]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/fork.c
Merge branch 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78
79 #include <asm/pgtable.h>
80 #include <asm/pgalloc.h>
81 #include <asm/uaccess.h>
82 #include <asm/mmu_context.h>
83 #include <asm/cacheflush.h>
84 #include <asm/tlbflush.h>
85
86 #include <trace/events/sched.h>
87
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/task.h>
90
91 /*
92  * Minimum number of threads to boot the kernel
93  */
94 #define MIN_THREADS 20
95
96 /*
97  * Maximum number of threads
98  */
99 #define MAX_THREADS FUTEX_TID_MASK
100
101 /*
102  * Protected counters by write_lock_irq(&tasklist_lock)
103  */
104 unsigned long total_forks;      /* Handle normal Linux uptimes. */
105 int nr_threads;                 /* The idle threads do not count.. */
106
107 int max_threads;                /* tunable limit on nr_threads */
108
109 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
110
111 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
112
113 #ifdef CONFIG_PROVE_RCU
114 int lockdep_tasklist_lock_is_held(void)
115 {
116         return lockdep_is_held(&tasklist_lock);
117 }
118 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
119 #endif /* #ifdef CONFIG_PROVE_RCU */
120
121 int nr_processes(void)
122 {
123         int cpu;
124         int total = 0;
125
126         for_each_possible_cpu(cpu)
127                 total += per_cpu(process_counts, cpu);
128
129         return total;
130 }
131
132 void __weak arch_release_task_struct(struct task_struct *tsk)
133 {
134 }
135
136 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
137 static struct kmem_cache *task_struct_cachep;
138
139 static inline struct task_struct *alloc_task_struct_node(int node)
140 {
141         return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
142 }
143
144 static inline void free_task_struct(struct task_struct *tsk)
145 {
146         kmem_cache_free(task_struct_cachep, tsk);
147 }
148 #endif
149
150 void __weak arch_release_thread_info(struct thread_info *ti)
151 {
152 }
153
154 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
155
156 /*
157  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
158  * kmemcache based allocator.
159  */
160 # if THREAD_SIZE >= PAGE_SIZE
161 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
162                                                   int node)
163 {
164         struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
165                                                   THREAD_SIZE_ORDER);
166
167         return page ? page_address(page) : NULL;
168 }
169
170 static inline void free_thread_info(struct thread_info *ti)
171 {
172         free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
173 }
174 # else
175 static struct kmem_cache *thread_info_cache;
176
177 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
178                                                   int node)
179 {
180         return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
181 }
182
183 static void free_thread_info(struct thread_info *ti)
184 {
185         kmem_cache_free(thread_info_cache, ti);
186 }
187
188 void thread_info_cache_init(void)
189 {
190         thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
191                                               THREAD_SIZE, 0, NULL);
192         BUG_ON(thread_info_cache == NULL);
193 }
194 # endif
195 #endif
196
197 /* SLAB cache for signal_struct structures (tsk->signal) */
198 static struct kmem_cache *signal_cachep;
199
200 /* SLAB cache for sighand_struct structures (tsk->sighand) */
201 struct kmem_cache *sighand_cachep;
202
203 /* SLAB cache for files_struct structures (tsk->files) */
204 struct kmem_cache *files_cachep;
205
206 /* SLAB cache for fs_struct structures (tsk->fs) */
207 struct kmem_cache *fs_cachep;
208
209 /* SLAB cache for vm_area_struct structures */
210 struct kmem_cache *vm_area_cachep;
211
212 /* SLAB cache for mm_struct structures (tsk->mm) */
213 static struct kmem_cache *mm_cachep;
214
215 static void account_kernel_stack(struct thread_info *ti, int account)
216 {
217         struct zone *zone = page_zone(virt_to_page(ti));
218
219         mod_zone_page_state(zone, NR_KERNEL_STACK, account);
220 }
221
222 void free_task(struct task_struct *tsk)
223 {
224         account_kernel_stack(tsk->stack, -1);
225         arch_release_thread_info(tsk->stack);
226         free_thread_info(tsk->stack);
227         rt_mutex_debug_task_free(tsk);
228         ftrace_graph_exit_task(tsk);
229         put_seccomp_filter(tsk);
230         arch_release_task_struct(tsk);
231         free_task_struct(tsk);
232 }
233 EXPORT_SYMBOL(free_task);
234
235 static inline void free_signal_struct(struct signal_struct *sig)
236 {
237         taskstats_tgid_free(sig);
238         sched_autogroup_exit(sig);
239         kmem_cache_free(signal_cachep, sig);
240 }
241
242 static inline void put_signal_struct(struct signal_struct *sig)
243 {
244         if (atomic_dec_and_test(&sig->sigcnt))
245                 free_signal_struct(sig);
246 }
247
248 void __put_task_struct(struct task_struct *tsk)
249 {
250         WARN_ON(!tsk->exit_state);
251         WARN_ON(atomic_read(&tsk->usage));
252         WARN_ON(tsk == current);
253
254         task_numa_free(tsk);
255         security_task_free(tsk);
256         exit_creds(tsk);
257         delayacct_tsk_free(tsk);
258         put_signal_struct(tsk->signal);
259
260         if (!profile_handoff_task(tsk))
261                 free_task(tsk);
262 }
263 EXPORT_SYMBOL_GPL(__put_task_struct);
264
265 void __init __weak arch_task_cache_init(void) { }
266
267 /*
268  * set_max_threads
269  */
270 static void set_max_threads(unsigned int max_threads_suggested)
271 {
272         u64 threads;
273
274         /*
275          * The number of threads shall be limited such that the thread
276          * structures may only consume a small part of the available memory.
277          */
278         if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
279                 threads = MAX_THREADS;
280         else
281                 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
282                                     (u64) THREAD_SIZE * 8UL);
283
284         if (threads > max_threads_suggested)
285                 threads = max_threads_suggested;
286
287         max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
288 }
289
290 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
291 /* Initialized by the architecture: */
292 int arch_task_struct_size __read_mostly;
293 #endif
294
295 void __init fork_init(void)
296 {
297 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
298 #ifndef ARCH_MIN_TASKALIGN
299 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
300 #endif
301         /* create a slab on which task_structs can be allocated */
302         task_struct_cachep =
303                 kmem_cache_create("task_struct", arch_task_struct_size,
304                         ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
305 #endif
306
307         /* do the arch specific task caches init */
308         arch_task_cache_init();
309
310         set_max_threads(MAX_THREADS);
311
312         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
313         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
314         init_task.signal->rlim[RLIMIT_SIGPENDING] =
315                 init_task.signal->rlim[RLIMIT_NPROC];
316 }
317
318 int __weak arch_dup_task_struct(struct task_struct *dst,
319                                                struct task_struct *src)
320 {
321         *dst = *src;
322         return 0;
323 }
324
325 void set_task_stack_end_magic(struct task_struct *tsk)
326 {
327         unsigned long *stackend;
328
329         stackend = end_of_stack(tsk);
330         *stackend = STACK_END_MAGIC;    /* for overflow detection */
331 }
332
333 static struct task_struct *dup_task_struct(struct task_struct *orig)
334 {
335         struct task_struct *tsk;
336         struct thread_info *ti;
337         int node = tsk_fork_get_node(orig);
338         int err;
339
340         tsk = alloc_task_struct_node(node);
341         if (!tsk)
342                 return NULL;
343
344         ti = alloc_thread_info_node(tsk, node);
345         if (!ti)
346                 goto free_tsk;
347
348         err = arch_dup_task_struct(tsk, orig);
349         if (err)
350                 goto free_ti;
351
352         tsk->stack = ti;
353 #ifdef CONFIG_SECCOMP
354         /*
355          * We must handle setting up seccomp filters once we're under
356          * the sighand lock in case orig has changed between now and
357          * then. Until then, filter must be NULL to avoid messing up
358          * the usage counts on the error path calling free_task.
