]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/locking/rtmutex.c
Merge git://www.linux-watchdog.org/linux-watchdog
[karo-tx-linux.git] / kernel / locking / rtmutex.c
1 /*
2  * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3  *
4  * started by Ingo Molnar and Thomas Gleixner.
5  *
6  *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7  *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8  *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9  *  Copyright (C) 2006 Esben Nielsen
10  *
11  *  See Documentation/locking/rt-mutex-design.txt for details.
12  */
13 #include <linux/spinlock.h>
14 #include <linux/export.h>
15 #include <linux/sched.h>
16 #include <linux/sched/rt.h>
17 #include <linux/sched/deadline.h>
18 #include <linux/timer.h>
19
20 #include "rtmutex_common.h"
21
22 /*
23  * lock->owner state tracking:
24  *
25  * lock->owner holds the task_struct pointer of the owner. Bit 0
26  * is used to keep track of the "lock has waiters" state.
27  *
28  * owner        bit0
29  * NULL         0       lock is free (fast acquire possible)
30  * NULL         1       lock is free and has waiters and the top waiter
31  *                              is going to take the lock*
32  * taskpointer  0       lock is held (fast release possible)
33  * taskpointer  1       lock is held and has waiters**
34  *
35  * The fast atomic compare exchange based acquire and release is only
36  * possible when bit 0 of lock->owner is 0.
37  *
38  * (*) It also can be a transitional state when grabbing the lock
39  * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
40  * we need to set the bit0 before looking at the lock, and the owner may be
41  * NULL in this small time, hence this can be a transitional state.
42  *
43  * (**) There is a small time when bit 0 is set but there are no
44  * waiters. This can happen when grabbing the lock in the slow path.
45  * To prevent a cmpxchg of the owner releasing the lock, we need to
46  * set this bit before looking at the lock.
47  */
48
49 static void
50 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
51 {
52         unsigned long val = (unsigned long)owner;
53
54         if (rt_mutex_has_waiters(lock))
55                 val |= RT_MUTEX_HAS_WAITERS;
56
57         lock->owner = (struct task_struct *)val;
58 }
59
60 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
61 {
62         lock->owner = (struct task_struct *)
63                         ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
64 }
65
66 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
67 {
68         if (!rt_mutex_has_waiters(lock))
69                 clear_rt_mutex_waiters(lock);
70 }
71
72 /*
73  * We can speed up the acquire/release, if there's no debugging state to be
74  * set up.
75  */
76 #ifndef CONFIG_DEBUG_RT_MUTEXES
77 # define rt_mutex_cmpxchg(l,c,n)        (cmpxchg(&l->owner, c, n) == c)
78 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
79 {
80         unsigned long owner, *p = (unsigned long *) &lock->owner;
81
82         do {
83                 owner = *p;
84         } while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
85 }
86
87 /*
88  * Safe fastpath aware unlock:
89  * 1) Clear the waiters bit
90  * 2) Drop lock->wait_lock
91  * 3) Try to unlock the lock with cmpxchg
92  */
93 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock)
94         __releases(lock->wait_lock)
95 {
96         struct task_struct *owner = rt_mutex_owner(lock);
97
98         clear_rt_mutex_waiters(lock);
99         raw_spin_unlock(&lock->wait_lock);
100         /*
101          * If a new waiter comes in between the unlock and the cmpxchg
102          * we have two situations:
103          *
104          * unlock(wait_lock);
105          *                                      lock(wait_lock);
106          * cmpxchg(p, owner, 0) == owner
107          *                                      mark_rt_mutex_waiters(lock);
108          *                                      acquire(lock);
109          * or:
110          *
111          * unlock(wait_lock);
112          *                                      lock(wait_lock);
113          *                                      mark_rt_mutex_waiters(lock);
114          *
115          * cmpxchg(p, owner, 0) != owner
116          *                                      enqueue_waiter();
117          *                                      unlock(wait_lock);
118          * lock(wait_lock);
119          * wake waiter();
120          * unlock(wait_lock);
121          *                                      lock(wait_lock);
122          *                                      acquire(lock);
123          */
124         return rt_mutex_cmpxchg(lock, owner, NULL);
125 }
126
127 #else
128 # define rt_mutex_cmpxchg(l,c,n)        (0)
129 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
130 {
131         lock->owner = (struct task_struct *)
132                         ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
133 }
134
135 /*
136  * Simple slow path only version: lock->owner is protected by lock->wait_lock.
137  */
138 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock)
139         __releases(lock->wait_lock)
140 {
141         lock->owner = NULL;
142         raw_spin_unlock(&lock->wait_lock);
143         return true;
144 }
145 #endif
146
147 static inline int
148 rt_mutex_waiter_less(struct rt_mutex_waiter *left,
149                      struct rt_mutex_waiter *right)
150 {
151         if (left->prio < right->prio)
152                 return 1;
153
154         /*
155          * If both waiters have dl_prio(), we check the deadlines of the
156          * associated tasks.
157          * If left waiter has a dl_prio(), and we didn't return 1 above,
158          * then right waiter has a dl_prio() too.
159          */
160         if (dl_prio(left->prio))
161                 return (left->task->dl.deadline < right->task->dl.deadline);
162
163         return 0;
164 }
165
166 static void
167 rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
168 {
169         struct rb_node **link = &lock->waiters.rb_node;
170         struct rb_node *parent = NULL;
171         struct rt_mutex_waiter *entry;
172         int leftmost = 1;
173
174         while (*link) {
175                 parent = *link;
176                 entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
177                 if (rt_mutex_waiter_less(waiter, entry)) {
178                         link = &parent->rb_left;
179                 } else {
180                         link = &parent->rb_right;
181                         leftmost = 0;
182                 }
183         }
184
185         if (leftmost)
186                 lock->waiters_leftmost = &waiter->tree_entry;
187
188         rb_link_node(&waiter->tree_entry, parent, link);
189         rb_insert_color(&waiter->tree_entry, &lock->waiters);
190 }
191
192 static void
193 rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
194 {
195         if (RB_EMPTY_NODE(&waiter->tree_entry))
196                 return;
197
198         if (lock->waiters_leftmost == &waiter->tree_entry)
199                 lock->waiters_leftmost = rb_next(&waiter->tree_entry);
200
201         rb_erase(&waiter->tree_entry, &lock->waiters);
202         RB_CLEAR_NODE(&waiter->tree_entry);
203 }
204
205 static void
206 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
207 {
208         struct rb_node **link = &task->pi_waiters.rb_node;
209         struct rb_node *parent = NULL;
210         struct rt_mutex_waiter *entry;
211         int leftmost = 1;
212
213         while (*link) {
214                 parent = *link;
215                 entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
216                 if (rt_mutex_waiter_less(waiter, entry)) {
217                         link = &parent->rb_left;
218                 } else {
219                         link = &parent->rb_right;
220                         leftmost = 0;
221                 }
222         }
223
224         if (leftmost)
225                 task->pi_waiters_leftmost = &waiter->pi_tree_entry;
226
227         rb_link_node(&waiter->pi_tree_entry, parent, link);
228         rb_insert_color(&waiter->pi_tree_entry, &task->pi_waiters);
229 }
230
231 static void
232 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
233 {
234         if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
235                 return;
236
237         if (task->pi_waiters_leftmost == &waiter->pi_tree_entry)
238                 task->pi_waiters_leftmost = rb_next(&waiter->pi_tree_entry);
239
240         rb_erase(&waiter->pi_tree_entry, &task->pi_waiters);
241         RB_CLEAR_NODE(&waiter->pi_tree_entry);
242 }
243
244 /*
245  * Calculate task priority from the waiter tree priority
246  *
247  * Return task->normal_prio when the waiter tree is empty or when
248  * the waiter is not allowed to do priority boosting
249  */
250 int rt_mutex_getprio(struct task_struct *task)
251 {
252         if (likely(!task_has_pi_waiters(task)))
253                 return task->normal_prio;
254
255         return min(task_top_pi_waiter(task)->prio,
256                    task->normal_prio);
257 }
258
259 struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
260 {
261         if (likely(!task_has_pi_waiters(task)))
262                 return NULL;
263
264         return task_top_pi_waiter(task)->task;
265 }
266
267 /*
268  * Called by sched_setscheduler() to get the priority which will be
269  * effective after the change.
