutex);
3111
3112         /* sanity check */
3113         if (!rdev->desc->ops->get_mode) {
3114                 ret = -EINVAL;
3115                 goto out;
3116         }
3117
3118         ret = rdev->desc->ops->get_mode(rdev);
3119 out:
3120         mutex_unlock(&rdev->mutex);
3121         return ret;
3122 }
3123
3124 /**
3125  * regulator_get_mode - get regulator operating mode
3126  * @regulator: regulator source
3127  *
3128  * Get the current regulator operating mode.
3129  */
3130 unsigned int regulator_get_mode(struct regulator *regulator)
3131 {
3132         return _regulator_get_mode(regulator->rdev);
3133 }
3134 EXPORT_SYMBOL_GPL(regulator_get_mode);
3135
3136 /**
3137  * regulator_set_load - set regulator load
3138  * @regulator: regulator source
3139  * @uA_load: load current
3140  *
3141  * Notifies the regulator core of a new device load. This is then used by
3142  * DRMS (if enabled by constraints) to set the most efficient regulator
3143  * operating mode for the new regulator loading.
3144  *
3145  * Consumer devices notify their supply regulator of the maximum power
3146  * they will require (can be taken from device datasheet in the power
3147  * consumption tables) when they change operational status and hence power
3148  * state. Examples of operational state changes that can affect power
3149  * consumption are :-
3150  *
3151  *    o Device is opened / closed.
3152  *    o Device I/O is about to begin or has just finished.
3153  *    o Device is idling in between work.
3154  *
3155  * This information is also exported via sysfs to userspace.
3156  *
3157  * DRMS will sum the total requested load on the regulator and change
3158  * to the most efficient operating mode if platform constraints allow.
3159  *
3160  * On error a negative errno is returned.
3161  */
3162 int regulator_set_load(struct regulator *regulator, int uA_load)
3163 {
3164         struct regulator_dev *rdev = regulator->rdev;
3165         int ret;
3166
3167         mutex_lock(&rdev->mutex);
3168         regulator->uA_load = uA_load;
3169         ret = drms_uA_update(rdev);
3170         mutex_unlock(&rdev->mutex);
3171
3172         return ret;
3173 }
3174 EXPORT_SYMBOL_GPL(regulator_set_load);
3175
3176 /**
3177  * regulator_allow_bypass - allow the regulator to go into bypass mode
3178  *
3179  * @regulator: Regulator to configure
3180  * @enable: enable or disable bypass mode
3181  *
3182  * Allow the regulator to go into bypass mode if all other consumers
3183  * for the regulator also enable bypass mode and the machine
3184  * constraints allow this.  Bypass mode means that the regulator is
3185  * simply passing the input directly to the output with no regulation.
3186  */
3187 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3188 {
3189         struct regulator_dev *rdev = regulator->rdev;
3190         int ret = 0;
3191
3192         if (!rdev->desc->ops->set_bypass)
3193                 return 0;
3194
3195         if (rdev->constraints &&
3196             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3197                 return 0;
3198
3199         mutex_lock(&rdev->mutex);
3200
3201         if (enable && !regulator->bypass) {
3202                 rdev->bypass_count++;
3203
3204                 if (rdev->bypass_count == rdev->open_count) {
3205                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3206                         if (ret != 0)
3207                                 rdev->bypass_count--;
3208                 }
3209
3210         } else if (!enable && regulator->bypass) {
3211                 rdev->bypass_count--;
3212
3213                 if (rdev->bypass_count != rdev->open_count) {
3214                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3215                         if (ret != 0)
3216                                 rdev->bypass_count++;
3217                 }
3218         }
3219
3220         if (ret == 0)
3221                 regulator->bypass = enable;
3222
3223         mutex_unlock(&rdev->mutex);
3224
3225         return ret;
3226 }
3227 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3228
3229 /**
3230  * regulator_register_notifier - register regulator event notifier
3231  * @regulator: regulator source
3232  * @nb: notifier block
3233  *
3234  * Register notifier block to receive regulator events.
3235  */
3236 int regulator_register_notifier(struct regulator *regulator,
3237                               struct notifier_block *nb)
3238 {
3239         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3240                                                 nb);
3241 }
3242 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3243
3244 /**
3245  * regulator_unregister_notifier - unregister regulator event notifier
3246  * @regulator: regulator source
3247  * @nb: notifier block
3248  *
3249  * Unregister regulator event notifier block.
3250  */
3251 int regulator_unregister_notifier(struct regulator *regulator,
3252                                 struct notifier_block *nb)
3253 {
3254         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3255                                                   nb);
3256 }
3257 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3258
3259 /* notify regulator consumers and downstream regulator consumers.
3260  * Note mutex must be held by caller.
