]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/kexec_file.c
Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[karo-tx-linux.git] / kernel / kexec_file.c
1 /*
2  * kexec: kexec_file_load system call
3  *
4  * Copyright (C) 2014 Red Hat Inc.
5  * Authors:
6  *      Vivek Goyal <vgoyal@redhat.com>
7  *
8  * This source code is licensed under the GNU General Public License,
9  * Version 2.  See the file COPYING for more details.
10  */
11
12 #include <linux/capability.h>
13 #include <linux/mm.h>
14 #include <linux/file.h>
15 #include <linux/slab.h>
16 #include <linux/kexec.h>
17 #include <linux/mutex.h>
18 #include <linux/list.h>
19 #include <crypto/hash.h>
20 #include <crypto/sha.h>
21 #include <linux/syscalls.h>
22 #include <linux/vmalloc.h>
23 #include "kexec_internal.h"
24
25 /*
26  * Declare these symbols weak so that if architecture provides a purgatory,
27  * these will be overridden.
28  */
29 char __weak kexec_purgatory[0];
30 size_t __weak kexec_purgatory_size = 0;
31
32 static int kexec_calculate_store_digests(struct kimage *image);
33
34 static int copy_file_from_fd(int fd, void **buf, unsigned long *buf_len)
35 {
36         struct fd f = fdget(fd);
37         int ret;
38         struct kstat stat;
39         loff_t pos;
40         ssize_t bytes = 0;
41
42         if (!f.file)
43                 return -EBADF;
44
45         ret = vfs_getattr(&f.file->f_path, &stat);
46         if (ret)
47                 goto out;
48
49         if (stat.size > INT_MAX) {
50                 ret = -EFBIG;
51                 goto out;
52         }
53
54         /* Don't hand 0 to vmalloc, it whines. */
55         if (stat.size == 0) {
56                 ret = -EINVAL;
57                 goto out;
58         }
59
60         *buf = vmalloc(stat.size);
61         if (!*buf) {
62                 ret = -ENOMEM;
63                 goto out;
64         }
65
66         pos = 0;
67         while (pos < stat.size) {
68                 bytes = kernel_read(f.file, pos, (char *)(*buf) + pos,
69                                     stat.size - pos);
70                 if (bytes < 0) {
71                         vfree(*buf);
72                         ret = bytes;
73                         goto out;
74                 }
75
76                 if (bytes == 0)
77                         break;
78                 pos += bytes;
79         }
80
81         if (pos != stat.size) {
82                 ret = -EBADF;
83                 vfree(*buf);
84                 goto out;
85         }
86
87         *buf_len = pos;
88 out:
89         fdput(f);
90         return ret;
91 }
92
93 /* Architectures can provide this probe function */
94 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
95                                          unsigned long buf_len)
96 {
97         return -ENOEXEC;
98 }
99
100 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
101 {
102         return ERR_PTR(-ENOEXEC);
103 }
104
105 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
106 {
107         return -EINVAL;
108 }
109
110 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
111                                         unsigned long buf_len)
112 {
113         return -EKEYREJECTED;
114 }
115
116 /* Apply relocations of type RELA */
117 int __weak
118 arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
119                                  unsigned int relsec)
120 {
121         pr_err("RELA relocation unsupported.\n");
122         return -ENOEXEC;
123 }
124
125 /* Apply relocations of type REL */
126 int __weak
127 arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
128                              unsigned int relsec)
129 {
130         pr_err("REL relocation unsupported.\n");
131         return -ENOEXEC;
132 }
133
134 /*
135  * Free up memory used by kernel, initrd, and command line. This is temporary
136  * memory allocation which is not needed any more after these buffers have
137  * been loaded into separate segments and have been copied elsewhere.
