]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/locking/rtmutex.c
Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[karo-tx-linux.git] / kernel / locking / rtmutex.c
1 /*
2  * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3  *
4  * started by Ingo Molnar and Thomas Gleixner.
5  *
6  *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7  *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8  *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9  *  Copyright (C) 2006 Esben Nielsen
10  *
11  *  See Documentation/locking/rt-mutex-design.txt for details.
12  */
13 #include <linux/spinlock.h>
14 #include <linux/export.h>
15 #include <linux/sched.h>
16 #include <linux/sched/rt.h>
17 #include <linux/sched/deadline.h>
18 #include <linux/timer.h>
19
20 #include "rtmutex_common.h"
21
22 /*
23  * lock->owner state tracking:
24  *
25  * lock->owner holds the task_struct pointer of the owner. Bit 0
26  * is used to keep track of the "lock has waiters" state.
27  *
28  * owner        bit0
29  * NULL         0       lock is free (fast acquire possible)
30  * NULL         1       lock is free and has waiters and the top waiter
31  *                              is going to take the lock*
32  * taskpointer  0       lock is held (fast release possible)
33  * taskpointer  1       lock is held and has waiters**
34  *
35  * The fast atomic compare exchange based acquire and release is only
36  * possible when bit 0 of lock->owner is 0.
37  *
38  * (*) It also can be a transitional state when grabbing the lock
39  * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
40  * we need to set the bit0 before looking at the lock, and the owner may be
41  * NULL in this small time, hence this can be a transitional state.
42  *
43  * (**) There is a small time when bit 0 is set but there are no
44  * waiters. This can happen when grabbing the lock in the slow path.
45  * To prevent a cmpxchg of the owner releasing the lock, we need to
46  * set this bit before looking at the lock.
47  */
48
49 static void
50 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
51 {
52         unsigned long val = (unsigned long)owner;
53
54         if (rt_mutex_has_waiters(lock))
55                 val |= RT_MUTEX_HAS_WAITERS;
56
57         lock->owner = (struct task_struct *)val;
58 }
59
60 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
61 {
62         lock->owner = (struct task_struct *)
63                         ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
64 }
65
66 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
67 {
68         if (!rt_mutex_has_waiters(lock))
69                 clear_rt_mutex_waiters(lock);
70 }
71
72 /*
73  * We can speed up the acquire/release, if there's no debugging state to be
74  * set up.
75  */
76 #ifndef CONFIG_DEBUG_RT_MUTEXES
77 # define rt_mutex_cmpxchg_relaxed(l,c,n) (cmpxchg_relaxed(&l->owner, c, n) == c)
78 # define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c)
79 # define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c)
80
81 /*
82  * Callers must hold the ->wait_lock -- which is the whole purpose as we force
83  * all future threads that attempt to [Rmw] the lock to the slowpath. As such
84  * relaxed semantics suffice.
85  */
86 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
87 {
88         unsigned long owner, *p = (unsigned long *) &lock->owner;
89
90         do {
91                 owner = *p;
92         } while (cmpxchg_relaxed(p, owner,
93                                  owner | RT_MUTEX_HAS_WAITERS) != owner);
94 }
95
96 /*
97  * Safe fastpath aware unlock:
98  * 1) Clear the waiters bit
99  * 2) Drop lock->wait_lock
100  * 3) Try to unlock the lock with cmpxchg
101  */
102 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock)
103         __releases(lock->wait_lock)
104 {
105         struct task_struct *owner = rt_mutex_owner(lock);
106
107         clear_rt_mutex_waiters(lock);
108         raw_spin_unlock(&lock->wait_lock);
109         /*
110          * If a new waiter comes in between the unlock and the cmpxchg
111          * we have two situations:
112          *
113          * unlock(wait_lock);
114          *                                      lock(wait_lock);
115          * cmpxchg(p, owner, 0) == owner
116          *                                      mark_rt_mutex_waiters(lock);
117          *                                      acquire(lock);
118          * or:
119          *
120          * unlock(wait_lock);
121          *                                      lock(wait_lock);
122          *                                      mark_rt_mutex_waiters(lock);
123          *
124          * cmpxchg(p, owner, 0) != owner
125          *                                      enqueue_waiter();
126          *                                      unlock(wait_lock);
127          * lock(wait_lock);
128          * wake waiter();
129          * unlock(wait_lock);
130          *                                      lock(wait_lock);
131          *                                      acquire(lock);
132          */
133         return rt_mutex_cmpxchg_release(lock, owner, NULL);
134 }
135
136 #else
137 # define rt_mutex_cmpxchg_relaxed(l,c,n)        (0)
138 # define rt_mutex_cmpxchg_acquire(l,c,n)        (0)
139 # define rt_mutex_cmpxchg_release(l,c,n)        (0)
140
141 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
142 {
143         lock->owner = (struct task_struct *)
144                         ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
145 }
146
147 /*
148  * Simple slow path only version: lock->owner is protected by lock->wait_lock.
149  */
150 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock)
151         __releases(lock->wait_lock)
152 {
153         lock->owner = NULL;
154         raw_spin_unlock(&lock->wait_lock);
155         return true;
156 }
157 #endif
158
159 static inline int
160 rt_mutex_waiter_less(struct rt_mutex_waiter *left,
161                      struct rt_mutex_waiter *right)
162 {
163         if (left->prio < right->prio)
164                 return 1;
165
166         /*
167          * If both waiters have dl_prio(), we check the deadlines of the
168          * associated tasks.
169          * If left waiter has a dl_prio(), and we didn't return 1 above,
170          * then right waiter has a dl_prio() too.
