]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/btrfs/file.c
Merge branch 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[karo-tx-linux.git] / fs / btrfs / file.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
32 #include <linux/slab.h>
33 #include <linux/btrfs.h>
34 #include <linux/uio.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "tree-log.h"
41 #include "locking.h"
42 #include "volumes.h"
43 #include "qgroup.h"
44
45 static struct kmem_cache *btrfs_inode_defrag_cachep;
46 /*
47  * when auto defrag is enabled we
48  * queue up these defrag structs to remember which
49  * inodes need defragging passes
50  */
51 struct inode_defrag {
52         struct rb_node rb_node;
53         /* objectid */
54         u64 ino;
55         /*
56          * transid where the defrag was added, we search for
57          * extents newer than this
58          */
59         u64 transid;
60
61         /* root objectid */
62         u64 root;
63
64         /* last offset we were able to defrag */
65         u64 last_offset;
66
67         /* if we've wrapped around back to zero once already */
68         int cycled;
69 };
70
71 static int __compare_inode_defrag(struct inode_defrag *defrag1,
72                                   struct inode_defrag *defrag2)
73 {
74         if (defrag1->root > defrag2->root)
75                 return 1;
76         else if (defrag1->root < defrag2->root)
77                 return -1;
78         else if (defrag1->ino > defrag2->ino)
79                 return 1;
80         else if (defrag1->ino < defrag2->ino)
81                 return -1;
82         else
83                 return 0;
84 }
85
86 /* pop a record for an inode into the defrag tree.  The lock
87  * must be held already
88  *
89  * If you're inserting a record for an older transid than an
90  * existing record, the transid already in the tree is lowered
91  *
92  * If an existing record is found the defrag item you
93  * pass in is freed
94  */
95 static int __btrfs_add_inode_defrag(struct inode *inode,
96                                     struct inode_defrag *defrag)
97 {
98         struct btrfs_root *root = BTRFS_I(inode)->root;
99         struct inode_defrag *entry;
100         struct rb_node **p;
101         struct rb_node *parent = NULL;
102         int ret;
103
104         p = &root->fs_info->defrag_inodes.rb_node;
105         while (*p) {
106                 parent = *p;
107                 entry = rb_entry(parent, struct inode_defrag, rb_node);
108
109                 ret = __compare_inode_defrag(defrag, entry);
110                 if (ret < 0)
111                         p = &parent->rb_left;
112                 else if (ret > 0)
113                         p = &parent->rb_right;
114                 else {
115                         /* if we're reinserting an entry for
116                          * an old defrag run, make sure to
117                          * lower the transid of our existing record
118                          */
119                         if (defrag->transid < entry->transid)
120                                 entry->transid = defrag->transid;
121                         if (defrag->last_offset > entry->last_offset)
122                                 entry->last_offset = defrag->last_offset;
123                         return -EEXIST;
124                 }
125         }
126         set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
127         rb_link_node(&defrag->rb_node, parent, p);
128         rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
129         return 0;
130 }
131
132 static inline int __need_auto_defrag(struct btrfs_root *root)
133 {
134         if (!btrfs_test_opt(root, AUTO_DEFRAG))
135                 return 0;
136
137         if (btrfs_fs_closing(root->fs_info))
138                 return 0;
139
140         return 1;
141 }
142
143 /*
144  * insert a defrag record for this inode if auto defrag is
145  * enabled
146  */
147 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
148                            struct inode *inode)
149 {
150         struct btrfs_root *root = BTRFS_I(inode)->root;
151         struct inode_defrag *defrag;
152         u64 transid;
153         int ret;
154
155         if (!__need_auto_defrag(root))
156                 return 0;
157
158         if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
159                 return 0;
160
161         if (trans)
162                 transid = trans->transid;
163         else
164                 transid = BTRFS_I(inode)->root->last_trans;
165
166         defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
167         if (!defrag)
168                 return -ENOMEM;
169
170         defrag->ino = btrfs_ino(inode);
171         defrag->transid = transid;
172         defrag->root = root->root_key.objectid;
173
174         spin_lock(&root->fs_info->defrag_inodes_lock);
175         if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
176                 /*
177                  * If we set IN_DEFRAG flag and evict the inode from memory,
178                  * and then re-read this inode, this new inode doesn't have
179                  * IN_DEFRAG flag. At the case, we may find the existed defrag.
180                  */
181                 ret = __btrfs_add_inode_defrag(inode, defrag);
182                 if (ret)
183                         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
184         } else {
185                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
186         }
187         spin_unlock(&root->fs_info->defrag_inodes_lock);
188         return 0;
189 }
190
191 /*
192  * Requeue the defrag object. If there is a defrag object that points to
193  * the same inode in the tree, we will merge them together (by
194  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
195  */
196 static void btrfs_requeue_inode_defrag(struct inode *inode,
197                                        struct inode_defrag *defrag)
198 {
199         struct btrfs_root *root = BTRFS_I(inode)->root;
200         int ret;
201
202         if (!__need_auto_defrag(root))
203                 goto out;
204
205         /*
206          * Here we don't check the IN_DEFRAG flag, because we need merge
207          * them together.
208          */
209         spin_lock(&root->fs_info->defrag_inodes_lock);
210         ret = __btrfs_add_inode_defrag(inode, defrag);
211         spin_unlock(&root->fs_info->defrag_inodes_lock);
212         if (ret)
213                 goto out;
214         return;
215 out:
216         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
217 }
218
219 /*
220  * pick the defragable inode that we want, if it doesn't exist, we will get
221  * the next one.
222  */
223 static struct inode_defrag *
224 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
225 {
226         struct inode_defrag *entry = NULL;
227         struct inode_defrag tmp;
228         struct rb_node *p;
229         struct rb_node *parent = NULL;
230         int ret;
231
232         tmp.ino = ino;
233         tmp.root = root;
234
235         spin_lock(&fs_info->defrag_inodes_lock);
236         p = fs_info->defrag_inodes.rb_node;
237         while (p) {
238                 parent = p;
239                 entry = rb_entry(parent, struct inode_defrag, rb_node);
240
241                 ret = __compare_inode_defrag(&tmp, entry);
242                 if (ret < 0)
243                         p = parent->rb_left;
244                 else if (ret > 0)
245                         p = parent->rb_right;
246                 else
247                         goto out;
248         }
249
250         if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
251                 parent = rb_next(parent);
252                 if (parent)
253                         entry = rb_entry(parent, struct inode_defrag, rb_node);
254                 else
255                         entry = NULL;
256         }
257 out:
258         if (entry)
259                 rb_erase(parent, &fs_info->defrag_inodes);
260         spin_unlock(&fs_info->defrag_inodes_lock);
261         return entry;
262 }
263
264 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
265 {
266         struct inode_defrag *defrag;
267         struct rb_node *node;
268
269         spin_lock(&fs_info->defrag_inodes_lock);
270         node = rb_first(&fs_info->defrag_inodes);
271         while (node) {
272                 rb_erase(node, &fs_info->defrag_inodes);
273                 defrag = rb_entry(node, struct inode_defrag, rb_node);
274                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
275
276                 cond_resched_lock(&fs_info->defrag_inodes_lock);
277
278                 node = rb_first(&fs_info->defrag_inodes);
279         }
280         spin_unlock(&fs_info->defrag_inodes_lock);
281 }
282
283 #define BTRFS_DEFRAG_BATCH      1024
284
285 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
286                                     struct inode_defrag *defrag)
287 {
288         struct btrfs_root *inode_root;
289         struct inode *inode;
290         struct btrfs_key key;
291         struct btrfs_ioctl_defrag_range_args range;
292         int num_defrag;
293         int index;
294         int ret;
295
296         /* get the inode */
297         key.objectid = defrag->root;
298         key.type = BTRFS_ROOT_ITEM_KEY;
299         key.offset = (u64)-1;
300
301         index = srcu_read_lock(&fs_info->subvol_srcu);
302
303         inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
304         if (IS_ERR(inode_root)) {
305                 ret = PTR_ERR(inode_root);
306                 goto cleanup;
307         }
308
309         key.objectid = defrag->ino;
310         key.type = BTRFS_INODE_ITEM_KEY;
311         key.offset = 0;
312         inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
313         if (IS_ERR(inode)) {
314                 ret = PTR_ERR(inode);
315                 goto cleanup;
316         }
317         srcu_read_unlock(&fs_info->subvol_srcu, index);
318
319         /* do a chunk of defrag */
320         clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
321         memset(&range, 0, sizeof(range));
322         range.len = (u64)-1;
323         range.start = defrag->last_offset;
324
325         sb_start_write(fs_info->sb);
326         num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
327                                        BTRFS_DEFRAG_BATCH);
328         sb_end_write(fs_info->sb);
329         /*
330          * if we filled the whole defrag batch, there
331          * must be more work to do.  Queue this defrag
332          * again
333          */
334         if (num_defrag == BTRFS_DEFRAG_BATCH) {
335                 defrag->last_offset = range.start;
336                 btrfs_requeue_inode_defrag(inode, defrag);
337         } else if (defrag->last_offset && !defrag->cycled) {
338                 /*
339                  * we didn't fill our defrag batch, but
340                  * we didn't start at zero.  Make sure we loop
341                  * around to the start of the file.
342                  */
343                 defrag->last_offset = 0;
344                 defrag->cycled = 1;
345                 btrfs_requeue_inode_defrag(inode, defrag);
346         } else {
347                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
348         }
349
350         iput(inode);
351         return 0;
352 cleanup:
353         srcu_read_unlock(&fs_info->subvol_srcu, index);
354         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
355         return ret;
356 }
357
358 /*
359  * run through the list of inodes in the FS that need
360  * defragging
361  */
362 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
363 {
364         struct inode_defrag *defrag;
365         u64 first_ino = 0;
366         u64 root_objectid = 0;
367
368         atomic_inc(&fs_info->defrag_running);
369         while (1) {
370                 /* Pause the auto defragger. */
371                 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
372                              &fs_info->fs_state))
373                         break;
374
375                 if (!__need_auto_defrag(fs_info->tree_root))
376                         break;
377
378                 /* find an inode to defrag */
379                 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
380                                                  first_ino);
381                 if (!defrag) {
382                         if (root_objectid || first_ino) {
383                                 root_objectid = 0;
384                                 first_ino = 0;
385                                 continue;
386                         } else {
387                                 break;
388                         }
389                 }
390
391                 first_ino = defrag->ino + 1;
392                 root_objectid = defrag->root;
393
394                 __btrfs_run_defrag_inode(fs_info, defrag);
395         }
396         atomic_dec(&fs_info->defrag_running);
397
398         /*
399          * during unmount, we use the transaction_wait queue to
400          * wait for the defragger to stop
401          */
402         wake_up(&fs_info->transaction_wait);
403         return 0;
404 }
405
406 /* simple helper to fault in pages and copy.  This should go away
407  * and be replaced with calls into generic code.
408  */
409 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
410                                          size_t write_bytes,
411                                          struct page **prepared_pages,
412                                          struct iov_iter *i)
413 {
414         size_t copied = 0;
415         size_t total_copied = 0;
416         int pg = 0;
417         int offset = pos & (PAGE_CACHE_SIZE - 1);
418
419         while (write_bytes > 0) {
420                 size_t count = min_t(size_t,
421                                      PAGE_CACHE_SIZE - offset, write_bytes);
422                 struct page *page = prepared_pages[pg];
423                 /*
424                  * Copy data from userspace to the current page
425                  */
426                 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
427
428                 /* Flush processor's dcache for this page */
429                 flush_dcache_page(page);
430
431                 /*
432                  * if we get a partial write, we can end up with
433                  * partially up to date pages.  These add
434                  * a lot of complexity, so make sure they don't
435                  * happen by forcing this copy to be retried.
