]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/coredump.c
pnfs/blocklayout: include vmalloc.h for __vmalloc
[karo-tx-linux.git] / fs / coredump.c
1 #include <linux/slab.h>
2 #include <linux/file.h>
3 #include <linux/fdtable.h>
4 #include <linux/mm.h>
5 #include <linux/stat.h>
6 #include <linux/fcntl.h>
7 #include <linux/swap.h>
8 #include <linux/string.h>
9 #include <linux/init.h>
10 #include <linux/pagemap.h>
11 #include <linux/perf_event.h>
12 #include <linux/highmem.h>
13 #include <linux/spinlock.h>
14 #include <linux/key.h>
15 #include <linux/personality.h>
16 #include <linux/binfmts.h>
17 #include <linux/coredump.h>
18 #include <linux/utsname.h>
19 #include <linux/pid_namespace.h>
20 #include <linux/module.h>
21 #include <linux/namei.h>
22 #include <linux/mount.h>
23 #include <linux/security.h>
24 #include <linux/syscalls.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/cn_proc.h>
27 #include <linux/audit.h>
28 #include <linux/tracehook.h>
29 #include <linux/kmod.h>
30 #include <linux/fsnotify.h>
31 #include <linux/fs_struct.h>
32 #include <linux/pipe_fs_i.h>
33 #include <linux/oom.h>
34 #include <linux/compat.h>
35
36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlb.h>
39 #include <asm/exec.h>
40
41 #include <trace/events/task.h>
42 #include "internal.h"
43
44 #include <trace/events/sched.h>
45
46 int core_uses_pid;
47 unsigned int core_pipe_limit;
48 char core_pattern[CORENAME_MAX_SIZE] = "core";
49 static int core_name_size = CORENAME_MAX_SIZE;
50
51 struct core_name {
52         char *corename;
53         int used, size;
54 };
55
56 /* The maximal length of core_pattern is also specified in sysctl.c */
57
58 static int expand_corename(struct core_name *cn, int size)
59 {
60         char *corename = krealloc(cn->corename, size, GFP_KERNEL);
61
62         if (!corename)
63                 return -ENOMEM;
64
65         if (size > core_name_size) /* racy but harmless */
66                 core_name_size = size;
67
68         cn->size = ksize(corename);
69         cn->corename = corename;
70         return 0;
71 }
72
73 static int cn_vprintf(struct core_name *cn, const char *fmt, va_list arg)
74 {
75         int free, need;
76         va_list arg_copy;
77
78 again:
79         free = cn->size - cn->used;
80
81         va_copy(arg_copy, arg);
82         need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
83         va_end(arg_copy);
84
85         if (need < free) {
86                 cn->used += need;
87                 return 0;
88         }
89
90         if (!expand_corename(cn, cn->size + need - free + 1))
91                 goto again;
92
93         return -ENOMEM;
94 }
95
96 static int cn_printf(struct core_name *cn, const char *fmt, ...)
