]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - net/core/dev.c
Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[karo-tx-linux.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/dst_metadata.h>
103 #include <net/pkt_sched.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/pci.h>
131 #include <linux/inetdevice.h>
132 #include <linux/cpu_rmap.h>
133 #include <linux/static_key.h>
134 #include <linux/hashtable.h>
135 #include <linux/vmalloc.h>
136 #include <linux/if_macvlan.h>
137 #include <linux/errqueue.h>
138 #include <linux/hrtimer.h>
139 #include <linux/netfilter_ingress.h>
140
141 #include "net-sysfs.h"
142
143 /* Instead of increasing this, you should create a hash table. */
144 #define MAX_GRO_SKBS 8
145
146 /* This should be increased if a protocol with a bigger head is added. */
147 #define GRO_MAX_HEAD (MAX_HEADER + 128)
148
149 static DEFINE_SPINLOCK(ptype_lock);
150 static DEFINE_SPINLOCK(offload_lock);
151 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
152 struct list_head ptype_all __read_mostly;       /* Taps */
153 static struct list_head offload_base __read_mostly;
154
155 static int netif_rx_internal(struct sk_buff *skb);
156 static int call_netdevice_notifiers_info(unsigned long val,
157                                          struct net_device *dev,
158                                          struct netdev_notifier_info *info);
159
160 /*
161  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
162  * semaphore.
163  *
164  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
165  *
166  * Writers must hold the rtnl semaphore while they loop through the
167  * dev_base_head list, and hold dev_base_lock for writing when they do the
168  * actual updates.  This allows pure readers to access the list even
169  * while a writer is preparing to update it.
170  *
171  * To put it another way, dev_base_lock is held for writing only to
172  * protect against pure readers; the rtnl semaphore provides the
173  * protection against other writers.
174  *
175  * See, for example usages, register_netdevice() and
176  * unregister_netdevice(), which must be called with the rtnl
177  * semaphore held.
178  */
179 DEFINE_RWLOCK(dev_base_lock);
180 EXPORT_SYMBOL(dev_base_lock);
181
182 /* protects napi_hash addition/deletion and napi_gen_id */
183 static DEFINE_SPINLOCK(napi_hash_lock);
184
185 static unsigned int napi_gen_id;
186 static DEFINE_HASHTABLE(napi_hash, 8);
187
188 static seqcount_t devnet_rename_seq;
189
190 static inline void dev_base_seq_inc(struct net *net)
191 {
192         while (++net->dev_base_seq == 0);
193 }
194
195 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
196 {
197         unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
198
199         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
200 }
201
202 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
203 {
204         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
205 }
206
207 static inline void rps_lock(struct softnet_data *sd)
208 {
209 #ifdef CONFIG_RPS
210         spin_lock(&sd->input_pkt_queue.lock);
211 #endif
212 }
213
214 static inline void rps_unlock(struct softnet_data *sd)
215 {
216 #ifdef CONFIG_RPS
217         spin_unlock(&sd->input_pkt_queue.lock);
218 #endif
219 }
220
221 /* Device list insertion */
222 static void list_netdevice(struct net_device *dev)
223 {
224         struct net *net = dev_net(dev);
225
226         ASSERT_RTNL();
227
228         write_lock_bh(&dev_base_lock);
229         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
230         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
231         hlist_add_head_rcu(&dev->index_hlist,
232                            dev_index_hash(net, dev->ifindex));
233         write_unlock_bh(&dev_base_lock);
234
235         dev_base_seq_inc(net);
236 }
237
238 /* Device list removal
239  * caller must respect a RCU grace period before freeing/reusing dev
240  */
241 static void unlist_netdevice(struct net_device *dev)
242 {
243         ASSERT_RTNL();
244
245         /* Unlink dev from the device chain */
246         write_lock_bh(&dev_base_lock);
247         list_del_rcu(&dev->dev_list);
248         hlist_del_rcu(&dev->name_hlist);
249         hlist_del_rcu(&dev->index_hlist);
250         write_unlock_bh(&dev_base_lock);
251
252         dev_base_seq_inc(dev_net(dev));
253 }
254
255 /*
256  *      Our notifier list
257  */
258
259 static RAW_NOTIFIER_HEAD(netdev_chain);
260
261 /*
262  *      Device drivers call our routines to queue packets here. We empty the
263  *      queue in the local softnet handler.