171          */
172         if (dl_prio(left->prio))
173                 return dl_time_before(left->task->dl.deadline,
174                                       right->task->dl.deadline);
175
176         return 0;
177 }
178
179 static void
180 rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
181 {
182         struct rb_node **link = &lock->waiters.rb_node;
183         struct rb_node *parent = NULL;
184         struct rt_mutex_waiter *entry;
185         int leftmost = 1;
186
187         while (*link) {
188                 parent = *link;
189                 entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
190                 if (rt_mutex_waiter_less(waiter, entry)) {
191                         link = &parent->rb_left;
192                 } else {
193                         link = &parent->rb_right;
194                         leftmost = 0;
195                 }
196         }
197
198         if (leftmost)
199                 lock->waiters_leftmost = &waiter->tree_entry;
200
201         rb_link_node(&waiter->tree_entry, parent, link);
202         rb_insert_color(&waiter->tree_entry, &lock->waiters);
203 }
204
205 static void
206 rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
207 {
208         if (RB_EMPTY_NODE(&waiter->tree_entry))
209                 return;
210
211         if (lock->waiters_leftmost == &waiter->tree_entry)
212                 lock->waiters_leftmost = rb_next(&waiter->tree_entry);
213
214         rb_erase(&waiter->tree_entry, &lock->waiters);
215         RB_CLEAR_NODE(&waiter->tree_entry);
216 }
217
218 static void
219 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
220 {
221         struct rb_node **link = &task->pi_waiters.rb_node;
222         struct rb_node *parent = NULL;
223         struct rt_mutex_waiter *entry;
224         int leftmost = 1;
225
226         while (*link) {
227                 parent = *link;
228                 entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
229                 if (rt_mutex_waiter_less(waiter, entry)) {
230                         link = &parent->rb_left;
231                 } else {
232                         link = &parent->rb_right;
233                         leftmost = 0;
234                 }
235         }
236
237         if (leftmost)
238                 task->pi_waiters_leftmost = &waiter->pi_tree_entry;
239
240         rb_link_node(&waiter->pi_tree_entry, parent, link);
241         rb_insert_color(&waiter->pi_tree_entry, &task->pi_waiters);
242 }
243
244 static void
245 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
246 {
247         if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
248                 return;
249
250         if (task->pi_waiters_leftmost == &waiter->pi_tree_entry)
251                 task->pi_waiters_leftmost = rb_next(&waiter->pi_tree_entry);
252
253         rb_erase(&waiter->pi_tree_entry, &task->pi_waiters);
254         RB_CLEAR_NODE(&waiter->pi_tree_entry);
255 }
256
257 /*
258  * Calculate task priority from the waiter tree priority
259  *
260  * Return task->normal_prio when the waiter tree is empty or when
261  * the waiter is not allowed to do priority boosting
262  */
263 int rt_mutex_getprio(struct task_struct *task)
264 {
265         if (likely(!task_has_pi_waiters(task)))
266                 return task->normal_prio;
267
268         return min(task_top_pi_waiter(task)->prio,
269                    task->normal_prio);
270 }
271
272 struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
273 {
274         if (likely(!task_has_pi_waiters(task)))
275                 return NULL;
276
277         return task_top_pi_waiter(task)->task;
278 }
279
280 /*
281  * Called by sched_setscheduler() to get the priority which will be
282  * effective after the change.
283  */
284 int rt_mutex_get_effective_prio(struct task_struct *task, int newprio)
285 {
286         if (!task_has_pi_waiters(task))
287                 return newprio;
288
289         if (task_top_pi_waiter(task)->task->prio <= newprio)
290                 return task_top_pi_waiter(task)->task->prio;
291         return newprio;
292 }
293
294 /*
295  * Adjust the priority of a task, after its pi_waiters got modified.
296  *
297  * This can be both boosting and unboosting. task->pi_lock must be held.
298  */
299 static void __rt_mutex_adjust_prio(struct task_struct *task)
300 {
301         int prio = rt_mutex_getprio(task);
302
303         if (task->prio != prio || dl_prio(prio))
304                 rt_mutex_setprio(task, prio);
305 }
306
307 /*
308  * Adjust task priority (undo boosting). Called from the exit path of
309  * rt_mutex_slowunlock() and rt_mutex_slowlock().
310  *
311  * (Note: We do this outside of the protection of lock->wait_lock to
312  * allow the lock to be taken while or before we readjust the priority
313  * of task. We do not use the spin_xx_mutex() variants here as we are
314  * outside of the debug path.)
315  */
316 void rt_mutex_adjust_prio(struct task_struct *task)
317 {
318         unsigned long flags;
319
320         raw_spin_lock_irqsave(&task->pi_lock, flags);
321         __rt_mutex_adjust_prio(task);
322         raw_spin_unlock_irqrestore(&task->pi_lock, flags);
323 }
324
325 /*
326  * Deadlock detection is conditional:
327  *
328  * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
329  * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
330  *
331  * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
332  * conducted independent of the detect argument.
333  *
334  * If the waiter argument is NULL this indicates the deboost path and
335  * deadlock detection is disabled independent of the detect argument
336  * and the config settings.
337  */
338 static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
339                                           enum rtmutex_chainwalk chwalk)
340 {
341         /*
342          * This is just a wrapper function for the following call,
343          * because debug_rt_mutex_detect_deadlock() smells like a magic
344          * debug feature and I wanted to keep the cond function in the
345          * main source file along with the comments instead of having
346          * two of the same in the headers.
347          */
348         return debug_rt_mutex_detect_deadlock(waiter, chwalk);
349 }
350
351 /*
352  * Max number of times we'll walk the boosting chain:
353  */
354 int max_lock_depth = 1024;
355
356 static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
357 {
358         return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
359 }
360
361 /*
362  * Adjust the priority chain. Also used for deadlock detection.
363  * Decreases task's usage by one - may thus free the task.
364  *
365  * @task:       the task owning the mutex (owner) for which a chain walk is
366  *              probably needed
367  * @chwalk:     do we have to carry out deadlock detection?
368  * @orig_lock:  the mutex (can be NULL if we are walking the chain to recheck
369  *              things for a task that has just got its priority adjusted, and
370  *              is waiting on a mutex)
371  * @next_lock:  the mutex on which the owner of @orig_lock was blocked before
372  *              we dropped its pi_lock. Is never dereferenced, only used for
373  *              comparison to detect lock chain changes.
374  * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
375  *              its priority to the mutex owner (can be NULL in the case
376  *              depicted above or if the top waiter is gone away and we are
377  *              actually deboosting the owner)
378  * @top_task:   the current top waiter
379  *
380  * Returns 0 or -EDEADLK.
381  *
382  * Chain walk basics and protection scope
383  *
384  * [R] refcount on task
385  * [P] task->pi_lock held
386  * [L] rtmutex->wait_lock held
387  *
388  * Step Description                             Protected by
389  *      function arguments:
390  *      @task                                   [R]
391  *      @orig_lock if != NULL                   @top_task is blocked on it
392  *      @next_lock                              Unprotected. Cannot be
393  *                                              dereferenced. Only used for
394  *                                              comparison.