436                  *
437                  * The rest of the btrfs_file_write code will fall
438                  * back to page at a time copies after we return 0.
439                  */
440                 if (!PageUptodate(page) && copied < count)
441                         copied = 0;
442
443                 iov_iter_advance(i, copied);
444                 write_bytes -= copied;
445                 total_copied += copied;
446
447                 /* Return to btrfs_file_write_iter to fault page */
448                 if (unlikely(copied == 0))
449                         break;
450
451                 if (copied < PAGE_CACHE_SIZE - offset) {
452                         offset += copied;
453                 } else {
454                         pg++;
455                         offset = 0;
456                 }
457         }
458         return total_copied;
459 }
460
461 /*
462  * unlocks pages after btrfs_file_write is done with them
463  */
464 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
465 {
466         size_t i;
467         for (i = 0; i < num_pages; i++) {
468                 /* page checked is some magic around finding pages that
469                  * have been modified without going through btrfs_set_page_dirty
470                  * clear it here. There should be no need to mark the pages
471                  * accessed as prepare_pages should have marked them accessed
472                  * in prepare_pages via find_or_create_page()
473                  */
474                 ClearPageChecked(pages[i]);
475                 unlock_page(pages[i]);
476                 page_cache_release(pages[i]);
477         }
478 }
479
480 /*
481  * after copy_from_user, pages need to be dirtied and we need to make
482  * sure holes are created between the current EOF and the start of
483  * any next extents (if required).
484  *
485  * this also makes the decision about creating an inline extent vs
486  * doing real data extents, marking pages dirty and delalloc as required.
487  */
488 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
489                              struct page **pages, size_t num_pages,
490                              loff_t pos, size_t write_bytes,
491                              struct extent_state **cached)
492 {
493         int err = 0;
494         int i;
495         u64 num_bytes;
496         u64 start_pos;
497         u64 end_of_last_block;
498         u64 end_pos = pos + write_bytes;
499         loff_t isize = i_size_read(inode);
500
501         start_pos = pos & ~((u64)root->sectorsize - 1);
502         num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
503
504         end_of_last_block = start_pos + num_bytes - 1;
505         err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
506                                         cached);
507         if (err)
508                 return err;
509
510         for (i = 0; i < num_pages; i++) {
511                 struct page *p = pages[i];
512                 SetPageUptodate(p);
513                 ClearPageChecked(p);
514                 set_page_dirty(p);
515         }
516
517         /*
518          * we've only changed i_size in ram, and we haven't updated
519          * the disk i_size.  There is no need to log the inode
520          * at this time.
521          */
522         if (end_pos > isize)
523                 i_size_write(inode, end_pos);
524         return 0;
525 }
526
527 /*
528  * this drops all the extents in the cache that intersect the range
529  * [start, end].  Existing extents are split as required.
530  */
531 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
532                              int skip_pinned)
533 {
534         struct extent_map *em;
535         struct extent_map *split = NULL;
536         struct extent_map *split2 = NULL;
537         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
538         u64 len = end - start + 1;
539         u64 gen;
540         int ret;
541         int testend = 1;
542         unsigned long flags;
543         int compressed = 0;
544         bool modified;
545
546         WARN_ON(end < start);
547         if (end == (u64)-1) {
548                 len = (u64)-1;
549                 testend = 0;
550         }
551         while (1) {
552                 int no_splits = 0;
553
554                 modified = false;
555                 if (!split)
556                         split = alloc_extent_map();
557                 if (!split2)
558                         split2 = alloc_extent_map();
559                 if (!split || !split2)
560                         no_splits = 1;
561
562                 write_lock(&em_tree->lock);
563                 em = lookup_extent_mapping(em_tree, start, len);
564                 if (!em) {
565                         write_unlock(&em_tree->lock);
566                         break;
567                 }
568                 flags = em->flags;
569                 gen = em->generation;
570                 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
571                         if (testend && em->start + em->len >= start + len) {
572                                 free_extent_map(em);
573                                 write_unlock(&em_tree->lock);
574                                 break;
575                         }
576                         start = em->start + em->len;
577                         if (testend)
578                                 len = start + len - (em->start + em->len);
579                         free_extent_map(em);
580                         write_unlock(&em_tree->lock);
581                         continue;
582                 }
583                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
584                 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
585                 clear_bit(EXTENT_FLAG_LOGGING, &flags);
586                 modified = !list_empty(&em->list);
587                 if (no_splits)
588                         goto next;
589
590                 if (em->start < start) {
591                         split->start = em->start;
592                         split->len = start - em->start;
593
594                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
595                                 split->orig_start = em->orig_start;
596                                 split->block_start = em->block_start;
597
598                                 if (compressed)
599                                         split->block_len = em->block_len;
600                                 else
601                                         split->block_len = split->len;
602                                 split->orig_block_len = max(split->block_len,
603                                                 em->orig_block_len);
604                                 split->ram_bytes = em->ram_bytes;
605                         } else {
606                                 split->orig_start = split->start;
607                                 split->block_len = 0;
608                                 split->block_start = em->block_start;
609                                 split->orig_block_len = 0;
610                                 split->ram_bytes = split->len;
611                         }
612
613                         split->generation = gen;
614                         split->bdev = em->bdev;
615                         split->flags = flags;
616                         split->compress_type = em->compress_type;
617                         replace_extent_mapping(em_tree, em, split, modified);
618                         free_extent_map(split);
619                         split = split2;
620                         split2 = NULL;
621                 }
622                 if (testend && em->start + em->len > start + len) {
623                         u64 diff = start + len - em->start;
624
625                         split->start = start + len;
626                         split->len = em->start + em->len - (start + len);
627                         split->bdev = em->bdev;
628                         split->flags = flags;
629                         split->compress_type = em->compress_type;
630                         split->generation = gen;
631
632                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
633                                 split->orig_block_len = max(em->block_len,
634                                                     em->orig_block_len);
635
636                                 split->ram_bytes = em->ram_bytes;
637                                 if (compressed) {
638                                         split->block_len = em->block_len;
639                                         split->block_start = em->block_start;
640                                         split->orig_start = em->orig_start;
641                                 } else {
642                                         split->block_len = split->len;
643                                         split->block_start = em->block_start
644                                                 + diff;
645                                         split->orig_start = em->orig_start;
646                                 }
647                         } else {
648                                 split->ram_bytes = split->len;
649                                 split->orig_start = split->start;
650                                 split->block_len = 0;
651                                 split->block_start = em->block_start;
652                                 split->orig_block_len = 0;
653                         }
654
655                         if (extent_map_in_tree(em)) {
656                                 replace_extent_mapping(em_tree, em, split,
657                                                        modified);
658                         } else {
659                                 ret = add_extent_mapping(em_tree, split,
660                                                          modified);
661                                 ASSERT(ret == 0); /* Logic error */
662                         }
663                         free_extent_map(split);
664                         split = NULL;
665                 }
666 next:
667                 if (extent_map_in_tree(em))
668                         remove_extent_mapping(em_tree, em);
669                 write_unlock(&em_tree->lock);
670
671                 /* once for us */
672                 free_extent_map(em);
673                 /* once for the tree*/
674                 free_extent_map(em);
675         }
676         if (split)
677                 free_extent_map(split);
678         if (split2)
679                 free_extent_map(split2);
680 }
681
682 /*
683  * this is very complex, but the basic idea is to drop all extents
684  * in the range start - end.  hint_block is filled in with a block number
685  * that would be a good hint to the block allocator for this file.
686  *
687  * If an extent intersects the range but is not entirely inside the range
688  * it is either truncated or split.  Anything entirely inside the range
689  * is deleted from the tree.
690  */
691 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
692                          struct btrfs_root *root, struct inode *inode,
693                          struct btrfs_path *path, u64 start, u64 end,
694                          u64 *drop_end, int drop_cache,
695                          int replace_extent,
696                          u32 extent_item_size,
697                          int *key_inserted)
698 {
699         struct extent_buffer *leaf;
700         struct btrfs_file_extent_item *fi;
701         struct btrfs_key key;
702         struct btrfs_key new_key;
703         u64 ino = btrfs_ino(inode);
704         u64 search_start = start;
705         u64 disk_bytenr = 0;
706         u64 num_bytes = 0;
707         u64 extent_offset = 0;
708         u64 extent_end = 0;
709         int del_nr = 0;
710         int del_slot = 0;
711         int extent_type;
712         int recow;
713         int ret;
714         int modify_tree = -1;
715         int update_refs;
716         int found = 0;
717         int leafs_visited = 0;
718
719         if (drop_cache)
720                 btrfs_drop_extent_cache(inode, start, end - 1, 0);
721
722         if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
723                 modify_tree = 0;
724
725         update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
726                        root == root->fs_info->tree_root);
727         while (1) {
728                 recow = 0;
729                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
730                                                search_start, modify_tree);
731                 if (ret < 0)
732                         break;
733                 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
734                         leaf = path->nodes[0];
735                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
736                         if (key.objectid == ino &&
737                             key.type == BTRFS_EXTENT_DATA_KEY)
738                                 path->slots[0]--;
739                 }
740                 ret = 0;
741                 leafs_visited++;
742 next_slot:
743                 leaf = path->nodes[0];
744                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
745                         BUG_ON(del_nr > 0);
746                         ret = btrfs_next_leaf(root, path);
747                         if (ret < 0)
748                                 break;
749                         if (ret > 0) {
750                                 ret = 0;
751                                 break;
752                         }
753                         leafs_visited++;
754                         leaf = path->nodes[0];
755                         recow = 1;
756                 }
757
758                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
759                 if (key.objectid > ino ||
760                     key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
761                         break;
762
763                 fi = btrfs_item_ptr(leaf, path->slots[0],
764                                     struct btrfs_file_extent_item);
765                 extent_type = btrfs_file_extent_type(leaf, fi);
766
767                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
768                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
769                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
770                         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
771                         extent_offset = btrfs_file_extent_offset(leaf, fi);
772                         extent_end = key.offset +
773                                 btrfs_file_extent_num_bytes(leaf, fi);
774                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
775                         extent_end = key.offset +
776                                 btrfs_file_extent_inline_len(leaf,
777                                                      path->slots[0], fi);
778                 } else {
779                         WARN_ON(1);
780                         extent_end = search_start;
781                 }
782
783                 /*
784                  * Don't skip extent items representing 0 byte lengths. They
785                  * used to be created (bug) if while punching holes we hit
786                  * -ENOSPC condition. So if we find one here, just ensure we
787                  * delete it, otherwise we would insert a new file extent item
788                  * with the same key (offset) as that 0 bytes length file
789                  * extent item in the call to setup_items_for_insert() later
790                  * in this function.