3261  */
3262 static int _notifier_call_chain(struct regulator_dev *rdev,
3263                                   unsigned long event, void *data)
3264 {
3265         /* call rdev chain first */
3266         return blocking_notifier_call_chain(&rdev->notifier, event, data);
3267 }
3268
3269 /**
3270  * regulator_bulk_get - get multiple regulator consumers
3271  *
3272  * @dev:           Device to supply
3273  * @num_consumers: Number of consumers to register
3274  * @consumers:     Configuration of consumers; clients are stored here.
3275  *
3276  * @return 0 on success, an errno on failure.
3277  *
3278  * This helper function allows drivers to get several regulator
3279  * consumers in one operation.  If any of the regulators cannot be
3280  * acquired then any regulators that were allocated will be freed
3281  * before returning to the caller.
3282  */
3283 int regulator_bulk_get(struct device *dev, int num_consumers,
3284                        struct regulator_bulk_data *consumers)
3285 {
3286         int i;
3287         int ret;
3288
3289         for (i = 0; i < num_consumers; i++)
3290                 consumers[i].consumer = NULL;
3291
3292         for (i = 0; i < num_consumers; i++) {
3293                 consumers[i].consumer = regulator_get(dev,
3294                                                       consumers[i].supply);
3295                 if (IS_ERR(consumers[i].consumer)) {
3296                         ret = PTR_ERR(consumers[i].consumer);
3297                         dev_err(dev, "Failed to get supply '%s': %d\n",
3298                                 consumers[i].supply, ret);
3299                         consumers[i].consumer = NULL;
3300                         goto err;
3301                 }
3302         }
3303
3304         return 0;
3305
3306 err:
3307         while (--i >= 0)
3308                 regulator_put(consumers[i].consumer);
3309
3310         return ret;
3311 }
3312 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3313
3314 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3315 {
3316         struct regulator_bulk_data *bulk = data;
3317
3318         bulk->ret = regulator_enable(bulk->consumer);
3319 }
3320
3321 /**
3322  * regulator_bulk_enable - enable multiple regulator consumers
3323  *
3324  * @num_consumers: Number of consumers
3325  * @consumers:     Consumer data; clients are stored here.
3326  * @return         0 on success, an errno on failure
3327  *
3328  * This convenience API allows consumers to enable multiple regulator
3329  * clients in a single API call.  If any consumers cannot be enabled
3330  * then any others that were enabled will be disabled again prior to
3331  * return.
3332  */
3333 int regulator_bulk_enable(int num_consumers,
3334                           struct regulator_bulk_data *consumers)
3335 {
3336         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3337         int i;
3338         int ret = 0;
3339
3340         for (i = 0; i < num_consumers; i++) {
3341                 if (consumers[i].consumer->always_on)
3342                         consumers[i].ret = 0;
3343                 else
3344                         async_schedule_domain(regulator_bulk_enable_async,
3345                                               &consumers[i], &async_domain);
3346         }
3347
3348         async_synchronize_full_domain(&async_domain);
3349
3350         /* If any consumer failed we need to unwind any that succeeded */
3351         for (i = 0; i < num_consumers; i++) {
3352                 if (consumers[i].ret != 0) {
3353                         ret = consumers[i].ret;
3354                         goto err;
3355                 }
3356         }
3357
3358         return 0;
3359
3360 err:
3361         for (i = 0; i < num_consumers; i++) {
3362                 if (consumers[i].ret < 0)
3363                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3364                                consumers[i].ret);
3365                 else
3366                         regulator_disable(consumers[i].consumer);
3367         }
3368
3369         return ret;
3370 }
3371 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3372
3373 /**
3374  * regulator_bulk_disable - disable multiple regulator consumers
3375  *
3376  * @num_consumers: Number of consumers
3377  * @consumers:     Consumer data; clients are stored here.
3378  * @return         0 on success, an errno on failure
3379  *
3380  * This convenience API allows consumers to disable multiple regulator
3381  * clients in a single API call.  If any consumers cannot be disabled
3382  * then any others that were disabled will be enabled again prior to
3383  * return.
3384  */
3385 int regulator_bulk_disable(int num_consumers,
3386                            struct regulator_bulk_data *consumers)
3387 {
3388         int i;
3389         int ret, r;
3390
3391         for (i = num_consumers - 1; i >= 0; --i) {
3392                 ret = regulator_disable(consumers[i].consumer);
3393                 if (ret != 0)
3394                         goto err;
3395         }
3396
3397         return 0;
3398
3399 err:
3400         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3401         for (++i; i < num_consumers; ++i) {
3402                 r = regulator_enable(consumers[i].consumer);
3403                 if (r != 0)
3404                         pr_err("Failed to reename %s: %d\n",
3405                                consumers[i].supply, r);
3406         }
3407
3408         return ret;
3409 }
3410 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3411
3412 /**
3413  * regulator_bulk_force_disable - force disable multiple regulator consumers
3414  *
3415  * @num_consumers: Number of consumers
3416  * @consumers:     Consumer data; clients are stored here.