395  *      @orig_waiter if != NULL                 @top_task is blocked on it
396  *      @top_task                               current, or in case of proxy
397  *                                              locking protected by calling
398  *                                              code
399  *      again:
400  *        loop_sanity_check();
401  *      retry:
402  * [1]    lock(task->pi_lock);                  [R] acquire [P]
403  * [2]    waiter = task->pi_blocked_on;         [P]
404  * [3]    check_exit_conditions_1();            [P]
405  * [4]    lock = waiter->lock;                  [P]
406  * [5]    if (!try_lock(lock->wait_lock)) {     [P] try to acquire [L]
407  *          unlock(task->pi_lock);              release [P]
408  *          goto retry;
409  *        }
410  * [6]    check_exit_conditions_2();            [P] + [L]
411  * [7]    requeue_lock_waiter(lock, waiter);    [P] + [L]
412  * [8]    unlock(task->pi_lock);                release [P]
413  *        put_task_struct(task);                release [R]
414  * [9]    check_exit_conditions_3();            [L]
415  * [10]   task = owner(lock);                   [L]
416  *        get_task_struct(task);                [L] acquire [R]
417  *        lock(task->pi_lock);                  [L] acquire [P]
418  * [11]   requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
419  * [12]   check_exit_conditions_4();            [P] + [L]
420  * [13]   unlock(task->pi_lock);                release [P]
421  *        unlock(lock->wait_lock);              release [L]
422  *        goto again;
423  */
424 static int rt_mutex_adjust_prio_chain(struct task_struct *task,
425                                       enum rtmutex_chainwalk chwalk,
426                                       struct rt_mutex *orig_lock,
427                                       struct rt_mutex *next_lock,
428                                       struct rt_mutex_waiter *orig_waiter,
429                                       struct task_struct *top_task)
430 {
431         struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
432         struct rt_mutex_waiter *prerequeue_top_waiter;
433         int ret = 0, depth = 0;
434         struct rt_mutex *lock;
435         bool detect_deadlock;
436         unsigned long flags;
437         bool requeue = true;
438
439         detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
440
441         /*
442          * The (de)boosting is a step by step approach with a lot of
443          * pitfalls. We want this to be preemptible and we want hold a
444          * maximum of two locks per step. So we have to check
445          * carefully whether things change under us.
446          */
447  again:
448         /*
449          * We limit the lock chain length for each invocation.
450          */
451         if (++depth > max_lock_depth) {
452                 static int prev_max;
453
454                 /*
455                  * Print this only once. If the admin changes the limit,
456                  * print a new message when reaching the limit again.
457                  */
458                 if (prev_max != max_lock_depth) {
459                         prev_max = max_lock_depth;
460                         printk(KERN_WARNING "Maximum lock depth %d reached "
461                                "task: %s (%d)\n", max_lock_depth,
462                                top_task->comm, task_pid_nr(top_task));
463                 }
464                 put_task_struct(task);
465
466                 return -EDEADLK;
467         }
468
469         /*
470          * We are fully preemptible here and only hold the refcount on
471          * @task. So everything can have changed under us since the
472          * caller or our own code below (goto retry/again) dropped all
473          * locks.
474          */
475  retry:
476         /*
477          * [1] Task cannot go away as we did a get_task() before !
478          */
479         raw_spin_lock_irqsave(&task->pi_lock, flags);
480
481         /*
482          * [2] Get the waiter on which @task is blocked on.
483          */
484         waiter = task->pi_blocked_on;
485
486         /*
487          * [3] check_exit_conditions_1() protected by task->pi_lock.
488          */
489
490         /*
491          * Check whether the end of the boosting chain has been
492          * reached or the state of the chain has changed while we
493          * dropped the locks.
494          */
495         if (!waiter)
496                 goto out_unlock_pi;
497
498         /*
499          * Check the orig_waiter state. After we dropped the locks,
500          * the previous owner of the lock might have released the lock.
501          */
502         if (orig_waiter && !rt_mutex_owner(orig_lock))
503                 goto out_unlock_pi;
504
505         /*
506          * We dropped all locks after taking a refcount on @task, so
507          * the task might have moved on in the lock chain or even left
508          * the chain completely and blocks now on an unrelated lock or
509          * on @orig_lock.
510          *
511          * We stored the lock on which @task was blocked in @next_lock,
512          * so we can detect the chain change.
513          */
514         if (next_lock != waiter->lock)
515                 goto out_unlock_pi;
516
517         /*
518          * Drop out, when the task has no waiters. Note,
519          * top_waiter can be NULL, when we are in the deboosting
520          * mode!
521          */
522         if (top_waiter) {
523                 if (!task_has_pi_waiters(task))
524                         goto out_unlock_pi;
525                 /*
526                  * If deadlock detection is off, we stop here if we
527                  * are not the top pi waiter of the task. If deadlock
528                  * detection is enabled we continue, but stop the
529                  * requeueing in the chain walk.
530                  */
531                 if (top_waiter != task_top_pi_waiter(task)) {
532                         if (!detect_deadlock)
533                                 goto out_unlock_pi;
534                         else
535                                 requeue = false;
536                 }
537         }
538
539         /*
540          * If the waiter priority is the same as the task priority
541          * then there is no further priority adjustment necessary.  If
542          * deadlock detection is off, we stop the chain walk. If its
543          * enabled we continue, but stop the requeueing in the chain
544          * walk.
545          */
546         if (waiter->prio == task->prio) {
547                 if (!detect_deadlock)
548                         goto out_unlock_pi;
549                 else
550                         requeue = false;
551         }
552
553         /*
554          * [4] Get the next lock
555          */
556         lock = waiter->lock;
557         /*
558          * [5] We need to trylock here as we are holding task->pi_lock,
559          * which is the reverse lock order versus the other rtmutex
560          * operations.
561          */
562         if (!raw_spin_trylock(&lock->wait_lock)) {
563                 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
564                 cpu_relax();
565                 goto retry;
566         }
567
568         /*
569          * [6] check_exit_conditions_2() protected by task->pi_lock and
570          * lock->wait_lock.
571          *
572          * Deadlock detection. If the lock is the same as the original
573          * lock which caused us to walk the lock chain or if the
574          * current lock is owned by the task which initiated the chain
575          * walk, we detected a deadlock.
576          */
577         if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
578                 debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
579                 raw_spin_unlock(&lock->wait_lock);
580                 ret = -EDEADLK;
581                 goto out_unlock_pi;
582         }
583
584         /*
585          * If we just follow the lock chain for deadlock detection, no
586          * need to do all the requeue operations. To avoid a truckload
587          * of conditionals around the various places below, just do the
588          * minimum chain walk checks.
589          */
590         if (!requeue) {
591                 /*
592                  * No requeue[7] here. Just release @task [8]
593                  */
594                 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
595                 put_task_struct(task);
596
597                 /*
598                  * [9] check_exit_conditions_3 protected by lock->wait_lock.
599                  * If there is no owner of the lock, end of chain.
600                  */
601                 if (!rt_mutex_owner(lock)) {
602                         raw_spin_unlock(&lock->wait_lock);
603                         return 0;
604                 }
605
606                 /* [10] Grab the next task, i.e. owner of @lock */
607                 task = rt_mutex_owner(lock);
608                 get_task_struct(task);
609                 raw_spin_lock_irqsave(&task->pi_lock, flags);
610
611                 /*
612                  * No requeue [11] here. We just do deadlock detection.
613                  *
614                  * [12] Store whether owner is blocked
615                  * itself. Decision is made after dropping the locks
616                  */
617                 next_lock = task_blocked_on_lock(task);
618                 /*
619                  * Get the top waiter for the next iteration
620                  */
621                 top_waiter = rt_mutex_top_waiter(lock);
622
623                 /* [13] Drop locks */
624                 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
625                 raw_spin_unlock(&lock->wait_lock);
626
627                 /* If owner is not blocked, end of chain. */
628                 if (!next_lock)
629                         goto out_put_task;
630                 goto again;
631         }
632
633         /*
634          * Store the current top waiter before doing the requeue
635          * operation on @lock. We need it for the boost/deboost
636          * decision below.
