]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/f2fs/checkpoint.c
Merge remote-tracking branch 'ext4/dev'
[karo-tx-linux.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28
29 /*
30  * We guarantee no failure on the returned page.
31  */
32 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
33 {
34         struct address_space *mapping = META_MAPPING(sbi);
35         struct page *page = NULL;
36 repeat:
37         page = grab_cache_page(mapping, index);
38         if (!page) {
39                 cond_resched();
40                 goto repeat;
41         }
42         f2fs_wait_on_page_writeback(page, META);
43         SetPageUptodate(page);
44         return page;
45 }
46
47 /*
48  * We guarantee no failure on the returned page.
49  */
50 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
51 {
52         struct address_space *mapping = META_MAPPING(sbi);
53         struct page *page;
54         struct f2fs_io_info fio = {
55                 .sbi = sbi,
56                 .type = META,
57                 .rw = READ_SYNC | REQ_META | REQ_PRIO,
58                 .blk_addr = index,
59                 .encrypted_page = NULL,
60         };
61 repeat:
62         page = grab_cache_page(mapping, index);
63         if (!page) {
64                 cond_resched();
65                 goto repeat;
66         }
67         if (PageUptodate(page))
68                 goto out;
69
70         fio.page = page;
71
72         if (f2fs_submit_page_bio(&fio)) {
73                 f2fs_put_page(page, 1);
74                 goto repeat;
75         }
76
77         lock_page(page);
78         if (unlikely(page->mapping != mapping)) {
79                 f2fs_put_page(page, 1);
80                 goto repeat;
81         }
82
83         /*
84          * if there is any IO error when accessing device, make our filesystem
85          * readonly and make sure do not write checkpoint with non-uptodate
86          * meta page.
87          */
88         if (unlikely(!PageUptodate(page)))
89                 f2fs_stop_checkpoint(sbi);
90 out:
91         return page;
92 }
93
94 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
95 {
96         switch (type) {
97         case META_NAT:
98                 break;
99         case META_SIT:
100                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
101                         return false;
102                 break;
103         case META_SSA:
104                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
105                         blkaddr < SM_I(sbi)->ssa_blkaddr))
106                         return false;
107                 break;
108         case META_CP:
109                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
110                         blkaddr < __start_cp_addr(sbi)))
111                         return false;
112                 break;
113         case META_POR:
114                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
115                         blkaddr < MAIN_BLKADDR(sbi)))
116                         return false;
117                 break;
118         default:
119                 BUG();
120         }
121
122         return true;
123 }
124
125 /*
126  * Readahead CP/NAT/SIT/SSA pages
127  */
128 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type)
129 {
130         block_t prev_blk_addr = 0;
131         struct page *page;
132         block_t blkno = start;
133         struct f2fs_io_info fio = {
134                 .sbi = sbi,
135                 .type = META,
136                 .rw = READ_SYNC | REQ_META | REQ_PRIO,
137                 .encrypted_page = NULL,
138         };
139
140         for (; nrpages-- > 0; blkno++) {
141
142                 if (!is_valid_blkaddr(sbi, blkno, type))
143                         goto out;
144
145                 switch (type) {
146                 case META_NAT:
147                         if (unlikely(blkno >=
148                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
149                                 blkno = 0;
150                         /* get nat block addr */
151                         fio.blk_addr = current_nat_addr(sbi,
152                                         blkno * NAT_ENTRY_PER_BLOCK);
153                         break;
154                 case META_SIT:
155                         /* get sit block addr */
156                         fio.blk_addr = current_sit_addr(sbi,
157                                         blkno * SIT_ENTRY_PER_BLOCK);
158                         if (blkno != start && prev_blk_addr + 1 != fio.blk_addr)
159                                 goto out;
160                         prev_blk_addr = fio.blk_addr;
161                         break;
162                 case META_SSA:
163                 case META_CP:
164                 case META_POR:
165                         fio.blk_addr = blkno;
166                         break;
167                 default:
168                         BUG();
169                 }
170
171                 page = grab_cache_page(META_MAPPING(sbi), fio.blk_addr);
172                 if (!page)
173                         continue;
