]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - include/uapi/linux/perf_event.h
Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[karo-tx-linux.git] / include / uapi / linux / perf_event.h
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _UAPI_LINUX_PERF_EVENT_H
15 #define _UAPI_LINUX_PERF_EVENT_H
16
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
20
21 /*
22  * User-space ABI bits:
23  */
24
25 /*
26  * attr.type
27  */
28 enum perf_type_id {
29         PERF_TYPE_HARDWARE                      = 0,
30         PERF_TYPE_SOFTWARE                      = 1,
31         PERF_TYPE_TRACEPOINT                    = 2,
32         PERF_TYPE_HW_CACHE                      = 3,
33         PERF_TYPE_RAW                           = 4,
34         PERF_TYPE_BREAKPOINT                    = 5,
35
36         PERF_TYPE_MAX,                          /* non-ABI */
37 };
38
39 /*
40  * Generalized performance event event_id types, used by the
41  * attr.event_id parameter of the sys_perf_event_open()
42  * syscall:
43  */
44 enum perf_hw_id {
45         /*
46          * Common hardware events, generalized by the kernel:
47          */
48         PERF_COUNT_HW_CPU_CYCLES                = 0,
49         PERF_COUNT_HW_INSTRUCTIONS              = 1,
50         PERF_COUNT_HW_CACHE_REFERENCES          = 2,
51         PERF_COUNT_HW_CACHE_MISSES              = 3,
52         PERF_COUNT_HW_BRANCH_INSTRUCTIONS       = 4,
53         PERF_COUNT_HW_BRANCH_MISSES             = 5,
54         PERF_COUNT_HW_BUS_CYCLES                = 6,
55         PERF_COUNT_HW_STALLED_CYCLES_FRONTEND   = 7,
56         PERF_COUNT_HW_STALLED_CYCLES_BACKEND    = 8,
57         PERF_COUNT_HW_REF_CPU_CYCLES            = 9,
58
59         PERF_COUNT_HW_MAX,                      /* non-ABI */
60 };
61
62 /*
63  * Generalized hardware cache events:
64  *
65  *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
66  *       { read, write, prefetch } x
67  *       { accesses, misses }
68  */
69 enum perf_hw_cache_id {
70         PERF_COUNT_HW_CACHE_L1D                 = 0,
71         PERF_COUNT_HW_CACHE_L1I                 = 1,
72         PERF_COUNT_HW_CACHE_LL                  = 2,
73         PERF_COUNT_HW_CACHE_DTLB                = 3,
74         PERF_COUNT_HW_CACHE_ITLB                = 4,
75         PERF_COUNT_HW_CACHE_BPU                 = 5,
76         PERF_COUNT_HW_CACHE_NODE                = 6,
77
78         PERF_COUNT_HW_CACHE_MAX,                /* non-ABI */
79 };
80
81 enum perf_hw_cache_op_id {
82         PERF_COUNT_HW_CACHE_OP_READ             = 0,
83         PERF_COUNT_HW_CACHE_OP_WRITE            = 1,
84         PERF_COUNT_HW_CACHE_OP_PREFETCH         = 2,
85
86         PERF_COUNT_HW_CACHE_OP_MAX,             /* non-ABI */
87 };
88
89 enum perf_hw_cache_op_result_id {
90         PERF_COUNT_HW_CACHE_RESULT_ACCESS       = 0,
91         PERF_COUNT_HW_CACHE_RESULT_MISS         = 1,
92
93         PERF_COUNT_HW_CACHE_RESULT_MAX,         /* non-ABI */
94 };
95
96 /*
97  * Special "software" events provided by the kernel, even if the hardware
98  * does not support performance events. These events measure various
99  * physical and sw events of the kernel (and allow the profiling of them as
100  * well):
101  */
102 enum perf_sw_ids {
103         PERF_COUNT_SW_CPU_CLOCK                 = 0,
104         PERF_COUNT_SW_TASK_CLOCK                = 1,
105         PERF_COUNT_SW_PAGE_FAULTS               = 2,
106         PERF_COUNT_SW_CONTEXT_SWITCHES          = 3,
107         PERF_COUNT_SW_CPU_MIGRATIONS            = 4,
108         PERF_COUNT_SW_PAGE_FAULTS_MIN           = 5,
109         PERF_COUNT_SW_PAGE_FAULTS_MAJ           = 6,
110         PERF_COUNT_SW_ALIGNMENT_FAULTS          = 7,
111         PERF_COUNT_SW_EMULATION_FAULTS          = 8,
112         PERF_COUNT_SW_DUMMY                     = 9,
113
114         PERF_COUNT_SW_MAX,                      /* non-ABI */
115 };
116
117 /*
118  * Bits that can be set in attr.sample_type to request information
119  * in the overflow packets.