637          */
638         prerequeue_top_waiter = rt_mutex_top_waiter(lock);
639
640         /* [7] Requeue the waiter in the lock waiter tree. */
641         rt_mutex_dequeue(lock, waiter);
642         waiter->prio = task->prio;
643         rt_mutex_enqueue(lock, waiter);
644
645         /* [8] Release the task */
646         raw_spin_unlock_irqrestore(&task->pi_lock, flags);
647         put_task_struct(task);
648
649         /*
650          * [9] check_exit_conditions_3 protected by lock->wait_lock.
651          *
652          * We must abort the chain walk if there is no lock owner even
653          * in the dead lock detection case, as we have nothing to
654          * follow here. This is the end of the chain we are walking.
655          */
656         if (!rt_mutex_owner(lock)) {
657                 /*
658                  * If the requeue [7] above changed the top waiter,
659                  * then we need to wake the new top waiter up to try
660                  * to get the lock.
661                  */
662                 if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
663                         wake_up_process(rt_mutex_top_waiter(lock)->task);
664                 raw_spin_unlock(&lock->wait_lock);
665                 return 0;
666         }
667
668         /* [10] Grab the next task, i.e. the owner of @lock */
669         task = rt_mutex_owner(lock);
670         get_task_struct(task);
671         raw_spin_lock_irqsave(&task->pi_lock, flags);
672
673         /* [11] requeue the pi waiters if necessary */
674         if (waiter == rt_mutex_top_waiter(lock)) {
675                 /*
676                  * The waiter became the new top (highest priority)
677                  * waiter on the lock. Replace the previous top waiter
678                  * in the owner tasks pi waiters tree with this waiter
679                  * and adjust the priority of the owner.
680                  */
681                 rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
682                 rt_mutex_enqueue_pi(task, waiter);
683                 __rt_mutex_adjust_prio(task);
684
685         } else if (prerequeue_top_waiter == waiter) {
686                 /*
687                  * The waiter was the top waiter on the lock, but is
688                  * no longer the top prority waiter. Replace waiter in
689                  * the owner tasks pi waiters tree with the new top
690                  * (highest priority) waiter and adjust the priority
691                  * of the owner.
692                  * The new top waiter is stored in @waiter so that
693                  * @waiter == @top_waiter evaluates to true below and
694                  * we continue to deboost the rest of the chain.
695                  */
696                 rt_mutex_dequeue_pi(task, waiter);
697                 waiter = rt_mutex_top_waiter(lock);
698                 rt_mutex_enqueue_pi(task, waiter);
699                 __rt_mutex_adjust_prio(task);
700         } else {
701                 /*
702                  * Nothing changed. No need to do any priority
703                  * adjustment.
704                  */
705         }
706
707         /*
708          * [12] check_exit_conditions_4() protected by task->pi_lock
709          * and lock->wait_lock. The actual decisions are made after we
710          * dropped the locks.
711          *
712          * Check whether the task which owns the current lock is pi
713          * blocked itself. If yes we store a pointer to the lock for
714          * the lock chain change detection above. After we dropped
715          * task->pi_lock next_lock cannot be dereferenced anymore.
716          */
717         next_lock = task_blocked_on_lock(task);
718         /*
719          * Store the top waiter of @lock for the end of chain walk
720          * decision below.
721          */
722         top_waiter = rt_mutex_top_waiter(lock);
723
724         /* [13] Drop the locks */
725         raw_spin_unlock_irqrestore(&task->pi_lock, flags);
726         raw_spin_unlock(&lock->wait_lock);
727
728         /*
729          * Make the actual exit decisions [12], based on the stored
730          * values.
731          *
732          * We reached the end of the lock chain. Stop right here. No
733          * point to go back just to figure that out.
734          */
735         if (!next_lock)
736                 goto out_put_task;
737
738         /*
739          * If the current waiter is not the top waiter on the lock,
740          * then we can stop the chain walk here if we are not in full
741          * deadlock detection mode.
742          */
743         if (!detect_deadlock && waiter != top_waiter)
744                 goto out_put_task;
745
746         goto again;
747
748  out_unlock_pi:
749         raw_spin_unlock_irqrestore(&task->pi_lock, flags);
750  out_put_task:
751         put_task_struct(task);
752
753         return ret;
754 }
755
756 /*
757  * Try to take an rt-mutex
758  *
759  * Must be called with lock->wait_lock held.
760  *
761  * @lock:   The lock to be acquired.
762  * @task:   The task which wants to acquire the lock
763  * @waiter: The waiter that is queued to the lock's wait tree if the
764  *          callsite called task_blocked_on_lock(), otherwise NULL
765  */
766 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
767                                 struct rt_mutex_waiter *waiter)
768 {
769         unsigned long flags;
770
771         /*
772          * Before testing whether we can acquire @lock, we set the
773          * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
774          * other tasks which try to modify @lock into the slow path
775          * and they serialize on @lock->wait_lock.
776          *
777          * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
778          * as explained at the top of this file if and only if:
779          *
780          * - There is a lock owner. The caller must fixup the
781          *   transient state if it does a trylock or leaves the lock
782          *   function due to a signal or timeout.
783          *
784          * - @task acquires the lock and there are no other
785          *   waiters. This is undone in rt_mutex_set_owner(@task) at
786          *   the end of this function.
787          */
788         mark_rt_mutex_waiters(lock);
789
790         /*
791          * If @lock has an owner, give up.
792          */
793         if (rt_mutex_owner(lock))
794                 return 0;
795
796         /*
797          * If @waiter != NULL, @task has already enqueued the waiter
798          * into @lock waiter tree. If @waiter == NULL then this is a
799          * trylock attempt.
800          */
801         if (waiter) {
802                 /*
803                  * If waiter is not the highest priority waiter of
804                  * @lock, give up.
805                  */
806                 if (waiter != rt_mutex_top_waiter(lock))
807                         return 0;
808
809                 /*
810                  * We can acquire the lock. Remove the waiter from the
811                  * lock waiters tree.
812                  */
813                 rt_mutex_dequeue(lock, waiter);
814
815         } else {
816                 /*
817                  * If the lock has waiters already we check whether @task is
818                  * eligible to take over the lock.
819                  *
820                  * If there are no other waiters, @task can acquire
821                  * the lock.  @task->pi_blocked_on is NULL, so it does
822                  * not need to be dequeued.
823                  */
824                 if (rt_mutex_has_waiters(lock)) {
825                         /*
826                          * If @task->prio is greater than or equal to
827                          * the top waiter priority (kernel view),
828                          * @task lost.
829                          */
830                         if (task->prio >= rt_mutex_top_waiter(lock)->prio)
831                                 return 0;
832
833                         /*
834                          * The current top waiter stays enqueued. We
835                          * don't have to change anything in the lock
836                          * waiters order.