359          */
360         tsk->seccomp.filter = NULL;
361 #endif
362
363         setup_thread_stack(tsk, orig);
364         clear_user_return_notifier(tsk);
365         clear_tsk_need_resched(tsk);
366         set_task_stack_end_magic(tsk);
367
368 #ifdef CONFIG_CC_STACKPROTECTOR
369         tsk->stack_canary = get_random_int();
370 #endif
371
372         /*
373          * One for us, one for whoever does the "release_task()" (usually
374          * parent)
375          */
376         atomic_set(&tsk->usage, 2);
377 #ifdef CONFIG_BLK_DEV_IO_TRACE
378         tsk->btrace_seq = 0;
379 #endif
380         tsk->splice_pipe = NULL;
381         tsk->task_frag.page = NULL;
382
383         account_kernel_stack(ti, 1);
384
385         return tsk;
386
387 free_ti:
388         free_thread_info(ti);
389 free_tsk:
390         free_task_struct(tsk);
391         return NULL;
392 }
393
394 #ifdef CONFIG_MMU
395 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
396 {
397         struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
398         struct rb_node **rb_link, *rb_parent;
399         int retval;
400         unsigned long charge;
401
402         uprobe_start_dup_mmap();
403         down_write(&oldmm->mmap_sem);
404         flush_cache_dup_mm(oldmm);
405         uprobe_dup_mmap(oldmm, mm);
406         /*
407          * Not linked in yet - no deadlock potential:
408          */
409         down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
410
411         /* No ordering required: file already has been exposed. */
412         RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
413
414         mm->total_vm = oldmm->total_vm;
415         mm->shared_vm = oldmm->shared_vm;
416         mm->exec_vm = oldmm->exec_vm;
417         mm->stack_vm = oldmm->stack_vm;
418
419         rb_link = &mm->mm_rb.rb_node;
420         rb_parent = NULL;
421         pprev = &mm->mmap;
422         retval = ksm_fork(mm, oldmm);
423         if (retval)
424                 goto out;
425         retval = khugepaged_fork(mm, oldmm);
426         if (retval)
427                 goto out;
428
429         prev = NULL;
430         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
431                 struct file *file;
432
433                 if (mpnt->vm_flags & VM_DONTCOPY) {
434                         vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
435                                                         -vma_pages(mpnt));
436                         continue;
437                 }
438                 charge = 0;
439                 if (mpnt->vm_flags & VM_ACCOUNT) {
440                         unsigned long len = vma_pages(mpnt);
441
442                         if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
443                                 goto fail_nomem;
444                         charge = len;
445                 }
446                 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
447                 if (!tmp)
448                         goto fail_nomem;
449                 *tmp = *mpnt;
450                 INIT_LIST_HEAD(&tmp->anon_vma_chain);
451                 retval = vma_dup_policy(mpnt, tmp);
452                 if (retval)
453                         goto fail_nomem_policy;
454                 tmp->vm_mm = mm;
455                 if (anon_vma_fork(tmp, mpnt))
456                         goto fail_nomem_anon_vma_fork;
457                 tmp->vm_flags &= ~(VM_LOCKED|VM_UFFD_MISSING|VM_UFFD_WP);
458                 tmp->vm_next = tmp->vm_prev = NULL;
459                 tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
460                 file = tmp->vm_file;
461                 if (file) {
462                         struct inode *inode = file_inode(file);
463                         struct address_space *mapping = file->f_mapping;
464
465                         get_file(file);
466                         if (tmp->vm_flags & VM_DENYWRITE)
467                                 atomic_dec(&inode->i_writecount);
468                         i_mmap_lock_write(mapping);
469                         if (tmp->vm_flags & VM_SHARED)
470                                 atomic_inc(&mapping->i_mmap_writable);
471                         flush_dcache_mmap_lock(mapping);
472                         /* insert tmp into the share list, just after mpnt */
473                         vma_interval_tree_insert_after(tmp, mpnt,
474                                         &mapping->i_mmap);
475                         flush_dcache_mmap_unlock(mapping);
476                         i_mmap_unlock_write(mapping);
477                 }
478
479                 /*
480                  * Clear hugetlb-related page reserves for children. This only
481                  * affects MAP_PRIVATE mappings. Faults generated by the child
482                  * are not guaranteed to succeed, even if read-only
483                  */
484                 if (is_vm_hugetlb_page(tmp))
485                         reset_vma_resv_huge_pages(tmp);
486
487                 /*
488                  * Link in the new vma and copy the page table entries.
489                  */
490                 *pprev = tmp;
491                 pprev = &tmp->vm_next;
492                 tmp->vm_prev = prev;
493                 prev = tmp;
494
495                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
496                 rb_link = &tmp->vm_rb.rb_right;
497                 rb_parent = &tmp->vm_rb;
498
499                 mm->map_count++;
500                 retval = copy_page_range(mm, oldmm, mpnt);
501
502                 if (tmp->vm_ops && tmp->vm_ops->open)
503                         tmp->vm_ops->open(tmp);
504
505                 if (retval)
506                         goto out;
507         }
508         /* a new mm has just been created */
509         arch_dup_mmap(oldmm, mm);
510         retval = 0;
511 out:
512         up_write(&mm->mmap_sem);
513         flush_tlb_mm(oldmm);
514         up_write(&oldmm->mmap_sem);
515         uprobe_end_dup_mmap();
516         return retval;
517 fail_nomem_anon_vma_fork:
518         mpol_put(vma_policy(tmp));
519 fail_nomem_policy:
520         kmem_cache_free(vm_area_cachep, tmp);
521 fail_nomem:
522         retval = -ENOMEM;
523         vm_unacct_memory(charge);
524         goto out;
525 }
526
527 static inline int mm_alloc_pgd(struct mm_struct *mm)
528 {
529         mm->pgd = pgd_alloc(mm);
530         if (unlikely(!mm->pgd))
531                 return -ENOMEM;
532         return 0;
533 }
534
535 static inline void mm_free_pgd(struct mm_struct *mm)
536 {
537         pgd_free(mm, mm->pgd);
538 }
539 #else
540 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
541 {
542         down_write(&oldmm->mmap_sem);
543         RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
544         up_write(&oldmm->mmap_sem);
545         return 0;
546 }
547 #define mm_alloc_pgd(mm)        (0)
548 #define mm_free_pgd(mm)
549 #endif /* CONFIG_MMU */
550
551 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
552
553 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
554 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
555
556 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
557
558 static int __init coredump_filter_setup(char *s)
559 {
560         default_dump_filter =
561                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
562                 MMF_DUMP_FILTER_MASK;
563         return 1;
564 }
565
566 __setup("coredump_filter=", coredump_filter_setup);
567
568 #include <linux/init_task.h>
569
570 static void mm_init_aio(struct mm_struct *mm)
571 {
572 #ifdef CONFIG_AIO
573         spin_lock_init(&mm->ioctx_lock);
574         mm->ioctx_table = NULL;
575 #endif
576 }
577
578 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
579 {
580 #ifdef CONFIG_MEMCG
581         mm->owner = p;
582 #endif
583 }
584
585 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
586 {
587         mm->mmap = NULL;
588         mm->mm_rb = RB_ROOT;
589         mm->vmacache_seqnum = 0;
590         atomic_set(&mm->mm_users, 1);
591         atomic_set(&mm->mm_count, 1);
592         init_rwsem(&mm->mmap_sem);
593         INIT_LIST_HEAD(&mm->mmlist);
594         mm->core_state = NULL;
595         atomic_long_set(&mm->nr_ptes, 0);
596         mm_nr_pmds_init(mm);
597         mm->map_count = 0;
598         mm->locked_vm = 0;
599         mm->pinned_vm = 0;
600         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
601         spin_lock_init(&mm->page_table_lock);
602         mm_init_cpumask(mm);
603         mm_init_aio(mm);
604         mm_init_owner(mm, p);
605         mmu_notifier_mm_init(mm);
606         clear_tlb_flush_pending(mm);
607 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
608         mm->pmd_huge_pte = NULL;
609 #endif
610
611         if (current->mm) {
612                 mm->flags = current->mm->flags & MMF_INIT_MASK;
613                 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
614         } else {
615                 mm->flags = default_dump_filter;
616                 mm->def_flags = 0;
617         }
618
619         if (mm_alloc_pgd(mm))
620                 goto fail_nopgd;
621
622         if (init_new_context(p, mm))
623                 goto fail_nocontext;
624
625         return mm;
626
627 fail_nocontext:
628         mm_free_pgd(mm);
629 fail_nopgd:
630         free_mm(mm);
631         return NULL;
632 }
633
634 static void check_mm(struct mm_struct *mm)
635 {
636         int i;
637
638         for (i = 0; i < NR_MM_COUNTERS; i++) {
639                 long x = atomic_long_read(&mm->rss_stat.count[i]);
640
641                 if (unlikely(x))
642                         printk(KERN_ALERT "BUG: Bad rss-counter state "
643                                           "mm:%p idx:%d val:%ld\n", mm, i, x);
644         }
645
646         if (atomic_long_read(&mm->nr_ptes))
647                 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
648                                 atomic_long_read(&mm->nr_ptes));
649         if (mm_nr_pmds(mm))
650                 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
651                                 mm_nr_pmds(mm));
652
653 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
654         VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
655 #endif
656 }
657
658 /*
659  * Allocate and initialize an mm_struct.
