]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/kmod.c
Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[karo-tx-linux.git] / kernel / kmod.c
1 /*
2         kmod, the new module loader (replaces kerneld)
3         Kirk Petersen
4
5         Reorganized not to be a daemon by Adam Richter, with guidance
6         from Greg Zornetzer.
7
8         Modified to avoid chroot and file sharing problems.
9         Mikael Pettersson
10
11         Limit the concurrent number of kmod modprobes to catch loops from
12         "modprobe needs a service that is in a module".
13         Keith Owens <kaos@ocs.com.au> December 1999
14
15         Unblock all signals when we exec a usermode process.
16         Shuu Yamaguchi <shuu@wondernetworkresources.com> December 2000
17
18         call_usermodehelper wait flag, and remove exec_usermodehelper.
19         Rusty Russell <rusty@rustcorp.com.au>  Jan 2003
20 */
21 #include <linux/module.h>
22 #include <linux/sched.h>
23 #include <linux/syscalls.h>
24 #include <linux/unistd.h>
25 #include <linux/kmod.h>
26 #include <linux/slab.h>
27 #include <linux/completion.h>
28 #include <linux/cred.h>
29 #include <linux/file.h>
30 #include <linux/fdtable.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
33 #include <linux/mount.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/resource.h>
37 #include <linux/notifier.h>
38 #include <linux/suspend.h>
39 #include <linux/rwsem.h>
40 #include <linux/ptrace.h>
41 #include <linux/async.h>
42 #include <asm/uaccess.h>
43
44 #include <trace/events/module.h>
45
46 extern int max_threads;
47
48 #define CAP_BSET        (void *)1
49 #define CAP_PI          (void *)2
50
51 static kernel_cap_t usermodehelper_bset = CAP_FULL_SET;
52 static kernel_cap_t usermodehelper_inheritable = CAP_FULL_SET;
53 static DEFINE_SPINLOCK(umh_sysctl_lock);
54 static DECLARE_RWSEM(umhelper_sem);
55
56 #ifdef CONFIG_MODULES
57
58 /*
59         modprobe_path is set via /proc/sys.
60 */
61 char modprobe_path[KMOD_PATH_LEN] = "/sbin/modprobe";
62
63 static void free_modprobe_argv(struct subprocess_info *info)
64 {
65         kfree(info->argv[3]); /* check call_modprobe() */
66         kfree(info->argv);
67 }
68
69 static int call_modprobe(char *module_name, int wait)
70 {
71         struct subprocess_info *info;
72         static char *envp[] = {
73                 "HOME=/",
74                 "TERM=linux",
75                 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
76                 NULL
77         };
78
79         char **argv = kmalloc(sizeof(char *[5]), GFP_KERNEL);
80         if (!argv)
81                 goto out;
82
83         module_name = kstrdup(module_name, GFP_KERNEL);
84         if (!module_name)
85                 goto free_argv;
86
87         argv[0] = modprobe_path;
88         argv[1] = "-q";
89         argv[2] = "--";
90         argv[3] = module_name;  /* check free_modprobe_argv() */
91         argv[4] = NULL;
92
93         info = call_usermodehelper_setup(modprobe_path, argv, envp, GFP_KERNEL,
94                                          NULL, free_modprobe_argv, NULL);
95         if (!info)
96                 goto free_module_name;
97
98         return call_usermodehelper_exec(info, wait | UMH_KILLABLE);
99
100 free_module_name:
101         kfree(module_name);
102 free_argv:
103         kfree(argv);
104 out:
105         return -ENOMEM;
106 }
107
108 /**
109  * __request_module - try to load a kernel module
110  * @wait: wait (or not) for the operation to complete
111  * @fmt: printf style format string for the name of the module
112  * @...: arguments as specified in the format string
113  *
114  * Load a module using the user mode module loader. The function returns
115  * zero on success or a negative errno code or positive exit code from
116  * "modprobe" on failure. Note that a successful module load does not mean
117  * the module did not then unload and exit on an error of its own. Callers
118  * must check that the service they requested is now available not blindly
119  * invoke it.
120  *
121  * If module auto-loading support is disabled then this function
122  * becomes a no-operation.
