]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/thermal/samsung/exynos_tmu.c
Merge branch 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[karo-tx-linux.git] / drivers / thermal / samsung / exynos_tmu.c
1 /*
2  * exynos_tmu.c - Samsung EXYNOS TMU (Thermal Management Unit)
3  *
4  *  Copyright (C) 2014 Samsung Electronics
5  *  Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
6  *  Lukasz Majewski <l.majewski@samsung.com>
7  *
8  *  Copyright (C) 2011 Samsung Electronics
9  *  Donggeun Kim <dg77.kim@samsung.com>
10  *  Amit Daniel Kachhap <amit.kachhap@linaro.org>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25  *
26  */
27
28 #include <linux/clk.h>
29 #include <linux/io.h>
30 #include <linux/interrupt.h>
31 #include <linux/module.h>
32 #include <linux/of.h>
33 #include <linux/of_address.h>
34 #include <linux/of_irq.h>
35 #include <linux/platform_device.h>
36 #include <linux/regulator/consumer.h>
37
38 #include "exynos_tmu.h"
39 #include "../thermal_core.h"
40
41 /* Exynos generic registers */
42 #define EXYNOS_TMU_REG_TRIMINFO         0x0
43 #define EXYNOS_TMU_REG_CONTROL          0x20
44 #define EXYNOS_TMU_REG_STATUS           0x28
45 #define EXYNOS_TMU_REG_CURRENT_TEMP     0x40
46 #define EXYNOS_TMU_REG_INTEN            0x70
47 #define EXYNOS_TMU_REG_INTSTAT          0x74
48 #define EXYNOS_TMU_REG_INTCLEAR         0x78
49
50 #define EXYNOS_TMU_TEMP_MASK            0xff
51 #define EXYNOS_TMU_REF_VOLTAGE_SHIFT    24
52 #define EXYNOS_TMU_REF_VOLTAGE_MASK     0x1f
53 #define EXYNOS_TMU_BUF_SLOPE_SEL_MASK   0xf
54 #define EXYNOS_TMU_BUF_SLOPE_SEL_SHIFT  8
55 #define EXYNOS_TMU_CORE_EN_SHIFT        0
56
57 /* Exynos3250 specific registers */
58 #define EXYNOS_TMU_TRIMINFO_CON1        0x10
59
60 /* Exynos4210 specific registers */
61 #define EXYNOS4210_TMU_REG_THRESHOLD_TEMP       0x44
62 #define EXYNOS4210_TMU_REG_TRIG_LEVEL0  0x50
63
64 /* Exynos5250, Exynos4412, Exynos3250 specific registers */
65 #define EXYNOS_TMU_TRIMINFO_CON2        0x14
66 #define EXYNOS_THD_TEMP_RISE            0x50
67 #define EXYNOS_THD_TEMP_FALL            0x54
68 #define EXYNOS_EMUL_CON         0x80
69
70 #define EXYNOS_TRIMINFO_RELOAD_ENABLE   1
71 #define EXYNOS_TRIMINFO_25_SHIFT        0
72 #define EXYNOS_TRIMINFO_85_SHIFT        8
73 #define EXYNOS_TMU_TRIP_MODE_SHIFT      13
74 #define EXYNOS_TMU_TRIP_MODE_MASK       0x7
75 #define EXYNOS_TMU_THERM_TRIP_EN_SHIFT  12
76
77 #define EXYNOS_TMU_INTEN_RISE0_SHIFT    0
78 #define EXYNOS_TMU_INTEN_RISE1_SHIFT    4
79 #define EXYNOS_TMU_INTEN_RISE2_SHIFT    8
80 #define EXYNOS_TMU_INTEN_RISE3_SHIFT    12
81 #define EXYNOS_TMU_INTEN_FALL0_SHIFT    16
82
83 #define EXYNOS_EMUL_TIME        0x57F0
84 #define EXYNOS_EMUL_TIME_MASK   0xffff
85 #define EXYNOS_EMUL_TIME_SHIFT  16
86 #define EXYNOS_EMUL_DATA_SHIFT  8
87 #define EXYNOS_EMUL_DATA_MASK   0xFF
88 #define EXYNOS_EMUL_ENABLE      0x1
89
90 /* Exynos5260 specific */
91 #define EXYNOS5260_TMU_REG_INTEN                0xC0
92 #define EXYNOS5260_TMU_REG_INTSTAT              0xC4
93 #define EXYNOS5260_TMU_REG_INTCLEAR             0xC8
94 #define EXYNOS5260_EMUL_CON                     0x100
95
96 /* Exynos4412 specific */
97 #define EXYNOS4412_MUX_ADDR_VALUE          6
98 #define EXYNOS4412_MUX_ADDR_SHIFT          20
99
100 /* Exynos5433 specific registers */
101 #define EXYNOS5433_TMU_REG_CONTROL1             0x024
102 #define EXYNOS5433_TMU_SAMPLING_INTERVAL        0x02c
103 #define EXYNOS5433_TMU_COUNTER_VALUE0           0x030
104 #define EXYNOS5433_TMU_COUNTER_VALUE1           0x034
105 #define EXYNOS5433_TMU_REG_CURRENT_TEMP1        0x044
106 #define EXYNOS5433_THD_TEMP_RISE3_0             0x050
107 #define EXYNOS5433_THD_TEMP_RISE7_4             0x054
108 #define EXYNOS5433_THD_TEMP_FALL3_0             0x060
109 #define EXYNOS5433_THD_TEMP_FALL7_4             0x064
110 #define EXYNOS5433_TMU_REG_INTEN                0x0c0
111 #define EXYNOS5433_TMU_REG_INTPEND              0x0c8
112 #define EXYNOS5433_TMU_EMUL_CON                 0x110
113 #define EXYNOS5433_TMU_PD_DET_EN                0x130
114
115 #define EXYNOS5433_TRIMINFO_SENSOR_ID_SHIFT     16
116 #define EXYNOS5433_TRIMINFO_CALIB_SEL_SHIFT     23
117 #define EXYNOS5433_TRIMINFO_SENSOR_ID_MASK      \
118                         (0xf << EXYNOS5433_TRIMINFO_SENSOR_ID_SHIFT)
119 #define EXYNOS5433_TRIMINFO_CALIB_SEL_MASK      BIT(23)
120
121 #define EXYNOS5433_TRIMINFO_ONE_POINT_TRIMMING  0
122 #define EXYNOS5433_TRIMINFO_TWO_POINT_TRIMMING  1
123
124 #define EXYNOS5433_PD_DET_EN                    1
125
126 /*exynos5440 specific registers*/
127 #define EXYNOS5440_TMU_S0_7_TRIM                0x000
128 #define EXYNOS5440_TMU_S0_7_CTRL                0x020
129 #define EXYNOS5440_TMU_S0_7_DEBUG               0x040
130 #define EXYNOS5440_TMU_S0_7_TEMP                0x0f0
131 #define EXYNOS5440_TMU_S0_7_TH0                 0x110
132 #define EXYNOS5440_TMU_S0_7_TH1                 0x130
133 #define EXYNOS5440_TMU_S0_7_TH2                 0x150
134 #define EXYNOS5440_TMU_S0_7_IRQEN               0x210
135 #define EXYNOS5440_TMU_S0_7_IRQ                 0x230
136 /* exynos5440 common registers */
137 #define EXYNOS5440_TMU_IRQ_STATUS               0x000
138 #define EXYNOS5440_TMU_PMIN                     0x004
139
140 #define EXYNOS5440_TMU_INTEN_RISE0_SHIFT        0
141 #define EXYNOS5440_TMU_INTEN_RISE1_SHIFT        1
142 #define EXYNOS5440_TMU_INTEN_RISE2_SHIFT        2
143 #define EXYNOS5440_TMU_INTEN_RISE3_SHIFT        3
144 #define EXYNOS5440_TMU_INTEN_FALL0_SHIFT        4
145 #define EXYNOS5440_TMU_TH_RISE4_SHIFT           24
146 #define EXYNOS5440_EFUSE_SWAP_OFFSET            8
147
148 /* Exynos7 specific registers */
149 #define EXYNOS7_THD_TEMP_RISE7_6                0x50
150 #define EXYNOS7_THD_TEMP_FALL7_6                0x60
151 #define EXYNOS7_TMU_REG_INTEN                   0x110
152 #define EXYNOS7_TMU_REG_INTPEND                 0x118
153 #define EXYNOS7_TMU_REG_EMUL_CON                0x160
154
155 #define EXYNOS7_TMU_TEMP_MASK                   0x1ff
156 #define EXYNOS7_PD_DET_EN_SHIFT                 23
157 #define EXYNOS7_TMU_INTEN_RISE0_SHIFT           0
158 #define EXYNOS7_TMU_INTEN_RISE1_SHIFT           1
159 #define EXYNOS7_TMU_INTEN_RISE2_SHIFT           2
160 #define EXYNOS7_TMU_INTEN_RISE3_SHIFT           3
161 #define EXYNOS7_TMU_INTEN_RISE4_SHIFT           4
162 #define EXYNOS7_TMU_INTEN_RISE5_SHIFT           5
163 #define EXYNOS7_TMU_INTEN_RISE6_SHIFT           6
164 #define EXYNOS7_TMU_INTEN_RISE7_SHIFT           7
165 #define EXYNOS7_EMUL_DATA_SHIFT                 7
166 #define EXYNOS7_EMUL_DATA_MASK                  0x1ff
167
168 #define MCELSIUS        1000
169 /**
170  * struct exynos_tmu_data : A structure to hold the private data of the TMU
171         driver
172  * @id: identifier of the one instance of the TMU controller.