660  */
661 struct mm_struct *mm_alloc(void)
662 {
663         struct mm_struct *mm;
664
665         mm = allocate_mm();
666         if (!mm)
667                 return NULL;
668
669         memset(mm, 0, sizeof(*mm));
670         return mm_init(mm, current);
671 }
672
673 /*
674  * Called when the last reference to the mm
675  * is dropped: either by a lazy thread or by
676  * mmput. Free the page directory and the mm.
677  */
678 void __mmdrop(struct mm_struct *mm)
679 {
680         BUG_ON(mm == &init_mm);
681         mm_free_pgd(mm);
682         destroy_context(mm);
683         mmu_notifier_mm_destroy(mm);
684         check_mm(mm);
685         free_mm(mm);
686 }
687 EXPORT_SYMBOL_GPL(__mmdrop);
688
689 /*
690  * Decrement the use count and release all resources for an mm.
691  */
692 void mmput(struct mm_struct *mm)
693 {
694         might_sleep();
695
696         if (atomic_dec_and_test(&mm->mm_users)) {
697                 uprobe_clear_state(mm);
698                 exit_aio(mm);
699                 ksm_exit(mm);
700                 khugepaged_exit(mm); /* must run before exit_mmap */
701                 exit_mmap(mm);
702                 set_mm_exe_file(mm, NULL);
703                 if (!list_empty(&mm->mmlist)) {
704                         spin_lock(&mmlist_lock);
705                         list_del(&mm->mmlist);
706                         spin_unlock(&mmlist_lock);
707                 }
708                 if (mm->binfmt)
709                         module_put(mm->binfmt->module);
710                 mmdrop(mm);
711         }
712 }
713 EXPORT_SYMBOL_GPL(mmput);
714
715 /**
716  * set_mm_exe_file - change a reference to the mm's executable file
717  *
718  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
719  *
720  * Main users are mmput() and sys_execve(). Callers prevent concurrent
721  * invocations: in mmput() nobody alive left, in execve task is single
722  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
723  * mm->exe_file, but does so without using set_mm_exe_file() in order
724  * to do avoid the need for any locks.
725  */
726 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
727 {
728         struct file *old_exe_file;
729
730         /*
731          * It is safe to dereference the exe_file without RCU as
732          * this function is only called if nobody else can access
733          * this mm -- see comment above for justification.
734          */
735         old_exe_file = rcu_dereference_raw(mm->exe_file);
736
737         if (new_exe_file)
738                 get_file(new_exe_file);
739         rcu_assign_pointer(mm->exe_file, new_exe_file);
740         if (old_exe_file)
741                 fput(old_exe_file);
742 }
743
744 /**
745  * get_mm_exe_file - acquire a reference to the mm's executable file
746  *
747  * Returns %NULL if mm has no associated executable file.
748  * User must release file via fput().
749  */
750 struct file *get_mm_exe_file(struct mm_struct *mm)
751 {
752         struct file *exe_file;
753
754         rcu_read_lock();
755         exe_file = rcu_dereference(mm->exe_file);
756         if (exe_file && !get_file_rcu(exe_file))
757                 exe_file = NULL;
758         rcu_read_unlock();
759         return exe_file;
760 }
761 EXPORT_SYMBOL(get_mm_exe_file);
762
763 /**
764  * get_task_mm - acquire a reference to the task's mm
765  *
766  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
767  * this kernel workthread has transiently adopted a user mm with use_mm,
768  * to do its AIO) is not set and if so returns a reference to it, after
769  * bumping up the use count.  User must release the mm via mmput()
770  * after use.  Typically used by /proc and ptrace.
771  */
772 struct mm_struct *get_task_mm(struct task_struct *task)
773 {
774         struct mm_struct *mm;
775
776         task_lock(task);
777         mm = task->mm;
778         if (mm) {
779                 if (task->flags & PF_KTHREAD)
780                         mm = NULL;
781                 else
782                         atomic_inc(&mm->mm_users);
783         }
784         task_unlock(task);
785         return mm;
786 }
787 EXPORT_SYMBOL_GPL(get_task_mm);
788
789 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
790 {
791         struct mm_struct *mm;
792         int err;
793
794         err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
795         if (err)
796                 return ERR_PTR(err);
797
798         mm = get_task_mm(task);
799         if (mm && mm != current->mm &&
800                         !ptrace_may_access(task, mode)) {
801                 mmput(mm);
802                 mm = ERR_PTR(-EACCES);
803         }
804         mutex_unlock(&task->signal->cred_guard_mutex);
805
806         return mm;
807 }
808
809 static void complete_vfork_done(struct task_struct *tsk)
810 {
811         struct completion *vfork;
812
813         task_lock(tsk);
814         vfork = tsk->vfork_done;
815         if (likely(vfork)) {
816                 tsk->vfork_done = NULL;
817                 complete(vfork);
818         }
819         task_unlock(tsk);
820 }
821
822 static int wait_for_vfork_done(struct task_struct *child,
823                                 struct completion *vfork)
824 {
825         int killed;
826
827         freezer_do_not_count();
828         killed = wait_for_completion_killable(vfork);
829         freezer_count();
830
831         if (killed) {
832                 task_lock(child);
833                 child->vfork_done = NULL;
834                 task_unlock(child);
835         }
836
837         put_task_struct(child);
838         return killed;
839 }
840
841 /* Please note the differences between mmput and mm_release.
842  * mmput is called whenever we stop holding onto a mm_struct,
843  * error success whatever.
844  *
845  * mm_release is called after a mm_struct has been removed
846  * from the current process.
847  *
848  * This difference is important for error handling, when we
849  * only half set up a mm_struct for a new process and need to restore
850  * the old one.  Because we mmput the new mm_struct before
851  * restoring the old one. . .
852  * Eric Biederman 10 January 1998
853  */
854 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
855 {
856         /* Get rid of any futexes when releasing the mm */
857 #ifdef CONFIG_FUTEX
858         if (unlikely(tsk->robust_list)) {
859                 exit_robust_list(tsk);
860                 tsk->robust_list = NULL;
861         }
862 #ifdef CONFIG_COMPAT
863         if (unlikely(tsk->compat_robust_list)) {
864                 compat_exit_robust_list(tsk);
865                 tsk->compat_robust_list = NULL;
866         }
867 #endif
868         if (unlikely(!list_empty(&tsk->pi_state_list)))
869                 exit_pi_state_list(tsk);
870 #endif
871
872         uprobe_free_utask(tsk);
873
874         /* Get rid of any cached register state */
875         deactivate_mm(tsk, mm);
876
877         /*
878          * If we're exiting normally, clear a user-space tid field if
879          * requested.  We leave this alone when dying by signal, to leave
880          * the value intact in a core dump, and to save the unnecessary
881          * trouble, say, a killed vfork parent shouldn't touch this mm.
882          * Userland only wants this done for a sys_exit.