123  */
124 int __request_module(bool wait, const char *fmt, ...)
125 {
126         va_list args;
127         char module_name[MODULE_NAME_LEN];
128         unsigned int max_modprobes;
129         int ret;
130         static atomic_t kmod_concurrent = ATOMIC_INIT(0);
131 #define MAX_KMOD_CONCURRENT 50  /* Completely arbitrary value - KAO */
132         static int kmod_loop_msg;
133
134         /*
135          * We don't allow synchronous module loading from async.  Module
136          * init may invoke async_synchronize_full() which will end up
137          * waiting for this task which already is waiting for the module
138          * loading to complete, leading to a deadlock.
139          */
140         WARN_ON_ONCE(wait && current_is_async());
141
142         if (!modprobe_path[0])
143                 return 0;
144
145         va_start(args, fmt);
146         ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args);
147         va_end(args);
148         if (ret >= MODULE_NAME_LEN)
149                 return -ENAMETOOLONG;
150
151         ret = security_kernel_module_request(module_name);
152         if (ret)
153                 return ret;
154
155         /* If modprobe needs a service that is in a module, we get a recursive
156          * loop.  Limit the number of running kmod threads to max_threads/2 or
157          * MAX_KMOD_CONCURRENT, whichever is the smaller.  A cleaner method
158          * would be to run the parents of this process, counting how many times
159          * kmod was invoked.  That would mean accessing the internals of the
160          * process tables to get the command line, proc_pid_cmdline is static
161          * and it is not worth changing the proc code just to handle this case. 
162          * KAO.
163          *
164          * "trace the ppid" is simple, but will fail if someone's
165          * parent exits.  I think this is as good as it gets. --RR
166          */
167         max_modprobes = min(max_threads/2, MAX_KMOD_CONCURRENT);
168         atomic_inc(&kmod_concurrent);
169         if (atomic_read(&kmod_concurrent) > max_modprobes) {
170                 /* We may be blaming an innocent here, but unlikely */
171                 if (kmod_loop_msg < 5) {
172                         printk(KERN_ERR
173                                "request_module: runaway loop modprobe %s\n",
174                                module_name);
175                         kmod_loop_msg++;
176                 }
177                 atomic_dec(&kmod_concurrent);
178                 return -ENOMEM;
179         }
180
181         trace_module_request(module_name, wait, _RET_IP_);
182
183         ret = call_modprobe(module_name, wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC);
184
185         atomic_dec(&kmod_concurrent);
186         return ret;
187 }
188 EXPORT_SYMBOL(__request_module);
189 #endif /* CONFIG_MODULES */
190
191 static void call_usermodehelper_freeinfo(struct subprocess_info *info)
192 {
193         if (info->cleanup)
194                 (*info->cleanup)(info);
195         kfree(info);
196 }
197
198 static void umh_complete(struct subprocess_info *sub_info)
199 {
200         struct completion *comp = xchg(&sub_info->complete, NULL);
201         /*
202          * See call_usermodehelper_exec(). If xchg() returns NULL
203          * we own sub_info, the UMH_KILLABLE caller has gone away
204          * or the caller used UMH_NO_WAIT.
205          */
206         if (comp)
207                 complete(comp);
208         else
209                 call_usermodehelper_freeinfo(sub_info);
210 }
211
212 /*
213  * This is the task which runs the usermode application
214  */
215 static int call_usermodehelper_exec_async(void *data)
216 {
217         struct subprocess_info *sub_info = data;
218         struct cred *new;
219         int retval;
220
221         spin_lock_irq(&current->sighand->siglock);
222         flush_signal_handlers(current, 1);
223         spin_unlock_irq(&current->sighand->siglock);
224
225         /*
226          * Our parent (unbound workqueue) runs with elevated scheduling
227          * priority. Avoid propagating that into the userspace child.