173  * @pdata: pointer to the tmu platform/configuration data
174  * @base: base address of the single instance of the TMU controller.
175  * @base_second: base address of the common registers of the TMU controller.
176  * @irq: irq number of the TMU controller.
177  * @soc: id of the SOC type.
178  * @irq_work: pointer to the irq work structure.
179  * @lock: lock to implement synchronization.
180  * @clk: pointer to the clock structure.
181  * @clk_sec: pointer to the clock structure for accessing the base_second.
182  * @sclk: pointer to the clock structure for accessing the tmu special clk.
183  * @temp_error1: fused value of the first point trim.
184  * @temp_error2: fused value of the second point trim.
185  * @regulator: pointer to the TMU regulator structure.
186  * @reg_conf: pointer to structure to register with core thermal.
187  * @tmu_initialize: SoC specific TMU initialization method
188  * @tmu_control: SoC specific TMU control method
189  * @tmu_read: SoC specific TMU temperature read method
190  * @tmu_set_emulation: SoC specific TMU emulation setting method
191  * @tmu_clear_irqs: SoC specific TMU interrupts clearing method
192  */
193 struct exynos_tmu_data {
194         int id;
195         struct exynos_tmu_platform_data *pdata;
196         void __iomem *base;
197         void __iomem *base_second;
198         int irq;
199         enum soc_type soc;
200         struct work_struct irq_work;
201         struct mutex lock;
202         struct clk *clk, *clk_sec, *sclk;
203         u16 temp_error1, temp_error2;
204         struct regulator *regulator;
205         struct thermal_zone_device *tzd;
206
207         int (*tmu_initialize)(struct platform_device *pdev);
208         void (*tmu_control)(struct platform_device *pdev, bool on);
209         int (*tmu_read)(struct exynos_tmu_data *data);
210         void (*tmu_set_emulation)(struct exynos_tmu_data *data, int temp);
211         void (*tmu_clear_irqs)(struct exynos_tmu_data *data);
212 };
213
214 static void exynos_report_trigger(struct exynos_tmu_data *p)
215 {
216         char data[10], *envp[] = { data, NULL };
217         struct thermal_zone_device *tz = p->tzd;
218         int temp;
219         unsigned int i;
220
221         if (!tz) {
222                 pr_err("No thermal zone device defined\n");
223                 return;
224         }
225
226         thermal_zone_device_update(tz);
227
228         mutex_lock(&tz->lock);
229         /* Find the level for which trip happened */
230         for (i = 0; i < of_thermal_get_ntrips(tz); i++) {
231                 tz->ops->get_trip_temp(tz, i, &temp);
232                 if (tz->last_temperature < temp)
233                         break;
234         }
235
236         snprintf(data, sizeof(data), "%u", i);
237         kobject_uevent_env(&tz->device.kobj, KOBJ_CHANGE, envp);
238         mutex_unlock(&tz->lock);
239 }
240
241 /*
242  * TMU treats temperature as a mapped temperature code.
243  * The temperature is converted differently depending on the calibration type.
244  */
245 static int temp_to_code(struct exynos_tmu_data *data, u8 temp)
246 {
247         struct exynos_tmu_platform_data *pdata = data->pdata;
248         int temp_code;
249
250         switch (pdata->cal_type) {
251         case TYPE_TWO_POINT_TRIMMING:
252                 temp_code = (temp - pdata->first_point_trim) *
253                         (data->temp_error2 - data->temp_error1) /
254                         (pdata->second_point_trim - pdata->first_point_trim) +
255                         data->temp_error1;
256                 break;
257         case TYPE_ONE_POINT_TRIMMING:
258                 temp_code = temp + data->temp_error1 - pdata->first_point_trim;
259                 break;
260         default:
261                 temp_code = temp + pdata->default_temp_offset;
262                 break;
263         }
264
265         return temp_code;
266 }
267
268 /*
269  * Calculate a temperature value from a temperature code.
270  * The unit of the temperature is degree Celsius.
271  */
272 static int code_to_temp(struct exynos_tmu_data *data, u16 temp_code)
273 {
274         struct exynos_tmu_platform_data *pdata = data->pdata;
275         int temp;
276
277         switch (pdata->cal_type) {
278         case TYPE_TWO_POINT_TRIMMING:
279                 temp = (temp_code - data->temp_error1) *
280                         (pdata->second_point_trim - pdata->first_point_trim) /
281                         (data->temp_error2 - data->temp_error1) +
282                         pdata->first_point_trim;
283                 break;
284         case TYPE_ONE_POINT_TRIMMING:
285                 temp = temp_code - data->temp_error1 + pdata->first_point_trim;
286                 break;
287         default:
288                 temp = temp_code - pdata->default_temp_offset;
289                 break;
290         }
291
292         return temp;
293 }
294
295 static void sanitize_temp_error(struct exynos_tmu_data *data, u32 trim_info)
296 {
297         struct exynos_tmu_platform_data *pdata = data->pdata;
298
299         data->temp_error1 = trim_info & EXYNOS_TMU_TEMP_MASK;
300         data->temp_error2 = ((trim_info >> EXYNOS_TRIMINFO_85_SHIFT) &
301                                 EXYNOS_TMU_TEMP_MASK);
302
303         if (!data->temp_error1 ||
304                 (pdata->min_efuse_value > data->temp_error1) ||
305                 (data->temp_error1 > pdata->max_efuse_value))
306                 data->temp_error1 = pdata->efuse_value & EXYNOS_TMU_TEMP_MASK;
307
308         if (!data->temp_error2)
309                 data->temp_error2 =
310                         (pdata->efuse_value >> EXYNOS_TRIMINFO_85_SHIFT) &
311                         EXYNOS_TMU_TEMP_MASK;
312 }
313
314 static u32 get_th_reg(struct exynos_tmu_data *data, u32 threshold, bool falling)
315 {
316         struct thermal_zone_device *tz = data->tzd;
317         const struct thermal_trip * const trips =
318                 of_thermal_get_trip_points(tz);
319         unsigned long temp;
320         int i;
321
322         if (!trips) {
323                 pr_err("%s: Cannot get trip points from of-thermal.c!\n",
324                        __func__);
325                 return 0;
326         }
327
328         for (i = 0; i < of_thermal_get_ntrips(tz); i++) {
329                 if (trips[i].type == THERMAL_TRIP_CRITICAL)
330                         continue;
331
332                 temp = trips[i].temperature / MCELSIUS;
333                 if (falling)
334                         temp -= (trips[i].hysteresis / MCELSIUS);
335                 else
336                         threshold &= ~(0xff << 8 * i);
337
338                 threshold |= temp_to_code(data, temp) << 8 * i;
339         }
340
341         return threshold;
342 }
343
344 static int exynos_tmu_initialize(struct platform_device *pdev)
345 {
346         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
347         int ret;
348
349         mutex_lock(&data->lock);
350         clk_enable(data->clk);
351         if (!IS_ERR(data->clk_sec))
352                 clk_enable(data->clk_sec);
353         ret = data->tmu_initialize(pdev);
354         clk_disable(data->clk);
355         mutex_unlock(&data->lock);
356         if (!IS_ERR(data->clk_sec))
357                 clk_disable(data->clk_sec);
358
359         return ret;
360 }
361
