]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/huge_memory.c
Merge branch 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / mm / huge_memory.c
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/dax.h>
20 #include <linux/kthread.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/migrate.h>
26 #include <linux/hashtable.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/page_idle.h>
29
30 #include <asm/tlb.h>
31 #include <asm/pgalloc.h>
32 #include "internal.h"
33
34 /*
35  * By default transparent hugepage support is disabled in order that avoid
36  * to risk increase the memory footprint of applications without a guaranteed
37  * benefit. When transparent hugepage support is enabled, is for all mappings,
38  * and khugepaged scans all mappings.
39  * Defrag is invoked by khugepaged hugepage allocations and by page faults
40  * for all hugepage allocations.
41  */
42 unsigned long transparent_hugepage_flags __read_mostly =
43 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
44         (1<<TRANSPARENT_HUGEPAGE_FLAG)|
45 #endif
46 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
47         (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
48 #endif
49         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
50         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
51         (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
52
53 /* default scan 8*512 pte (or vmas) every 30 second */
54 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
55 static unsigned int khugepaged_pages_collapsed;
56 static unsigned int khugepaged_full_scans;
57 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
58 /* during fragmentation poll the hugepage allocator once every minute */
59 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
60 static struct task_struct *khugepaged_thread __read_mostly;
61 static DEFINE_MUTEX(khugepaged_mutex);
62 static DEFINE_SPINLOCK(khugepaged_mm_lock);
63 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
64 /*
65  * default collapse hugepages if there is at least one pte mapped like
66  * it would have happened if the vma was large enough during page
67  * fault.
68  */
69 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
70
71 static int khugepaged(void *none);
72 static int khugepaged_slab_init(void);
73 static void khugepaged_slab_exit(void);
74
75 #define MM_SLOTS_HASH_BITS 10
76 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
77
78 static struct kmem_cache *mm_slot_cache __read_mostly;
79
80 /**
81  * struct mm_slot - hash lookup from mm to mm_slot
82  * @hash: hash collision list
83  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
84  * @mm: the mm that this information is valid for
85  */
86 struct mm_slot {
87         struct hlist_node hash;
88         struct list_head mm_node;
89         struct mm_struct *mm;
90 };
91
92 /**
93  * struct khugepaged_scan - cursor for scanning
94  * @mm_head: the head of the mm list to scan
95  * @mm_slot: the current mm_slot we are scanning
96  * @address: the next address inside that to be scanned
97  *
98  * There is only the one khugepaged_scan instance of this cursor structure.
99  */
100 struct khugepaged_scan {
101         struct list_head mm_head;
102         struct mm_slot *mm_slot;
103         unsigned long address;
104 };
105 static struct khugepaged_scan khugepaged_scan = {
106         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
107 };
108
109
110 static void set_recommended_min_free_kbytes(void)
111 {
112         struct zone *zone;
113         int nr_zones = 0;
114         unsigned long recommended_min;
115
116         for_each_populated_zone(zone)
117                 nr_zones++;
118
119         /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
120         recommended_min = pageblock_nr_pages * nr_zones * 2;
121
122         /*
123          * Make sure that on average at least two pageblocks are almost free
124          * of another type, one for a migratetype to fall back to and a
125          * second to avoid subsequent fallbacks of other types There are 3
126          * MIGRATE_TYPES we care about.
127          */
128         recommended_min += pageblock_nr_pages * nr_zones *
129                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
130
131         /* don't ever allow to reserve more than 5% of the lowmem */
132         recommended_min = min(recommended_min,
133                               (unsigned long) nr_free_buffer_pages() / 20);
134         recommended_min <<= (PAGE_SHIFT-10);
135
136         if (recommended_min > min_free_kbytes) {
137                 if (user_min_free_kbytes >= 0)
138                         pr_info("raising min_free_kbytes from %d to %lu "
139                                 "to help transparent hugepage allocations\n",
140                                 min_free_kbytes, recommended_min);
141
142                 min_free_kbytes = recommended_min;
143         }
144         setup_per_zone_wmarks();
145 }
146
147 static int start_stop_khugepaged(void)
148 {
149         int err = 0;
150         if (khugepaged_enabled()) {
151                 if (!khugepaged_thread)
152                         khugepaged_thread = kthread_run(khugepaged, NULL,
153                                                         "khugepaged");
154                 if (unlikely(IS_ERR(khugepaged_thread))) {
155                         pr_err("khugepaged: kthread_run(khugepaged) failed\n");
156                         err = PTR_ERR(khugepaged_thread);
157                         khugepaged_thread = NULL;
158                         goto fail;
159                 }
160
161                 if (!list_empty(&khugepaged_scan.mm_head))
162                         wake_up_interruptible(&khugepaged_wait);
163
164                 set_recommended_min_free_kbytes();
165         } else if (khugepaged_thread) {
166                 kthread_stop(khugepaged_thread);
167                 khugepaged_thread = NULL;
168         }
169 fail:
170         return err;
171 }
172
173 static atomic_t huge_zero_refcount;
174 struct page *huge_zero_page __read_mostly;
175
176 struct page *get_huge_zero_page(void)
177 {
178         struct page *zero_page;
179 retry:
180         if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
181                 return READ_ONCE(huge_zero_page);
182
183         zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
184                         HPAGE_PMD_ORDER);
185         if (!zero_page) {
186                 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
187                 return NULL;
188         }
189         count_vm_event(THP_ZERO_PAGE_ALLOC);
190         preempt_disable();
191         if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
192                 preempt_enable();
193                 __free_pages(zero_page, compound_order(zero_page));
194                 goto retry;
195         }
196
197         /* We take additional reference here. It will be put back by shrinker */
198         atomic_set(&huge_zero_refcount, 2);
199         preempt_enable();
200         return READ_ONCE(huge_zero_page);
201 }
202
203 static void put_huge_zero_page(void)
204 {
205         /*
206          * Counter should never go to zero here. Only shrinker can put
207          * last reference.
208          */
209         BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
210 }
211
212 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
213                                         struct shrink_control *sc)
214 {
215         /* we can free zero page only if last reference remains */
216         return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
217 }
218
219 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
220                                        struct shrink_control *sc)
221 {
222         if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
223                 struct page *zero_page = xchg(&huge_zero_page, NULL);
224                 BUG_ON(zero_page == NULL);
225                 __free_pages(zero_page, compound_order(zero_page));
226                 return HPAGE_PMD_NR;
227         }
228
229         return 0;
230 }
231
232 static struct shrinker huge_zero_page_shrinker = {
233         .count_objects = shrink_huge_zero_page_count,
234         .scan_objects = shrink_huge_zero_page_scan,
235         .seeks = DEFAULT_SEEKS,
236 };
237
238 #ifdef CONFIG_SYSFS
239
240 static ssize_t double_flag_show(struct kobject *kobj,
241                                 struct kobj_attribute *attr, char *buf,
242                                 enum transparent_hugepage_flag enabled,
243                                 enum transparent_hugepage_flag req_madv)
244 {
245         if (test_bit(enabled, &transparent_hugepage_flags)) {
246                 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
247                 return sprintf(buf, "[always] madvise never\n");
248         } else if (test_bit(req_madv, &transparent_hugepage_flags))
249                 return sprintf(buf, "always [madvise] never\n");
250         else
251                 return sprintf(buf, "always madvise [never]\n");
252 }
253 static ssize_t double_flag_store(struct kobject *kobj,
254                                  struct kobj_attribute *attr,
255                                  const char *buf, size_t count,
256                                  enum transparent_hugepage_flag enabled,
257                                  enum transparent_hugepage_flag req_madv)
258 {
259         if (!memcmp("always", buf,
260                     min(sizeof("always")-1, count))) {
261                 set_bit(enabled, &transparent_hugepage_flags);
262                 clear_bit(req_madv, &transparent_hugepage_flags);
263         } else if (!memcmp("madvise", buf,
264                            min(sizeof("madvise")-1, count))) {
265                 clear_bit(enabled, &transparent_hugepage_flags);
266                 set_bit(req_madv, &transparent_hugepage_flags);
267         } else if (!memcmp("never", buf,
268                            min(sizeof("never")-1, count))) {
269                 clear_bit(enabled, &transparent_hugepage_flags);
270                 clear_bit(req_madv, &transparent_hugepage_flags);
271         } else
272                 return -EINVAL;
273
274         return count;
275 }
276
277 static ssize_t enabled_show(struct kobject *kobj,
278                             struct kobj_attribute *attr, char *buf)
279 {
280         return double_flag_show(kobj, attr, buf,
281                                 TRANSPARENT_HUGEPAGE_FLAG,
282                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
283 }
284 static ssize_t enabled_store(struct kobject *kobj,
285                              struct kobj_attribute *attr,
286                              const char *buf, size_t count)
287 {
288         ssize_t ret;
289
290         ret = double_flag_store(kobj, attr, buf, count,
291                                 TRANSPARENT_HUGEPAGE_FLAG,
292                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
293
294         if (ret > 0) {
295                 int err;
296
297                 mutex_lock(&khugepaged_mutex);
298                 err = start_stop_khugepaged();
299                 mutex_unlock(&khugepaged_mutex);
300
301                 if (err)
302                         ret = err;
303         }
304
305         return ret;
306 }
307 static struct kobj_attribute enabled_attr =
308         __ATTR(enabled, 0644, enabled_show, enabled_store);
309
310 static ssize_t single_flag_show(struct kobject *kobj,
311                                 struct kobj_attribute *attr, char *buf,
312                                 enum transparent_hugepage_flag flag)
313 {
314         return sprintf(buf, "%d\n",
315                        !!test_bit(flag, &transparent_hugepage_flags));
316 }
317
318 static ssize_t single_flag_store(struct kobject *kobj,
319                                  struct kobj_attribute *attr,
320                                  const char *buf, size_t count,
321                                  enum transparent_hugepage_flag flag)
322 {
323         unsigned long value;
324         int ret;
325
326         ret = kstrtoul(buf, 10, &value);
327         if (ret < 0)
328                 return ret;
329         if (value > 1)
330                 return -EINVAL;
331
332         if (value)
333                 set_bit(flag, &transparent_hugepage_flags);
334         else
335                 clear_bit(flag, &transparent_hugepage_flags);
336
337         return count;
338 }
339
340 /*
341  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
342  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
343  * memory just to allocate one more hugepage.