3417  * @return         0 on success, an errno on failure
3418  *
3419  * This convenience API allows consumers to forcibly disable multiple regulator
3420  * clients in a single API call.
3421  * NOTE: This should be used for situations when device damage will
3422  * likely occur if the regulators are not disabled (e.g. over temp).
3423  * Although regulator_force_disable function call for some consumers can
3424  * return error numbers, the function is called for all consumers.
3425  */
3426 int regulator_bulk_force_disable(int num_consumers,
3427                            struct regulator_bulk_data *consumers)
3428 {
3429         int i;
3430         int ret;
3431
3432         for (i = 0; i < num_consumers; i++)
3433                 consumers[i].ret =
3434                             regulator_force_disable(consumers[i].consumer);
3435
3436         for (i = 0; i < num_consumers; i++) {
3437                 if (consumers[i].ret != 0) {
3438                         ret = consumers[i].ret;
3439                         goto out;
3440                 }
3441         }
3442
3443         return 0;
3444 out:
3445         return ret;
3446 }
3447 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3448
3449 /**
3450  * regulator_bulk_free - free multiple regulator consumers
3451  *
3452  * @num_consumers: Number of consumers
3453  * @consumers:     Consumer data; clients are stored here.
3454  *
3455  * This convenience API allows consumers to free multiple regulator
3456  * clients in a single API call.
3457  */
3458 void regulator_bulk_free(int num_consumers,
3459                          struct regulator_bulk_data *consumers)
3460 {
3461         int i;
3462
3463         for (i = 0; i < num_consumers; i++) {
3464                 regulator_put(consumers[i].consumer);
3465                 consumers[i].consumer = NULL;
3466         }
3467 }
3468 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3469
3470 /**
3471  * regulator_notifier_call_chain - call regulator event notifier
3472  * @rdev: regulator source
3473  * @event: notifier block
3474  * @data: callback-specific data.
3475  *
3476  * Called by regulator drivers to notify clients a regulator event has
3477  * occurred. We also notify regulator clients downstream.
3478  * Note lock must be held by caller.
3479  */
3480 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3481                                   unsigned long event, void *data)
3482 {
3483         lockdep_assert_held_once(&rdev->mutex);
3484
3485         _notifier_call_chain(rdev, event, data);
3486         return NOTIFY_DONE;
3487
3488 }
3489 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3490
3491 /**
3492  * regulator_mode_to_status - convert a regulator mode into a status
3493  *
3494  * @mode: Mode to convert
3495  *
3496  * Convert a regulator mode into a status.
3497  */
3498 int regulator_mode_to_status(unsigned int mode)
3499 {
3500         switch (mode) {
3501         case REGULATOR_MODE_FAST:
3502                 return REGULATOR_STATUS_FAST;
3503         case REGULATOR_MODE_NORMAL:
3504                 return REGULATOR_STATUS_NORMAL;
3505         case REGULATOR_MODE_IDLE:
3506                 return REGULATOR_STATUS_IDLE;
3507         case REGULATOR_MODE_STANDBY:
3508                 return REGULATOR_STATUS_STANDBY;
3509         default:
3510                 return REGULATOR_STATUS_UNDEFINED;
3511         }
3512 }
3513 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3514
3515 static struct attribute *regulator_dev_attrs[] = {
3516         &dev_attr_name.attr,
3517         &dev_attr_num_users.attr,
3518         &dev_attr_type.attr,
3519         &dev_attr_microvolts.attr,
3520         &dev_attr_microamps.attr,
3521         &dev_attr_opmode.attr,
3522         &dev_attr_state.attr,
3523         &dev_attr_status.attr,
3524         &dev_attr_bypass.attr,
3525         &dev_attr_requested_microamps.attr,
3526         &dev_attr_min_microvolts.attr,
3527         &dev_attr_max_microvolts.attr,
3528         &dev_attr_min_microamps.attr,
3529         &dev_attr_max_microamps.attr,
3530         &dev_attr_suspend_standby_state.attr,
3531         &dev_attr_suspend_mem_state.attr,
3532         &dev_attr_suspend_disk_state.attr,
3533         &dev_attr_suspend_standby_microvolts.attr,
3534         &dev_attr_suspend_mem_microvolts.attr,
3535         &dev_attr_suspend_disk_microvolts.attr,
3536         &dev_attr_suspend_standby_mode.attr,
3537         &dev_attr_suspend_mem_mode.attr,
3538         &dev_attr_suspend_disk_mode.attr,
3539         NULL
3540 };
3541
3542 /*
3543  * To avoid cluttering sysfs (and memory) with useless state, only
3544  * create attributes that can be meaningfully displayed.