791                  */
792                 if (extent_end == key.offset && extent_end >= search_start)
793                         goto delete_extent_item;
794
795                 if (extent_end <= search_start) {
796                         path->slots[0]++;
797                         goto next_slot;
798                 }
799
800                 found = 1;
801                 search_start = max(key.offset, start);
802                 if (recow || !modify_tree) {
803                         modify_tree = -1;
804                         btrfs_release_path(path);
805                         continue;
806                 }
807
808                 /*
809                  *     | - range to drop - |
810                  *  | -------- extent -------- |
811                  */
812                 if (start > key.offset && end < extent_end) {
813                         BUG_ON(del_nr > 0);
814                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
815                                 ret = -EOPNOTSUPP;
816                                 break;
817                         }
818
819                         memcpy(&new_key, &key, sizeof(new_key));
820                         new_key.offset = start;
821                         ret = btrfs_duplicate_item(trans, root, path,
822                                                    &new_key);
823                         if (ret == -EAGAIN) {
824                                 btrfs_release_path(path);
825                                 continue;
826                         }
827                         if (ret < 0)
828                                 break;
829
830                         leaf = path->nodes[0];
831                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
832                                             struct btrfs_file_extent_item);
833                         btrfs_set_file_extent_num_bytes(leaf, fi,
834                                                         start - key.offset);
835
836                         fi = btrfs_item_ptr(leaf, path->slots[0],
837                                             struct btrfs_file_extent_item);
838
839                         extent_offset += start - key.offset;
840                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
841                         btrfs_set_file_extent_num_bytes(leaf, fi,
842                                                         extent_end - start);
843                         btrfs_mark_buffer_dirty(leaf);
844
845                         if (update_refs && disk_bytenr > 0) {
846                                 ret = btrfs_inc_extent_ref(trans, root,
847                                                 disk_bytenr, num_bytes, 0,
848                                                 root->root_key.objectid,
849                                                 new_key.objectid,
850                                                 start - extent_offset, 1);
851                                 BUG_ON(ret); /* -ENOMEM */
852                         }
853                         key.offset = start;
854                 }
855                 /*
856                  *  | ---- range to drop ----- |
857                  *      | -------- extent -------- |
858                  */
859                 if (start <= key.offset && end < extent_end) {
860                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
861                                 ret = -EOPNOTSUPP;
862                                 break;
863                         }
864
865                         memcpy(&new_key, &key, sizeof(new_key));
866                         new_key.offset = end;
867                         btrfs_set_item_key_safe(root->fs_info, path, &new_key);
868
869                         extent_offset += end - key.offset;
870                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
871                         btrfs_set_file_extent_num_bytes(leaf, fi,
872                                                         extent_end - end);
873                         btrfs_mark_buffer_dirty(leaf);
874                         if (update_refs && disk_bytenr > 0)
875                                 inode_sub_bytes(inode, end - key.offset);
876                         break;
877                 }
878
879                 search_start = extent_end;
880                 /*
881                  *       | ---- range to drop ----- |
882                  *  | -------- extent -------- |
883                  */
884                 if (start > key.offset && end >= extent_end) {
885                         BUG_ON(del_nr > 0);
886                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
887                                 ret = -EOPNOTSUPP;
888                                 break;
889                         }
890
891                         btrfs_set_file_extent_num_bytes(leaf, fi,
892                                                         start - key.offset);
893                         btrfs_mark_buffer_dirty(leaf);
894                         if (update_refs && disk_bytenr > 0)
895                                 inode_sub_bytes(inode, extent_end - start);
896                         if (end == extent_end)
897                                 break;
898
899                         path->slots[0]++;
900                         goto next_slot;
901                 }
902
903                 /*
904                  *  | ---- range to drop ----- |
905                  *    | ------ extent ------ |
906                  */
907                 if (start <= key.offset && end >= extent_end) {
908 delete_extent_item:
909                         if (del_nr == 0) {
910                                 del_slot = path->slots[0];
911                                 del_nr = 1;
912                         } else {
913                                 BUG_ON(del_slot + del_nr != path->slots[0]);
914                                 del_nr++;
915                         }
916
917                         if (update_refs &&
918                             extent_type == BTRFS_FILE_EXTENT_INLINE) {
919                                 inode_sub_bytes(inode,
920                                                 extent_end - key.offset);
921                                 extent_end = ALIGN(extent_end,
922                                                    root->sectorsize);
923                         } else if (update_refs && disk_bytenr > 0) {
924                                 ret = btrfs_free_extent(trans, root,
925                                                 disk_bytenr, num_bytes, 0,
926                                                 root->root_key.objectid,
927                                                 key.objectid, key.offset -
928                                                 extent_offset, 0);
929                                 BUG_ON(ret); /* -ENOMEM */
930                                 inode_sub_bytes(inode,
931                                                 extent_end - key.offset);
932                         }
933
934                         if (end == extent_end)
935                                 break;
936
937                         if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
938                                 path->slots[0]++;
939                                 goto next_slot;
940                         }
941
942                         ret = btrfs_del_items(trans, root, path, del_slot,
943                                               del_nr);
944                         if (ret) {
945                                 btrfs_abort_transaction(trans, root, ret);
946                                 break;
947                         }
948
949                         del_nr = 0;
950                         del_slot = 0;
951
952                         btrfs_release_path(path);
953                         continue;
954                 }
955
956                 BUG_ON(1);
957         }
958
959         if (!ret && del_nr > 0) {
960                 /*
961                  * Set path->slots[0] to first slot, so that after the delete
962                  * if items are move off from our leaf to its immediate left or
963                  * right neighbor leafs, we end up with a correct and adjusted
964                  * path->slots[0] for our insertion (if replace_extent != 0).
965                  */
966                 path->slots[0] = del_slot;
967                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
968                 if (ret)
969                         btrfs_abort_transaction(trans, root, ret);
970         }
971
972         leaf = path->nodes[0];
973         /*
974          * If btrfs_del_items() was called, it might have deleted a leaf, in
975          * which case it unlocked our path, so check path->locks[0] matches a
976          * write lock.
977          */
978         if (!ret && replace_extent && leafs_visited == 1 &&
979             (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
980              path->locks[0] == BTRFS_WRITE_LOCK) &&
981             btrfs_leaf_free_space(root, leaf) >=
982             sizeof(struct btrfs_item) + extent_item_size) {
983
984                 key.objectid = ino;
985                 key.type = BTRFS_EXTENT_DATA_KEY;
986                 key.offset = start;
987                 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
988                         struct btrfs_key slot_key;
989
990                         btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
991                         if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
992                                 path->slots[0]++;
993                 }
994                 setup_items_for_insert(root, path, &key,
995                                        &extent_item_size,
996                                        extent_item_size,
997                                        sizeof(struct btrfs_item) +
998                                        extent_item_size, 1);
999                 *key_inserted = 1;
1000         }
1001
1002         if (!replace_extent || !(*key_inserted))
1003                 btrfs_release_path(path);
1004         if (drop_end)
1005                 *drop_end = found ? min(end, extent_end) : end;
1006         return ret;
1007 }
1008
1009 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1010                        struct btrfs_root *root, struct inode *inode, u64 start,
1011                        u64 end, int drop_cache)
1012 {
1013         struct btrfs_path *path;
1014         int ret;
1015
1016         path = btrfs_alloc_path();
1017         if (!path)
1018                 return -ENOMEM;
1019         ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1020                                    drop_cache, 0, 0, NULL);
1021         btrfs_free_path(path);
1022         return ret;
1023 }
1024
1025 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1026                             u64 objectid, u64 bytenr, u64 orig_offset,
1027                             u64 *start, u64 *end)
1028 {
1029         struct btrfs_file_extent_item *fi;
1030         struct btrfs_key key;
1031         u64 extent_end;
1032
1033         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1034                 return 0;
1035
1036         btrfs_item_key_to_cpu(leaf, &key, slot);
1037         if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1038                 return 0;
1039
1040         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1041         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1042             btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1043             btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1044             btrfs_file_extent_compression(leaf, fi) ||
1045             btrfs_file_extent_encryption(leaf, fi) ||
1046             btrfs_file_extent_other_encoding(leaf, fi))
1047                 return 0;
1048
1049         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1050         if ((*start && *start != key.offset) || (*end && *end != extent_end))
1051                 return 0;
1052
1053         *start = key.offset;
1054         *end = extent_end;
1055         return 1;
1056 }
1057
1058 /*
1059  * Mark extent in the range start - end as written.
1060  *
1061  * This changes extent type from 'pre-allocated' to 'regular'. If only
1062  * part of extent is marked as written, the extent will be split into
1063  * two or three.
1064  */
1065 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1066                               struct inode *inode, u64 start, u64 end)
1067 {
1068         struct btrfs_root *root = BTRFS_I(inode)->root;
1069         struct extent_buffer *leaf;
1070         struct btrfs_path *path;
1071         struct btrfs_file_extent_item *fi;
1072         struct btrfs_key key;
1073         struct btrfs_key new_key;
1074         u64 bytenr;
1075         u64 num_bytes;
1076         u64 extent_end;
1077         u64 orig_offset;
1078         u64 other_start;
1079         u64 other_end;
1080         u64 split;
1081         int del_nr = 0;
1082         int del_slot = 0;
1083         int recow;
1084         int ret;
1085         u64 ino = btrfs_ino(inode);
1086
1087         path = btrfs_alloc_path();
1088         if (!path)
1089                 return -ENOMEM;
1090 again:
1091         recow = 0;
1092         split = start;
1093         key.objectid = ino;
1094         key.type = BTRFS_EXTENT_DATA_KEY;
1095         key.offset = split;
1096
1097         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1098         if (ret < 0)
1099                 goto out;
1100         if (ret > 0 && path->slots[0] > 0)
1101                 path->slots[0]--;
1102
1103         leaf = path->nodes[0];
1104         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1105         BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1106         fi = btrfs_item_ptr(leaf, path->slots[0],
1107                             struct btrfs_file_extent_item);
1108         BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1109                BTRFS_FILE_EXTENT_PREALLOC);
1110         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1111         BUG_ON(key.offset > start || extent_end < end);
1112
1113         bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1114         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1115         orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1116         memcpy(&new_key, &key, sizeof(new_key));
1117
1118         if (start == key.offset && end < extent_end) {
1119                 other_start = 0;
1120                 other_end = start;
1121                 if (extent_mergeable(leaf, path->slots[0] - 1,
1122                                      ino, bytenr, orig_offset,
1123                                      &other_start, &other_end)) {
1124                         new_key.offset = end;
1125                         btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1126                         fi = btrfs_item_ptr(leaf, path->slots[0],
1127                                             struct btrfs_file_extent_item);
1128                         btrfs_set_file_extent_generation(leaf, fi,
1129                                                          trans->transid);
1130                         btrfs_set_file_extent_num_bytes(leaf, fi,
1131                                                         extent_end - end);
1132                         btrfs_set_file_extent_offset(leaf, fi,
1133                                                      end - orig_offset);
1134                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1135                                             struct btrfs_file_extent_item);
1136                         btrfs_set_file_extent_generation(leaf, fi,
1137                                                          trans->transid);
1138                         btrfs_set_file_extent_num_bytes(leaf, fi,
1139                                                         end - other_start);
1140                         btrfs_mark_buffer_dirty(leaf);
1141                         goto out;
1142                 }
1143         }
1144
1145         if (start > key.offset && end == extent_end) {
1146                 other_start = end;
1147                 other_end = 0;
1148                 if (extent_mergeable(leaf, path->slots[0] + 1,
1149                                      ino, bytenr, orig_offset,
1150                                      &other_start, &other_end)) {
1151                         fi = btrfs_item_ptr(leaf, path->slots[0],