344  */
345 static ssize_t defrag_show(struct kobject *kobj,
346                            struct kobj_attribute *attr, char *buf)
347 {
348         return double_flag_show(kobj, attr, buf,
349                                 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
350                                 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
351 }
352 static ssize_t defrag_store(struct kobject *kobj,
353                             struct kobj_attribute *attr,
354                             const char *buf, size_t count)
355 {
356         return double_flag_store(kobj, attr, buf, count,
357                                  TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
358                                  TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
359 }
360 static struct kobj_attribute defrag_attr =
361         __ATTR(defrag, 0644, defrag_show, defrag_store);
362
363 static ssize_t use_zero_page_show(struct kobject *kobj,
364                 struct kobj_attribute *attr, char *buf)
365 {
366         return single_flag_show(kobj, attr, buf,
367                                 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
368 }
369 static ssize_t use_zero_page_store(struct kobject *kobj,
370                 struct kobj_attribute *attr, const char *buf, size_t count)
371 {
372         return single_flag_store(kobj, attr, buf, count,
373                                  TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
374 }
375 static struct kobj_attribute use_zero_page_attr =
376         __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
377 #ifdef CONFIG_DEBUG_VM
378 static ssize_t debug_cow_show(struct kobject *kobj,
379                                 struct kobj_attribute *attr, char *buf)
380 {
381         return single_flag_show(kobj, attr, buf,
382                                 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
383 }
384 static ssize_t debug_cow_store(struct kobject *kobj,
385                                struct kobj_attribute *attr,
386                                const char *buf, size_t count)
387 {
388         return single_flag_store(kobj, attr, buf, count,
389                                  TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
390 }
391 static struct kobj_attribute debug_cow_attr =
392         __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
393 #endif /* CONFIG_DEBUG_VM */
394
395 static struct attribute *hugepage_attr[] = {
396         &enabled_attr.attr,
397         &defrag_attr.attr,
398         &use_zero_page_attr.attr,
399 #ifdef CONFIG_DEBUG_VM
400         &debug_cow_attr.attr,
401 #endif
402         NULL,
403 };
404
405 static struct attribute_group hugepage_attr_group = {
406         .attrs = hugepage_attr,
407 };
408
409 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
410                                          struct kobj_attribute *attr,
411                                          char *buf)
412 {
413         return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
414 }
415
416 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
417                                           struct kobj_attribute *attr,
418                                           const char *buf, size_t count)
419 {
420         unsigned long msecs;
421         int err;
422
423         err = kstrtoul(buf, 10, &msecs);
424         if (err || msecs > UINT_MAX)
425                 return -EINVAL;
426
427         khugepaged_scan_sleep_millisecs = msecs;
428         wake_up_interruptible(&khugepaged_wait);
429
430         return count;
431 }
432 static struct kobj_attribute scan_sleep_millisecs_attr =
433         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
434                scan_sleep_millisecs_store);
435
436 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
437                                           struct kobj_attribute *attr,
438                                           char *buf)
439 {
440         return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
441 }
442
443 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
444                                            struct kobj_attribute *attr,
445                                            const char *buf, size_t count)
446 {
447         unsigned long msecs;
448         int err;
449
450         err = kstrtoul(buf, 10, &msecs);
451         if (err || msecs > UINT_MAX)
452                 return -EINVAL;
453
454         khugepaged_alloc_sleep_millisecs = msecs;
455         wake_up_interruptible(&khugepaged_wait);
456
457         return count;
458 }
459 static struct kobj_attribute alloc_sleep_millisecs_attr =
460         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
461                alloc_sleep_millisecs_store);
462
463 static ssize_t pages_to_scan_show(struct kobject *kobj,
464                                   struct kobj_attribute *attr,
465                                   char *buf)
466 {
467         return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
468 }
469 static ssize_t pages_to_scan_store(struct kobject *kobj,
470                                    struct kobj_attribute *attr,
471                                    const char *buf, size_t count)
472 {
473         int err;
474         unsigned long pages;
475
476         err = kstrtoul(buf, 10, &pages);
477         if (err || !pages || pages > UINT_MAX)
478                 return -EINVAL;
479
480         khugepaged_pages_to_scan = pages;
481
482         return count;
483 }
484 static struct kobj_attribute pages_to_scan_attr =
485         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
486                pages_to_scan_store);
487
488 static ssize_t pages_collapsed_show(struct kobject *kobj,
489                                     struct kobj_attribute *attr,
490                                     char *buf)
491 {
492         return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
493 }
494 static struct kobj_attribute pages_collapsed_attr =
495         __ATTR_RO(pages_collapsed);
496
497 static ssize_t full_scans_show(struct kobject *kobj,
498                                struct kobj_attribute *attr,
499                                char *buf)
500 {
501         return sprintf(buf, "%u\n", khugepaged_full_scans);
502 }
503 static struct kobj_attribute full_scans_attr =
504         __ATTR_RO(full_scans);
505
506 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
507                                       struct kobj_attribute *attr, char *buf)
508 {
509         return single_flag_show(kobj, attr, buf,
510                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
511 }
512 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
513                                        struct kobj_attribute *attr,
514                                        const char *buf, size_t count)
515 {
516         return single_flag_store(kobj, attr, buf, count,
517                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
518 }
519 static struct kobj_attribute khugepaged_defrag_attr =
520         __ATTR(defrag, 0644, khugepaged_defrag_show,
521                khugepaged_defrag_store);
522
523 /*
524  * max_ptes_none controls if khugepaged should collapse hugepages over
525  * any unmapped ptes in turn potentially increasing the memory
526  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
527  * reduce the available free memory in the system as it
528  * runs. Increasing max_ptes_none will instead potentially reduce the
529  * free memory in the system during the khugepaged scan.
530  */
531 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
532                                              struct kobj_attribute *attr,
533                                              char *buf)
534 {
535         return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
536 }
537 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
538                                               struct kobj_attribute *attr,
539                                               const char *buf, size_t count)
540 {
541         int err;
542         unsigned long max_ptes_none;
543
544         err = kstrtoul(buf, 10, &max_ptes_none);
545         if (err || max_ptes_none > HPAGE_PMD_NR-1)
546                 return -EINVAL;
547
548         khugepaged_max_ptes_none = max_ptes_none;
549
550         return count;
551 }
552 static struct kobj_attribute khugepaged_max_ptes_none_attr =
553         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
554                khugepaged_max_ptes_none_store);
555
556 static struct attribute *khugepaged_attr[] = {
557         &khugepaged_defrag_attr.attr,
558         &khugepaged_max_ptes_none_attr.attr,
559         &pages_to_scan_attr.attr,
560         &pages_collapsed_attr.attr,
561         &full_scans_attr.attr,
562         &scan_sleep_millisecs_attr.attr,
563         &alloc_sleep_millisecs_attr.attr,
564         NULL,
565 };
566
567 static struct attribute_group khugepaged_attr_group = {
568         .attrs = khugepaged_attr,
569         .name = "khugepaged",
570 };
571
572 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
573 {
574         int err;
575
576         *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
577         if (unlikely(!*hugepage_kobj)) {
578                 pr_err("failed to create transparent hugepage kobject\n");
579                 return -ENOMEM;
580         }
581
582         err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
583         if (err) {
584                 pr_err("failed to register transparent hugepage group\n");
585                 goto delete_obj;
586         }
587
588         err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
589         if (err) {
590                 pr_err("failed to register transparent hugepage group\n");
591                 goto remove_hp_group;
592         }
593
594         return 0;
595
596 remove_hp_group:
597         sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
598 delete_obj:
599         kobject_put(*hugepage_kobj);
600         return err;
601 }
602
603 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
604 {
605         sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
606         sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
607         kobject_put(hugepage_kobj);
608 }
609 #else
610 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
611 {
612         return 0;
613 }
614
615 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
616 {
617 }
618 #endif /* CONFIG_SYSFS */
619
620 static int __init hugepage_init(void)
621 {
622         int err;
623         struct kobject *hugepage_kobj;
624
625         if (!has_transparent_hugepage()) {
626                 transparent_hugepage_flags = 0;
627                 return -EINVAL;
628         }
629
630         err = hugepage_init_sysfs(&hugepage_kobj);
631         if (err)
632                 goto err_sysfs;
633
634         err = khugepaged_slab_init();
635         if (err)
636                 goto err_slab;
637
638         err = register_shrinker(&huge_zero_page_shrinker);
639         if (err)
640                 goto err_hzp_shrinker;
641
642         /*
643          * By default disable transparent hugepages on smaller systems,
644          * where the extra memory used could hurt more than TLB overhead
645          * is likely to save.  The admin can still enable it through /sys.
646          */
647         if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
648                 transparent_hugepage_flags = 0;
649                 return 0;
650         }
651
652         err = start_stop_khugepaged();
653         if (err)
654                 goto err_khugepaged;
655
656         return 0;
657 err_khugepaged:
658         unregister_shrinker(&huge_zero_page_shrinker);
659 err_hzp_shrinker:
660         khugepaged_slab_exit();
661 err_slab:
662         hugepage_exit_sysfs(hugepage_kobj);
663 err_sysfs:
664         return err;
665 }
666 subsys_initcall(hugepage_init);
667
668 static int __init setup_transparent_hugepage(char *str)
669 {
670         int ret = 0;
671         if (!str)
672                 goto out;
673         if (!strcmp(str, "always")) {
674                 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
675                         &transparent_hugepage_flags);
676                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
677                           &transparent_hugepage_flags);
678                 ret = 1;
679         } else if (!strcmp(str, "madvise")) {
680                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
681                           &transparent_hugepage_flags);
682                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
683                         &transparent_hugepage_flags);
684                 ret = 1;
685         } else if (!strcmp(str, "never")) {
686                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
687                           &transparent_hugepage_flags);
688                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
689                           &transparent_hugepage_flags);
690                 ret = 1;
691         }
692 out:
693         if (!ret)
694                 pr_warn("transparent_hugepage= cannot parse, ignored\n");
695         return ret;
696 }
697 __setup("transparent_hugepage=", setup_transparent_hugepage);
698
699 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
700 {
701         if (likely(vma->vm_flags & VM_WRITE))
702                 pmd = pmd_mkwrite(pmd);
703         return pmd;
704 }
705
706 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
707 {
708         pmd_t entry;
709         entry = mk_pmd(page, prot);
710         entry = pmd_mkhuge(entry);
711         return entry;
712 }
713
714 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
715                                         struct vm_area_struct *vma,
716                                         unsigned long address, pmd_t *pmd,
717                                         struct page *page, gfp_t gfp,
718                                         unsigned int flags)
719 {
720         struct mem_cgroup *memcg;
721         pgtable_t pgtable;
722         spinlock_t *ptl;
723         unsigned long haddr = address & HPAGE_PMD_MASK;
724
725         VM_BUG_ON_PAGE(!PageCompound(page), page);
726
727         if (mem_cgroup_try_charge(page, mm, gfp, &memcg)) {
728                 put_page(page);
729                 count_vm_event(THP_FAULT_FALLBACK);
730                 return VM_FAULT_FALLBACK;
731         }
732
733         pgtable = pte_alloc_one(mm, haddr);
734         if (unlikely(!pgtable)) {
735                 mem_cgroup_cancel_charge(page, memcg);
736                 put_page(page);
737                 return VM_FAULT_OOM;
738         }
739
740         clear_huge_page(page, haddr, HPAGE_PMD_NR);
741         /*
742          * The memory barrier inside __SetPageUptodate makes sure that
743          * clear_huge_page writes become visible before the set_pmd_at()
744          * write.
745          */
746         __SetPageUptodate(page);
747
748         ptl = pmd_lock(mm, pmd);
749         if (unlikely(!pmd_none(*pmd))) {
750                 spin_unlock(ptl);
751                 mem_cgroup_cancel_charge(page, memcg);
752                 put_page(page);
753                 pte_free(mm, pgtable);
754         } else {
755                 pmd_t entry;
756
757                 /* Deliver the page fault to userland */
758                 if (userfaultfd_missing(vma)) {
759                         int ret;
760
761                         spin_unlock(ptl);
762                         mem_cgroup_cancel_charge(page, memcg);
763                         put_page(page);
764                         pte_free(mm, pgtable);
765                         ret = handle_userfault(vma, address, flags,
766                                                VM_UFFD_MISSING);
767                         VM_BUG_ON(ret & VM_FAULT_FALLBACK);
768                         return ret;
769                 }
770
771                 entry = mk_huge_pmd(page, vma->vm_page_prot);
772                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
773                 page_add_new_anon_rmap(page, vma, haddr);
774                 mem_cgroup_commit_charge(page, memcg, false);
775                 lru_cache_add_active_or_unevictable(page, vma);
776                 pgtable_trans_huge_deposit(mm, pmd, pgtable);
777                 set_pmd_at(mm, haddr, pmd, entry);
778                 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
779                 atomic_long_inc(&mm->nr_ptes);
780                 spin_unlock(ptl);
781                 count_vm_event(THP_FAULT_ALLOC);
782         }
783
784         return 0;
785 }
786
787 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
788 {
789         return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
790 }
791
792 /* Caller must hold page table lock. */
793 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
794                 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
795                 struct page *zero_page)
796 {
797         pmd_t entry;
798         if (!pmd_none(*pmd))
799                 return false;
800         entry = mk_pmd(zero_page, vma->vm_page_prot);
801         entry = pmd_mkhuge(entry);
802         pgtable_trans_huge_deposit(mm, pmd, pgtable);
803         set_pmd_at(mm, haddr, pmd, entry);
804         atomic_long_inc(&mm->nr_ptes);
805         return true;
806 }
807
808 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
809                                unsigned long address, pmd_t *pmd,
810                                unsigned int flags)
811 {
812         gfp_t gfp;
813         struct page *page;
814         unsigned long haddr = address & HPAGE_PMD_MASK;
815
816         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
817                 return VM_FAULT_FALLBACK;
818         if (unlikely(anon_vma_prepare(vma)))
819                 return VM_FAULT_OOM;
820         if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
821                 return VM_FAULT_OOM;
822         if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
823                         transparent_hugepage_use_zero_page()) {
824                 spinlock_t *ptl;
825                 pgtable_t pgtable;
826                 struct page *zero_page;
827                 bool set;
828                 int ret;
829                 pgtable = pte_alloc_one(mm, haddr);
830                 if (unlikely(!pgtable))
831                         return VM_FAULT_OOM;
832                 zero_page = get_huge_zero_page();
833                 if (unlikely(!zero_page)) {
834                         pte_free(mm, pgtable);
835                         count_vm_event(THP_FAULT_FALLBACK);
836                         return VM_FAULT_FALLBACK;
837                 }
838                 ptl = pmd_lock(mm, pmd);
839                 ret = 0;
840                 set = false;
841                 if (pmd_none(*pmd)) {
842                         if (userfaultfd_missing(vma)) {
843                                 spin_unlock(ptl);
844                                 ret = handle_userfault(vma, address, flags,
845                                                        VM_UFFD_MISSING);
846                                 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
847                         } else {
848                                 set_huge_zero_page(pgtable, mm, vma,
849                                                    haddr, pmd,
850                                                    zero_page);
851                                 spin_unlock(ptl);
852                                 set = true;
853                         }
854                 } else
855                         spin_unlock(ptl);
856                 if (!set) {
857                         pte_free(mm, pgtable);
858                         put_huge_zero_page();
859                 }
860                 return ret;
861         }
862         gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
863         page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
864         if (unlikely(!page)) {
865                 count_vm_event(THP_FAULT_FALLBACK);
866                 return VM_FAULT_FALLBACK;
867         }
868         return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
869                                             flags);
870 }
871
872 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
873                 pmd_t *pmd, unsigned long pfn, pgprot_t prot, bool write)
874 {
875         struct mm_struct *mm = vma->vm_mm;
876         pmd_t entry;
877         spinlock_t *ptl;
878
879         ptl = pmd_lock(mm, pmd);
880         if (pmd_none(*pmd)) {
881                 entry = pmd_mkhuge(pfn_pmd(pfn, prot));
882                 if (write) {
883                         entry = pmd_mkyoung(pmd_mkdirty(entry));
884                         entry = maybe_pmd_mkwrite(entry, vma);
885                 }
886                 set_pmd_at(mm, addr, pmd, entry);
887                 update_mmu_cache_pmd(vma, addr, pmd);
888         }
889         spin_unlock(ptl);
890 }
891
892 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
893                         pmd_t *pmd, unsigned long pfn, bool write)
894 {
895         pgprot_t pgprot = vma->vm_page_prot;
896         /*
897          * If we had pmd_special, we could avoid all these restrictions,
898          * but we need to be consistent with PTEs and architectures that
899          * can't support a 'special' bit.