174                 if (PageUptodate(page)) {
175                         f2fs_put_page(page, 1);
176                         continue;
177                 }
178
179                 fio.page = page;
180                 f2fs_submit_page_mbio(&fio);
181                 f2fs_put_page(page, 0);
182         }
183 out:
184         f2fs_submit_merged_bio(sbi, META, READ);
185         return blkno - start;
186 }
187
188 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
189 {
190         struct page *page;
191         bool readahead = false;
192
193         page = find_get_page(META_MAPPING(sbi), index);
194         if (!page || (page && !PageUptodate(page)))
195                 readahead = true;
196         f2fs_put_page(page, 0);
197
198         if (readahead)
199                 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR);
200 }
201
202 static int f2fs_write_meta_page(struct page *page,
203                                 struct writeback_control *wbc)
204 {
205         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
206
207         trace_f2fs_writepage(page, META);
208
209         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
210                 goto redirty_out;
211         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
212                 goto redirty_out;
213         if (unlikely(f2fs_cp_error(sbi)))
214                 goto redirty_out;
215
216         f2fs_wait_on_page_writeback(page, META);
217         write_meta_page(sbi, page);
218         dec_page_count(sbi, F2FS_DIRTY_META);
219         unlock_page(page);
220
221         if (wbc->for_reclaim)
222                 f2fs_submit_merged_bio(sbi, META, WRITE);
223         return 0;
224
225 redirty_out:
226         redirty_page_for_writepage(wbc, page);
227         return AOP_WRITEPAGE_ACTIVATE;
228 }
229
230 static int f2fs_write_meta_pages(struct address_space *mapping,
231                                 struct writeback_control *wbc)
232 {
233         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
234         long diff, written;
235
236         trace_f2fs_writepages(mapping->host, wbc, META);
237
238         /* collect a number of dirty meta pages and write together */
239         if (wbc->for_kupdate ||
240                 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
241                 goto skip_write;
242
243         /* if mounting is failed, skip writing node pages */
244         mutex_lock(&sbi->cp_mutex);
245         diff = nr_pages_to_write(sbi, META, wbc);
246         written = sync_meta_pages(sbi, META, wbc->nr_to_write);
247         mutex_unlock(&sbi->cp_mutex);
248         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
249         return 0;
250
251 skip_write:
252         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
253         return 0;
254 }
255
256 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
257                                                 long nr_to_write)
258 {
259         struct address_space *mapping = META_MAPPING(sbi);
260         pgoff_t index = 0, end = LONG_MAX;
261         struct pagevec pvec;
262         long nwritten = 0;
263         struct writeback_control wbc = {
264                 .for_reclaim = 0,
265         };
266
267         pagevec_init(&pvec, 0);
268
269         while (index <= end) {
270                 int i, nr_pages;
271                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
272                                 PAGECACHE_TAG_DIRTY,
273                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
274                 if (unlikely(nr_pages == 0))
275                         break;
276
277                 for (i = 0; i < nr_pages; i++) {
278                         struct page *page = pvec.pages[i];
279
280                         lock_page(page);
281
282                         if (unlikely(page->mapping != mapping)) {
283 continue_unlock:
284                                 unlock_page(page);
285                                 continue;
286                         }
287                         if (!PageDirty(page)) {
288                                 /* someone wrote it for us */
289                                 goto continue_unlock;
290                         }
291
292                         if (!clear_page_dirty_for_io(page))
293                                 goto continue_unlock;
294
295                         if (mapping->a_ops->writepage(page, &wbc)) {
296                                 unlock_page(page);
297                                 break;
298                         }
299                         nwritten++;
300                         if (unlikely(nwritten >= nr_to_write))
301                                 break;
302                 }
303                 pagevec_release(&pvec);
304                 cond_resched();
305         }
306
307         if (nwritten)
308                 f2fs_submit_merged_bio(sbi, type, WRITE);
309
310         return nwritten;
311 }
312
313 static int f2fs_set_meta_page_dirty(struct page *page)
314 {
315         trace_f2fs_set_page_dirty(page, META);
316
317         SetPageUptodate(page);
318         if (!PageDirty(page)) {