138  */
139 void kimage_file_post_load_cleanup(struct kimage *image)
140 {
141         struct purgatory_info *pi = &image->purgatory_info;
142
143         vfree(image->kernel_buf);
144         image->kernel_buf = NULL;
145
146         vfree(image->initrd_buf);
147         image->initrd_buf = NULL;
148
149         kfree(image->cmdline_buf);
150         image->cmdline_buf = NULL;
151
152         vfree(pi->purgatory_buf);
153         pi->purgatory_buf = NULL;
154
155         vfree(pi->sechdrs);
156         pi->sechdrs = NULL;
157
158         /* See if architecture has anything to cleanup post load */
159         arch_kimage_file_post_load_cleanup(image);
160
161         /*
162          * Above call should have called into bootloader to free up
163          * any data stored in kimage->image_loader_data. It should
164          * be ok now to free it up.
165          */
166         kfree(image->image_loader_data);
167         image->image_loader_data = NULL;
168 }
169
170 /*
171  * In file mode list of segments is prepared by kernel. Copy relevant
172  * data from user space, do error checking, prepare segment list
173  */
174 static int
175 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
176                              const char __user *cmdline_ptr,
177                              unsigned long cmdline_len, unsigned flags)
178 {
179         int ret = 0;
180         void *ldata;
181
182         ret = copy_file_from_fd(kernel_fd, &image->kernel_buf,
183                                 &image->kernel_buf_len);
184         if (ret)
185                 return ret;
186
187         /* Call arch image probe handlers */
188         ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
189                                             image->kernel_buf_len);
190
191         if (ret)
192                 goto out;
193
194 #ifdef CONFIG_KEXEC_VERIFY_SIG
195         ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
196                                            image->kernel_buf_len);
197         if (ret) {
198                 pr_debug("kernel signature verification failed.\n");
199                 goto out;
200         }
201         pr_debug("kernel signature verification successful.\n");
202 #endif
203         /* It is possible that there no initramfs is being loaded */
204         if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
205                 ret = copy_file_from_fd(initrd_fd, &image->initrd_buf,
206                                         &image->initrd_buf_len);
207                 if (ret)
208                         goto out;
209         }
210
211         if (cmdline_len) {
212                 image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL);
213                 if (!image->cmdline_buf) {
214                         ret = -ENOMEM;
215                         goto out;
216                 }
217
218                 ret = copy_from_user(image->cmdline_buf, cmdline_ptr,
219                                      cmdline_len);
220                 if (ret) {
221                         ret = -EFAULT;
222                         goto out;
223                 }
224
225                 image->cmdline_buf_len = cmdline_len;
226
227                 /* command line should be a string with last byte null */
228                 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
229                         ret = -EINVAL;
230                         goto out;
231                 }
232         }
233
234         /* Call arch image load handlers */
235         ldata = arch_kexec_kernel_image_load(image);
236
237         if (IS_ERR(ldata)) {
238                 ret = PTR_ERR(ldata);
239                 goto out;
240         }
241
242         image->image_loader_data = ldata;
243 out:
244         /* In case of error, free up all allocated memory in this function */
245         if (ret)
246                 kimage_file_post_load_cleanup(image);
247         return ret;
248 }
249
250 static int
251 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
252                        int initrd_fd, const char __user *cmdline_ptr,
253                        unsigned long cmdline_len, unsigned long flags)
254 {
255         int ret;
256         struct kimage *image;
257         bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
258
259         image = do_kimage_alloc_init();
260         if (!image)
261                 return -ENOMEM;
262
263         image->file_mode = 1;
264
265         if (kexec_on_panic) {
266                 /* Enable special crash kernel control page alloc policy. */
267                 image->control_page = crashk_res.start;
268                 image->type = KEXEC_TYPE_CRASH;
269         }
270
271         ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
272                                            cmdline_ptr, cmdline_len, flags);
273         if (ret)