362 static u32 get_con_reg(struct exynos_tmu_data *data, u32 con)
363 {
364         struct exynos_tmu_platform_data *pdata = data->pdata;
365
366         if (data->soc == SOC_ARCH_EXYNOS4412 ||
367             data->soc == SOC_ARCH_EXYNOS3250)
368                 con |= (EXYNOS4412_MUX_ADDR_VALUE << EXYNOS4412_MUX_ADDR_SHIFT);
369
370         con &= ~(EXYNOS_TMU_REF_VOLTAGE_MASK << EXYNOS_TMU_REF_VOLTAGE_SHIFT);
371         con |= pdata->reference_voltage << EXYNOS_TMU_REF_VOLTAGE_SHIFT;
372
373         con &= ~(EXYNOS_TMU_BUF_SLOPE_SEL_MASK << EXYNOS_TMU_BUF_SLOPE_SEL_SHIFT);
374         con |= (pdata->gain << EXYNOS_TMU_BUF_SLOPE_SEL_SHIFT);
375
376         if (pdata->noise_cancel_mode) {
377                 con &= ~(EXYNOS_TMU_TRIP_MODE_MASK << EXYNOS_TMU_TRIP_MODE_SHIFT);
378                 con |= (pdata->noise_cancel_mode << EXYNOS_TMU_TRIP_MODE_SHIFT);
379         }
380
381         return con;
382 }
383
384 static void exynos_tmu_control(struct platform_device *pdev, bool on)
385 {
386         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
387
388         mutex_lock(&data->lock);
389         clk_enable(data->clk);
390         data->tmu_control(pdev, on);
391         clk_disable(data->clk);
392         mutex_unlock(&data->lock);
393 }
394
395 static int exynos4210_tmu_initialize(struct platform_device *pdev)
396 {
397         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
398         struct thermal_zone_device *tz = data->tzd;
399         const struct thermal_trip * const trips =
400                 of_thermal_get_trip_points(tz);
401         int ret = 0, threshold_code, i;
402         unsigned long reference, temp;
403         unsigned int status;
404
405         if (!trips) {
406                 pr_err("%s: Cannot get trip points from of-thermal.c!\n",
407                        __func__);
408                 ret = -ENODEV;
409                 goto out;
410         }
411
412         status = readb(data->base + EXYNOS_TMU_REG_STATUS);
413         if (!status) {
414                 ret = -EBUSY;
415                 goto out;
416         }
417
418         sanitize_temp_error(data, readl(data->base + EXYNOS_TMU_REG_TRIMINFO));
419
420         /* Write temperature code for threshold */
421         reference = trips[0].temperature / MCELSIUS;
422         threshold_code = temp_to_code(data, reference);
423         if (threshold_code < 0) {
424                 ret = threshold_code;
425                 goto out;
426         }
427         writeb(threshold_code, data->base + EXYNOS4210_TMU_REG_THRESHOLD_TEMP);
428
429         for (i = 0; i < of_thermal_get_ntrips(tz); i++) {
430                 temp = trips[i].temperature / MCELSIUS;
431                 writeb(temp - reference, data->base +
432                        EXYNOS4210_TMU_REG_TRIG_LEVEL0 + i * 4);
433         }
434
435         data->tmu_clear_irqs(data);
436 out:
437         return ret;
438 }
439
440 static int exynos4412_tmu_initialize(struct platform_device *pdev)
441 {
442         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
443         const struct thermal_trip * const trips =
444                 of_thermal_get_trip_points(data->tzd);
445         unsigned int status, trim_info, con, ctrl, rising_threshold;
446         int ret = 0, threshold_code, i;
447         unsigned long crit_temp = 0;
448
449         status = readb(data->base + EXYNOS_TMU_REG_STATUS);
450         if (!status) {
451                 ret = -EBUSY;
452                 goto out;
453         }
454
455         if (data->soc == SOC_ARCH_EXYNOS3250 ||
456             data->soc == SOC_ARCH_EXYNOS4412 ||
457             data->soc == SOC_ARCH_EXYNOS5250) {
458                 if (data->soc == SOC_ARCH_EXYNOS3250) {
459                         ctrl = readl(data->base + EXYNOS_TMU_TRIMINFO_CON1);
460                         ctrl |= EXYNOS_TRIMINFO_RELOAD_ENABLE;
461                         writel(ctrl, data->base + EXYNOS_TMU_TRIMINFO_CON1);
462                 }
463                 ctrl = readl(data->base + EXYNOS_TMU_TRIMINFO_CON2);
464                 ctrl |= EXYNOS_TRIMINFO_RELOAD_ENABLE;
465                 writel(ctrl, data->base + EXYNOS_TMU_TRIMINFO_CON2);
466         }
467
468         /* On exynos5420 the triminfo register is in the shared space */
469         if (data->soc == SOC_ARCH_EXYNOS5420_TRIMINFO)
470                 trim_info = readl(data->base_second + EXYNOS_TMU_REG_TRIMINFO);
471         else
472                 trim_info = readl(data->base + EXYNOS_TMU_REG_TRIMINFO);
473
474         sanitize_temp_error(data, trim_info);
475
476         /* Write temperature code for rising and falling threshold */
477         rising_threshold = readl(data->base + EXYNOS_THD_TEMP_RISE);
478         rising_threshold = get_th_reg(data, rising_threshold, false);
479         writel(rising_threshold, data->base + EXYNOS_THD_TEMP_RISE);
480         writel(get_th_reg(data, 0, true), data->base + EXYNOS_THD_TEMP_FALL);
481
482         data->tmu_clear_irqs(data);
483
484         /* if last threshold limit is also present */
485         for (i = 0; i < of_thermal_get_ntrips(data->tzd); i++) {
486                 if (trips[i].type == THERMAL_TRIP_CRITICAL) {
487                         crit_temp = trips[i].temperature;
488                         break;
489                 }
490         }
491
492         if (i == of_thermal_get_ntrips(data->tzd)) {
493                 pr_err("%s: No CRITICAL trip point defined at of-thermal.c!\n",
494                        __func__);
495                 ret = -EINVAL;
496                 goto out;
497         }
498
499         threshold_code = temp_to_code(data, crit_temp / MCELSIUS);
500         /* 1-4 level to be assigned in th0 reg */
501         rising_threshold &= ~(0xff << 8 * i);
502         rising_threshold |= threshold_code << 8 * i;
503         writel(rising_threshold, data->base + EXYNOS_THD_TEMP_RISE);
504         con = readl(data->base + EXYNOS_TMU_REG_CONTROL);
505         con |= (1 << EXYNOS_TMU_THERM_TRIP_EN_SHIFT);
506         writel(con, data->base + EXYNOS_TMU_REG_CONTROL);
507
508 out:
509         return ret;
510 }
511
512 static int exynos5433_tmu_initialize(struct platform_device *pdev)
513 {
514         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
515         struct exynos_tmu_platform_data *pdata = data->pdata;
516         struct thermal_zone_device *tz = data->tzd;
517         unsigned int status, trim_info;
518         unsigned int rising_threshold = 0, falling_threshold = 0;
519         int temp, temp_hist;
520         int ret = 0, threshold_code, i, sensor_id, cal_type;
521
522         status = readb(data->base + EXYNOS_TMU_REG_STATUS);
523         if (!status) {
524                 ret = -EBUSY;
525                 goto out;
526         }
527
528         trim_info = readl(data->base + EXYNOS_TMU_REG_TRIMINFO);
529         sanitize_temp_error(data, trim_info);
530
531         /* Read the temperature sensor id */
532         sensor_id = (trim_info & EXYNOS5433_TRIMINFO_SENSOR_ID_MASK)
533                                 >> EXYNOS5433_TRIMINFO_SENSOR_ID_SHIFT;
534         dev_info(&pdev->dev, "Temperature sensor ID: 0x%x\n", sensor_id);
535
536         /* Read the calibration mode */
537         writel(trim_info, data->base + EXYNOS_TMU_REG_TRIMINFO);
538         cal_type = (trim_info & EXYNOS5433_TRIMINFO_CALIB_SEL_MASK)
539                                 >> EXYNOS5433_TRIMINFO_CALIB_SEL_SHIFT;