319                 __set_page_dirty_nobuffers(page);
320                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
321                 SetPagePrivate(page);
322                 f2fs_trace_pid(page);
323                 return 1;
324         }
325         return 0;
326 }
327
328 const struct address_space_operations f2fs_meta_aops = {
329         .writepage      = f2fs_write_meta_page,
330         .writepages     = f2fs_write_meta_pages,
331         .set_page_dirty = f2fs_set_meta_page_dirty,
332         .invalidatepage = f2fs_invalidate_page,
333         .releasepage    = f2fs_release_page,
334 };
335
336 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
337 {
338         struct inode_management *im = &sbi->im[type];
339         struct ino_entry *e, *tmp;
340
341         tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
342 retry:
343         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
344
345         spin_lock(&im->ino_lock);
346         e = radix_tree_lookup(&im->ino_root, ino);
347         if (!e) {
348                 e = tmp;
349                 if (radix_tree_insert(&im->ino_root, ino, e)) {
350                         spin_unlock(&im->ino_lock);
351                         radix_tree_preload_end();
352                         goto retry;
353                 }
354                 memset(e, 0, sizeof(struct ino_entry));
355                 e->ino = ino;
356
357                 list_add_tail(&e->list, &im->ino_list);
358                 if (type != ORPHAN_INO)
359                         im->ino_num++;
360         }
361         spin_unlock(&im->ino_lock);
362         radix_tree_preload_end();
363
364         if (e != tmp)
365                 kmem_cache_free(ino_entry_slab, tmp);
366 }
367
368 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
369 {
370         struct inode_management *im = &sbi->im[type];
371         struct ino_entry *e;
372
373         spin_lock(&im->ino_lock);
374         e = radix_tree_lookup(&im->ino_root, ino);
375         if (e) {
376                 list_del(&e->list);
377                 radix_tree_delete(&im->ino_root, ino);
378                 im->ino_num--;
379                 spin_unlock(&im->ino_lock);
380                 kmem_cache_free(ino_entry_slab, e);
381                 return;
382         }
383         spin_unlock(&im->ino_lock);
384 }
385
386 void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
387 {
388         /* add new dirty ino entry into list */
389         __add_ino_entry(sbi, ino, type);
390 }
391
392 void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
393 {
394         /* remove dirty ino entry from list */
395         __remove_ino_entry(sbi, ino, type);
396 }
397
398 /* mode should be APPEND_INO or UPDATE_INO */
399 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
400 {
401         struct inode_management *im = &sbi->im[mode];
402         struct ino_entry *e;
403
404         spin_lock(&im->ino_lock);
405         e = radix_tree_lookup(&im->ino_root, ino);
406         spin_unlock(&im->ino_lock);
407         return e ? true : false;
408 }
409
410 void release_dirty_inode(struct f2fs_sb_info *sbi)
411 {
412         struct ino_entry *e, *tmp;
413         int i;
414
415         for (i = APPEND_INO; i <= UPDATE_INO; i++) {
416                 struct inode_management *im = &sbi->im[i];
417
418                 spin_lock(&im->ino_lock);
419                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
420                         list_del(&e->list);
421                         radix_tree_delete(&im->ino_root, e->ino);
422                         kmem_cache_free(ino_entry_slab, e);
423                         im->ino_num--;
424                 }
425                 spin_unlock(&im->ino_lock);
426         }
427 }
428
429 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
430 {
431         struct inode_management *im = &sbi->im[ORPHAN_INO];
432         int err = 0;
433
434         spin_lock(&im->ino_lock);
435         if (unlikely(im->ino_num >= sbi->max_orphans))
436                 err = -ENOSPC;
437         else
438                 im->ino_num++;
439         spin_unlock(&im->ino_lock);
440
441         return err;
442 }
443
444 void release_orphan_inode(struct f2fs_sb_info *sbi)
445 {
446         struct inode_management *im = &sbi->im[ORPHAN_INO];
447
448         spin_lock(&im->ino_lock);
449         f2fs_bug_on(sbi, im->ino_num == 0);
450         im->ino_num--;
451         spin_unlock(&im->ino_lock);
452 }
453
454 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
455 {
456         /* add new orphan ino entry into list */
457         __add_ino_entry(sbi, ino, ORPHAN_INO);
458 }
459
460 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
461 {
462         /* remove orphan entry from orphan list */
463         __remove_ino_entry(sbi, ino, ORPHAN_INO);
464 }
465
466 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
467 {
468         struct inode *inode;
469
470         inode = f2fs_iget(sbi->sb, ino);
471         if (IS_ERR(inode)) {
472                 /*
473                  * there should be a bug that we can't find the entry
474                  * to orphan inode.