120  */
121 enum perf_event_sample_format {
122         PERF_SAMPLE_IP                          = 1U << 0,
123         PERF_SAMPLE_TID                         = 1U << 1,
124         PERF_SAMPLE_TIME                        = 1U << 2,
125         PERF_SAMPLE_ADDR                        = 1U << 3,
126         PERF_SAMPLE_READ                        = 1U << 4,
127         PERF_SAMPLE_CALLCHAIN                   = 1U << 5,
128         PERF_SAMPLE_ID                          = 1U << 6,
129         PERF_SAMPLE_CPU                         = 1U << 7,
130         PERF_SAMPLE_PERIOD                      = 1U << 8,
131         PERF_SAMPLE_STREAM_ID                   = 1U << 9,
132         PERF_SAMPLE_RAW                         = 1U << 10,
133         PERF_SAMPLE_BRANCH_STACK                = 1U << 11,
134         PERF_SAMPLE_REGS_USER                   = 1U << 12,
135         PERF_SAMPLE_STACK_USER                  = 1U << 13,
136         PERF_SAMPLE_WEIGHT                      = 1U << 14,
137         PERF_SAMPLE_DATA_SRC                    = 1U << 15,
138         PERF_SAMPLE_IDENTIFIER                  = 1U << 16,
139         PERF_SAMPLE_TRANSACTION                 = 1U << 17,
140         PERF_SAMPLE_REGS_INTR                   = 1U << 18,
141
142         PERF_SAMPLE_MAX = 1U << 19,             /* non-ABI */
143 };
144
145 /*
146  * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
147  *
148  * If the user does not pass priv level information via branch_sample_type,
149  * the kernel uses the event's priv level. Branch and event priv levels do
150  * not have to match. Branch priv level is checked for permissions.
151  *
152  * The branch types can be combined, however BRANCH_ANY covers all types
153  * of branches and therefore it supersedes all the other types.
154  */
155 enum perf_branch_sample_type_shift {
156         PERF_SAMPLE_BRANCH_USER_SHIFT           = 0, /* user branches */
157         PERF_SAMPLE_BRANCH_KERNEL_SHIFT         = 1, /* kernel branches */
158         PERF_SAMPLE_BRANCH_HV_SHIFT             = 2, /* hypervisor branches */
159
160         PERF_SAMPLE_BRANCH_ANY_SHIFT            = 3, /* any branch types */
161         PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT       = 4, /* any call branch */
162         PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT     = 5, /* any return branch */
163         PERF_SAMPLE_BRANCH_IND_CALL_SHIFT       = 6, /* indirect calls */
164         PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT       = 7, /* transaction aborts */
165         PERF_SAMPLE_BRANCH_IN_TX_SHIFT          = 8, /* in transaction */
166         PERF_SAMPLE_BRANCH_NO_TX_SHIFT          = 9, /* not in transaction */
167         PERF_SAMPLE_BRANCH_COND_SHIFT           = 10, /* conditional branches */
168
169         PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT     = 11, /* call/ret stack */
170         PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT       = 12, /* indirect jumps */
171         PERF_SAMPLE_BRANCH_CALL_SHIFT           = 13, /* direct call */
172
173         PERF_SAMPLE_BRANCH_MAX_SHIFT            /* non-ABI */
174 };
175
176 enum perf_branch_sample_type {
177         PERF_SAMPLE_BRANCH_USER         = 1U << PERF_SAMPLE_BRANCH_USER_SHIFT,
178         PERF_SAMPLE_BRANCH_KERNEL       = 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT,
179         PERF_SAMPLE_BRANCH_HV           = 1U << PERF_SAMPLE_BRANCH_HV_SHIFT,
180
181         PERF_SAMPLE_BRANCH_ANY          = 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT,
182         PERF_SAMPLE_BRANCH_ANY_CALL     = 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT,
183         PERF_SAMPLE_BRANCH_ANY_RETURN   = 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT,
184         PERF_SAMPLE_BRANCH_IND_CALL     = 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT,
185         PERF_SAMPLE_BRANCH_ABORT_TX     = 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT,
186         PERF_SAMPLE_BRANCH_IN_TX        = 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT,
187         PERF_SAMPLE_BRANCH_NO_TX        = 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT,
188         PERF_SAMPLE_BRANCH_COND         = 1U << PERF_SAMPLE_BRANCH_COND_SHIFT,
189
190         PERF_SAMPLE_BRANCH_CALL_STACK   = 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT,
191         PERF_SAMPLE_BRANCH_IND_JUMP     = 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT,
192         PERF_SAMPLE_BRANCH_CALL         = 1U << PERF_SAMPLE_BRANCH_CALL_SHIFT,
193
194         PERF_SAMPLE_BRANCH_MAX          = 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT,
195 };
196
197 #define PERF_SAMPLE_BRANCH_PLM_ALL \
198         (PERF_SAMPLE_BRANCH_USER|\
199          PERF_SAMPLE_BRANCH_KERNEL|\
200          PERF_SAMPLE_BRANCH_HV)
201
202 /*
203  * Values to determine ABI of the registers dump.