3545  */
3546 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3547                                          struct attribute *attr, int idx)
3548 {
3549         struct device *dev = kobj_to_dev(kobj);
3550         struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev);
3551         const struct regulator_ops *ops = rdev->desc->ops;
3552         umode_t mode = attr->mode;
3553
3554         /* these three are always present */
3555         if (attr == &dev_attr_name.attr ||
3556             attr == &dev_attr_num_users.attr ||
3557             attr == &dev_attr_type.attr)
3558                 return mode;
3559
3560         /* some attributes need specific methods to be displayed */
3561         if (attr == &dev_attr_microvolts.attr) {
3562                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3563                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3564                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3565                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3566                         return mode;
3567                 return 0;
3568         }
3569
3570         if (attr == &dev_attr_microamps.attr)
3571                 return ops->get_current_limit ? mode : 0;
3572
3573         if (attr == &dev_attr_opmode.attr)
3574                 return ops->get_mode ? mode : 0;
3575
3576         if (attr == &dev_attr_state.attr)
3577                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3578
3579         if (attr == &dev_attr_status.attr)
3580                 return ops->get_status ? mode : 0;
3581
3582         if (attr == &dev_attr_bypass.attr)
3583                 return ops->get_bypass ? mode : 0;
3584
3585         /* some attributes are type-specific */
3586         if (attr == &dev_attr_requested_microamps.attr)
3587                 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3588
3589         /* constraints need specific supporting methods */
3590         if (attr == &dev_attr_min_microvolts.attr ||
3591             attr == &dev_attr_max_microvolts.attr)
3592                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3593
3594         if (attr == &dev_attr_min_microamps.attr ||
3595             attr == &dev_attr_max_microamps.attr)
3596                 return ops->set_current_limit ? mode : 0;
3597
3598         if (attr == &dev_attr_suspend_standby_state.attr ||
3599             attr == &dev_attr_suspend_mem_state.attr ||
3600             attr == &dev_attr_suspend_disk_state.attr)
3601                 return mode;
3602
3603         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3604             attr == &dev_attr_suspend_mem_microvolts.attr ||
3605             attr == &dev_attr_suspend_disk_microvolts.attr)
3606                 return ops->set_suspend_voltage ? mode : 0;
3607
3608         if (attr == &dev_attr_suspend_standby_mode.attr ||
3609             attr == &dev_attr_suspend_mem_mode.attr ||
3610             attr == &dev_attr_suspend_disk_mode.attr)
3611                 return ops->set_suspend_mode ? mode : 0;
3612
3613         return mode;
3614 }
3615
3616 static const struct attribute_group regulator_dev_group = {
3617         .attrs = regulator_dev_attrs,
3618         .is_visible = regulator_attr_is_visible,
3619 };
3620
3621 static const struct attribute_group *regulator_dev_groups[] = {
3622         &regulator_dev_group,
3623         NULL
3624 };
3625
3626 static void regulator_dev_release(struct device *dev)
3627 {
3628         struct regulator_dev *rdev = dev_get_drvdata(dev);
3629
3630         kfree(rdev->constraints);
3631         of_node_put(rdev->dev.of_node);
3632         kfree(rdev);
3633 }
3634
3635 static struct class regulator_class = {
3636         .name = "regulator",
3637         .dev_release = regulator_dev_release,
3638         .dev_groups = regulator_dev_groups,
3639 };
3640
3641 static void rdev_init_debugfs(struct regulator_dev *rdev)
3642 {
3643         struct device *parent = rdev->dev.parent;
3644         const char *rname = rdev_get_name(rdev);
3645         char name[NAME_MAX];
3646
3647         /* Avoid duplicate debugfs directory names */
3648         if (parent && rname == rdev->desc->name) {
3649                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3650                          rname);
3651                 rname = name;
3652         }
3653
3654         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3655         if (!rdev->debugfs) {
3656                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3657                 return;
3658         }
3659
3660         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3661                            &rdev->use_count);
3662         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3663                            &rdev->open_count);
3664         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3665                            &rdev->bypass_count);
3666 }
3667
3668 /**
3669  * regulator_register - register regulator
3670  * @regulator_desc: regulator to register
3671  * @cfg: runtime configuration for regulator
3672  *
3673  * Called by regulator drivers to register a regulator.
3674  * Returns a valid pointer to struct regulator_dev on success
3675  * or an ERR_PTR() on error.