837                          */
838                 } else {
839                         /*
840                          * No waiters. Take the lock without the
841                          * pi_lock dance.@task->pi_blocked_on is NULL
842                          * and we have no waiters to enqueue in @task
843                          * pi waiters tree.
844                          */
845                         goto takeit;
846                 }
847         }
848
849         /*
850          * Clear @task->pi_blocked_on. Requires protection by
851          * @task->pi_lock. Redundant operation for the @waiter == NULL
852          * case, but conditionals are more expensive than a redundant
853          * store.
854          */
855         raw_spin_lock_irqsave(&task->pi_lock, flags);
856         task->pi_blocked_on = NULL;
857         /*
858          * Finish the lock acquisition. @task is the new owner. If
859          * other waiters exist we have to insert the highest priority
860          * waiter into @task->pi_waiters tree.
861          */
862         if (rt_mutex_has_waiters(lock))
863                 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
864         raw_spin_unlock_irqrestore(&task->pi_lock, flags);
865
866 takeit:
867         /* We got the lock. */
868         debug_rt_mutex_lock(lock);
869
870         /*
871          * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
872          * are still waiters or clears it.
873          */
874         rt_mutex_set_owner(lock, task);
875
876         rt_mutex_deadlock_account_lock(lock, task);
877
878         return 1;
879 }
880
881 /*
882  * Task blocks on lock.
883  *
884  * Prepare waiter and propagate pi chain
885  *
886  * This must be called with lock->wait_lock held.
887  */
888 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
889                                    struct rt_mutex_waiter *waiter,
890                                    struct task_struct *task,
891                                    enum rtmutex_chainwalk chwalk)
892 {
893         struct task_struct *owner = rt_mutex_owner(lock);
894         struct rt_mutex_waiter *top_waiter = waiter;
895         struct rt_mutex *next_lock;
896         int chain_walk = 0, res;
897         unsigned long flags;
898
899         /*
900          * Early deadlock detection. We really don't want the task to
901          * enqueue on itself just to untangle the mess later. It's not
902          * only an optimization. We drop the locks, so another waiter
903          * can come in before the chain walk detects the deadlock. So
904          * the other will detect the deadlock and return -EDEADLOCK,
905          * which is wrong, as the other waiter is not in a deadlock
906          * situation.
907          */
908         if (owner == task)
909                 return -EDEADLK;
910
911         raw_spin_lock_irqsave(&task->pi_lock, flags);
912         __rt_mutex_adjust_prio(task);
913         waiter->task = task;
914         waiter->lock = lock;
915         waiter->prio = task->prio;
916
917         /* Get the top priority waiter on the lock */
918         if (rt_mutex_has_waiters(lock))
919                 top_waiter = rt_mutex_top_waiter(lock);
920         rt_mutex_enqueue(lock, waiter);
921
922         task->pi_blocked_on = waiter;
923
924         raw_spin_unlock_irqrestore(&task->pi_lock, flags);
925
926         if (!owner)
927                 return 0;
928
929         raw_spin_lock_irqsave(&owner->pi_lock, flags);
930         if (waiter == rt_mutex_top_waiter(lock)) {
931                 rt_mutex_dequeue_pi(owner, top_waiter);
932                 rt_mutex_enqueue_pi(owner, waiter);
933
934                 __rt_mutex_adjust_prio(owner);
935                 if (owner->pi_blocked_on)
936                         chain_walk = 1;
937         } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
938                 chain_walk = 1;
939         }
940
941         /* Store the lock on which owner is blocked or NULL */
942         next_lock = task_blocked_on_lock(owner);
943
944         raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
945         /*
946          * Even if full deadlock detection is on, if the owner is not
947          * blocked itself, we can avoid finding this out in the chain
948          * walk.
949          */
950         if (!chain_walk || !next_lock)
951                 return 0;
952
953         /*
954          * The owner can't disappear while holding a lock,
955          * so the owner struct is protected by wait_lock.
956          * Gets dropped in rt_mutex_adjust_prio_chain()!
957          */
958         get_task_struct(owner);
959
960         raw_spin_unlock(&lock->wait_lock);
961
962         res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
963                                          next_lock, waiter, task);
964
965         raw_spin_lock(&lock->wait_lock);
966
967         return res;
968 }
969
970 /*
971  * Remove the top waiter from the current tasks pi waiter tree and
972  * queue it up.
973  *
974  * Called with lock->wait_lock held.
975  */
976 static void mark_wakeup_next_waiter(struct wake_q_head *wake_q,
977                                     struct rt_mutex *lock)
978 {
979         struct rt_mutex_waiter *waiter;
980         unsigned long flags;
981
982         raw_spin_lock_irqsave(&current->pi_lock, flags);
983
984         waiter = rt_mutex_top_waiter(lock);
985
986         /*
987          * Remove it from current->pi_waiters. We do not adjust a
988          * possible priority boost right now. We execute wakeup in the
989          * boosted mode and go back to normal after releasing
990          * lock->wait_lock.
991          */
992         rt_mutex_dequeue_pi(current, waiter);
993
994         /*
995          * As we are waking up the top waiter, and the waiter stays
996          * queued on the lock until it gets the lock, this lock
997          * obviously has waiters. Just set the bit here and this has
998          * the added benefit of forcing all new tasks into the
999          * slow path making sure no task of lower priority than
1000          * the top waiter can steal this lock.
1001          */
1002         lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1003
1004         raw_spin_unlock_irqrestore(&current->pi_lock, flags);
1005
1006         wake_q_add(wake_q, waiter->task);
1007 }
1008
1009 /*
1010  * Remove a waiter from a lock and give up
1011  *
1012  * Must be called with lock->wait_lock held and
1013  * have just failed to try_to_take_rt_mutex().
1014  */
1015 static void remove_waiter(struct rt_mutex *lock,
1016                           struct rt_mutex_waiter *waiter)
1017 {
1018         bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1019         struct task_struct *owner = rt_mutex_owner(lock);
1020         struct rt_mutex *next_lock;
1021         unsigned long flags;
1022
1023         raw_spin_lock_irqsave(&current->pi_lock, flags);
1024         rt_mutex_dequeue(lock, waiter);
1025         current->pi_blocked_on = NULL;
1026         raw_spin_unlock_irqrestore(&current->pi_lock, flags);
1027
1028         /*
1029          * Only update priority if the waiter was the highest priority
1030          * waiter of the lock and there is an owner to update.
1031          */
1032         if (!owner || !is_top_waiter)
1033                 return;
1034
1035         raw_spin_lock_irqsave(&owner->pi_lock, flags);
1036
1037         rt_mutex_dequeue_pi(owner, waiter);
1038
1039         if (rt_mutex_has_waiters(lock))
1040                 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1041
1042         __rt_mutex_adjust_prio(owner);
1043
1044         /* Store the lock on which owner is blocked or NULL */
1045         next_lock = task_blocked_on_lock(owner);
1046
1047         raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
1048
1049         /*
1050          * Don't walk the chain, if the owner task is not blocked
1051          * itself.