204  */
205 enum perf_sample_regs_abi {
206         PERF_SAMPLE_REGS_ABI_NONE       = 0,
207         PERF_SAMPLE_REGS_ABI_32         = 1,
208         PERF_SAMPLE_REGS_ABI_64         = 2,
209 };
210
211 /*
212  * Values for the memory transaction event qualifier, mostly for
213  * abort events. Multiple bits can be set.
214  */
215 enum {
216         PERF_TXN_ELISION        = (1 << 0), /* From elision */
217         PERF_TXN_TRANSACTION    = (1 << 1), /* From transaction */
218         PERF_TXN_SYNC           = (1 << 2), /* Instruction is related */
219         PERF_TXN_ASYNC          = (1 << 3), /* Instruction not related */
220         PERF_TXN_RETRY          = (1 << 4), /* Retry possible */
221         PERF_TXN_CONFLICT       = (1 << 5), /* Conflict abort */
222         PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */
223         PERF_TXN_CAPACITY_READ  = (1 << 7), /* Capacity read abort */
224
225         PERF_TXN_MAX            = (1 << 8), /* non-ABI */
226
227         /* bits 32..63 are reserved for the abort code */
228
229         PERF_TXN_ABORT_MASK  = (0xffffffffULL << 32),
230         PERF_TXN_ABORT_SHIFT = 32,
231 };
232
233 /*
234  * The format of the data returned by read() on a perf event fd,
235  * as specified by attr.read_format:
236  *
237  * struct read_format {
238  *      { u64           value;
239  *        { u64         time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
240  *        { u64         time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
241  *        { u64         id;           } && PERF_FORMAT_ID
242  *      } && !PERF_FORMAT_GROUP
243  *
244  *      { u64           nr;
245  *        { u64         time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
246  *        { u64         time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
247  *        { u64         value;
248  *          { u64       id;           } && PERF_FORMAT_ID
249  *        }             cntr[nr];
250  *      } && PERF_FORMAT_GROUP
251  * };
252  */
253 enum perf_event_read_format {
254         PERF_FORMAT_TOTAL_TIME_ENABLED          = 1U << 0,
255         PERF_FORMAT_TOTAL_TIME_RUNNING          = 1U << 1,
256         PERF_FORMAT_ID                          = 1U << 2,
257         PERF_FORMAT_GROUP                       = 1U << 3,
258
259         PERF_FORMAT_MAX = 1U << 4,              /* non-ABI */
260 };
261
262 #define PERF_ATTR_SIZE_VER0     64      /* sizeof first published struct */
263 #define PERF_ATTR_SIZE_VER1     72      /* add: config2 */
264 #define PERF_ATTR_SIZE_VER2     80      /* add: branch_sample_type */
265 #define PERF_ATTR_SIZE_VER3     96      /* add: sample_regs_user */
266                                         /* add: sample_stack_user */
267 #define PERF_ATTR_SIZE_VER4     104     /* add: sample_regs_intr */
268 #define PERF_ATTR_SIZE_VER5     112     /* add: aux_watermark */
269
270 /*
271  * Hardware event_id to monitor via a performance monitoring event:
272  */
273 struct perf_event_attr {
274
275         /*
276          * Major type: hardware/software/tracepoint/etc.
277          */
278         __u32                   type;
279
280         /*
281          * Size of the attr structure, for fwd/bwd compat.
282          */
283         __u32                   size;
284
285         /*
286          * Type specific configuration information.
287          */
288         __u64                   config;
289
290         union {
291                 __u64           sample_period;
292                 __u64           sample_freq;
293         };
294
295         __u64                   sample_type;
296         __u64                   read_format;
297
298         __u64                   disabled       :  1, /* off by default        */
299                                 inherit        :  1, /* children inherit it   */
300                                 pinned         :  1, /* must always be on PMU */
301                                 exclusive      :  1, /* only group on PMU     */
302                                 exclude_user   :  1, /* don't count user      */
303                                 exclude_kernel :  1, /* ditto kernel          */
304                                 exclude_hv     :  1, /* ditto hypervisor      */
305                                 exclude_idle   :  1, /* don't count when idle */
306                                 mmap           :  1, /* include mmap data     */
307                                 comm           :  1, /* include comm data     */
308                                 freq           :  1, /* use freq, not period  */
309                                 inherit_stat   :  1, /* per task counts       */
310                                 enable_on_exec :  1, /* next exec enables     */
311                                 task           :  1, /* trace fork/exit       */
312                                 watermark      :  1, /* wakeup_watermark      */
313                                 /*
314                                  * precise_ip:
315                                  *
316                                  *  0 - SAMPLE_IP can have arbitrary skid
317                                  *  1 - SAMPLE_IP must have constant skid
318                                  *  2 - SAMPLE_IP requested to have 0 skid
319                                  *  3 - SAMPLE_IP must have 0 skid
320                                  *
321                                  *  See also PERF_RECORD_MISC_EXACT_IP
322                                  */
323                                 precise_ip     :  2, /* skid constraint       */
324                                 mmap_data      :  1, /* non-exec mmap data    */
325                                 sample_id_all  :  1, /* sample_type all events */
326
327                                 exclude_host   :  1, /* don't count in host   */
328                                 exclude_guest  :  1, /* don't count in guest  */
329
330                                 exclude_callchain_kernel : 1, /* exclude kernel callchains */
331                                 exclude_callchain_user   : 1, /* exclude user callchains */
332                                 mmap2          :  1, /* include mmap with inode data     */
333                                 comm_exec      :  1, /* flag comm events that are due to an exec */
334                                 use_clockid    :  1, /* use @clockid for time fields */
335                                 context_switch :  1, /* context switch data */
336                                 __reserved_1   : 37;
337
338         union {
339                 __u32           wakeup_events;    /* wakeup every n events */
340                 __u32           wakeup_watermark; /* bytes before wakeup   */
341         };
342
343         __u32                   bp_type;
344         union {
345                 __u64           bp_addr;
346                 __u64           config1; /* extension of config */
347         };
348         union {
349                 __u64           bp_len;
350                 __u64           config2; /* extension of config1 */
351         };
352         __u64   branch_sample_type; /* enum perf_branch_sample_type */
353
354         /*
355          * Defines set of user regs to dump on samples.