97 {
98         va_list arg;
99         int ret;
100
101         va_start(arg, fmt);
102         ret = cn_vprintf(cn, fmt, arg);
103         va_end(arg);
104
105         return ret;
106 }
107
108 static int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
109 {
110         int cur = cn->used;
111         va_list arg;
112         int ret;
113
114         va_start(arg, fmt);
115         ret = cn_vprintf(cn, fmt, arg);
116         va_end(arg);
117
118         for (; cur < cn->used; ++cur) {
119                 if (cn->corename[cur] == '/')
120                         cn->corename[cur] = '!';
121         }
122         return ret;
123 }
124
125 static int cn_print_exe_file(struct core_name *cn)
126 {
127         struct file *exe_file;
128         char *pathbuf, *path;
129         int ret;
130
131         exe_file = get_mm_exe_file(current->mm);
132         if (!exe_file)
133                 return cn_esc_printf(cn, "%s (path unknown)", current->comm);
134
135         pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
136         if (!pathbuf) {
137                 ret = -ENOMEM;
138                 goto put_exe_file;
139         }
140
141         path = d_path(&exe_file->f_path, pathbuf, PATH_MAX);
142         if (IS_ERR(path)) {
143                 ret = PTR_ERR(path);
144                 goto free_buf;
145         }
146
147         ret = cn_esc_printf(cn, "%s", path);
148
149 free_buf:
150         kfree(pathbuf);
151 put_exe_file:
152         fput(exe_file);
153         return ret;
154 }
155
156 /* format_corename will inspect the pattern parameter, and output a
157  * name into corename, which must have space for at least
158  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
159  */
160 static int format_corename(struct core_name *cn, struct coredump_params *cprm)
161 {
162         const struct cred *cred = current_cred();
163         const char *pat_ptr = core_pattern;
164         int ispipe = (*pat_ptr == '|');
165         int pid_in_pattern = 0;
166         int err = 0;
167
168         cn->used = 0;
169         cn->corename = NULL;
170         if (expand_corename(cn, core_name_size))
171                 return -ENOMEM;
172         cn->corename[0] = '\0';
173
174         if (ispipe)
175                 ++pat_ptr;
176
177         /* Repeat as long as we have more pattern to process and more output
178            space */
179         while (*pat_ptr) {
180                 if (*pat_ptr != '%') {
181                         err = cn_printf(cn, "%c", *pat_ptr++);
182                 } else {
183                         switch (*++pat_ptr) {
184                         /* single % at the end, drop that */
185                         case 0:
186                                 goto out;
187                         /* Double percent, output one percent */
188                         case '%':
189                                 err = cn_printf(cn, "%c", '%');
190                                 break;
191                         /* pid */
192                         case 'p':
193                                 pid_in_pattern = 1;
194                                 err = cn_printf(cn, "%d",
195                                               task_tgid_vnr(current));
196                                 break;
197                         /* global pid */
198                         case 'P':
199                                 err = cn_printf(cn, "%d",
200                                               task_tgid_nr(current));
201                                 break;
202                         /* uid */
203                         case 'u':
204                                 err = cn_printf(cn, "%d", cred->uid);
205                                 break;
206                         /* gid */
207                         case 'g':
208                                 err = cn_printf(cn, "%d", cred->gid);
209                                 break;
210                         case 'd':
211                                 err = cn_printf(cn, "%d",
212                                         __get_dumpable(cprm->mm_flags));
213                                 break;
214                         /* signal that caused the coredump */
215                         case 's':
216                                 err = cn_printf(cn, "%ld", cprm->siginfo->si_signo);
217                                 break;
218                         /* UNIX time of coredump */
219                         case 't': {
220                                 struct timeval tv;
221                                 do_gettimeofday(&tv);
222                                 err = cn_printf(cn, "%lu", tv.tv_sec);
223                                 break;
224                         }
225                         /* hostname */
226                         case 'h':
227                                 down_read(&uts_sem);
228                                 err = cn_esc_printf(cn, "%s",
229                                               utsname()->nodename);
230                                 up_read(&uts_sem);
231                                 break;
232                         /* executable */
233                         case 'e':
234                                 err = cn_esc_printf(cn, "%s", current->comm);
235                                 break;
236                         case 'E':
237                                 err = cn_print_exe_file(cn);
238                                 break;
239                         /* core limit size */
240                         case 'c':
241                                 err = cn_printf(cn, "%lu",
242                                               rlimit(RLIMIT_CORE));
243                                 break;
244                         default:
245                                 break;
246                         }
247                         ++pat_ptr;