274                 goto out_free_image;
275
276         ret = sanity_check_segment_list(image);
277         if (ret)
278                 goto out_free_post_load_bufs;
279
280         ret = -ENOMEM;
281         image->control_code_page = kimage_alloc_control_pages(image,
282                                            get_order(KEXEC_CONTROL_PAGE_SIZE));
283         if (!image->control_code_page) {
284                 pr_err("Could not allocate control_code_buffer\n");
285                 goto out_free_post_load_bufs;
286         }
287
288         if (!kexec_on_panic) {
289                 image->swap_page = kimage_alloc_control_pages(image, 0);
290                 if (!image->swap_page) {
291                         pr_err("Could not allocate swap buffer\n");
292                         goto out_free_control_pages;
293                 }
294         }
295
296         *rimage = image;
297         return 0;
298 out_free_control_pages:
299         kimage_free_page_list(&image->control_pages);
300 out_free_post_load_bufs:
301         kimage_file_post_load_cleanup(image);
302 out_free_image:
303         kfree(image);
304         return ret;
305 }
306
307 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
308                 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
309                 unsigned long, flags)
310 {
311         int ret = 0, i;
312         struct kimage **dest_image, *image;
313
314         /* We only trust the superuser with rebooting the system. */
315         if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
316                 return -EPERM;
317
318         /* Make sure we have a legal set of flags */
319         if (flags != (flags & KEXEC_FILE_FLAGS))
320                 return -EINVAL;
321
322         image = NULL;
323
324         if (!mutex_trylock(&kexec_mutex))
325                 return -EBUSY;
326
327         dest_image = &kexec_image;
328         if (flags & KEXEC_FILE_ON_CRASH)
329                 dest_image = &kexec_crash_image;
330
331         if (flags & KEXEC_FILE_UNLOAD)
332                 goto exchange;
333
334         /*
335          * In case of crash, new kernel gets loaded in reserved region. It is
336          * same memory where old crash kernel might be loaded. Free any
337          * current crash dump kernel before we corrupt it.
338          */
339         if (flags & KEXEC_FILE_ON_CRASH)
340                 kimage_free(xchg(&kexec_crash_image, NULL));
341
342         ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
343                                      cmdline_len, flags);
344         if (ret)
345                 goto out;
346
347         ret = machine_kexec_prepare(image);
348         if (ret)
349                 goto out;
350
351         ret = kexec_calculate_store_digests(image);
352         if (ret)
353                 goto out;
354
355         for (i = 0; i < image->nr_segments; i++) {
356                 struct kexec_segment *ksegment;
357
358                 ksegment = &image->segment[i];
359                 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
360                          i, ksegment->buf, ksegment->bufsz, ksegment->mem,
361                          ksegment->memsz);
362
363                 ret = kimage_load_segment(image, &image->segment[i]);
364                 if (ret)
365                         goto out;
366         }
367
368         kimage_terminate(image);
369
370         /*
371          * Free up any temporary buffers allocated which are not needed
372          * after image has been loaded
373          */
374         kimage_file_post_load_cleanup(image);
375 exchange:
376         image = xchg(dest_image, image);
377 out:
378         mutex_unlock(&kexec_mutex);
379         kimage_free(image);
380         return ret;
381 }
382
383 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
384                                     struct kexec_buf *kbuf)
385 {
386         struct kimage *image = kbuf->image;
387         unsigned long temp_start, temp_end;
388
389         temp_end = min(end, kbuf->buf_max);
390         temp_start = temp_end - kbuf->memsz;
391
392         do {
393                 /* align down start */
394                 temp_start = temp_start & (~(kbuf->buf_align - 1));
395
396                 if (temp_start < start || temp_start < kbuf->buf_min)
397                         return 0;
398
399                 temp_end = temp_start + kbuf->memsz - 1;
400
401                 /*
402                  * Make sure this does not conflict with any of existing
403                  * segments
404                  */
405                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
406                         temp_start = temp_start - PAGE_SIZE;
407                         continue;
408                 }
409
410                 /* We found a suitable memory range */
411                 break;