356          * See asm/perf_regs.h for details.
357          */
358         __u64   sample_regs_user;
359
360         /*
361          * Defines size of the user stack to dump on samples.
362          */
363         __u32   sample_stack_user;
364
365         __s32   clockid;
366         /*
367          * Defines set of regs to dump for each sample
368          * state captured on:
369          *  - precise = 0: PMU interrupt
370          *  - precise > 0: sampled instruction
371          *
372          * See asm/perf_regs.h for details.
373          */
374         __u64   sample_regs_intr;
375
376         /*
377          * Wakeup watermark for AUX area
378          */
379         __u32   aux_watermark;
380         __u32   __reserved_2;   /* align to __u64 */
381 };
382
383 #define perf_flags(attr)        (*(&(attr)->read_format + 1))
384
385 /*
386  * Ioctls that can be done on a perf event fd:
387  */
388 #define PERF_EVENT_IOC_ENABLE           _IO ('$', 0)
389 #define PERF_EVENT_IOC_DISABLE          _IO ('$', 1)
390 #define PERF_EVENT_IOC_REFRESH          _IO ('$', 2)
391 #define PERF_EVENT_IOC_RESET            _IO ('$', 3)
392 #define PERF_EVENT_IOC_PERIOD           _IOW('$', 4, __u64)
393 #define PERF_EVENT_IOC_SET_OUTPUT       _IO ('$', 5)
394 #define PERF_EVENT_IOC_SET_FILTER       _IOW('$', 6, char *)
395 #define PERF_EVENT_IOC_ID               _IOR('$', 7, __u64 *)
396 #define PERF_EVENT_IOC_SET_BPF          _IOW('$', 8, __u32)
397
398 enum perf_event_ioc_flags {
399         PERF_IOC_FLAG_GROUP             = 1U << 0,
400 };
401
402 /*
403  * Structure of the page that can be mapped via mmap
404  */
405 struct perf_event_mmap_page {
406         __u32   version;                /* version number of this structure */
407         __u32   compat_version;         /* lowest version this is compat with */
408
409         /*
410          * Bits needed to read the hw events in user-space.
411          *
412          *   u32 seq, time_mult, time_shift, index, width;
413          *   u64 count, enabled, running;
414          *   u64 cyc, time_offset;
415          *   s64 pmc = 0;
416          *
417          *   do {
418          *     seq = pc->lock;
419          *     barrier()
420          *
421          *     enabled = pc->time_enabled;
422          *     running = pc->time_running;
423          *
424          *     if (pc->cap_usr_time && enabled != running) {
425          *       cyc = rdtsc();
426          *       time_offset = pc->time_offset;
427          *       time_mult   = pc->time_mult;
428          *       time_shift  = pc->time_shift;
429          *     }
430          *
431          *     index = pc->index;
432          *     count = pc->offset;
433          *     if (pc->cap_user_rdpmc && index) {
434          *       width = pc->pmc_width;
435          *       pmc = rdpmc(index - 1);
436          *     }
437          *
438          *     barrier();
439          *   } while (pc->lock != seq);
440          *
441          * NOTE: for obvious reason this only works on self-monitoring
442          *       processes.
