]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/spi/spi.c
Merge tag 'mfd-fixes-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd
[karo-tx-linux.git] / drivers / spi / spi.c
1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  * Copyright (C) 2008 Secret Lab Technologies Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/spi.h>
43
44 static void spidev_release(struct device *dev)
45 {
46         struct spi_device       *spi = to_spi_device(dev);
47
48         /* spi masters may cleanup for released devices */
49         if (spi->master->cleanup)
50                 spi->master->cleanup(spi);
51
52         spi_master_put(spi->master);
53         kfree(spi);
54 }
55
56 static ssize_t
57 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
58 {
59         const struct spi_device *spi = to_spi_device(dev);
60         int len;
61
62         len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
63         if (len != -ENODEV)
64                 return len;
65
66         return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
67 }
68 static DEVICE_ATTR_RO(modalias);
69
70 #define SPI_STATISTICS_ATTRS(field, file)                               \
71 static ssize_t spi_master_##field##_show(struct device *dev,            \
72                                          struct device_attribute *attr, \
73                                          char *buf)                     \
74 {                                                                       \
75         struct spi_master *master = container_of(dev,                   \
76                                                  struct spi_master, dev); \
77         return spi_statistics_##field##_show(&master->statistics, buf); \
78 }                                                                       \
79 static struct device_attribute dev_attr_spi_master_##field = {          \
80         .attr = { .name = file, .mode = S_IRUGO },                      \
81         .show = spi_master_##field##_show,                              \
82 };                                                                      \
83 static ssize_t spi_device_##field##_show(struct device *dev,            \
84                                          struct device_attribute *attr, \
85                                         char *buf)                      \
86 {                                                                       \
87         struct spi_device *spi = container_of(dev,                      \
88                                               struct spi_device, dev);  \
89         return spi_statistics_##field##_show(&spi->statistics, buf);    \
90 }                                                                       \
91 static struct device_attribute dev_attr_spi_device_##field = {          \
92         .attr = { .name = file, .mode = S_IRUGO },                      \
93         .show = spi_device_##field##_show,                              \
94 }
95
96 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)      \
97 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
98                                             char *buf)                  \
99 {                                                                       \
100         unsigned long flags;                                            \
101         ssize_t len;                                                    \
102         spin_lock_irqsave(&stat->lock, flags);                          \
103         len = sprintf(buf, format_string, stat->field);                 \
104         spin_unlock_irqrestore(&stat->lock, flags);                     \
105         return len;                                                     \
106 }                                                                       \
107 SPI_STATISTICS_ATTRS(name, file)
108
109 #define SPI_STATISTICS_SHOW(field, format_string)                       \
110         SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
111                                  field, format_string)
112
113 SPI_STATISTICS_SHOW(messages, "%lu");
114 SPI_STATISTICS_SHOW(transfers, "%lu");
115 SPI_STATISTICS_SHOW(errors, "%lu");
116 SPI_STATISTICS_SHOW(timedout, "%lu");
117
118 SPI_STATISTICS_SHOW(spi_sync, "%lu");
119 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
120 SPI_STATISTICS_SHOW(spi_async, "%lu");
121
122 SPI_STATISTICS_SHOW(bytes, "%llu");
123 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
124 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
125
126 static struct attribute *spi_dev_attrs[] = {
127         &dev_attr_modalias.attr,
128         NULL,
129 };
130
131 static const struct attribute_group spi_dev_group = {
132         .attrs  = spi_dev_attrs,
133 };
134
135 static struct attribute *spi_device_statistics_attrs[] = {
136         &dev_attr_spi_device_messages.attr,
137         &dev_attr_spi_device_transfers.attr,
138         &dev_attr_spi_device_errors.attr,
139         &dev_attr_spi_device_timedout.attr,
140         &dev_attr_spi_device_spi_sync.attr,
141         &dev_attr_spi_device_spi_sync_immediate.attr,
142         &dev_attr_spi_device_spi_async.attr,
143         &dev_attr_spi_device_bytes.attr,
144         &dev_attr_spi_device_bytes_rx.attr,
145         &dev_attr_spi_device_bytes_tx.attr,
146         NULL,
147 };
148
149 static const struct attribute_group spi_device_statistics_group = {
150         .name  = "statistics",
151         .attrs  = spi_device_statistics_attrs,
152 };
153
154 static const struct attribute_group *spi_dev_groups[] = {
155         &spi_dev_group,
156         &spi_device_statistics_group,
157         NULL,
158 };
159
160 static struct attribute *spi_master_statistics_attrs[] = {
161         &dev_attr_spi_master_messages.attr,
162         &dev_attr_spi_master_transfers.attr,
163         &dev_attr_spi_master_errors.attr,
164         &dev_attr_spi_master_timedout.attr,
165         &dev_attr_spi_master_spi_sync.attr,
166         &dev_attr_spi_master_spi_sync_immediate.attr,
167         &dev_attr_spi_master_spi_async.attr,
168         &dev_attr_spi_master_bytes.attr,
169         &dev_attr_spi_master_bytes_rx.attr,
170         &dev_attr_spi_master_bytes_tx.attr,
171         NULL,
172 };
173
174 static const struct attribute_group spi_master_statistics_group = {
175         .name  = "statistics",
176         .attrs  = spi_master_statistics_attrs,
177 };
178
179 static const struct attribute_group *spi_master_groups[] = {
180         &spi_master_statistics_group,
181         NULL,
182 };
183
184 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
185                                        struct spi_transfer *xfer,
186                                        struct spi_master *master)
187 {
188         unsigned long flags;
189
190         spin_lock_irqsave(&stats->lock, flags);
191
192         stats->transfers++;
193
194         stats->bytes += xfer->len;
195         if ((xfer->tx_buf) &&
196             (xfer->tx_buf != master->dummy_tx))
197                 stats->bytes_tx += xfer->len;
198         if ((xfer->rx_buf) &&
199             (xfer->rx_buf != master->dummy_rx))
200                 stats->bytes_rx += xfer->len;
201
202         spin_unlock_irqrestore(&stats->lock, flags);
203 }
204 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
205
206 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
207  * and the sysfs version makes coldplug work too.
208  */
209
210 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
211                                                 const struct spi_device *sdev)
212 {
213         while (id->name[0]) {
214                 if (!strcmp(sdev->modalias, id->name))
215                         return id;
216                 id++;
217         }
218         return NULL;
219 }
220
221 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
222 {
223         const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
224
225         return spi_match_id(sdrv->id_table, sdev);
226 }
227 EXPORT_SYMBOL_GPL(spi_get_device_id);
228
229 static int spi_match_device(struct device *dev, struct device_driver *drv)
230 {
231         const struct spi_device *spi = to_spi_device(dev);
232         const struct spi_driver *sdrv = to_spi_driver(drv);
233
234         /* Attempt an OF style match */
235         if (of_driver_match_device(dev, drv))
236                 return 1;
237
238         /* Then try ACPI */
239         if (acpi_driver_match_device(dev, drv))
240                 return 1;
241
242         if (sdrv->id_table)
243                 return !!spi_match_id(sdrv->id_table, spi);
244
245         return strcmp(spi->modalias, drv->name) == 0;
246 }
247
248 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
249 {
250         const struct spi_device         *spi = to_spi_device(dev);
251         int rc;
252
253         rc = acpi_device_uevent_modalias(dev, env);
254         if (rc != -ENODEV)
255                 return rc;
256
257         add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
258         return 0;
259 }
260
261 struct bus_type spi_bus_type = {
262         .name           = "spi",
263         .dev_groups     = spi_dev_groups,
264         .match          = spi_match_device,
265         .uevent         = spi_uevent,
266 };
267 EXPORT_SYMBOL_GPL(spi_bus_type);
268
269
270 static int spi_drv_probe(struct device *dev)
271 {
272         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
273         int ret;
274
275         ret = of_clk_set_defaults(dev->of_node, false);
276         if (ret)
277                 return ret;
278
279         ret = dev_pm_domain_attach(dev, true);
280         if (ret != -EPROBE_DEFER) {
281                 ret = sdrv->probe(to_spi_device(dev));
282                 if (ret)
283                         dev_pm_domain_detach(dev, true);
284         }
285
286         return ret;
287 }
288
289 static int spi_drv_remove(struct device *dev)
290 {
291         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
292         int ret;
293
294         ret = sdrv->remove(to_spi_device(dev));
295         dev_pm_domain_detach(dev, true);
296
297         return ret;
298 }
299
300 static void spi_drv_shutdown(struct device *dev)
301 {
302         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
303
304         sdrv->shutdown(to_spi_device(dev));
305 }
306
307 /**
308  * spi_register_driver - register a SPI driver
309  * @sdrv: the driver to register
310  * Context: can sleep
311  */
312 int spi_register_driver(struct spi_driver *sdrv)
313 {
314         sdrv->driver.bus = &spi_bus_type;
315         if (sdrv->probe)
316                 sdrv->driver.probe = spi_drv_probe;
317         if (sdrv->remove)
318                 sdrv->driver.remove = spi_drv_remove;
319         if (sdrv->shutdown)
320                 sdrv->driver.shutdown = spi_drv_shutdown;
321         return driver_register(&sdrv->driver);
322 }
323 EXPORT_SYMBOL_GPL(spi_register_driver);
324
325 /*-------------------------------------------------------------------------*/
326
327 /* SPI devices should normally not be created by SPI device drivers; that
328  * would make them board-specific.  Similarly with SPI master drivers.
329  * Device registration normally goes into like arch/.../mach.../board-YYY.c
330  * with other readonly (flashable) information about mainboard devices.
331  */
332
333 struct boardinfo {
334         struct list_head        list;
335         struct spi_board_info   board_info;
336 };
337
338 static LIST_HEAD(board_list);
339 static LIST_HEAD(spi_master_list);
340
341 /*
342  * Used to protect add/del opertion for board_info list and
343  * spi_master list, and their matching process
344  */
345 static DEFINE_MUTEX(board_lock);
346
347 /**
348  * spi_alloc_device - Allocate a new SPI device
349  * @master: Controller to which device is connected
350  * Context: can sleep
351  *
352  * Allows a driver to allocate and initialize a spi_device without
353  * registering it immediately.  This allows a driver to directly
354  * fill the spi_device with device parameters before calling
355  * spi_add_device() on it.