475                  */
476                 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
477                 return PTR_ERR(inode);
478         }
479
480         clear_nlink(inode);
481
482         /* truncate all the data during iput */
483         iput(inode);
484         return 0;
485 }
486
487 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
488 {
489         block_t start_blk, orphan_blocks, i, j;
490         int err;
491
492         if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
493                 return 0;
494
495         start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
496         orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
497
498         ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP);
499
500         for (i = 0; i < orphan_blocks; i++) {
501                 struct page *page = get_meta_page(sbi, start_blk + i);
502                 struct f2fs_orphan_block *orphan_blk;
503
504                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
505                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
506                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
507                         err = recover_orphan_inode(sbi, ino);
508                         if (err) {
509                                 f2fs_put_page(page, 1);
510                                 return err;
511                         }
512                 }
513                 f2fs_put_page(page, 1);
514         }
515         /* clear Orphan Flag */
516         clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
517         return 0;
518 }
519
520 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
521 {
522         struct list_head *head;
523         struct f2fs_orphan_block *orphan_blk = NULL;
524         unsigned int nentries = 0;
525         unsigned short index = 1;
526         unsigned short orphan_blocks;
527         struct page *page = NULL;
528         struct ino_entry *orphan = NULL;
529         struct inode_management *im = &sbi->im[ORPHAN_INO];
530
531         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
532
533         /*
534          * we don't need to do spin_lock(&im->ino_lock) here, since all the
535          * orphan inode operations are covered under f2fs_lock_op().
536          * And, spin_lock should be avoided due to page operations below.
537          */
538         head = &im->ino_list;
539
540         /* loop for each orphan inode entry and write them in Jornal block */
541         list_for_each_entry(orphan, head, list) {
542                 if (!page) {
543                         page = grab_meta_page(sbi, start_blk++);
544                         orphan_blk =
545                                 (struct f2fs_orphan_block *)page_address(page);
546                         memset(orphan_blk, 0, sizeof(*orphan_blk));
547                 }
548
549                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
550
551                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
552                         /*
553                          * an orphan block is full of 1020 entries,
554                          * then we need to flush current orphan blocks
555                          * and bring another one in memory
556                          */
557                         orphan_blk->blk_addr = cpu_to_le16(index);
558                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
559                         orphan_blk->entry_count = cpu_to_le32(nentries);
560                         set_page_dirty(page);
561                         f2fs_put_page(page, 1);
562                         index++;
563                         nentries = 0;
564                         page = NULL;
565                 }
566         }
567
568         if (page) {
569                 orphan_blk->blk_addr = cpu_to_le16(index);
570                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
571                 orphan_blk->entry_count = cpu_to_le32(nentries);
572                 set_page_dirty(page);
573                 f2fs_put_page(page, 1);
574         }
575 }
576
577 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
578                                 block_t cp_addr, unsigned long long *version)
579 {
580         struct page *cp_page_1, *cp_page_2 = NULL;
581         unsigned long blk_size = sbi->blocksize;
582         struct f2fs_checkpoint *cp_block;
583         unsigned long long cur_version = 0, pre_version = 0;
584         size_t crc_offset;
585         __u32 crc = 0;
586
587         /* Read the 1st cp block in this CP pack */
588         cp_page_1 = get_meta_page(sbi, cp_addr);
589