412         } while (1);
413
414         /* If we are here, we found a suitable memory range */
415         kbuf->mem = temp_start;
416
417         /* Success, stop navigating through remaining System RAM ranges */
418         return 1;
419 }
420
421 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
422                                      struct kexec_buf *kbuf)
423 {
424         struct kimage *image = kbuf->image;
425         unsigned long temp_start, temp_end;
426
427         temp_start = max(start, kbuf->buf_min);
428
429         do {
430                 temp_start = ALIGN(temp_start, kbuf->buf_align);
431                 temp_end = temp_start + kbuf->memsz - 1;
432
433                 if (temp_end > end || temp_end > kbuf->buf_max)
434                         return 0;
435                 /*
436                  * Make sure this does not conflict with any of existing
437                  * segments
438                  */
439                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
440                         temp_start = temp_start + PAGE_SIZE;
441                         continue;
442                 }
443
444                 /* We found a suitable memory range */
445                 break;
446         } while (1);
447
448         /* If we are here, we found a suitable memory range */
449         kbuf->mem = temp_start;
450
451         /* Success, stop navigating through remaining System RAM ranges */
452         return 1;
453 }
454
455 static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
456 {
457         struct kexec_buf *kbuf = (struct kexec_buf *)arg;
458         unsigned long sz = end - start + 1;
459
460         /* Returning 0 will take to next memory range */
461         if (sz < kbuf->memsz)
462                 return 0;
463
464         if (end < kbuf->buf_min || start > kbuf->buf_max)
465                 return 0;
466
467         /*
468          * Allocate memory top down with-in ram range. Otherwise bottom up
469          * allocation.
470          */
471         if (kbuf->top_down)
472                 return locate_mem_hole_top_down(start, end, kbuf);
473         return locate_mem_hole_bottom_up(start, end, kbuf);
474 }
475
476 /*
477  * Helper function for placing a buffer in a kexec segment. This assumes
478  * that kexec_mutex is held.
479  */
480 int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz,
481                      unsigned long memsz, unsigned long buf_align,
482                      unsigned long buf_min, unsigned long buf_max,
483                      bool top_down, unsigned long *load_addr)
484 {
485
486         struct kexec_segment *ksegment;
487         struct kexec_buf buf, *kbuf;
488         int ret;
489
490         /* Currently adding segment this way is allowed only in file mode */
491         if (!image->file_mode)
492                 return -EINVAL;
493
494         if (image->nr_segments >= KEXEC_SEGMENT_MAX)
495                 return -EINVAL;
496
497         /*
498          * Make sure we are not trying to add buffer after allocating
499          * control pages. All segments need to be placed first before
500          * any control pages are allocated. As control page allocation
501          * logic goes through list of segments to make sure there are
502          * no destination overlaps.
503          */
504         if (!list_empty(&image->control_pages)) {
505                 WARN_ON(1);
506                 return -EINVAL;
507         }
508
509         memset(&buf, 0, sizeof(struct kexec_buf));
510         kbuf = &buf;
511         kbuf->image = image;
512         kbuf->buffer = buffer;
513         kbuf->bufsz = bufsz;
514
515         kbuf->memsz = ALIGN(memsz, PAGE_SIZE);
516         kbuf->buf_align = max(buf_align, PAGE_SIZE);
517         kbuf->buf_min = buf_min;
518         kbuf->buf_max = buf_max;
519         kbuf->top_down = top_down;
520
521         /* Walk the RAM ranges and allocate a suitable range for the buffer */
522         if (image->type == KEXEC_TYPE_CRASH)
523                 ret = walk_iomem_res("Crash kernel",
524                                      IORESOURCE_MEM | IORESOURCE_BUSY,
525                                      crashk_res.start, crashk_res.end, kbuf,
526                                      locate_mem_hole_callback);
527         else
528                 ret = walk_system_ram_res(0, -1, kbuf,
529                                           locate_mem_hole_callback);
530         if (ret != 1) {
531                 /* A suitable memory range could not be found for buffer */
532                 return -EADDRNOTAVAIL;
533         }
534
535         /* Found a suitable memory range */
536         ksegment = &image->segment[image->nr_segments];
537         ksegment->kbuf = kbuf->buffer;
538         ksegment->bufsz = kbuf->bufsz;
539         ksegment->mem = kbuf->mem;
540         ksegment->memsz = kbuf->memsz;