356  *
357  * Caller is responsible to call spi_add_device() on the returned
358  * spi_device structure to add it to the SPI master.  If the caller
359  * needs to discard the spi_device without adding it, then it should
360  * call spi_dev_put() on it.
361  *
362  * Returns a pointer to the new device, or NULL.
363  */
364 struct spi_device *spi_alloc_device(struct spi_master *master)
365 {
366         struct spi_device       *spi;
367
368         if (!spi_master_get(master))
369                 return NULL;
370
371         spi = kzalloc(sizeof(*spi), GFP_KERNEL);
372         if (!spi) {
373                 spi_master_put(master);
374                 return NULL;
375         }
376
377         spi->master = master;
378         spi->dev.parent = &master->dev;
379         spi->dev.bus = &spi_bus_type;
380         spi->dev.release = spidev_release;
381         spi->cs_gpio = -ENOENT;
382
383         spin_lock_init(&spi->statistics.lock);
384
385         device_initialize(&spi->dev);
386         return spi;
387 }
388 EXPORT_SYMBOL_GPL(spi_alloc_device);
389
390 static void spi_dev_set_name(struct spi_device *spi)
391 {
392         struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
393
394         if (adev) {
395                 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
396                 return;
397         }
398
399         dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
400                      spi->chip_select);
401 }
402
403 static int spi_dev_check(struct device *dev, void *data)
404 {
405         struct spi_device *spi = to_spi_device(dev);
406         struct spi_device *new_spi = data;
407
408         if (spi->master == new_spi->master &&
409             spi->chip_select == new_spi->chip_select)
410                 return -EBUSY;
411         return 0;
412 }
413
414 /**
415  * spi_add_device - Add spi_device allocated with spi_alloc_device
416  * @spi: spi_device to register
417  *
418  * Companion function to spi_alloc_device.  Devices allocated with
419  * spi_alloc_device can be added onto the spi bus with this function.
420  *
421  * Returns 0 on success; negative errno on failure
422  */
423 int spi_add_device(struct spi_device *spi)
424 {
425         static DEFINE_MUTEX(spi_add_lock);
426         struct spi_master *master = spi->master;
427         struct device *dev = master->dev.parent;
428         int status;
429
430         /* Chipselects are numbered 0..max; validate. */
431         if (spi->chip_select >= master->num_chipselect) {
432                 dev_err(dev, "cs%d >= max %d\n",
433                         spi->chip_select,
434                         master->num_chipselect);
435                 return -EINVAL;
436         }
437
438         /* Set the bus ID string */
439         spi_dev_set_name(spi);
440
441         /* We need to make sure there's no other device with this
442          * chipselect **BEFORE** we call setup(), else we'll trash
443          * its configuration.  Lock against concurrent add() calls.
444          */
445         mutex_lock(&spi_add_lock);
446
447         status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
448         if (status) {
449                 dev_err(dev, "chipselect %d already in use\n",
450                                 spi->chip_select);
451                 goto done;
452         }
453
454         if (master->cs_gpios)
455                 spi->cs_gpio = master->cs_gpios[spi->chip_select];
456
457         /* Drivers may modify this initial i/o setup, but will
458          * normally rely on the device being setup.  Devices
459          * using SPI_CS_HIGH can't coexist well otherwise...
460          */
461         status = spi_setup(spi);
462         if (status < 0) {
463                 dev_err(dev, "can't setup %s, status %d\n",
464                                 dev_name(&spi->dev), status);
465                 goto done;
466         }
467
468         /* Device may be bound to an active driver when this returns */
469         status = device_add(&spi->dev);
470         if (status < 0)
471                 dev_err(dev, "can't add %s, status %d\n",
472                                 dev_name(&spi->dev), status);
473         else
474                 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
475
476 done:
477         mutex_unlock(&spi_add_lock);
478         return status;
479 }
480 EXPORT_SYMBOL_GPL(spi_add_device);
481
482 /**
483  * spi_new_device - instantiate one new SPI device
484  * @master: Controller to which device is connected
485  * @chip: Describes the SPI device
486  * Context: can sleep
487  *
488  * On typical mainboards, this is purely internal; and it's not needed
489  * after board init creates the hard-wired devices.  Some development
490  * platforms may not be able to use spi_register_board_info though, and
491  * this is exported so that for example a USB or parport based adapter
492  * driver could add devices (which it would learn about out-of-band).
493  *
494  * Returns the new device, or NULL.
495  */
496 struct spi_device *spi_new_device(struct spi_master *master,
497                                   struct spi_board_info *chip)
498 {
499         struct spi_device       *proxy;
500         int                     status;
501
502         /* NOTE:  caller did any chip->bus_num checks necessary.
503          *
504          * Also, unless we change the return value convention to use
505          * error-or-pointer (not NULL-or-pointer), troubleshootability
506          * suggests syslogged diagnostics are best here (ugh).
507          */
508
509         proxy = spi_alloc_device(master);
510         if (!proxy)
511                 return NULL;
512
513         WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
514
515         proxy->chip_select = chip->chip_select;
516         proxy->max_speed_hz = chip->max_speed_hz;
517         proxy->mode = chip->mode;
518         proxy->irq = chip->irq;
519         strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
520         proxy->dev.platform_data = (void *) chip->platform_data;
521         proxy->controller_data = chip->controller_data;
522         proxy->controller_state = NULL;
523
524         status = spi_add_device(proxy);
525         if (status < 0) {
526                 spi_dev_put(proxy);
527                 return NULL;
528         }
529
530         return proxy;
531 }
532 EXPORT_SYMBOL_GPL(spi_new_device);
533
534 static void spi_match_master_to_boardinfo(struct spi_master *master,
535                                 struct spi_board_info *bi)
536 {
537         struct spi_device *dev;
538
539         if (master->bus_num != bi->bus_num)
540                 return;
541
542         dev = spi_new_device(master, bi);
543         if (!dev)
544                 dev_err(master->dev.parent, "can't create new device for %s\n",
545                         bi->modalias);
546 }
547
548 /**
549  * spi_register_board_info - register SPI devices for a given board
550  * @info: array of chip descriptors
551  * @n: how many descriptors are provided
552  * Context: can sleep
553  *
554  * Board-specific early init code calls this (probably during arch_initcall)
555  * with segments of the SPI device table.  Any device nodes are created later,
556  * after the relevant parent SPI controller (bus_num) is defined.  We keep
557  * this table of devices forever, so that reloading a controller driver will
558  * not make Linux forget about these hard-wired devices.
559  *
560  * Other code can also call this, e.g. a particular add-on board might provide
561  * SPI devices through its expansion connector, so code initializing that board
562  * would naturally declare its SPI devices.
563  *
564  * The board info passed can safely be __initdata ... but be careful of
565  * any embedded pointers (platform_data, etc), they're copied as-is.
566  */
567 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
568 {
569         struct boardinfo *bi;
570         int i;
571
572         if (!n)
573                 return -EINVAL;
574
575         bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
576         if (!bi)
577                 return -ENOMEM;
578
579         for (i = 0; i < n; i++, bi++, info++) {
580                 struct spi_master *master;
581
582                 memcpy(&bi->board_info, info, sizeof(*info));
583                 mutex_lock(&board_lock);
584                 list_add_tail(&bi->list, &board_list);
585                 list_for_each_entry(master, &spi_master_list, list)
586                         spi_match_master_to_boardinfo(master, &bi->board_info);
587                 mutex_unlock(&board_lock);
588         }
589
590         return 0;
591 }
592
593 /*-------------------------------------------------------------------------*/
594
595 static void spi_set_cs(struct spi_device *spi, bool enable)
596 {
597         if (spi->mode & SPI_CS_HIGH)
598                 enable = !enable;
599
600         if (spi->cs_gpio >= 0)
601                 gpio_set_value(spi->cs_gpio, !enable);
602         else if (spi->master->set_cs)
603                 spi->master->set_cs(spi, !enable);
604 }
605
606 #ifdef CONFIG_HAS_DMA
607 static int spi_map_buf(struct spi_master *master, struct device *dev,
608                        struct sg_table *sgt, void *buf, size_t len,
609                        enum dma_data_direction dir)
610 {
611         const bool vmalloced_buf = is_vmalloc_addr(buf);
612         int desc_len;
613         int sgs;
614         struct page *vm_page;
615         void *sg_buf;
616         size_t min;
617         int i, ret;
618
619         if (vmalloced_buf) {
620                 desc_len = PAGE_SIZE;
621                 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
622         } else {
623                 desc_len = master->max_dma_len;
624                 sgs = DIV_ROUND_UP(len, desc_len);
625         }
626
627         ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
628         if (ret != 0)
629                 return ret;
630
631         for (i = 0; i < sgs; i++) {
632
633                 if (vmalloced_buf) {
634                         min = min_t(size_t,
635                                     len, desc_len - offset_in_page(buf));
636                         vm_page = vmalloc_to_page(buf);
637                         if (!vm_page) {
638                                 sg_free_table(sgt);
639                                 return -ENOMEM;
640                         }
641                         sg_set_page(&sgt->sgl[i], vm_page,
642                                     min, offset_in_page(buf));
643                 } else {
644                         min = min_t(size_t, len, desc_len);
645                         sg_buf = buf;
646                         sg_set_buf(&sgt->sgl[i], sg_buf, min);
647                 }
648
649
650                 buf += min;
651                 len -= min;
652         }
653
654         ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
655         if (!ret)
656                 ret = -ENOMEM;
657         if (ret < 0) {
658                 sg_free_table(sgt);
659                 return ret;
660         }
661
662         sgt->nents = ret;
663
664         return 0;
665 }
666
667 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
668                           struct sg_table *sgt, enum dma_data_direction dir)
669 {
670         if (sgt->orig_nents) {
671                 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
672                 sg_free_table(sgt);
673         }
674 }
675
676 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
677 {
678         struct device *tx_dev, *rx_dev;
679         struct spi_transfer *xfer;
680         int ret;
681
682         if (!master->can_dma)
683                 return 0;
684
685         if (master->dma_tx)
686                 tx_dev = master->dma_tx->device->dev;
687         else
688                 tx_dev = &master->dev;
689
690         if (master->dma_rx)
691                 rx_dev = master->dma_rx->device->dev;
692         else
693                 rx_dev = &master->dev;
694
695         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
696                 if (!master->can_dma(master, msg->spi, xfer))
697                         continue;
698
699                 if (xfer->tx_buf != NULL) {
700                         ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
701                                           (void *)xfer->tx_buf, xfer->len,
702                                           DMA_TO_DEVICE);
703                         if (ret != 0)
704                                 return ret;
705                 }
706
707                 if (xfer->rx_buf != NULL) {
708                         ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
709                                           xfer->rx_buf, xfer->len,
710                                           DMA_FROM_DEVICE);
711                         if (ret != 0) {
712                                 spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
713                                               DMA_TO_DEVICE);
714                                 return ret;
715                         }
716                 }
717         }
718
719         master->cur_msg_mapped = true;
720
721         return 0;
722 }
723
724 static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
725 {
726         struct spi_transfer *xfer;
727         struct device *tx_dev, *rx_dev;
728
729         if (!master->cur_msg_mapped || !master->can_dma)
730                 return 0;
731
732         if (master->dma_tx)
733                 tx_dev = master->dma_tx->device->dev;
734         else
735                 tx_dev = &master->dev;
736
737         if (master->dma_rx)
738                 rx_dev = master->dma_rx->device->dev;
739         else
740                 rx_dev = &master->dev;
741
742         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
743                 if (!master->can_dma(master, msg->spi, xfer))
744                         continue;
745
746                 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
747                 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
748         }
749
750         return 0;
751 }
752 #else /* !CONFIG_HAS_DMA */
753 static inline int __spi_map_msg(struct spi_master *master,
754                                 struct spi_message *msg)
755 {
756         return 0;
757 }
758
759 static inline int __spi_unmap_msg(struct spi_master *master,
760                                   struct spi_message *msg)
761 {
762         return 0;
763 }
764 #endif /* !CONFIG_HAS_DMA */
765
766 static inline int spi_unmap_msg(struct spi_master *master,
767                                 struct spi_message *msg)
768 {
769         struct spi_transfer *xfer;
770
771         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
772                 /*
773                  * Restore the original value of tx_buf or rx_buf if they are
774                  * NULL.