590         /* get the version number */
591         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
592         crc_offset = le32_to_cpu(cp_block->checksum_offset);
593         if (crc_offset >= blk_size)
594                 goto invalid_cp1;
595
596         crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
597         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
598                 goto invalid_cp1;
599
600         pre_version = cur_cp_version(cp_block);
601
602         /* Read the 2nd cp block in this CP pack */
603         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
604         cp_page_2 = get_meta_page(sbi, cp_addr);
605
606         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
607         crc_offset = le32_to_cpu(cp_block->checksum_offset);
608         if (crc_offset >= blk_size)
609                 goto invalid_cp2;
610
611         crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
612         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
613                 goto invalid_cp2;
614
615         cur_version = cur_cp_version(cp_block);
616
617         if (cur_version == pre_version) {
618                 *version = cur_version;
619                 f2fs_put_page(cp_page_2, 1);
620                 return cp_page_1;
621         }
622 invalid_cp2:
623         f2fs_put_page(cp_page_2, 1);
624 invalid_cp1:
625         f2fs_put_page(cp_page_1, 1);
626         return NULL;
627 }
628
629 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
630 {
631         struct f2fs_checkpoint *cp_block;
632         struct f2fs_super_block *fsb = sbi->raw_super;
633         struct page *cp1, *cp2, *cur_page;
634         unsigned long blk_size = sbi->blocksize;
635         unsigned long long cp1_version = 0, cp2_version = 0;
636         unsigned long long cp_start_blk_no;
637         unsigned int cp_blks = 1 + __cp_payload(sbi);
638         block_t cp_blk_no;
639         int i;
640
641         sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
642         if (!sbi->ckpt)
643                 return -ENOMEM;
644         /*
645          * Finding out valid cp block involves read both
646          * sets( cp pack1 and cp pack 2)
647          */
648         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
649         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
650
651         /* The second checkpoint pack should start at the next segment */
652         cp_start_blk_no += ((unsigned long long)1) <<
653                                 le32_to_cpu(fsb->log_blocks_per_seg);
654         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
655
656         if (cp1 && cp2) {
657                 if (ver_after(cp2_version, cp1_version))
658                         cur_page = cp2;
659                 else
660                         cur_page = cp1;
661         } else if (cp1) {
662                 cur_page = cp1;
663         } else if (cp2) {
664                 cur_page = cp2;
665         } else {
666                 goto fail_no_cp;
667         }
668
669         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
670         memcpy(sbi->ckpt, cp_block, blk_size);
671
672         if (cp_blks <= 1)
673                 goto done;
674
675         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
676         if (cur_page == cp2)
677                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
678
679         for (i = 1; i < cp_blks; i++) {
680                 void *sit_bitmap_ptr;
681                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
682
683                 cur_page = get_meta_page(sbi, cp_blk_no + i);
684                 sit_bitmap_ptr = page_address(cur_page);
685                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
686                 f2fs_put_page(cur_page, 1);
687         }
688 done:
689         f2fs_put_page(cp1, 1);
690         f2fs_put_page(cp2, 1);
691         return 0;
692
693 fail_no_cp:
694         kfree(sbi->ckpt);
695         return -EINVAL;
696 }
697
698 static int __add_dirty_inode(struct inode *inode, struct inode_entry *new)
699 {
700         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
701
702         if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
703                 return -EEXIST;
704
705         set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
706         F2FS_I(inode)->dirty_dir = new;
707         list_add_tail(&new->list, &sbi->dir_inode_list);
708         stat_inc_dirty_dir(sbi);
709         return 0;
710 }
711
712 void update_dirty_page(struct inode *inode, struct page *page)
713 {
714         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