541         image->nr_segments++;
542         *load_addr = ksegment->mem;
543         return 0;
544 }
545
546 /* Calculate and store the digest of segments */
547 static int kexec_calculate_store_digests(struct kimage *image)
548 {
549         struct crypto_shash *tfm;
550         struct shash_desc *desc;
551         int ret = 0, i, j, zero_buf_sz, sha_region_sz;
552         size_t desc_size, nullsz;
553         char *digest;
554         void *zero_buf;
555         struct kexec_sha_region *sha_regions;
556         struct purgatory_info *pi = &image->purgatory_info;
557
558         zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
559         zero_buf_sz = PAGE_SIZE;
560
561         tfm = crypto_alloc_shash("sha256", 0, 0);
562         if (IS_ERR(tfm)) {
563                 ret = PTR_ERR(tfm);
564                 goto out;
565         }
566
567         desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
568         desc = kzalloc(desc_size, GFP_KERNEL);
569         if (!desc) {
570                 ret = -ENOMEM;
571                 goto out_free_tfm;
572         }
573
574         sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
575         sha_regions = vzalloc(sha_region_sz);
576         if (!sha_regions)
577                 goto out_free_desc;
578
579         desc->tfm   = tfm;
580         desc->flags = 0;
581
582         ret = crypto_shash_init(desc);
583         if (ret < 0)
584                 goto out_free_sha_regions;
585
586         digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
587         if (!digest) {
588                 ret = -ENOMEM;
589                 goto out_free_sha_regions;
590         }
591
592         for (j = i = 0; i < image->nr_segments; i++) {
593                 struct kexec_segment *ksegment;
594
595                 ksegment = &image->segment[i];
596                 /*
597                  * Skip purgatory as it will be modified once we put digest
598                  * info in purgatory.
599                  */
600                 if (ksegment->kbuf == pi->purgatory_buf)
601                         continue;
602
603                 ret = crypto_shash_update(desc, ksegment->kbuf,
604                                           ksegment->bufsz);
605                 if (ret)
606                         break;
607
608                 /*
609                  * Assume rest of the buffer is filled with zero and
610                  * update digest accordingly.
611                  */
612                 nullsz = ksegment->memsz - ksegment->bufsz;
613                 while (nullsz) {
614                         unsigned long bytes = nullsz;
615
616                         if (bytes > zero_buf_sz)
617                                 bytes = zero_buf_sz;
618                         ret = crypto_shash_update(desc, zero_buf, bytes);
619                         if (ret)
620                                 break;
621                         nullsz -= bytes;
622                 }
623
624                 if (ret)
625                         break;
626
627                 sha_regions[j].start = ksegment->mem;
628                 sha_regions[j].len = ksegment->memsz;
629                 j++;
630         }
631
632         if (!ret) {
633                 ret = crypto_shash_final(desc, digest);
634                 if (ret)
635                         goto out_free_digest;
636                 ret = kexec_purgatory_get_set_symbol(image, "sha_regions",
637                                                 sha_regions, sha_region_sz, 0);
638                 if (ret)
639                         goto out_free_digest;
640
641                 ret = kexec_purgatory_get_set_symbol(image, "sha256_digest",
642                                                 digest, SHA256_DIGEST_SIZE, 0);
643                 if (ret)
644                         goto out_free_digest;
645         }
646
647 out_free_digest:
648         kfree(digest);
649 out_free_sha_regions:
650         vfree(sha_regions);
651 out_free_desc:
652         kfree(desc);
653 out_free_tfm:
654         kfree(tfm);
655 out:
656         return ret;
657 }
658
659 /* Actually load purgatory. Lot of code taken from kexec-tools */
660 static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
661                                   unsigned long max, int top_down)
662 {
663         struct purgatory_info *pi = &image->purgatory_info;
664         unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad;
665         unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset;
666         unsigned char *buf_addr, *src;
667         int i, ret = 0, entry_sidx = -1;
668         const Elf_Shdr *sechdrs_c;
669         Elf_Shdr *sechdrs = NULL;
670         void *purgatory_buf = NULL;
671
672         /*
673          * sechdrs_c points to section headers in purgatory and are read
674          * only. No modifications allowed.