775                  */
776                 if (xfer->tx_buf == master->dummy_tx)
777                         xfer->tx_buf = NULL;
778                 if (xfer->rx_buf == master->dummy_rx)
779                         xfer->rx_buf = NULL;
780         }
781
782         return __spi_unmap_msg(master, msg);
783 }
784
785 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
786 {
787         struct spi_transfer *xfer;
788         void *tmp;
789         unsigned int max_tx, max_rx;
790
791         if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
792                 max_tx = 0;
793                 max_rx = 0;
794
795                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
796                         if ((master->flags & SPI_MASTER_MUST_TX) &&
797                             !xfer->tx_buf)
798                                 max_tx = max(xfer->len, max_tx);
799                         if ((master->flags & SPI_MASTER_MUST_RX) &&
800                             !xfer->rx_buf)
801                                 max_rx = max(xfer->len, max_rx);
802                 }
803
804                 if (max_tx) {
805                         tmp = krealloc(master->dummy_tx, max_tx,
806                                        GFP_KERNEL | GFP_DMA);
807                         if (!tmp)
808                                 return -ENOMEM;
809                         master->dummy_tx = tmp;
810                         memset(tmp, 0, max_tx);
811                 }
812
813                 if (max_rx) {
814                         tmp = krealloc(master->dummy_rx, max_rx,
815                                        GFP_KERNEL | GFP_DMA);
816                         if (!tmp)
817                                 return -ENOMEM;
818                         master->dummy_rx = tmp;
819                 }
820
821                 if (max_tx || max_rx) {
822                         list_for_each_entry(xfer, &msg->transfers,
823                                             transfer_list) {
824                                 if (!xfer->tx_buf)
825                                         xfer->tx_buf = master->dummy_tx;
826                                 if (!xfer->rx_buf)
827                                         xfer->rx_buf = master->dummy_rx;
828                         }
829                 }
830         }
831
832         return __spi_map_msg(master, msg);
833 }
834
835 /*
836  * spi_transfer_one_message - Default implementation of transfer_one_message()
837  *
838  * This is a standard implementation of transfer_one_message() for
839  * drivers which impelment a transfer_one() operation.  It provides
840  * standard handling of delays and chip select management.
841  */
842 static int spi_transfer_one_message(struct spi_master *master,
843                                     struct spi_message *msg)
844 {
845         struct spi_transfer *xfer;
846         bool keep_cs = false;
847         int ret = 0;
848         unsigned long ms = 1;
849         struct spi_statistics *statm = &master->statistics;
850         struct spi_statistics *stats = &msg->spi->statistics;
851
852         spi_set_cs(msg->spi, true);
853
854         SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
855         SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
856
857         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
858                 trace_spi_transfer_start(msg, xfer);
859
860                 spi_statistics_add_transfer_stats(statm, xfer, master);
861                 spi_statistics_add_transfer_stats(stats, xfer, master);
862
863                 if (xfer->tx_buf || xfer->rx_buf) {
864                         reinit_completion(&master->xfer_completion);
865
866                         ret = master->transfer_one(master, msg->spi, xfer);
867                         if (ret < 0) {
868                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
869                                                                errors);
870                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
871                                                                errors);
872                                 dev_err(&msg->spi->dev,
873                                         "SPI transfer failed: %d\n", ret);
874                                 goto out;
875                         }
876
877                         if (ret > 0) {
878                                 ret = 0;
879                                 ms = xfer->len * 8 * 1000 / xfer->speed_hz;
880                                 ms += ms + 100; /* some tolerance */
881
882                                 ms = wait_for_completion_timeout(&master->xfer_completion,
883                                                                  msecs_to_jiffies(ms));
884                         }
885
886                         if (ms == 0) {
887                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
888                                                                timedout);
889                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
890                                                                timedout);
891                                 dev_err(&msg->spi->dev,
892                                         "SPI transfer timed out\n");
893                                 msg->status = -ETIMEDOUT;
894                         }
895                 } else {
896                         if (xfer->len)
897                                 dev_err(&msg->spi->dev,
898                                         "Bufferless transfer has length %u\n",
899                                         xfer->len);
900                 }
901
902                 trace_spi_transfer_stop(msg, xfer);
903
904                 if (msg->status != -EINPROGRESS)
905                         goto out;
906
907                 if (xfer->delay_usecs)
908                         udelay(xfer->delay_usecs);
909
910                 if (xfer->cs_change) {
911                         if (list_is_last(&xfer->transfer_list,
912                                          &msg->transfers)) {
913                                 keep_cs = true;
914                         } else {
915                                 spi_set_cs(msg->spi, false);
916                                 udelay(10);
917                                 spi_set_cs(msg->spi, true);
918                         }
919                 }
920
921                 msg->actual_length += xfer->len;
922         }
923
924 out:
925         if (ret != 0 || !keep_cs)
926                 spi_set_cs(msg->spi, false);
927
928         if (msg->status == -EINPROGRESS)
929                 msg->status = ret;
930
931         if (msg->status && master->handle_err)
932                 master->handle_err(master, msg);
933
934         spi_finalize_current_message(master);
935
936         return ret;
937 }
938
939 /**
940  * spi_finalize_current_transfer - report completion of a transfer
941  * @master: the master reporting completion
942  *
943  * Called by SPI drivers using the core transfer_one_message()
944  * implementation to notify it that the current interrupt driven
945  * transfer has finished and the next one may be scheduled.
946  */
947 void spi_finalize_current_transfer(struct spi_master *master)
948 {
949         complete(&master->xfer_completion);
950 }
951 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
952
953 /**
954  * __spi_pump_messages - function which processes spi message queue
955  * @master: master to process queue for
956  * @in_kthread: true if we are in the context of the message pump thread
957  *
958  * This function checks if there is any spi message in the queue that
959  * needs processing and if so call out to the driver to initialize hardware
960  * and transfer each message.
961  *
962  * Note that it is called both from the kthread itself and also from
963  * inside spi_sync(); the queue extraction handling at the top of the
964  * function should deal with this safely.