900          */
901         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
902         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
903                                                 (VM_PFNMAP|VM_MIXEDMAP));
904         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
905         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
906
907         if (addr < vma->vm_start || addr >= vma->vm_end)
908                 return VM_FAULT_SIGBUS;
909         if (track_pfn_insert(vma, &pgprot, pfn))
910                 return VM_FAULT_SIGBUS;
911         insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
912         return VM_FAULT_NOPAGE;
913 }
914
915 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
916                   pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
917                   struct vm_area_struct *vma)
918 {
919         spinlock_t *dst_ptl, *src_ptl;
920         struct page *src_page;
921         pmd_t pmd;
922         pgtable_t pgtable;
923         int ret;
924
925         ret = -ENOMEM;
926         pgtable = pte_alloc_one(dst_mm, addr);
927         if (unlikely(!pgtable))
928                 goto out;
929
930         dst_ptl = pmd_lock(dst_mm, dst_pmd);
931         src_ptl = pmd_lockptr(src_mm, src_pmd);
932         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
933
934         ret = -EAGAIN;
935         pmd = *src_pmd;
936         if (unlikely(!pmd_trans_huge(pmd))) {
937                 pte_free(dst_mm, pgtable);
938                 goto out_unlock;
939         }
940         /*
941          * When page table lock is held, the huge zero pmd should not be
942          * under splitting since we don't split the page itself, only pmd to
943          * a page table.
944          */
945         if (is_huge_zero_pmd(pmd)) {
946                 struct page *zero_page;
947                 /*
948                  * get_huge_zero_page() will never allocate a new page here,
949                  * since we already have a zero page to copy. It just takes a
950                  * reference.
951                  */
952                 zero_page = get_huge_zero_page();
953                 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
954                                 zero_page);
955                 ret = 0;
956                 goto out_unlock;
957         }
958
959         if (unlikely(pmd_trans_splitting(pmd))) {
960                 /* split huge page running from under us */
961                 spin_unlock(src_ptl);
962                 spin_unlock(dst_ptl);
963                 pte_free(dst_mm, pgtable);
964
965                 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
966                 goto out;
967         }
968         src_page = pmd_page(pmd);
969         VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
970         get_page(src_page);
971         page_dup_rmap(src_page);
972         add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
973
974         pmdp_set_wrprotect(src_mm, addr, src_pmd);
975         pmd = pmd_mkold(pmd_wrprotect(pmd));
976         pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
977         set_pmd_at(dst_mm, addr, dst_pmd, pmd);
978         atomic_long_inc(&dst_mm->nr_ptes);
979
980         ret = 0;
981 out_unlock:
982         spin_unlock(src_ptl);
983         spin_unlock(dst_ptl);
984 out:
985         return ret;
986 }
987
988 void huge_pmd_set_accessed(struct mm_struct *mm,
989                            struct vm_area_struct *vma,
990                            unsigned long address,
991                            pmd_t *pmd, pmd_t orig_pmd,
992                            int dirty)
993 {
994         spinlock_t *ptl;
995         pmd_t entry;
996         unsigned long haddr;
997
998         ptl = pmd_lock(mm, pmd);
999         if (unlikely(!pmd_same(*pmd, orig_pmd)))
1000                 goto unlock;
1001
1002         entry = pmd_mkyoung(orig_pmd);
1003         haddr = address & HPAGE_PMD_MASK;
1004         if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1005                 update_mmu_cache_pmd(vma, address, pmd);
1006
1007 unlock:
1008         spin_unlock(ptl);
1009 }
1010
1011 /*
1012  * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages
1013  * during copy_user_huge_page()'s copy_page_rep(): in the case when
1014  * the source page gets split and a tail freed before copy completes.
1015  * Called under pmd_lock of checked pmd, so safe from splitting itself.
1016  */
1017 static void get_user_huge_page(struct page *page)
1018 {
1019         if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
1020                 struct page *endpage = page + HPAGE_PMD_NR;
1021
1022                 atomic_add(HPAGE_PMD_NR, &page->_count);
1023                 while (++page < endpage)
1024                         get_huge_page_tail(page);
1025         } else {
1026                 get_page(page);
1027         }
1028 }
1029
1030 static void put_user_huge_page(struct page *page)
1031 {
1032         if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
1033                 struct page *endpage = page + HPAGE_PMD_NR;
1034
1035                 while (page < endpage)
1036                         put_page(page++);
1037         } else {
1038                 put_page(page);
1039         }
1040 }
1041
1042 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1043                                         struct vm_area_struct *vma,
1044                                         unsigned long address,
1045                                         pmd_t *pmd, pmd_t orig_pmd,
1046                                         struct page *page,
1047                                         unsigned long haddr)
1048 {
1049         struct mem_cgroup *memcg;
1050         spinlock_t *ptl;
1051         pgtable_t pgtable;
1052         pmd_t _pmd;
1053         int ret = 0, i;
1054         struct page **pages;
1055         unsigned long mmun_start;       /* For mmu_notifiers */
1056         unsigned long mmun_end;         /* For mmu_notifiers */
1057
1058         pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1059                         GFP_KERNEL);
1060         if (unlikely(!pages)) {
1061                 ret |= VM_FAULT_OOM;
1062                 goto out;
1063         }
1064
1065         for (i = 0; i < HPAGE_PMD_NR; i++) {
1066                 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1067                                                __GFP_OTHER_NODE,
1068                                                vma, address, page_to_nid(page));
1069                 if (unlikely(!pages[i] ||
1070                              mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1071                                                    &memcg))) {
1072                         if (pages[i])
1073                                 put_page(pages[i]);
1074                         while (--i >= 0) {
1075                                 memcg = (void *)page_private(pages[i]);
1076                                 set_page_private(pages[i], 0);
1077                                 mem_cgroup_cancel_charge(pages[i], memcg);
1078                                 put_page(pages[i]);
1079                         }
1080                         kfree(pages);
1081                         ret |= VM_FAULT_OOM;
1082                         goto out;
1083                 }
1084                 set_page_private(pages[i], (unsigned long)memcg);
1085         }
1086
1087         for (i = 0; i < HPAGE_PMD_NR; i++) {
1088                 copy_user_highpage(pages[i], page + i,
1089                                    haddr + PAGE_SIZE * i, vma);
1090                 __SetPageUptodate(pages[i]);
1091                 cond_resched();
1092         }
1093
1094         mmun_start = haddr;
1095         mmun_end   = haddr + HPAGE_PMD_SIZE;
1096         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1097
1098         ptl = pmd_lock(mm, pmd);
1099         if (unlikely(!pmd_same(*pmd, orig_pmd)))
1100                 goto out_free_pages;
1101         VM_BUG_ON_PAGE(!PageHead(page), page);
1102
1103         pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1104         /* leave pmd empty until pte is filled */
1105
1106         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1107         pmd_populate(mm, &_pmd, pgtable);
1108
1109         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1110                 pte_t *pte, entry;
1111                 entry = mk_pte(pages[i], vma->vm_page_prot);
1112                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1113                 memcg = (void *)page_private(pages[i]);
1114                 set_page_private(pages[i], 0);
1115                 page_add_new_anon_rmap(pages[i], vma, haddr);
1116                 mem_cgroup_commit_charge(pages[i], memcg, false);
1117                 lru_cache_add_active_or_unevictable(pages[i], vma);
1118                 pte = pte_offset_map(&_pmd, haddr);
1119                 VM_BUG_ON(!pte_none(*pte));
1120                 set_pte_at(mm, haddr, pte, entry);
1121                 pte_unmap(pte);
1122         }
1123         kfree(pages);
1124
1125         smp_wmb(); /* make pte visible before pmd */
1126         pmd_populate(mm, pmd, pgtable);
1127         page_remove_rmap(page);
1128         spin_unlock(ptl);
1129
1130         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1131
1132         ret |= VM_FAULT_WRITE;
1133         put_page(page);
1134
1135 out:
1136         return ret;
1137
1138 out_free_pages:
1139         spin_unlock(ptl);
1140         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1141         for (i = 0; i < HPAGE_PMD_NR; i++) {
1142                 memcg = (void *)page_private(pages[i]);
1143                 set_page_private(pages[i], 0);
1144                 mem_cgroup_cancel_charge(pages[i], memcg);
1145                 put_page(pages[i]);
1146         }
1147         kfree(pages);
1148         goto out;
1149 }
1150
1151 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1152                         unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1153 {
1154         spinlock_t *ptl;
1155         int ret = 0;
1156         struct page *page = NULL, *new_page;
1157         struct mem_cgroup *memcg;
1158         unsigned long haddr;
1159         unsigned long mmun_start;       /* For mmu_notifiers */
1160         unsigned long mmun_end;         /* For mmu_notifiers */
1161         gfp_t huge_gfp;                 /* for allocation and charge */
1162
1163         ptl = pmd_lockptr(mm, pmd);
1164         VM_BUG_ON_VMA(!vma->anon_vma, vma);
1165         haddr = address & HPAGE_PMD_MASK;
1166         if (is_huge_zero_pmd(orig_pmd))
1167                 goto alloc;
1168         spin_lock(ptl);
1169         if (unlikely(!pmd_same(*pmd, orig_pmd)))
1170                 goto out_unlock;
1171
1172         page = pmd_page(orig_pmd);
1173         VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1174         if (page_mapcount(page) == 1) {
1175                 pmd_t entry;
1176                 entry = pmd_mkyoung(orig_pmd);
1177                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1178                 if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1179                         update_mmu_cache_pmd(vma, address, pmd);
1180                 ret |= VM_FAULT_WRITE;
1181                 goto out_unlock;
1182         }
1183         get_user_huge_page(page);
1184         spin_unlock(ptl);
1185 alloc:
1186         if (transparent_hugepage_enabled(vma) &&
1187             !transparent_hugepage_debug_cow()) {
1188                 huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
1189                 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1190         } else
1191                 new_page = NULL;
1192
1193         if (unlikely(!new_page)) {
1194                 if (!page) {
1195                         split_huge_page_pmd(vma, address, pmd);
1196                         ret |= VM_FAULT_FALLBACK;
1197                 } else {
1198                         ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1199                                         pmd, orig_pmd, page, haddr);
1200                         if (ret & VM_FAULT_OOM) {
1201                                 split_huge_page(page);
1202                                 ret |= VM_FAULT_FALLBACK;
1203                         }
1204                         put_user_huge_page(page);
1205                 }
1206                 count_vm_event(THP_FAULT_FALLBACK);
1207                 goto out;
1208         }
1209
1210         if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg))) {
1211                 put_page(new_page);
1212                 if (page) {
1213                         split_huge_page(page);
1214                         put_user_huge_page(page);
1215                 } else
1216                         split_huge_page_pmd(vma, address, pmd);
1217                 ret |= VM_FAULT_FALLBACK;
1218                 count_vm_event(THP_FAULT_FALLBACK);
1219                 goto out;
1220         }
1221
1222         count_vm_event(THP_FAULT_ALLOC);
1223
1224         if (!page)
1225                 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1226         else
1227                 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1228         __SetPageUptodate(new_page);
1229
1230         mmun_start = haddr;
1231         mmun_end   = haddr + HPAGE_PMD_SIZE;
1232         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1233
1234         spin_lock(ptl);
1235         if (page)
1236                 put_user_huge_page(page);
1237         if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1238                 spin_unlock(ptl);
1239                 mem_cgroup_cancel_charge(new_page, memcg);
1240                 put_page(new_page);
1241                 goto out_mn;
1242         } else {
1243                 pmd_t entry;
1244                 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1245                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1246                 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1247                 page_add_new_anon_rmap(new_page, vma, haddr);
1248                 mem_cgroup_commit_charge(new_page, memcg, false);
1249                 lru_cache_add_active_or_unevictable(new_page, vma);
1250                 set_pmd_at(mm, haddr, pmd, entry);
1251                 update_mmu_cache_pmd(vma, address, pmd);
1252                 if (!page) {
1253                         add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1254                         put_huge_zero_page();
1255                 } else {
1256                         VM_BUG_ON_PAGE(!PageHead(page), page);
1257                         page_remove_rmap(page);
1258                         put_page(page);
1259                 }
1260                 ret |= VM_FAULT_WRITE;
1261         }
1262         spin_unlock(ptl);
1263 out_mn:
1264         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1265 out:
1266         return ret;
1267 out_unlock:
1268         spin_unlock(ptl);
1269         return ret;
1270 }
1271
1272 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1273                                    unsigned long addr,
1274                                    pmd_t *pmd,
1275                                    unsigned int flags)
1276 {
1277         struct mm_struct *mm = vma->vm_mm;
1278         struct page *page = NULL;
1279
1280         assert_spin_locked(pmd_lockptr(mm, pmd));
1281
1282         if (flags & FOLL_WRITE && !pmd_write(*pmd))
1283                 goto out;
1284
1285         /* Avoid dumping huge zero page */
1286         if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1287                 return ERR_PTR(-EFAULT);
1288
1289         /* Full NUMA hinting faults to serialise migration in fault paths */
1290         if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1291                 goto out;
1292
1293         page = pmd_page(*pmd);
1294         VM_BUG_ON_PAGE(!PageHead(page), page);
1295         if (flags & FOLL_TOUCH) {
1296                 pmd_t _pmd;
1297                 /*
1298                  * We should set the dirty bit only for FOLL_WRITE but
1299                  * for now the dirty bit in the pmd is meaningless.