675          */
676         sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
677
678         /*
679          * We can not modify sechdrs_c[] and its fields. It is read only.
680          * Copy it over to a local copy where one can store some temporary
681          * data and free it at the end. We need to modify ->sh_addr and
682          * ->sh_offset fields to keep track of permanent and temporary
683          * locations of sections.
684          */
685         sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
686         if (!sechdrs)
687                 return -ENOMEM;
688
689         memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
690
691         /*
692          * We seem to have multiple copies of sections. First copy is which
693          * is embedded in kernel in read only section. Some of these sections
694          * will be copied to a temporary buffer and relocated. And these
695          * sections will finally be copied to their final destination at
696          * segment load time.
697          *
698          * Use ->sh_offset to reflect section address in memory. It will
699          * point to original read only copy if section is not allocatable.
700          * Otherwise it will point to temporary copy which will be relocated.
701          *
702          * Use ->sh_addr to contain final address of the section where it
703          * will go during execution time.
704          */
705         for (i = 0; i < pi->ehdr->e_shnum; i++) {
706                 if (sechdrs[i].sh_type == SHT_NOBITS)
707                         continue;
708
709                 sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
710                                                 sechdrs[i].sh_offset;
711         }
712
713         /*
714          * Identify entry point section and make entry relative to section
715          * start.
716          */
717         entry = pi->ehdr->e_entry;
718         for (i = 0; i < pi->ehdr->e_shnum; i++) {
719                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
720                         continue;
721
722                 if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
723                         continue;
724
725                 /* Make entry section relative */
726                 if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
727                     ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
728                      pi->ehdr->e_entry)) {
729                         entry_sidx = i;
730                         entry -= sechdrs[i].sh_addr;
731                         break;
732                 }
733         }
734
735         /* Determine how much memory is needed to load relocatable object. */
736         buf_align = 1;
737         bss_align = 1;
738         buf_sz = 0;
739         bss_sz = 0;
740
741         for (i = 0; i < pi->ehdr->e_shnum; i++) {
742                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
743                         continue;
744
745                 align = sechdrs[i].sh_addralign;
746                 if (sechdrs[i].sh_type != SHT_NOBITS) {
747                         if (buf_align < align)
748                                 buf_align = align;
749                         buf_sz = ALIGN(buf_sz, align);
750                         buf_sz += sechdrs[i].sh_size;
751                 } else {
752                         /* bss section */
753                         if (bss_align < align)
754                                 bss_align = align;
755                         bss_sz = ALIGN(bss_sz, align);
756                         bss_sz += sechdrs[i].sh_size;
757                 }
758         }
759
760         /* Determine the bss padding required to align bss properly */
761         bss_pad = 0;
762         if (buf_sz & (bss_align - 1))
763                 bss_pad = bss_align - (buf_sz & (bss_align - 1));
764
765         memsz = buf_sz + bss_pad + bss_sz;
766
767         /* Allocate buffer for purgatory */
768         purgatory_buf = vzalloc(buf_sz);
769         if (!purgatory_buf) {
770                 ret = -ENOMEM;
771                 goto out;
772         }
773
774         if (buf_align < bss_align)
775                 buf_align = bss_align;
776
777         /* Add buffer to segment list */
778         ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz,
779                                 buf_align, min, max, top_down,
780                                 &pi->purgatory_load_addr);
781         if (ret)
782                 goto out;
783
784         /* Load SHF_ALLOC sections */
785         buf_addr = purgatory_buf;
786         load_addr = curr_load_addr = pi->purgatory_load_addr;
787         bss_addr = load_addr + buf_sz + bss_pad;
788
789         for (i = 0; i < pi->ehdr->e_shnum; i++) {
790                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
791                         continue;
792
793                 align = sechdrs[i].sh_addralign;
794                 if (sechdrs[i].sh_type != SHT_NOBITS) {
795                         curr_load_addr = ALIGN(curr_load_addr, align);
796                         offset = curr_load_addr - load_addr;
797                         /* We already modifed ->sh_offset to keep src addr */
798                         src = (char *) sechdrs[i].sh_offset;
799                         memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
800
801                         /* Store load address and source address of section */
802                         sechdrs[i].sh_addr = curr_load_addr;
803
804                         /*
805                          * This section got copied to temporary buffer. Update
806                          * ->sh_offset accordingly.