965  */
966 static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
967 {
968         unsigned long flags;
969         bool was_busy = false;
970         int ret;
971
972         /* Lock queue */
973         spin_lock_irqsave(&master->queue_lock, flags);
974
975         /* Make sure we are not already running a message */
976         if (master->cur_msg) {
977                 spin_unlock_irqrestore(&master->queue_lock, flags);
978                 return;
979         }
980
981         /* If another context is idling the device then defer */
982         if (master->idling) {
983                 queue_kthread_work(&master->kworker, &master->pump_messages);
984                 spin_unlock_irqrestore(&master->queue_lock, flags);
985                 return;
986         }
987
988         /* Check if the queue is idle */
989         if (list_empty(&master->queue) || !master->running) {
990                 if (!master->busy) {
991                         spin_unlock_irqrestore(&master->queue_lock, flags);
992                         return;
993                 }
994
995                 /* Only do teardown in the thread */
996                 if (!in_kthread) {
997                         queue_kthread_work(&master->kworker,
998                                            &master->pump_messages);
999                         spin_unlock_irqrestore(&master->queue_lock, flags);
1000                         return;
1001                 }
1002
1003                 master->busy = false;
1004                 master->idling = true;
1005                 spin_unlock_irqrestore(&master->queue_lock, flags);
1006
1007                 kfree(master->dummy_rx);
1008                 master->dummy_rx = NULL;
1009                 kfree(master->dummy_tx);
1010                 master->dummy_tx = NULL;
1011                 if (master->unprepare_transfer_hardware &&
1012                     master->unprepare_transfer_hardware(master))
1013                         dev_err(&master->dev,
1014                                 "failed to unprepare transfer hardware\n");
1015                 if (master->auto_runtime_pm) {
1016                         pm_runtime_mark_last_busy(master->dev.parent);
1017                         pm_runtime_put_autosuspend(master->dev.parent);
1018                 }
1019                 trace_spi_master_idle(master);
1020
1021                 spin_lock_irqsave(&master->queue_lock, flags);
1022                 master->idling = false;
1023                 spin_unlock_irqrestore(&master->queue_lock, flags);
1024                 return;
1025         }
1026
1027         /* Extract head of queue */
1028         master->cur_msg =
1029                 list_first_entry(&master->queue, struct spi_message, queue);
1030
1031         list_del_init(&master->cur_msg->queue);
1032         if (master->busy)
1033                 was_busy = true;
1034         else
1035                 master->busy = true;
1036         spin_unlock_irqrestore(&master->queue_lock, flags);
1037
1038         if (!was_busy && master->auto_runtime_pm) {
1039                 ret = pm_runtime_get_sync(master->dev.parent);
1040                 if (ret < 0) {
1041                         dev_err(&master->dev, "Failed to power device: %d\n",
1042                                 ret);
1043                         return;
1044                 }
1045         }
1046
1047         if (!was_busy)
1048                 trace_spi_master_busy(master);
1049
1050         if (!was_busy && master->prepare_transfer_hardware) {
1051                 ret = master->prepare_transfer_hardware(master);
1052                 if (ret) {
1053                         dev_err(&master->dev,
1054                                 "failed to prepare transfer hardware\n");
1055
1056                         if (master->auto_runtime_pm)
1057                                 pm_runtime_put(master->dev.parent);
1058                         return;
1059                 }
1060         }
1061
1062         trace_spi_message_start(master->cur_msg);
1063
1064         if (master->prepare_message) {
1065                 ret = master->prepare_message(master, master->cur_msg);
1066                 if (ret) {
1067                         dev_err(&master->dev,
1068                                 "failed to prepare message: %d\n", ret);
1069                         master->cur_msg->status = ret;
1070                         spi_finalize_current_message(master);
1071                         return;
1072                 }
1073                 master->cur_msg_prepared = true;
1074         }
1075
1076         ret = spi_map_msg(master, master->cur_msg);
1077         if (ret) {
1078                 master->cur_msg->status = ret;
1079                 spi_finalize_current_message(master);
1080                 return;
1081         }
1082
1083         ret = master->transfer_one_message(master, master->cur_msg);
1084         if (ret) {
1085                 dev_err(&master->dev,
1086                         "failed to transfer one message from queue\n");
1087                 return;
1088         }
1089 }
1090
1091 /**
1092  * spi_pump_messages - kthread work function which processes spi message queue
1093  * @work: pointer to kthread work struct contained in the master struct
1094  */
1095 static void spi_pump_messages(struct kthread_work *work)
1096 {
1097         struct spi_master *master =
1098                 container_of(work, struct spi_master, pump_messages);
1099
1100         __spi_pump_messages(master, true);
1101 }
1102
1103 static int spi_init_queue(struct spi_master *master)
1104 {
1105         struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1106
1107         master->running = false;
1108         master->busy = false;
1109
1110         init_kthread_worker(&master->kworker);
1111         master->kworker_task = kthread_run(kthread_worker_fn,
1112                                            &master->kworker, "%s",
1113                                            dev_name(&master->dev));
1114         if (IS_ERR(master->kworker_task)) {
1115                 dev_err(&master->dev, "failed to create message pump task\n");
1116                 return PTR_ERR(master->kworker_task);
1117         }
1118         init_kthread_work(&master->pump_messages, spi_pump_messages);
1119
1120         /*
1121          * Master config will indicate if this controller should run the
1122          * message pump with high (realtime) priority to reduce the transfer
1123          * latency on the bus by minimising the delay between a transfer
1124          * request and the scheduling of the message pump thread. Without this
1125          * setting the message pump thread will remain at default priority.
1126          */
1127         if (master->rt) {
1128                 dev_info(&master->dev,
1129                         "will run message pump with realtime priority\n");
1130                 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1131         }
1132
1133         return 0;
1134 }
1135
1136 /**
1137  * spi_get_next_queued_message() - called by driver to check for queued
1138  * messages
1139  * @master: the master to check for queued messages
1140  *
1141  * If there are more messages in the queue, the next message is returned from
1142  * this call.
1143  */
1144 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1145 {
1146         struct spi_message *next;
1147         unsigned long flags;
1148
1149         /* get a pointer to the next message, if any */
1150         spin_lock_irqsave(&master->queue_lock, flags);
1151         next = list_first_entry_or_null(&master->queue, struct spi_message,
1152                                         queue);
1153         spin_unlock_irqrestore(&master->queue_lock, flags);
1154
1155         return next;
1156 }
1157 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1158
1159 /**
1160  * spi_finalize_current_message() - the current message is complete
1161  * @master: the master to return the message to
1162  *
1163  * Called by the driver to notify the core that the message in the front of the
1164  * queue is complete and can be removed from the queue.
1165  */
1166 void spi_finalize_current_message(struct spi_master *master)
1167 {
1168         struct spi_message *mesg;
1169         unsigned long flags;
1170         int ret;
1171
1172         spin_lock_irqsave(&master->queue_lock, flags);
1173         mesg = master->cur_msg;
1174         spin_unlock_irqrestore(&master->queue_lock, flags);
1175
1176         spi_unmap_msg(master, mesg);
1177
1178         if (master->cur_msg_prepared && master->unprepare_message) {
1179                 ret = master->unprepare_message(master, mesg);
1180                 if (ret) {
1181                         dev_err(&master->dev,
1182                                 "failed to unprepare message: %d\n", ret);
1183                 }
1184         }
1185
1186         spin_lock_irqsave(&master->queue_lock, flags);
1187         master->cur_msg = NULL;
1188         master->cur_msg_prepared = false;
1189         queue_kthread_work(&master->kworker, &master->pump_messages);
1190         spin_unlock_irqrestore(&master->queue_lock, flags);
1191
1192         trace_spi_message_done(mesg);
1193
1194         mesg->state = NULL;
1195         if (mesg->complete)
1196                 mesg->complete(mesg->context);
1197 }
1198 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1199
1200 static int spi_start_queue(struct spi_master *master)
1201 {
1202         unsigned long flags;
1203
1204         spin_lock_irqsave(&master->queue_lock, flags);
1205
1206         if (master->running || master->busy) {
1207                 spin_unlock_irqrestore(&master->queue_lock, flags);
1208                 return -EBUSY;
1209         }
1210
1211         master->running = true;
1212         master->cur_msg = NULL;
1213         spin_unlock_irqrestore(&master->queue_lock, flags);
1214
1215         queue_kthread_work(&master->kworker, &master->pump_messages);
1216
1217         return 0;
1218 }
1219
1220 static int spi_stop_queue(struct spi_master *master)
1221 {
1222         unsigned long flags;
1223         unsigned limit = 500;
1224         int ret = 0;
1225
1226         spin_lock_irqsave(&master->queue_lock, flags);
1227
1228         /*
1229          * This is a bit lame, but is optimized for the common execution path.
1230          * A wait_queue on the master->busy could be used, but then the common
1231          * execution path (pump_messages) would be required to call wake_up or
1232          * friends on every SPI message. Do this instead.
1233          */
1234         while ((!list_empty(&master->queue) || master->busy) && limit--) {
1235                 spin_unlock_irqrestore(&master->queue_lock, flags);
1236                 usleep_range(10000, 11000);
1237                 spin_lock_irqsave(&master->queue_lock, flags);
1238         }
1239
1240         if (!list_empty(&master->queue) || master->busy)
1241                 ret = -EBUSY;
1242         else
1243                 master->running = false;
1244
1245         spin_unlock_irqrestore(&master->queue_lock, flags);
1246
1247         if (ret) {
1248                 dev_warn(&master->dev,
1249                          "could not stop message queue\n");
1250                 return ret;
1251         }
1252         return ret;
1253 }
1254
1255 static int spi_destroy_queue(struct spi_master *master)
1256 {
1257         int ret;
1258
1259         ret = spi_stop_queue(master);
1260
1261         /*
1262          * flush_kthread_worker will block until all work is done.
1263          * If the reason that stop_queue timed out is that the work will never
1264          * finish, then it does no good to call flush/stop thread, so
1265          * return anyway.