1052          */
1053         if (!next_lock)
1054                 return;
1055
1056         /* gets dropped in rt_mutex_adjust_prio_chain()! */
1057         get_task_struct(owner);
1058
1059         raw_spin_unlock(&lock->wait_lock);
1060
1061         rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1062                                    next_lock, NULL, current);
1063
1064         raw_spin_lock(&lock->wait_lock);
1065 }
1066
1067 /*
1068  * Recheck the pi chain, in case we got a priority setting
1069  *
1070  * Called from sched_setscheduler
1071  */
1072 void rt_mutex_adjust_pi(struct task_struct *task)
1073 {
1074         struct rt_mutex_waiter *waiter;
1075         struct rt_mutex *next_lock;
1076         unsigned long flags;
1077
1078         raw_spin_lock_irqsave(&task->pi_lock, flags);
1079
1080         waiter = task->pi_blocked_on;
1081         if (!waiter || (waiter->prio == task->prio &&
1082                         !dl_prio(task->prio))) {
1083                 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1084                 return;
1085         }
1086         next_lock = waiter->lock;
1087         raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1088
1089         /* gets dropped in rt_mutex_adjust_prio_chain()! */
1090         get_task_struct(task);
1091
1092         rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1093                                    next_lock, NULL, task);
1094 }
1095
1096 /**
1097  * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1098  * @lock:                the rt_mutex to take
1099  * @state:               the state the task should block in (TASK_INTERRUPTIBLE
1100  *                       or TASK_UNINTERRUPTIBLE)
1101  * @timeout:             the pre-initialized and started timer, or NULL for none
1102  * @waiter:              the pre-initialized rt_mutex_waiter
1103  *
1104  * lock->wait_lock must be held by the caller.
1105  */
1106 static int __sched
1107 __rt_mutex_slowlock(struct rt_mutex *lock, int state,
1108                     struct hrtimer_sleeper *timeout,
1109                     struct rt_mutex_waiter *waiter)
1110 {
1111         int ret = 0;
1112
1113         for (;;) {
1114                 /* Try to acquire the lock: */
1115                 if (try_to_take_rt_mutex(lock, current, waiter))
1116                         break;
1117
1118                 /*
1119                  * TASK_INTERRUPTIBLE checks for signals and
1120                  * timeout. Ignored otherwise.
1121                  */
1122                 if (unlikely(state == TASK_INTERRUPTIBLE)) {
1123                         /* Signal pending? */
1124                         if (signal_pending(current))
1125                                 ret = -EINTR;
1126                         if (timeout && !timeout->task)
1127                                 ret = -ETIMEDOUT;
1128                         if (ret)
1129                                 break;
1130                 }
1131
1132                 raw_spin_unlock(&lock->wait_lock);
1133
1134                 debug_rt_mutex_print_deadlock(waiter);
1135
1136                 schedule();
1137
1138                 raw_spin_lock(&lock->wait_lock);
1139                 set_current_state(state);
1140         }
1141
1142         __set_current_state(TASK_RUNNING);
1143         return ret;
1144 }
1145
1146 static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1147                                      struct rt_mutex_waiter *w)
1148 {
1149         /*
1150          * If the result is not -EDEADLOCK or the caller requested
1151          * deadlock detection, nothing to do here.
1152          */
1153         if (res != -EDEADLOCK || detect_deadlock)
1154                 return;
1155
1156         /*
1157          * Yell lowdly and stop the task right here.
1158          */
1159         rt_mutex_print_deadlock(w);
1160         while (1) {
1161                 set_current_state(TASK_INTERRUPTIBLE);
1162                 schedule();
1163         }
1164 }
1165
1166 /*
1167  * Slow path lock function:
1168  */
1169 static int __sched
1170 rt_mutex_slowlock(struct rt_mutex *lock, int state,
1171                   struct hrtimer_sleeper *timeout,
1172                   enum rtmutex_chainwalk chwalk)
1173 {
1174         struct rt_mutex_waiter waiter;
1175         int ret = 0;
1176
1177         debug_rt_mutex_init_waiter(&waiter);
1178         RB_CLEAR_NODE(&waiter.pi_tree_entry);
1179         RB_CLEAR_NODE(&waiter.tree_entry);
1180
1181         raw_spin_lock(&lock->wait_lock);
1182
1183         /* Try to acquire the lock again: */
1184         if (try_to_take_rt_mutex(lock, current, NULL)) {
1185                 raw_spin_unlock(&lock->wait_lock);
1186                 return 0;
1187         }
1188
1189         set_current_state(state);
1190
1191         /* Setup the timer, when timeout != NULL */
1192         if (unlikely(timeout))
1193                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1194
1195         ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1196
1197         if (likely(!ret))
1198                 /* sleep on the mutex */
1199                 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1200
1201         if (unlikely(ret)) {
1202                 __set_current_state(TASK_RUNNING);
1203                 if (rt_mutex_has_waiters(lock))
1204                         remove_waiter(lock, &waiter);
1205                 rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1206         }
1207
1208         /*
1209          * try_to_take_rt_mutex() sets the waiter bit
1210          * unconditionally. We might have to fix that up.
1211          */
1212         fixup_rt_mutex_waiters(lock);
1213
1214         raw_spin_unlock(&lock->wait_lock);
1215
1216         /* Remove pending timer: */
1217         if (unlikely(timeout))
1218                 hrtimer_cancel(&timeout->timer);
1219
1220         debug_rt_mutex_free_waiter(&waiter);
1221
1222         return ret;
1223 }
1224
1225 /*
1226  * Slow path try-lock function:
1227  */
1228 static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
1229 {
1230         int ret;
1231
1232         /*
1233          * If the lock already has an owner we fail to get the lock.
1234          * This can be done without taking the @lock->wait_lock as
1235          * it is only being read, and this is a trylock anyway.
1236          */
1237         if (rt_mutex_owner(lock))
1238                 return 0;
1239
1240         /*
1241          * The mutex has currently no owner. Lock the wait lock and
1242          * try to acquire the lock.
1243          */
1244         raw_spin_lock(&lock->wait_lock);
1245
1246         ret = try_to_take_rt_mutex(lock, current, NULL);
1247
1248         /*
1249          * try_to_take_rt_mutex() sets the lock waiters bit
1250          * unconditionally. Clean this up.
1251          */
1252         fixup_rt_mutex_waiters(lock);
1253
1254         raw_spin_unlock(&lock->wait_lock);
1255
1256         return ret;
1257 }
1258
1259 /*
1260  * Slow path to release a rt-mutex.
1261  * Return whether the current task needs to undo a potential priority boosting.