1152                                             struct btrfs_file_extent_item);
1153                         btrfs_set_file_extent_num_bytes(leaf, fi,
1154                                                         start - key.offset);
1155                         btrfs_set_file_extent_generation(leaf, fi,
1156                                                          trans->transid);
1157                         path->slots[0]++;
1158                         new_key.offset = start;
1159                         btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1160
1161                         fi = btrfs_item_ptr(leaf, path->slots[0],
1162                                             struct btrfs_file_extent_item);
1163                         btrfs_set_file_extent_generation(leaf, fi,
1164                                                          trans->transid);
1165                         btrfs_set_file_extent_num_bytes(leaf, fi,
1166                                                         other_end - start);
1167                         btrfs_set_file_extent_offset(leaf, fi,
1168                                                      start - orig_offset);
1169                         btrfs_mark_buffer_dirty(leaf);
1170                         goto out;
1171                 }
1172         }
1173
1174         while (start > key.offset || end < extent_end) {
1175                 if (key.offset == start)
1176                         split = end;
1177
1178                 new_key.offset = split;
1179                 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1180                 if (ret == -EAGAIN) {
1181                         btrfs_release_path(path);
1182                         goto again;
1183                 }
1184                 if (ret < 0) {
1185                         btrfs_abort_transaction(trans, root, ret);
1186                         goto out;
1187                 }
1188
1189                 leaf = path->nodes[0];
1190                 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1191                                     struct btrfs_file_extent_item);
1192                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1193                 btrfs_set_file_extent_num_bytes(leaf, fi,
1194                                                 split - key.offset);
1195
1196                 fi = btrfs_item_ptr(leaf, path->slots[0],
1197                                     struct btrfs_file_extent_item);
1198
1199                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1200                 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1201                 btrfs_set_file_extent_num_bytes(leaf, fi,
1202                                                 extent_end - split);
1203                 btrfs_mark_buffer_dirty(leaf);
1204
1205                 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1206                                            root->root_key.objectid,
1207                                            ino, orig_offset, 1);
1208                 BUG_ON(ret); /* -ENOMEM */
1209
1210                 if (split == start) {
1211                         key.offset = start;
1212                 } else {
1213                         BUG_ON(start != key.offset);
1214                         path->slots[0]--;
1215                         extent_end = end;
1216                 }
1217                 recow = 1;
1218         }
1219
1220         other_start = end;
1221         other_end = 0;
1222         if (extent_mergeable(leaf, path->slots[0] + 1,
1223                              ino, bytenr, orig_offset,
1224                              &other_start, &other_end)) {
1225                 if (recow) {
1226                         btrfs_release_path(path);
1227                         goto again;
1228                 }
1229                 extent_end = other_end;
1230                 del_slot = path->slots[0] + 1;
1231                 del_nr++;
1232                 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1233                                         0, root->root_key.objectid,
1234                                         ino, orig_offset, 0);
1235                 BUG_ON(ret); /* -ENOMEM */
1236         }
1237         other_start = 0;
1238         other_end = start;
1239         if (extent_mergeable(leaf, path->slots[0] - 1,
1240                              ino, bytenr, orig_offset,
1241                              &other_start, &other_end)) {
1242                 if (recow) {
1243                         btrfs_release_path(path);
1244                         goto again;
1245                 }
1246                 key.offset = other_start;
1247                 del_slot = path->slots[0];
1248                 del_nr++;
1249                 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1250                                         0, root->root_key.objectid,
1251                                         ino, orig_offset, 0);
1252                 BUG_ON(ret); /* -ENOMEM */
1253         }
1254         if (del_nr == 0) {
1255                 fi = btrfs_item_ptr(leaf, path->slots[0],
1256                            struct btrfs_file_extent_item);
1257                 btrfs_set_file_extent_type(leaf, fi,
1258                                            BTRFS_FILE_EXTENT_REG);
1259                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1260                 btrfs_mark_buffer_dirty(leaf);
1261         } else {
1262                 fi = btrfs_item_ptr(leaf, del_slot - 1,
1263                            struct btrfs_file_extent_item);
1264                 btrfs_set_file_extent_type(leaf, fi,
1265                                            BTRFS_FILE_EXTENT_REG);
1266                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1267                 btrfs_set_file_extent_num_bytes(leaf, fi,
1268                                                 extent_end - key.offset);
1269                 btrfs_mark_buffer_dirty(leaf);
1270
1271                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1272                 if (ret < 0) {
1273                         btrfs_abort_transaction(trans, root, ret);
1274                         goto out;
1275                 }
1276         }
1277 out:
1278         btrfs_free_path(path);
1279         return 0;
1280 }
1281
1282 /*
1283  * on error we return an unlocked page and the error value
1284  * on success we return a locked page and 0
1285  */
1286 static int prepare_uptodate_page(struct page *page, u64 pos,
1287                                  bool force_uptodate)
1288 {
1289         int ret = 0;
1290
1291         if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1292             !PageUptodate(page)) {
1293                 ret = btrfs_readpage(NULL, page);
1294                 if (ret)
1295                         return ret;
1296                 lock_page(page);
1297                 if (!PageUptodate(page)) {
1298                         unlock_page(page);
1299                         return -EIO;
1300                 }
1301         }
1302         return 0;
1303 }
1304
1305 /*
1306  * this just gets pages into the page cache and locks them down.
1307  */
1308 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1309                                   size_t num_pages, loff_t pos,
1310                                   size_t write_bytes, bool force_uptodate)
1311 {
1312         int i;
1313         unsigned long index = pos >> PAGE_CACHE_SHIFT;
1314         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1315         int err = 0;
1316         int faili;
1317
1318         for (i = 0; i < num_pages; i++) {
1319                 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1320                                                mask | __GFP_WRITE);
1321                 if (!pages[i]) {
1322                         faili = i - 1;
1323                         err = -ENOMEM;
1324                         goto fail;
1325                 }
1326
1327                 if (i == 0)
1328                         err = prepare_uptodate_page(pages[i], pos,
1329                                                     force_uptodate);
1330                 if (i == num_pages - 1)
1331                         err = prepare_uptodate_page(pages[i],
1332                                                     pos + write_bytes, false);
1333                 if (err) {
1334                         page_cache_release(pages[i]);
1335                         faili = i - 1;
1336                         goto fail;
1337                 }
1338                 wait_on_page_writeback(pages[i]);
1339         }
1340
1341         return 0;
1342 fail:
1343         while (faili >= 0) {
1344                 unlock_page(pages[faili]);
1345                 page_cache_release(pages[faili]);
1346                 faili--;
1347         }
1348         return err;
1349
1350 }
1351
1352 /*
1353  * This function locks the extent and properly waits for data=ordered extents
1354  * to finish before allowing the pages to be modified if need.
1355  *
1356  * The return value:
1357  * 1 - the extent is locked
1358  * 0 - the extent is not locked, and everything is OK
1359  * -EAGAIN - need re-prepare the pages
1360  * the other < 0 number - Something wrong happens
1361  */
1362 static noinline int
1363 lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1364                                 size_t num_pages, loff_t pos,
1365                                 u64 *lockstart, u64 *lockend,
1366                                 struct extent_state **cached_state)
1367 {
1368         u64 start_pos;
1369         u64 last_pos;
1370         int i;
1371         int ret = 0;
1372
1373         start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1);
1374         last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1;
1375
1376         if (start_pos < inode->i_size) {
1377                 struct btrfs_ordered_extent *ordered;
1378                 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1379                                  start_pos, last_pos, 0, cached_state);
1380                 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1381                                                      last_pos - start_pos + 1);
1382                 if (ordered &&
1383                     ordered->file_offset + ordered->len > start_pos &&
1384                     ordered->file_offset <= last_pos) {
1385                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1386                                              start_pos, last_pos,
1387                                              cached_state, GFP_NOFS);
1388                         for (i = 0; i < num_pages; i++) {
1389                                 unlock_page(pages[i]);
1390                                 page_cache_release(pages[i]);
1391                         }
1392                         btrfs_start_ordered_extent(inode, ordered, 1);
1393                         btrfs_put_ordered_extent(ordered);
1394                         return -EAGAIN;
1395                 }
1396                 if (ordered)
1397                         btrfs_put_ordered_extent(ordered);
1398
1399                 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1400                                   last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
1401                                   EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1402                                   0, 0, cached_state, GFP_NOFS);
1403                 *lockstart = start_pos;
1404                 *lockend = last_pos;
1405                 ret = 1;
1406         }
1407
1408         for (i = 0; i < num_pages; i++) {
1409                 if (clear_page_dirty_for_io(pages[i]))
1410                         account_page_redirty(pages[i]);
1411                 set_page_extent_mapped(pages[i]);
1412                 WARN_ON(!PageLocked(pages[i]));
1413         }
1414
1415         return ret;
1416 }
1417
1418 static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1419                                     size_t *write_bytes)
1420 {
1421         struct btrfs_root *root = BTRFS_I(inode)->root;
1422         struct btrfs_ordered_extent *ordered;
1423         u64 lockstart, lockend;
1424         u64 num_bytes;
1425         int ret;
1426
1427         ret = btrfs_start_write_no_snapshoting(root);
1428         if (!ret)
1429                 return -ENOSPC;
1430
1431         lockstart = round_down(pos, root->sectorsize);
1432         lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
1433
1434         while (1) {
1435                 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1436                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1437                                                      lockend - lockstart + 1);
1438                 if (!ordered) {
1439                         break;
1440                 }
1441                 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1442                 btrfs_start_ordered_extent(inode, ordered, 1);
1443                 btrfs_put_ordered_extent(ordered);
1444         }
1445
1446         num_bytes = lockend - lockstart + 1;
1447         ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1448         if (ret <= 0) {
1449                 ret = 0;
1450                 btrfs_end_write_no_snapshoting(root);
1451         } else {
1452                 *write_bytes = min_t(size_t, *write_bytes ,
1453                                      num_bytes - pos + lockstart);
1454         }
1455
1456         unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1457
1458         return ret;
1459 }
1460
1461 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1462                                                struct iov_iter *i,
1463                                                loff_t pos)
1464 {
1465         struct inode *inode = file_inode(file);
1466         struct btrfs_root *root = BTRFS_I(inode)->root;
1467         struct page **pages = NULL;
1468         struct extent_state *cached_state = NULL;
1469         u64 release_bytes = 0;
1470         u64 lockstart;
1471         u64 lockend;
1472         unsigned long first_index;
1473         size_t num_written = 0;
1474         int nrptrs;
1475         int ret = 0;
1476         bool only_release_metadata = false;
1477         bool force_page_uptodate = false;
1478         bool need_unlock;
1479
1480         nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_CACHE_SIZE),
1481                         PAGE_CACHE_SIZE / (sizeof(struct page *)));
1482         nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1483         nrptrs = max(nrptrs, 8);
1484         pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1485         if (!pages)
1486                 return -ENOMEM;
1487
1488         first_index = pos >> PAGE_CACHE_SHIFT;
1489
1490         while (iov_iter_count(i) > 0) {
1491                 size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1492                 size_t write_bytes = min(iov_iter_count(i),
1493                                          nrptrs * (size_t)PAGE_CACHE_SIZE -
1494                                          offset);
1495                 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1496                                                 PAGE_CACHE_SIZE);
1497                 size_t reserve_bytes;
1498                 size_t dirty_pages;
1499                 size_t copied;
1500
1501                 WARN_ON(num_pages > nrptrs);
1502
1503                 /*
1504                  * Fault pages before locking them in prepare_pages
1505                  * to avoid recursive lock
1506                  */
1507                 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1508                         ret = -EFAULT;
1509                         break;
1510                 }
1511
1512                 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1513                 ret = btrfs_check_data_free_space(inode, reserve_bytes, write_bytes);
1514                 if (ret == -ENOSPC &&
1515                     (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1516                                               BTRFS_INODE_PREALLOC))) {
1517                         ret = check_can_nocow(inode, pos, &write_bytes);
1518                         if (ret > 0) {
1519                                 only_release_metadata = true;
1520                                 /*
1521                                  * our prealloc extent may be smaller than
1522                                  * write_bytes, so scale down.