1300                  * And if the dirty bit will become meaningful and
1301                  * we'll only set it with FOLL_WRITE, an atomic
1302                  * set_bit will be required on the pmd to set the
1303                  * young bit, instead of the current set_pmd_at.
1304                  */
1305                 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1306                 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1307                                           pmd, _pmd,  1))
1308                         update_mmu_cache_pmd(vma, addr, pmd);
1309         }
1310         if ((flags & FOLL_POPULATE) && (vma->vm_flags & VM_LOCKED)) {
1311                 if (page->mapping && trylock_page(page)) {
1312                         lru_add_drain();
1313                         if (page->mapping)
1314                                 mlock_vma_page(page);
1315                         unlock_page(page);
1316                 }
1317         }
1318         page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1319         VM_BUG_ON_PAGE(!PageCompound(page), page);
1320         if (flags & FOLL_GET)
1321                 get_page_foll(page);
1322
1323 out:
1324         return page;
1325 }
1326
1327 /* NUMA hinting page fault entry point for trans huge pmds */
1328 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1329                                 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1330 {
1331         spinlock_t *ptl;
1332         struct anon_vma *anon_vma = NULL;
1333         struct page *page;
1334         unsigned long haddr = addr & HPAGE_PMD_MASK;
1335         int page_nid = -1, this_nid = numa_node_id();
1336         int target_nid, last_cpupid = -1;
1337         bool page_locked;
1338         bool migrated = false;
1339         bool was_writable;
1340         int flags = 0;
1341
1342         /* A PROT_NONE fault should not end up here */
1343         BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1344
1345         ptl = pmd_lock(mm, pmdp);
1346         if (unlikely(!pmd_same(pmd, *pmdp)))
1347                 goto out_unlock;
1348
1349         /*
1350          * If there are potential migrations, wait for completion and retry
1351          * without disrupting NUMA hinting information. Do not relock and
1352          * check_same as the page may no longer be mapped.
1353          */
1354         if (unlikely(pmd_trans_migrating(*pmdp))) {
1355                 page = pmd_page(*pmdp);
1356                 spin_unlock(ptl);
1357                 wait_on_page_locked(page);
1358                 goto out;
1359         }
1360
1361         page = pmd_page(pmd);
1362         BUG_ON(is_huge_zero_page(page));
1363         page_nid = page_to_nid(page);
1364         last_cpupid = page_cpupid_last(page);
1365         count_vm_numa_event(NUMA_HINT_FAULTS);
1366         if (page_nid == this_nid) {
1367                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1368                 flags |= TNF_FAULT_LOCAL;
1369         }
1370
1371         /* See similar comment in do_numa_page for explanation */
1372         if (!(vma->vm_flags & VM_WRITE))
1373                 flags |= TNF_NO_GROUP;
1374
1375         /*
1376          * Acquire the page lock to serialise THP migrations but avoid dropping
1377          * page_table_lock if at all possible
1378          */
1379         page_locked = trylock_page(page);
1380         target_nid = mpol_misplaced(page, vma, haddr);
1381         if (target_nid == -1) {
1382                 /* If the page was locked, there are no parallel migrations */
1383                 if (page_locked)
1384                         goto clear_pmdnuma;
1385         }
1386
1387         /* Migration could have started since the pmd_trans_migrating check */
1388         if (!page_locked) {
1389                 spin_unlock(ptl);
1390                 wait_on_page_locked(page);
1391                 page_nid = -1;
1392                 goto out;
1393         }
1394
1395         /*
1396          * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1397          * to serialises splits
1398          */
1399         get_page(page);
1400         spin_unlock(ptl);
1401         anon_vma = page_lock_anon_vma_read(page);
1402
1403         /* Confirm the PMD did not change while page_table_lock was released */
1404         spin_lock(ptl);
1405         if (unlikely(!pmd_same(pmd, *pmdp))) {
1406                 unlock_page(page);
1407                 put_page(page);
1408                 page_nid = -1;
1409                 goto out_unlock;
1410         }
1411
1412         /* Bail if we fail to protect against THP splits for any reason */
1413         if (unlikely(!anon_vma)) {
1414                 put_page(page);
1415                 page_nid = -1;
1416                 goto clear_pmdnuma;
1417         }
1418
1419         /*
1420          * Migrate the THP to the requested node, returns with page unlocked
1421          * and access rights restored.
1422          */
1423         spin_unlock(ptl);
1424         migrated = migrate_misplaced_transhuge_page(mm, vma,
1425                                 pmdp, pmd, addr, page, target_nid);
1426         if (migrated) {
1427                 flags |= TNF_MIGRATED;
1428                 page_nid = target_nid;
1429         } else
1430                 flags |= TNF_MIGRATE_FAIL;
1431
1432         goto out;
1433 clear_pmdnuma:
1434         BUG_ON(!PageLocked(page));
1435         was_writable = pmd_write(pmd);
1436         pmd = pmd_modify(pmd, vma->vm_page_prot);
1437         pmd = pmd_mkyoung(pmd);
1438         if (was_writable)
1439                 pmd = pmd_mkwrite(pmd);
1440         set_pmd_at(mm, haddr, pmdp, pmd);
1441         update_mmu_cache_pmd(vma, addr, pmdp);
1442         unlock_page(page);
1443 out_unlock:
1444         spin_unlock(ptl);
1445
1446 out:
1447         if (anon_vma)
1448                 page_unlock_anon_vma_read(anon_vma);
1449
1450         if (page_nid != -1)
1451                 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1452
1453         return 0;
1454 }
1455
1456 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1457                  pmd_t *pmd, unsigned long addr)
1458 {
1459         pmd_t orig_pmd;
1460         spinlock_t *ptl;
1461
1462         if (__pmd_trans_huge_lock(pmd, vma, &ptl) != 1)
1463                 return 0;
1464         /*
1465          * For architectures like ppc64 we look at deposited pgtable
1466          * when calling pmdp_huge_get_and_clear. So do the
1467          * pgtable_trans_huge_withdraw after finishing pmdp related
1468          * operations.
1469          */
1470         orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1471                         tlb->fullmm);
1472         tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1473         if (vma_is_dax(vma)) {
1474                 spin_unlock(ptl);
1475                 if (is_huge_zero_pmd(orig_pmd))
1476                         put_huge_zero_page();
1477         } else if (is_huge_zero_pmd(orig_pmd)) {
1478                 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1479                 atomic_long_dec(&tlb->mm->nr_ptes);
1480                 spin_unlock(ptl);
1481                 put_huge_zero_page();
1482         } else {
1483                 struct page *page = pmd_page(orig_pmd);
1484                 page_remove_rmap(page);
1485                 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1486                 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1487                 VM_BUG_ON_PAGE(!PageHead(page), page);
1488                 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1489                 atomic_long_dec(&tlb->mm->nr_ptes);
1490                 spin_unlock(ptl);
1491                 tlb_remove_page(tlb, page);
1492         }
1493         return 1;
1494 }
1495
1496 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1497                   unsigned long old_addr,
1498                   unsigned long new_addr, unsigned long old_end,
1499                   pmd_t *old_pmd, pmd_t *new_pmd)
1500 {
1501         spinlock_t *old_ptl, *new_ptl;
1502         int ret = 0;
1503         pmd_t pmd;
1504
1505         struct mm_struct *mm = vma->vm_mm;
1506
1507         if ((old_addr & ~HPAGE_PMD_MASK) ||
1508             (new_addr & ~HPAGE_PMD_MASK) ||
1509             old_end - old_addr < HPAGE_PMD_SIZE ||
1510             (new_vma->vm_flags & VM_NOHUGEPAGE))
1511                 goto out;
1512
1513         /*
1514          * The destination pmd shouldn't be established, free_pgtables()
1515          * should have release it.
1516          */
1517         if (WARN_ON(!pmd_none(*new_pmd))) {
1518                 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1519                 goto out;
1520         }
1521
1522         /*
1523          * We don't have to worry about the ordering of src and dst
1524          * ptlocks because exclusive mmap_sem prevents deadlock.
1525          */
1526         ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1527         if (ret == 1) {
1528                 new_ptl = pmd_lockptr(mm, new_pmd);
1529                 if (new_ptl != old_ptl)
1530                         spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1531                 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1532                 VM_BUG_ON(!pmd_none(*new_pmd));
1533
1534                 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1535                         pgtable_t pgtable;
1536                         pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1537                         pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1538                 }
1539                 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1540                 if (new_ptl != old_ptl)
1541                         spin_unlock(new_ptl);
1542                 spin_unlock(old_ptl);
1543         }
1544 out:
1545         return ret;
1546 }
1547
1548 /*
1549  * Returns
1550  *  - 0 if PMD could not be locked
1551  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1552  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1553  */
1554 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1555                 unsigned long addr, pgprot_t newprot, int prot_numa)
1556 {
1557         struct mm_struct *mm = vma->vm_mm;
1558         spinlock_t *ptl;
1559         int ret = 0;
1560
1561         if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1562                 pmd_t entry;
1563                 bool preserve_write = prot_numa && pmd_write(*pmd);
1564                 ret = 1;
1565
1566                 /*
1567                  * Avoid trapping faults against the zero page. The read-only
1568                  * data is likely to be read-cached on the local CPU and
1569                  * local/remote hits to the zero page are not interesting.
1570                  */
1571                 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1572                         spin_unlock(ptl);
1573                         return ret;
1574                 }
1575
1576                 if (!prot_numa || !pmd_protnone(*pmd)) {
1577                         entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1578                         entry = pmd_modify(entry, newprot);
1579                         if (preserve_write)
1580                                 entry = pmd_mkwrite(entry);
1581                         ret = HPAGE_PMD_NR;
1582                         set_pmd_at(mm, addr, pmd, entry);
1583                         BUG_ON(!preserve_write && pmd_write(entry));
1584                 }
1585                 spin_unlock(ptl);
1586         }
1587
1588         return ret;
1589 }
1590
1591 /*
1592  * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1593  * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1594  *
1595  * Note that if it returns 1, this routine returns without unlocking page
1596  * table locks. So callers must unlock them.