443          */
444         __u32   lock;                   /* seqlock for synchronization */
445         __u32   index;                  /* hardware event identifier */
446         __s64   offset;                 /* add to hardware event value */
447         __u64   time_enabled;           /* time event active */
448         __u64   time_running;           /* time event on cpu */
449         union {
450                 __u64   capabilities;
451                 struct {
452                         __u64   cap_bit0                : 1, /* Always 0, deprecated, see commit 860f085b74e9 */
453                                 cap_bit0_is_deprecated  : 1, /* Always 1, signals that bit 0 is zero */
454
455                                 cap_user_rdpmc          : 1, /* The RDPMC instruction can be used to read counts */
456                                 cap_user_time           : 1, /* The time_* fields are used */
457                                 cap_user_time_zero      : 1, /* The time_zero field is used */
458                                 cap_____res             : 59;
459                 };
460         };
461
462         /*
463          * If cap_user_rdpmc this field provides the bit-width of the value
464          * read using the rdpmc() or equivalent instruction. This can be used
465          * to sign extend the result like:
466          *
467          *   pmc <<= 64 - width;
468          *   pmc >>= 64 - width; // signed shift right
469          *   count += pmc;
470          */
471         __u16   pmc_width;
472
473         /*
474          * If cap_usr_time the below fields can be used to compute the time
475          * delta since time_enabled (in ns) using rdtsc or similar.
476          *
477          *   u64 quot, rem;
478          *   u64 delta;
479          *
480          *   quot = (cyc >> time_shift);
481          *   rem = cyc & (((u64)1 << time_shift) - 1);
482          *   delta = time_offset + quot * time_mult +
483          *              ((rem * time_mult) >> time_shift);
484          *
485          * Where time_offset,time_mult,time_shift and cyc are read in the
486          * seqcount loop described above. This delta can then be added to
487          * enabled and possible running (if index), improving the scaling:
488          *
489          *   enabled += delta;
490          *   if (index)
491          *     running += delta;
492          *
493          *   quot = count / running;
494          *   rem  = count % running;
495          *   count = quot * enabled + (rem * enabled) / running;
496          */
497         __u16   time_shift;
498         __u32   time_mult;
499         __u64   time_offset;
500         /*
501          * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated
502          * from sample timestamps.
503          *
504          *   time = timestamp - time_zero;
505          *   quot = time / time_mult;
506          *   rem  = time % time_mult;
507          *   cyc = (quot << time_shift) + (rem << time_shift) / time_mult;
508          *
509          * And vice versa:
510          *
511          *   quot = cyc >> time_shift;
512          *   rem  = cyc & (((u64)1 << time_shift) - 1);
513          *   timestamp = time_zero + quot * time_mult +
514          *               ((rem * time_mult) >> time_shift);
515          */
516         __u64   time_zero;
517         __u32   size;                   /* Header size up to __reserved[] fields. */
518
519                 /*
520                  * Hole for extension of the self monitor capabilities
521                  */
522
523         __u8    __reserved[118*8+4];    /* align to 1k. */
524
525         /*
526          * Control data for the mmap() data buffer.
527          *
528          * User-space reading the @data_head value should issue an smp_rmb(),
529          * after reading this value.
530          *
531          * When the mapping is PROT_WRITE the @data_tail value should be
532          * written by userspace to reflect the last read data, after issueing
533          * an smp_mb() to separate the data read from the ->data_tail store.
534          * In this case the kernel will not over-write unread data.
535          *
536          * See perf_output_put_handle() for the data ordering.
537          *
538          * data_{offset,size} indicate the location and size of the perf record
539          * buffer within the mmapped area.
540          */
541         __u64   data_head;              /* head in the data section */
542         __u64   data_tail;              /* user-space written tail */
543         __u64   data_offset;            /* where the buffer starts */
544         __u64   data_size;              /* data buffer size */
545
546         /*
547          * AUX area is defined by aux_{offset,size} fields that should be set
548          * by the userspace, so that
549          *
550          *   aux_offset >= data_offset + data_size
551          *
552          * prior to mmap()ing it. Size of the mmap()ed area should be aux_size.
553          *
554          * Ring buffer pointers aux_{head,tail} have the same semantics as
555          * data_{head,tail} and same ordering rules apply.
556          */
557         __u64   aux_head;
558         __u64   aux_tail;
559         __u64   aux_offset;
560         __u64   aux_size;
561 };
562
563 #define PERF_RECORD_MISC_CPUMODE_MASK           (7 << 0)
564 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN        (0 << 0)
565 #define PERF_RECORD_MISC_KERNEL                 (1 << 0)
566 #define PERF_RECORD_MISC_USER                   (2 << 0)
567 #define PERF_RECORD_MISC_HYPERVISOR             (3 << 0)
568 #define PERF_RECORD_MISC_GUEST_KERNEL           (4 << 0)
569 #define PERF_RECORD_MISC_GUEST_USER             (5 << 0)
570
571 /*
572  * Indicates that /proc/PID/maps parsing are truncated by time out.
573  */
574 #define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT (1 << 12)
575 /*
576  * PERF_RECORD_MISC_MMAP_DATA and PERF_RECORD_MISC_COMM_EXEC are used on
577  * different events so can reuse the same bit position.
578  * Ditto PERF_RECORD_MISC_SWITCH_OUT.
579  */
580 #define PERF_RECORD_MISC_MMAP_DATA              (1 << 13)
581 #define PERF_RECORD_MISC_COMM_EXEC              (1 << 13)
582 #define PERF_RECORD_MISC_SWITCH_OUT             (1 << 13)
583 /*
584  * Indicates that the content of PERF_SAMPLE_IP points to
585  * the actual instruction that triggered the event. See also
586  * perf_event_attr::precise_ip.