1266          */
1267         if (ret) {
1268                 dev_err(&master->dev, "problem destroying queue\n");
1269                 return ret;
1270         }
1271
1272         flush_kthread_worker(&master->kworker);
1273         kthread_stop(master->kworker_task);
1274
1275         return 0;
1276 }
1277
1278 static int __spi_queued_transfer(struct spi_device *spi,
1279                                  struct spi_message *msg,
1280                                  bool need_pump)
1281 {
1282         struct spi_master *master = spi->master;
1283         unsigned long flags;
1284
1285         spin_lock_irqsave(&master->queue_lock, flags);
1286
1287         if (!master->running) {
1288                 spin_unlock_irqrestore(&master->queue_lock, flags);
1289                 return -ESHUTDOWN;
1290         }
1291         msg->actual_length = 0;
1292         msg->status = -EINPROGRESS;
1293
1294         list_add_tail(&msg->queue, &master->queue);
1295         if (!master->busy && need_pump)
1296                 queue_kthread_work(&master->kworker, &master->pump_messages);
1297
1298         spin_unlock_irqrestore(&master->queue_lock, flags);
1299         return 0;
1300 }
1301
1302 /**
1303  * spi_queued_transfer - transfer function for queued transfers
1304  * @spi: spi device which is requesting transfer
1305  * @msg: spi message which is to handled is queued to driver queue
1306  */
1307 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1308 {
1309         return __spi_queued_transfer(spi, msg, true);
1310 }
1311
1312 static int spi_master_initialize_queue(struct spi_master *master)
1313 {
1314         int ret;
1315
1316         master->transfer = spi_queued_transfer;
1317         if (!master->transfer_one_message)
1318                 master->transfer_one_message = spi_transfer_one_message;
1319
1320         /* Initialize and start queue */
1321         ret = spi_init_queue(master);
1322         if (ret) {
1323                 dev_err(&master->dev, "problem initializing queue\n");
1324                 goto err_init_queue;
1325         }
1326         master->queued = true;
1327         ret = spi_start_queue(master);
1328         if (ret) {
1329                 dev_err(&master->dev, "problem starting queue\n");
1330                 goto err_start_queue;
1331         }
1332
1333         return 0;
1334
1335 err_start_queue:
1336         spi_destroy_queue(master);
1337 err_init_queue:
1338         return ret;
1339 }
1340
1341 /*-------------------------------------------------------------------------*/
1342
1343 #if defined(CONFIG_OF)
1344 static struct spi_device *
1345 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1346 {
1347         struct spi_device *spi;
1348         int rc;
1349         u32 value;
1350
1351         /* Alloc an spi_device */
1352         spi = spi_alloc_device(master);
1353         if (!spi) {
1354                 dev_err(&master->dev, "spi_device alloc error for %s\n",
1355                         nc->full_name);
1356                 rc = -ENOMEM;
1357                 goto err_out;
1358         }
1359
1360         /* Select device driver */
1361         rc = of_modalias_node(nc, spi->modalias,
1362                                 sizeof(spi->modalias));
1363         if (rc < 0) {
1364                 dev_err(&master->dev, "cannot find modalias for %s\n",
1365                         nc->full_name);
1366                 goto err_out;
1367         }
1368
1369         /* Device address */
1370         rc = of_property_read_u32(nc, "reg", &value);
1371         if (rc) {
1372                 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1373                         nc->full_name, rc);
1374                 goto err_out;
1375         }
1376         spi->chip_select = value;
1377
1378         /* Mode (clock phase/polarity/etc.) */
1379         if (of_find_property(nc, "spi-cpha", NULL))
1380                 spi->mode |= SPI_CPHA;
1381         if (of_find_property(nc, "spi-cpol", NULL))
1382                 spi->mode |= SPI_CPOL;
1383         if (of_find_property(nc, "spi-cs-high", NULL))
1384                 spi->mode |= SPI_CS_HIGH;
1385         if (of_find_property(nc, "spi-3wire", NULL))
1386                 spi->mode |= SPI_3WIRE;
1387         if (of_find_property(nc, "spi-lsb-first", NULL))
1388                 spi->mode |= SPI_LSB_FIRST;
1389
1390         /* Device DUAL/QUAD mode */
1391         if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1392                 switch (value) {
1393                 case 1:
1394                         break;
1395                 case 2:
1396                         spi->mode |= SPI_TX_DUAL;
1397                         break;
1398                 case 4:
1399                         spi->mode |= SPI_TX_QUAD;
1400                         break;
1401                 default:
1402                         dev_warn(&master->dev,
1403                                 "spi-tx-bus-width %d not supported\n",
1404                                 value);
1405                         break;
1406                 }
1407         }
1408
1409         if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1410                 switch (value) {
1411                 case 1:
1412                         break;
1413                 case 2:
1414                         spi->mode |= SPI_RX_DUAL;
1415                         break;
1416                 case 4:
1417                         spi->mode |= SPI_RX_QUAD;
1418                         break;
1419                 default:
1420                         dev_warn(&master->dev,
1421                                 "spi-rx-bus-width %d not supported\n",
1422                                 value);
1423                         break;
1424                 }
1425         }
1426
1427         /* Device speed */
1428         rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1429         if (rc) {
1430                 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1431                         nc->full_name, rc);
1432                 goto err_out;
1433         }
1434         spi->max_speed_hz = value;
1435
1436         /* IRQ */
1437         spi->irq = irq_of_parse_and_map(nc, 0);
1438
1439         /* Store a pointer to the node in the device structure */
1440         of_node_get(nc);
1441         spi->dev.of_node = nc;
1442
1443         /* Register the new device */
1444         rc = spi_add_device(spi);
1445         if (rc) {
1446                 dev_err(&master->dev, "spi_device register error %s\n",
1447                         nc->full_name);
1448                 goto err_out;
1449         }
1450
1451         return spi;
1452
1453 err_out:
1454         spi_dev_put(spi);
1455         return ERR_PTR(rc);
1456 }
1457
1458 /**
1459  * of_register_spi_devices() - Register child devices onto the SPI bus
1460  * @master:     Pointer to spi_master device
1461  *
1462  * Registers an spi_device for each child node of master node which has a 'reg'
1463  * property.
1464  */
1465 static void of_register_spi_devices(struct spi_master *master)
1466 {
1467         struct spi_device *spi;
1468         struct device_node *nc;
1469
1470         if (!master->dev.of_node)
1471                 return;
1472
1473         for_each_available_child_of_node(master->dev.of_node, nc) {
1474                 spi = of_register_spi_device(master, nc);
1475                 if (IS_ERR(spi))
1476                         dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1477                                 nc->full_name);
1478         }
1479 }
1480 #else
1481 static void of_register_spi_devices(struct spi_master *master) { }
1482 #endif
1483
1484 #ifdef CONFIG_ACPI
1485 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1486 {
1487         struct spi_device *spi = data;
1488
1489         if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1490                 struct acpi_resource_spi_serialbus *sb;
1491
1492                 sb = &ares->data.spi_serial_bus;
1493                 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1494                         spi->chip_select = sb->device_selection;
1495                         spi->max_speed_hz = sb->connection_speed;
1496
1497                         if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1498                                 spi->mode |= SPI_CPHA;
1499                         if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1500                                 spi->mode |= SPI_CPOL;
1501                         if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1502                                 spi->mode |= SPI_CS_HIGH;
1503                 }
1504         } else if (spi->irq < 0) {
1505                 struct resource r;
1506
1507                 if (acpi_dev_resource_interrupt(ares, 0, &r))
1508                         spi->irq = r.start;
1509         }
1510
1511         /* Always tell the ACPI core to skip this resource */
1512         return 1;
1513 }
1514
1515 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1516                                        void *data, void **return_value)
1517 {
1518         struct spi_master *master = data;
1519         struct list_head resource_list;
1520         struct acpi_device *adev;
1521         struct spi_device *spi;
1522         int ret;
1523
1524         if (acpi_bus_get_device(handle, &adev))
1525                 return AE_OK;
1526         if (acpi_bus_get_status(adev) || !adev->status.present)
1527                 return AE_OK;
1528
1529         spi = spi_alloc_device(master);
1530         if (!spi) {
1531                 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1532                         dev_name(&adev->dev));
1533                 return AE_NO_MEMORY;
1534         }
1535
1536         ACPI_COMPANION_SET(&spi->dev, adev);
1537         spi->irq = -1;
1538
1539         INIT_LIST_HEAD(&resource_list);
1540         ret = acpi_dev_get_resources(adev, &resource_list,
1541                                      acpi_spi_add_resource, spi);
1542         acpi_dev_free_resource_list(&resource_list);
1543
1544         if (ret < 0 || !spi->max_speed_hz) {
1545                 spi_dev_put(spi);
1546                 return AE_OK;
1547         }
1548
1549         adev->power.flags.ignore_parent = true;
1550         strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1551         if (spi_add_device(spi)) {
1552                 adev->power.flags.ignore_parent = false;
1553                 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1554                         dev_name(&adev->dev));
1555                 spi_dev_put(spi);
1556         }
1557
1558         return AE_OK;
1559 }
1560
1561 static void acpi_register_spi_devices(struct spi_master *master)
1562 {
1563         acpi_status status;
1564         acpi_handle handle;
1565
1566         handle = ACPI_HANDLE(master->dev.parent);
1567         if (!handle)
1568                 return;
1569
1570         status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1571                                      acpi_spi_add_device, NULL,
1572                                      master, NULL);
1573         if (ACPI_FAILURE(status))
1574                 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1575 }
1576 #else
1577 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1578 #endif /* CONFIG_ACPI */
1579
1580 static void spi_master_release(struct device *dev)
1581 {
1582         struct spi_master *master;
1583
1584         master = container_of(dev, struct spi_master, dev);
1585         kfree(master);
1586 }
1587
1588 static struct class spi_master_class = {
1589         .name           = "spi_master",
1590         .owner          = THIS_MODULE,
1591         .dev_release    = spi_master_release,
1592         .dev_groups     = spi_master_groups,
1593 };
1594
1595
1596 /**
1597  * spi_alloc_master - allocate SPI master controller
1598  * @dev: the controller, possibly using the platform_bus
1599  * @size: how much zeroed driver-private data to allocate; the pointer to this
1600  *      memory is in the driver_data field of the returned device,
1601  *      accessible with spi_master_get_devdata().
1602  * Context: can sleep
1603  *
1604  * This call is used only by SPI master controller drivers, which are the
1605  * only ones directly touching chip registers.  It's how they allocate
1606  * an spi_master structure, prior to calling spi_register_master().
1607  *
1608  * This must be called from context that can sleep.  It returns the SPI
1609  * master structure on success, else NULL.
1610  *
1611  * The caller is responsible for assigning the bus number and initializing
1612  * the master's methods before calling spi_register_master(); and (after errors
1613  * adding the device) calling spi_master_put() to prevent a memory leak.
1614  */
1615 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1616 {
1617         struct spi_master       *master;
1618
1619         if (!dev)
1620                 return NULL;
1621
1622         master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1623         if (!master)
1624                 return NULL;
1625
1626         device_initialize(&master->dev);
1627         master->bus_num = -1;
1628         master->num_chipselect = 1;
1629         master->dev.class = &spi_master_class;
1630         master->dev.parent = get_device(dev);
1631         spi_master_set_devdata(master, &master[1]);
1632
1633         return master;
1634 }
1635 EXPORT_SYMBOL_GPL(spi_alloc_master);
1636
1637 #ifdef CONFIG_OF
1638 static int of_spi_register_master(struct spi_master *master)
1639 {
1640         int nb, i, *cs;
1641         struct device_node *np = master->dev.of_node;
1642
1643         if (!np)
1644                 return 0;
1645
1646         nb = of_gpio_named_count(np, "cs-gpios");
1647         master->num_chipselect = max_t(int, nb, master->num_chipselect);
1648
1649         /* Return error only for an incorrectly formed cs-gpios property */
1650         if (nb == 0 || nb == -ENOENT)
1651                 return 0;
1652         else if (nb < 0)
1653                 return nb;
1654
1655         cs = devm_kzalloc(&master->dev,
1656                           sizeof(int) * master->num_chipselect,
1657                           GFP_KERNEL);
1658         master->cs_gpios = cs;
1659
1660         if (!master->cs_gpios)
1661                 return -ENOMEM;
1662
1663         for (i = 0; i < master->num_chipselect; i++)
1664                 cs[i] = -ENOENT;
1665
1666         for (i = 0; i < nb; i++)
1667                 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1668
1669         return 0;
1670 }
1671 #else
1672 static int of_spi_register_master(struct spi_master *master)
1673 {
1674         return 0;
1675 }
1676 #endif
1677
1678 /**
1679  * spi_register_master - register SPI master controller
1680  * @master: initialized master, originally from spi_alloc_master()
1681  * Context: can sleep
1682  *
1683  * SPI master controllers connect to their drivers using some non-SPI bus,
1684  * such as the platform bus.  The final stage of probe() in that code
1685  * includes calling spi_register_master() to hook up to this SPI bus glue.