3676  */
3677 struct regulator_dev *
3678 regulator_register(const struct regulator_desc *regulator_desc,
3679                    const struct regulator_config *cfg)
3680 {
3681         const struct regulation_constraints *constraints = NULL;
3682         const struct regulator_init_data *init_data;
3683         struct regulator_config *config = NULL;
3684         static atomic_t regulator_no = ATOMIC_INIT(-1);
3685         struct regulator_dev *rdev;
3686         struct device *dev;
3687         int ret, i;
3688
3689         if (regulator_desc == NULL || cfg == NULL)
3690                 return ERR_PTR(-EINVAL);
3691
3692         dev = cfg->dev;
3693         WARN_ON(!dev);
3694
3695         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3696                 return ERR_PTR(-EINVAL);
3697
3698         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3699             regulator_desc->type != REGULATOR_CURRENT)
3700                 return ERR_PTR(-EINVAL);
3701
3702         /* Only one of each should be implemented */
3703         WARN_ON(regulator_desc->ops->get_voltage &&
3704                 regulator_desc->ops->get_voltage_sel);
3705         WARN_ON(regulator_desc->ops->set_voltage &&
3706                 regulator_desc->ops->set_voltage_sel);
3707
3708         /* If we're using selectors we must implement list_voltage. */
3709         if (regulator_desc->ops->get_voltage_sel &&
3710             !regulator_desc->ops->list_voltage) {
3711                 return ERR_PTR(-EINVAL);
3712         }
3713         if (regulator_desc->ops->set_voltage_sel &&
3714             !regulator_desc->ops->list_voltage) {
3715                 return ERR_PTR(-EINVAL);
3716         }
3717
3718         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3719         if (rdev == NULL)
3720                 return ERR_PTR(-ENOMEM);
3721
3722         /*
3723          * Duplicate the config so the driver could override it after
3724          * parsing init data.
3725          */
3726         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3727         if (config == NULL) {
3728                 kfree(rdev);
3729                 return ERR_PTR(-ENOMEM);
3730         }
3731
3732         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3733                                                &rdev->dev.of_node);
3734         if (!init_data) {
3735                 init_data = config->init_data;
3736                 rdev->dev.of_node = of_node_get(config->of_node);
3737         }
3738
3739         mutex_lock(&regulator_list_mutex);
3740
3741         mutex_init(&rdev->mutex);
3742         rdev->reg_data = config->driver_data;
3743         rdev->owner = regulator_desc->owner;
3744         rdev->desc = regulator_desc;
3745         if (config->regmap)
3746                 rdev->regmap = config->regmap;
3747         else if (dev_get_regmap(dev, NULL))
3748                 rdev->regmap = dev_get_regmap(dev, NULL);
3749         else if (dev->parent)
3750                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3751         INIT_LIST_HEAD(&rdev->consumer_list);
3752         INIT_LIST_HEAD(&rdev->list);
3753         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3754         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3755
3756         /* preform any regulator specific init */
3757         if (init_data && init_data->regulator_init) {
3758                 ret = init_data->regulator_init(rdev->reg_data);
3759                 if (ret < 0)
3760                         goto clean;
3761         }
3762
3763         /* register with sysfs */
3764         rdev->dev.class = &regulator_class;
3765         rdev->dev.parent = dev;
3766         dev_set_name(&rdev->dev, "regulator.%lu",
3767                     (unsigned long) atomic_inc_return(&regulator_no));
3768         ret = device_register(&rdev->dev);
3769         if (ret != 0) {
3770                 put_device(&rdev->dev);
3771                 goto clean;
3772         }
3773
3774         dev_set_drvdata(&rdev->dev, rdev);
3775
3776         if ((config->ena_gpio || config->ena_gpio_initialized) &&
3777             gpio_is_valid(config->ena_gpio)) {
3778                 ret = regulator_ena_gpio_request(rdev, config);
3779                 if (ret != 0) {
3780                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3781                                  config->ena_gpio, ret);
3782                         goto wash;
3783                 }
3784         }
3785
3786         /* set regulator constraints */
3787         if (init_data)
3788                 constraints = &init_data->constraints;
3789
3790         ret = set_machine_constraints(rdev, constraints);
3791         if (ret < 0)
3792                 goto scrub;
3793
3794         if (init_data && init_data->supply_regulator)
3795                 rdev->supply_name = init_data->supply_regulator;
3796         else if (regulator_desc->supply_name)
3797                 rdev->supply_name = regulator_desc->supply_name;
3798
3799         /* add consumers devices */
3800         if (init_data) {
3801                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3802                         ret = set_consumer_device_supply(rdev,
3803                                 init_data->consumer_supplies[i].dev_name,
3804                                 init_data->consumer_supplies[i].supply);
3805                         if (ret < 0) {
3806                                 dev_err(dev, "Failed to set supply %s\n",
3807                                         init_data->consumer_supplies[i].supply);
3808                                 goto unset_supplies;
3809                         }
3810                 }
3811         }
3812
3813         list_add(&rdev->list, &regulator_list);
3814
3815         rdev_init_debugfs(rdev);
3816 out:
3817         mutex_unlock(&regulator_list_mutex);
3818         kfree(config);
3819         return rdev;
3820
3821 unset_supplies:
3822         unset_regulator_supplies(rdev);
3823
3824 scrub:
3825         regulator_ena_gpio_free(rdev);
3826         kfree(rdev->constraints);
3827 wash:
3828         device_unregister(&rdev->dev);
3829         /* device core frees rdev */
3830         rdev = ERR_PTR(ret);
3831         goto out;
3832
3833 clean:
3834         kfree(rdev);
3835         rdev = ERR_PTR(ret);
3836         goto out;
3837 }
3838 EXPORT_SYMBOL_GPL(regulator_register);
3839
3840 /**
3841  * regulator_unregister - unregister regulator
3842  * @rdev: regulator to unregister
3843  *
3844  * Called by regulator drivers to unregister a regulator.