270  */
271 int rt_mutex_get_effective_prio(struct task_struct *task, int newprio)
272 {
273         if (!task_has_pi_waiters(task))
274                 return newprio;
275
276         if (task_top_pi_waiter(task)->task->prio <= newprio)
277                 return task_top_pi_waiter(task)->task->prio;
278         return newprio;
279 }
280
281 /*
282  * Adjust the priority of a task, after its pi_waiters got modified.
283  *
284  * This can be both boosting and unboosting. task->pi_lock must be held.
285  */
286 static void __rt_mutex_adjust_prio(struct task_struct *task)
287 {
288         int prio = rt_mutex_getprio(task);
289
290         if (task->prio != prio || dl_prio(prio))
291                 rt_mutex_setprio(task, prio);
292 }
293
294 /*
295  * Adjust task priority (undo boosting). Called from the exit path of
296  * rt_mutex_slowunlock() and rt_mutex_slowlock().
297  *
298  * (Note: We do this outside of the protection of lock->wait_lock to
299  * allow the lock to be taken while or before we readjust the priority
300  * of task. We do not use the spin_xx_mutex() variants here as we are
301  * outside of the debug path.)
302  */
303 void rt_mutex_adjust_prio(struct task_struct *task)
304 {
305         unsigned long flags;
306
307         raw_spin_lock_irqsave(&task->pi_lock, flags);
308         __rt_mutex_adjust_prio(task);
309         raw_spin_unlock_irqrestore(&task->pi_lock, flags);
310 }
311
312 /*
313  * Deadlock detection is conditional:
314  *
315  * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
316  * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
317  *
318  * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
319  * conducted independent of the detect argument.
320  *
321  * If the waiter argument is NULL this indicates the deboost path and
322  * deadlock detection is disabled independent of the detect argument
323  * and the config settings.
324  */
325 static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
326                                           enum rtmutex_chainwalk chwalk)
327 {
328         /*
329          * This is just a wrapper function for the following call,
330          * because debug_rt_mutex_detect_deadlock() smells like a magic
331          * debug feature and I wanted to keep the cond function in the
332          * main source file along with the comments instead of having
333          * two of the same in the headers.
334          */
335         return debug_rt_mutex_detect_deadlock(waiter, chwalk);
336 }
337
338 /*
339  * Max number of times we'll walk the boosting chain:
340  */
341 int max_lock_depth = 1024;
342
343 static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
344 {
345         return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
346 }
347
348 /*
349  * Adjust the priority chain. Also used for deadlock detection.
350  * Decreases task's usage by one - may thus free the task.
351  *
352  * @task:       the task owning the mutex (owner) for which a chain walk is
353  *              probably needed
354  * @chwalk:     do we have to carry out deadlock detection?
355  * @orig_lock:  the mutex (can be NULL if we are walking the chain to recheck
356  *              things for a task that has just got its priority adjusted, and
357  *              is waiting on a mutex)
358  * @next_lock:  the mutex on which the owner of @orig_lock was blocked before
359  *              we dropped its pi_lock. Is never dereferenced, only used for
360  *              comparison to detect lock chain changes.
361  * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
362  *              its priority to the mutex owner (can be NULL in the case
363  *              depicted above or if the top waiter is gone away and we are
364  *              actually deboosting the owner)
365  * @top_task:   the current top waiter
366  *
367  * Returns 0 or -EDEADLK.
368  *
369  * Chain walk basics and protection scope
370  *
371  * [R] refcount on task
372  * [P] task->pi_lock held
373  * [L] rtmutex->wait_lock held
374  *
375  * Step Description                             Protected by
376  *      function arguments:
377  *      @task                                   [R]
378  *      @orig_lock if != NULL                   @top_task is blocked on it
379  *      @next_lock                              Unprotected. Cannot be
380  *                                              dereferenced. Only used for
381  *                                              comparison.
382  *      @orig_waiter if != NULL                 @top_task is blocked on it
383  *      @top_task                               current, or in case of proxy
384  *                                              locking protected by calling
385  *                                              code
386  *      again:
387  *        loop_sanity_check();
388  *      retry:
389  * [1]    lock(task->pi_lock);                  [R] acquire [P]
390  * [2]    waiter = task->pi_blocked_on;         [P]
391  * [3]    check_exit_conditions_1();            [P]
392  * [4]    lock = waiter->lock;                  [P]
393  * [5]    if (!try_lock(lock->wait_lock)) {     [P] try to acquire [L]
394  *          unlock(task->pi_lock);              release [P]
395  *          goto retry;
396  *        }
397  * [6]    check_exit_conditions_2();            [P] + [L]
398  * [7]    requeue_lock_waiter(lock, waiter);    [P] + [L]
399  * [8]    unlock(task->pi_lock);                release [P]
400  *        put_task_struct(task);                release [R]
401  * [9]    check_exit_conditions_3();            [L]
402  * [10]   task = owner(lock);                   [L]
403  *        get_task_struct(task);                [L] acquire [R]
404  *        lock(task->pi_lock);                  [L] acquire [P]
405  * [11]   requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
406  * [12]   check_exit_conditions_4();            [P] + [L]
407  * [13]   unlock(task->pi_lock);                release [P]
408  *        unlock(lock->wait_lock);              release [L]
409  *        goto again;
410  */
411 static int rt_mutex_adjust_prio_chain(struct task_struct *task,
412                                       enum rtmutex_chainwalk chwalk,
413                                       struct rt_mutex *orig_lock,
414                                       struct rt_mutex *next_lock,
415                                       struct rt_mutex_waiter *orig_waiter,
416                                       struct task_struct *top_task)
417 {
418         struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
419         struct rt_mutex_waiter *prerequeue_top_waiter;
420         int ret = 0, depth = 0;
421         struct rt_mutex *lock;
422         bool detect_deadlock;
423         unsigned long flags;
424         bool requeue = true;
425
426         detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
427
428         /*
429          * The (de)boosting is a step by step approach with a lot of
430          * pitfalls. We want this to be preemptible and we want hold a
431          * maximum of two locks per step. So we have to check
432          * carefully whether things change under us.