228          */
229         set_user_nice(current, 0);
230
231         retval = -ENOMEM;
232         new = prepare_kernel_cred(current);
233         if (!new)
234                 goto out;
235
236         spin_lock(&umh_sysctl_lock);
237         new->cap_bset = cap_intersect(usermodehelper_bset, new->cap_bset);
238         new->cap_inheritable = cap_intersect(usermodehelper_inheritable,
239                                              new->cap_inheritable);
240         spin_unlock(&umh_sysctl_lock);
241
242         if (sub_info->init) {
243                 retval = sub_info->init(sub_info, new);
244                 if (retval) {
245                         abort_creds(new);
246                         goto out;
247                 }
248         }
249
250         commit_creds(new);
251
252         retval = do_execve(getname_kernel(sub_info->path),
253                            (const char __user *const __user *)sub_info->argv,
254                            (const char __user *const __user *)sub_info->envp);
255 out:
256         sub_info->retval = retval;
257         /*
258          * call_usermodehelper_exec_sync() will call umh_complete
259          * if UHM_WAIT_PROC.
260          */
261         if (!(sub_info->wait & UMH_WAIT_PROC))
262                 umh_complete(sub_info);
263         if (!retval)
264                 return 0;
265         do_exit(0);
266 }
267
268 /* Handles UMH_WAIT_PROC.  */
269 static void call_usermodehelper_exec_sync(struct subprocess_info *sub_info)
270 {
271         pid_t pid;
272
273         /* If SIGCLD is ignored sys_wait4 won't populate the status. */
274         kernel_sigaction(SIGCHLD, SIG_DFL);
275         pid = kernel_thread(call_usermodehelper_exec_async, sub_info, SIGCHLD);
276         if (pid < 0) {
277                 sub_info->retval = pid;
278         } else {
279                 int ret = -ECHILD;
280                 /*
281                  * Normally it is bogus to call wait4() from in-kernel because
282                  * wait4() wants to write the exit code to a userspace address.
283                  * But call_usermodehelper_exec_sync() always runs as kernel
284                  * thread (workqueue) and put_user() to a kernel address works
285                  * OK for kernel threads, due to their having an mm_segment_t
286                  * which spans the entire address space.
287                  *
288                  * Thus the __user pointer cast is valid here.
289                  */
290                 sys_wait4(pid, (int __user *)&ret, 0, NULL);
291
292                 /*
293                  * If ret is 0, either call_usermodehelper_exec_async failed and
294                  * the real error code is already in sub_info->retval or
295                  * sub_info->retval is 0 anyway, so don't mess with it then.
296                  */
297                 if (ret)
298                         sub_info->retval = ret;
299         }
300
301         /* Restore default kernel sig handler */
302         kernel_sigaction(SIGCHLD, SIG_IGN);
303
304         umh_complete(sub_info);
305 }
306
307 /*
308  * We need to create the usermodehelper kernel thread from a task that is affine
309  * to an optimized set of CPUs (or nohz housekeeping ones) such that they
310  * inherit a widest affinity irrespective of call_usermodehelper() callers with
311  * possibly reduced affinity (eg: per-cpu workqueues). We don't want
312  * usermodehelper targets to contend a busy CPU.
313  *
314  * Unbound workqueues provide such wide affinity and allow to block on
315  * UMH_WAIT_PROC requests without blocking pending request (up to some limit).
316  *
317  * Besides, workqueues provide the privilege level that caller might not have
318  * to perform the usermodehelper request.
319  *
320  */
321 static void call_usermodehelper_exec_work(struct work_struct *work)
322 {
323         struct subprocess_info *sub_info =
324                 container_of(work, struct subprocess_info, work);
325
326         if (sub_info->wait & UMH_WAIT_PROC) {
327                 call_usermodehelper_exec_sync(sub_info);
328         } else {
329                 pid_t pid;
330                 /*
331                  * Use CLONE_PARENT to reparent it to kthreadd; we do not
332                  * want to pollute current->children, and we need a parent
333                  * that always ignores SIGCHLD to ensure auto-reaping.
334                  */
335                 pid = kernel_thread(call_usermodehelper_exec_async, sub_info,
336                                     CLONE_PARENT | SIGCHLD);
337                 if (pid < 0) {
338                         sub_info->retval = pid;
339                         umh_complete(sub_info);
340                 }
341         }
342 }
343
344 /*
345  * If set, call_usermodehelper_exec() will exit immediately returning -EBUSY
346  * (used for preventing user land processes from being created after the user
347  * land has been frozen during a system-wide hibernation or suspend operation).
348  * Should always be manipulated under umhelper_sem acquired for write.