715         struct inode_entry *new;
716         int ret = 0;
717
718         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
719                         !S_ISLNK(inode->i_mode))
720                 return;
721
722         if (!S_ISDIR(inode->i_mode)) {
723                 inode_inc_dirty_pages(inode);
724                 goto out;
725         }
726
727         new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
728         new->inode = inode;
729         INIT_LIST_HEAD(&new->list);
730
731         spin_lock(&sbi->dir_inode_lock);
732         ret = __add_dirty_inode(inode, new);
733         inode_inc_dirty_pages(inode);
734         spin_unlock(&sbi->dir_inode_lock);
735
736         if (ret)
737                 kmem_cache_free(inode_entry_slab, new);
738 out:
739         SetPagePrivate(page);
740         f2fs_trace_pid(page);
741 }
742
743 void add_dirty_dir_inode(struct inode *inode)
744 {
745         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
746         struct inode_entry *new =
747                         f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
748         int ret = 0;
749
750         new->inode = inode;
751         INIT_LIST_HEAD(&new->list);
752
753         spin_lock(&sbi->dir_inode_lock);
754         ret = __add_dirty_inode(inode, new);
755         spin_unlock(&sbi->dir_inode_lock);
756
757         if (ret)
758                 kmem_cache_free(inode_entry_slab, new);
759 }
760
761 void remove_dirty_dir_inode(struct inode *inode)
762 {
763         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
764         struct inode_entry *entry;
765
766         if (!S_ISDIR(inode->i_mode))
767                 return;
768
769         spin_lock(&sbi->dir_inode_lock);
770         if (get_dirty_pages(inode) ||
771                         !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
772                 spin_unlock(&sbi->dir_inode_lock);
773                 return;
774         }
775
776         entry = F2FS_I(inode)->dirty_dir;
777         list_del(&entry->list);
778         F2FS_I(inode)->dirty_dir = NULL;
779         clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
780         stat_dec_dirty_dir(sbi);
781         spin_unlock(&sbi->dir_inode_lock);
782         kmem_cache_free(inode_entry_slab, entry);
783
784         /* Only from the recovery routine */
785         if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
786                 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
787                 iput(inode);
788         }
789 }
790
791 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
792 {
793         struct list_head *head;
794         struct inode_entry *entry;
795         struct inode *inode;
796 retry:
797         if (unlikely(f2fs_cp_error(sbi)))
798                 return;
799
800         spin_lock(&sbi->dir_inode_lock);
801
802         head = &sbi->dir_inode_list;
803         if (list_empty(head)) {
804                 spin_unlock(&sbi->dir_inode_lock);
805                 return;
806         }
807         entry = list_entry(head->next, struct inode_entry, list);
808         inode = igrab(entry->inode);
809         spin_unlock(&sbi->dir_inode_lock);
810         if (inode) {
811                 filemap_fdatawrite(inode->i_mapping);
812                 iput(inode);
813         } else {
814                 /*
815                  * We should submit bio, since it exists several
816                  * wribacking dentry pages in the freeing inode.
817                  */
818                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
819                 cond_resched();
820         }
821         goto retry;
822 }
823
824 /*
825  * Freeze all the FS-operations for checkpoint.
826  */
827 static int block_operations(struct f2fs_sb_info *sbi)
828 {
829         struct writeback_control wbc = {
830                 .sync_mode = WB_SYNC_ALL,
831                 .nr_to_write = LONG_MAX,
832                 .for_reclaim = 0,
833         };
834         struct blk_plug plug;
835         int err = 0;
836
837         blk_start_plug(&plug);
838
839 retry_flush_dents:
840         f2fs_lock_all(sbi);
841         /* write all the dirty dentry pages */
842         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
843                 f2fs_unlock_all(sbi);
844                 sync_dirty_dir_inodes(sbi);
845                 if (unlikely(f2fs_cp_error(sbi))) {
846                         err = -EIO;
847                         goto out;
848                 }
849                 goto retry_flush_dents;
850         }
851
852         /*
853          * POR: we should ensure that there are no dirty node pages
854          * until finishing nat/sit flush.