1523                                  */
1524                                 num_pages = DIV_ROUND_UP(write_bytes + offset,
1525                                                          PAGE_CACHE_SIZE);
1526                                 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1527                                 ret = 0;
1528                         } else {
1529                                 ret = -ENOSPC;
1530                         }
1531                 }
1532
1533                 if (ret)
1534                         break;
1535
1536                 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1537                 if (ret) {
1538                         if (!only_release_metadata)
1539                                 btrfs_free_reserved_data_space(inode,
1540                                                                reserve_bytes);
1541                         else
1542                                 btrfs_end_write_no_snapshoting(root);
1543                         break;
1544                 }
1545
1546                 release_bytes = reserve_bytes;
1547                 need_unlock = false;
1548 again:
1549                 /*
1550                  * This is going to setup the pages array with the number of
1551                  * pages we want, so we don't really need to worry about the
1552                  * contents of pages from loop to loop
1553                  */
1554                 ret = prepare_pages(inode, pages, num_pages,
1555                                     pos, write_bytes,
1556                                     force_page_uptodate);
1557                 if (ret)
1558                         break;
1559
1560                 ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1561                                                       pos, &lockstart, &lockend,
1562                                                       &cached_state);
1563                 if (ret < 0) {
1564                         if (ret == -EAGAIN)
1565                                 goto again;
1566                         break;
1567                 } else if (ret > 0) {
1568                         need_unlock = true;
1569                         ret = 0;
1570                 }
1571
1572                 copied = btrfs_copy_from_user(pos, num_pages,
1573                                            write_bytes, pages, i);
1574
1575                 /*
1576                  * if we have trouble faulting in the pages, fall
1577                  * back to one page at a time
1578                  */
1579                 if (copied < write_bytes)
1580                         nrptrs = 1;
1581
1582                 if (copied == 0) {
1583                         force_page_uptodate = true;
1584                         dirty_pages = 0;
1585                 } else {
1586                         force_page_uptodate = false;
1587                         dirty_pages = DIV_ROUND_UP(copied + offset,
1588                                                    PAGE_CACHE_SIZE);
1589                 }
1590
1591                 /*
1592                  * If we had a short copy we need to release the excess delaloc
1593                  * bytes we reserved.  We need to increment outstanding_extents
1594                  * because btrfs_delalloc_release_space will decrement it, but
1595                  * we still have an outstanding extent for the chunk we actually
1596                  * managed to copy.
1597                  */
1598                 if (num_pages > dirty_pages) {
1599                         release_bytes = (num_pages - dirty_pages) <<
1600                                 PAGE_CACHE_SHIFT;
1601                         if (copied > 0) {
1602                                 spin_lock(&BTRFS_I(inode)->lock);
1603                                 BTRFS_I(inode)->outstanding_extents++;
1604                                 spin_unlock(&BTRFS_I(inode)->lock);
1605                         }
1606                         if (only_release_metadata)
1607                                 btrfs_delalloc_release_metadata(inode,
1608                                                                 release_bytes);
1609                         else
1610                                 btrfs_delalloc_release_space(inode,
1611                                                              release_bytes);
1612                 }
1613
1614                 release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
1615
1616                 if (copied > 0)
1617                         ret = btrfs_dirty_pages(root, inode, pages,
1618                                                 dirty_pages, pos, copied,
1619                                                 NULL);
1620                 if (need_unlock)
1621                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1622                                              lockstart, lockend, &cached_state,
1623                                              GFP_NOFS);
1624                 if (ret) {
1625                         btrfs_drop_pages(pages, num_pages);
1626                         break;
1627                 }
1628
1629                 release_bytes = 0;
1630                 if (only_release_metadata)
1631                         btrfs_end_write_no_snapshoting(root);
1632
1633                 if (only_release_metadata && copied > 0) {
1634                         lockstart = round_down(pos, root->sectorsize);
1635                         lockend = lockstart +
1636                                 (dirty_pages << PAGE_CACHE_SHIFT) - 1;
1637
1638                         set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1639                                        lockend, EXTENT_NORESERVE, NULL,
1640                                        NULL, GFP_NOFS);
1641                         only_release_metadata = false;
1642                 }
1643
1644                 btrfs_drop_pages(pages, num_pages);
1645
1646                 cond_resched();
1647
1648                 balance_dirty_pages_ratelimited(inode->i_mapping);
1649                 if (dirty_pages < (root->nodesize >> PAGE_CACHE_SHIFT) + 1)
1650                         btrfs_btree_balance_dirty(root);
1651
1652                 pos += copied;
1653                 num_written += copied;
1654         }
1655
1656         kfree(pages);
1657
1658         if (release_bytes) {
1659                 if (only_release_metadata) {
1660                         btrfs_end_write_no_snapshoting(root);
1661                         btrfs_delalloc_release_metadata(inode, release_bytes);
1662                 } else {
1663                         btrfs_delalloc_release_space(inode, release_bytes);
1664                 }
1665         }
1666
1667         return num_written ? num_written : ret;
1668 }
1669
1670 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1671                                     struct iov_iter *from,
1672                                     loff_t pos)
1673 {
1674         struct file *file = iocb->ki_filp;
1675         struct inode *inode = file_inode(file);
1676         ssize_t written;
1677         ssize_t written_buffered;
1678         loff_t endbyte;
1679         int err;
1680
1681         written = generic_file_direct_write(iocb, from, pos);
1682
1683         if (written < 0 || !iov_iter_count(from))
1684                 return written;
1685
1686         pos += written;
1687         written_buffered = __btrfs_buffered_write(file, from, pos);
1688         if (written_buffered < 0) {
1689                 err = written_buffered;
1690                 goto out;
1691         }
1692         /*
1693          * Ensure all data is persisted. We want the next direct IO read to be
1694          * able to read what was just written.
1695          */
1696         endbyte = pos + written_buffered - 1;
1697         err = btrfs_fdatawrite_range(inode, pos, endbyte);
1698         if (err)
1699                 goto out;
1700         err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1701         if (err)
1702                 goto out;
1703         written += written_buffered;
1704         iocb->ki_pos = pos + written_buffered;
1705         invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1706                                  endbyte >> PAGE_CACHE_SHIFT);
1707 out:
1708         return written ? written : err;
1709 }
1710
1711 static void update_time_for_write(struct inode *inode)
1712 {
1713         struct timespec now;
1714
1715         if (IS_NOCMTIME(inode))
1716                 return;
1717
1718         now = current_fs_time(inode->i_sb);
1719         if (!timespec_equal(&inode->i_mtime, &now))
1720                 inode->i_mtime = now;
1721
1722         if (!timespec_equal(&inode->i_ctime, &now))
1723                 inode->i_ctime = now;
1724
1725         if (IS_I_VERSION(inode))
1726                 inode_inc_iversion(inode);
1727 }
1728
1729 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1730                                     struct iov_iter *from)
1731 {
1732         struct file *file = iocb->ki_filp;
1733         struct inode *inode = file_inode(file);
1734         struct btrfs_root *root = BTRFS_I(inode)->root;
1735         u64 start_pos;
1736         u64 end_pos;
1737         ssize_t num_written = 0;
1738         bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1739         ssize_t err;
1740         loff_t pos;
1741         size_t count;
1742
1743         mutex_lock(&inode->i_mutex);
1744         err = generic_write_checks(iocb, from);
1745         if (err <= 0) {
1746                 mutex_unlock(&inode->i_mutex);
1747                 return err;
1748         }
1749
1750         current->backing_dev_info = inode_to_bdi(inode);
1751         err = file_remove_privs(file);
1752         if (err) {
1753                 mutex_unlock(&inode->i_mutex);
1754                 goto out;
1755         }
1756
1757         /*
1758          * If BTRFS flips readonly due to some impossible error
1759          * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1760          * although we have opened a file as writable, we have
1761          * to stop this write operation to ensure FS consistency.
1762          */
1763         if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1764                 mutex_unlock(&inode->i_mutex);
1765                 err = -EROFS;
1766                 goto out;
1767         }
1768
1769         /*
1770          * We reserve space for updating the inode when we reserve space for the
1771          * extent we are going to write, so we will enospc out there.  We don't
1772          * need to start yet another transaction to update the inode as we will
1773          * update the inode when we finish writing whatever data we write.
1774          */
1775         update_time_for_write(inode);
1776
1777         pos = iocb->ki_pos;
1778         count = iov_iter_count(from);
1779         start_pos = round_down(pos, root->sectorsize);
1780         if (start_pos > i_size_read(inode)) {
1781                 /* Expand hole size to cover write data, preventing empty gap */
1782                 end_pos = round_up(pos + count, root->sectorsize);
1783                 err = btrfs_cont_expand(inode, i_size_read(inode), end_pos);
1784                 if (err) {
1785                         mutex_unlock(&inode->i_mutex);
1786                         goto out;
1787                 }
1788         }
1789
1790         if (sync)
1791                 atomic_inc(&BTRFS_I(inode)->sync_writers);
1792
1793         if (iocb->ki_flags & IOCB_DIRECT) {
1794                 num_written = __btrfs_direct_write(iocb, from, pos);
1795         } else {
1796                 num_written = __btrfs_buffered_write(file, from, pos);
1797                 if (num_written > 0)
1798                         iocb->ki_pos = pos + num_written;
1799         }
1800
1801         mutex_unlock(&inode->i_mutex);
1802
1803         /*
1804          * We also have to set last_sub_trans to the current log transid,
1805          * otherwise subsequent syncs to a file that's been synced in this
1806          * transaction will appear to have already occured.
1807          */
1808         spin_lock(&BTRFS_I(inode)->lock);
1809         BTRFS_I(inode)->last_sub_trans = root->log_transid;
1810         spin_unlock(&BTRFS_I(inode)->lock);
1811         if (num_written > 0) {
1812                 err = generic_write_sync(file, pos, num_written);
1813                 if (err < 0)
1814                         num_written = err;
1815         }
1816
1817         if (sync)
1818                 atomic_dec(&BTRFS_I(inode)->sync_writers);
1819 out:
1820         current->backing_dev_info = NULL;
1821         return num_written ? num_written : err;
1822 }
1823
1824 int btrfs_release_file(struct inode *inode, struct file *filp)
1825 {
1826         if (filp->private_data)
1827                 btrfs_ioctl_trans_end(filp);
1828         /*
1829          * ordered_data_close is set by settattr when we are about to truncate
1830          * a file from a non-zero size to a zero size.  This tries to
1831          * flush down new bytes that may have been written if the
1832          * application were using truncate to replace a file in place.
1833          */
1834         if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1835                                &BTRFS_I(inode)->runtime_flags))
1836                         filemap_flush(inode->i_mapping);
1837         return 0;
1838 }
1839
1840 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1841 {
1842         int ret;
1843
1844         atomic_inc(&BTRFS_I(inode)->sync_writers);
1845         ret = btrfs_fdatawrite_range(inode, start, end);
1846         atomic_dec(&BTRFS_I(inode)->sync_writers);
1847
1848         return ret;
1849 }
1850
1851 /*
1852  * fsync call for both files and directories.  This logs the inode into
1853  * the tree log instead of forcing full commits whenever possible.
1854  *
1855  * It needs to call filemap_fdatawait so that all ordered extent updates are
1856  * in the metadata btree are up to date for copying to the log.