433          */
434  again:
435         /*
436          * We limit the lock chain length for each invocation.
437          */
438         if (++depth > max_lock_depth) {
439                 static int prev_max;
440
441                 /*
442                  * Print this only once. If the admin changes the limit,
443                  * print a new message when reaching the limit again.
444                  */
445                 if (prev_max != max_lock_depth) {
446                         prev_max = max_lock_depth;
447                         printk(KERN_WARNING "Maximum lock depth %d reached "
448                                "task: %s (%d)\n", max_lock_depth,
449                                top_task->comm, task_pid_nr(top_task));
450                 }
451                 put_task_struct(task);
452
453                 return -EDEADLK;
454         }
455
456         /*
457          * We are fully preemptible here and only hold the refcount on
458          * @task. So everything can have changed under us since the
459          * caller or our own code below (goto retry/again) dropped all
460          * locks.
461          */
462  retry:
463         /*
464          * [1] Task cannot go away as we did a get_task() before !
465          */
466         raw_spin_lock_irqsave(&task->pi_lock, flags);
467
468         /*
469          * [2] Get the waiter on which @task is blocked on.
470          */
471         waiter = task->pi_blocked_on;
472
473         /*
474          * [3] check_exit_conditions_1() protected by task->pi_lock.
475          */
476
477         /*
478          * Check whether the end of the boosting chain has been
479          * reached or the state of the chain has changed while we
480          * dropped the locks.
481          */
482         if (!waiter)
483                 goto out_unlock_pi;
484
485         /*
486          * Check the orig_waiter state. After we dropped the locks,
487          * the previous owner of the lock might have released the lock.
488          */
489         if (orig_waiter && !rt_mutex_owner(orig_lock))
490                 goto out_unlock_pi;
491
492         /*
493          * We dropped all locks after taking a refcount on @task, so
494          * the task might have moved on in the lock chain or even left
495          * the chain completely and blocks now on an unrelated lock or
496          * on @orig_lock.
497          *
498          * We stored the lock on which @task was blocked in @next_lock,
499          * so we can detect the chain change.
500          */
501         if (next_lock != waiter->lock)
502                 goto out_unlock_pi;
503
504         /*
505          * Drop out, when the task has no waiters. Note,
506          * top_waiter can be NULL, when we are in the deboosting
507          * mode!
508          */
509         if (top_waiter) {
510                 if (!task_has_pi_waiters(task))
511                         goto out_unlock_pi;
512                 /*
513                  * If deadlock detection is off, we stop here if we
514                  * are not the top pi waiter of the task. If deadlock
515                  * detection is enabled we continue, but stop the
516                  * requeueing in the chain walk.
517                  */
518                 if (top_waiter != task_top_pi_waiter(task)) {
519                         if (!detect_deadlock)
520                                 goto out_unlock_pi;
521                         else
522                                 requeue = false;
523                 }
524         }
525
526         /*
527          * If the waiter priority is the same as the task priority
528          * then there is no further priority adjustment necessary.  If
529          * deadlock detection is off, we stop the chain walk. If its
530          * enabled we continue, but stop the requeueing in the chain
531          * walk.
532          */
533         if (waiter->prio == task->prio) {
534                 if (!detect_deadlock)
535                         goto out_unlock_pi;
536                 else
537                         requeue = false;
538         }
539
540         /*
541          * [4] Get the next lock
542          */
543         lock = waiter->lock;
544         /*
545          * [5] We need to trylock here as we are holding task->pi_lock,
546          * which is the reverse lock order versus the other rtmutex
547          * operations.
548          */
549         if (!raw_spin_trylock(&lock->wait_lock)) {
550                 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
551                 cpu_relax();
552                 goto retry;
553         }
554
555         /*
556          * [6] check_exit_conditions_2() protected by task->pi_lock and
557          * lock->wait_lock.
558          *
559          * Deadlock detection. If the lock is the same as the original
560          * lock which caused us to walk the lock chain or if the
561          * current lock is owned by the task which initiated the chain
562          * walk, we detected a deadlock.
563          */
564         if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
565                 debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
566                 raw_spin_unlock(&lock->wait_lock);
567                 ret = -EDEADLK;
568                 goto out_unlock_pi;
569         }
570
571         /*
572          * If we just follow the lock chain for deadlock detection, no
573          * need to do all the requeue operations. To avoid a truckload
574          * of conditionals around the various places below, just do the
575          * minimum chain walk checks.
576          */
577         if (!requeue) {
578                 /*
579                  * No requeue[7] here. Just release @task [8]
580                  */
581                 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
582                 put_task_struct(task);
583
584                 /*
585                  * [9] check_exit_conditions_3 protected by lock->wait_lock.
586                  * If there is no owner of the lock, end of chain.
587                  */
588                 if (!rt_mutex_owner(lock)) {
589                         raw_spin_unlock(&lock->wait_lock);
590                         return 0;
591                 }
592
593                 /* [10] Grab the next task, i.e. owner of @lock */
594                 task = rt_mutex_owner(lock);
595                 get_task_struct(task);
596                 raw_spin_lock_irqsave(&task->pi_lock, flags);
597
598                 /*
599                  * No requeue [11] here. We just do deadlock detection.
600                  *
601                  * [12] Store whether owner is blocked
602                  * itself. Decision is made after dropping the locks
603                  */
604                 next_lock = task_blocked_on_lock(task);
605                 /*
606                  * Get the top waiter for the next iteration
607                  */
608                 top_waiter = rt_mutex_top_waiter(lock);
609
610                 /* [13] Drop locks */
611                 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
612                 raw_spin_unlock(&lock->wait_lock);
613
614                 /* If owner is not blocked, end of chain. */
615                 if (!next_lock)
616                         goto out_put_task;
617                 goto again;
618         }
619
620         /*
621          * Store the current top waiter before doing the requeue
622          * operation on @lock. We need it for the boost/deboost
623          * decision below.