3845  */
3846 void regulator_unregister(struct regulator_dev *rdev)
3847 {
3848         if (rdev == NULL)
3849                 return;
3850
3851         if (rdev->supply) {
3852                 while (rdev->use_count--)
3853                         regulator_disable(rdev->supply);
3854                 regulator_put(rdev->supply);
3855         }
3856         mutex_lock(&regulator_list_mutex);
3857         debugfs_remove_recursive(rdev->debugfs);
3858         flush_work(&rdev->disable_work.work);
3859         WARN_ON(rdev->open_count);
3860         unset_regulator_supplies(rdev);
3861         list_del(&rdev->list);
3862         mutex_unlock(&regulator_list_mutex);
3863         regulator_ena_gpio_free(rdev);
3864         device_unregister(&rdev->dev);
3865 }
3866 EXPORT_SYMBOL_GPL(regulator_unregister);
3867
3868 /**
3869  * regulator_suspend_prepare - prepare regulators for system wide suspend
3870  * @state: system suspend state
3871  *
3872  * Configure each regulator with it's suspend operating parameters for state.
3873  * This will usually be called by machine suspend code prior to supending.
3874  */
3875 int regulator_suspend_prepare(suspend_state_t state)
3876 {
3877         struct regulator_dev *rdev;
3878         int ret = 0;
3879
3880         /* ON is handled by regulator active state */
3881         if (state == PM_SUSPEND_ON)
3882                 return -EINVAL;
3883
3884         mutex_lock(&regulator_list_mutex);
3885         list_for_each_entry(rdev, &regulator_list, list) {
3886
3887                 mutex_lock(&rdev->mutex);
3888                 ret = suspend_prepare(rdev, state);
3889                 mutex_unlock(&rdev->mutex);
3890
3891                 if (ret < 0) {
3892                         rdev_err(rdev, "failed to prepare\n");
3893                         goto out;
3894                 }
3895         }
3896 out:
3897         mutex_unlock(&regulator_list_mutex);
3898         return ret;
3899 }
3900 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3901
3902 /**
3903  * regulator_suspend_finish - resume regulators from system wide suspend
3904  *
3905  * Turn on regulators that might be turned off by regulator_suspend_prepare
3906  * and that should be turned on according to the regulators properties.
3907  */
3908 int regulator_suspend_finish(void)
3909 {
3910         struct regulator_dev *rdev;
3911         int ret = 0, error;
3912
3913         mutex_lock(&regulator_list_mutex);
3914         list_for_each_entry(rdev, &regulator_list, list) {
3915                 mutex_lock(&rdev->mutex);
3916                 if (rdev->use_count > 0  || rdev->constraints->always_on) {
3917                         if (!_regulator_is_enabled(rdev)) {
3918                                 error = _regulator_do_enable(rdev);
3919                                 if (error)
3920                                         ret = error;
3921                         }
3922                 } else {
3923                         if (!have_full_constraints())
3924                                 goto unlock;
3925                         if (!_regulator_is_enabled(rdev))
3926                                 goto unlock;
3927
3928                         error = _regulator_do_disable(rdev);
3929                         if (error)
3930                                 ret = error;
3931                 }
3932 unlock:
3933                 mutex_unlock(&rdev->mutex);
3934         }
3935         mutex_unlock(&regulator_list_mutex);
3936         return ret;
3937 }
3938 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3939
3940 /**
3941  * regulator_has_full_constraints - the system has fully specified constraints
3942  *
3943  * Calling this function will cause the regulator API to disable all
3944  * regulators which have a zero use count and don't have an always_on
3945  * constraint in a late_initcall.
3946  *
3947  * The intention is that this will become the default behaviour in a
3948  * future kernel release so users are encouraged to use this facility
3949  * now.