587  */
588 #define PERF_RECORD_MISC_EXACT_IP               (1 << 14)
589 /*
590  * Reserve the last bit to indicate some extended misc field
591  */
592 #define PERF_RECORD_MISC_EXT_RESERVED           (1 << 15)
593
594 struct perf_event_header {
595         __u32   type;
596         __u16   misc;
597         __u16   size;
598 };
599
600 enum perf_event_type {
601
602         /*
603          * If perf_event_attr.sample_id_all is set then all event types will
604          * have the sample_type selected fields related to where/when
605          * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU,
606          * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed
607          * just after the perf_event_header and the fields already present for
608          * the existing fields, i.e. at the end of the payload. That way a newer
609          * perf.data file will be supported by older perf tools, with these new
610          * optional fields being ignored.
611          *
612          * struct sample_id {
613          *      { u32                   pid, tid; } && PERF_SAMPLE_TID
614          *      { u64                   time;     } && PERF_SAMPLE_TIME
615          *      { u64                   id;       } && PERF_SAMPLE_ID
616          *      { u64                   stream_id;} && PERF_SAMPLE_STREAM_ID
617          *      { u32                   cpu, res; } && PERF_SAMPLE_CPU
618          *      { u64                   id;       } && PERF_SAMPLE_IDENTIFIER
619          * } && perf_event_attr::sample_id_all
620          *
621          * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.  The
622          * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed
623          * relative to header.size.
624          */
625
626         /*
627          * The MMAP events record the PROT_EXEC mappings so that we can
628          * correlate userspace IPs to code. They have the following structure:
629          *
630          * struct {
631          *      struct perf_event_header        header;
632          *
633          *      u32                             pid, tid;
634          *      u64                             addr;
635          *      u64                             len;
636          *      u64                             pgoff;
637          *      char                            filename[];
638          *      struct sample_id                sample_id;
639          * };
640          */
641         PERF_RECORD_MMAP                        = 1,
642
643         /*
644          * struct {
645          *      struct perf_event_header        header;
646          *      u64                             id;
647          *      u64                             lost;
648          *      struct sample_id                sample_id;
649          * };
650          */
651         PERF_RECORD_LOST                        = 2,
652
653         /*
654          * struct {
655          *      struct perf_event_header        header;
656          *
657          *      u32                             pid, tid;
658          *      char                            comm[];
659          *      struct sample_id                sample_id;
660          * };
661          */
662         PERF_RECORD_COMM                        = 3,
663
664         /*
665          * struct {
666          *      struct perf_event_header        header;
667          *      u32                             pid, ppid;
668          *      u32                             tid, ptid;
669          *      u64                             time;
670          *      struct sample_id                sample_id;
671          * };
672          */
673         PERF_RECORD_EXIT                        = 4,
674
675         /*
676          * struct {
677          *      struct perf_event_header        header;
678          *      u64                             time;
679          *      u64                             id;
680          *      u64                             stream_id;
681          *      struct sample_id                sample_id;
682          * };
683          */
684         PERF_RECORD_THROTTLE                    = 5,
685         PERF_RECORD_UNTHROTTLE                  = 6,
686
687         /*
688          * struct {
689          *      struct perf_event_header        header;
690          *      u32                             pid, ppid;
691          *      u32                             tid, ptid;
692          *      u64                             time;
693          *      struct sample_id                sample_id;
694          * };
695          */
696         PERF_RECORD_FORK                        = 7,
697
698         /*
699          * struct {
700          *      struct perf_event_header        header;
701          *      u32                             pid, tid;
702          *
703          *      struct read_format              values;
704          *      struct sample_id                sample_id;
705          * };
706          */
707         PERF_RECORD_READ                        = 8,
708
709         /*
710          * struct {
711          *      struct perf_event_header        header;
712          *
713          *      #
714          *      # Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.
715          *      # The advantage of PERF_SAMPLE_IDENTIFIER is that its position
716          *      # is fixed relative to header.
717          *      #
718          *
719          *      { u64                   id;       } && PERF_SAMPLE_IDENTIFIER
720          *      { u64                   ip;       } && PERF_SAMPLE_IP
721          *      { u32                   pid, tid; } && PERF_SAMPLE_TID
722          *      { u64                   time;     } && PERF_SAMPLE_TIME
723          *      { u64                   addr;     } && PERF_SAMPLE_ADDR
724          *      { u64                   id;       } && PERF_SAMPLE_ID
725          *      { u64                   stream_id;} && PERF_SAMPLE_STREAM_ID
726          *      { u32                   cpu, res; } && PERF_SAMPLE_CPU
727          *      { u64                   period;   } && PERF_SAMPLE_PERIOD
728          *
729          *      { struct read_format    values;   } && PERF_SAMPLE_READ
730          *
731          *      { u64                   nr,
732          *        u64                   ips[nr];  } && PERF_SAMPLE_CALLCHAIN
733          *
734          *      #
735          *      # The RAW record below is opaque data wrt the ABI
736          *      #
737          *      # That is, the ABI doesn't make any promises wrt to
738          *      # the stability of its content, it may vary depending
739          *      # on event, hardware, kernel version and phase of
740          *      # the moon.