624          */
625         prerequeue_top_waiter = rt_mutex_top_waiter(lock);
626
627         /* [7] Requeue the waiter in the lock waiter tree. */
628         rt_mutex_dequeue(lock, waiter);
629         waiter->prio = task->prio;
630         rt_mutex_enqueue(lock, waiter);
631
632         /* [8] Release the task */
633         raw_spin_unlock_irqrestore(&task->pi_lock, flags);
634         put_task_struct(task);
635
636         /*
637          * [9] check_exit_conditions_3 protected by lock->wait_lock.
638          *
639          * We must abort the chain walk if there is no lock owner even
640          * in the dead lock detection case, as we have nothing to
641          * follow here. This is the end of the chain we are walking.
642          */
643         if (!rt_mutex_owner(lock)) {
644                 /*
645                  * If the requeue [7] above changed the top waiter,
646                  * then we need to wake the new top waiter up to try
647                  * to get the lock.
648                  */
649                 if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
650                         wake_up_process(rt_mutex_top_waiter(lock)->task);
651                 raw_spin_unlock(&lock->wait_lock);
652                 return 0;
653         }
654
655         /* [10] Grab the next task, i.e. the owner of @lock */
656         task = rt_mutex_owner(lock);
657         get_task_struct(task);
658         raw_spin_lock_irqsave(&task->pi_lock, flags);
659
660         /* [11] requeue the pi waiters if necessary */
661         if (waiter == rt_mutex_top_waiter(lock)) {
662                 /*
663                  * The waiter became the new top (highest priority)
664                  * waiter on the lock. Replace the previous top waiter
665                  * in the owner tasks pi waiters tree with this waiter
666                  * and adjust the priority of the owner.
667                  */
668                 rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
669                 rt_mutex_enqueue_pi(task, waiter);
670                 __rt_mutex_adjust_prio(task);
671
672         } else if (prerequeue_top_waiter == waiter) {
673                 /*
674                  * The waiter was the top waiter on the lock, but is
675                  * no longer the top prority waiter. Replace waiter in
676                  * the owner tasks pi waiters tree with the new top
677                  * (highest priority) waiter and adjust the priority
678                  * of the owner.
679                  * The new top waiter is stored in @waiter so that
680                  * @waiter == @top_waiter evaluates to true below and
681                  * we continue to deboost the rest of the chain.
682                  */
683                 rt_mutex_dequeue_pi(task, waiter);
684                 waiter = rt_mutex_top_waiter(lock);
685                 rt_mutex_enqueue_pi(task, waiter);
686                 __rt_mutex_adjust_prio(task);
687         } else {
688                 /*
689                  * Nothing changed. No need to do any priority
690                  * adjustment.
691                  */
692         }
693
694         /*
695          * [12] check_exit_conditions_4() protected by task->pi_lock
696          * and lock->wait_lock. The actual decisions are made after we
697          * dropped the locks.
698          *
699          * Check whether the task which owns the current lock is pi
700          * blocked itself. If yes we store a pointer to the lock for
701          * the lock chain change detection above. After we dropped
702          * task->pi_lock next_lock cannot be dereferenced anymore.
703          */
704         next_lock = task_blocked_on_lock(task);
705         /*
706          * Store the top waiter of @lock for the end of chain walk
707          * decision below.
708          */
709         top_waiter = rt_mutex_top_waiter(lock);
710
711         /* [13] Drop the locks */
712         raw_spin_unlock_irqrestore(&task->pi_lock, flags);
713         raw_spin_unlock(&lock->wait_lock);
714
715         /*
716          * Make the actual exit decisions [12], based on the stored
717          * values.
718          *
719          * We reached the end of the lock chain. Stop right here. No
720          * point to go back just to figure that out.
721          */
722         if (!next_lock)
723                 goto out_put_task;
724
725         /*
726          * If the current waiter is not the top waiter on the lock,
727          * then we can stop the chain walk here if we are not in full
728          * deadlock detection mode.
729          */
730         if (!detect_deadlock && waiter != top_waiter)
731                 goto out_put_task;
732
733         goto again;
734
735  out_unlock_pi:
736         raw_spin_unlock_irqrestore(&task->pi_lock, flags);
737  out_put_task:
738         put_task_struct(task);
739
740         return ret;
741 }
742
743 /*
744  * Try to take an rt-mutex
745  *
746  * Must be called with lock->wait_lock held.
747  *
748  * @lock:   The lock to be acquired.
749  * @task:   The task which wants to acquire the lock
750  * @waiter: The waiter that is queued to the lock's wait tree if the
751  *          callsite called task_blocked_on_lock(), otherwise NULL
752  */
753 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
754                                 struct rt_mutex_waiter *waiter)
755 {
756         unsigned long flags;
757
758         /*
759          * Before testing whether we can acquire @lock, we set the
760          * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
761          * other tasks which try to modify @lock into the slow path
762          * and they serialize on @lock->wait_lock.
763          *
764          * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
765          * as explained at the top of this file if and only if:
766          *
767          * - There is a lock owner. The caller must fixup the
768          *   transient state if it does a trylock or leaves the lock
769          *   function due to a signal or timeout.
770          *
771          * - @task acquires the lock and there are no other
772          *   waiters. This is undone in rt_mutex_set_owner(@task) at
773          *   the end of this function.
774          */
775         mark_rt_mutex_waiters(lock);
776
777         /*
778          * If @lock has an owner, give up.
779          */
780         if (rt_mutex_owner(lock))
781                 return 0;
782
783         /*
784          * If @waiter != NULL, @task has already enqueued the waiter
785          * into @lock waiter tree. If @waiter == NULL then this is a
786          * trylock attempt.
787          */
788         if (waiter) {
789                 /*
790                  * If waiter is not the highest priority waiter of
791                  * @lock, give up.
792                  */
793                 if (waiter != rt_mutex_top_waiter(lock))
794                         return 0;
795
796                 /*
797                  * We can acquire the lock. Remove the waiter from the
798                  * lock waiters tree.
799                  */
800                 rt_mutex_dequeue(lock, waiter);
801
802         } else {
803                 /*
804                  * If the lock has waiters already we check whether @task is
805                  * eligible to take over the lock.
806                  *
807                  * If there are no other waiters, @task can acquire
808                  * the lock.  @task->pi_blocked_on is NULL, so it does
809                  * not need to be dequeued.
810                  */
811                 if (rt_mutex_has_waiters(lock)) {
812                         /*
813                          * If @task->prio is greater than or equal to
814                          * the top waiter priority (kernel view),
815                          * @task lost.
816                          */
817                         if (task->prio >= rt_mutex_top_waiter(lock)->prio)
818                                 return 0;
819
820                         /*
821                          * The current top waiter stays enqueued. We
822                          * don't have to change anything in the lock
823                          * waiters order.
824                          */
825                 } else {
826                         /*
827                          * No waiters. Take the lock without the
828                          * pi_lock dance.@task->pi_blocked_on is NULL
829                          * and we have no waiters to enqueue in @task
830                          * pi waiters tree.