1262  */
1263 static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock,
1264                                         struct wake_q_head *wake_q)
1265 {
1266         raw_spin_lock(&lock->wait_lock);
1267
1268         debug_rt_mutex_unlock(lock);
1269
1270         rt_mutex_deadlock_account_unlock(current);
1271
1272         /*
1273          * We must be careful here if the fast path is enabled. If we
1274          * have no waiters queued we cannot set owner to NULL here
1275          * because of:
1276          *
1277          * foo->lock->owner = NULL;
1278          *                      rtmutex_lock(foo->lock);   <- fast path
1279          *                      free = atomic_dec_and_test(foo->refcnt);
1280          *                      rtmutex_unlock(foo->lock); <- fast path
1281          *                      if (free)
1282          *                              kfree(foo);
1283          * raw_spin_unlock(foo->lock->wait_lock);
1284          *
1285          * So for the fastpath enabled kernel:
1286          *
1287          * Nothing can set the waiters bit as long as we hold
1288          * lock->wait_lock. So we do the following sequence:
1289          *
1290          *      owner = rt_mutex_owner(lock);
1291          *      clear_rt_mutex_waiters(lock);
1292          *      raw_spin_unlock(&lock->wait_lock);
1293          *      if (cmpxchg(&lock->owner, owner, 0) == owner)
1294          *              return;
1295          *      goto retry;
1296          *
1297          * The fastpath disabled variant is simple as all access to
1298          * lock->owner is serialized by lock->wait_lock:
1299          *
1300          *      lock->owner = NULL;
1301          *      raw_spin_unlock(&lock->wait_lock);
1302          */
1303         while (!rt_mutex_has_waiters(lock)) {
1304                 /* Drops lock->wait_lock ! */
1305                 if (unlock_rt_mutex_safe(lock) == true)
1306                         return false;
1307                 /* Relock the rtmutex and try again */
1308                 raw_spin_lock(&lock->wait_lock);
1309         }
1310
1311         /*
1312          * The wakeup next waiter path does not suffer from the above
1313          * race. See the comments there.
1314          *
1315          * Queue the next waiter for wakeup once we release the wait_lock.
1316          */
1317         mark_wakeup_next_waiter(wake_q, lock);
1318
1319         raw_spin_unlock(&lock->wait_lock);
1320
1321         /* check PI boosting */
1322         return true;
1323 }
1324
1325 /*
1326  * debug aware fast / slowpath lock,trylock,unlock
1327  *
1328  * The atomic acquire/release ops are compiled away, when either the
1329  * architecture does not support cmpxchg or when debugging is enabled.
1330  */
1331 static inline int
1332 rt_mutex_fastlock(struct rt_mutex *lock, int state,
1333                   int (*slowfn)(struct rt_mutex *lock, int state,
1334                                 struct hrtimer_sleeper *timeout,
1335                                 enum rtmutex_chainwalk chwalk))
1336 {
1337         if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) {
1338                 rt_mutex_deadlock_account_lock(lock, current);
1339                 return 0;
1340         } else
1341                 return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1342 }
1343
1344 static inline int
1345 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1346                         struct hrtimer_sleeper *timeout,
1347                         enum rtmutex_chainwalk chwalk,
1348                         int (*slowfn)(struct rt_mutex *lock, int state,
1349                                       struct hrtimer_sleeper *timeout,
1350                                       enum rtmutex_chainwalk chwalk))
1351 {
1352         if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1353             likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) {
1354                 rt_mutex_deadlock_account_lock(lock, current);
1355                 return 0;
1356         } else
1357                 return slowfn(lock, state, timeout, chwalk);
1358 }
1359
1360 static inline int
1361 rt_mutex_fasttrylock(struct rt_mutex *lock,
1362                      int (*slowfn)(struct rt_mutex *lock))
1363 {
1364         if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) {
1365                 rt_mutex_deadlock_account_lock(lock, current);
1366                 return 1;
1367         }
1368         return slowfn(lock);
1369 }
1370
1371 static inline void
1372 rt_mutex_fastunlock(struct rt_mutex *lock,
1373                     bool (*slowfn)(struct rt_mutex *lock,
1374                                    struct wake_q_head *wqh))
1375 {
1376         WAKE_Q(wake_q);
1377
1378         if (likely(rt_mutex_cmpxchg_release(lock, current, NULL))) {
1379                 rt_mutex_deadlock_account_unlock(current);
1380
1381         } else {
1382                 bool deboost = slowfn(lock, &wake_q);
1383
1384                 wake_up_q(&wake_q);
1385
1386                 /* Undo pi boosting if necessary: */
1387                 if (deboost)
1388                         rt_mutex_adjust_prio(current);
1389         }
1390 }
1391
1392 /**
1393  * rt_mutex_lock - lock a rt_mutex
1394  *
1395  * @lock: the rt_mutex to be locked
1396  */
1397 void __sched rt_mutex_lock(struct rt_mutex *lock)
1398 {
1399         might_sleep();
1400
1401         rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1402 }
1403 EXPORT_SYMBOL_GPL(rt_mutex_lock);
1404
1405 /**
1406  * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1407  *
1408  * @lock:               the rt_mutex to be locked
1409  *
1410  * Returns:
1411  *  0           on success
1412  * -EINTR       when interrupted by a signal
1413  */
1414 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1415 {
1416         might_sleep();
1417
1418         return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1419 }
1420 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1421
1422 /*
1423  * Futex variant with full deadlock detection.
1424  */
1425 int rt_mutex_timed_futex_lock(struct rt_mutex *lock,
1426                               struct hrtimer_sleeper *timeout)
1427 {
1428         might_sleep();
1429
1430         return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1431                                        RT_MUTEX_FULL_CHAINWALK,
1432                                        rt_mutex_slowlock);
1433 }
1434
1435 /**
1436  * rt_mutex_timed_lock - lock a rt_mutex interruptible
1437  *                      the timeout structure is provided
1438  *                      by the caller
1439  *
1440  * @lock:               the rt_mutex to be locked
1441  * @timeout:            timeout structure or NULL (no timeout)
1442  *
1443  * Returns:
1444  *  0           on success
1445  * -EINTR       when interrupted by a signal
1446  * -ETIMEDOUT   when the timeout expired
1447  */
1448 int
1449 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
1450 {
1451         might_sleep();
1452
1453         return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1454                                        RT_MUTEX_MIN_CHAINWALK,
1455                                        rt_mutex_slowlock);
1456 }
1457 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1458
1459 /**
1460  * rt_mutex_trylock - try to lock a rt_mutex
1461  *
1462  * @lock:       the rt_mutex to be locked
1463  *
1464  * This function can only be called in thread context. It's safe to
1465  * call it from atomic regions, but not from hard interrupt or soft
1466  * interrupt context.