741          *      #
742          *      # In other words, PERF_SAMPLE_RAW contents are not an ABI.
743          *      #
744          *
745          *      { u32                   size;
746          *        char                  data[size];}&& PERF_SAMPLE_RAW
747          *
748          *      { u64                   nr;
749          *        { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK
750          *
751          *      { u64                   abi; # enum perf_sample_regs_abi
752          *        u64                   regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
753          *
754          *      { u64                   size;
755          *        char                  data[size];
756          *        u64                   dyn_size; } && PERF_SAMPLE_STACK_USER
757          *
758          *      { u64                   weight;   } && PERF_SAMPLE_WEIGHT
759          *      { u64                   data_src; } && PERF_SAMPLE_DATA_SRC
760          *      { u64                   transaction; } && PERF_SAMPLE_TRANSACTION
761          *      { u64                   abi; # enum perf_sample_regs_abi
762          *        u64                   regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR
763          * };
764          */
765         PERF_RECORD_SAMPLE                      = 9,
766
767         /*
768          * The MMAP2 records are an augmented version of MMAP, they add
769          * maj, min, ino numbers to be used to uniquely identify each mapping
770          *
771          * struct {
772          *      struct perf_event_header        header;
773          *
774          *      u32                             pid, tid;
775          *      u64                             addr;
776          *      u64                             len;
777          *      u64                             pgoff;
778          *      u32                             maj;
779          *      u32                             min;
780          *      u64                             ino;
781          *      u64                             ino_generation;
782          *      u32                             prot, flags;
783          *      char                            filename[];
784          *      struct sample_id                sample_id;
785          * };
786          */
787         PERF_RECORD_MMAP2                       = 10,
788
789         /*
790          * Records that new data landed in the AUX buffer part.
791          *
792          * struct {
793          *      struct perf_event_header        header;
794          *
795          *      u64                             aux_offset;
796          *      u64                             aux_size;
797          *      u64                             flags;
798          *      struct sample_id                sample_id;
799          * };
800          */
801         PERF_RECORD_AUX                         = 11,
802
803         /*
804          * Indicates that instruction trace has started
805          *
806          * struct {
807          *      struct perf_event_header        header;
808          *      u32                             pid;
809          *      u32                             tid;
810          * };
811          */
812         PERF_RECORD_ITRACE_START                = 12,
813
814         /*
815          * Records the dropped/lost sample number.
816          *
817          * struct {
818          *      struct perf_event_header        header;
819          *
820          *      u64                             lost;
821          *      struct sample_id                sample_id;
822          * };
823          */
824         PERF_RECORD_LOST_SAMPLES                = 13,
825
826         /*
827          * Records a context switch in or out (flagged by
828          * PERF_RECORD_MISC_SWITCH_OUT). See also
829          * PERF_RECORD_SWITCH_CPU_WIDE.
830          *
831          * struct {
832          *      struct perf_event_header        header;
833          *      struct sample_id                sample_id;
834          * };
835          */
836         PERF_RECORD_SWITCH                      = 14,
837
838         /*
839          * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and
840          * next_prev_tid that are the next (switching out) or previous
841          * (switching in) pid/tid.
842          *
843          * struct {
844          *      struct perf_event_header        header;
845          *      u32                             next_prev_pid;
846          *      u32                             next_prev_tid;
847          *      struct sample_id                sample_id;
848          * };
849          */
850         PERF_RECORD_SWITCH_CPU_WIDE             = 15,
851
852         PERF_RECORD_MAX,                        /* non-ABI */
853 };
854
855 #define PERF_MAX_STACK_DEPTH            127
856
857 enum perf_callchain_context {