248                 }
249
250                 if (err)
251                         return err;
252         }
253
254 out:
255         /* Backward compatibility with core_uses_pid:
256          *
257          * If core_pattern does not include a %p (as is the default)
258          * and core_uses_pid is set, then .%pid will be appended to
259          * the filename. Do not do this for piped commands. */
260         if (!ispipe && !pid_in_pattern && core_uses_pid) {
261                 err = cn_printf(cn, ".%d", task_tgid_vnr(current));
262                 if (err)
263                         return err;
264         }
265         return ispipe;
266 }
267
268 static int zap_process(struct task_struct *start, int exit_code)
269 {
270         struct task_struct *t;
271         int nr = 0;
272
273         start->signal->group_exit_code = exit_code;
274         start->signal->group_stop_count = 0;
275
276         t = start;
277         do {
278                 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
279                 if (t != current && t->mm) {
280                         sigaddset(&t->pending.signal, SIGKILL);
281                         signal_wake_up(t, 1);
282                         nr++;
283                 }
284         } while_each_thread(start, t);
285
286         return nr;
287 }
288
289 static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
290                         struct core_state *core_state, int exit_code)
291 {
292         struct task_struct *g, *p;
293         unsigned long flags;
294         int nr = -EAGAIN;
295
296         spin_lock_irq(&tsk->sighand->siglock);
297         if (!signal_group_exit(tsk->signal)) {
298                 mm->core_state = core_state;
299                 nr = zap_process(tsk, exit_code);
300                 tsk->signal->group_exit_task = tsk;
301                 /* ignore all signals except SIGKILL, see prepare_signal() */
302                 tsk->signal->flags = SIGNAL_GROUP_COREDUMP;
303                 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
304         }
305         spin_unlock_irq(&tsk->sighand->siglock);
306         if (unlikely(nr < 0))
307                 return nr;
308
309         tsk->flags |= PF_DUMPCORE;
310         if (atomic_read(&mm->mm_users) == nr + 1)
311                 goto done;
312         /*
313          * We should find and kill all tasks which use this mm, and we should
314          * count them correctly into ->nr_threads. We don't take tasklist
315          * lock, but this is safe wrt:
316          *
317          * fork:
318          *      None of sub-threads can fork after zap_process(leader). All
319          *      processes which were created before this point should be
320          *      visible to zap_threads() because copy_process() adds the new
321          *      process to the tail of init_task.tasks list, and lock/unlock
322          *      of ->siglock provides a memory barrier.
323          *
324          * do_exit:
325          *      The caller holds mm->mmap_sem. This means that the task which
326          *      uses this mm can't pass exit_mm(), so it can't exit or clear
327          *      its ->mm.
328          *
329          * de_thread:
330          *      It does list_replace_rcu(&leader->tasks, &current->tasks),
331          *      we must see either old or new leader, this does not matter.
332          *      However, it can change p->sighand, so lock_task_sighand(p)
333          *      must be used. Since p->mm != NULL and we hold ->mmap_sem
334          *      it can't fail.
335          *
336          *      Note also that "g" can be the old leader with ->mm == NULL
337          *      and already unhashed and thus removed from ->thread_group.
338          *      This is OK, __unhash_process()->list_del_rcu() does not
339          *      clear the ->next pointer, we will find the new leader via
340          *      next_thread().
341          */
342         rcu_read_lock();
343         for_each_process(g) {
344                 if (g == tsk->group_leader)
345                         continue;
346                 if (g->flags & PF_KTHREAD)
347                         continue;
348                 p = g;
349                 do {
350                         if (p->mm) {
351                                 if (unlikely(p->mm == mm)) {
352                                         lock_task_sighand(p, &flags);
353                                         nr += zap_process(p, exit_code);
354                                         p->signal->flags = SIGNAL_GROUP_EXIT;
355                                         unlock_task_sighand(p, &flags);
356                                 }
357                                 break;
358                         }
359                 } while_each_thread(g, p);
360         }
361         rcu_read_unlock();
362 done:
363         atomic_set(&core_state->nr_threads, nr);
364         return nr;
365 }
366
367 static int coredump_wait(int exit_code, struct core_state *core_state)
368 {
369         struct task_struct *tsk = current;
370         struct mm_struct *mm = tsk->mm;
371         int core_waiters = -EBUSY;
372
373         init_completion(&core_state->startup);
374         core_state->dumper.task = tsk;
375         core_state->dumper.next = NULL;
376
377         down_write(&mm->mmap_sem);
378         if (!mm->core_state)
379                 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
380         up_write(&mm->mmap_sem);
381
382         if (core_waiters > 0) {
383                 struct core_thread *ptr;
384
385                 wait_for_completion(&core_state->startup);
386                 /*
387                  * Wait for all the threads to become inactive, so that
388                  * all the thread context (extended register state, like
389                  * fpu etc) gets copied to the memory.