1597  */
1598 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1599                 spinlock_t **ptl)
1600 {
1601         *ptl = pmd_lock(vma->vm_mm, pmd);
1602         if (likely(pmd_trans_huge(*pmd))) {
1603                 if (unlikely(pmd_trans_splitting(*pmd))) {
1604                         spin_unlock(*ptl);
1605                         wait_split_huge_page(vma->anon_vma, pmd);
1606                         return -1;
1607                 } else {
1608                         /* Thp mapped by 'pmd' is stable, so we can
1609                          * handle it as it is. */
1610                         return 1;
1611                 }
1612         }
1613         spin_unlock(*ptl);
1614         return 0;
1615 }
1616
1617 /*
1618  * This function returns whether a given @page is mapped onto the @address
1619  * in the virtual space of @mm.
1620  *
1621  * When it's true, this function returns *pmd with holding the page table lock
1622  * and passing it back to the caller via @ptl.
1623  * If it's false, returns NULL without holding the page table lock.
1624  */
1625 pmd_t *page_check_address_pmd(struct page *page,
1626                               struct mm_struct *mm,
1627                               unsigned long address,
1628                               enum page_check_address_pmd_flag flag,
1629                               spinlock_t **ptl)
1630 {
1631         pgd_t *pgd;
1632         pud_t *pud;
1633         pmd_t *pmd;
1634
1635         if (address & ~HPAGE_PMD_MASK)
1636                 return NULL;
1637
1638         pgd = pgd_offset(mm, address);
1639         if (!pgd_present(*pgd))
1640                 return NULL;
1641         pud = pud_offset(pgd, address);
1642         if (!pud_present(*pud))
1643                 return NULL;
1644         pmd = pmd_offset(pud, address);
1645
1646         *ptl = pmd_lock(mm, pmd);
1647         if (!pmd_present(*pmd))
1648                 goto unlock;
1649         if (pmd_page(*pmd) != page)
1650                 goto unlock;
1651         /*
1652          * split_vma() may create temporary aliased mappings. There is
1653          * no risk as long as all huge pmd are found and have their
1654          * splitting bit set before __split_huge_page_refcount
1655          * runs. Finding the same huge pmd more than once during the
1656          * same rmap walk is not a problem.
1657          */
1658         if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1659             pmd_trans_splitting(*pmd))
1660                 goto unlock;
1661         if (pmd_trans_huge(*pmd)) {
1662                 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1663                           !pmd_trans_splitting(*pmd));
1664                 return pmd;
1665         }
1666 unlock:
1667         spin_unlock(*ptl);
1668         return NULL;
1669 }
1670
1671 static int __split_huge_page_splitting(struct page *page,
1672                                        struct vm_area_struct *vma,
1673                                        unsigned long address)
1674 {
1675         struct mm_struct *mm = vma->vm_mm;
1676         spinlock_t *ptl;
1677         pmd_t *pmd;
1678         int ret = 0;
1679         /* For mmu_notifiers */
1680         const unsigned long mmun_start = address;
1681         const unsigned long mmun_end   = address + HPAGE_PMD_SIZE;
1682
1683         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1684         pmd = page_check_address_pmd(page, mm, address,
1685                         PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1686         if (pmd) {
1687                 /*
1688                  * We can't temporarily set the pmd to null in order
1689                  * to split it, the pmd must remain marked huge at all
1690                  * times or the VM won't take the pmd_trans_huge paths
1691                  * and it won't wait on the anon_vma->root->rwsem to
1692                  * serialize against split_huge_page*.
1693                  */
1694                 pmdp_splitting_flush(vma, address, pmd);
1695
1696                 ret = 1;
1697                 spin_unlock(ptl);
1698         }
1699         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1700
1701         return ret;
1702 }
1703
1704 static void __split_huge_page_refcount(struct page *page,
1705                                        struct list_head *list)
1706 {
1707         int i;
1708         struct zone *zone = page_zone(page);
1709         struct lruvec *lruvec;
1710         int tail_count = 0;
1711
1712         /* prevent PageLRU to go away from under us, and freeze lru stats */
1713         spin_lock_irq(&zone->lru_lock);
1714         lruvec = mem_cgroup_page_lruvec(page, zone);
1715
1716         compound_lock(page);
1717         /* complete memcg works before add pages to LRU */
1718         mem_cgroup_split_huge_fixup(page);
1719
1720         for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1721                 struct page *page_tail = page + i;
1722
1723                 /* tail_page->_mapcount cannot change */
1724                 BUG_ON(page_mapcount(page_tail) < 0);
1725                 tail_count += page_mapcount(page_tail);
1726                 /* check for overflow */
1727                 BUG_ON(tail_count < 0);
1728                 BUG_ON(atomic_read(&page_tail->_count) != 0);
1729                 /*
1730                  * tail_page->_count is zero and not changing from
1731                  * under us. But get_page_unless_zero() may be running
1732                  * from under us on the tail_page. If we used
1733                  * atomic_set() below instead of atomic_add(), we
1734                  * would then run atomic_set() concurrently with
1735                  * get_page_unless_zero(), and atomic_set() is
1736                  * implemented in C not using locked ops. spin_unlock
1737                  * on x86 sometime uses locked ops because of PPro
1738                  * errata 66, 92, so unless somebody can guarantee
1739                  * atomic_set() here would be safe on all archs (and
1740                  * not only on x86), it's safer to use atomic_add().
1741                  */
1742                 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1743                            &page_tail->_count);
1744
1745                 /* after clearing PageTail the gup refcount can be released */
1746                 smp_mb__after_atomic();
1747
1748                 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1749                 page_tail->flags |= (page->flags &
1750                                      ((1L << PG_referenced) |
1751                                       (1L << PG_swapbacked) |
1752                                       (1L << PG_mlocked) |
1753                                       (1L << PG_uptodate) |
1754                                       (1L << PG_active) |
1755                                       (1L << PG_unevictable)));
1756                 page_tail->flags |= (1L << PG_dirty);
1757
1758                 /* clear PageTail before overwriting first_page */
1759                 smp_wmb();
1760
1761                 if (page_is_young(page))
1762                         set_page_young(page_tail);
1763                 if (page_is_idle(page))
1764                         set_page_idle(page_tail);
1765
1766                 /*
1767                  * __split_huge_page_splitting() already set the
1768                  * splitting bit in all pmd that could map this
1769                  * hugepage, that will ensure no CPU can alter the
1770                  * mapcount on the head page. The mapcount is only
1771                  * accounted in the head page and it has to be
1772                  * transferred to all tail pages in the below code. So
1773                  * for this code to be safe, the split the mapcount
1774                  * can't change. But that doesn't mean userland can't
1775                  * keep changing and reading the page contents while
1776                  * we transfer the mapcount, so the pmd splitting
1777                  * status is achieved setting a reserved bit in the
1778                  * pmd, not by clearing the present bit.
1779                 */
1780                 page_tail->_mapcount = page->_mapcount;
1781
1782                 BUG_ON(page_tail->mapping);
1783                 page_tail->mapping = page->mapping;
1784
1785                 page_tail->index = page->index + i;
1786                 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1787
1788                 BUG_ON(!PageAnon(page_tail));
1789                 BUG_ON(!PageUptodate(page_tail));
1790                 BUG_ON(!PageDirty(page_tail));
1791                 BUG_ON(!PageSwapBacked(page_tail));
1792
1793                 lru_add_page_tail(page, page_tail, lruvec, list);
1794         }
1795         atomic_sub(tail_count, &page->_count);
1796         BUG_ON(atomic_read(&page->_count) <= 0);
1797
1798         __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1799
1800         ClearPageCompound(page);
1801         compound_unlock(page);
1802         spin_unlock_irq(&zone->lru_lock);
1803
1804         for (i = 1; i < HPAGE_PMD_NR; i++) {
1805                 struct page *page_tail = page + i;
1806                 BUG_ON(page_count(page_tail) <= 0);
1807                 /*
1808                  * Tail pages may be freed if there wasn't any mapping
1809                  * like if add_to_swap() is running on a lru page that
1810                  * had its mapping zapped. And freeing these pages
1811                  * requires taking the lru_lock so we do the put_page
1812                  * of the tail pages after the split is complete.
1813                  */
1814                 put_page(page_tail);
1815         }
1816
1817         /*
1818          * Only the head page (now become a regular page) is required
1819          * to be pinned by the caller.
1820          */
1821         BUG_ON(page_count(page) <= 0);
1822 }
1823
1824 static int __split_huge_page_map(struct page *page,
1825                                  struct vm_area_struct *vma,
1826                                  unsigned long address)
1827 {
1828         struct mm_struct *mm = vma->vm_mm;
1829         spinlock_t *ptl;
1830         pmd_t *pmd, _pmd;
1831         int ret = 0, i;
1832         pgtable_t pgtable;
1833         unsigned long haddr;
1834
1835         pmd = page_check_address_pmd(page, mm, address,
1836                         PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1837         if (pmd) {
1838                 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1839                 pmd_populate(mm, &_pmd, pgtable);
1840                 if (pmd_write(*pmd))
1841                         BUG_ON(page_mapcount(page) != 1);
1842
1843                 haddr = address;
1844                 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1845                         pte_t *pte, entry;
1846                         BUG_ON(PageCompound(page+i));
1847                         /*
1848                          * Note that NUMA hinting access restrictions are not
1849                          * transferred to avoid any possibility of altering
1850                          * permissions across VMAs.
1851                          */
1852                         entry = mk_pte(page + i, vma->vm_page_prot);
1853                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1854                         if (!pmd_write(*pmd))
1855                                 entry = pte_wrprotect(entry);
1856                         if (!pmd_young(*pmd))
1857                                 entry = pte_mkold(entry);
1858                         pte = pte_offset_map(&_pmd, haddr);
1859                         BUG_ON(!pte_none(*pte));
1860                         set_pte_at(mm, haddr, pte, entry);
1861                         pte_unmap(pte);
1862                 }
1863
1864                 smp_wmb(); /* make pte visible before pmd */
1865                 /*
1866                  * Up to this point the pmd is present and huge and
1867                  * userland has the whole access to the hugepage
1868                  * during the split (which happens in place). If we
1869                  * overwrite the pmd with the not-huge version
1870                  * pointing to the pte here (which of course we could
1871                  * if all CPUs were bug free), userland could trigger
1872                  * a small page size TLB miss on the small sized TLB
1873                  * while the hugepage TLB entry is still established
1874                  * in the huge TLB. Some CPU doesn't like that. See
1875                  * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1876                  * Erratum 383 on page 93. Intel should be safe but is
1877                  * also warns that it's only safe if the permission
1878                  * and cache attributes of the two entries loaded in
1879                  * the two TLB is identical (which should be the case
1880                  * here). But it is generally safer to never allow
1881                  * small and huge TLB entries for the same virtual
1882                  * address to be loaded simultaneously. So instead of
1883                  * doing "pmd_populate(); flush_pmd_tlb_range();" we first
1884                  * mark the current pmd notpresent (atomically because
1885                  * here the pmd_trans_huge and pmd_trans_splitting
1886                  * must remain set at all times on the pmd until the
1887                  * split is complete for this pmd), then we flush the
1888                  * SMP TLB and finally we write the non-huge version
1889                  * of the pmd entry with pmd_populate.
1890                  */
1891                 pmdp_invalidate(vma, address, pmd);
1892                 pmd_populate(mm, pmd, pgtable);
1893                 ret = 1;
1894                 spin_unlock(ptl);
1895         }
1896
1897         return ret;
1898 }
1899
1900 /* must be called with anon_vma->root->rwsem held */
1901 static void __split_huge_page(struct page *page,
1902                               struct anon_vma *anon_vma,
1903                               struct list_head *list)
1904 {
1905         int mapcount, mapcount2;
1906         pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1907         struct anon_vma_chain *avc;
1908
1909         BUG_ON(!PageHead(page));
1910         BUG_ON(PageTail(page));
1911
1912         mapcount = 0;
1913         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1914                 struct vm_area_struct *vma = avc->vma;
1915                 unsigned long addr = vma_address(page, vma);
1916                 BUG_ON(is_vma_temporary_stack(vma));
1917                 mapcount += __split_huge_page_splitting(page, vma, addr);
1918         }
1919         /*
1920          * It is critical that new vmas are added to the tail of the
1921          * anon_vma list. This guarantes that if copy_huge_pmd() runs
1922          * and establishes a child pmd before
1923          * __split_huge_page_splitting() freezes the parent pmd (so if
1924          * we fail to prevent copy_huge_pmd() from running until the
1925          * whole __split_huge_page() is complete), we will still see
1926          * the newly established pmd of the child later during the
1927          * walk, to be able to set it as pmd_trans_splitting too.