3950  */
3951 void regulator_has_full_constraints(void)
3952 {
3953         has_full_constraints = 1;
3954 }
3955 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3956
3957 /**
3958  * rdev_get_drvdata - get rdev regulator driver data
3959  * @rdev: regulator
3960  *
3961  * Get rdev regulator driver private data. This call can be used in the
3962  * regulator driver context.
3963  */
3964 void *rdev_get_drvdata(struct regulator_dev *rdev)
3965 {
3966         return rdev->reg_data;
3967 }
3968 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3969
3970 /**
3971  * regulator_get_drvdata - get regulator driver data
3972  * @regulator: regulator
3973  *
3974  * Get regulator driver private data. This call can be used in the consumer
3975  * driver context when non API regulator specific functions need to be called.
3976  */
3977 void *regulator_get_drvdata(struct regulator *regulator)
3978 {
3979         return regulator->rdev->reg_data;
3980 }
3981 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3982
3983 /**
3984  * regulator_set_drvdata - set regulator driver data
3985  * @regulator: regulator
3986  * @data: data
3987  */
3988 void regulator_set_drvdata(struct regulator *regulator, void *data)
3989 {
3990         regulator->rdev->reg_data = data;
3991 }
3992 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3993
3994 /**
3995  * regulator_get_id - get regulator ID
3996  * @rdev: regulator
3997  */
3998 int rdev_get_id(struct regulator_dev *rdev)
3999 {
4000         return rdev->desc->id;
4001 }
4002 EXPORT_SYMBOL_GPL(rdev_get_id);
4003
4004 struct device *rdev_get_dev(struct regulator_dev *rdev)
4005 {
4006         return &rdev->dev;
4007 }
4008 EXPORT_SYMBOL_GPL(rdev_get_dev);
4009
4010 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4011 {
4012         return reg_init_data->driver_data;
4013 }
4014 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4015
4016 #ifdef CONFIG_DEBUG_FS
4017 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4018                                     size_t count, loff_t *ppos)
4019 {
4020         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4021         ssize_t len, ret = 0;
4022         struct regulator_map *map;
4023
4024         if (!buf)
4025                 return -ENOMEM;
4026
4027         list_for_each_entry(map, &regulator_map_list, list) {
4028                 len = snprintf(buf + ret, PAGE_SIZE - ret,
4029                                "%s -> %s.%s\n",
4030                                rdev_get_name(map->regulator), map->dev_name,
4031                                map->supply);
4032                 if (len >= 0)
4033                         ret += len;
4034                 if (ret > PAGE_SIZE) {
4035                         ret = PAGE_SIZE;
4036                         break;
4037                 }
4038         }
4039
4040         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4041
4042         kfree(buf);
4043
4044         return ret;
4045 }
4046 #endif
4047
4048 static const struct file_operations supply_map_fops = {
4049 #ifdef CONFIG_DEBUG_FS
4050         .read = supply_map_read_file,
4051         .llseek = default_llseek,
4052 #endif
4053 };
4054
4055 #ifdef CONFIG_DEBUG_FS
4056 static void regulator_summary_show_subtree(struct seq_file *s,
4057                                            struct regulator_dev *rdev,
4058                                            int level)
4059 {
4060         struct list_head *list = s->private;
4061         struct regulator_dev *child;
4062         struct regulation_constraints *c;
4063         struct regulator *consumer;
4064
4065         if (!rdev)
4066                 return;
4067
4068         seq_printf(s, "%*s%-*s %3d %4d %6d ",
4069                    level * 3 + 1, "",
4070                    30 - level * 3, rdev_get_name(rdev),
4071                    rdev->use_count, rdev->open_count, rdev->bypass_count);
4072
4073         seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4074         seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4075
4076         c = rdev->constraints;
4077         if (c) {
4078                 switch (rdev->desc->type) {
4079                 case REGULATOR_VOLTAGE:
4080                         seq_printf(s, "%5dmV %5dmV ",
4081                                    c->min_uV / 1000, c->max_uV / 1000);
4082                         break;
4083                 case REGULATOR_CURRENT:
4084                         seq_printf(s, "%5dmA %5dmA ",
4085                                    c->min_uA / 1000, c->max_uA / 1000);
4086                         break;
4087                 }
4088         }
4089
4090         seq_puts(s, "\n");
4091
4092         list_for_each_entry(consumer, &rdev->consumer_list, list) {
4093                 if (consumer->dev->class == &regulator_class)
4094                         continue;
4095
4096                 seq_printf(s, "%*s%-*s ",
4097                            (level + 1) * 3 + 1, "",
4098                            30 - (level + 1) * 3, dev_name(consumer->dev));
4099
4100                 switch (rdev->desc->type) {
4101                 case REGULATOR_VOLTAGE:
4102                         seq_printf(s, "%37dmV %5dmV",
4103                                    consumer->min_uV / 1000,