1686  *
1687  * SPI controllers use board specific (often SOC specific) bus numbers,
1688  * and board-specific addressing for SPI devices combines those numbers
1689  * with chip select numbers.  Since SPI does not directly support dynamic
1690  * device identification, boards need configuration tables telling which
1691  * chip is at which address.
1692  *
1693  * This must be called from context that can sleep.  It returns zero on
1694  * success, else a negative error code (dropping the master's refcount).
1695  * After a successful return, the caller is responsible for calling
1696  * spi_unregister_master().
1697  */
1698 int spi_register_master(struct spi_master *master)
1699 {
1700         static atomic_t         dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1701         struct device           *dev = master->dev.parent;
1702         struct boardinfo        *bi;
1703         int                     status = -ENODEV;
1704         int                     dynamic = 0;
1705
1706         if (!dev)
1707                 return -ENODEV;
1708
1709         status = of_spi_register_master(master);
1710         if (status)
1711                 return status;
1712
1713         /* even if it's just one always-selected device, there must
1714          * be at least one chipselect
1715          */
1716         if (master->num_chipselect == 0)
1717                 return -EINVAL;
1718
1719         if ((master->bus_num < 0) && master->dev.of_node)
1720                 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1721
1722         /* convention:  dynamically assigned bus IDs count down from the max */
1723         if (master->bus_num < 0) {
1724                 /* FIXME switch to an IDR based scheme, something like
1725                  * I2C now uses, so we can't run out of "dynamic" IDs
1726                  */
1727                 master->bus_num = atomic_dec_return(&dyn_bus_id);
1728                 dynamic = 1;
1729         }
1730
1731         INIT_LIST_HEAD(&master->queue);
1732         spin_lock_init(&master->queue_lock);
1733         spin_lock_init(&master->bus_lock_spinlock);
1734         mutex_init(&master->bus_lock_mutex);
1735         master->bus_lock_flag = 0;
1736         init_completion(&master->xfer_completion);
1737         if (!master->max_dma_len)
1738                 master->max_dma_len = INT_MAX;
1739
1740         /* register the device, then userspace will see it.
1741          * registration fails if the bus ID is in use.
1742          */
1743         dev_set_name(&master->dev, "spi%u", master->bus_num);
1744         status = device_add(&master->dev);
1745         if (status < 0)
1746                 goto done;
1747         dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1748                         dynamic ? " (dynamic)" : "");
1749
1750         /* If we're using a queued driver, start the queue */
1751         if (master->transfer)
1752                 dev_info(dev, "master is unqueued, this is deprecated\n");
1753         else {
1754                 status = spi_master_initialize_queue(master);
1755                 if (status) {
1756                         device_del(&master->dev);
1757                         goto done;
1758                 }
1759         }
1760         /* add statistics */
1761         spin_lock_init(&master->statistics.lock);
1762
1763         mutex_lock(&board_lock);
1764         list_add_tail(&master->list, &spi_master_list);
1765         list_for_each_entry(bi, &board_list, list)
1766                 spi_match_master_to_boardinfo(master, &bi->board_info);
1767         mutex_unlock(&board_lock);
1768
1769         /* Register devices from the device tree and ACPI */
1770         of_register_spi_devices(master);
1771         acpi_register_spi_devices(master);
1772 done:
1773         return status;
1774 }
1775 EXPORT_SYMBOL_GPL(spi_register_master);
1776
1777 static void devm_spi_unregister(struct device *dev, void *res)
1778 {
1779         spi_unregister_master(*(struct spi_master **)res);
1780 }
1781
1782 /**
1783  * dev_spi_register_master - register managed SPI master controller
1784  * @dev:    device managing SPI master
1785  * @master: initialized master, originally from spi_alloc_master()
1786  * Context: can sleep
1787  *
1788  * Register a SPI device as with spi_register_master() which will
1789  * automatically be unregister
1790  */
1791 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1792 {
1793         struct spi_master **ptr;
1794         int ret;
1795
1796         ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1797         if (!ptr)
1798                 return -ENOMEM;
1799
1800         ret = spi_register_master(master);
1801         if (!ret) {
1802                 *ptr = master;
1803                 devres_add(dev, ptr);
1804         } else {
1805                 devres_free(ptr);
1806         }
1807
1808         return ret;
1809 }
1810 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1811
1812 static int __unregister(struct device *dev, void *null)
1813 {
1814         spi_unregister_device(to_spi_device(dev));
1815         return 0;
1816 }
1817
1818 /**
1819  * spi_unregister_master - unregister SPI master controller
1820  * @master: the master being unregistered
1821  * Context: can sleep
1822  *
1823  * This call is used only by SPI master controller drivers, which are the
1824  * only ones directly touching chip registers.
1825  *
1826  * This must be called from context that can sleep.
1827  */
1828 void spi_unregister_master(struct spi_master *master)
1829 {
1830         int dummy;
1831
1832         if (master->queued) {
1833                 if (spi_destroy_queue(master))
1834                         dev_err(&master->dev, "queue remove failed\n");
1835         }
1836
1837         mutex_lock(&board_lock);
1838         list_del(&master->list);
1839         mutex_unlock(&board_lock);
1840
1841         dummy = device_for_each_child(&master->dev, NULL, __unregister);
1842         device_unregister(&master->dev);
1843 }
1844 EXPORT_SYMBOL_GPL(spi_unregister_master);
1845
1846 int spi_master_suspend(struct spi_master *master)
1847 {
1848         int ret;
1849
1850         /* Basically no-ops for non-queued masters */
1851         if (!master->queued)
1852                 return 0;
1853
1854         ret = spi_stop_queue(master);
1855         if (ret)
1856                 dev_err(&master->dev, "queue stop failed\n");
1857
1858         return ret;
1859 }
1860 EXPORT_SYMBOL_GPL(spi_master_suspend);
1861
1862 int spi_master_resume(struct spi_master *master)
1863 {
1864         int ret;
1865
1866         if (!master->queued)
1867                 return 0;
1868
1869         ret = spi_start_queue(master);
1870         if (ret)
1871                 dev_err(&master->dev, "queue restart failed\n");
1872
1873         return ret;
1874 }
1875 EXPORT_SYMBOL_GPL(spi_master_resume);
1876
1877 static int __spi_master_match(struct device *dev, const void *data)
1878 {
1879         struct spi_master *m;
1880         const u16 *bus_num = data;
1881
1882         m = container_of(dev, struct spi_master, dev);
1883         return m->bus_num == *bus_num;
1884 }
1885
1886 /**
1887  * spi_busnum_to_master - look up master associated with bus_num
1888  * @bus_num: the master's bus number
1889  * Context: can sleep
1890  *
1891  * This call may be used with devices that are registered after
1892  * arch init time.  It returns a refcounted pointer to the relevant
1893  * spi_master (which the caller must release), or NULL if there is
1894  * no such master registered.
1895  */
1896 struct spi_master *spi_busnum_to_master(u16 bus_num)
1897 {
1898         struct device           *dev;
1899         struct spi_master       *master = NULL;
1900
1901         dev = class_find_device(&spi_master_class, NULL, &bus_num,
1902                                 __spi_master_match);
1903         if (dev)
1904                 master = container_of(dev, struct spi_master, dev);
1905         /* reference got in class_find_device */
1906         return master;
1907 }
1908 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1909
1910
1911 /*-------------------------------------------------------------------------*/
1912
1913 /* Core methods for SPI master protocol drivers.  Some of the
1914  * other core methods are currently defined as inline functions.
1915  */
1916
1917 static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
1918 {
1919         if (master->bits_per_word_mask) {
1920                 /* Only 32 bits fit in the mask */
1921                 if (bits_per_word > 32)
1922                         return -EINVAL;
1923                 if (!(master->bits_per_word_mask &
1924                                 SPI_BPW_MASK(bits_per_word)))
1925                         return -EINVAL;
1926         }
1927
1928         return 0;
1929 }
1930
1931 /**
1932  * spi_setup - setup SPI mode and clock rate
1933  * @spi: the device whose settings are being modified
1934  * Context: can sleep, and no requests are queued to the device
1935  *
1936  * SPI protocol drivers may need to update the transfer mode if the
1937  * device doesn't work with its default.  They may likewise need
1938  * to update clock rates or word sizes from initial values.  This function
1939  * changes those settings, and must be called from a context that can sleep.
1940  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1941  * effect the next time the device is selected and data is transferred to
1942  * or from it.  When this function returns, the spi device is deselected.
1943  *
1944  * Note that this call will fail if the protocol driver specifies an option
1945  * that the underlying controller or its driver does not support.  For
1946  * example, not all hardware supports wire transfers using nine bit words,
1947  * LSB-first wire encoding, or active-high chipselects.
1948  */
1949 int spi_setup(struct spi_device *spi)
1950 {
1951         unsigned        bad_bits, ugly_bits;
1952         int             status = 0;
1953
1954         /* check mode to prevent that DUAL and QUAD set at the same time
1955          */
1956         if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1957                 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1958                 dev_err(&spi->dev,
1959                 "setup: can not select dual and quad at the same time\n");
1960                 return -EINVAL;
1961         }
1962         /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1963          */
1964         if ((spi->mode & SPI_3WIRE) && (spi->mode &
1965                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1966                 return -EINVAL;
1967         /* help drivers fail *cleanly* when they need options
1968          * that aren't supported with their current master
1969          */
1970         bad_bits = spi->mode & ~spi->master->mode_bits;
1971         ugly_bits = bad_bits &
1972                     (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
1973         if (ugly_bits) {
1974                 dev_warn(&spi->dev,
1975                          "setup: ignoring unsupported mode bits %x\n",
1976                          ugly_bits);
1977                 spi->mode &= ~ugly_bits;
1978                 bad_bits &= ~ugly_bits;
1979         }
1980         if (bad_bits) {
1981                 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1982                         bad_bits);
1983                 return -EINVAL;
1984         }
1985
1986         if (!spi->bits_per_word)
1987                 spi->bits_per_word = 8;
1988
1989         if (__spi_validate_bits_per_word(spi->master, spi->bits_per_word))
1990                 return -EINVAL;
1991
1992         if (!spi->max_speed_hz)
1993                 spi->max_speed_hz = spi->master->max_speed_hz;
1994
1995         spi_set_cs(spi, false);
1996
1997         if (spi->master->setup)
1998                 status = spi->master->setup(spi);
1999
2000         dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2001                         (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2002                         (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2003                         (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2004                         (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2005                         (spi->mode & SPI_LOOP) ? "loopback, " : "",
2006                         spi->bits_per_word, spi->max_speed_hz,
2007                         status);
2008
2009         return status;
2010 }
2011 EXPORT_SYMBOL_GPL(spi_setup);
2012
2013 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2014 {
2015         struct spi_master *master = spi->master;
2016         struct spi_transfer *xfer;
2017         int w_size;
2018
2019         if (list_empty(&message->transfers))
2020                 return -EINVAL;
2021
2022         /* Half-duplex links include original MicroWire, and ones with
2023          * only one data pin like SPI_3WIRE (switches direction) or where
2024          * either MOSI or MISO is missing.  They can also be caused by
2025          * software limitations.