1928          */
1929         if (mapcount != page_mapcount(page)) {
1930                 pr_err("mapcount %d page_mapcount %d\n",
1931                         mapcount, page_mapcount(page));
1932                 BUG();
1933         }
1934
1935         __split_huge_page_refcount(page, list);
1936
1937         mapcount2 = 0;
1938         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1939                 struct vm_area_struct *vma = avc->vma;
1940                 unsigned long addr = vma_address(page, vma);
1941                 BUG_ON(is_vma_temporary_stack(vma));
1942                 mapcount2 += __split_huge_page_map(page, vma, addr);
1943         }
1944         if (mapcount != mapcount2) {
1945                 pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
1946                         mapcount, mapcount2, page_mapcount(page));
1947                 BUG();
1948         }
1949 }
1950
1951 /*
1952  * Split a hugepage into normal pages. This doesn't change the position of head
1953  * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1954  * @list. Both head page and tail pages will inherit mapping, flags, and so on
1955  * from the hugepage.
1956  * Return 0 if the hugepage is split successfully otherwise return 1.
1957  */
1958 int split_huge_page_to_list(struct page *page, struct list_head *list)
1959 {
1960         struct anon_vma *anon_vma;
1961         int ret = 1;
1962
1963         BUG_ON(is_huge_zero_page(page));
1964         BUG_ON(!PageAnon(page));
1965
1966         /*
1967          * The caller does not necessarily hold an mmap_sem that would prevent
1968          * the anon_vma disappearing so we first we take a reference to it
1969          * and then lock the anon_vma for write. This is similar to
1970          * page_lock_anon_vma_read except the write lock is taken to serialise
1971          * against parallel split or collapse operations.
1972          */
1973         anon_vma = page_get_anon_vma(page);
1974         if (!anon_vma)
1975                 goto out;
1976         anon_vma_lock_write(anon_vma);
1977
1978         ret = 0;
1979         if (!PageCompound(page))
1980                 goto out_unlock;
1981
1982         BUG_ON(!PageSwapBacked(page));
1983         __split_huge_page(page, anon_vma, list);
1984         count_vm_event(THP_SPLIT);
1985
1986         BUG_ON(PageCompound(page));
1987 out_unlock:
1988         anon_vma_unlock_write(anon_vma);
1989         put_anon_vma(anon_vma);
1990 out:
1991         return ret;
1992 }
1993
1994 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1995
1996 int hugepage_madvise(struct vm_area_struct *vma,
1997                      unsigned long *vm_flags, int advice)
1998 {
1999         switch (advice) {
2000         case MADV_HUGEPAGE:
2001 #ifdef CONFIG_S390
2002                 /*
2003                  * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
2004                  * can't handle this properly after s390_enable_sie, so we simply
2005                  * ignore the madvise to prevent qemu from causing a SIGSEGV.
2006                  */
2007                 if (mm_has_pgste(vma->vm_mm))
2008                         return 0;
2009 #endif
2010                 /*
2011                  * Be somewhat over-protective like KSM for now!
2012                  */
2013                 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
2014                         return -EINVAL;
2015                 *vm_flags &= ~VM_NOHUGEPAGE;
2016                 *vm_flags |= VM_HUGEPAGE;
2017                 /*
2018                  * If the vma become good for khugepaged to scan,
2019                  * register it here without waiting a page fault that
2020                  * may not happen any time soon.
2021                  */
2022                 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
2023                         return -ENOMEM;
2024                 break;
2025         case MADV_NOHUGEPAGE:
2026                 /*
2027                  * Be somewhat over-protective like KSM for now!
2028                  */
2029                 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
2030                         return -EINVAL;
2031                 *vm_flags &= ~VM_HUGEPAGE;
2032                 *vm_flags |= VM_NOHUGEPAGE;
2033                 /*
2034                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
2035                  * this vma even if we leave the mm registered in khugepaged if
2036                  * it got registered before VM_NOHUGEPAGE was set.
2037                  */
2038                 break;
2039         }
2040
2041         return 0;
2042 }
2043
2044 static int __init khugepaged_slab_init(void)
2045 {
2046         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
2047                                           sizeof(struct mm_slot),
2048                                           __alignof__(struct mm_slot), 0, NULL);
2049         if (!mm_slot_cache)
2050                 return -ENOMEM;
2051
2052         return 0;
2053 }
2054
2055 static void __init khugepaged_slab_exit(void)
2056 {
2057         kmem_cache_destroy(mm_slot_cache);
2058 }
2059
2060 static inline struct mm_slot *alloc_mm_slot(void)
2061 {
2062         if (!mm_slot_cache)     /* initialization failed */
2063                 return NULL;
2064         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
2065 }
2066
2067 static inline void free_mm_slot(struct mm_slot *mm_slot)
2068 {
2069         kmem_cache_free(mm_slot_cache, mm_slot);
2070 }
2071
2072 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
2073 {
2074         struct mm_slot *mm_slot;
2075
2076         hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
2077                 if (mm == mm_slot->mm)
2078                         return mm_slot;
2079
2080         return NULL;
2081 }
2082
2083 static void insert_to_mm_slots_hash(struct mm_struct *mm,
2084                                     struct mm_slot *mm_slot)
2085 {
2086         mm_slot->mm = mm;
2087         hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
2088 }
2089
2090 static inline int khugepaged_test_exit(struct mm_struct *mm)
2091 {
2092         return atomic_read(&mm->mm_users) == 0;
2093 }
2094
2095 int __khugepaged_enter(struct mm_struct *mm)
2096 {
2097         struct mm_slot *mm_slot;
2098         int wakeup;
2099
2100         mm_slot = alloc_mm_slot();
2101         if (!mm_slot)
2102                 return -ENOMEM;
2103
2104         /* __khugepaged_exit() must not run from under us */
2105         VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
2106         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2107                 free_mm_slot(mm_slot);
2108                 return 0;
2109         }
2110
2111         spin_lock(&khugepaged_mm_lock);
2112         insert_to_mm_slots_hash(mm, mm_slot);
2113         /*
2114          * Insert just behind the scanning cursor, to let the area settle
2115          * down a little.
2116          */
2117         wakeup = list_empty(&khugepaged_scan.mm_head);
2118         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2119         spin_unlock(&khugepaged_mm_lock);
2120
2121         atomic_inc(&mm->mm_count);
2122         if (wakeup)
2123                 wake_up_interruptible(&khugepaged_wait);
2124
2125         return 0;
2126 }
2127
2128 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
2129                                unsigned long vm_flags)
2130 {
2131         unsigned long hstart, hend;
2132         if (!vma->anon_vma)
2133                 /*
2134                  * Not yet faulted in so we will register later in the
2135                  * page fault if needed.
2136                  */
2137                 return 0;
2138         if (vma->vm_ops)
2139                 /* khugepaged not yet working on file or special mappings */
2140                 return 0;
2141         VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
2142         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2143         hend = vma->vm_end & HPAGE_PMD_MASK;
2144         if (hstart < hend)
2145                 return khugepaged_enter(vma, vm_flags);
2146         return 0;
2147 }
2148
2149 void __khugepaged_exit(struct mm_struct *mm)
2150 {
2151         struct mm_slot *mm_slot;
2152         int free = 0;
2153
2154         spin_lock(&khugepaged_mm_lock);
2155         mm_slot = get_mm_slot(mm);
2156         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2157                 hash_del(&mm_slot->hash);
2158                 list_del(&mm_slot->mm_node);
2159                 free = 1;
2160         }
2161         spin_unlock(&khugepaged_mm_lock);
2162
2163         if (free) {
2164                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2165                 free_mm_slot(mm_slot);
2166                 mmdrop(mm);
2167         } else if (mm_slot) {
2168                 /*
2169                  * This is required to serialize against
2170                  * khugepaged_test_exit() (which is guaranteed to run
2171                  * under mmap sem read mode). Stop here (after we
2172                  * return all pagetables will be destroyed) until
2173                  * khugepaged has finished working on the pagetables
2174                  * under the mmap_sem.
2175                  */
2176                 down_write(&mm->mmap_sem);
2177                 up_write(&mm->mmap_sem);
2178         }
2179 }
2180
2181 static void release_pte_page(struct page *page)
2182 {
2183         /* 0 stands for page_is_file_cache(page) == false */
2184         dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2185         unlock_page(page);
2186         putback_lru_page(page);
2187 }
2188
2189 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2190 {
2191         while (--_pte >= pte) {
2192                 pte_t pteval = *_pte;
2193                 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
2194                         release_pte_page(pte_page(pteval));
2195         }
2196 }
2197
2198 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2199                                         unsigned long address,
2200                                         pte_t *pte)
2201 {
2202         struct page *page;
2203         pte_t *_pte;
2204         int none_or_zero = 0;
2205         bool referenced = false, writable = false;
2206         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2207              _pte++, address += PAGE_SIZE) {
2208                 pte_t pteval = *_pte;
2209                 if (pte_none(pteval) || (pte_present(pteval) &&
2210                                 is_zero_pfn(pte_pfn(pteval)))) {
2211                         if (!userfaultfd_armed(vma) &&
2212                             ++none_or_zero <= khugepaged_max_ptes_none)
2213                                 continue;
2214                         else
2215                                 goto out;
2216                 }
2217                 if (!pte_present(pteval))
2218                         goto out;
2219                 page = vm_normal_page(vma, address, pteval);
2220                 if (unlikely(!page))
2221                         goto out;
2222
2223                 VM_BUG_ON_PAGE(PageCompound(page), page);
2224                 VM_BUG_ON_PAGE(!PageAnon(page), page);
2225                 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2226
2227                 /*
2228                  * We can do it before isolate_lru_page because the
2229                  * page can't be freed from under us. NOTE: PG_lock
2230                  * is needed to serialize against split_huge_page
2231                  * when invoked from the VM.
2232                  */
2233                 if (!trylock_page(page))
2234                         goto out;
2235
2236                 /*
2237                  * cannot use mapcount: can't collapse if there's a gup pin.
2238                  * The page must only be referenced by the scanned process
2239                  * and page swap cache.
2240                  */
2241                 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2242                         unlock_page(page);
2243                         goto out;
2244                 }
2245                 if (pte_write(pteval)) {
2246                         writable = true;
2247                 } else {
2248                         if (PageSwapCache(page) && !reuse_swap_page(page)) {
2249                                 unlock_page(page);
2250                                 goto out;
2251                         }
2252                         /*
2253                          * Page is not in the swap cache. It can be collapsed
2254                          * into a THP.
2255                          */
2256                 }
2257
2258                 /*
2259                  * Isolate the page to avoid collapsing an hugepage
2260                  * currently in use by the VM.
2261                  */
2262                 if (isolate_lru_page(page)) {
2263                         unlock_page(page);
2264                         goto out;
2265                 }
2266                 /* 0 stands for page_is_file_cache(page) == false */
2267                 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2268                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2269                 VM_BUG_ON_PAGE(PageLRU(page), page);
2270
2271                 /* If there is no mapped pte young don't collapse the page */
2272                 if (pte_young(pteval) ||
2273                     page_is_young(page) || PageReferenced(page) ||
2274                     mmu_notifier_test_young(vma->vm_mm, address))
2275                         referenced = true;
2276         }
2277         if (likely(referenced && writable))
2278                 return 1;
2279 out:
2280         release_pte_pages(pte, _pte);
2281         return 0;
2282 }
2283
2284 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2285                                       struct vm_area_struct *vma,
2286                                       unsigned long address,
2287                                       spinlock_t *ptl)
2288 {
2289         pte_t *_pte;
2290         for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2291                 pte_t pteval = *_pte;
2292                 struct page *src_page;
2293
2294                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2295                         clear_user_highpage(page, address);
2296                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2297                         if (is_zero_pfn(pte_pfn(pteval))) {
2298                                 /*
2299                                  * ptl mostly unnecessary.
2300                                  */
2301                                 spin_lock(ptl);
2302                                 /*
2303                                  * paravirt calls inside pte_clear here are
2304                                  * superfluous.
2305                                  */
2306                                 pte_clear(vma->vm_mm, address, _pte);
2307                                 spin_unlock(ptl);
2308                         }
2309                 } else {
2310                         src_page = pte_page(pteval);
2311                         copy_user_highpage(page, src_page, address, vma);
2312                         VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2313                         release_pte_page(src_page);
2314                         /*
2315                          * ptl mostly unnecessary, but preempt has to
2316                          * be disabled to update the per-cpu stats
2317                          * inside page_remove_rmap().