4104                                    consumer->max_uV / 1000);
4105                         break;
4106                 case REGULATOR_CURRENT:
4107                         break;
4108                 }
4109
4110                 seq_puts(s, "\n");
4111         }
4112
4113         list_for_each_entry(child, list, list) {
4114                 /* handle only non-root regulators supplied by current rdev */
4115                 if (!child->supply || child->supply->rdev != rdev)
4116                         continue;
4117
4118                 regulator_summary_show_subtree(s, child, level + 1);
4119         }
4120 }
4121
4122 static int regulator_summary_show(struct seq_file *s, void *data)
4123 {
4124         struct list_head *list = s->private;
4125         struct regulator_dev *rdev;
4126
4127         seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4128         seq_puts(s, "-------------------------------------------------------------------------------\n");
4129
4130         mutex_lock(&regulator_list_mutex);
4131
4132         list_for_each_entry(rdev, list, list) {
4133                 if (rdev->supply)
4134                         continue;
4135
4136                 regulator_summary_show_subtree(s, rdev, 0);
4137         }
4138
4139         mutex_unlock(&regulator_list_mutex);
4140
4141         return 0;
4142 }
4143
4144 static int regulator_summary_open(struct inode *inode, struct file *file)
4145 {
4146         return single_open(file, regulator_summary_show, inode->i_private);
4147 }
4148 #endif
4149
4150 static const struct file_operations regulator_summary_fops = {
4151 #ifdef CONFIG_DEBUG_FS
4152         .open           = regulator_summary_open,
4153         .read           = seq_read,
4154         .llseek         = seq_lseek,
4155         .release        = single_release,
4156 #endif
4157 };
4158
4159 static int __init regulator_init(void)
4160 {
4161         int ret;
4162
4163         ret = class_register(&regulator_class);
4164
4165         debugfs_root = debugfs_create_dir("regulator", NULL);
4166         if (!debugfs_root)
4167                 pr_warn("regulator: Failed to create debugfs directory\n");
4168
4169         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4170                             &supply_map_fops);
4171
4172         debugfs_create_file("regulator_summary", 0444, debugfs_root,
4173                             &regulator_list, &regulator_summary_fops);
4174
4175         regulator_dummy_init();
4176
4177         return ret;
4178 }
4179
4180 /* init early to allow our consumers to complete system booting */
4181 core_initcall(regulator_init);
4182
4183 static int __init regulator_late_cleanup(struct device *dev, void *data)
4184 {
4185         struct regulator_dev *rdev = dev_to_rdev(dev);
4186         const struct regulator_ops *ops = rdev->desc->ops;
4187         struct regulation_constraints *c = rdev->constraints;
4188         int enabled, ret;
4189
4190         if (c && c->always_on)
4191                 return 0;
4192
4193         if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4194                 return 0;
4195
4196         mutex_lock(&rdev->mutex);
4197
4198         if (rdev->use_count)
4199                 goto unlock;
4200
4201         /* If we can't read the status assume it's on. */
4202         if (ops->is_enabled)
4203                 enabled = ops->is_enabled(rdev);
4204         else
4205                 enabled = 1;
4206
4207         if (!enabled)
4208                 goto unlock;
4209
4210         if (have_full_constraints()) {
4211                 /* We log since this may kill the system if it goes
4212                  * wrong. */
4213                 rdev_info(rdev, "disabling\n");
4214                 ret = _regulator_do_disable(rdev);
4215                 if (ret != 0)
4216                         rdev_err(rdev, "couldn't disable: %d\n", ret);
4217         } else {
4218                 /* The intention is that in future we will
4219                  * assume that full constraints are provided
4220                  * so warn even if we aren't going to do
4221                  * anything here.
4222                  */
4223                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4224         }
4225
4226 unlock:
4227         mutex_unlock(&rdev->mutex);
4228
4229         return 0;
4230 }
4231
4232 static int __init regulator_init_complete(void)
4233 {
4234         /*
4235          * Since DT doesn't provide an idiomatic mechanism for
4236          * enabling full constraints and since it's much more natural
4237          * with DT to provide them just assume that a DT enabled
4238          * system has full constraints.
4239          */
4240         if (of_have_populated_dt())
4241                 has_full_constraints = true;
4242
4243         /* If we have a full configuration then disable any regulators
4244          * we have permission to change the status for and which are
4245          * not in use or always_on.  This is effectively the default
4246          * for DT and ACPI as they have full constraints.
4247          */
4248         class_for_each_device(&regulator_class, NULL, NULL,
4249                               regulator_late_cleanup);
4250
4251         return 0;
4252 }
4253 late_initcall_sync(regulator_init_complete);