540
541         switch (cal_type) {
542         case EXYNOS5433_TRIMINFO_ONE_POINT_TRIMMING:
543                 pdata->cal_type = TYPE_ONE_POINT_TRIMMING;
544                 break;
545         case EXYNOS5433_TRIMINFO_TWO_POINT_TRIMMING:
546                 pdata->cal_type = TYPE_TWO_POINT_TRIMMING;
547                 break;
548         default:
549                 pdata->cal_type = TYPE_ONE_POINT_TRIMMING;
550                 break;
551         };
552
553         dev_info(&pdev->dev, "Calibration type is %d-point calibration\n",
554                         cal_type ?  2 : 1);
555
556         /* Write temperature code for rising and falling threshold */
557         for (i = 0; i < of_thermal_get_ntrips(tz); i++) {
558                 int rising_reg_offset, falling_reg_offset;
559                 int j = 0;
560
561                 switch (i) {
562                 case 0:
563                 case 1:
564                 case 2:
565                 case 3:
566                         rising_reg_offset = EXYNOS5433_THD_TEMP_RISE3_0;
567                         falling_reg_offset = EXYNOS5433_THD_TEMP_FALL3_0;
568                         j = i;
569                         break;
570                 case 4:
571                 case 5:
572                 case 6:
573                 case 7:
574                         rising_reg_offset = EXYNOS5433_THD_TEMP_RISE7_4;
575                         falling_reg_offset = EXYNOS5433_THD_TEMP_FALL7_4;
576                         j = i - 4;
577                         break;
578                 default:
579                         continue;
580                 }
581
582                 /* Write temperature code for rising threshold */
583                 tz->ops->get_trip_temp(tz, i, &temp);
584                 temp /= MCELSIUS;
585                 threshold_code = temp_to_code(data, temp);
586
587                 rising_threshold = readl(data->base + rising_reg_offset);
588                 rising_threshold |= (threshold_code << j * 8);
589                 writel(rising_threshold, data->base + rising_reg_offset);
590
591                 /* Write temperature code for falling threshold */
592                 tz->ops->get_trip_hyst(tz, i, &temp_hist);
593                 temp_hist = temp - (temp_hist / MCELSIUS);
594                 threshold_code = temp_to_code(data, temp_hist);
595
596                 falling_threshold = readl(data->base + falling_reg_offset);
597                 falling_threshold &= ~(0xff << j * 8);
598                 falling_threshold |= (threshold_code << j * 8);
599                 writel(falling_threshold, data->base + falling_reg_offset);
600         }
601
602         data->tmu_clear_irqs(data);
603 out:
604         return ret;
605 }
606
607 static int exynos5440_tmu_initialize(struct platform_device *pdev)
608 {
609         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
610         unsigned int trim_info = 0, con, rising_threshold;
611         int ret = 0, threshold_code;
612         int crit_temp = 0;
613
614         /*
615          * For exynos5440 soc triminfo value is swapped between TMU0 and
616          * TMU2, so the below logic is needed.
617          */
618         switch (data->id) {
619         case 0:
620                 trim_info = readl(data->base + EXYNOS5440_EFUSE_SWAP_OFFSET +
621                                  EXYNOS5440_TMU_S0_7_TRIM);
622                 break;
623         case 1:
624                 trim_info = readl(data->base + EXYNOS5440_TMU_S0_7_TRIM);
625                 break;
626         case 2:
627                 trim_info = readl(data->base - EXYNOS5440_EFUSE_SWAP_OFFSET +
628                                   EXYNOS5440_TMU_S0_7_TRIM);
629         }
630         sanitize_temp_error(data, trim_info);
631
632         /* Write temperature code for rising and falling threshold */
633         rising_threshold = readl(data->base + EXYNOS5440_TMU_S0_7_TH0);
634         rising_threshold = get_th_reg(data, rising_threshold, false);
635         writel(rising_threshold, data->base + EXYNOS5440_TMU_S0_7_TH0);
636         writel(0, data->base + EXYNOS5440_TMU_S0_7_TH1);
637
638         data->tmu_clear_irqs(data);
639
640         /* if last threshold limit is also present */
641         if (!data->tzd->ops->get_crit_temp(data->tzd, &crit_temp)) {
642                 threshold_code = temp_to_code(data, crit_temp / MCELSIUS);
643                 /* 5th level to be assigned in th2 reg */
644                 rising_threshold =
645                         threshold_code << EXYNOS5440_TMU_TH_RISE4_SHIFT;
646                 writel(rising_threshold, data->base + EXYNOS5440_TMU_S0_7_TH2);
647                 con = readl(data->base + EXYNOS5440_TMU_S0_7_CTRL);
648                 con |= (1 << EXYNOS_TMU_THERM_TRIP_EN_SHIFT);
649                 writel(con, data->base + EXYNOS5440_TMU_S0_7_CTRL);
650         }
651         /* Clear the PMIN in the common TMU register */
652         if (!data->id)
653                 writel(0, data->base_second + EXYNOS5440_TMU_PMIN);
654         return ret;
655 }
656
657 static int exynos7_tmu_initialize(struct platform_device *pdev)
658 {
659         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
660         struct thermal_zone_device *tz = data->tzd;
661         struct exynos_tmu_platform_data *pdata = data->pdata;
662         unsigned int status, trim_info;
663         unsigned int rising_threshold = 0, falling_threshold = 0;
664         int ret = 0, threshold_code, i;
665         int temp, temp_hist;
666         unsigned int reg_off, bit_off;
667
668         status = readb(data->base + EXYNOS_TMU_REG_STATUS);
669         if (!status) {
670                 ret = -EBUSY;
671                 goto out;
672         }
673
674         trim_info = readl(data->base + EXYNOS_TMU_REG_TRIMINFO);
675
676         data->temp_error1 = trim_info & EXYNOS7_TMU_TEMP_MASK;
677         if (!data->temp_error1 ||
678             (pdata->min_efuse_value > data->temp_error1) ||
679             (data->temp_error1 > pdata->max_efuse_value))
680                 data->temp_error1 = pdata->efuse_value & EXYNOS_TMU_TEMP_MASK;
681
682         /* Write temperature code for rising and falling threshold */
683         for (i = (of_thermal_get_ntrips(tz) - 1); i >= 0; i--) {
684                 /*
685                  * On exynos7 there are 4 rising and 4 falling threshold
686                  * registers (0x50-0x5c and 0x60-0x6c respectively). Each
687                  * register holds the value of two threshold levels (at bit
688                  * offsets 0 and 16). Based on the fact that there are atmost
689                  * eight possible trigger levels, calculate the register and
690                  * bit offsets where the threshold levels are to be written.
691                  *
692                  * e.g. EXYNOS7_THD_TEMP_RISE7_6 (0x50)
693                  * [24:16] - Threshold level 7
694                  * [8:0] - Threshold level 6
695                  * e.g. EXYNOS7_THD_TEMP_RISE5_4 (0x54)
696                  * [24:16] - Threshold level 5
697                  * [8:0] - Threshold level 4
698                  *
699                  * and similarly for falling thresholds.
700                  *
701                  * Based on the above, calculate the register and bit offsets
702                  * for rising/falling threshold levels and populate them.