883          */
884         if (tsk->clear_child_tid) {
885                 if (!(tsk->flags & PF_SIGNALED) &&
886                     atomic_read(&mm->mm_users) > 1) {
887                         /*
888                          * We don't check the error code - if userspace has
889                          * not set up a proper pointer then tough luck.
890                          */
891                         put_user(0, tsk->clear_child_tid);
892                         sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
893                                         1, NULL, NULL, 0);
894                 }
895                 tsk->clear_child_tid = NULL;
896         }
897
898         /*
899          * All done, finally we can wake up parent and return this mm to him.
900          * Also kthread_stop() uses this completion for synchronization.
901          */
902         if (tsk->vfork_done)
903                 complete_vfork_done(tsk);
904 }
905
906 /*
907  * Allocate a new mm structure and copy contents from the
908  * mm structure of the passed in task structure.
909  */
910 static struct mm_struct *dup_mm(struct task_struct *tsk)
911 {
912         struct mm_struct *mm, *oldmm = current->mm;
913         int err;
914
915         mm = allocate_mm();
916         if (!mm)
917                 goto fail_nomem;
918
919         memcpy(mm, oldmm, sizeof(*mm));
920
921         if (!mm_init(mm, tsk))
922                 goto fail_nomem;
923
924         err = dup_mmap(mm, oldmm);
925         if (err)
926                 goto free_pt;
927
928         mm->hiwater_rss = get_mm_rss(mm);
929         mm->hiwater_vm = mm->total_vm;
930
931         if (mm->binfmt && !try_module_get(mm->binfmt->module))
932                 goto free_pt;
933
934         return mm;
935
936 free_pt:
937         /* don't put binfmt in mmput, we haven't got module yet */
938         mm->binfmt = NULL;
939         mmput(mm);
940
941 fail_nomem:
942         return NULL;
943 }
944
945 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
946 {
947         struct mm_struct *mm, *oldmm;
948         int retval;
949
950         tsk->min_flt = tsk->maj_flt = 0;
951         tsk->nvcsw = tsk->nivcsw = 0;
952 #ifdef CONFIG_DETECT_HUNG_TASK
953         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
954 #endif
955
956         tsk->mm = NULL;
957         tsk->active_mm = NULL;
958
959         /*
960          * Are we cloning a kernel thread?
961          *
962          * We need to steal a active VM for that..
963          */
964         oldmm = current->mm;
965         if (!oldmm)
966                 return 0;
967
968         /* initialize the new vmacache entries */
969         vmacache_flush(tsk);
970
971         if (clone_flags & CLONE_VM) {
972                 atomic_inc(&oldmm->mm_users);
973                 mm = oldmm;
974                 goto good_mm;
975         }
976
977         retval = -ENOMEM;
978         mm = dup_mm(tsk);
979         if (!mm)
980                 goto fail_nomem;
981
982 good_mm:
983         tsk->mm = mm;
984         tsk->active_mm = mm;
985         return 0;
986
987 fail_nomem:
988         return retval;
989 }
990
991 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
992 {
993         struct fs_struct *fs = current->fs;
994         if (clone_flags & CLONE_FS) {
995                 /* tsk->fs is already what we want */
996                 spin_lock(&fs->lock);
997                 if (fs->in_exec) {
998                         spin_unlock(&fs->lock);
999                         return -EAGAIN;
1000                 }
1001                 fs->users++;
1002                 spin_unlock(&fs->lock);
1003                 return 0;
1004         }
1005         tsk->fs = copy_fs_struct(fs);
1006         if (!tsk->fs)
1007                 return -ENOMEM;
1008         return 0;
1009 }
1010
1011 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1012 {
1013         struct files_struct *oldf, *newf;
1014         int error = 0;
1015
1016         /*
1017          * A background process may not have any files ...
1018          */
1019         oldf = current->files;
1020         if (!oldf)
1021                 goto out;
1022
1023         if (clone_flags & CLONE_FILES) {
1024                 atomic_inc(&oldf->count);
1025                 goto out;
1026         }
1027
1028         newf = dup_fd(oldf, &error);
1029         if (!newf)
1030                 goto out;
1031
1032         tsk->files = newf;
1033         error = 0;
1034 out:
1035         return error;
1036 }
1037
1038 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1039 {
1040 #ifdef CONFIG_BLOCK
1041         struct io_context *ioc = current->io_context;
1042         struct io_context *new_ioc;
1043
1044         if (!ioc)
1045                 return 0;
1046         /*
1047          * Share io context with parent, if CLONE_IO is set
1048          */
1049         if (clone_flags & CLONE_IO) {
1050                 ioc_task_link(ioc);
1051                 tsk->io_context = ioc;
1052         } else if (ioprio_valid(ioc->ioprio)) {
1053                 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1054                 if (unlikely(!new_ioc))
1055                         return -ENOMEM;
1056
1057                 new_ioc->ioprio = ioc->ioprio;
1058                 put_io_context(new_ioc);
1059         }
1060 #endif
1061         return 0;
1062 }
1063
1064 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1065 {
1066         struct sighand_struct *sig;
1067
1068         if (clone_flags & CLONE_SIGHAND) {
1069                 atomic_inc(&current->sighand->count);
1070                 return 0;
1071         }
1072         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1073         rcu_assign_pointer(tsk->sighand, sig);
1074         if (!sig)
1075                 return -ENOMEM;
1076
1077         atomic_set(&sig->count, 1);
1078         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1079         return 0;
1080 }
1081
1082 void __cleanup_sighand(struct sighand_struct *sighand)
1083 {
1084         if (atomic_dec_and_test(&sighand->count)) {
1085                 signalfd_cleanup(sighand);
1086                 /*
1087                  * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1088                  * without an RCU grace period, see __lock_task_sighand().
1089                  */
1090                 kmem_cache_free(sighand_cachep, sighand);
1091         }
1092 }
1093
1094 /*
1095  * Initialize POSIX timer handling for a thread group.
1096  */
1097 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1098 {
1099         unsigned long cpu_limit;
1100
1101         cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1102         if (cpu_limit != RLIM_INFINITY) {
1103                 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1104                 sig->cputimer.running = true;
1105         }
1106
1107         /* The timer lists. */
1108         INIT_LIST_HEAD(&sig->cpu_timers[0]);
1109         INIT_LIST_HEAD(&sig->cpu_timers[1]);
1110         INIT_LIST_HEAD(&sig->cpu_timers[2]);
1111 }
1112
1113 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1114 {
1115         struct signal_struct *sig;
1116
1117         if (clone_flags & CLONE_THREAD)
1118                 return 0;
1119
1120         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1121         tsk->signal = sig;
1122         if (!sig)
1123                 return -ENOMEM;
1124
1125         sig->nr_threads = 1;
1126         atomic_set(&sig->live, 1);
1127         atomic_set(&sig->sigcnt, 1);
1128
1129         /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1130         sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1131         tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1132
1133         init_waitqueue_head(&sig->wait_chldexit);
1134         sig->curr_target = tsk;
1135         init_sigpending(&sig->shared_pending);
1136         INIT_LIST_HEAD(&sig->posix_timers);
1137         seqlock_init(&sig->stats_lock);
1138         prev_cputime_init(&sig->prev_cputime);
1139
1140         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1141         sig->real_timer.function = it_real_fn;
1142
1143         task_lock(current->group_leader);
1144         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1145         task_unlock(current->group_leader);
1146
1147         posix_cpu_timers_init_group(sig);
1148
1149         tty_audit_fork(sig);
1150         sched_autogroup_fork(sig);
1151
1152 #ifdef CONFIG_CGROUPS
1153         init_rwsem(&sig->group_rwsem);
1154 #endif
1155
1156         sig->oom_score_adj = current->signal->oom_score_adj;
1157         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1158
1159         sig->has_child_subreaper = current->signal->has_child_subreaper ||
1160                                    current->signal->is_child_subreaper;
1161
1162         mutex_init(&sig->cred_guard_mutex);
1163
1164         return 0;
1165 }
1166
1167 static void copy_seccomp(struct task_struct *p)
1168 {
1169 #ifdef CONFIG_SECCOMP
1170         /*
1171          * Must be called with sighand->lock held, which is common to
1172          * all threads in the group. Holding cred_guard_mutex is not
1173          * needed because this new task is not yet running and cannot
1174          * be racing exec.