858         PERF_CONTEXT_HV                 = (__u64)-32,
859         PERF_CONTEXT_KERNEL             = (__u64)-128,
860         PERF_CONTEXT_USER               = (__u64)-512,
861
862         PERF_CONTEXT_GUEST              = (__u64)-2048,
863         PERF_CONTEXT_GUEST_KERNEL       = (__u64)-2176,
864         PERF_CONTEXT_GUEST_USER         = (__u64)-2560,
865
866         PERF_CONTEXT_MAX                = (__u64)-4095,
867 };
868
869 /**
870  * PERF_RECORD_AUX::flags bits
871  */
872 #define PERF_AUX_FLAG_TRUNCATED         0x01    /* record was truncated to fit */
873 #define PERF_AUX_FLAG_OVERWRITE         0x02    /* snapshot from overwrite mode */
874
875 #define PERF_FLAG_FD_NO_GROUP           (1UL << 0)
876 #define PERF_FLAG_FD_OUTPUT             (1UL << 1)
877 #define PERF_FLAG_PID_CGROUP            (1UL << 2) /* pid=cgroup id, per-cpu mode only */
878 #define PERF_FLAG_FD_CLOEXEC            (1UL << 3) /* O_CLOEXEC */
879
880 union perf_mem_data_src {
881         __u64 val;
882         struct {
883                 __u64   mem_op:5,       /* type of opcode */
884                         mem_lvl:14,     /* memory hierarchy level */
885                         mem_snoop:5,    /* snoop mode */
886                         mem_lock:2,     /* lock instr */
887                         mem_dtlb:7,     /* tlb access */
888                         mem_rsvd:31;
889         };
890 };
891
892 /* type of opcode (load/store/prefetch,code) */
893 #define PERF_MEM_OP_NA          0x01 /* not available */
894 #define PERF_MEM_OP_LOAD        0x02 /* load instruction */
895 #define PERF_MEM_OP_STORE       0x04 /* store instruction */
896 #define PERF_MEM_OP_PFETCH      0x08 /* prefetch */
897 #define PERF_MEM_OP_EXEC        0x10 /* code (execution) */
898 #define PERF_MEM_OP_SHIFT       0
899
900 /* memory hierarchy (memory level, hit or miss) */
901 #define PERF_MEM_LVL_NA         0x01  /* not available */
902 #define PERF_MEM_LVL_HIT        0x02  /* hit level */
903 #define PERF_MEM_LVL_MISS       0x04  /* miss level  */
904 #define PERF_MEM_LVL_L1         0x08  /* L1 */
905 #define PERF_MEM_LVL_LFB        0x10  /* Line Fill Buffer */
906 #define PERF_MEM_LVL_L2         0x20  /* L2 */
907 #define PERF_MEM_LVL_L3         0x40  /* L3 */
908 #define PERF_MEM_LVL_LOC_RAM    0x80  /* Local DRAM */
909 #define PERF_MEM_LVL_REM_RAM1   0x100 /* Remote DRAM (1 hop) */
910 #define PERF_MEM_LVL_REM_RAM2   0x200 /* Remote DRAM (2 hops) */
911 #define PERF_MEM_LVL_REM_CCE1   0x400 /* Remote Cache (1 hop) */
912 #define PERF_MEM_LVL_REM_CCE2   0x800 /* Remote Cache (2 hops) */
913 #define PERF_MEM_LVL_IO         0x1000 /* I/O memory */
914 #define PERF_MEM_LVL_UNC        0x2000 /* Uncached memory */
915 #define PERF_MEM_LVL_SHIFT      5
916
917 /* snoop mode */
918 #define PERF_MEM_SNOOP_NA       0x01 /* not available */
919 #define PERF_MEM_SNOOP_NONE     0x02 /* no snoop */
920 #define PERF_MEM_SNOOP_HIT      0x04 /* snoop hit */
921 #define PERF_MEM_SNOOP_MISS     0x08 /* snoop miss */
922 #define PERF_MEM_SNOOP_HITM     0x10 /* snoop hit modified */
923 #define PERF_MEM_SNOOP_SHIFT    19
924
925 /* locked instruction */
926 #define PERF_MEM_LOCK_NA        0x01 /* not available */
927 #define PERF_MEM_LOCK_LOCKED    0x02 /* locked transaction */
928 #define PERF_MEM_LOCK_SHIFT     24
929
930 /* TLB access */
931 #define PERF_MEM_TLB_NA         0x01 /* not available */
932 #define PERF_MEM_TLB_HIT        0x02 /* hit level */
933 #define PERF_MEM_TLB_MISS       0x04 /* miss level */
934 #define PERF_MEM_TLB_L1         0x08 /* L1 */
935 #define PERF_MEM_TLB_L2         0x10 /* L2 */
936 #define PERF_MEM_TLB_WK         0x20 /* Hardware Walker*/
937 #define PERF_MEM_TLB_OS         0x40 /* OS fault handler */
938 #define PERF_MEM_TLB_SHIFT      26
939
940 #define PERF_MEM_S(a, s) \
941         (((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT)
942
943 /*
944  * single taken branch record layout:
945  *
946  *      from: source instruction (may not always be a branch insn)
947  *        to: branch target
948  *   mispred: branch target was mispredicted
949  * predicted: branch target was predicted
950  *
951  * support for mispred, predicted is optional. In case it
952  * is not supported mispred = predicted = 0.
953  *
954  *     in_tx: running in a hardware transaction
955  *     abort: aborting a hardware transaction
956  *    cycles: cycles from last branch (or 0 if not supported)
957  */
958 struct perf_branch_entry {
959         __u64   from;
960         __u64   to;
961         __u64   mispred:1,  /* target mispredicted */
962                 predicted:1,/* target predicted */
963                 in_tx:1,    /* in transaction */
964                 abort:1,    /* transaction abort */
965                 cycles:16,  /* cycle count to last branch */
966                 reserved:44;
967 };
968
969 #endif /* _UAPI_LINUX_PERF_EVENT_H */