2026          */
2027         if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2028                         || (spi->mode & SPI_3WIRE)) {
2029                 unsigned flags = master->flags;
2030
2031                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2032                         if (xfer->rx_buf && xfer->tx_buf)
2033                                 return -EINVAL;
2034                         if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2035                                 return -EINVAL;
2036                         if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2037                                 return -EINVAL;
2038                 }
2039         }
2040
2041         /**
2042          * Set transfer bits_per_word and max speed as spi device default if
2043          * it is not set for this transfer.
2044          * Set transfer tx_nbits and rx_nbits as single transfer default
2045          * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2046          */
2047         list_for_each_entry(xfer, &message->transfers, transfer_list) {
2048                 message->frame_length += xfer->len;
2049                 if (!xfer->bits_per_word)
2050                         xfer->bits_per_word = spi->bits_per_word;
2051
2052                 if (!xfer->speed_hz)
2053                         xfer->speed_hz = spi->max_speed_hz;
2054                 if (!xfer->speed_hz)
2055                         xfer->speed_hz = master->max_speed_hz;
2056
2057                 if (master->max_speed_hz &&
2058                     xfer->speed_hz > master->max_speed_hz)
2059                         xfer->speed_hz = master->max_speed_hz;
2060
2061                 if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2062                         return -EINVAL;
2063
2064                 /*
2065                  * SPI transfer length should be multiple of SPI word size
2066                  * where SPI word size should be power-of-two multiple
2067                  */
2068                 if (xfer->bits_per_word <= 8)
2069                         w_size = 1;
2070                 else if (xfer->bits_per_word <= 16)
2071                         w_size = 2;
2072                 else
2073                         w_size = 4;
2074
2075                 /* No partial transfers accepted */
2076                 if (xfer->len % w_size)
2077                         return -EINVAL;
2078
2079                 if (xfer->speed_hz && master->min_speed_hz &&
2080                     xfer->speed_hz < master->min_speed_hz)
2081                         return -EINVAL;
2082
2083                 if (xfer->tx_buf && !xfer->tx_nbits)
2084                         xfer->tx_nbits = SPI_NBITS_SINGLE;
2085                 if (xfer->rx_buf && !xfer->rx_nbits)
2086                         xfer->rx_nbits = SPI_NBITS_SINGLE;
2087                 /* check transfer tx/rx_nbits:
2088                  * 1. check the value matches one of single, dual and quad
2089                  * 2. check tx/rx_nbits match the mode in spi_device
2090                  */
2091                 if (xfer->tx_buf) {
2092                         if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2093                                 xfer->tx_nbits != SPI_NBITS_DUAL &&
2094                                 xfer->tx_nbits != SPI_NBITS_QUAD)
2095                                 return -EINVAL;
2096                         if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2097                                 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2098                                 return -EINVAL;
2099                         if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2100                                 !(spi->mode & SPI_TX_QUAD))
2101                                 return -EINVAL;
2102                 }
2103                 /* check transfer rx_nbits */
2104                 if (xfer->rx_buf) {
2105                         if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2106                                 xfer->rx_nbits != SPI_NBITS_DUAL &&
2107                                 xfer->rx_nbits != SPI_NBITS_QUAD)
2108                                 return -EINVAL;
2109                         if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2110                                 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2111                                 return -EINVAL;
2112                         if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2113                                 !(spi->mode & SPI_RX_QUAD))
2114                                 return -EINVAL;
2115                 }
2116         }
2117
2118         message->status = -EINPROGRESS;
2119
2120         return 0;
2121 }
2122
2123 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2124 {
2125         struct spi_master *master = spi->master;
2126
2127         message->spi = spi;
2128
2129         SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2130         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2131
2132         trace_spi_message_submit(message);
2133
2134         return master->transfer(spi, message);
2135 }
2136
2137 /**
2138  * spi_async - asynchronous SPI transfer
2139  * @spi: device with which data will be exchanged
2140  * @message: describes the data transfers, including completion callback
2141  * Context: any (irqs may be blocked, etc)
2142  *
2143  * This call may be used in_irq and other contexts which can't sleep,
2144  * as well as from task contexts which can sleep.
2145  *
2146  * The completion callback is invoked in a context which can't sleep.
2147  * Before that invocation, the value of message->status is undefined.
2148  * When the callback is issued, message->status holds either zero (to
2149  * indicate complete success) or a negative error code.  After that
2150  * callback returns, the driver which issued the transfer request may
2151  * deallocate the associated memory; it's no longer in use by any SPI
2152  * core or controller driver code.
2153  *
2154  * Note that although all messages to a spi_device are handled in
2155  * FIFO order, messages may go to different devices in other orders.
2156  * Some device might be higher priority, or have various "hard" access
2157  * time requirements, for example.
2158  *
2159  * On detection of any fault during the transfer, processing of
2160  * the entire message is aborted, and the device is deselected.
2161  * Until returning from the associated message completion callback,
2162  * no other spi_message queued to that device will be processed.
2163  * (This rule applies equally to all the synchronous transfer calls,
2164  * which are wrappers around this core asynchronous primitive.)
2165  */
2166 int spi_async(struct spi_device *spi, struct spi_message *message)
2167 {
2168         struct spi_master *master = spi->master;
2169         int ret;
2170         unsigned long flags;
2171
2172         ret = __spi_validate(spi, message);
2173         if (ret != 0)
2174                 return ret;
2175
2176         spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2177
2178         if (master->bus_lock_flag)
2179                 ret = -EBUSY;
2180         else
2181                 ret = __spi_async(spi, message);
2182
2183         spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2184
2185         return ret;
2186 }
2187 EXPORT_SYMBOL_GPL(spi_async);
2188
2189 /**
2190  * spi_async_locked - version of spi_async with exclusive bus usage
2191  * @spi: device with which data will be exchanged
2192  * @message: describes the data transfers, including completion callback
2193  * Context: any (irqs may be blocked, etc)
2194  *
2195  * This call may be used in_irq and other contexts which can't sleep,
2196  * as well as from task contexts which can sleep.
2197  *
2198  * The completion callback is invoked in a context which can't sleep.
2199  * Before that invocation, the value of message->status is undefined.
2200  * When the callback is issued, message->status holds either zero (to
2201  * indicate complete success) or a negative error code.  After that
2202  * callback returns, the driver which issued the transfer request may
2203  * deallocate the associated memory; it's no longer in use by any SPI
2204  * core or controller driver code.
2205  *
2206  * Note that although all messages to a spi_device are handled in
2207  * FIFO order, messages may go to different devices in other orders.
2208  * Some device might be higher priority, or have various "hard" access
2209  * time requirements, for example.
2210  *
2211  * On detection of any fault during the transfer, processing of
2212  * the entire message is aborted, and the device is deselected.
2213  * Until returning from the associated message completion callback,
2214  * no other spi_message queued to that device will be processed.
2215  * (This rule applies equally to all the synchronous transfer calls,
2216  * which are wrappers around this core asynchronous primitive.)
2217  */
2218 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2219 {
2220         struct spi_master *master = spi->master;
2221         int ret;
2222         unsigned long flags;
2223
2224         ret = __spi_validate(spi, message);
2225         if (ret != 0)
2226                 return ret;
2227
2228         spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2229
2230         ret = __spi_async(spi, message);
2231
2232         spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2233
2234         return ret;
2235
2236 }
2237 EXPORT_SYMBOL_GPL(spi_async_locked);
2238
2239
2240 /*-------------------------------------------------------------------------*/
2241
2242 /* Utility methods for SPI master protocol drivers, layered on
2243  * top of the core.  Some other utility methods are defined as
2244  * inline functions.
2245  */
2246
2247 static void spi_complete(void *arg)
2248 {
2249         complete(arg);
2250 }
2251
2252 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2253                       int bus_locked)
2254 {
2255         DECLARE_COMPLETION_ONSTACK(done);
2256         int status;
2257         struct spi_master *master = spi->master;
2258         unsigned long flags;
2259
2260         status = __spi_validate(spi, message);
2261         if (status != 0)
2262                 return status;
2263
2264         message->complete = spi_complete;
2265         message->context = &done;
2266         message->spi = spi;
2267
2268         SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2269         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2270
2271         if (!bus_locked)
2272                 mutex_lock(&master->bus_lock_mutex);
2273
2274         /* If we're not using the legacy transfer method then we will
2275          * try to transfer in the calling context so special case.
2276          * This code would be less tricky if we could remove the
2277          * support for driver implemented message queues.
2278          */
2279         if (master->transfer == spi_queued_transfer) {
2280                 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2281
2282                 trace_spi_message_submit(message);
2283
2284                 status = __spi_queued_transfer(spi, message, false);
2285
2286                 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2287         } else {
2288                 status = spi_async_locked(spi, message);
2289         }
2290
2291         if (!bus_locked)
2292                 mutex_unlock(&master->bus_lock_mutex);
2293
2294         if (status == 0) {
2295                 /* Push out the messages in the calling context if we
2296                  * can.