349  */
350 static enum umh_disable_depth usermodehelper_disabled = UMH_DISABLED;
351
352 /* Number of helpers running */
353 static atomic_t running_helpers = ATOMIC_INIT(0);
354
355 /*
356  * Wait queue head used by usermodehelper_disable() to wait for all running
357  * helpers to finish.
358  */
359 static DECLARE_WAIT_QUEUE_HEAD(running_helpers_waitq);
360
361 /*
362  * Used by usermodehelper_read_lock_wait() to wait for usermodehelper_disabled
363  * to become 'false'.
364  */
365 static DECLARE_WAIT_QUEUE_HEAD(usermodehelper_disabled_waitq);
366
367 /*
368  * Time to wait for running_helpers to become zero before the setting of
369  * usermodehelper_disabled in usermodehelper_disable() fails
370  */
371 #define RUNNING_HELPERS_TIMEOUT (5 * HZ)
372
373 int usermodehelper_read_trylock(void)
374 {
375         DEFINE_WAIT(wait);
376         int ret = 0;
377
378         down_read(&umhelper_sem);
379         for (;;) {
380                 prepare_to_wait(&usermodehelper_disabled_waitq, &wait,
381                                 TASK_INTERRUPTIBLE);
382                 if (!usermodehelper_disabled)
383                         break;
384
385                 if (usermodehelper_disabled == UMH_DISABLED)
386                         ret = -EAGAIN;
387
388                 up_read(&umhelper_sem);
389
390                 if (ret)
391                         break;
392
393                 schedule();
394                 try_to_freeze();
395
396                 down_read(&umhelper_sem);
397         }
398         finish_wait(&usermodehelper_disabled_waitq, &wait);
399         return ret;
400 }
401 EXPORT_SYMBOL_GPL(usermodehelper_read_trylock);
402
403 long usermodehelper_read_lock_wait(long timeout)
404 {
405         DEFINE_WAIT(wait);
406
407         if (timeout < 0)
408                 return -EINVAL;
409
410         down_read(&umhelper_sem);
411         for (;;) {
412                 prepare_to_wait(&usermodehelper_disabled_waitq, &wait,
413                                 TASK_UNINTERRUPTIBLE);
414                 if (!usermodehelper_disabled)
415                         break;
416
417                 up_read(&umhelper_sem);
418
419                 timeout = schedule_timeout(timeout);
420                 if (!timeout)
421                         break;
422
423                 down_read(&umhelper_sem);
424         }
425         finish_wait(&usermodehelper_disabled_waitq, &wait);
426         return timeout;
427 }
428 EXPORT_SYMBOL_GPL(usermodehelper_read_lock_wait);
429
430 void usermodehelper_read_unlock(void)
431 {
432         up_read(&umhelper_sem);
433 }
434 EXPORT_SYMBOL_GPL(usermodehelper_read_unlock);
435
436 /**
437  * __usermodehelper_set_disable_depth - Modify usermodehelper_disabled.
438  * @depth: New value to assign to usermodehelper_disabled.
439  *
440  * Change the value of usermodehelper_disabled (under umhelper_sem locked for
441  * writing) and wakeup tasks waiting for it to change.
442  */
443 void __usermodehelper_set_disable_depth(enum umh_disable_depth depth)
444 {
445         down_write(&umhelper_sem);
446         usermodehelper_disabled = depth;
447         wake_up(&usermodehelper_disabled_waitq);
448         up_write(&umhelper_sem);
449 }
450
451 /**
452  * __usermodehelper_disable - Prevent new helpers from being started.
453  * @depth: New value to assign to usermodehelper_disabled.
454  *
455  * Set usermodehelper_disabled to @depth and wait for running helpers to exit.
456  */
457 int __usermodehelper_disable(enum umh_disable_depth depth)
458 {
459         long retval;
460
461         if (!depth)
462                 return -EINVAL;
463
464         down_write(&umhelper_sem);
465         usermodehelper_disabled = depth;
466         up_write(&umhelper_sem);
467
468         /*
469          * From now on call_usermodehelper_exec() won't start any new
470          * helpers, so it is sufficient if running_helpers turns out to
471          * be zero at one point (it may be increased later, but that
472          * doesn't matter).