831                          */
832                         goto takeit;
833                 }
834         }
835
836         /*
837          * Clear @task->pi_blocked_on. Requires protection by
838          * @task->pi_lock. Redundant operation for the @waiter == NULL
839          * case, but conditionals are more expensive than a redundant
840          * store.
841          */
842         raw_spin_lock_irqsave(&task->pi_lock, flags);
843         task->pi_blocked_on = NULL;
844         /*
845          * Finish the lock acquisition. @task is the new owner. If
846          * other waiters exist we have to insert the highest priority
847          * waiter into @task->pi_waiters tree.
848          */
849         if (rt_mutex_has_waiters(lock))
850                 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
851         raw_spin_unlock_irqrestore(&task->pi_lock, flags);
852
853 takeit:
854         /* We got the lock. */
855         debug_rt_mutex_lock(lock);
856
857         /*
858          * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
859          * are still waiters or clears it.
860          */
861         rt_mutex_set_owner(lock, task);
862
863         rt_mutex_deadlock_account_lock(lock, task);
864
865         return 1;
866 }
867
868 /*
869  * Task blocks on lock.
870  *
871  * Prepare waiter and propagate pi chain
872  *
873  * This must be called with lock->wait_lock held.
874  */
875 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
876                                    struct rt_mutex_waiter *waiter,
877                                    struct task_struct *task,
878                                    enum rtmutex_chainwalk chwalk)
879 {
880         struct task_struct *owner = rt_mutex_owner(lock);
881         struct rt_mutex_waiter *top_waiter = waiter;
882         struct rt_mutex *next_lock;
883         int chain_walk = 0, res;
884         unsigned long flags;
885
886         /*
887          * Early deadlock detection. We really don't want the task to
888          * enqueue on itself just to untangle the mess later. It's not
889          * only an optimization. We drop the locks, so another waiter
890          * can come in before the chain walk detects the deadlock. So
891          * the other will detect the deadlock and return -EDEADLOCK,
892          * which is wrong, as the other waiter is not in a deadlock
893          * situation.
894          */
895         if (owner == task)
896                 return -EDEADLK;
897
898         raw_spin_lock_irqsave(&task->pi_lock, flags);
899         __rt_mutex_adjust_prio(task);
900         waiter->task = task;
901         waiter->lock = lock;
902         waiter->prio = task->prio;
903
904         /* Get the top priority waiter on the lock */
905         if (rt_mutex_has_waiters(lock))
906                 top_waiter = rt_mutex_top_waiter(lock);
907         rt_mutex_enqueue(lock, waiter);
908
909         task->pi_blocked_on = waiter;
910
911         raw_spin_unlock_irqrestore(&task->pi_lock, flags);
912
913         if (!owner)
914                 return 0;
915
916         raw_spin_lock_irqsave(&owner->pi_lock, flags);
917         if (waiter == rt_mutex_top_waiter(lock)) {
918                 rt_mutex_dequeue_pi(owner, top_waiter);
919                 rt_mutex_enqueue_pi(owner, waiter);
920
921                 __rt_mutex_adjust_prio(owner);
922                 if (owner->pi_blocked_on)
923                         chain_walk = 1;
924         } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
925                 chain_walk = 1;
926         }
927
928         /* Store the lock on which owner is blocked or NULL */
929         next_lock = task_blocked_on_lock(owner);
930
931         raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
932         /*
933          * Even if full deadlock detection is on, if the owner is not
934          * blocked itself, we can avoid finding this out in the chain
935          * walk.
936          */
937         if (!chain_walk || !next_lock)
938                 return 0;
939
940         /*
941          * The owner can't disappear while holding a lock,
942          * so the owner struct is protected by wait_lock.
943          * Gets dropped in rt_mutex_adjust_prio_chain()!
944          */
945         get_task_struct(owner);
946
947         raw_spin_unlock(&lock->wait_lock);
948
949         res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
950                                          next_lock, waiter, task);
951
952         raw_spin_lock(&lock->wait_lock);
953
954         return res;
955 }
956
957 /*
958  * Remove the top waiter from the current tasks pi waiter tree and
959  * queue it up.
960  *
961  * Called with lock->wait_lock held.
962  */
963 static void mark_wakeup_next_waiter(struct wake_q_head *wake_q,
964                                     struct rt_mutex *lock)
965 {
966         struct rt_mutex_waiter *waiter;
967         unsigned long flags;
968
969         raw_spin_lock_irqsave(&current->pi_lock, flags);
970
971         waiter = rt_mutex_top_waiter(lock);
972
973         /*
974          * Remove it from current->pi_waiters. We do not adjust a
975          * possible priority boost right now. We execute wakeup in the
976          * boosted mode and go back to normal after releasing
977          * lock->wait_lock.
978          */
979         rt_mutex_dequeue_pi(current, waiter);
980
981         /*
982          * As we are waking up the top waiter, and the waiter stays
983          * queued on the lock until it gets the lock, this lock
984          * obviously has waiters. Just set the bit here and this has
985          * the added benefit of forcing all new tasks into the
986          * slow path making sure no task of lower priority than
987          * the top waiter can steal this lock.
988          */
989         lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
990
991         raw_spin_unlock_irqrestore(&current->pi_lock, flags);
992
993         wake_q_add(wake_q, waiter->task);
994 }
995
996 /*
997  * Remove a waiter from a lock and give up
998  *
999  * Must be called with lock->wait_lock held and
1000  * have just failed to try_to_take_rt_mutex().
1001  */
1002 static void remove_waiter(struct rt_mutex *lock,
1003                           struct rt_mutex_waiter *waiter)
1004 {
1005         bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1006         struct task_struct *owner = rt_mutex_owner(lock);
1007         struct rt_mutex *next_lock;
1008         unsigned long flags;
1009
1010         raw_spin_lock_irqsave(&current->pi_lock, flags);
1011         rt_mutex_dequeue(lock, waiter);
1012         current->pi_blocked_on = NULL;
1013         raw_spin_unlock_irqrestore(&current->pi_lock, flags);
1014
1015         /*
1016          * Only update priority if the waiter was the highest priority
1017          * waiter of the lock and there is an owner to update.
1018          */
1019         if (!owner || !is_top_waiter)
1020                 return;
1021
1022         raw_spin_lock_irqsave(&owner->pi_lock, flags);
1023
1024         rt_mutex_dequeue_pi(owner, waiter);
1025
1026         if (rt_mutex_has_waiters(lock))
1027                 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1028
1029         __rt_mutex_adjust_prio(owner);
1030
1031         /* Store the lock on which owner is blocked or NULL */
1032         next_lock = task_blocked_on_lock(owner);
1033
1034         raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
1035
1036         /*
1037          * Don't walk the chain, if the owner task is not blocked
1038          * itself.