1175          */
1176         assert_spin_locked(&current->sighand->siglock);
1177
1178         /* Ref-count the new filter user, and assign it. */
1179         get_seccomp_filter(current);
1180         p->seccomp = current->seccomp;
1181
1182         /*
1183          * Explicitly enable no_new_privs here in case it got set
1184          * between the task_struct being duplicated and holding the
1185          * sighand lock. The seccomp state and nnp must be in sync.
1186          */
1187         if (task_no_new_privs(current))
1188                 task_set_no_new_privs(p);
1189
1190         /*
1191          * If the parent gained a seccomp mode after copying thread
1192          * flags and between before we held the sighand lock, we have
1193          * to manually enable the seccomp thread flag here.
1194          */
1195         if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1196                 set_tsk_thread_flag(p, TIF_SECCOMP);
1197 #endif
1198 }
1199
1200 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1201 {
1202         current->clear_child_tid = tidptr;
1203
1204         return task_pid_vnr(current);
1205 }
1206
1207 static void rt_mutex_init_task(struct task_struct *p)
1208 {
1209         raw_spin_lock_init(&p->pi_lock);
1210 #ifdef CONFIG_RT_MUTEXES
1211         p->pi_waiters = RB_ROOT;
1212         p->pi_waiters_leftmost = NULL;
1213         p->pi_blocked_on = NULL;
1214 #endif
1215 }
1216
1217 /*
1218  * Initialize POSIX timer handling for a single task.
1219  */
1220 static void posix_cpu_timers_init(struct task_struct *tsk)
1221 {
1222         tsk->cputime_expires.prof_exp = 0;
1223         tsk->cputime_expires.virt_exp = 0;
1224         tsk->cputime_expires.sched_exp = 0;
1225         INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1226         INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1227         INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1228 }
1229
1230 static inline void
1231 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1232 {
1233          task->pids[type].pid = pid;
1234 }
1235
1236 /*
1237  * This creates a new process as a copy of the old one,
1238  * but does not actually start it yet.
1239  *
1240  * It copies the registers, and all the appropriate
1241  * parts of the process environment (as per the clone
1242  * flags). The actual kick-off is left to the caller.
1243  */
1244 static struct task_struct *copy_process(unsigned long clone_flags,
1245                                         unsigned long stack_start,
1246                                         unsigned long stack_size,
1247                                         int __user *child_tidptr,
1248                                         struct pid *pid,
1249                                         int trace,
1250                                         unsigned long tls)
1251 {
1252         int retval;
1253         struct task_struct *p;
1254         void *cgrp_ss_priv[CGROUP_CANFORK_COUNT] = {};
1255
1256         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1257                 return ERR_PTR(-EINVAL);
1258
1259         if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1260                 return ERR_PTR(-EINVAL);
1261
1262         /*
1263          * Thread groups must share signals as well, and detached threads
1264          * can only be started up within the thread group.
1265          */
1266         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1267                 return ERR_PTR(-EINVAL);
1268
1269         /*
1270          * Shared signal handlers imply shared VM. By way of the above,
1271          * thread groups also imply shared VM. Blocking this case allows
1272          * for various simplifications in other code.
1273          */
1274         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1275                 return ERR_PTR(-EINVAL);
1276
1277         /*
1278          * Siblings of global init remain as zombies on exit since they are
1279          * not reaped by their parent (swapper). To solve this and to avoid
1280          * multi-rooted process trees, prevent global and container-inits
1281          * from creating siblings.
1282          */
1283         if ((clone_flags & CLONE_PARENT) &&
1284                                 current->signal->flags & SIGNAL_UNKILLABLE)
1285                 return ERR_PTR(-EINVAL);
1286
1287         /*
1288          * If the new process will be in a different pid or user namespace
1289          * do not allow it to share a thread group with the forking task.
1290          */
1291         if (clone_flags & CLONE_THREAD) {
1292                 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1293                     (task_active_pid_ns(current) !=
1294                                 current->nsproxy->pid_ns_for_children))
1295                         return ERR_PTR(-EINVAL);
1296         }
1297
1298         retval = security_task_create(clone_flags);
1299         if (retval)
1300                 goto fork_out;
1301
1302         retval = -ENOMEM;
1303         p = dup_task_struct(current);
1304         if (!p)
1305                 goto fork_out;
1306
1307         ftrace_graph_init_task(p);
1308
1309         rt_mutex_init_task(p);
1310
1311 #ifdef CONFIG_PROVE_LOCKING
1312         DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1313         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1314 #endif
1315         retval = -EAGAIN;
1316         if (atomic_read(&p->real_cred->user->processes) >=
1317                         task_rlimit(p, RLIMIT_NPROC)) {
1318                 if (p->real_cred->user != INIT_USER &&
1319                     !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1320                         goto bad_fork_free;
1321         }
1322         current->flags &= ~PF_NPROC_EXCEEDED;
1323
1324         retval = copy_creds(p, clone_flags);
1325         if (retval < 0)
1326                 goto bad_fork_free;
1327
1328         /*
1329          * If multiple threads are within copy_process(), then this check
1330          * triggers too late. This doesn't hurt, the check is only there
1331          * to stop root fork bombs.
1332          */
1333         retval = -EAGAIN;
1334         if (nr_threads >= max_threads)
1335                 goto bad_fork_cleanup_count;
1336
1337         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1338         p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1339         p->flags |= PF_FORKNOEXEC;
1340         INIT_LIST_HEAD(&p->children);
1341         INIT_LIST_HEAD(&p->sibling);
1342         rcu_copy_process(p);
1343         p->vfork_done = NULL;
1344         spin_lock_init(&p->alloc_lock);
1345
1346         init_sigpending(&p->pending);
1347
1348         p->utime = p->stime = p->gtime = 0;
1349         p->utimescaled = p->stimescaled = 0;
1350         prev_cputime_init(&p->prev_cputime);
1351
1352 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1353         seqlock_init(&p->vtime_seqlock);
1354         p->vtime_snap = 0;
1355         p->vtime_snap_whence = VTIME_SLEEPING;
1356 #endif
1357
1358 #if defined(SPLIT_RSS_COUNTING)
1359         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1360 #endif
1361
1362         p->default_timer_slack_ns = current->timer_slack_ns;
1363
1364         task_io_accounting_init(&p->ioac);
1365         acct_clear_integrals(p);
1366
1367         posix_cpu_timers_init(p);
1368
1369         p->start_time = ktime_get_ns();
1370         p->real_start_time = ktime_get_boot_ns();
1371         p->io_context = NULL;