390                  */
391                 ptr = core_state->dumper.next;
392                 while (ptr != NULL) {
393                         wait_task_inactive(ptr->task, 0);
394                         ptr = ptr->next;
395                 }
396         }
397
398         return core_waiters;
399 }
400
401 static void coredump_finish(struct mm_struct *mm, bool core_dumped)
402 {
403         struct core_thread *curr, *next;
404         struct task_struct *task;
405
406         spin_lock_irq(&current->sighand->siglock);
407         if (core_dumped && !__fatal_signal_pending(current))
408                 current->signal->group_exit_code |= 0x80;
409         current->signal->group_exit_task = NULL;
410         current->signal->flags = SIGNAL_GROUP_EXIT;
411         spin_unlock_irq(&current->sighand->siglock);
412
413         next = mm->core_state->dumper.next;
414         while ((curr = next) != NULL) {
415                 next = curr->next;
416                 task = curr->task;
417                 /*
418                  * see exit_mm(), curr->task must not see
419                  * ->task == NULL before we read ->next.
420                  */
421                 smp_mb();
422                 curr->task = NULL;
423                 wake_up_process(task);
424         }
425
426         mm->core_state = NULL;
427 }
428
429 static bool dump_interrupted(void)
430 {
431         /*
432          * SIGKILL or freezing() interrupt the coredumping. Perhaps we
433          * can do try_to_freeze() and check __fatal_signal_pending(),
434          * but then we need to teach dump_write() to restart and clear
435          * TIF_SIGPENDING.
436          */
437         return signal_pending(current);
438 }
439
440 static void wait_for_dump_helpers(struct file *file)
441 {
442         struct pipe_inode_info *pipe = file->private_data;
443
444         pipe_lock(pipe);
445         pipe->readers++;
446         pipe->writers--;
447         wake_up_interruptible_sync(&pipe->wait);
448         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
449         pipe_unlock(pipe);
450
451         /*
452          * We actually want wait_event_freezable() but then we need
453          * to clear TIF_SIGPENDING and improve dump_interrupted().
454          */
455         wait_event_interruptible(pipe->wait, pipe->readers == 1);
456
457         pipe_lock(pipe);
458         pipe->readers--;
459         pipe->writers++;
460         pipe_unlock(pipe);
461 }
462
463 /*
464  * umh_pipe_setup
465  * helper function to customize the process used
466  * to collect the core in userspace.  Specifically
467  * it sets up a pipe and installs it as fd 0 (stdin)
468  * for the process.  Returns 0 on success, or
469  * PTR_ERR on failure.
470  * Note that it also sets the core limit to 1.  This
471  * is a special value that we use to trap recursive
472  * core dumps
473  */
474 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
475 {
476         struct file *files[2];
477         struct coredump_params *cp = (struct coredump_params *)info->data;
478         int err = create_pipe_files(files, 0);
479         if (err)
480                 return err;
481
482         cp->file = files[1];
483
484         err = replace_fd(0, files[0], 0);
485         fput(files[0]);
486         /* and disallow core files too */
487         current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
488
489         return err;
490 }
491
492 void do_coredump(const siginfo_t *siginfo)
493 {
494         struct core_state core_state;
495         struct core_name cn;
496         struct mm_struct *mm = current->mm;
497         struct linux_binfmt * binfmt;
498         const struct cred *old_cred;
499         struct cred *cred;
500         int retval = 0;
501         int flag = 0;
502         int ispipe;
503         struct files_struct *displaced;
504         bool need_nonrelative = false;
505         bool core_dumped = false;
506         static atomic_t core_dump_count = ATOMIC_INIT(0);
507         struct coredump_params cprm = {
508                 .siginfo = siginfo,
509                 .regs = signal_pt_regs(),
510                 .limit = rlimit(RLIMIT_CORE),
511                 /*
512                  * We must use the same mm->flags while dumping core to avoid
513                  * inconsistency of bit flags, since this flag is not protected
514                  * by any locks.