1039          */
1040         if (!next_lock)
1041                 return;
1042
1043         /* gets dropped in rt_mutex_adjust_prio_chain()! */
1044         get_task_struct(owner);
1045
1046         raw_spin_unlock(&lock->wait_lock);
1047
1048         rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1049                                    next_lock, NULL, current);
1050
1051         raw_spin_lock(&lock->wait_lock);
1052 }
1053
1054 /*
1055  * Recheck the pi chain, in case we got a priority setting
1056  *
1057  * Called from sched_setscheduler
1058  */
1059 void rt_mutex_adjust_pi(struct task_struct *task)
1060 {
1061         struct rt_mutex_waiter *waiter;
1062         struct rt_mutex *next_lock;
1063         unsigned long flags;
1064
1065         raw_spin_lock_irqsave(&task->pi_lock, flags);
1066
1067         waiter = task->pi_blocked_on;
1068         if (!waiter || (waiter->prio == task->prio &&
1069                         !dl_prio(task->prio))) {
1070                 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1071                 return;
1072         }
1073         next_lock = waiter->lock;
1074         raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1075
1076         /* gets dropped in rt_mutex_adjust_prio_chain()! */
1077         get_task_struct(task);
1078
1079         rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1080                                    next_lock, NULL, task);
1081 }
1082
1083 /**
1084  * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1085  * @lock:                the rt_mutex to take
1086  * @state:               the state the task should block in (TASK_INTERRUPTIBLE
1087  *                       or TASK_UNINTERRUPTIBLE)
1088  * @timeout:             the pre-initialized and started timer, or NULL for none
1089  * @waiter:              the pre-initialized rt_mutex_waiter
1090  *
1091  * lock->wait_lock must be held by the caller.
1092  */
1093 static int __sched
1094 __rt_mutex_slowlock(struct rt_mutex *lock, int state,
1095                     struct hrtimer_sleeper *timeout,
1096                     struct rt_mutex_waiter *waiter)
1097 {
1098         int ret = 0;
1099
1100         for (;;) {
1101                 /* Try to acquire the lock: */
1102                 if (try_to_take_rt_mutex(lock, current, waiter))
1103                         break;
1104
1105                 /*
1106                  * TASK_INTERRUPTIBLE checks for signals and
1107                  * timeout. Ignored otherwise.
1108                  */
1109                 if (unlikely(state == TASK_INTERRUPTIBLE)) {
1110                         /* Signal pending? */
1111                         if (signal_pending(current))
1112                                 ret = -EINTR;
1113                         if (timeout && !timeout->task)
1114                                 ret = -ETIMEDOUT;
1115                         if (ret)
1116                                 break;
1117                 }
1118
1119                 raw_spin_unlock(&lock->wait_lock);
1120
1121                 debug_rt_mutex_print_deadlock(waiter);
1122
1123                 schedule();
1124
1125                 raw_spin_lock(&lock->wait_lock);
1126                 set_current_state(state);
1127         }
1128
1129         __set_current_state(TASK_RUNNING);
1130         return ret;
1131 }
1132
1133 static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1134                                      struct rt_mutex_waiter *w)
1135 {
1136         /*
1137          * If the result is not -EDEADLOCK or the caller requested
1138          * deadlock detection, nothing to do here.
1139          */
1140         if (res != -EDEADLOCK || detect_deadlock)
1141                 return;
1142
1143         /*
1144          * Yell lowdly and stop the task right here.
1145          */
1146         rt_mutex_print_deadlock(w);
1147         while (1) {
1148                 set_current_state(TASK_INTERRUPTIBLE);
1149                 schedule();
1150         }
1151 }
1152
1153 /*
1154  * Slow path lock function:
1155  */
1156 static int __sched
1157 rt_mutex_slowlock(struct rt_mutex *lock, int state,
1158                   struct hrtimer_sleeper *timeout,
1159                   enum rtmutex_chainwalk chwalk)
1160 {
1161         struct rt_mutex_waiter waiter;
1162         int ret = 0;
1163
1164         debug_rt_mutex_init_waiter(&waiter);
1165         RB_CLEAR_NODE(&waiter.pi_tree_entry);
1166         RB_CLEAR_NODE(&waiter.tree_entry);
1167
1168         raw_spin_lock(&lock->wait_lock);
1169
1170         /* Try to acquire the lock again: */
1171         if (try_to_take_rt_mutex(lock, current, NULL)) {
1172                 raw_spin_unlock(&lock->wait_lock);
1173                 return 0;
1174         }
1175
1176         set_current_state(state);
1177
1178         /* Setup the timer, when timeout != NULL */
1179         if (unlikely(timeout))
1180                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1181
1182         ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1183
1184         if (likely(!ret))
1185                 /* sleep on the mutex */
1186                 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1187
1188         if (unlikely(ret)) {
1189                 __set_current_state(TASK_RUNNING);
1190                 if (rt_mutex_has_waiters(lock))
1191                         remove_waiter(lock, &waiter);
1192                 rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1193         }
1194
1195         /*
1196          * try_to_take_rt_mutex() sets the waiter bit
1197          * unconditionally. We might have to fix that up.
1198          */
1199         fixup_rt_mutex_waiters(lock);
1200
1201         raw_spin_unlock(&lock->wait_lock);
1202
1203         /* Remove pending timer: */
1204         if (unlikely(timeout))
1205                 hrtimer_cancel(&timeout->timer);
1206
1207         debug_rt_mutex_free_waiter(&waiter);
1208
1209         return ret;
1210 }
1211
1212 /*
1213  * Slow path try-lock function:
1214  */
1215 static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
1216 {
1217         int ret;
1218
1219         /*
1220          * If the lock already has an owner we fail to get the lock.
1221          * This can be done without taking the @lock->wait_lock as
1222          * it is only being read, and this is a trylock anyway.
1223          */
1224         if (rt_mutex_owner(lock))
1225                 return 0;
1226
1227         /*
1228          * The mutex has currently no owner. Lock the wait lock and
1229          * try to acquire the lock.
1230          */
1231         raw_spin_lock(&lock->wait_lock);
1232
1233         ret = try_to_take_rt_mutex(lock, current, NULL);
1234
1235         /*
1236          * try_to_take_rt_mutex() sets the lock waiters bit
1237          * unconditionally. Clean this up.
1238          */
1239         fixup_rt_mutex_waiters(lock);
1240
1241         raw_spin_unlock(&lock->wait_lock);
1242
1243         return ret;
1244 }
1245
1246 /*
1247  * Slow path to release a rt-mutex.
1248  * Return whether the current task needs to undo a potential priority boosting.