1372         p->audit_context = NULL;
1373         if (clone_flags & CLONE_THREAD)
1374                 threadgroup_change_begin(current);
1375         cgroup_fork(p);
1376 #ifdef CONFIG_NUMA
1377         p->mempolicy = mpol_dup(p->mempolicy);
1378         if (IS_ERR(p->mempolicy)) {
1379                 retval = PTR_ERR(p->mempolicy);
1380                 p->mempolicy = NULL;
1381                 goto bad_fork_cleanup_threadgroup_lock;
1382         }
1383 #endif
1384 #ifdef CONFIG_CPUSETS
1385         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1386         p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1387         seqcount_init(&p->mems_allowed_seq);
1388 #endif
1389 #ifdef CONFIG_TRACE_IRQFLAGS
1390         p->irq_events = 0;
1391         p->hardirqs_enabled = 0;
1392         p->hardirq_enable_ip = 0;
1393         p->hardirq_enable_event = 0;
1394         p->hardirq_disable_ip = _THIS_IP_;
1395         p->hardirq_disable_event = 0;
1396         p->softirqs_enabled = 1;
1397         p->softirq_enable_ip = _THIS_IP_;
1398         p->softirq_enable_event = 0;
1399         p->softirq_disable_ip = 0;
1400         p->softirq_disable_event = 0;
1401         p->hardirq_context = 0;
1402         p->softirq_context = 0;
1403 #endif
1404
1405         p->pagefault_disabled = 0;
1406
1407 #ifdef CONFIG_LOCKDEP
1408         p->lockdep_depth = 0; /* no locks held yet */
1409         p->curr_chain_key = 0;
1410         p->lockdep_recursion = 0;
1411 #endif
1412
1413 #ifdef CONFIG_DEBUG_MUTEXES
1414         p->blocked_on = NULL; /* not blocked yet */
1415 #endif
1416 #ifdef CONFIG_BCACHE
1417         p->sequential_io        = 0;
1418         p->sequential_io_avg    = 0;
1419 #endif
1420
1421         /* Perform scheduler related setup. Assign this task to a CPU. */
1422         retval = sched_fork(clone_flags, p);
1423         if (retval)
1424                 goto bad_fork_cleanup_policy;
1425
1426         retval = perf_event_init_task(p);
1427         if (retval)
1428                 goto bad_fork_cleanup_policy;
1429         retval = audit_alloc(p);
1430         if (retval)
1431                 goto bad_fork_cleanup_perf;
1432         /* copy all the process information */
1433         shm_init_task(p);
1434         retval = copy_semundo(clone_flags, p);
1435         if (retval)
1436                 goto bad_fork_cleanup_audit;
1437         retval = copy_files(clone_flags, p);
1438         if (retval)
1439                 goto bad_fork_cleanup_semundo;
1440         retval = copy_fs(clone_flags, p);
1441         if (retval)
1442                 goto bad_fork_cleanup_files;
1443         retval = copy_sighand(clone_flags, p);
1444         if (retval)
1445                 goto bad_fork_cleanup_fs;
1446         retval = copy_signal(clone_flags, p);
1447         if (retval)
1448                 goto bad_fork_cleanup_sighand;
1449         retval = copy_mm(clone_flags, p);
1450         if (retval)
1451                 goto bad_fork_cleanup_signal;
1452         retval = copy_namespaces(clone_flags, p);
1453         if (retval)
1454                 goto bad_fork_cleanup_mm;
1455         retval = copy_io(clone_flags, p);
1456         if (retval)
1457                 goto bad_fork_cleanup_namespaces;
1458         retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1459         if (retval)
1460                 goto bad_fork_cleanup_io;
1461
1462         if (pid != &init_struct_pid) {
1463                 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1464                 if (IS_ERR(pid)) {
1465                         retval = PTR_ERR(pid);
1466                         goto bad_fork_cleanup_io;
1467                 }
1468         }
1469
1470         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1471         /*
1472          * Clear TID on mm_release()?
1473          */
1474         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1475 #ifdef CONFIG_BLOCK
1476         p->plug = NULL;
1477 #endif
1478 #ifdef CONFIG_FUTEX
1479         p->robust_list = NULL;
1480 #ifdef CONFIG_COMPAT
1481         p->compat_robust_list = NULL;
1482 #endif
1483         INIT_LIST_HEAD(&p->pi_state_list);
1484         p->pi_state_cache = NULL;
1485 #endif
1486         /*
1487          * sigaltstack should be cleared when sharing the same VM
1488          */
1489         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1490                 p->sas_ss_sp = p->sas_ss_size = 0;
1491
1492         /*
1493          * Syscall tracing and stepping should be turned off in the
1494          * child regardless of CLONE_PTRACE.
1495          */
1496         user_disable_single_step(p);
1497         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1498 #ifdef TIF_SYSCALL_EMU
1499         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1500 #endif
1501         clear_all_latency_tracing(p);
1502
1503         /* ok, now we should be set up.. */
1504         p->pid = pid_nr(pid);
1505         if (clone_flags & CLONE_THREAD) {
1506                 p->exit_signal = -1;
1507                 p->group_leader = current->group_leader;
1508                 p->tgid = current->tgid;
1509         } else {
1510                 if (clone_flags & CLONE_PARENT)
1511                         p->exit_signal = current->group_leader->exit_signal;
1512                 else
1513                         p->exit_signal = (clone_flags & CSIGNAL);
1514                 p->group_leader = p;
1515                 p->tgid = p->pid;
1516         }
1517
1518         p->nr_dirtied = 0;
1519         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1520         p->dirty_paused_when = 0;
1521
1522         p->pdeath_signal = 0;
1523         INIT_LIST_HEAD(&p->thread_group);
1524         p->task_works = NULL;
1525
1526         /*
1527          * Ensure that the cgroup subsystem policies allow the new process to be
1528          * forked. It should be noted the the new process's css_set can be changed
1529          * between here and cgroup_post_fork() if an organisation operation is in
1530          * progress.
1531          */
1532         retval = cgroup_can_fork(p, cgrp_ss_priv);
1533         if (retval)
1534                 goto bad_fork_free_pid;
1535
1536         /*
1537          * Make it visible to the rest of the system, but dont wake it up yet.
1538          * Need tasklist lock for parent etc handling!
1539          */
1540         write_lock_irq(&tasklist_lock);
1541
1542         /* CLONE_PARENT re-uses the old parent */
1543         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1544                 p->real_parent = current->real_parent;
1545                 p->parent_exec_id = current->parent_exec_id;
1546         } else {
1547                 p->real_parent = current;
1548                 p->parent_exec_id = current->self_exec_id;
1549         }
1550
1551         spin_lock(&current->sighand->siglock);
1552
1553         /*
1554          * Copy seccomp details explicitly here, in case they were changed
1555          * before holding sighand lock.
1556          */
1557         copy_seccomp(p);
1558
1559         /*
1560          * Process group and session signals need to be delivered to just the
1561          * parent before the fork or both the parent and the child after the
1562          * fork. Restart if a signal comes in before we add the new process to
1563          * it's process group.
1564          * A fatal signal pending means that current will exit, so the new
1565          * thread can't slip out of an OOM kill (or normal SIGKILL).