703                  */
704                 reg_off = ((7 - i) / 2) * 4;
705                 bit_off = ((8 - i) % 2);
706
707                 tz->ops->get_trip_temp(tz, i, &temp);
708                 temp /= MCELSIUS;
709
710                 tz->ops->get_trip_hyst(tz, i, &temp_hist);
711                 temp_hist = temp - (temp_hist / MCELSIUS);
712
713                 /* Set 9-bit temperature code for rising threshold levels */
714                 threshold_code = temp_to_code(data, temp);
715                 rising_threshold = readl(data->base +
716                         EXYNOS7_THD_TEMP_RISE7_6 + reg_off);
717                 rising_threshold &= ~(EXYNOS7_TMU_TEMP_MASK << (16 * bit_off));
718                 rising_threshold |= threshold_code << (16 * bit_off);
719                 writel(rising_threshold,
720                        data->base + EXYNOS7_THD_TEMP_RISE7_6 + reg_off);
721
722                 /* Set 9-bit temperature code for falling threshold levels */
723                 threshold_code = temp_to_code(data, temp_hist);
724                 falling_threshold &= ~(EXYNOS7_TMU_TEMP_MASK << (16 * bit_off));
725                 falling_threshold |= threshold_code << (16 * bit_off);
726                 writel(falling_threshold,
727                        data->base + EXYNOS7_THD_TEMP_FALL7_6 + reg_off);
728         }
729
730         data->tmu_clear_irqs(data);
731 out:
732         return ret;
733 }
734
735 static void exynos4210_tmu_control(struct platform_device *pdev, bool on)
736 {
737         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
738         struct thermal_zone_device *tz = data->tzd;
739         unsigned int con, interrupt_en;
740
741         con = get_con_reg(data, readl(data->base + EXYNOS_TMU_REG_CONTROL));
742
743         if (on) {
744                 con |= (1 << EXYNOS_TMU_CORE_EN_SHIFT);
745                 interrupt_en =
746                         (of_thermal_is_trip_valid(tz, 3)
747                          << EXYNOS_TMU_INTEN_RISE3_SHIFT) |
748                         (of_thermal_is_trip_valid(tz, 2)
749                          << EXYNOS_TMU_INTEN_RISE2_SHIFT) |
750                         (of_thermal_is_trip_valid(tz, 1)
751                          << EXYNOS_TMU_INTEN_RISE1_SHIFT) |
752                         (of_thermal_is_trip_valid(tz, 0)
753                          << EXYNOS_TMU_INTEN_RISE0_SHIFT);
754
755                 if (data->soc != SOC_ARCH_EXYNOS4210)
756                         interrupt_en |=
757                                 interrupt_en << EXYNOS_TMU_INTEN_FALL0_SHIFT;
758         } else {
759                 con &= ~(1 << EXYNOS_TMU_CORE_EN_SHIFT);
760                 interrupt_en = 0; /* Disable all interrupts */
761         }
762         writel(interrupt_en, data->base + EXYNOS_TMU_REG_INTEN);
763         writel(con, data->base + EXYNOS_TMU_REG_CONTROL);
764 }
765
766 static void exynos5433_tmu_control(struct platform_device *pdev, bool on)
767 {
768         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
769         struct thermal_zone_device *tz = data->tzd;
770         unsigned int con, interrupt_en, pd_det_en;
771
772         con = get_con_reg(data, readl(data->base + EXYNOS_TMU_REG_CONTROL));
773
774         if (on) {
775                 con |= (1 << EXYNOS_TMU_CORE_EN_SHIFT);
776                 interrupt_en =
777                         (of_thermal_is_trip_valid(tz, 7)
778                         << EXYNOS7_TMU_INTEN_RISE7_SHIFT) |
779                         (of_thermal_is_trip_valid(tz, 6)
780                         << EXYNOS7_TMU_INTEN_RISE6_SHIFT) |
781                         (of_thermal_is_trip_valid(tz, 5)
782                         << EXYNOS7_TMU_INTEN_RISE5_SHIFT) |
783                         (of_thermal_is_trip_valid(tz, 4)
784                         << EXYNOS7_TMU_INTEN_RISE4_SHIFT) |
785                         (of_thermal_is_trip_valid(tz, 3)
786                         << EXYNOS7_TMU_INTEN_RISE3_SHIFT) |
787                         (of_thermal_is_trip_valid(tz, 2)
788                         << EXYNOS7_TMU_INTEN_RISE2_SHIFT) |
789                         (of_thermal_is_trip_valid(tz, 1)
790                         << EXYNOS7_TMU_INTEN_RISE1_SHIFT) |
791                         (of_thermal_is_trip_valid(tz, 0)
792                         << EXYNOS7_TMU_INTEN_RISE0_SHIFT);
793
794                 interrupt_en |=
795                         interrupt_en << EXYNOS_TMU_INTEN_FALL0_SHIFT;
796         } else {
797                 con &= ~(1 << EXYNOS_TMU_CORE_EN_SHIFT);
798                 interrupt_en = 0; /* Disable all interrupts */
799         }
800
801         pd_det_en = on ? EXYNOS5433_PD_DET_EN : 0;
802
803         writel(pd_det_en, data->base + EXYNOS5433_TMU_PD_DET_EN);
804         writel(interrupt_en, data->base + EXYNOS5433_TMU_REG_INTEN);
805         writel(con, data->base + EXYNOS_TMU_REG_CONTROL);
806 }
807
808 static void exynos5440_tmu_control(struct platform_device *pdev, bool on)
809 {
810         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
811         struct thermal_zone_device *tz = data->tzd;
812         unsigned int con, interrupt_en;
813
814         con = get_con_reg(data, readl(data->base + EXYNOS5440_TMU_S0_7_CTRL));
815
816         if (on) {
817                 con |= (1 << EXYNOS_TMU_CORE_EN_SHIFT);
818                 interrupt_en =
819                         (of_thermal_is_trip_valid(tz, 3)
820                          << EXYNOS5440_TMU_INTEN_RISE3_SHIFT) |
821                         (of_thermal_is_trip_valid(tz, 2)
822                          << EXYNOS5440_TMU_INTEN_RISE2_SHIFT) |
823                         (of_thermal_is_trip_valid(tz, 1)
824                          << EXYNOS5440_TMU_INTEN_RISE1_SHIFT) |
825                         (of_thermal_is_trip_valid(tz, 0)
826                          << EXYNOS5440_TMU_INTEN_RISE0_SHIFT);
827                 interrupt_en |=
828                         interrupt_en << EXYNOS5440_TMU_INTEN_FALL0_SHIFT;
829         } else {
830                 con &= ~(1 << EXYNOS_TMU_CORE_EN_SHIFT);
831                 interrupt_en = 0; /* Disable all interrupts */
832         }
833         writel(interrupt_en, data->base + EXYNOS5440_TMU_S0_7_IRQEN);
834         writel(con, data->base + EXYNOS5440_TMU_S0_7_CTRL);
835 }
836
837 static void exynos7_tmu_control(struct platform_device *pdev, bool on)
838 {
839         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
840         struct thermal_zone_device *tz = data->tzd;
841         unsigned int con, interrupt_en;
842
843         con = get_con_reg(data, readl(data->base + EXYNOS_TMU_REG_CONTROL));
844
845         if (on) {
846                 con |= (1 << EXYNOS_TMU_CORE_EN_SHIFT);
847                 con |= (1 << EXYNOS7_PD_DET_EN_SHIFT);
848                 interrupt_en =
849                         (of_thermal_is_trip_valid(tz, 7)
850                         << EXYNOS7_TMU_INTEN_RISE7_SHIFT) |
851                         (of_thermal_is_trip_valid(tz, 6)
852                         << EXYNOS7_TMU_INTEN_RISE6_SHIFT) |
853                         (of_thermal_is_trip_valid(tz, 5)
854                         << EXYNOS7_TMU_INTEN_RISE5_SHIFT) |
855                         (of_thermal_is_trip_valid(tz, 4)
856                         << EXYNOS7_TMU_INTEN_RISE4_SHIFT) |
857                         (of_thermal_is_trip_valid(tz, 3)
858                         << EXYNOS7_TMU_INTEN_RISE3_SHIFT) |
859                         (of_thermal_is_trip_valid(tz, 2)
860                         << EXYNOS7_TMU_INTEN_RISE2_SHIFT) |
861                         (of_thermal_is_trip_valid(tz, 1)