1857  *
1858  * It drops the inode mutex before doing the tree log commit.  This is an
1859  * important optimization for directories because holding the mutex prevents
1860  * new operations on the dir while we write to disk.
1861  */
1862 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1863 {
1864         struct dentry *dentry = file->f_path.dentry;
1865         struct inode *inode = d_inode(dentry);
1866         struct btrfs_root *root = BTRFS_I(inode)->root;
1867         struct btrfs_trans_handle *trans;
1868         struct btrfs_log_ctx ctx;
1869         int ret = 0;
1870         bool full_sync = 0;
1871         const u64 len = end - start + 1;
1872
1873         trace_btrfs_sync_file(file, datasync);
1874
1875         /*
1876          * We write the dirty pages in the range and wait until they complete
1877          * out of the ->i_mutex. If so, we can flush the dirty pages by
1878          * multi-task, and make the performance up.  See
1879          * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1880          */
1881         ret = start_ordered_ops(inode, start, end);
1882         if (ret)
1883                 return ret;
1884
1885         mutex_lock(&inode->i_mutex);
1886         atomic_inc(&root->log_batch);
1887         full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1888                              &BTRFS_I(inode)->runtime_flags);
1889         /*
1890          * We might have have had more pages made dirty after calling
1891          * start_ordered_ops and before acquiring the inode's i_mutex.
1892          */
1893         if (full_sync) {
1894                 /*
1895                  * For a full sync, we need to make sure any ordered operations
1896                  * start and finish before we start logging the inode, so that
1897                  * all extents are persisted and the respective file extent
1898                  * items are in the fs/subvol btree.
1899                  */
1900                 ret = btrfs_wait_ordered_range(inode, start, len);
1901         } else {
1902                 /*
1903                  * Start any new ordered operations before starting to log the
1904                  * inode. We will wait for them to finish in btrfs_sync_log().
1905                  *
1906                  * Right before acquiring the inode's mutex, we might have new
1907                  * writes dirtying pages, which won't immediately start the
1908                  * respective ordered operations - that is done through the
1909                  * fill_delalloc callbacks invoked from the writepage and
1910                  * writepages address space operations. So make sure we start
1911                  * all ordered operations before starting to log our inode. Not
1912                  * doing this means that while logging the inode, writeback
1913                  * could start and invoke writepage/writepages, which would call
1914                  * the fill_delalloc callbacks (cow_file_range,
1915                  * submit_compressed_extents). These callbacks add first an
1916                  * extent map to the modified list of extents and then create
1917                  * the respective ordered operation, which means in
1918                  * tree-log.c:btrfs_log_inode() we might capture all existing
1919                  * ordered operations (with btrfs_get_logged_extents()) before
1920                  * the fill_delalloc callback adds its ordered operation, and by
1921                  * the time we visit the modified list of extent maps (with
1922                  * btrfs_log_changed_extents()), we see and process the extent
1923                  * map they created. We then use the extent map to construct a
1924                  * file extent item for logging without waiting for the
1925                  * respective ordered operation to finish - this file extent
1926                  * item points to a disk location that might not have yet been
1927                  * written to, containing random data - so after a crash a log
1928                  * replay will make our inode have file extent items that point
1929                  * to disk locations containing invalid data, as we returned
1930                  * success to userspace without waiting for the respective
1931                  * ordered operation to finish, because it wasn't captured by
1932                  * btrfs_get_logged_extents().
1933                  */
1934                 ret = start_ordered_ops(inode, start, end);
1935         }
1936         if (ret) {
1937                 mutex_unlock(&inode->i_mutex);
1938                 goto out;
1939         }
1940         atomic_inc(&root->log_batch);
1941
1942         /*
1943          * If the last transaction that changed this file was before the current
1944          * transaction and we have the full sync flag set in our inode, we can
1945          * bail out now without any syncing.
1946          *
1947          * Note that we can't bail out if the full sync flag isn't set. This is
1948          * because when the full sync flag is set we start all ordered extents
1949          * and wait for them to fully complete - when they complete they update
1950          * the inode's last_trans field through:
1951          *
1952          *     btrfs_finish_ordered_io() ->
1953          *         btrfs_update_inode_fallback() ->
1954          *             btrfs_update_inode() ->
1955          *                 btrfs_set_inode_last_trans()
1956          *
1957          * So we are sure that last_trans is up to date and can do this check to
1958          * bail out safely. For the fast path, when the full sync flag is not
1959          * set in our inode, we can not do it because we start only our ordered
1960          * extents and don't wait for them to complete (that is when
1961          * btrfs_finish_ordered_io runs), so here at this point their last_trans
1962          * value might be less than or equals to fs_info->last_trans_committed,
1963          * and setting a speculative last_trans for an inode when a buffered
1964          * write is made (such as fs_info->generation + 1 for example) would not
1965          * be reliable since after setting the value and before fsync is called
1966          * any number of transactions can start and commit (transaction kthread
1967          * commits the current transaction periodically), and a transaction
1968          * commit does not start nor waits for ordered extents to complete.
1969          */
1970         smp_mb();
1971         if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1972             (BTRFS_I(inode)->last_trans <=
1973              root->fs_info->last_trans_committed &&
1974              (full_sync ||
1975               !btrfs_have_ordered_extents_in_range(inode, start, len)))) {
1976                 /*
1977                  * We'v had everything committed since the last time we were
1978                  * modified so clear this flag in case it was set for whatever
1979                  * reason, it's no longer relevant.
1980                  */
1981                 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1982                           &BTRFS_I(inode)->runtime_flags);
1983                 mutex_unlock(&inode->i_mutex);
1984                 goto out;
1985         }
1986
1987         /*
1988          * ok we haven't committed the transaction yet, lets do a commit
1989          */
1990         if (file->private_data)
1991                 btrfs_ioctl_trans_end(file);
1992
1993         /*
1994          * We use start here because we will need to wait on the IO to complete
1995          * in btrfs_sync_log, which could require joining a transaction (for
1996          * example checking cross references in the nocow path).  If we use join
1997          * here we could get into a situation where we're waiting on IO to
1998          * happen that is blocked on a transaction trying to commit.  With start
1999          * we inc the extwriter counter, so we wait for all extwriters to exit
2000          * before we start blocking join'ers.  This comment is to keep somebody
2001          * from thinking they are super smart and changing this to
2002          * btrfs_join_transaction *cough*Josef*cough*.
2003          */
2004         trans = btrfs_start_transaction(root, 0);
2005         if (IS_ERR(trans)) {
2006                 ret = PTR_ERR(trans);
2007                 mutex_unlock(&inode->i_mutex);
2008                 goto out;
2009         }
2010         trans->sync = true;
2011
2012         btrfs_init_log_ctx(&ctx);
2013
2014         ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
2015         if (ret < 0) {
2016                 /* Fallthrough and commit/free transaction. */
2017                 ret = 1;
2018         }
2019
2020         /* we've logged all the items and now have a consistent
2021          * version of the file in the log.  It is possible that
2022          * someone will come in and modify the file, but that's
2023          * fine because the log is consistent on disk, and we
2024          * have references to all of the file's extents
2025          *
2026          * It is possible that someone will come in and log the
2027          * file again, but that will end up using the synchronization
2028          * inside btrfs_sync_log to keep things safe.
2029          */
2030         mutex_unlock(&inode->i_mutex);
2031
2032         /*
2033          * If any of the ordered extents had an error, just return it to user
2034          * space, so that the application knows some writes didn't succeed and
2035          * can take proper action (retry for e.g.). Blindly committing the
2036          * transaction in this case, would fool userspace that everything was
2037          * successful. And we also want to make sure our log doesn't contain
2038          * file extent items pointing to extents that weren't fully written to -
2039          * just like in the non fast fsync path, where we check for the ordered
2040          * operation's error flag before writing to the log tree and return -EIO
2041          * if any of them had this flag set (btrfs_wait_ordered_range) -
2042          * therefore we need to check for errors in the ordered operations,
2043          * which are indicated by ctx.io_err.
2044          */
2045         if (ctx.io_err) {
2046                 btrfs_end_transaction(trans, root);
2047                 ret = ctx.io_err;
2048                 goto out;
2049         }
2050
2051         if (ret != BTRFS_NO_LOG_SYNC) {
2052                 if (!ret) {
2053                         ret = btrfs_sync_log(trans, root, &ctx);
2054                         if (!ret) {
2055                                 ret = btrfs_end_transaction(trans, root);
2056                                 goto out;
2057                         }
2058                 }
2059                 if (!full_sync) {
2060                         ret = btrfs_wait_ordered_range(inode, start,
2061                                                        end - start + 1);
2062                         if (ret) {
2063                                 btrfs_end_transaction(trans, root);
2064                                 goto out;
2065                         }
2066                 }
2067                 ret = btrfs_commit_transaction(trans, root);
2068         } else {
2069                 ret = btrfs_end_transaction(trans, root);
2070         }
2071 out:
2072         return ret > 0 ? -EIO : ret;
2073 }
2074
2075 static const struct vm_operations_struct btrfs_file_vm_ops = {
2076         .fault          = filemap_fault,
2077         .map_pages      = filemap_map_pages,
2078         .page_mkwrite   = btrfs_page_mkwrite,
2079 };
2080
2081 static int btrfs_file_mmap(struct file  *filp, struct vm_area_struct *vma)
2082 {
2083         struct address_space *mapping = filp->f_mapping;
2084
2085         if (!mapping->a_ops->readpage)
2086                 return -ENOEXEC;
2087
2088         file_accessed(filp);
2089         vma->vm_ops = &btrfs_file_vm_ops;
2090
2091         return 0;
2092 }
2093
2094 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2095                           int slot, u64 start, u64 end)
2096 {
2097         struct btrfs_file_extent_item *fi;
2098         struct btrfs_key key;
2099
2100         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2101                 return 0;
2102
2103         btrfs_item_key_to_cpu(leaf, &key, slot);
2104         if (key.objectid != btrfs_ino(inode) ||
2105             key.type != BTRFS_EXTENT_DATA_KEY)
2106                 return 0;
2107
2108         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2109
2110         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2111                 return 0;
2112
2113         if (btrfs_file_extent_disk_bytenr(leaf, fi))
2114                 return 0;
2115
2116         if (key.offset == end)
2117                 return 1;
2118         if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2119                 return 1;
2120         return 0;
2121 }
2122
2123 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2124                       struct btrfs_path *path, u64 offset, u64 end)
2125 {
2126         struct btrfs_root *root = BTRFS_I(inode)->root;
2127         struct extent_buffer *leaf;
2128         struct btrfs_file_extent_item *fi;
2129         struct extent_map *hole_em;
2130         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2131         struct btrfs_key key;
2132         int ret;
2133
2134         if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2135                 goto out;
2136
2137         key.objectid = btrfs_ino(inode);
2138         key.type = BTRFS_EXTENT_DATA_KEY;
2139         key.offset = offset;
2140
2141         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2142         if (ret < 0)
2143                 return ret;
2144         BUG_ON(!ret);
2145
2146         leaf = path->nodes[0];
2147         if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2148                 u64 num_bytes;
2149
2150                 path->slots[0]--;
2151                 fi = btrfs_item_ptr(leaf, path->slots[0],
2152                                     struct btrfs_file_extent_item);
2153                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2154                         end - offset;
2155                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2156                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2157                 btrfs_set_file_extent_offset(leaf, fi, 0);
2158                 btrfs_mark_buffer_dirty(leaf);
2159                 goto out;
2160         }
2161
2162         if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2163                 u64 num_bytes;
2164
2165                 key.offset = offset;
2166                 btrfs_set_item_key_safe(root->fs_info, path, &key);
2167                 fi = btrfs_item_ptr(leaf, path->slots[0],
2168                                     struct btrfs_file_extent_item);
2169                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2170                         offset;
2171                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2172                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2173                 btrfs_set_file_extent_offset(leaf, fi, 0);
2174                 btrfs_mark_buffer_dirty(leaf);
2175                 goto out;
2176         }
2177         btrfs_release_path(path);
2178
2179         ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2180                                        0, 0, end - offset, 0, end - offset,
2181                                        0, 0, 0);
2182         if (ret)
2183                 return ret;
2184
2185 out:
2186         btrfs_release_path(path);
2187
2188         hole_em = alloc_extent_map();
2189         if (!hole_em) {
2190                 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2191                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2192                         &BTRFS_I(inode)->runtime_flags);
2193         } else {
2194                 hole_em->start = offset;
2195                 hole_em->len = end - offset;
2196                 hole_em->ram_bytes = hole_em->len;
2197                 hole_em->orig_start = offset;
2198
2199                 hole_em->block_start = EXTENT_MAP_HOLE;
2200                 hole_em->block_len = 0;
2201                 hole_em->orig_block_len = 0;
2202                 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2203                 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2204                 hole_em->generation = trans->transid;
2205
2206                 do {
2207                         btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2208                         write_lock(&em_tree->lock);
2209                         ret = add_extent_mapping(em_tree, hole_em, 1);
2210                         write_unlock(&em_tree->lock);
2211                 } while (ret == -EEXIST);
2212                 free_extent_map(hole_em);
2213                 if (ret)
2214                         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2215                                 &BTRFS_I(inode)->runtime_flags);
2216         }
2217
2218         return 0;
2219 }
2220
2221 /*
2222  * Find a hole extent on given inode and change start/len to the end of hole
2223  * extent.(hole/vacuum extent whose em->start <= start &&
2224  *         em->start + em->len > start)
2225  * When a hole extent is found, return 1 and modify start/len.