855          */
856 retry_flush_nodes:
857         down_write(&sbi->node_write);
858
859         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
860                 up_write(&sbi->node_write);
861                 sync_node_pages(sbi, 0, &wbc);
862                 if (unlikely(f2fs_cp_error(sbi))) {
863                         f2fs_unlock_all(sbi);
864                         err = -EIO;
865                         goto out;
866                 }
867                 goto retry_flush_nodes;
868         }
869 out:
870         blk_finish_plug(&plug);
871         return err;
872 }
873
874 static void unblock_operations(struct f2fs_sb_info *sbi)
875 {
876         up_write(&sbi->node_write);
877         f2fs_unlock_all(sbi);
878 }
879
880 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
881 {
882         DEFINE_WAIT(wait);
883
884         for (;;) {
885                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
886
887                 if (!get_pages(sbi, F2FS_WRITEBACK))
888                         break;
889
890                 io_schedule();
891         }
892         finish_wait(&sbi->cp_wait, &wait);
893 }
894
895 static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
896 {
897         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
898         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
899         struct f2fs_nm_info *nm_i = NM_I(sbi);
900         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
901         nid_t last_nid = nm_i->next_scan_nid;
902         block_t start_blk;
903         unsigned int data_sum_blocks, orphan_blocks;
904         __u32 crc32 = 0;
905         int i;
906         int cp_payload_blks = __cp_payload(sbi);
907         block_t discard_blk = NEXT_FREE_BLKADDR(sbi, curseg);
908         bool invalidate = false;
909
910         /*
911          * This avoids to conduct wrong roll-forward operations and uses
912          * metapages, so should be called prior to sync_meta_pages below.
913          */
914         if (discard_next_dnode(sbi, discard_blk))
915                 invalidate = true;
916
917         /* Flush all the NAT/SIT pages */
918         while (get_pages(sbi, F2FS_DIRTY_META)) {
919                 sync_meta_pages(sbi, META, LONG_MAX);
920                 if (unlikely(f2fs_cp_error(sbi)))
921                         return;
922         }
923
924         next_free_nid(sbi, &last_nid);
925
926         /*
927          * modify checkpoint
928          * version number is already updated
929          */
930         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
931         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
932         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
933         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
934                 ckpt->cur_node_segno[i] =
935                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
936                 ckpt->cur_node_blkoff[i] =
937                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
938                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
939                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
940         }
941         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
942                 ckpt->cur_data_segno[i] =
943                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
944                 ckpt->cur_data_blkoff[i] =
945                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
946                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
947                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
948         }
949
950         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
951         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
952         ckpt->next_free_nid = cpu_to_le32(last_nid);
953
954         /* 2 cp  + n data seg summary + orphan inode blocks */
955         data_sum_blocks = npages_for_summary_flush(sbi, false);
956         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
957                 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
958         else
959                 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
960
961         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
962         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
963                         orphan_blocks);
964
965         if (__remain_node_summaries(cpc->reason))
966                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
967                                 cp_payload_blks + data_sum_blocks +
968                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
969         else
970                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
971                                 cp_payload_blks + data_sum_blocks +
972                                 orphan_blocks);
973
974         if (cpc->reason == CP_UMOUNT)
975                 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
976         else
977                 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
978
979         if (cpc->reason == CP_FASTBOOT)
980                 set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
981         else
982                 clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
983
984         if (orphan_num)
985                 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
986         else
987                 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
988
989         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
990                 set_ckpt_flags(ckpt, CP_FSCK_FLAG);
991
992         /* update SIT/NAT bitmap */
993         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
994         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
995
996         crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
997         *((__le32 *)((unsigned char *)ckpt +
998                                 le32_to_cpu(ckpt->checksum_offset)))
999                                 = cpu_to_le32(crc32);
1000
1001         start_blk = __start_cp_addr(sbi);
1002
1003         /* write out checkpoint buffer at block 0 */
1004         update_meta_page(sbi, ckpt, start_blk++);
1005
1006         for (i = 1; i < 1 + cp_payload_blks; i++)
1007                 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1008                                                         start_blk++);
1009
1010         if (orphan_num) {
1011                 write_orphan_inodes(sbi, start_blk);
1012                 start_blk += orphan_blocks;
1013         }
1014
1015         write_data_summaries(sbi, start_blk);
1016         start_blk += data_sum_blocks;
1017         if (__remain_node_summaries(cpc->reason)) {
1018                 write_node_summaries(sbi, start_blk);
1019                 start_blk += NR_CURSEG_NODE_TYPE;
1020         }
1021
1022         /* writeout checkpoint block */
1023         update_meta_page(sbi, ckpt, start_blk);
1024
1025         /* wait for previous submitted node/meta pages writeback */
1026         wait_on_all_pages_writeback(sbi);
1027
1028         if (unlikely(f2fs_cp_error(sbi)))
1029                 return;
1030
1031         filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
1032         filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
1033
1034         /* update user_block_counts */
1035         sbi->last_valid_block_count = sbi->total_valid_block_count;
1036         sbi->alloc_valid_block_count = 0;
1037
1038         /* Here, we only have one bio having CP pack */
1039         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1040
1041         /* wait for previous submitted meta pages writeback */
1042         wait_on_all_pages_writeback(sbi);
1043
1044         /*
1045          * invalidate meta page which is used temporarily for zeroing out
1046          * block at the end of warm node chain.