862                         << EXYNOS7_TMU_INTEN_RISE1_SHIFT) |
863                         (of_thermal_is_trip_valid(tz, 0)
864                         << EXYNOS7_TMU_INTEN_RISE0_SHIFT);
865
866                 interrupt_en |=
867                         interrupt_en << EXYNOS_TMU_INTEN_FALL0_SHIFT;
868         } else {
869                 con &= ~(1 << EXYNOS_TMU_CORE_EN_SHIFT);
870                 con &= ~(1 << EXYNOS7_PD_DET_EN_SHIFT);
871                 interrupt_en = 0; /* Disable all interrupts */
872         }
873
874         writel(interrupt_en, data->base + EXYNOS7_TMU_REG_INTEN);
875         writel(con, data->base + EXYNOS_TMU_REG_CONTROL);
876 }
877
878 static int exynos_get_temp(void *p, int *temp)
879 {
880         struct exynos_tmu_data *data = p;
881
882         if (!data || !data->tmu_read)
883                 return -EINVAL;
884
885         mutex_lock(&data->lock);
886         clk_enable(data->clk);
887
888         *temp = code_to_temp(data, data->tmu_read(data)) * MCELSIUS;
889
890         clk_disable(data->clk);
891         mutex_unlock(&data->lock);
892
893         return 0;
894 }
895
896 #ifdef CONFIG_THERMAL_EMULATION
897 static u32 get_emul_con_reg(struct exynos_tmu_data *data, unsigned int val,
898                             int temp)
899 {
900         if (temp) {
901                 temp /= MCELSIUS;
902
903                 if (data->soc != SOC_ARCH_EXYNOS5440) {
904                         val &= ~(EXYNOS_EMUL_TIME_MASK << EXYNOS_EMUL_TIME_SHIFT);
905                         val |= (EXYNOS_EMUL_TIME << EXYNOS_EMUL_TIME_SHIFT);
906                 }
907                 if (data->soc == SOC_ARCH_EXYNOS7) {
908                         val &= ~(EXYNOS7_EMUL_DATA_MASK <<
909                                 EXYNOS7_EMUL_DATA_SHIFT);
910                         val |= (temp_to_code(data, temp) <<
911                                 EXYNOS7_EMUL_DATA_SHIFT) |
912                                 EXYNOS_EMUL_ENABLE;
913                 } else {
914                         val &= ~(EXYNOS_EMUL_DATA_MASK <<
915                                 EXYNOS_EMUL_DATA_SHIFT);
916                         val |= (temp_to_code(data, temp) <<
917                                 EXYNOS_EMUL_DATA_SHIFT) |
918                                 EXYNOS_EMUL_ENABLE;
919                 }
920         } else {
921                 val &= ~EXYNOS_EMUL_ENABLE;
922         }
923
924         return val;
925 }
926
927 static void exynos4412_tmu_set_emulation(struct exynos_tmu_data *data,
928                                          int temp)
929 {
930         unsigned int val;
931         u32 emul_con;
932
933         if (data->soc == SOC_ARCH_EXYNOS5260)
934                 emul_con = EXYNOS5260_EMUL_CON;
935         else if (data->soc == SOC_ARCH_EXYNOS5433)
936                 emul_con = EXYNOS5433_TMU_EMUL_CON;
937         else if (data->soc == SOC_ARCH_EXYNOS7)
938                 emul_con = EXYNOS7_TMU_REG_EMUL_CON;
939         else
940                 emul_con = EXYNOS_EMUL_CON;
941
942         val = readl(data->base + emul_con);
943         val = get_emul_con_reg(data, val, temp);
944         writel(val, data->base + emul_con);
945 }
946
947 static void exynos5440_tmu_set_emulation(struct exynos_tmu_data *data,
948                                          int temp)
949 {
950         unsigned int val;
951
952         val = readl(data->base + EXYNOS5440_TMU_S0_7_DEBUG);
953         val = get_emul_con_reg(data, val, temp);
954         writel(val, data->base + EXYNOS5440_TMU_S0_7_DEBUG);
955 }
956
957 static int exynos_tmu_set_emulation(void *drv_data, int temp)
958 {
959         struct exynos_tmu_data *data = drv_data;
960         int ret = -EINVAL;
961
962         if (data->soc == SOC_ARCH_EXYNOS4210)
963                 goto out;
964
965         if (temp && temp < MCELSIUS)
966                 goto out;
967
968         mutex_lock(&data->lock);
969         clk_enable(data->clk);
970         data->tmu_set_emulation(data, temp);
971         clk_disable(data->clk);
972         mutex_unlock(&data->lock);
973         return 0;
974 out:
975         return ret;
976 }
977 #else
978 #define exynos4412_tmu_set_emulation NULL
979 #define exynos5440_tmu_set_emulation NULL
980 static int exynos_tmu_set_emulation(void *drv_data, int temp)
981         { return -EINVAL; }
982 #endif /* CONFIG_THERMAL_EMULATION */
983
984 static int exynos4210_tmu_read(struct exynos_tmu_data *data)
985 {
986         int ret = readb(data->base + EXYNOS_TMU_REG_CURRENT_TEMP);
987
988         /* "temp_code" should range between 75 and 175 */
989         return (ret < 75 || ret > 175) ? -ENODATA : ret;
990 }
991
992 static int exynos4412_tmu_read(struct exynos_tmu_data *data)
993 {
994         return readb(data->base + EXYNOS_TMU_REG_CURRENT_TEMP);
995 }
996
997 static int exynos5440_tmu_read(struct exynos_tmu_data *data)
998 {
999         return readb(data->base + EXYNOS5440_TMU_S0_7_TEMP);
1000 }
1001
1002 static int exynos7_tmu_read(struct exynos_tmu_data *data)
1003 {
1004         return readw(data->base + EXYNOS_TMU_REG_CURRENT_TEMP) &
1005                 EXYNOS7_TMU_TEMP_MASK;
1006 }
1007
1008 static void exynos_tmu_work(struct work_struct *work)
1009 {
1010         struct exynos_tmu_data *data = container_of(work,
1011                         struct exynos_tmu_data, irq_work);
1012         unsigned int val_type;
1013
1014         if (!IS_ERR(data->clk_sec))
1015                 clk_enable(data->clk_sec);
1016         /* Find which sensor generated this interrupt */
1017         if (data->soc == SOC_ARCH_EXYNOS5440) {
1018                 val_type = readl(data->base_second + EXYNOS5440_TMU_IRQ_STATUS);
1019                 if (!((val_type >> data->id) & 0x1))
1020                         goto out;
1021         }
1022         if (!IS_ERR(data->clk_sec))
1023                 clk_disable(data->clk_sec);
1024
1025         exynos_report_trigger(data);
1026         mutex_lock(&data->lock);
1027         clk_enable(data->clk);
1028
1029         /* TODO: take action based on particular interrupt */
1030         data->tmu_clear_irqs(data);
1031
1032         clk_disable(data->clk);
1033         mutex_unlock(&data->lock);
1034 out:
1035         enable_irq(data->irq);
1036 }
1037
1038 static void exynos4210_tmu_clear_irqs(struct exynos_tmu_data *data)
1039 {
1040         unsigned int val_irq;
1041         u32 tmu_intstat, tmu_intclear;
1042
1043         if (data->soc == SOC_ARCH_EXYNOS5260) {
1044                 tmu_intstat = EXYNOS5260_TMU_REG_INTSTAT;
1045                 tmu_intclear = EXYNOS5260_TMU_REG_INTCLEAR;
1046         } else if (data->soc == SOC_ARCH_EXYNOS7) {
1047                 tmu_intstat = EXYNOS7_TMU_REG_INTPEND;
1048                 tmu_intclear = EXYNOS7_TMU_REG_INTPEND;
1049         } else if (data->soc == SOC_ARCH_EXYNOS5433) {
1050                 tmu_intstat = EXYNOS5433_TMU_REG_INTPEND;
1051                 tmu_intclear = EXYNOS5433_TMU_REG_INTPEND;
1052         } else {
1053                 tmu_intstat = EXYNOS_TMU_REG_INTSTAT;
1054                 tmu_intclear = EXYNOS_TMU_REG_INTCLEAR;
1055         }
1056
1057         val_irq = readl(data->base + tmu_intstat);
1058         /*
1059          * Clear the interrupts.  Please note that the documentation for
1060          * Exynos3250, Exynos4412, Exynos5250 and Exynos5260 incorrectly
1061          * states that INTCLEAR register has a different placing of bits
1062          * responsible for FALL IRQs than INTSTAT register.  Exynos5420
1063          * and Exynos5440 documentation is correct (Exynos4210 doesn't
1064          * support FALL IRQs at all).