515                  */
516                 .mm_flags = mm->flags,
517         };
518
519         audit_core_dumps(siginfo->si_signo);
520
521         binfmt = mm->binfmt;
522         if (!binfmt || !binfmt->core_dump)
523                 goto fail;
524         if (!__get_dumpable(cprm.mm_flags))
525                 goto fail;
526
527         cred = prepare_creds();
528         if (!cred)
529                 goto fail;
530         /*
531          * We cannot trust fsuid as being the "true" uid of the process
532          * nor do we know its entire history. We only know it was tainted
533          * so we dump it as root in mode 2, and only into a controlled
534          * environment (pipe handler or fully qualified path).
535          */
536         if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
537                 /* Setuid core dump mode */
538                 flag = O_EXCL;          /* Stop rewrite attacks */
539                 cred->fsuid = GLOBAL_ROOT_UID;  /* Dump root private */
540                 need_nonrelative = true;
541         }
542
543         retval = coredump_wait(siginfo->si_signo, &core_state);
544         if (retval < 0)
545                 goto fail_creds;
546
547         old_cred = override_creds(cred);
548
549         ispipe = format_corename(&cn, &cprm);
550
551         if (ispipe) {
552                 int dump_count;
553                 char **helper_argv;
554                 struct subprocess_info *sub_info;
555
556                 if (ispipe < 0) {
557                         printk(KERN_WARNING "format_corename failed\n");
558                         printk(KERN_WARNING "Aborting core\n");
559                         goto fail_unlock;
560                 }
561
562                 if (cprm.limit == 1) {
563                         /* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
564                          *
565                          * Normally core limits are irrelevant to pipes, since
566                          * we're not writing to the file system, but we use
567                          * cprm.limit of 1 here as a speacial value, this is a
568                          * consistent way to catch recursive crashes.
569                          * We can still crash if the core_pattern binary sets
570                          * RLIM_CORE = !1, but it runs as root, and can do
571                          * lots of stupid things.
572                          *
573                          * Note that we use task_tgid_vnr here to grab the pid
574                          * of the process group leader.  That way we get the
575                          * right pid if a thread in a multi-threaded
576                          * core_pattern process dies.
577                          */
578                         printk(KERN_WARNING
579                                 "Process %d(%s) has RLIMIT_CORE set to 1\n",
580                                 task_tgid_vnr(current), current->comm);
581                         printk(KERN_WARNING "Aborting core\n");
582                         goto fail_unlock;
583                 }
584                 cprm.limit = RLIM_INFINITY;
585
586                 dump_count = atomic_inc_return(&core_dump_count);
587                 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
588                         printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
589                                task_tgid_vnr(current), current->comm);
590                         printk(KERN_WARNING "Skipping core dump\n");
591                         goto fail_dropcount;
592                 }
593
594                 helper_argv = argv_split(GFP_KERNEL, cn.corename, NULL);
595                 if (!helper_argv) {
596                         printk(KERN_WARNING "%s failed to allocate memory\n",
597                                __func__);
598                         goto fail_dropcount;
599                 }
600
601                 retval = -ENOMEM;
602                 sub_info = call_usermodehelper_setup(helper_argv[0],
603                                                 helper_argv, NULL, GFP_KERNEL,
604                                                 umh_pipe_setup, NULL, &cprm);
605                 if (sub_info)
606                         retval = call_usermodehelper_exec(sub_info,
607                                                           UMH_WAIT_EXEC);
608
609                 argv_free(helper_argv);
610                 if (retval) {
611                         printk(KERN_INFO "Core dump to |%s pipe failed\n",
612                                cn.corename);
613                         goto close_fail;
614                 }
615         } else {
616                 struct inode *inode;
617
618                 if (cprm.limit < binfmt->min_coredump)
619                         goto fail_unlock;
620
621                 if (need_nonrelative && cn.corename[0] != '/') {
622                         printk(KERN_WARNING "Pid %d(%s) can only dump core "\
623                                 "to fully qualified path!\n",
624                                 task_tgid_vnr(current), current->comm);
625                         printk(KERN_WARNING "Skipping core dump\n");
626                         goto fail_unlock;
627                 }
628
629                 cprm.file = filp_open(cn.corename,
630                                  O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
631                                  0600);
632                 if (IS_ERR(cprm.file))
633                         goto fail_unlock;
634
635                 inode = file_inode(cprm.file);
636                 if (inode->i_nlink > 1)
637                         goto close_fail;
638                 if (d_unhashed(cprm.file->f_path.dentry))
639                         goto close_fail;
640                 /*
641                  * AK: actually i see no reason to not allow this for named
642                  * pipes etc, but keep the previous behaviour for now.