1467  *
1468  * Returns 1 on success and 0 on contention
1469  */
1470 int __sched rt_mutex_trylock(struct rt_mutex *lock)
1471 {
1472         if (WARN_ON(in_irq() || in_nmi() || in_serving_softirq()))
1473                 return 0;
1474
1475         return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1476 }
1477 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1478
1479 /**
1480  * rt_mutex_unlock - unlock a rt_mutex
1481  *
1482  * @lock: the rt_mutex to be unlocked
1483  */
1484 void __sched rt_mutex_unlock(struct rt_mutex *lock)
1485 {
1486         rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1487 }
1488 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1489
1490 /**
1491  * rt_mutex_futex_unlock - Futex variant of rt_mutex_unlock
1492  * @lock: the rt_mutex to be unlocked
1493  *
1494  * Returns: true/false indicating whether priority adjustment is
1495  * required or not.
1496  */
1497 bool __sched rt_mutex_futex_unlock(struct rt_mutex *lock,
1498                                    struct wake_q_head *wqh)
1499 {
1500         if (likely(rt_mutex_cmpxchg_release(lock, current, NULL))) {
1501                 rt_mutex_deadlock_account_unlock(current);
1502                 return false;
1503         }
1504         return rt_mutex_slowunlock(lock, wqh);
1505 }
1506
1507 /**
1508  * rt_mutex_destroy - mark a mutex unusable
1509  * @lock: the mutex to be destroyed
1510  *
1511  * This function marks the mutex uninitialized, and any subsequent
1512  * use of the mutex is forbidden. The mutex must not be locked when
1513  * this function is called.
1514  */
1515 void rt_mutex_destroy(struct rt_mutex *lock)
1516 {
1517         WARN_ON(rt_mutex_is_locked(lock));
1518 #ifdef CONFIG_DEBUG_RT_MUTEXES
1519         lock->magic = NULL;
1520 #endif
1521 }
1522
1523 EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1524
1525 /**
1526  * __rt_mutex_init - initialize the rt lock
1527  *
1528  * @lock: the rt lock to be initialized
1529  *
1530  * Initialize the rt lock to unlocked state.
1531  *
1532  * Initializing of a locked rt lock is not allowed
1533  */
1534 void __rt_mutex_init(struct rt_mutex *lock, const char *name)
1535 {
1536         lock->owner = NULL;
1537         raw_spin_lock_init(&lock->wait_lock);
1538         lock->waiters = RB_ROOT;
1539         lock->waiters_leftmost = NULL;
1540
1541         debug_rt_mutex_init(lock, name);
1542 }
1543 EXPORT_SYMBOL_GPL(__rt_mutex_init);
1544
1545 /**
1546  * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1547  *                              proxy owner
1548  *
1549  * @lock:       the rt_mutex to be locked
1550  * @proxy_owner:the task to set as owner
1551  *
1552  * No locking. Caller has to do serializing itself
1553  * Special API call for PI-futex support
1554  */
1555 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1556                                 struct task_struct *proxy_owner)
1557 {
1558         __rt_mutex_init(lock, NULL);
1559         debug_rt_mutex_proxy_lock(lock, proxy_owner);
1560         rt_mutex_set_owner(lock, proxy_owner);
1561         rt_mutex_deadlock_account_lock(lock, proxy_owner);
1562 }
1563
1564 /**
1565  * rt_mutex_proxy_unlock - release a lock on behalf of owner
1566  *
1567  * @lock:       the rt_mutex to be locked
1568  *
1569  * No locking. Caller has to do serializing itself
1570  * Special API call for PI-futex support
1571  */
1572 void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1573                            struct task_struct *proxy_owner)
1574 {
1575         debug_rt_mutex_proxy_unlock(lock);
1576         rt_mutex_set_owner(lock, NULL);
1577         rt_mutex_deadlock_account_unlock(proxy_owner);
1578 }
1579
1580 /**
1581  * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1582  * @lock:               the rt_mutex to take
1583  * @waiter:             the pre-initialized rt_mutex_waiter
1584  * @task:               the task to prepare
1585  *
1586  * Returns:
1587  *  0 - task blocked on lock
1588  *  1 - acquired the lock for task, caller should wake it up
1589  * <0 - error
1590  *
1591  * Special API call for FUTEX_REQUEUE_PI support.
1592  */
1593 int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1594                               struct rt_mutex_waiter *waiter,
1595                               struct task_struct *task)
1596 {
1597         int ret;
1598
1599         raw_spin_lock(&lock->wait_lock);
1600
1601         if (try_to_take_rt_mutex(lock, task, NULL)) {
1602                 raw_spin_unlock(&lock->wait_lock);
1603                 return 1;
1604         }
1605
1606         /* We enforce deadlock detection for futexes */
1607         ret = task_blocks_on_rt_mutex(lock, waiter, task,
1608                                       RT_MUTEX_FULL_CHAINWALK);
1609
1610         if (ret && !rt_mutex_owner(lock)) {
1611                 /*
1612                  * Reset the return value. We might have
1613                  * returned with -EDEADLK and the owner
1614                  * released the lock while we were walking the
1615                  * pi chain.  Let the waiter sort it out.
1616                  */
1617                 ret = 0;
1618         }
1619
1620         if (unlikely(ret))
1621                 remove_waiter(lock, waiter);
1622
1623         raw_spin_unlock(&lock->wait_lock);
1624
1625         debug_rt_mutex_print_deadlock(waiter);
1626
1627         return ret;
1628 }
1629
1630 /**
1631  * rt_mutex_next_owner - return the next owner of the lock
1632  *
1633  * @lock: the rt lock query
1634  *
1635  * Returns the next owner of the lock or NULL
1636  *
1637  * Caller has to serialize against other accessors to the lock
1638  * itself.
1639  *
1640  * Special API call for PI-futex support
1641  */
1642 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1643 {
1644         if (!rt_mutex_has_waiters(lock))
1645                 return NULL;
1646
1647         return rt_mutex_top_waiter(lock)->task;
1648 }
1649
1650 /**
1651  * rt_mutex_finish_proxy_lock() - Complete lock acquisition
1652  * @lock:               the rt_mutex we were woken on
1653  * @to:                 the timeout, null if none. hrtimer should already have
1654  *                      been started.
1655  * @waiter:             the pre-initialized rt_mutex_waiter
1656  *
1657  * Complete the lock acquisition started our behalf by another thread.
1658  *
1659  * Returns:
1660  *  0 - success
1661  * <0 - error, one of -EINTR, -ETIMEDOUT
1662  *
1663  * Special API call for PI-futex requeue support
1664  */
1665 int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
1666                                struct hrtimer_sleeper *to,
1667                                struct rt_mutex_waiter *waiter)
1668 {
1669         int ret;
1670
1671         raw_spin_lock(&lock->wait_lock);
1672
1673         set_current_state(TASK_INTERRUPTIBLE);
1674
1675         /* sleep on the mutex */
1676         ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1677
1678         if (unlikely(ret))
1679                 remove_waiter(lock, waiter);
1680
1681         /*
1682          * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1683          * have to fix that up.
1684          */
1685         fixup_rt_mutex_waiters(lock);
1686
1687         raw_spin_unlock(&lock->wait_lock);
1688
1689         return ret;
1690 }