2318                          */
2319                         spin_lock(ptl);
2320                         /*
2321                          * paravirt calls inside pte_clear here are
2322                          * superfluous.
2323                          */
2324                         pte_clear(vma->vm_mm, address, _pte);
2325                         page_remove_rmap(src_page);
2326                         spin_unlock(ptl);
2327                         free_page_and_swap_cache(src_page);
2328                 }
2329
2330                 address += PAGE_SIZE;
2331                 page++;
2332         }
2333 }
2334
2335 static void khugepaged_alloc_sleep(void)
2336 {
2337         DEFINE_WAIT(wait);
2338
2339         add_wait_queue(&khugepaged_wait, &wait);
2340         freezable_schedule_timeout_interruptible(
2341                 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2342         remove_wait_queue(&khugepaged_wait, &wait);
2343 }
2344
2345 static int khugepaged_node_load[MAX_NUMNODES];
2346
2347 static bool khugepaged_scan_abort(int nid)
2348 {
2349         int i;
2350
2351         /*
2352          * If zone_reclaim_mode is disabled, then no extra effort is made to
2353          * allocate memory locally.
2354          */
2355         if (!zone_reclaim_mode)
2356                 return false;
2357
2358         /* If there is a count for this node already, it must be acceptable */
2359         if (khugepaged_node_load[nid])
2360                 return false;
2361
2362         for (i = 0; i < MAX_NUMNODES; i++) {
2363                 if (!khugepaged_node_load[i])
2364                         continue;
2365                 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2366                         return true;
2367         }
2368         return false;
2369 }
2370
2371 #ifdef CONFIG_NUMA
2372 static int khugepaged_find_target_node(void)
2373 {
2374         static int last_khugepaged_target_node = NUMA_NO_NODE;
2375         int nid, target_node = 0, max_value = 0;
2376
2377         /* find first node with max normal pages hit */
2378         for (nid = 0; nid < MAX_NUMNODES; nid++)
2379                 if (khugepaged_node_load[nid] > max_value) {
2380                         max_value = khugepaged_node_load[nid];
2381                         target_node = nid;
2382                 }
2383
2384         /* do some balance if several nodes have the same hit record */
2385         if (target_node <= last_khugepaged_target_node)
2386                 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2387                                 nid++)
2388                         if (max_value == khugepaged_node_load[nid]) {
2389                                 target_node = nid;
2390                                 break;
2391                         }
2392
2393         last_khugepaged_target_node = target_node;
2394         return target_node;
2395 }
2396
2397 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2398 {
2399         if (IS_ERR(*hpage)) {
2400                 if (!*wait)
2401                         return false;
2402
2403                 *wait = false;
2404                 *hpage = NULL;
2405                 khugepaged_alloc_sleep();
2406         } else if (*hpage) {
2407                 put_page(*hpage);
2408                 *hpage = NULL;
2409         }
2410
2411         return true;
2412 }
2413
2414 static struct page *
2415 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2416                        struct vm_area_struct *vma, unsigned long address,
2417                        int node)
2418 {
2419         VM_BUG_ON_PAGE(*hpage, *hpage);
2420
2421         /*
2422          * Before allocating the hugepage, release the mmap_sem read lock.
2423          * The allocation can take potentially a long time if it involves
2424          * sync compaction, and we do not need to hold the mmap_sem during
2425          * that. We will recheck the vma after taking it again in write mode.
2426          */
2427         up_read(&mm->mmap_sem);
2428
2429         *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
2430         if (unlikely(!*hpage)) {
2431                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2432                 *hpage = ERR_PTR(-ENOMEM);
2433                 return NULL;
2434         }
2435
2436         count_vm_event(THP_COLLAPSE_ALLOC);
2437         return *hpage;
2438 }
2439 #else
2440 static int khugepaged_find_target_node(void)
2441 {
2442         return 0;
2443 }
2444
2445 static inline struct page *alloc_hugepage(int defrag)
2446 {
2447         return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2448                            HPAGE_PMD_ORDER);
2449 }
2450
2451 static struct page *khugepaged_alloc_hugepage(bool *wait)
2452 {
2453         struct page *hpage;
2454
2455         do {
2456                 hpage = alloc_hugepage(khugepaged_defrag());
2457                 if (!hpage) {
2458                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2459                         if (!*wait)
2460                                 return NULL;
2461
2462                         *wait = false;
2463                         khugepaged_alloc_sleep();
2464                 } else
2465                         count_vm_event(THP_COLLAPSE_ALLOC);
2466         } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2467
2468         return hpage;
2469 }
2470
2471 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2472 {
2473         if (!*hpage)
2474                 *hpage = khugepaged_alloc_hugepage(wait);
2475
2476         if (unlikely(!*hpage))
2477                 return false;
2478
2479         return true;
2480 }
2481
2482 static struct page *
2483 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2484                        struct vm_area_struct *vma, unsigned long address,
2485                        int node)
2486 {
2487         up_read(&mm->mmap_sem);
2488         VM_BUG_ON(!*hpage);
2489
2490         return  *hpage;
2491 }
2492 #endif
2493
2494 static bool hugepage_vma_check(struct vm_area_struct *vma)
2495 {
2496         if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2497             (vma->vm_flags & VM_NOHUGEPAGE))
2498                 return false;
2499
2500         if (!vma->anon_vma || vma->vm_ops)
2501                 return false;
2502         if (is_vma_temporary_stack(vma))
2503                 return false;
2504         VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
2505         return true;
2506 }
2507
2508 static void collapse_huge_page(struct mm_struct *mm,
2509                                    unsigned long address,
2510                                    struct page **hpage,
2511                                    struct vm_area_struct *vma,
2512                                    int node)
2513 {
2514         pmd_t *pmd, _pmd;
2515         pte_t *pte;
2516         pgtable_t pgtable;
2517         struct page *new_page;
2518         spinlock_t *pmd_ptl, *pte_ptl;
2519         int isolated;
2520         unsigned long hstart, hend;
2521         struct mem_cgroup *memcg;
2522         unsigned long mmun_start;       /* For mmu_notifiers */
2523         unsigned long mmun_end;         /* For mmu_notifiers */
2524         gfp_t gfp;
2525
2526         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2527
2528         /* Only allocate from the target node */
2529         gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
2530                 __GFP_THISNODE;
2531
2532         /* release the mmap_sem read lock. */
2533         new_page = khugepaged_alloc_page(hpage, gfp, mm, vma, address, node);
2534         if (!new_page)
2535                 return;
2536
2537         if (unlikely(mem_cgroup_try_charge(new_page, mm,
2538                                            gfp, &memcg)))
2539                 return;
2540
2541         /*
2542          * Prevent all access to pagetables with the exception of
2543          * gup_fast later hanlded by the ptep_clear_flush and the VM
2544          * handled by the anon_vma lock + PG_lock.
2545          */
2546         down_write(&mm->mmap_sem);
2547         if (unlikely(khugepaged_test_exit(mm)))
2548                 goto out;
2549
2550         vma = find_vma(mm, address);
2551         if (!vma)
2552                 goto out;
2553         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2554         hend = vma->vm_end & HPAGE_PMD_MASK;
2555         if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2556                 goto out;
2557         if (!hugepage_vma_check(vma))
2558                 goto out;
2559         pmd = mm_find_pmd(mm, address);
2560         if (!pmd)
2561                 goto out;
2562
2563         anon_vma_lock_write(vma->anon_vma);
2564
2565         pte = pte_offset_map(pmd, address);
2566         pte_ptl = pte_lockptr(mm, pmd);
2567
2568         mmun_start = address;
2569         mmun_end   = address + HPAGE_PMD_SIZE;
2570         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2571         pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2572         /*
2573          * After this gup_fast can't run anymore. This also removes
2574          * any huge TLB entry from the CPU so we won't allow
2575          * huge and small TLB entries for the same virtual address
2576          * to avoid the risk of CPU bugs in that area.
2577          */
2578         _pmd = pmdp_collapse_flush(vma, address, pmd);
2579         spin_unlock(pmd_ptl);
2580         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2581
2582         spin_lock(pte_ptl);
2583         isolated = __collapse_huge_page_isolate(vma, address, pte);
2584         spin_unlock(pte_ptl);
2585
2586         if (unlikely(!isolated)) {
2587                 pte_unmap(pte);
2588                 spin_lock(pmd_ptl);
2589                 BUG_ON(!pmd_none(*pmd));
2590                 /*
2591                  * We can only use set_pmd_at when establishing
2592                  * hugepmds and never for establishing regular pmds that
2593                  * points to regular pagetables. Use pmd_populate for that
2594                  */
2595                 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2596                 spin_unlock(pmd_ptl);
2597                 anon_vma_unlock_write(vma->anon_vma);
2598                 goto out;
2599         }
2600
2601         /*
2602          * All pages are isolated and locked so anon_vma rmap
2603          * can't run anymore.
2604          */
2605         anon_vma_unlock_write(vma->anon_vma);
2606
2607         __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2608         pte_unmap(pte);
2609         __SetPageUptodate(new_page);
2610         pgtable = pmd_pgtable(_pmd);
2611
2612         _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2613         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2614
2615         /*
2616          * spin_lock() below is not the equivalent of smp_wmb(), so
2617          * this is needed to avoid the copy_huge_page writes to become
2618          * visible after the set_pmd_at() write.
2619          */
2620         smp_wmb();
2621
2622         spin_lock(pmd_ptl);
2623         BUG_ON(!pmd_none(*pmd));
2624         page_add_new_anon_rmap(new_page, vma, address);
2625         mem_cgroup_commit_charge(new_page, memcg, false);
2626         lru_cache_add_active_or_unevictable(new_page, vma);
2627         pgtable_trans_huge_deposit(mm, pmd, pgtable);
2628         set_pmd_at(mm, address, pmd, _pmd);
2629         update_mmu_cache_pmd(vma, address, pmd);
2630         spin_unlock(pmd_ptl);
2631
2632         *hpage = NULL;
2633
2634         khugepaged_pages_collapsed++;
2635 out_up_write:
2636         up_write(&mm->mmap_sem);
2637         return;
2638
2639 out:
2640         mem_cgroup_cancel_charge(new_page, memcg);
2641         goto out_up_write;
2642 }
2643
2644 static int khugepaged_scan_pmd(struct mm_struct *mm,
2645                                struct vm_area_struct *vma,
2646                                unsigned long address,
2647                                struct page **hpage)
2648 {
2649         pmd_t *pmd;
2650         pte_t *pte, *_pte;
2651         int ret = 0, none_or_zero = 0;
2652         struct page *page;
2653         unsigned long _address;
2654         spinlock_t *ptl;
2655         int node = NUMA_NO_NODE;
2656         bool writable = false, referenced = false;
2657
2658         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2659
2660         pmd = mm_find_pmd(mm, address);
2661         if (!pmd)
2662                 goto out;
2663
2664         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2665         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2666         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2667              _pte++, _address += PAGE_SIZE) {
2668                 pte_t pteval = *_pte;
2669                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2670                         if (!userfaultfd_armed(vma) &&
2671                             ++none_or_zero <= khugepaged_max_ptes_none)
2672                                 continue;
2673                         else
2674                                 goto out_unmap;
2675                 }
2676                 if (!pte_present(pteval))
2677                         goto out_unmap;
2678                 if (pte_write(pteval))
2679                         writable = true;
2680
2681                 page = vm_normal_page(vma, _address, pteval);
2682                 if (unlikely(!page))
2683                         goto out_unmap;
2684                 /*
2685                  * Record which node the original page is from and save this
2686                  * information to khugepaged_node_load[].
2687                  * Khupaged will allocate hugepage from the node has the max
2688                  * hit record.
2689                  */
2690                 node = page_to_nid(page);
2691                 if (khugepaged_scan_abort(node))
2692                         goto out_unmap;
2693                 khugepaged_node_load[node]++;
2694                 VM_BUG_ON_PAGE(PageCompound(page), page);
2695                 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2696                         goto out_unmap;
2697                 /*
2698                  * cannot use mapcount: can't collapse if there's a gup pin.
2699                  * The page must only be referenced by the scanned process
2700                  * and page swap cache.