264  */
265
266 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
267 EXPORT_PER_CPU_SYMBOL(softnet_data);
268
269 #ifdef CONFIG_LOCKDEP
270 /*
271  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
272  * according to dev->type
273  */
274 static const unsigned short netdev_lock_type[] =
275         {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
276          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
277          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
278          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
279          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
280          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
281          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
282          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
283          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
284          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
285          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
286          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
287          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
288          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
289          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
290
291 static const char *const netdev_lock_name[] =
292         {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
293          "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
294          "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
295          "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
296          "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
297          "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
298          "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
299          "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
300          "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
301          "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
302          "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
303          "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
304          "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
305          "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
306          "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
307
308 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
309 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
310
311 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
312 {
313         int i;
314
315         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
316                 if (netdev_lock_type[i] == dev_type)
317                         return i;
318         /* the last key is used by default */
319         return ARRAY_SIZE(netdev_lock_type) - 1;
320 }
321
322 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
323                                                  unsigned short dev_type)
324 {
325         int i;
326
327         i = netdev_lock_pos(dev_type);
328         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
329                                    netdev_lock_name[i]);
330 }
331
332 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
333 {
334         int i;
335
336         i = netdev_lock_pos(dev->type);
337         lockdep_set_class_and_name(&dev->addr_list_lock,
338                                    &netdev_addr_lock_key[i],
339                                    netdev_lock_name[i]);
340 }
341 #else
342 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
343                                                  unsigned short dev_type)
344 {
345 }
346 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
347 {
348 }
349 #endif
350
351 /*******************************************************************************
352
353                 Protocol management and registration routines
354
355 *******************************************************************************/
356
357 /*
358  *      Add a protocol ID to the list. Now that the input handler is
359  *      smarter we can dispense with all the messy stuff that used to be
360  *      here.
361  *
362  *      BEWARE!!! Protocol handlers, mangling input packets,
363  *      MUST BE last in hash buckets and checking protocol handlers
364  *      MUST start from promiscuous ptype_all chain in net_bh.
365  *      It is true now, do not change it.
366  *      Explanation follows: if protocol handler, mangling packet, will
367  *      be the first on list, it is not able to sense, that packet
368  *      is cloned and should be copied-on-write, so that it will
369  *      change it and subsequent readers will get broken packet.
370  *                                                      --ANK (980803)
371  */
372
373 static inline struct list_head *ptype_head(const struct packet_type *pt)
374 {
375         if (pt->type == htons(ETH_P_ALL))
376                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
377         else
378                 return pt->dev ? &pt->dev->ptype_specific :
379                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
380 }
381
382 /**
383  *      dev_add_pack - add packet handler
384  *      @pt: packet type declaration
385  *
386  *      Add a protocol handler to the networking stack. The passed &packet_type
387  *      is linked into kernel lists and may not be freed until it has been
388  *      removed from the kernel lists.
389  *
390  *      This call does not sleep therefore it can not
391  *      guarantee all CPU's that are in middle of receiving packets
392  *      will see the new packet type (until the next received packet).
393  */
394
395 void dev_add_pack(struct packet_type *pt)
396 {
397         struct list_head *head = ptype_head(pt);
398
399         spin_lock(&ptype_lock);
400         list_add_rcu(&pt->list, head);
401         spin_unlock(&ptype_lock);
402 }
403 EXPORT_SYMBOL(dev_add_pack);
404
405 /**
406  *      __dev_remove_pack        - remove packet handler
407  *      @pt: packet type declaration
408  *
409  *      Remove a protocol handler that was previously added to the kernel
410  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
411  *      from the kernel lists and can be freed or reused once this function
412  *      returns.
413  *
414  *      The packet type might still be in use by receivers
415  *      and must not be freed until after all the CPU's have gone
416  *      through a quiescent state.
417  */
418 void __dev_remove_pack(struct packet_type *pt)
419 {
420         struct list_head *head = ptype_head(pt);
421         struct packet_type *pt1;
422
423         spin_lock(&ptype_lock);
424
425         list_for_each_entry(pt1, head, list) {
426                 if (pt == pt1) {
427                         list_del_rcu(&pt->list);
428                         goto out;
429                 }
430         }
431
432         pr_warn("dev_remove_pack: %p not found\n", pt);
433 out:
434         spin_unlock(&ptype_lock);
435 }
436 EXPORT_SYMBOL(__dev_remove_pack);
437
438 /**
439  *      dev_remove_pack  - remove packet handler
440  *      @pt: packet type declaration
441  *
442  *      Remove a protocol handler that was previously added to the kernel
443  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
444  *      from the kernel lists and can be freed or reused once this function
445  *      returns.