2226  */
2227 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2228 {
2229         struct extent_map *em;
2230         int ret = 0;
2231
2232         em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0);
2233         if (IS_ERR_OR_NULL(em)) {
2234                 if (!em)
2235                         ret = -ENOMEM;
2236                 else
2237                         ret = PTR_ERR(em);
2238                 return ret;
2239         }
2240
2241         /* Hole or vacuum extent(only exists in no-hole mode) */
2242         if (em->block_start == EXTENT_MAP_HOLE) {
2243                 ret = 1;
2244                 *len = em->start + em->len > *start + *len ?
2245                        0 : *start + *len - em->start - em->len;
2246                 *start = em->start + em->len;
2247         }
2248         free_extent_map(em);
2249         return ret;
2250 }
2251
2252 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2253 {
2254         struct btrfs_root *root = BTRFS_I(inode)->root;
2255         struct extent_state *cached_state = NULL;
2256         struct btrfs_path *path;
2257         struct btrfs_block_rsv *rsv;
2258         struct btrfs_trans_handle *trans;
2259         u64 lockstart;
2260         u64 lockend;
2261         u64 tail_start;
2262         u64 tail_len;
2263         u64 orig_start = offset;
2264         u64 cur_offset;
2265         u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2266         u64 drop_end;
2267         int ret = 0;
2268         int err = 0;
2269         int rsv_count;
2270         bool same_page;
2271         bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
2272         u64 ino_size;
2273         bool truncated_page = false;
2274         bool updated_inode = false;
2275
2276         ret = btrfs_wait_ordered_range(inode, offset, len);
2277         if (ret)
2278                 return ret;
2279
2280         mutex_lock(&inode->i_mutex);
2281         ino_size = round_up(inode->i_size, PAGE_CACHE_SIZE);
2282         ret = find_first_non_hole(inode, &offset, &len);
2283         if (ret < 0)
2284                 goto out_only_mutex;
2285         if (ret && !len) {
2286                 /* Already in a large hole */
2287                 ret = 0;
2288                 goto out_only_mutex;
2289         }
2290
2291         lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2292         lockend = round_down(offset + len,
2293                              BTRFS_I(inode)->root->sectorsize) - 1;
2294         same_page = ((offset >> PAGE_CACHE_SHIFT) ==
2295                     ((offset + len - 1) >> PAGE_CACHE_SHIFT));
2296
2297         /*
2298          * We needn't truncate any page which is beyond the end of the file
2299          * because we are sure there is no data there.
2300          */
2301         /*
2302          * Only do this if we are in the same page and we aren't doing the
2303          * entire page.
2304          */
2305         if (same_page && len < PAGE_CACHE_SIZE) {
2306                 if (offset < ino_size) {
2307                         truncated_page = true;
2308                         ret = btrfs_truncate_page(inode, offset, len, 0);
2309                 } else {
2310                         ret = 0;
2311                 }
2312                 goto out_only_mutex;
2313         }
2314
2315         /* zero back part of the first page */
2316         if (offset < ino_size) {
2317                 truncated_page = true;
2318                 ret = btrfs_truncate_page(inode, offset, 0, 0);
2319                 if (ret) {
2320                         mutex_unlock(&inode->i_mutex);
2321                         return ret;
2322                 }
2323         }
2324
2325         /* Check the aligned pages after the first unaligned page,
2326          * if offset != orig_start, which means the first unaligned page
2327          * including serveral following pages are already in holes,
2328          * the extra check can be skipped */
2329         if (offset == orig_start) {
2330                 /* after truncate page, check hole again */
2331                 len = offset + len - lockstart;
2332                 offset = lockstart;
2333                 ret = find_first_non_hole(inode, &offset, &len);
2334                 if (ret < 0)
2335                         goto out_only_mutex;
2336                 if (ret && !len) {
2337                         ret = 0;
2338                         goto out_only_mutex;
2339                 }
2340                 lockstart = offset;
2341         }
2342
2343         /* Check the tail unaligned part is in a hole */
2344         tail_start = lockend + 1;
2345         tail_len = offset + len - tail_start;
2346         if (tail_len) {
2347                 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2348                 if (unlikely(ret < 0))
2349                         goto out_only_mutex;
2350                 if (!ret) {
2351                         /* zero the front end of the last page */
2352                         if (tail_start + tail_len < ino_size) {
2353                                 truncated_page = true;
2354                                 ret = btrfs_truncate_page(inode,
2355                                                 tail_start + tail_len, 0, 1);
2356                                 if (ret)
2357                                         goto out_only_mutex;
2358                         }
2359                 }
2360         }
2361
2362         if (lockend < lockstart) {
2363                 ret = 0;
2364                 goto out_only_mutex;
2365         }
2366
2367         while (1) {
2368                 struct btrfs_ordered_extent *ordered;
2369
2370                 truncate_pagecache_range(inode, lockstart, lockend);
2371
2372                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2373                                  0, &cached_state);
2374                 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2375
2376                 /*
2377                  * We need to make sure we have no ordered extents in this range
2378                  * and nobody raced in and read a page in this range, if we did
2379                  * we need to try again.
2380                  */
2381                 if ((!ordered ||
2382                     (ordered->file_offset + ordered->len <= lockstart ||
2383                      ordered->file_offset > lockend)) &&
2384                      !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2385                         if (ordered)
2386                                 btrfs_put_ordered_extent(ordered);
2387                         break;
2388                 }
2389                 if (ordered)
2390                         btrfs_put_ordered_extent(ordered);
2391                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2392                                      lockend, &cached_state, GFP_NOFS);
2393                 ret = btrfs_wait_ordered_range(inode, lockstart,
2394                                                lockend - lockstart + 1);
2395                 if (ret) {
2396                         mutex_unlock(&inode->i_mutex);
2397                         return ret;
2398                 }
2399         }
2400
2401         path = btrfs_alloc_path();
2402         if (!path) {
2403                 ret = -ENOMEM;
2404                 goto out;
2405         }
2406
2407         rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2408         if (!rsv) {
2409                 ret = -ENOMEM;
2410                 goto out_free;
2411         }
2412         rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2413         rsv->failfast = 1;
2414
2415         /*
2416          * 1 - update the inode
2417          * 1 - removing the extents in the range
2418          * 1 - adding the hole extent if no_holes isn't set
2419          */
2420         rsv_count = no_holes ? 2 : 3;
2421         trans = btrfs_start_transaction(root, rsv_count);
2422         if (IS_ERR(trans)) {
2423                 err = PTR_ERR(trans);
2424                 goto out_free;
2425         }
2426
2427         ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2428                                       min_size);
2429         BUG_ON(ret);
2430         trans->block_rsv = rsv;
2431
2432         cur_offset = lockstart;
2433         len = lockend - cur_offset;
2434         while (cur_offset < lockend) {
2435                 ret = __btrfs_drop_extents(trans, root, inode, path,
2436                                            cur_offset, lockend + 1,
2437                                            &drop_end, 1, 0, 0, NULL);
2438                 if (ret != -ENOSPC)
2439                         break;
2440
2441                 trans->block_rsv = &root->fs_info->trans_block_rsv;
2442
2443                 if (cur_offset < ino_size) {
2444                         ret = fill_holes(trans, inode, path, cur_offset,
2445                                          drop_end);
2446                         if (ret) {
2447                                 err = ret;
2448                                 break;
2449                         }
2450                 }
2451
2452                 cur_offset = drop_end;
2453
2454                 ret = btrfs_update_inode(trans, root, inode);
2455                 if (ret) {
2456                         err = ret;
2457                         break;
2458                 }
2459
2460                 btrfs_end_transaction(trans, root);
2461                 btrfs_btree_balance_dirty(root);
2462
2463                 trans = btrfs_start_transaction(root, rsv_count);
2464                 if (IS_ERR(trans)) {
2465                         ret = PTR_ERR(trans);
2466                         trans = NULL;
2467                         break;
2468                 }
2469
2470                 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2471                                               rsv, min_size);
2472                 BUG_ON(ret);    /* shouldn't happen */
2473                 trans->block_rsv = rsv;
2474
2475                 ret = find_first_non_hole(inode, &cur_offset, &len);
2476                 if (unlikely(ret < 0))
2477                         break;
2478                 if (ret && !len) {
2479                         ret = 0;
2480                         break;
2481                 }
2482         }
2483
2484         if (ret) {
2485                 err = ret;
2486                 goto out_trans;
2487         }
2488
2489         trans->block_rsv = &root->fs_info->trans_block_rsv;
2490         /*
2491          * Don't insert file hole extent item if it's for a range beyond eof
2492          * (because it's useless) or if it represents a 0 bytes range (when
2493          * cur_offset == drop_end).
2494          */
2495         if (cur_offset < ino_size && cur_offset < drop_end) {
2496                 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2497                 if (ret) {
2498                         err = ret;
2499                         goto out_trans;
2500                 }
2501         }
2502
2503 out_trans:
2504         if (!trans)
2505                 goto out_free;
2506
2507         inode_inc_iversion(inode);
2508         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2509
2510         trans->block_rsv = &root->fs_info->trans_block_rsv;
2511         ret = btrfs_update_inode(trans, root, inode);
2512         updated_inode = true;
2513         btrfs_end_transaction(trans, root);
2514         btrfs_btree_balance_dirty(root);
2515 out_free:
2516         btrfs_free_path(path);
2517         btrfs_free_block_rsv(root, rsv);
2518 out:
2519         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2520                              &cached_state, GFP_NOFS);
2521 out_only_mutex:
2522         if (!updated_inode && truncated_page && !ret && !err) {
2523                 /*
2524                  * If we only end up zeroing part of a page, we still need to
2525                  * update the inode item, so that all the time fields are
2526                  * updated as well as the necessary btrfs inode in memory fields
2527                  * for detecting, at fsync time, if the inode isn't yet in the
2528                  * log tree or it's there but not up to date.