2701                  */
2702                 if (page_count(page) != 1 + !!PageSwapCache(page))
2703                         goto out_unmap;
2704                 if (pte_young(pteval) ||
2705                     page_is_young(page) || PageReferenced(page) ||
2706                     mmu_notifier_test_young(vma->vm_mm, address))
2707                         referenced = true;
2708         }
2709         if (referenced && writable)
2710                 ret = 1;
2711 out_unmap:
2712         pte_unmap_unlock(pte, ptl);
2713         if (ret) {
2714                 node = khugepaged_find_target_node();
2715                 /* collapse_huge_page will return with the mmap_sem released */
2716                 collapse_huge_page(mm, address, hpage, vma, node);
2717         }
2718 out:
2719         return ret;
2720 }
2721
2722 static void collect_mm_slot(struct mm_slot *mm_slot)
2723 {
2724         struct mm_struct *mm = mm_slot->mm;
2725
2726         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2727
2728         if (khugepaged_test_exit(mm)) {
2729                 /* free mm_slot */
2730                 hash_del(&mm_slot->hash);
2731                 list_del(&mm_slot->mm_node);
2732
2733                 /*
2734                  * Not strictly needed because the mm exited already.
2735                  *
2736                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2737                  */
2738
2739                 /* khugepaged_mm_lock actually not necessary for the below */
2740                 free_mm_slot(mm_slot);
2741                 mmdrop(mm);
2742         }
2743 }
2744
2745 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2746                                             struct page **hpage)
2747         __releases(&khugepaged_mm_lock)
2748         __acquires(&khugepaged_mm_lock)
2749 {
2750         struct mm_slot *mm_slot;
2751         struct mm_struct *mm;
2752         struct vm_area_struct *vma;
2753         int progress = 0;
2754
2755         VM_BUG_ON(!pages);
2756         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2757
2758         if (khugepaged_scan.mm_slot)
2759                 mm_slot = khugepaged_scan.mm_slot;
2760         else {
2761                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2762                                      struct mm_slot, mm_node);
2763                 khugepaged_scan.address = 0;
2764                 khugepaged_scan.mm_slot = mm_slot;
2765         }
2766         spin_unlock(&khugepaged_mm_lock);
2767
2768         mm = mm_slot->mm;
2769         down_read(&mm->mmap_sem);
2770         if (unlikely(khugepaged_test_exit(mm)))
2771                 vma = NULL;
2772         else
2773                 vma = find_vma(mm, khugepaged_scan.address);
2774
2775         progress++;
2776         for (; vma; vma = vma->vm_next) {
2777                 unsigned long hstart, hend;
2778
2779                 cond_resched();
2780                 if (unlikely(khugepaged_test_exit(mm))) {
2781                         progress++;
2782                         break;
2783                 }
2784                 if (!hugepage_vma_check(vma)) {
2785 skip:
2786                         progress++;
2787                         continue;
2788                 }
2789                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2790                 hend = vma->vm_end & HPAGE_PMD_MASK;
2791                 if (hstart >= hend)
2792                         goto skip;
2793                 if (khugepaged_scan.address > hend)
2794                         goto skip;
2795                 if (khugepaged_scan.address < hstart)
2796                         khugepaged_scan.address = hstart;
2797                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2798
2799                 while (khugepaged_scan.address < hend) {
2800                         int ret;
2801                         cond_resched();
2802                         if (unlikely(khugepaged_test_exit(mm)))
2803                                 goto breakouterloop;
2804
2805                         VM_BUG_ON(khugepaged_scan.address < hstart ||
2806                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
2807                                   hend);
2808                         ret = khugepaged_scan_pmd(mm, vma,
2809                                                   khugepaged_scan.address,
2810                                                   hpage);
2811                         /* move to next address */
2812                         khugepaged_scan.address += HPAGE_PMD_SIZE;
2813                         progress += HPAGE_PMD_NR;
2814                         if (ret)
2815                                 /* we released mmap_sem so break loop */
2816                                 goto breakouterloop_mmap_sem;
2817                         if (progress >= pages)
2818                                 goto breakouterloop;
2819                 }
2820         }
2821 breakouterloop:
2822         up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2823 breakouterloop_mmap_sem:
2824
2825         spin_lock(&khugepaged_mm_lock);
2826         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2827         /*
2828          * Release the current mm_slot if this mm is about to die, or
2829          * if we scanned all vmas of this mm.
2830          */
2831         if (khugepaged_test_exit(mm) || !vma) {
2832                 /*
2833                  * Make sure that if mm_users is reaching zero while
2834                  * khugepaged runs here, khugepaged_exit will find
2835                  * mm_slot not pointing to the exiting mm.
2836                  */
2837                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2838                         khugepaged_scan.mm_slot = list_entry(
2839                                 mm_slot->mm_node.next,
2840                                 struct mm_slot, mm_node);
2841                         khugepaged_scan.address = 0;
2842                 } else {
2843                         khugepaged_scan.mm_slot = NULL;
2844                         khugepaged_full_scans++;
2845                 }
2846
2847                 collect_mm_slot(mm_slot);
2848         }
2849
2850         return progress;
2851 }
2852
2853 static int khugepaged_has_work(void)
2854 {
2855         return !list_empty(&khugepaged_scan.mm_head) &&
2856                 khugepaged_enabled();
2857 }
2858
2859 static int khugepaged_wait_event(void)
2860 {
2861         return !list_empty(&khugepaged_scan.mm_head) ||
2862                 kthread_should_stop();
2863 }
2864
2865 static void khugepaged_do_scan(void)
2866 {
2867         struct page *hpage = NULL;
2868         unsigned int progress = 0, pass_through_head = 0;
2869         unsigned int pages = khugepaged_pages_to_scan;
2870         bool wait = true;
2871
2872         barrier(); /* write khugepaged_pages_to_scan to local stack */
2873
2874         while (progress < pages) {
2875                 if (!khugepaged_prealloc_page(&hpage, &wait))
2876                         break;
2877
2878                 cond_resched();
2879
2880                 if (unlikely(kthread_should_stop() || try_to_freeze()))
2881                         break;
2882
2883                 spin_lock(&khugepaged_mm_lock);
2884                 if (!khugepaged_scan.mm_slot)
2885                         pass_through_head++;
2886                 if (khugepaged_has_work() &&
2887                     pass_through_head < 2)
2888                         progress += khugepaged_scan_mm_slot(pages - progress,
2889                                                             &hpage);
2890                 else
2891                         progress = pages;
2892                 spin_unlock(&khugepaged_mm_lock);
2893         }
2894
2895         if (!IS_ERR_OR_NULL(hpage))
2896                 put_page(hpage);
2897 }
2898
2899 static void khugepaged_wait_work(void)
2900 {
2901         if (khugepaged_has_work()) {
2902                 if (!khugepaged_scan_sleep_millisecs)
2903                         return;
2904
2905                 wait_event_freezable_timeout(khugepaged_wait,
2906                                              kthread_should_stop(),
2907                         msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2908                 return;
2909         }
2910
2911         if (khugepaged_enabled())
2912                 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2913 }
2914
2915 static int khugepaged(void *none)
2916 {
2917         struct mm_slot *mm_slot;
2918
2919         set_freezable();
2920         set_user_nice(current, MAX_NICE);
2921
2922         while (!kthread_should_stop()) {
2923                 khugepaged_do_scan();
2924                 khugepaged_wait_work();
2925         }
2926
2927         spin_lock(&khugepaged_mm_lock);
2928         mm_slot = khugepaged_scan.mm_slot;
2929         khugepaged_scan.mm_slot = NULL;
2930         if (mm_slot)
2931                 collect_mm_slot(mm_slot);
2932         spin_unlock(&khugepaged_mm_lock);
2933         return 0;
2934 }
2935
2936 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2937                 unsigned long haddr, pmd_t *pmd)
2938 {
2939         struct mm_struct *mm = vma->vm_mm;
2940         pgtable_t pgtable;
2941         pmd_t _pmd;
2942         int i;
2943
2944         pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2945         /* leave pmd empty until pte is filled */
2946
2947         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2948         pmd_populate(mm, &_pmd, pgtable);
2949
2950         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2951                 pte_t *pte, entry;
2952                 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2953                 entry = pte_mkspecial(entry);
2954                 pte = pte_offset_map(&_pmd, haddr);
2955                 VM_BUG_ON(!pte_none(*pte));
2956                 set_pte_at(mm, haddr, pte, entry);
2957                 pte_unmap(pte);
2958         }
2959         smp_wmb(); /* make pte visible before pmd */
2960         pmd_populate(mm, pmd, pgtable);
2961         put_huge_zero_page();
2962 }
2963
2964 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2965                 pmd_t *pmd)
2966 {
2967         spinlock_t *ptl;
2968         struct page *page = NULL;
2969         struct mm_struct *mm = vma->vm_mm;
2970         unsigned long haddr = address & HPAGE_PMD_MASK;
2971         unsigned long mmun_start;       /* For mmu_notifiers */
2972         unsigned long mmun_end;         /* For mmu_notifiers */
2973
2974         BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2975
2976         mmun_start = haddr;
2977         mmun_end   = haddr + HPAGE_PMD_SIZE;
2978 again:
2979         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2980         ptl = pmd_lock(mm, pmd);
2981         if (unlikely(!pmd_trans_huge(*pmd)))
2982                 goto unlock;
2983         if (vma_is_dax(vma)) {
2984                 pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2985                 if (is_huge_zero_pmd(_pmd))
2986                         put_huge_zero_page();
2987         } else if (is_huge_zero_pmd(*pmd)) {
2988                 __split_huge_zero_page_pmd(vma, haddr, pmd);
2989         } else {
2990                 page = pmd_page(*pmd);
2991                 VM_BUG_ON_PAGE(!page_count(page), page);
2992                 get_page(page);
2993         }
2994  unlock:
2995         spin_unlock(ptl);
2996         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2997
2998         if (!page)
2999                 return;
3000
3001         split_huge_page(page);
3002         put_page(page);
3003
3004         /*
3005          * We don't always have down_write of mmap_sem here: a racing
3006          * do_huge_pmd_wp_page() might have copied-on-write to another
3007          * huge page before our split_huge_page() got the anon_vma lock.
3008          */
3009         if (unlikely(pmd_trans_huge(*pmd)))
3010                 goto again;
3011 }
3012
3013 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
3014                 pmd_t *pmd)
3015 {
3016         struct vm_area_struct *vma;
3017
3018         vma = find_vma(mm, address);
3019         BUG_ON(vma == NULL);
3020         split_huge_page_pmd(vma, address, pmd);
3021 }
3022
3023 static void split_huge_page_address(struct mm_struct *mm,
3024                                     unsigned long address)
3025 {
3026         pgd_t *pgd;
3027         pud_t *pud;
3028         pmd_t *pmd;
3029
3030         VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
3031
3032         pgd = pgd_offset(mm, address);
3033         if (!pgd_present(*pgd))
3034                 return;
3035
3036         pud = pud_offset(pgd, address);
3037         if (!pud_present(*pud))
3038                 return;
3039
3040         pmd = pmd_offset(pud, address);
3041         if (!pmd_present(*pmd))
3042                 return;
3043         /*
3044          * Caller holds the mmap_sem write mode, so a huge pmd cannot
3045          * materialize from under us.
3046          */
3047         split_huge_page_pmd_mm(mm, address, pmd);
3048 }
3049
3050 void vma_adjust_trans_huge(struct vm_area_struct *vma,
3051                              unsigned long start,
3052                              unsigned long end,
3053                              long adjust_next)
3054 {
3055         /*
3056          * If the new start address isn't hpage aligned and it could
3057          * previously contain an hugepage: check if we need to split
3058          * an huge pmd.
3059          */
3060         if (start & ~HPAGE_PMD_MASK &&
3061             (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3062             (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3063                 split_huge_page_address(vma->vm_mm, start);
3064
3065         /*
3066          * If the new end address isn't hpage aligned and it could
3067          * previously contain an hugepage: check if we need to split
3068          * an huge pmd.
3069          */
3070         if (end & ~HPAGE_PMD_MASK &&
3071             (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3072             (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3073                 split_huge_page_address(vma->vm_mm, end);
3074
3075         /*
3076          * If we're also updating the vma->vm_next->vm_start, if the new
3077          * vm_next->vm_start isn't page aligned and it could previously
3078          * contain an hugepage: check if we need to split an huge pmd.
3079          */
3080         if (adjust_next > 0) {
3081                 struct vm_area_struct *next = vma->vm_next;
3082                 unsigned long nstart = next->vm_start;
3083                 nstart += adjust_next << PAGE_SHIFT;
3084                 if (nstart & ~HPAGE_PMD_MASK &&
3085                     (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3086                     (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3087                         split_huge_page_address(next->vm_mm, nstart);
3088         }
3089 }