1249  */
1250 static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock,
1251                                         struct wake_q_head *wake_q)
1252 {
1253         raw_spin_lock(&lock->wait_lock);
1254
1255         debug_rt_mutex_unlock(lock);
1256
1257         rt_mutex_deadlock_account_unlock(current);
1258
1259         /*
1260          * We must be careful here if the fast path is enabled. If we
1261          * have no waiters queued we cannot set owner to NULL here
1262          * because of:
1263          *
1264          * foo->lock->owner = NULL;
1265          *                      rtmutex_lock(foo->lock);   <- fast path
1266          *                      free = atomic_dec_and_test(foo->refcnt);
1267          *                      rtmutex_unlock(foo->lock); <- fast path
1268          *                      if (free)
1269          *                              kfree(foo);
1270          * raw_spin_unlock(foo->lock->wait_lock);
1271          *
1272          * So for the fastpath enabled kernel:
1273          *
1274          * Nothing can set the waiters bit as long as we hold
1275          * lock->wait_lock. So we do the following sequence:
1276          *
1277          *      owner = rt_mutex_owner(lock);
1278          *      clear_rt_mutex_waiters(lock);
1279          *      raw_spin_unlock(&lock->wait_lock);
1280          *      if (cmpxchg(&lock->owner, owner, 0) == owner)
1281          *              return;
1282          *      goto retry;
1283          *
1284          * The fastpath disabled variant is simple as all access to
1285          * lock->owner is serialized by lock->wait_lock:
1286          *
1287          *      lock->owner = NULL;
1288          *      raw_spin_unlock(&lock->wait_lock);
1289          */
1290         while (!rt_mutex_has_waiters(lock)) {
1291                 /* Drops lock->wait_lock ! */
1292                 if (unlock_rt_mutex_safe(lock) == true)
1293                         return false;
1294                 /* Relock the rtmutex and try again */
1295                 raw_spin_lock(&lock->wait_lock);
1296         }
1297
1298         /*
1299          * The wakeup next waiter path does not suffer from the above
1300          * race. See the comments there.
1301          *
1302          * Queue the next waiter for wakeup once we release the wait_lock.
1303          */
1304         mark_wakeup_next_waiter(wake_q, lock);
1305
1306         raw_spin_unlock(&lock->wait_lock);
1307
1308         /* check PI boosting */
1309         return true;
1310 }
1311
1312 /*
1313  * debug aware fast / slowpath lock,trylock,unlock
1314  *
1315  * The atomic acquire/release ops are compiled away, when either the
1316  * architecture does not support cmpxchg or when debugging is enabled.
1317  */
1318 static inline int
1319 rt_mutex_fastlock(struct rt_mutex *lock, int state,
1320                   int (*slowfn)(struct rt_mutex *lock, int state,
1321                                 struct hrtimer_sleeper *timeout,
1322                                 enum rtmutex_chainwalk chwalk))
1323 {
1324         if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
1325                 rt_mutex_deadlock_account_lock(lock, current);
1326                 return 0;
1327         } else
1328                 return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1329 }
1330
1331 static inline int
1332 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1333                         struct hrtimer_sleeper *timeout,
1334                         enum rtmutex_chainwalk chwalk,
1335                         int (*slowfn)(struct rt_mutex *lock, int state,
1336                                       struct hrtimer_sleeper *timeout,
1337                                       enum rtmutex_chainwalk chwalk))
1338 {
1339         if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1340             likely(rt_mutex_cmpxchg(lock, NULL, current))) {
1341                 rt_mutex_deadlock_account_lock(lock, current);
1342                 return 0;
1343         } else
1344                 return slowfn(lock, state, timeout, chwalk);
1345 }
1346
1347 static inline int
1348 rt_mutex_fasttrylock(struct rt_mutex *lock,
1349                      int (*slowfn)(struct rt_mutex *lock))
1350 {
1351         if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
1352                 rt_mutex_deadlock_account_lock(lock, current);
1353                 return 1;
1354         }
1355         return slowfn(lock);
1356 }
1357
1358 static inline void
1359 rt_mutex_fastunlock(struct rt_mutex *lock,
1360                     bool (*slowfn)(struct rt_mutex *lock,
1361                                    struct wake_q_head *wqh))
1362 {
1363         WAKE_Q(wake_q);
1364
1365         if (likely(rt_mutex_cmpxchg(lock, current, NULL))) {
1366                 rt_mutex_deadlock_account_unlock(current);
1367
1368         } else {
1369                 bool deboost = slowfn(lock, &wake_q);
1370
1371                 wake_up_q(&wake_q);
1372
1373                 /* Undo pi boosting if necessary: */
1374                 if (deboost)
1375                         rt_mutex_adjust_prio(current);
1376         }
1377 }
1378
1379 /**
1380  * rt_mutex_lock - lock a rt_mutex
1381  *
1382  * @lock: the rt_mutex to be locked
1383  */
1384 void __sched rt_mutex_lock(struct rt_mutex *lock)
1385 {
1386         might_sleep();
1387
1388         rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1389 }
1390 EXPORT_SYMBOL_GPL(rt_mutex_lock);
1391
1392 /**
1393  * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1394  *
1395  * @lock:               the rt_mutex to be locked
1396  *
1397  * Returns:
1398  *  0           on success
1399  * -EINTR       when interrupted by a signal
1400  */
1401 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1402 {
1403         might_sleep();
1404
1405         return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1406 }
1407 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1408
1409 /*
1410  * Futex variant with full deadlock detection.
1411  */
1412 int rt_mutex_timed_futex_lock(struct rt_mutex *lock,
1413                               struct hrtimer_sleeper *timeout)
1414 {
1415         might_sleep();
1416
1417         return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1418                                        RT_MUTEX_FULL_CHAINWALK,
1419                                        rt_mutex_slowlock);
1420 }
1421
1422 /**
1423  * rt_mutex_timed_lock - lock a rt_mutex interruptible
1424  *                      the timeout structure is provided
1425  *                      by the caller
1426  *
1427  * @lock:               the rt_mutex to be locked
1428  * @timeout:            timeout structure or NULL (no timeout)
1429  *
1430  * Returns:
1431  *  0           on success
1432  * -EINTR       when interrupted by a signal
1433  * -ETIMEDOUT   when the timeout expired
1434  */
1435 int
1436 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
1437 {
1438         might_sleep();
1439
1440         return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1441                                        RT_MUTEX_MIN_CHAINWALK,
1442                                        rt_mutex_slowlock);
1443 }
1444 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1445
1446 /**
1447  * rt_mutex_trylock - try to lock a rt_mutex
1448  *
1449  * @lock:       the rt_mutex to be locked
1450  *
1451  * This function can only be called in thread context. It's safe to
1452  * call it from atomic regions, but not from hard interrupt or soft
1453  * interrupt context.