643                  */
644                 if (!S_ISREG(inode->i_mode))
645                         goto close_fail;
646                 /*
647                  * Dont allow local users get cute and trick others to coredump
648                  * into their pre-created files.
649                  */
650                 if (!uid_eq(inode->i_uid, current_fsuid()))
651                         goto close_fail;
652                 if (!cprm.file->f_op->write)
653                         goto close_fail;
654                 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
655                         goto close_fail;
656         }
657
658         /* get us an unshared descriptor table; almost always a no-op */
659         retval = unshare_files(&displaced);
660         if (retval)
661                 goto close_fail;
662         if (displaced)
663                 put_files_struct(displaced);
664         if (!dump_interrupted()) {
665                 file_start_write(cprm.file);
666                 core_dumped = binfmt->core_dump(&cprm);
667                 file_end_write(cprm.file);
668         }
669         if (ispipe && core_pipe_limit)
670                 wait_for_dump_helpers(cprm.file);
671 close_fail:
672         if (cprm.file)
673                 filp_close(cprm.file, NULL);
674 fail_dropcount:
675         if (ispipe)
676                 atomic_dec(&core_dump_count);
677 fail_unlock:
678         kfree(cn.corename);
679         coredump_finish(mm, core_dumped);
680         revert_creds(old_cred);
681 fail_creds:
682         put_cred(cred);
683 fail:
684         return;
685 }
686
687 /*
688  * Core dumping helper functions.  These are the only things you should
689  * do on a core-file: use only these functions to write out all the
690  * necessary info.
691  */
692 int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
693 {
694         struct file *file = cprm->file;
695         loff_t pos = file->f_pos;
696         ssize_t n;
697         if (cprm->written + nr > cprm->limit)
698                 return 0;
699         while (nr) {
700                 if (dump_interrupted())
701                         return 0;
702                 n = __kernel_write(file, addr, nr, &pos);
703                 if (n <= 0)
704                         return 0;
705                 file->f_pos = pos;
706                 cprm->written += n;
707                 nr -= n;
708         }
709         return 1;
710 }
711 EXPORT_SYMBOL(dump_emit);
712
713 int dump_skip(struct coredump_params *cprm, size_t nr)
714 {
715         static char zeroes[PAGE_SIZE];
716         struct file *file = cprm->file;
717         if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
718                 if (cprm->written + nr > cprm->limit)
719                         return 0;
720                 if (dump_interrupted() ||
721                     file->f_op->llseek(file, nr, SEEK_CUR) < 0)
722                         return 0;
723                 cprm->written += nr;
724                 return 1;
725         } else {
726                 while (nr > PAGE_SIZE) {
727                         if (!dump_emit(cprm, zeroes, PAGE_SIZE))
728                                 return 0;
729                         nr -= PAGE_SIZE;
730                 }
731                 return dump_emit(cprm, zeroes, nr);
732         }
733 }
734 EXPORT_SYMBOL(dump_skip);
735
736 int dump_align(struct coredump_params *cprm, int align)
737 {
738         unsigned mod = cprm->written & (align - 1);
739         if (align & (align - 1))
740                 return 0;
741         return mod ? dump_skip(cprm, align - mod) : 1;
742 }
743 EXPORT_SYMBOL(dump_align);