1065          */
1066         writel(val_irq, data->base + tmu_intclear);
1067 }
1068
1069 static void exynos5440_tmu_clear_irqs(struct exynos_tmu_data *data)
1070 {
1071         unsigned int val_irq;
1072
1073         val_irq = readl(data->base + EXYNOS5440_TMU_S0_7_IRQ);
1074         /* clear the interrupts */
1075         writel(val_irq, data->base + EXYNOS5440_TMU_S0_7_IRQ);
1076 }
1077
1078 static irqreturn_t exynos_tmu_irq(int irq, void *id)
1079 {
1080         struct exynos_tmu_data *data = id;
1081
1082         disable_irq_nosync(irq);
1083         schedule_work(&data->irq_work);
1084
1085         return IRQ_HANDLED;
1086 }
1087
1088 static const struct of_device_id exynos_tmu_match[] = {
1089         { .compatible = "samsung,exynos3250-tmu", },
1090         { .compatible = "samsung,exynos4210-tmu", },
1091         { .compatible = "samsung,exynos4412-tmu", },
1092         { .compatible = "samsung,exynos5250-tmu", },
1093         { .compatible = "samsung,exynos5260-tmu", },
1094         { .compatible = "samsung,exynos5420-tmu", },
1095         { .compatible = "samsung,exynos5420-tmu-ext-triminfo", },
1096         { .compatible = "samsung,exynos5433-tmu", },
1097         { .compatible = "samsung,exynos5440-tmu", },
1098         { .compatible = "samsung,exynos7-tmu", },
1099         { /* sentinel */ },
1100 };
1101 MODULE_DEVICE_TABLE(of, exynos_tmu_match);
1102
1103 static int exynos_of_get_soc_type(struct device_node *np)
1104 {
1105         if (of_device_is_compatible(np, "samsung,exynos3250-tmu"))
1106                 return SOC_ARCH_EXYNOS3250;
1107         else if (of_device_is_compatible(np, "samsung,exynos4210-tmu"))
1108                 return SOC_ARCH_EXYNOS4210;
1109         else if (of_device_is_compatible(np, "samsung,exynos4412-tmu"))
1110                 return SOC_ARCH_EXYNOS4412;
1111         else if (of_device_is_compatible(np, "samsung,exynos5250-tmu"))
1112                 return SOC_ARCH_EXYNOS5250;
1113         else if (of_device_is_compatible(np, "samsung,exynos5260-tmu"))
1114                 return SOC_ARCH_EXYNOS5260;
1115         else if (of_device_is_compatible(np, "samsung,exynos5420-tmu"))
1116                 return SOC_ARCH_EXYNOS5420;
1117         else if (of_device_is_compatible(np,
1118                                          "samsung,exynos5420-tmu-ext-triminfo"))
1119                 return SOC_ARCH_EXYNOS5420_TRIMINFO;
1120         else if (of_device_is_compatible(np, "samsung,exynos5433-tmu"))
1121                 return SOC_ARCH_EXYNOS5433;
1122         else if (of_device_is_compatible(np, "samsung,exynos5440-tmu"))
1123                 return SOC_ARCH_EXYNOS5440;
1124         else if (of_device_is_compatible(np, "samsung,exynos7-tmu"))
1125                 return SOC_ARCH_EXYNOS7;
1126
1127         return -EINVAL;
1128 }
1129
1130 static int exynos_of_sensor_conf(struct device_node *np,
1131                                  struct exynos_tmu_platform_data *pdata)
1132 {
1133         u32 value;
1134         int ret;
1135
1136         of_node_get(np);
1137
1138         ret = of_property_read_u32(np, "samsung,tmu_gain", &value);
1139         pdata->gain = (u8)value;
1140         of_property_read_u32(np, "samsung,tmu_reference_voltage", &value);
1141         pdata->reference_voltage = (u8)value;
1142         of_property_read_u32(np, "samsung,tmu_noise_cancel_mode", &value);
1143         pdata->noise_cancel_mode = (u8)value;
1144
1145         of_property_read_u32(np, "samsung,tmu_efuse_value",
1146                              &pdata->efuse_value);
1147         of_property_read_u32(np, "samsung,tmu_min_efuse_value",
1148                              &pdata->min_efuse_value);
1149         of_property_read_u32(np, "samsung,tmu_max_efuse_value",
1150                              &pdata->max_efuse_value);
1151
1152         of_property_read_u32(np, "samsung,tmu_first_point_trim", &value);
1153         pdata->first_point_trim = (u8)value;
1154         of_property_read_u32(np, "samsung,tmu_second_point_trim", &value);
1155         pdata->second_point_trim = (u8)value;
1156         of_property_read_u32(np, "samsung,tmu_default_temp_offset", &value);
1157         pdata->default_temp_offset = (u8)value;
1158
1159         of_property_read_u32(np, "samsung,tmu_cal_type", &pdata->cal_type);
1160         of_property_read_u32(np, "samsung,tmu_cal_mode", &pdata->cal_mode);
1161
1162         of_node_put(np);
1163         return 0;
1164 }
1165
1166 static int exynos_map_dt_data(struct platform_device *pdev)
1167 {
1168         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
1169         struct exynos_tmu_platform_data *pdata;
1170         struct resource res;
1171         int ret;
1172
1173         if (!data || !pdev->dev.of_node)
1174                 return -ENODEV;
1175
1176         /*
1177          * Try enabling the regulator if found
1178          * TODO: Add regulator as an SOC feature, so that regulator enable
1179          * is a compulsory call.
1180          */
1181         data->regulator = devm_regulator_get(&pdev->dev, "vtmu");
1182         if (!IS_ERR(data->regulator)) {
1183                 ret = regulator_enable(data->regulator);
1184                 if (ret) {
1185                         dev_err(&pdev->dev, "failed to enable vtmu\n");
1186                         return ret;
1187                 }
1188         } else {
1189                 dev_info(&pdev->dev, "Regulator node (vtmu) not found\n");
1190         }
1191
1192         data->id = of_alias_get_id(pdev->dev.of_node, "tmuctrl");
1193         if (data->id < 0)
1194                 data->id = 0;
1195
1196         data->irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
1197         if (data->irq <= 0) {
1198                 dev_err(&pdev->dev, "failed to get IRQ\n");
1199                 return -ENODEV;
1200         }
1201
1202         if (of_address_to_resource(pdev->dev.of_node, 0, &res)) {
1203                 dev_err(&pdev->dev, "failed to get Resource 0\n");
1204                 return -ENODEV;
1205         }
1206
1207         data->base = devm_ioremap(&pdev->dev, res.start, resource_size(&res));
1208         if (!data->base) {
1209                 dev_err(&pdev->dev, "Failed to ioremap memory\n");
1210                 return -EADDRNOTAVAIL;
1211         }
1212
1213         pdata = devm_kzalloc(&pdev->dev,
1214                              sizeof(struct exynos_tmu_platform_data),
1215                              GFP_KERNEL);
1216         if (!pdata)
1217                 return -ENOMEM;
1218
1219         exynos_of_sensor_conf(pdev->dev.of_node, pdata);
1220         data->pdata = pdata;
1221         data->soc = exynos_of_get_soc_type(pdev->dev.of_node);
1222
1223         switch (data->soc) {
1224         case SOC_ARCH_EXYNOS4210:
1225                 data->tmu_initialize = exynos4210_tmu_initialize;
1226                 data->tmu_control = exynos4210_tmu_control;
1227                 data->tmu_read = exynos4210_tmu_read;
1228                 data->tmu_clear_irqs = exynos4210_tmu_clear_irqs;
1229                 break;
1230         case SOC_ARCH_EXYNOS3250:
1231         case SOC_ARCH_EXYNOS4412:
1232         case SOC_ARCH_EXYNOS5250:
1233         case SOC_ARCH_EXYNOS5260:
1234         case SOC_ARCH_EXYNOS5420:
1235         case SOC_ARCH_EXYNOS5420_TRIMINFO:
1236                 data->tmu_initialize = exynos4412_tmu_initialize;
1237                 data->tmu_control = exynos4210_tmu_control;
1238                 data->tmu_read = exynos4412_tmu_read;
1239                 data->tmu_set_emulation = exynos4412_tmu_set_emulation;
1240                 data->tmu_clear_irqs = exynos4210_tmu_clear_irqs;
1241                 break;
1242         case SOC_ARCH_EXYNOS5433:
1243                 data->tmu_initialize = exynos5433_tmu_initialize;
1244                 data->tmu_control = exynos5433_tmu_control;
1245                 data->tmu_read = exynos4412_tmu_read;
1246                 data->tmu_set_emulation = exynos4412_tmu_set_emulation;
1247                 data->tmu_clear_irqs = exynos4210_tmu_clear_irqs;
1248                 break;
1249         case SOC_ARCH_EXYNOS5440:
1250                 data->tmu_initialize = exynos5440_tmu_initialize;
1251                 data->tmu_control = exynos5440_tmu_control;
1252                 data->tmu_read = exynos5440_tmu_read;
1253                 data->tmu_set_emulation = exynos5440_tmu_set_emulation;
1254                 data->tmu_clear_irqs = exynos5440_tmu_clear_irqs;
1255                 break;
1256         case SOC_ARCH_EXYNOS7:
1257                 data->tmu_initialize = exynos7_tmu_initialize;
1258                 data->tmu_control = exynos7_tmu_control;
1259                 data->tmu_read = exynos7_tmu_read;
1260                 data->tmu_set_emulation = exynos4412_tmu_set_emulation;
1261                 data->tmu_clear_irqs = exynos4210_tmu_clear_irqs;
1262                 break;
1263         default:
1264                 dev_err(&pdev->dev, "Platform not supported\n");
1265                 return -EINVAL;
1266         }
1267
1268         /*
1269          * Check if the TMU shares some registers and then try to map the
1270          * memory of common registers.