2529                  */
2530                 trans = btrfs_start_transaction(root, 1);
2531                 if (IS_ERR(trans)) {
2532                         err = PTR_ERR(trans);
2533                 } else {
2534                         err = btrfs_update_inode(trans, root, inode);
2535                         ret = btrfs_end_transaction(trans, root);
2536                 }
2537         }
2538         mutex_unlock(&inode->i_mutex);
2539         if (ret && !err)
2540                 err = ret;
2541         return err;
2542 }
2543
2544 static long btrfs_fallocate(struct file *file, int mode,
2545                             loff_t offset, loff_t len)
2546 {
2547         struct inode *inode = file_inode(file);
2548         struct extent_state *cached_state = NULL;
2549         u64 cur_offset;
2550         u64 last_byte;
2551         u64 alloc_start;
2552         u64 alloc_end;
2553         u64 alloc_hint = 0;
2554         u64 locked_end;
2555         struct extent_map *em;
2556         int blocksize = BTRFS_I(inode)->root->sectorsize;
2557         int ret;
2558
2559         alloc_start = round_down(offset, blocksize);
2560         alloc_end = round_up(offset + len, blocksize);
2561
2562         /* Make sure we aren't being give some crap mode */
2563         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2564                 return -EOPNOTSUPP;
2565
2566         if (mode & FALLOC_FL_PUNCH_HOLE)
2567                 return btrfs_punch_hole(inode, offset, len);
2568
2569         /*
2570          * Make sure we have enough space before we do the
2571          * allocation.
2572          */
2573         ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start, alloc_end - alloc_start);
2574         if (ret)
2575                 return ret;
2576
2577         mutex_lock(&inode->i_mutex);
2578         ret = inode_newsize_ok(inode, alloc_end);
2579         if (ret)
2580                 goto out;
2581
2582         if (alloc_start > inode->i_size) {
2583                 ret = btrfs_cont_expand(inode, i_size_read(inode),
2584                                         alloc_start);
2585                 if (ret)
2586                         goto out;
2587         } else if (offset + len > inode->i_size) {
2588                 /*
2589                  * If we are fallocating from the end of the file onward we
2590                  * need to zero out the end of the page if i_size lands in the
2591                  * middle of a page.
2592                  */
2593                 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
2594                 if (ret)
2595                         goto out;
2596         }
2597
2598         /*
2599          * wait for ordered IO before we have any locks.  We'll loop again
2600          * below with the locks held.
2601          */
2602         ret = btrfs_wait_ordered_range(inode, alloc_start,
2603                                        alloc_end - alloc_start);
2604         if (ret)
2605                 goto out;
2606
2607         locked_end = alloc_end - 1;
2608         while (1) {
2609                 struct btrfs_ordered_extent *ordered;
2610
2611                 /* the extent lock is ordered inside the running
2612                  * transaction
2613                  */
2614                 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2615                                  locked_end, 0, &cached_state);
2616                 ordered = btrfs_lookup_first_ordered_extent(inode,
2617                                                             alloc_end - 1);
2618                 if (ordered &&
2619                     ordered->file_offset + ordered->len > alloc_start &&
2620                     ordered->file_offset < alloc_end) {
2621                         btrfs_put_ordered_extent(ordered);
2622                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2623                                              alloc_start, locked_end,
2624                                              &cached_state, GFP_NOFS);
2625                         /*
2626                          * we can't wait on the range with the transaction
2627                          * running or with the extent lock held
2628                          */
2629                         ret = btrfs_wait_ordered_range(inode, alloc_start,
2630                                                        alloc_end - alloc_start);
2631                         if (ret)
2632                                 goto out;
2633                 } else {
2634                         if (ordered)
2635                                 btrfs_put_ordered_extent(ordered);
2636                         break;
2637                 }
2638         }
2639
2640         cur_offset = alloc_start;
2641         while (1) {
2642                 u64 actual_end;
2643
2644                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2645                                       alloc_end - cur_offset, 0);
2646                 if (IS_ERR_OR_NULL(em)) {
2647                         if (!em)
2648                                 ret = -ENOMEM;
2649                         else
2650                                 ret = PTR_ERR(em);
2651                         break;
2652                 }
2653                 last_byte = min(extent_map_end(em), alloc_end);
2654                 actual_end = min_t(u64, extent_map_end(em), offset + len);
2655                 last_byte = ALIGN(last_byte, blocksize);
2656
2657                 if (em->block_start == EXTENT_MAP_HOLE ||
2658                     (cur_offset >= inode->i_size &&
2659                      !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2660                         ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2661                                                         last_byte - cur_offset,
2662                                                         1 << inode->i_blkbits,
2663                                                         offset + len,
2664                                                         &alloc_hint);
2665                 } else if (actual_end > inode->i_size &&
2666                            !(mode & FALLOC_FL_KEEP_SIZE)) {
2667                         struct btrfs_trans_handle *trans;
2668                         struct btrfs_root *root = BTRFS_I(inode)->root;
2669
2670                         /*
2671                          * We didn't need to allocate any more space, but we
2672                          * still extended the size of the file so we need to
2673                          * update i_size and the inode item.
2674                          */
2675                         trans = btrfs_start_transaction(root, 1);
2676                         if (IS_ERR(trans)) {
2677                                 ret = PTR_ERR(trans);
2678                         } else {
2679                                 inode->i_ctime = CURRENT_TIME;
2680                                 i_size_write(inode, actual_end);
2681                                 btrfs_ordered_update_i_size(inode, actual_end,
2682                                                             NULL);
2683                                 ret = btrfs_update_inode(trans, root, inode);
2684                                 if (ret)
2685                                         btrfs_end_transaction(trans, root);
2686                                 else
2687                                         ret = btrfs_end_transaction(trans,
2688                                                                     root);
2689                         }
2690                 }
2691                 free_extent_map(em);
2692                 if (ret < 0)
2693                         break;
2694
2695                 cur_offset = last_byte;
2696                 if (cur_offset >= alloc_end) {
2697                         ret = 0;
2698                         break;
2699                 }
2700         }
2701         unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2702                              &cached_state, GFP_NOFS);
2703 out:
2704         mutex_unlock(&inode->i_mutex);
2705         /* Let go of our reservation. */
2706         btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2707         return ret;
2708 }
2709
2710 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2711 {
2712         struct btrfs_root *root = BTRFS_I(inode)->root;
2713         struct extent_map *em = NULL;
2714         struct extent_state *cached_state = NULL;
2715         u64 lockstart;
2716         u64 lockend;
2717         u64 start;
2718         u64 len;
2719         int ret = 0;
2720
2721         if (inode->i_size == 0)
2722                 return -ENXIO;
2723
2724         /*
2725          * *offset can be negative, in this case we start finding DATA/HOLE from
2726          * the very start of the file.
2727          */
2728         start = max_t(loff_t, 0, *offset);
2729
2730         lockstart = round_down(start, root->sectorsize);
2731         lockend = round_up(i_size_read(inode), root->sectorsize);
2732         if (lockend <= lockstart)
2733                 lockend = lockstart + root->sectorsize;
2734         lockend--;
2735         len = lockend - lockstart + 1;
2736
2737         lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2738                          &cached_state);
2739
2740         while (start < inode->i_size) {
2741                 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2742                 if (IS_ERR(em)) {
2743                         ret = PTR_ERR(em);
2744                         em = NULL;
2745                         break;
2746                 }
2747
2748                 if (whence == SEEK_HOLE &&
2749                     (em->block_start == EXTENT_MAP_HOLE ||
2750                      test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2751                         break;
2752                 else if (whence == SEEK_DATA &&
2753                            (em->block_start != EXTENT_MAP_HOLE &&
2754                             !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2755                         break;
2756
2757                 start = em->start + em->len;
2758                 free_extent_map(em);
2759                 em = NULL;
2760                 cond_resched();
2761         }
2762         free_extent_map(em);
2763         if (!ret) {
2764                 if (whence == SEEK_DATA && start >= inode->i_size)
2765                         ret = -ENXIO;
2766                 else
2767                         *offset = min_t(loff_t, start, inode->i_size);
2768         }
2769         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2770                              &cached_state, GFP_NOFS);
2771         return ret;
2772 }
2773
2774 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2775 {
2776         struct inode *inode = file->f_mapping->host;
2777         int ret;
2778
2779         mutex_lock(&inode->i_mutex);
2780         switch (whence) {
2781         case SEEK_END:
2782         case SEEK_CUR:
2783                 offset = generic_file_llseek(file, offset, whence);
2784                 goto out;
2785         case SEEK_DATA:
2786         case SEEK_HOLE:
2787                 if (offset >= i_size_read(inode)) {
2788                         mutex_unlock(&inode->i_mutex);
2789                         return -ENXIO;
2790                 }
2791
2792                 ret = find_desired_extent(inode, &offset, whence);
2793                 if (ret) {
2794                         mutex_unlock(&inode->i_mutex);
2795                         return ret;
2796                 }
2797         }
2798
2799         offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2800 out:
2801         mutex_unlock(&inode->i_mutex);
2802         return offset;
2803 }
2804
2805 const struct file_operations btrfs_file_operations = {
2806         .llseek         = btrfs_file_llseek,
2807         .read_iter      = generic_file_read_iter,
2808         .splice_read    = generic_file_splice_read,
2809         .write_iter     = btrfs_file_write_iter,
2810         .mmap           = btrfs_file_mmap,
2811         .open           = generic_file_open,
2812         .release        = btrfs_release_file,
2813         .fsync          = btrfs_sync_file,
2814         .fallocate      = btrfs_fallocate,
2815         .unlocked_ioctl = btrfs_ioctl,
2816 #ifdef CONFIG_COMPAT
2817         .compat_ioctl   = btrfs_ioctl,
2818 #endif
2819 };
2820
2821 void btrfs_auto_defrag_exit(void)
2822 {
2823         if (btrfs_inode_defrag_cachep)
2824                 kmem_cache_destroy(btrfs_inode_defrag_cachep);
2825 }
2826
2827 int btrfs_auto_defrag_init(void)
2828 {
2829         btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2830                                         sizeof(struct inode_defrag), 0,
2831                                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2832                                         NULL);
2833         if (!btrfs_inode_defrag_cachep)
2834                 return -ENOMEM;
2835
2836         return 0;
2837 }
2838
2839 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
2840 {
2841         int ret;
2842
2843         /*
2844          * So with compression we will find and lock a dirty page and clear the
2845          * first one as dirty, setup an async extent, and immediately return
2846          * with the entire range locked but with nobody actually marked with
2847          * writeback.  So we can't just filemap_write_and_wait_range() and
2848          * expect it to work since it will just kick off a thread to do the
2849          * actual work.  So we need to call filemap_fdatawrite_range _again_
2850          * since it will wait on the page lock, which won't be unlocked until
2851          * after the pages have been marked as writeback and so we're good to go
2852          * from there.  We have to do this otherwise we'll miss the ordered
2853          * extents and that results in badness.  Please Josef, do not think you
2854          * know better and pull this out at some point in the future, it is
2855          * right and you are wrong.
2856          */
2857         ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
2858         if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
2859                              &BTRFS_I(inode)->runtime_flags))
2860                 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
2861
2862         return ret;
2863 }