1566         */
1567         recalc_sigpending();
1568         if (signal_pending(current)) {
1569                 spin_unlock(&current->sighand->siglock);
1570                 write_unlock_irq(&tasklist_lock);
1571                 retval = -ERESTARTNOINTR;
1572                 goto bad_fork_cancel_cgroup;
1573         }
1574
1575         if (likely(p->pid)) {
1576                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1577
1578                 init_task_pid(p, PIDTYPE_PID, pid);
1579                 if (thread_group_leader(p)) {
1580                         init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1581                         init_task_pid(p, PIDTYPE_SID, task_session(current));
1582
1583                         if (is_child_reaper(pid)) {
1584                                 ns_of_pid(pid)->child_reaper = p;
1585                                 p->signal->flags |= SIGNAL_UNKILLABLE;
1586                         }
1587
1588                         p->signal->leader_pid = pid;
1589                         p->signal->tty = tty_kref_get(current->signal->tty);
1590                         list_add_tail(&p->sibling, &p->real_parent->children);
1591                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
1592                         attach_pid(p, PIDTYPE_PGID);
1593                         attach_pid(p, PIDTYPE_SID);
1594                         __this_cpu_inc(process_counts);
1595                 } else {
1596                         current->signal->nr_threads++;
1597                         atomic_inc(&current->signal->live);
1598                         atomic_inc(&current->signal->sigcnt);
1599                         list_add_tail_rcu(&p->thread_group,
1600                                           &p->group_leader->thread_group);
1601                         list_add_tail_rcu(&p->thread_node,
1602                                           &p->signal->thread_head);
1603                 }
1604                 attach_pid(p, PIDTYPE_PID);
1605                 nr_threads++;
1606         }
1607
1608         total_forks++;
1609         spin_unlock(&current->sighand->siglock);
1610         syscall_tracepoint_update(p);
1611         write_unlock_irq(&tasklist_lock);
1612
1613         proc_fork_connector(p);
1614         cgroup_post_fork(p, cgrp_ss_priv);
1615         if (clone_flags & CLONE_THREAD)
1616                 threadgroup_change_end(current);
1617         perf_event_fork(p);
1618
1619         trace_task_newtask(p, clone_flags);
1620         uprobe_copy_process(p, clone_flags);
1621
1622         return p;
1623
1624 bad_fork_cancel_cgroup:
1625         cgroup_cancel_fork(p, cgrp_ss_priv);
1626 bad_fork_free_pid:
1627         if (pid != &init_struct_pid)
1628                 free_pid(pid);
1629 bad_fork_cleanup_io:
1630         if (p->io_context)
1631                 exit_io_context(p);
1632 bad_fork_cleanup_namespaces:
1633         exit_task_namespaces(p);
1634 bad_fork_cleanup_mm:
1635         if (p->mm)
1636                 mmput(p->mm);
1637 bad_fork_cleanup_signal:
1638         if (!(clone_flags & CLONE_THREAD))
1639                 free_signal_struct(p->signal);
1640 bad_fork_cleanup_sighand:
1641         __cleanup_sighand(p->sighand);
1642 bad_fork_cleanup_fs:
1643         exit_fs(p); /* blocking */
1644 bad_fork_cleanup_files:
1645         exit_files(p); /* blocking */
1646 bad_fork_cleanup_semundo:
1647         exit_sem(p);
1648 bad_fork_cleanup_audit:
1649         audit_free(p);
1650 bad_fork_cleanup_perf:
1651         perf_event_free_task(p);
1652 bad_fork_cleanup_policy:
1653 #ifdef CONFIG_NUMA
1654         mpol_put(p->mempolicy);
1655 bad_fork_cleanup_threadgroup_lock:
1656 #endif
1657         if (clone_flags & CLONE_THREAD)
1658                 threadgroup_change_end(current);
1659         delayacct_tsk_free(p);
1660 bad_fork_cleanup_count:
1661         atomic_dec(&p->cred->user->processes);
1662         exit_creds(p);
1663 bad_fork_free:
1664         free_task(p);
1665 fork_out:
1666         return ERR_PTR(retval);
1667 }
1668
1669 static inline void init_idle_pids(struct pid_link *links)
1670 {
1671         enum pid_type type;
1672
1673         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1674                 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1675                 links[type].pid = &init_struct_pid;
1676         }
1677 }
1678
1679 struct task_struct *fork_idle(int cpu)
1680 {
1681         struct task_struct *task;
1682         task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0);
1683         if (!IS_ERR(task)) {
1684                 init_idle_pids(task->pids);
1685                 init_idle(task, cpu);
1686         }
1687
1688         return task;
1689 }
1690
1691 /*
1692  *  Ok, this is the main fork-routine.
1693  *
1694  * It copies the process, and if successful kick-starts
1695  * it and waits for it to finish using the VM if required.
1696  */
1697 long _do_fork(unsigned long clone_flags,
1698               unsigned long stack_start,
1699               unsigned long stack_size,
1700               int __user *parent_tidptr,
1701               int __user *child_tidptr,
1702               unsigned long tls)
1703 {
1704         struct task_struct *p;
1705         int trace = 0;
1706         long nr;
1707
1708         /*
1709          * Determine whether and which event to report to ptracer.  When
1710          * called from kernel_thread or CLONE_UNTRACED is explicitly
1711          * requested, no event is reported; otherwise, report if the event
1712          * for the type of forking is enabled.
1713          */
1714         if (!(clone_flags & CLONE_UNTRACED)) {
1715                 if (clone_flags & CLONE_VFORK)
1716                         trace = PTRACE_EVENT_VFORK;
1717                 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1718                         trace = PTRACE_EVENT_CLONE;
1719                 else
1720                         trace = PTRACE_EVENT_FORK;
1721
1722                 if (likely(!ptrace_event_enabled(current, trace)))
1723                         trace = 0;
1724         }
1725
1726         p = copy_process(clone_flags, stack_start, stack_size,
1727                          child_tidptr, NULL, trace, tls);
1728         /*
1729          * Do this prior waking up the new thread - the thread pointer
1730          * might get invalid after that point, if the thread exits quickly.
1731          */
1732         if (!IS_ERR(p)) {
1733                 struct completion vfork;
1734                 struct pid *pid;
1735
1736                 trace_sched_process_fork(current, p);
1737
1738                 pid = get_task_pid(p, PIDTYPE_PID);
1739                 nr = pid_vnr(pid);
1740
1741                 if (clone_flags & CLONE_PARENT_SETTID)
1742                         put_user(nr, parent_tidptr);
1743
1744                 if (clone_flags & CLONE_VFORK) {
1745                         p->vfork_done = &vfork;
1746                         init_completion(&vfork);
1747                         get_task_struct(p);
1748                 }
1749
1750                 wake_up_new_task(p);
1751
1752                 /* forking complete and child started to run, tell ptracer */
1753                 if (unlikely(trace))
1754                         ptrace_event_pid(trace, pid);
1755
1756                 if (clone_flags & CLONE_VFORK) {
1757                         if (!wait_for_vfork_done(p, &vfork))
1758                                 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1759                 }
1760
1761                 put_pid(pid);
1762         } else {
1763                 nr = PTR_ERR(p);
1764         }
1765         return nr;
1766 }
1767
1768 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1769 /* For compatibility with architectures that call do_fork directly rather than
1770  * using the syscall entry points below. */
1771 long do_fork(unsigned long clone_flags,
1772               unsigned long stack_start,
1773               unsigned long stack_size,
1774               int __user *parent_tidptr,
1775               int __user *child_tidptr)
1776 {
1777         return _do_fork(clone_flags, stack_start, stack_size,
1778                         parent_tidptr, child_tidptr, 0);
1779 }
1780 #endif
1781
1782 /*
1783  * Create a kernel thread.
1784  */
1785 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1786 {
1787         return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1788                 (unsigned long)arg, NULL, NULL, 0);
1789 }
1790
1791 #ifdef __ARCH_WANT_SYS_FORK
1792 SYSCALL_DEFINE0(fork)
1793 {
1794 #ifdef CONFIG_MMU
1795         return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
1796 #else
1797         /* can not support in nommu mode */
1798         return -EINVAL;
1799 #endif
1800 }
1801 #endif
1802
1803 #ifdef __ARCH_WANT_SYS_VFORK
1804 SYSCALL_DEFINE0(vfork)
1805 {
1806         return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1807                         0, NULL, NULL, 0);
1808 }
1809 #endif
1810
1811 #ifdef __ARCH_WANT_SYS_CLONE
1812 #ifdef CONFIG_CLONE_BACKWARDS
1813 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1814                  int __user *, parent_tidptr,
1815                  unsigned long, tls,
1816                  int __user *, child_tidptr)
1817 #elif defined(CONFIG_CLONE_BACKWARDS2)
1818 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1819                  int __user *, parent_tidptr,
1820                  int __user *, child_tidptr,
1821                  unsigned long, tls)
1822 #elif defined(CONFIG_CLONE_BACKWARDS3)
1823 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1824                 int, stack_size,
1825                 int __user *, parent_tidptr,
1826                 int __user *, child_tidptr,
1827                 unsigned long, tls)
1828 #else
1829 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1830                  int __user *, parent_tidptr,
1831                  int __user *, child_tidptr,
1832                  unsigned long, tls)
1833 #endif
1834 {
1835         return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
1836 }
1837 #endif
1838
1839 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1840 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1841 #endif
1842
1843 static void sighand_ctor(void *data)
1844 {
1845         struct sighand_struct *sighand = data;
1846
1847         spin_lock_init(&sighand->siglock);
1848         init_waitqueue_head(&sighand->signalfd_wqh);
1849 }
1850
1851 void __init proc_caches_init(void)
1852 {
1853         sighand_cachep = kmem_cache_create("sighand_cache",
1854                         sizeof(struct sighand_struct), 0,
1855                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1856                         SLAB_NOTRACK, sighand_ctor);
1857         signal_cachep = kmem_cache_create("signal_cache",
1858                         sizeof(struct signal_struct), 0,
1859                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1860         files_cachep = kmem_cache_create("files_cache",
1861                         sizeof(struct files_struct), 0,
1862                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1863         fs_cachep = kmem_cache_create("fs_cache",
1864                         sizeof(struct fs_struct), 0,
1865                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1866         /*
1867          * FIXME! The "sizeof(struct mm_struct)" currently includes the
1868          * whole struct cpumask for the OFFSTACK case. We could change
1869          * this to *only* allocate as much of it as required by the
1870          * maximum number of CPU's we can ever have.  The cpumask_allocation
1871          * is at the end of the structure, exactly for that reason.