1454  *
1455  * Returns 1 on success and 0 on contention
1456  */
1457 int __sched rt_mutex_trylock(struct rt_mutex *lock)
1458 {
1459         if (WARN_ON(in_irq() || in_nmi() || in_serving_softirq()))
1460                 return 0;
1461
1462         return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1463 }
1464 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1465
1466 /**
1467  * rt_mutex_unlock - unlock a rt_mutex
1468  *
1469  * @lock: the rt_mutex to be unlocked
1470  */
1471 void __sched rt_mutex_unlock(struct rt_mutex *lock)
1472 {
1473         rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1474 }
1475 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1476
1477 /**
1478  * rt_mutex_futex_unlock - Futex variant of rt_mutex_unlock
1479  * @lock: the rt_mutex to be unlocked
1480  *
1481  * Returns: true/false indicating whether priority adjustment is
1482  * required or not.
1483  */
1484 bool __sched rt_mutex_futex_unlock(struct rt_mutex *lock,
1485                                    struct wake_q_head *wqh)
1486 {
1487         if (likely(rt_mutex_cmpxchg(lock, current, NULL))) {
1488                 rt_mutex_deadlock_account_unlock(current);
1489                 return false;
1490         }
1491         return rt_mutex_slowunlock(lock, wqh);
1492 }
1493
1494 /**
1495  * rt_mutex_destroy - mark a mutex unusable
1496  * @lock: the mutex to be destroyed
1497  *
1498  * This function marks the mutex uninitialized, and any subsequent
1499  * use of the mutex is forbidden. The mutex must not be locked when
1500  * this function is called.
1501  */
1502 void rt_mutex_destroy(struct rt_mutex *lock)
1503 {
1504         WARN_ON(rt_mutex_is_locked(lock));
1505 #ifdef CONFIG_DEBUG_RT_MUTEXES
1506         lock->magic = NULL;
1507 #endif
1508 }
1509
1510 EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1511
1512 /**
1513  * __rt_mutex_init - initialize the rt lock
1514  *
1515  * @lock: the rt lock to be initialized
1516  *
1517  * Initialize the rt lock to unlocked state.
1518  *
1519  * Initializing of a locked rt lock is not allowed
1520  */
1521 void __rt_mutex_init(struct rt_mutex *lock, const char *name)
1522 {
1523         lock->owner = NULL;
1524         raw_spin_lock_init(&lock->wait_lock);
1525         lock->waiters = RB_ROOT;
1526         lock->waiters_leftmost = NULL;
1527
1528         debug_rt_mutex_init(lock, name);
1529 }
1530 EXPORT_SYMBOL_GPL(__rt_mutex_init);
1531
1532 /**
1533  * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1534  *                              proxy owner
1535  *
1536  * @lock:       the rt_mutex to be locked
1537  * @proxy_owner:the task to set as owner
1538  *
1539  * No locking. Caller has to do serializing itself
1540  * Special API call for PI-futex support
1541  */
1542 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1543                                 struct task_struct *proxy_owner)
1544 {
1545         __rt_mutex_init(lock, NULL);
1546         debug_rt_mutex_proxy_lock(lock, proxy_owner);
1547         rt_mutex_set_owner(lock, proxy_owner);
1548         rt_mutex_deadlock_account_lock(lock, proxy_owner);
1549 }
1550
1551 /**
1552  * rt_mutex_proxy_unlock - release a lock on behalf of owner
1553  *
1554  * @lock:       the rt_mutex to be locked
1555  *
1556  * No locking. Caller has to do serializing itself
1557  * Special API call for PI-futex support
1558  */
1559 void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1560                            struct task_struct *proxy_owner)
1561 {
1562         debug_rt_mutex_proxy_unlock(lock);
1563         rt_mutex_set_owner(lock, NULL);
1564         rt_mutex_deadlock_account_unlock(proxy_owner);
1565 }
1566
1567 /**
1568  * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1569  * @lock:               the rt_mutex to take
1570  * @waiter:             the pre-initialized rt_mutex_waiter
1571  * @task:               the task to prepare
1572  *
1573  * Returns:
1574  *  0 - task blocked on lock
1575  *  1 - acquired the lock for task, caller should wake it up
1576  * <0 - error
1577  *
1578  * Special API call for FUTEX_REQUEUE_PI support.
1579  */
1580 int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1581                               struct rt_mutex_waiter *waiter,
1582                               struct task_struct *task)
1583 {
1584         int ret;
1585
1586         raw_spin_lock(&lock->wait_lock);
1587
1588         if (try_to_take_rt_mutex(lock, task, NULL)) {
1589                 raw_spin_unlock(&lock->wait_lock);
1590                 return 1;
1591         }
1592
1593         /* We enforce deadlock detection for futexes */
1594         ret = task_blocks_on_rt_mutex(lock, waiter, task,
1595                                       RT_MUTEX_FULL_CHAINWALK);
1596
1597         if (ret && !rt_mutex_owner(lock)) {
1598                 /*
1599                  * Reset the return value. We might have
1600                  * returned with -EDEADLK and the owner
1601                  * released the lock while we were walking the
1602                  * pi chain.  Let the waiter sort it out.
1603                  */
1604                 ret = 0;
1605         }
1606
1607         if (unlikely(ret))
1608                 remove_waiter(lock, waiter);
1609
1610         raw_spin_unlock(&lock->wait_lock);
1611
1612         debug_rt_mutex_print_deadlock(waiter);
1613
1614         return ret;
1615 }
1616
1617 /**
1618  * rt_mutex_next_owner - return the next owner of the lock
1619  *
1620  * @lock: the rt lock query
1621  *
1622  * Returns the next owner of the lock or NULL
1623  *
1624  * Caller has to serialize against other accessors to the lock
1625  * itself.
1626  *
1627  * Special API call for PI-futex support
1628  */
1629 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1630 {
1631         if (!rt_mutex_has_waiters(lock))
1632                 return NULL;
1633
1634         return rt_mutex_top_waiter(lock)->task;
1635 }
1636
1637 /**
1638  * rt_mutex_finish_proxy_lock() - Complete lock acquisition
1639  * @lock:               the rt_mutex we were woken on
1640  * @to:                 the timeout, null if none. hrtimer should already have
1641  *                      been started.
1642  * @waiter:             the pre-initialized rt_mutex_waiter
1643  *
1644  * Complete the lock acquisition started our behalf by another thread.
1645  *
1646  * Returns:
1647  *  0 - success
1648  * <0 - error, one of -EINTR, -ETIMEDOUT
1649  *
1650  * Special API call for PI-futex requeue support
1651  */
1652 int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
1653                                struct hrtimer_sleeper *to,
1654                                struct rt_mutex_waiter *waiter)
1655 {
1656         int ret;
1657
1658         raw_spin_lock(&lock->wait_lock);
1659
1660         set_current_state(TASK_INTERRUPTIBLE);
1661
1662         /* sleep on the mutex */
1663         ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1664
1665         if (unlikely(ret))
1666                 remove_waiter(lock, waiter);
1667
1668         /*
1669          * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1670          * have to fix that up.
1671          */
1672         fixup_rt_mutex_waiters(lock);
1673
1674         raw_spin_unlock(&lock->wait_lock);
1675
1676         return ret;
1677 }