473          */
474         retval = wait_event_timeout(running_helpers_waitq,
475                                         atomic_read(&running_helpers) == 0,
476                                         RUNNING_HELPERS_TIMEOUT);
477         if (retval)
478                 return 0;
479
480         __usermodehelper_set_disable_depth(UMH_ENABLED);
481         return -EAGAIN;
482 }
483
484 static void helper_lock(void)
485 {
486         atomic_inc(&running_helpers);
487         smp_mb__after_atomic();
488 }
489
490 static void helper_unlock(void)
491 {
492         if (atomic_dec_and_test(&running_helpers))
493                 wake_up(&running_helpers_waitq);
494 }
495
496 /**
497  * call_usermodehelper_setup - prepare to call a usermode helper
498  * @path: path to usermode executable
499  * @argv: arg vector for process
500  * @envp: environment for process
501  * @gfp_mask: gfp mask for memory allocation
502  * @cleanup: a cleanup function
503  * @init: an init function
504  * @data: arbitrary context sensitive data
505  *
506  * Returns either %NULL on allocation failure, or a subprocess_info
507  * structure.  This should be passed to call_usermodehelper_exec to
508  * exec the process and free the structure.
509  *
510  * The init function is used to customize the helper process prior to
511  * exec.  A non-zero return code causes the process to error out, exit,
512  * and return the failure to the calling process
513  *
514  * The cleanup function is just before ethe subprocess_info is about to
515  * be freed.  This can be used for freeing the argv and envp.  The
516  * Function must be runnable in either a process context or the
517  * context in which call_usermodehelper_exec is called.
518  */
519 struct subprocess_info *call_usermodehelper_setup(char *path, char **argv,
520                 char **envp, gfp_t gfp_mask,
521                 int (*init)(struct subprocess_info *info, struct cred *new),
522                 void (*cleanup)(struct subprocess_info *info),
523                 void *data)
524 {
525         struct subprocess_info *sub_info;
526         sub_info = kzalloc(sizeof(struct subprocess_info), gfp_mask);
527         if (!sub_info)
528                 goto out;
529
530         INIT_WORK(&sub_info->work, call_usermodehelper_exec_work);
531         sub_info->path = path;
532         sub_info->argv = argv;
533         sub_info->envp = envp;
534
535         sub_info->cleanup = cleanup;
536         sub_info->init = init;
537         sub_info->data = data;
538   out:
539         return sub_info;
540 }
541 EXPORT_SYMBOL(call_usermodehelper_setup);
542
543 /**
544  * call_usermodehelper_exec - start a usermode application
545  * @sub_info: information about the subprocessa
546  * @wait: wait for the application to finish and return status.
547  *        when UMH_NO_WAIT don't wait at all, but you get no useful error back
548  *        when the program couldn't be exec'ed. This makes it safe to call
549  *        from interrupt context.
550  *
551  * Runs a user-space application.  The application is started
552  * asynchronously if wait is not set, and runs as a child of system workqueues.
553  * (ie. it runs with full root capabilities and optimized affinity).
554  */
555 int call_usermodehelper_exec(struct subprocess_info *sub_info, int wait)
556 {
557         DECLARE_COMPLETION_ONSTACK(done);
558         int retval = 0;
559
560         if (!sub_info->path) {
561                 call_usermodehelper_freeinfo(sub_info);
562                 return -EINVAL;
563         }
564         helper_lock();
565         if (usermodehelper_disabled) {
566                 retval = -EBUSY;
567                 goto out;
568         }
569         /*
570          * Set the completion pointer only if there is a waiter.
571          * This makes it possible to use umh_complete to free
572          * the data structure in case of UMH_NO_WAIT.