1271          */
1272         if (data->soc != SOC_ARCH_EXYNOS5420_TRIMINFO &&
1273             data->soc != SOC_ARCH_EXYNOS5440)
1274                 return 0;
1275
1276         if (of_address_to_resource(pdev->dev.of_node, 1, &res)) {
1277                 dev_err(&pdev->dev, "failed to get Resource 1\n");
1278                 return -ENODEV;
1279         }
1280
1281         data->base_second = devm_ioremap(&pdev->dev, res.start,
1282                                         resource_size(&res));
1283         if (!data->base_second) {
1284                 dev_err(&pdev->dev, "Failed to ioremap memory\n");
1285                 return -ENOMEM;
1286         }
1287
1288         return 0;
1289 }
1290
1291 static struct thermal_zone_of_device_ops exynos_sensor_ops = {
1292         .get_temp = exynos_get_temp,
1293         .set_emul_temp = exynos_tmu_set_emulation,
1294 };
1295
1296 static int exynos_tmu_probe(struct platform_device *pdev)
1297 {
1298         struct exynos_tmu_data *data;
1299         int ret;
1300
1301         data = devm_kzalloc(&pdev->dev, sizeof(struct exynos_tmu_data),
1302                                         GFP_KERNEL);
1303         if (!data)
1304                 return -ENOMEM;
1305
1306         platform_set_drvdata(pdev, data);
1307         mutex_init(&data->lock);
1308
1309         data->tzd = thermal_zone_of_sensor_register(&pdev->dev, 0, data,
1310                                                     &exynos_sensor_ops);
1311         if (IS_ERR(data->tzd)) {
1312                 pr_err("thermal: tz: %p ERROR\n", data->tzd);
1313                 return PTR_ERR(data->tzd);
1314         }
1315         ret = exynos_map_dt_data(pdev);
1316         if (ret)
1317                 goto err_sensor;
1318
1319         INIT_WORK(&data->irq_work, exynos_tmu_work);
1320
1321         data->clk = devm_clk_get(&pdev->dev, "tmu_apbif");
1322         if (IS_ERR(data->clk)) {
1323                 dev_err(&pdev->dev, "Failed to get clock\n");
1324                 ret = PTR_ERR(data->clk);
1325                 goto err_sensor;
1326         }
1327
1328         data->clk_sec = devm_clk_get(&pdev->dev, "tmu_triminfo_apbif");
1329         if (IS_ERR(data->clk_sec)) {
1330                 if (data->soc == SOC_ARCH_EXYNOS5420_TRIMINFO) {
1331                         dev_err(&pdev->dev, "Failed to get triminfo clock\n");
1332                         ret = PTR_ERR(data->clk_sec);
1333                         goto err_sensor;
1334                 }
1335         } else {
1336                 ret = clk_prepare(data->clk_sec);
1337                 if (ret) {
1338                         dev_err(&pdev->dev, "Failed to get clock\n");
1339                         goto err_sensor;
1340                 }
1341         }
1342
1343         ret = clk_prepare(data->clk);
1344         if (ret) {
1345                 dev_err(&pdev->dev, "Failed to get clock\n");
1346                 goto err_clk_sec;
1347         }
1348
1349         switch (data->soc) {
1350         case SOC_ARCH_EXYNOS5433:
1351         case SOC_ARCH_EXYNOS7:
1352                 data->sclk = devm_clk_get(&pdev->dev, "tmu_sclk");
1353                 if (IS_ERR(data->sclk)) {
1354                         dev_err(&pdev->dev, "Failed to get sclk\n");
1355                         goto err_clk;
1356                 } else {
1357                         ret = clk_prepare_enable(data->sclk);
1358                         if (ret) {
1359                                 dev_err(&pdev->dev, "Failed to enable sclk\n");
1360                                 goto err_clk;
1361                         }
1362                 }
1363                 break;
1364         default:
1365                 break;
1366         };
1367
1368         ret = exynos_tmu_initialize(pdev);
1369         if (ret) {
1370                 dev_err(&pdev->dev, "Failed to initialize TMU\n");
1371                 goto err_sclk;
1372         }
1373
1374         ret = devm_request_irq(&pdev->dev, data->irq, exynos_tmu_irq,
1375                 IRQF_TRIGGER_RISING | IRQF_SHARED, dev_name(&pdev->dev), data);
1376         if (ret) {
1377                 dev_err(&pdev->dev, "Failed to request irq: %d\n", data->irq);
1378                 goto err_sclk;
1379         }
1380
1381         exynos_tmu_control(pdev, true);
1382         return 0;
1383 err_sclk:
1384         clk_disable_unprepare(data->sclk);
1385 err_clk:
1386         clk_unprepare(data->clk);
1387 err_clk_sec:
1388         if (!IS_ERR(data->clk_sec))
1389                 clk_unprepare(data->clk_sec);
1390 err_sensor:
1391         if (!IS_ERR_OR_NULL(data->regulator))
1392                 regulator_disable(data->regulator);
1393         thermal_zone_of_sensor_unregister(&pdev->dev, data->tzd);
1394
1395         return ret;
1396 }
1397
1398 static int exynos_tmu_remove(struct platform_device *pdev)
1399 {
1400         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
1401         struct thermal_zone_device *tzd = data->tzd;
1402
1403         thermal_zone_of_sensor_unregister(&pdev->dev, tzd);
1404         exynos_tmu_control(pdev, false);
1405
1406         clk_disable_unprepare(data->sclk);
1407         clk_unprepare(data->clk);
1408         if (!IS_ERR(data->clk_sec))
1409                 clk_unprepare(data->clk_sec);
1410
1411         if (!IS_ERR(data->regulator))
1412                 regulator_disable(data->regulator);
1413
1414         return 0;
1415 }
1416
1417 #ifdef CONFIG_PM_SLEEP
1418 static int exynos_tmu_suspend(struct device *dev)
1419 {
1420         exynos_tmu_control(to_platform_device(dev), false);
1421
1422         return 0;
1423 }
1424
1425 static int exynos_tmu_resume(struct device *dev)
1426 {
1427         struct platform_device *pdev = to_platform_device(dev);
1428
1429         exynos_tmu_initialize(pdev);
1430         exynos_tmu_control(pdev, true);
1431
1432         return 0;
1433 }
1434
1435 static SIMPLE_DEV_PM_OPS(exynos_tmu_pm,
1436                          exynos_tmu_suspend, exynos_tmu_resume);
1437 #define EXYNOS_TMU_PM   (&exynos_tmu_pm)
1438 #else
1439 #define EXYNOS_TMU_PM   NULL
1440 #endif
1441
1442 static struct platform_driver exynos_tmu_driver = {
1443         .driver = {
1444                 .name   = "exynos-tmu",
1445                 .pm     = EXYNOS_TMU_PM,
1446                 .of_match_table = exynos_tmu_match,
1447         },
1448         .probe = exynos_tmu_probe,
1449         .remove = exynos_tmu_remove,
1450 };
1451
1452 module_platform_driver(exynos_tmu_driver);
1453
1454 MODULE_DESCRIPTION("EXYNOS TMU Driver");
1455 MODULE_AUTHOR("Donggeun Kim <dg77.kim@samsung.com>");
1456 MODULE_LICENSE("GPL");
1457 MODULE_ALIAS("platform:exynos-tmu");