1872          */
1873         mm_cachep = kmem_cache_create("mm_struct",
1874                         sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1875                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1876         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1877         mmap_init();
1878         nsproxy_cache_init();
1879 }
1880
1881 /*
1882  * Check constraints on flags passed to the unshare system call.
1883  */
1884 static int check_unshare_flags(unsigned long unshare_flags)
1885 {
1886         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1887                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1888                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1889                                 CLONE_NEWUSER|CLONE_NEWPID))
1890                 return -EINVAL;
1891         /*
1892          * Not implemented, but pretend it works if there is nothing
1893          * to unshare.  Note that unsharing the address space or the
1894          * signal handlers also need to unshare the signal queues (aka
1895          * CLONE_THREAD).
1896          */
1897         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1898                 if (!thread_group_empty(current))
1899                         return -EINVAL;
1900         }
1901         if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
1902                 if (atomic_read(&current->sighand->count) > 1)
1903                         return -EINVAL;
1904         }
1905         if (unshare_flags & CLONE_VM) {
1906                 if (!current_is_single_threaded())
1907                         return -EINVAL;
1908         }
1909
1910         return 0;
1911 }
1912
1913 /*
1914  * Unshare the filesystem structure if it is being shared
1915  */
1916 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1917 {
1918         struct fs_struct *fs = current->fs;
1919
1920         if (!(unshare_flags & CLONE_FS) || !fs)
1921                 return 0;
1922
1923         /* don't need lock here; in the worst case we'll do useless copy */
1924         if (fs->users == 1)
1925                 return 0;
1926
1927         *new_fsp = copy_fs_struct(fs);
1928         if (!*new_fsp)
1929                 return -ENOMEM;
1930
1931         return 0;
1932 }
1933
1934 /*
1935  * Unshare file descriptor table if it is being shared
1936  */
1937 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1938 {
1939         struct files_struct *fd = current->files;
1940         int error = 0;
1941
1942         if ((unshare_flags & CLONE_FILES) &&
1943             (fd && atomic_read(&fd->count) > 1)) {
1944                 *new_fdp = dup_fd(fd, &error);
1945                 if (!*new_fdp)
1946                         return error;
1947         }
1948
1949         return 0;
1950 }
1951
1952 /*
1953  * unshare allows a process to 'unshare' part of the process
1954  * context which was originally shared using clone.  copy_*
1955  * functions used by do_fork() cannot be used here directly
1956  * because they modify an inactive task_struct that is being
1957  * constructed. Here we are modifying the current, active,
1958  * task_struct.
1959  */
1960 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1961 {
1962         struct fs_struct *fs, *new_fs = NULL;
1963         struct files_struct *fd, *new_fd = NULL;
1964         struct cred *new_cred = NULL;
1965         struct nsproxy *new_nsproxy = NULL;
1966         int do_sysvsem = 0;
1967         int err;
1968
1969         /*
1970          * If unsharing a user namespace must also unshare the thread group
1971          * and unshare the filesystem root and working directories.
1972          */
1973         if (unshare_flags & CLONE_NEWUSER)
1974                 unshare_flags |= CLONE_THREAD | CLONE_FS;
1975         /*
1976          * If unsharing vm, must also unshare signal handlers.
1977          */
1978         if (unshare_flags & CLONE_VM)
1979                 unshare_flags |= CLONE_SIGHAND;
1980         /*
1981          * If unsharing a signal handlers, must also unshare the signal queues.
1982          */
1983         if (unshare_flags & CLONE_SIGHAND)
1984                 unshare_flags |= CLONE_THREAD;
1985         /*
1986          * If unsharing namespace, must also unshare filesystem information.
1987          */
1988         if (unshare_flags & CLONE_NEWNS)
1989                 unshare_flags |= CLONE_FS;
1990
1991         err = check_unshare_flags(unshare_flags);
1992         if (err)
1993                 goto bad_unshare_out;
1994         /*
1995          * CLONE_NEWIPC must also detach from the undolist: after switching
1996          * to a new ipc namespace, the semaphore arrays from the old
1997          * namespace are unreachable.
1998          */
1999         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2000                 do_sysvsem = 1;
2001         err = unshare_fs(unshare_flags, &new_fs);
2002         if (err)
2003                 goto bad_unshare_out;
2004         err = unshare_fd(unshare_flags, &new_fd);
2005         if (err)
2006                 goto bad_unshare_cleanup_fs;
2007         err = unshare_userns(unshare_flags, &new_cred);
2008         if (err)
2009                 goto bad_unshare_cleanup_fd;
2010         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2011                                          new_cred, new_fs);
2012         if (err)
2013                 goto bad_unshare_cleanup_cred;
2014
2015         if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2016                 if (do_sysvsem) {
2017                         /*
2018                          * CLONE_SYSVSEM is equivalent to sys_exit().
2019                          */
2020                         exit_sem(current);
2021                 }
2022                 if (unshare_flags & CLONE_NEWIPC) {
2023                         /* Orphan segments in old ns (see sem above). */
2024                         exit_shm(current);
2025                         shm_init_task(current);
2026                 }
2027
2028                 if (new_nsproxy)
2029                         switch_task_namespaces(current, new_nsproxy);
2030
2031                 task_lock(current);
2032
2033                 if (new_fs) {
2034                         fs = current->fs;
2035                         spin_lock(&fs->lock);
2036                         current->fs = new_fs;
2037                         if (--fs->users)
2038                                 new_fs = NULL;
2039                         else
2040                                 new_fs = fs;
2041                         spin_unlock(&fs->lock);
2042                 }
2043
2044                 if (new_fd) {
2045                         fd = current->files;
2046                         current->files = new_fd;
2047                         new_fd = fd;
2048                 }
2049
2050                 task_unlock(current);
2051
2052                 if (new_cred) {
2053                         /* Install the new user namespace */
2054                         commit_creds(new_cred);
2055                         new_cred = NULL;
2056                 }
2057         }
2058
2059 bad_unshare_cleanup_cred:
2060         if (new_cred)
2061                 put_cred(new_cred);
2062 bad_unshare_cleanup_fd:
2063         if (new_fd)
2064                 put_files_struct(new_fd);
2065
2066 bad_unshare_cleanup_fs:
2067         if (new_fs)
2068                 free_fs_struct(new_fs);
2069
2070 bad_unshare_out:
2071         return err;
2072 }
2073
2074 /*
2075  *      Helper to unshare the files of the current task.
2076  *      We don't want to expose copy_files internals to
2077  *      the exec layer of the kernel.
2078  */
2079
2080 int unshare_files(struct files_struct **displaced)
2081 {
2082         struct task_struct *task = current;
2083         struct files_struct *copy = NULL;
2084         int error;
2085
2086         error = unshare_fd(CLONE_FILES, &copy);
2087         if (error || !copy) {
2088                 *displaced = NULL;
2089                 return error;
2090         }
2091         *displaced = task->files;
2092         task_lock(task);
2093         task->files = copy;
2094         task_unlock(task);
2095         return 0;
2096 }
2097
2098 int sysctl_max_threads(struct ctl_table *table, int write,
2099                        void __user *buffer, size_t *lenp, loff_t *ppos)
2100 {
2101         struct ctl_table t;
2102         int ret;
2103         int threads = max_threads;
2104         int min = MIN_THREADS;
2105         int max = MAX_THREADS;
2106
2107         t = *table;
2108         t.data = &threads;
2109         t.extra1 = &min;
2110         t.extra2 = &max;
2111
2112         ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2113         if (ret || !write)
2114                 return ret;
2115
2116         set_max_threads(threads);
2117
2118         return 0;
2119 }