573          */
574         sub_info->complete = (wait == UMH_NO_WAIT) ? NULL : &done;
575         sub_info->wait = wait;
576
577         queue_work(system_unbound_wq, &sub_info->work);
578         if (wait == UMH_NO_WAIT)        /* task has freed sub_info */
579                 goto unlock;
580
581         if (wait & UMH_KILLABLE) {
582                 retval = wait_for_completion_killable(&done);
583                 if (!retval)
584                         goto wait_done;
585
586                 /* umh_complete() will see NULL and free sub_info */
587                 if (xchg(&sub_info->complete, NULL))
588                         goto unlock;
589                 /* fallthrough, umh_complete() was already called */
590         }
591
592         wait_for_completion(&done);
593 wait_done:
594         retval = sub_info->retval;
595 out:
596         call_usermodehelper_freeinfo(sub_info);
597 unlock:
598         helper_unlock();
599         return retval;
600 }
601 EXPORT_SYMBOL(call_usermodehelper_exec);
602
603 /**
604  * call_usermodehelper() - prepare and start a usermode application
605  * @path: path to usermode executable
606  * @argv: arg vector for process
607  * @envp: environment for process
608  * @wait: wait for the application to finish and return status.
609  *        when UMH_NO_WAIT don't wait at all, but you get no useful error back
610  *        when the program couldn't be exec'ed. This makes it safe to call
611  *        from interrupt context.
612  *
613  * This function is the equivalent to use call_usermodehelper_setup() and
614  * call_usermodehelper_exec().
615  */
616 int call_usermodehelper(char *path, char **argv, char **envp, int wait)
617 {
618         struct subprocess_info *info;
619         gfp_t gfp_mask = (wait == UMH_NO_WAIT) ? GFP_ATOMIC : GFP_KERNEL;
620
621         info = call_usermodehelper_setup(path, argv, envp, gfp_mask,
622                                          NULL, NULL, NULL);
623         if (info == NULL)
624                 return -ENOMEM;
625
626         return call_usermodehelper_exec(info, wait);
627 }
628 EXPORT_SYMBOL(call_usermodehelper);
629
630 static int proc_cap_handler(struct ctl_table *table, int write,
631                          void __user *buffer, size_t *lenp, loff_t *ppos)
632 {
633         struct ctl_table t;
634         unsigned long cap_array[_KERNEL_CAPABILITY_U32S];
635         kernel_cap_t new_cap;
636         int err, i;
637
638         if (write && (!capable(CAP_SETPCAP) ||
639                       !capable(CAP_SYS_MODULE)))
640                 return -EPERM;
641
642         /*
643          * convert from the global kernel_cap_t to the ulong array to print to
644          * userspace if this is a read.
645          */
646         spin_lock(&umh_sysctl_lock);
647         for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)  {
648                 if (table->data == CAP_BSET)
649                         cap_array[i] = usermodehelper_bset.cap[i];
650                 else if (table->data == CAP_PI)
651                         cap_array[i] = usermodehelper_inheritable.cap[i];
652                 else
653                         BUG();
654         }
655         spin_unlock(&umh_sysctl_lock);
656
657         t = *table;
658         t.data = &cap_array;
659
660         /*
661          * actually read or write and array of ulongs from userspace.  Remember
662          * these are least significant 32 bits first
663          */
664         err = proc_doulongvec_minmax(&t, write, buffer, lenp, ppos);
665         if (err < 0)
666                 return err;
667
668         /*
669          * convert from the sysctl array of ulongs to the kernel_cap_t
670          * internal representation
671          */
672         for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)
673                 new_cap.cap[i] = cap_array[i];
674
675         /*
676          * Drop everything not in the new_cap (but don't add things)
677          */
678         spin_lock(&umh_sysctl_lock);
679         if (write) {
680                 if (table->data == CAP_BSET)
681                         usermodehelper_bset = cap_intersect(usermodehelper_bset, new_cap);
682                 if (table->data == CAP_PI)
683                         usermodehelper_inheritable = cap_intersect(usermodehelper_inheritable, new_cap);
684         }
685         spin_unlock(&umh_sysctl_lock);
686
687         return 0;
688 }
689
690 struct ctl_table usermodehelper_table[] = {
691         {
692                 .procname       = "bset",
693                 .data           = CAP_BSET,
694                 .maxlen         = _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
695                 .mode           = 0600,
696                 .proc_handler   = proc_cap_handler,
697         },
698         {
699                 .procname       = "inheritable",
700                 .data           = CAP_PI,
701                 .maxlen         = _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
702                 .mode           = 0600,
703                 .proc_handler   = proc_cap_handler,
704         },
705         { }
706 };