807                          */
808                         sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
809
810                         /* Advance to the next address */
811                         curr_load_addr += sechdrs[i].sh_size;
812                 } else {
813                         bss_addr = ALIGN(bss_addr, align);
814                         sechdrs[i].sh_addr = bss_addr;
815                         bss_addr += sechdrs[i].sh_size;
816                 }
817         }
818
819         /* Update entry point based on load address of text section */
820         if (entry_sidx >= 0)
821                 entry += sechdrs[entry_sidx].sh_addr;
822
823         /* Make kernel jump to purgatory after shutdown */
824         image->start = entry;
825
826         /* Used later to get/set symbol values */
827         pi->sechdrs = sechdrs;
828
829         /*
830          * Used later to identify which section is purgatory and skip it
831          * from checksumming.
832          */
833         pi->purgatory_buf = purgatory_buf;
834         return ret;
835 out:
836         vfree(sechdrs);
837         vfree(purgatory_buf);
838         return ret;
839 }
840
841 static int kexec_apply_relocations(struct kimage *image)
842 {
843         int i, ret;
844         struct purgatory_info *pi = &image->purgatory_info;
845         Elf_Shdr *sechdrs = pi->sechdrs;
846
847         /* Apply relocations */
848         for (i = 0; i < pi->ehdr->e_shnum; i++) {
849                 Elf_Shdr *section, *symtab;
850
851                 if (sechdrs[i].sh_type != SHT_RELA &&
852                     sechdrs[i].sh_type != SHT_REL)
853                         continue;
854
855                 /*
856                  * For section of type SHT_RELA/SHT_REL,
857                  * ->sh_link contains section header index of associated
858                  * symbol table. And ->sh_info contains section header
859                  * index of section to which relocations apply.
860                  */
861                 if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
862                     sechdrs[i].sh_link >= pi->ehdr->e_shnum)
863                         return -ENOEXEC;
864
865                 section = &sechdrs[sechdrs[i].sh_info];
866                 symtab = &sechdrs[sechdrs[i].sh_link];
867
868                 if (!(section->sh_flags & SHF_ALLOC))
869                         continue;
870
871                 /*
872                  * symtab->sh_link contain section header index of associated
873                  * string table.
874                  */
875                 if (symtab->sh_link >= pi->ehdr->e_shnum)
876                         /* Invalid section number? */
877                         continue;
878
879                 /*
880                  * Respective architecture needs to provide support for applying
881                  * relocations of type SHT_RELA/SHT_REL.