1047          */
1048         if (invalidate)
1049                 invalidate_mapping_pages(META_MAPPING(sbi), discard_blk,
1050                                                                 discard_blk);
1051
1052         release_dirty_inode(sbi);
1053
1054         if (unlikely(f2fs_cp_error(sbi)))
1055                 return;
1056
1057         clear_prefree_segments(sbi, cpc);
1058         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1059 }
1060
1061 /*
1062  * We guarantee that this checkpoint procedure will not fail.
1063  */
1064 void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1065 {
1066         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1067         unsigned long long ckpt_ver;
1068
1069         mutex_lock(&sbi->cp_mutex);
1070
1071         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1072                 (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
1073                 (cpc->reason == CP_DISCARD && !sbi->discard_blks)))
1074                 goto out;
1075         if (unlikely(f2fs_cp_error(sbi)))
1076                 goto out;
1077         if (f2fs_readonly(sbi->sb))
1078                 goto out;
1079
1080         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1081
1082         if (block_operations(sbi))
1083                 goto out;
1084
1085         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1086
1087         f2fs_submit_merged_bio(sbi, DATA, WRITE);
1088         f2fs_submit_merged_bio(sbi, NODE, WRITE);
1089         f2fs_submit_merged_bio(sbi, META, WRITE);
1090
1091         /*
1092          * update checkpoint pack index
1093          * Increase the version number so that
1094          * SIT entries and seg summaries are written at correct place
1095          */
1096         ckpt_ver = cur_cp_version(ckpt);
1097         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1098
1099         /* write cached NAT/SIT entries to NAT/SIT area */
1100         flush_nat_entries(sbi);
1101         flush_sit_entries(sbi, cpc);
1102
1103         /* unlock all the fs_lock[] in do_checkpoint() */
1104         do_checkpoint(sbi, cpc);
1105
1106         unblock_operations(sbi);
1107         stat_inc_cp_count(sbi->stat_info);
1108
1109         if (cpc->reason == CP_RECOVERY)
1110                 f2fs_msg(sbi->sb, KERN_NOTICE,
1111                         "checkpoint: version = %llx", ckpt_ver);
1112 out:
1113         mutex_unlock(&sbi->cp_mutex);
1114         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1115 }
1116
1117 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1118 {
1119         int i;
1120
1121         for (i = 0; i < MAX_INO_ENTRY; i++) {
1122                 struct inode_management *im = &sbi->im[i];
1123
1124                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1125                 spin_lock_init(&im->ino_lock);
1126                 INIT_LIST_HEAD(&im->ino_list);
1127                 im->ino_num = 0;
1128         }
1129
1130         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1131                         NR_CURSEG_TYPE - __cp_payload(sbi)) *
1132                                 F2FS_ORPHANS_PER_BLOCK;
1133 }
1134
1135 int __init create_checkpoint_caches(void)
1136 {
1137         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1138                         sizeof(struct ino_entry));
1139         if (!ino_entry_slab)
1140                 return -ENOMEM;
1141         inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1142                         sizeof(struct inode_entry));
1143         if (!inode_entry_slab) {
1144                 kmem_cache_destroy(ino_entry_slab);
1145                 return -ENOMEM;
1146         }
1147         return 0;
1148 }
1149
1150 void destroy_checkpoint_caches(void)
1151 {
1152         kmem_cache_destroy(ino_entry_slab);
1153         kmem_cache_destroy(inode_entry_slab);
1154 }