2297                  */
2298                 if (master->transfer == spi_queued_transfer) {
2299                         SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2300                                                        spi_sync_immediate);
2301                         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2302                                                        spi_sync_immediate);
2303                         __spi_pump_messages(master, false);
2304                 }
2305
2306                 wait_for_completion(&done);
2307                 status = message->status;
2308         }
2309         message->context = NULL;
2310         return status;
2311 }
2312
2313 /**
2314  * spi_sync - blocking/synchronous SPI data transfers
2315  * @spi: device with which data will be exchanged
2316  * @message: describes the data transfers
2317  * Context: can sleep
2318  *
2319  * This call may only be used from a context that may sleep.  The sleep
2320  * is non-interruptible, and has no timeout.  Low-overhead controller
2321  * drivers may DMA directly into and out of the message buffers.
2322  *
2323  * Note that the SPI device's chip select is active during the message,
2324  * and then is normally disabled between messages.  Drivers for some
2325  * frequently-used devices may want to minimize costs of selecting a chip,
2326  * by leaving it selected in anticipation that the next message will go
2327  * to the same chip.  (That may increase power usage.)
2328  *
2329  * Also, the caller is guaranteeing that the memory associated with the
2330  * message will not be freed before this call returns.
2331  *
2332  * It returns zero on success, else a negative error code.
2333  */
2334 int spi_sync(struct spi_device *spi, struct spi_message *message)
2335 {
2336         return __spi_sync(spi, message, 0);
2337 }
2338 EXPORT_SYMBOL_GPL(spi_sync);
2339
2340 /**
2341  * spi_sync_locked - version of spi_sync with exclusive bus usage
2342  * @spi: device with which data will be exchanged
2343  * @message: describes the data transfers
2344  * Context: can sleep
2345  *
2346  * This call may only be used from a context that may sleep.  The sleep
2347  * is non-interruptible, and has no timeout.  Low-overhead controller
2348  * drivers may DMA directly into and out of the message buffers.
2349  *
2350  * This call should be used by drivers that require exclusive access to the
2351  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2352  * be released by a spi_bus_unlock call when the exclusive access is over.
2353  *
2354  * It returns zero on success, else a negative error code.
2355  */
2356 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2357 {
2358         return __spi_sync(spi, message, 1);
2359 }
2360 EXPORT_SYMBOL_GPL(spi_sync_locked);
2361
2362 /**
2363  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2364  * @master: SPI bus master that should be locked for exclusive bus access
2365  * Context: can sleep
2366  *
2367  * This call may only be used from a context that may sleep.  The sleep
2368  * is non-interruptible, and has no timeout.
2369  *
2370  * This call should be used by drivers that require exclusive access to the
2371  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2372  * exclusive access is over. Data transfer must be done by spi_sync_locked
2373  * and spi_async_locked calls when the SPI bus lock is held.
2374  *
2375  * It returns zero on success, else a negative error code.
2376  */
2377 int spi_bus_lock(struct spi_master *master)
2378 {
2379         unsigned long flags;
2380
2381         mutex_lock(&master->bus_lock_mutex);
2382
2383         spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2384         master->bus_lock_flag = 1;
2385         spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2386
2387         /* mutex remains locked until spi_bus_unlock is called */
2388
2389         return 0;
2390 }
2391 EXPORT_SYMBOL_GPL(spi_bus_lock);
2392
2393 /**
2394  * spi_bus_unlock - release the lock for exclusive SPI bus usage
2395  * @master: SPI bus master that was locked for exclusive bus access
2396  * Context: can sleep
2397  *
2398  * This call may only be used from a context that may sleep.  The sleep
2399  * is non-interruptible, and has no timeout.
2400  *
2401  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2402  * call.
2403  *
2404  * It returns zero on success, else a negative error code.
2405  */
2406 int spi_bus_unlock(struct spi_master *master)
2407 {
2408         master->bus_lock_flag = 0;
2409
2410         mutex_unlock(&master->bus_lock_mutex);
2411
2412         return 0;
2413 }
2414 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2415
2416 /* portable code must never pass more than 32 bytes */
2417 #define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
2418
2419 static u8       *buf;
2420
2421 /**
2422  * spi_write_then_read - SPI synchronous write followed by read
2423  * @spi: device with which data will be exchanged
2424  * @txbuf: data to be written (need not be dma-safe)
2425  * @n_tx: size of txbuf, in bytes
2426  * @rxbuf: buffer into which data will be read (need not be dma-safe)
2427  * @n_rx: size of rxbuf, in bytes
2428  * Context: can sleep
2429  *
2430  * This performs a half duplex MicroWire style transaction with the
2431  * device, sending txbuf and then reading rxbuf.  The return value
2432  * is zero for success, else a negative errno status code.
2433  * This call may only be used from a context that may sleep.
2434  *
2435  * Parameters to this routine are always copied using a small buffer;
2436  * portable code should never use this for more than 32 bytes.
2437  * Performance-sensitive or bulk transfer code should instead use
2438  * spi_{async,sync}() calls with dma-safe buffers.
2439  */
2440 int spi_write_then_read(struct spi_device *spi,
2441                 const void *txbuf, unsigned n_tx,
2442                 void *rxbuf, unsigned n_rx)
2443 {
2444         static DEFINE_MUTEX(lock);
2445
2446         int                     status;
2447         struct spi_message      message;
2448         struct spi_transfer     x[2];
2449         u8                      *local_buf;
2450
2451         /* Use preallocated DMA-safe buffer if we can.  We can't avoid
2452          * copying here, (as a pure convenience thing), but we can
2453          * keep heap costs out of the hot path unless someone else is
2454          * using the pre-allocated buffer or the transfer is too large.
2455          */
2456         if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2457                 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2458                                     GFP_KERNEL | GFP_DMA);
2459                 if (!local_buf)
2460                         return -ENOMEM;
2461         } else {
2462                 local_buf = buf;
2463         }
2464
2465         spi_message_init(&message);
2466         memset(x, 0, sizeof(x));
2467         if (n_tx) {
2468                 x[0].len = n_tx;
2469                 spi_message_add_tail(&x[0], &message);
2470         }
2471         if (n_rx) {
2472                 x[1].len = n_rx;
2473                 spi_message_add_tail(&x[1], &message);
2474         }
2475
2476         memcpy(local_buf, txbuf, n_tx);
2477         x[0].tx_buf = local_buf;
2478         x[1].rx_buf = local_buf + n_tx;
2479
2480         /* do the i/o */
2481         status = spi_sync(spi, &message);
2482         if (status == 0)
2483                 memcpy(rxbuf, x[1].rx_buf, n_rx);
2484
2485         if (x[0].tx_buf == buf)
2486                 mutex_unlock(&lock);
2487         else
2488                 kfree(local_buf);
2489
2490         return status;
2491 }
2492 EXPORT_SYMBOL_GPL(spi_write_then_read);
2493
2494 /*-------------------------------------------------------------------------*/
2495
2496 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
2497 static int __spi_of_device_match(struct device *dev, void *data)
2498 {
2499         return dev->of_node == data;
2500 }
2501
2502 /* must call put_device() when done with returned spi_device device */
2503 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
2504 {
2505         struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
2506                                                 __spi_of_device_match);
2507         return dev ? to_spi_device(dev) : NULL;
2508 }
2509
2510 static int __spi_of_master_match(struct device *dev, const void *data)
2511 {
2512         return dev->of_node == data;
2513 }
2514
2515 /* the spi masters are not using spi_bus, so we find it with another way */
2516 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
2517 {
2518         struct device *dev;
2519
2520         dev = class_find_device(&spi_master_class, NULL, node,
2521                                 __spi_of_master_match);
2522         if (!dev)
2523                 return NULL;
2524
2525         /* reference got in class_find_device */
2526         return container_of(dev, struct spi_master, dev);
2527 }
2528
2529 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
2530                          void *arg)
2531 {
2532         struct of_reconfig_data *rd = arg;
2533         struct spi_master *master;
2534         struct spi_device *spi;
2535
2536         switch (of_reconfig_get_state_change(action, arg)) {
2537         case OF_RECONFIG_CHANGE_ADD:
2538                 master = of_find_spi_master_by_node(rd->dn->parent);
2539                 if (master == NULL)
2540                         return NOTIFY_OK;       /* not for us */
2541
2542                 spi = of_register_spi_device(master, rd->dn);
2543                 put_device(&master->dev);
2544
2545                 if (IS_ERR(spi)) {
2546                         pr_err("%s: failed to create for '%s'\n",
2547                                         __func__, rd->dn->full_name);
2548                         return notifier_from_errno(PTR_ERR(spi));
2549                 }
2550                 break;
2551
2552         case OF_RECONFIG_CHANGE_REMOVE:
2553                 /* find our device by node */
2554                 spi = of_find_spi_device_by_node(rd->dn);
2555                 if (spi == NULL)
2556                         return NOTIFY_OK;       /* no? not meant for us */
2557
2558                 /* unregister takes one ref away */
2559                 spi_unregister_device(spi);
2560
2561                 /* and put the reference of the find */
2562                 put_device(&spi->dev);
2563                 break;
2564         }
2565
2566         return NOTIFY_OK;
2567 }
2568
2569 static struct notifier_block spi_of_notifier = {
2570         .notifier_call = of_spi_notify,
2571 };
2572 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2573 extern struct notifier_block spi_of_notifier;
2574 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2575
2576 static int __init spi_init(void)
2577 {
2578         int     status;
2579
2580         buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2581         if (!buf) {
2582                 status = -ENOMEM;
2583                 goto err0;
2584         }
2585
2586         status = bus_register(&spi_bus_type);
2587         if (status < 0)
2588                 goto err1;
2589
2590         status = class_register(&spi_master_class);
2591         if (status < 0)
2592                 goto err2;
2593
2594         if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2595                 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
2596
2597         return 0;
2598
2599 err2:
2600         bus_unregister(&spi_bus_type);
2601 err1:
2602         kfree(buf);
2603         buf = NULL;
2604 err0:
2605         return status;
2606 }
2607
2608 /* board_info is normally registered in arch_initcall(),
2609  * but even essential drivers wait till later
2610  *
2611  * REVISIT only boardinfo really needs static linking. the rest (device and
2612  * driver registration) _could_ be dynamically linked (modular) ... costs
2613  * include needing to have boardinfo data structures be much more public.
2614  */
2615 postcore_initcall(spi_init);
2616