882                  */
883                 if (sechdrs[i].sh_type == SHT_RELA)
884                         ret = arch_kexec_apply_relocations_add(pi->ehdr,
885                                                                sechdrs, i);
886                 else if (sechdrs[i].sh_type == SHT_REL)
887                         ret = arch_kexec_apply_relocations(pi->ehdr,
888                                                            sechdrs, i);
889                 if (ret)
890                         return ret;
891         }
892
893         return 0;
894 }
895
896 /* Load relocatable purgatory object and relocate it appropriately */
897 int kexec_load_purgatory(struct kimage *image, unsigned long min,
898                          unsigned long max, int top_down,
899                          unsigned long *load_addr)
900 {
901         struct purgatory_info *pi = &image->purgatory_info;
902         int ret;
903
904         if (kexec_purgatory_size <= 0)
905                 return -EINVAL;
906
907         if (kexec_purgatory_size < sizeof(Elf_Ehdr))
908                 return -ENOEXEC;
909
910         pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
911
912         if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
913             || pi->ehdr->e_type != ET_REL
914             || !elf_check_arch(pi->ehdr)
915             || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
916                 return -ENOEXEC;
917
918         if (pi->ehdr->e_shoff >= kexec_purgatory_size
919             || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
920             kexec_purgatory_size - pi->ehdr->e_shoff))
921                 return -ENOEXEC;
922
923         ret = __kexec_load_purgatory(image, min, max, top_down);
924         if (ret)
925                 return ret;
926
927         ret = kexec_apply_relocations(image);
928         if (ret)
929                 goto out;
930
931         *load_addr = pi->purgatory_load_addr;
932         return 0;
933 out:
934         vfree(pi->sechdrs);
935         vfree(pi->purgatory_buf);
936         return ret;
937 }
938
939 static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
940                                             const char *name)
941 {
942         Elf_Sym *syms;
943         Elf_Shdr *sechdrs;
944         Elf_Ehdr *ehdr;
945         int i, k;
946         const char *strtab;
947
948         if (!pi->sechdrs || !pi->ehdr)
949                 return NULL;
950
951         sechdrs = pi->sechdrs;
952         ehdr = pi->ehdr;
953
954         for (i = 0; i < ehdr->e_shnum; i++) {
955                 if (sechdrs[i].sh_type != SHT_SYMTAB)
956                         continue;
957
958                 if (sechdrs[i].sh_link >= ehdr->e_shnum)
959                         /* Invalid strtab section number */
960                         continue;
961                 strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
962                 syms = (Elf_Sym *)sechdrs[i].sh_offset;
963
964                 /* Go through symbols for a match */
965                 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
966                         if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
967                                 continue;
968
969                         if (strcmp(strtab + syms[k].st_name, name) != 0)
970                                 continue;
971
972                         if (syms[k].st_shndx == SHN_UNDEF ||
973                             syms[k].st_shndx >= ehdr->e_shnum) {
974                                 pr_debug("Symbol: %s has bad section index %d.\n",
975                                                 name, syms[k].st_shndx);
976                                 return NULL;
977                         }
978
979                         /* Found the symbol we are looking for */
980                         return &syms[k];
981                 }
982         }
983
984         return NULL;
985 }
986
987 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
988 {
989         struct purgatory_info *pi = &image->purgatory_info;
990         Elf_Sym *sym;
991         Elf_Shdr *sechdr;
992
993         sym = kexec_purgatory_find_symbol(pi, name);
994         if (!sym)
995                 return ERR_PTR(-EINVAL);
996
997         sechdr = &pi->sechdrs[sym->st_shndx];
998
999         /*
1000          * Returns the address where symbol will finally be loaded after
1001          * kexec_load_segment()
1002          */
1003         return (void *)(sechdr->sh_addr + sym->st_value);
1004 }
1005
1006 /*
1007  * Get or set value of a symbol. If "get_value" is true, symbol value is
1008  * returned in buf otherwise symbol value is set based on value in buf.
1009  */
1010 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1011                                    void *buf, unsigned int size, bool get_value)
1012 {
1013         Elf_Sym *sym;
1014         Elf_Shdr *sechdrs;
1015         struct purgatory_info *pi = &image->purgatory_info;
1016         char *sym_buf;
1017
1018         sym = kexec_purgatory_find_symbol(pi, name);
1019         if (!sym)
1020                 return -EINVAL;
1021
1022         if (sym->st_size != size) {
1023                 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1024                        name, (unsigned long)sym->st_size, size);
1025                 return -EINVAL;
1026         }
1027
1028         sechdrs = pi->sechdrs;
1029
1030         if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
1031                 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1032                        get_value ? "get" : "set");
1033                 return -EINVAL;
1034         }
1035
1036         sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
1037                                         sym->st_value;
1038
1039         if (get_value)
1040                 memcpy((void *)buf, sym_buf, size);
1041         else
1042                 memcpy((void *)sym_buf, buf, size);
1043
1044         return 0;
1045 }