446  *
447  *      This call sleeps to guarantee that no CPU is looking at the packet
448  *      type after return.
449  */
450 void dev_remove_pack(struct packet_type *pt)
451 {
452         __dev_remove_pack(pt);
453
454         synchronize_net();
455 }
456 EXPORT_SYMBOL(dev_remove_pack);
457
458
459 /**
460  *      dev_add_offload - register offload handlers
461  *      @po: protocol offload declaration
462  *
463  *      Add protocol offload handlers to the networking stack. The passed
464  *      &proto_offload is linked into kernel lists and may not be freed until
465  *      it has been removed from the kernel lists.
466  *
467  *      This call does not sleep therefore it can not
468  *      guarantee all CPU's that are in middle of receiving packets
469  *      will see the new offload handlers (until the next received packet).
470  */
471 void dev_add_offload(struct packet_offload *po)
472 {
473         struct packet_offload *elem;
474
475         spin_lock(&offload_lock);
476         list_for_each_entry(elem, &offload_base, list) {
477                 if (po->priority < elem->priority)
478                         break;
479         }
480         list_add_rcu(&po->list, elem->list.prev);
481         spin_unlock(&offload_lock);
482 }
483 EXPORT_SYMBOL(dev_add_offload);
484
485 /**
486  *      __dev_remove_offload     - remove offload handler
487  *      @po: packet offload declaration
488  *
489  *      Remove a protocol offload handler that was previously added to the
490  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
491  *      is removed from the kernel lists and can be freed or reused once this
492  *      function returns.
493  *
494  *      The packet type might still be in use by receivers
495  *      and must not be freed until after all the CPU's have gone
496  *      through a quiescent state.
497  */
498 static void __dev_remove_offload(struct packet_offload *po)
499 {
500         struct list_head *head = &offload_base;
501         struct packet_offload *po1;
502
503         spin_lock(&offload_lock);
504
505         list_for_each_entry(po1, head, list) {
506                 if (po == po1) {
507                         list_del_rcu(&po->list);
508                         goto out;
509                 }
510         }
511
512         pr_warn("dev_remove_offload: %p not found\n", po);
513 out:
514         spin_unlock(&offload_lock);
515 }
516
517 /**
518  *      dev_remove_offload       - remove packet offload handler
519  *      @po: packet offload declaration
520  *
521  *      Remove a packet offload handler that was previously added to the kernel
522  *      offload handlers by dev_add_offload(). The passed &offload_type is
523  *      removed from the kernel lists and can be freed or reused once this
524  *      function returns.
525  *
526  *      This call sleeps to guarantee that no CPU is looking at the packet
527  *      type after return.
528  */
529 void dev_remove_offload(struct packet_offload *po)
530 {
531         __dev_remove_offload(po);
532
533         synchronize_net();
534 }
535 EXPORT_SYMBOL(dev_remove_offload);
536
537 /******************************************************************************
538
539                       Device Boot-time Settings Routines
540
541 *******************************************************************************/
542
543 /* Boot time configuration table */
544 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
545
546 /**
547  *      netdev_boot_setup_add   - add new setup entry
548  *      @name: name of the device
549  *      @map: configured settings for the device
550  *
551  *      Adds new setup entry to the dev_boot_setup list.  The function
552  *      returns 0 on error and 1 on success.  This is a generic routine to
553  *      all netdevices.
554  */
555 static int netdev_boot_setup_add(char *name, struct ifmap *map)
556 {
557         struct netdev_boot_setup *s;
558         int i;
559
560         s = dev_boot_setup;
561         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
562                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
563                         memset(s[i].name, 0, sizeof(s[i].name));
564                         strlcpy(s[i].name, name, IFNAMSIZ);
565                         memcpy(&s[i].map, map, sizeof(s[i].map));
566                         break;
567                 }
568         }
569
570         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
571 }
572
573 /**
574  *      netdev_boot_setup_check - check boot time settings
575  *      @dev: the netdevice
576  *
577  *      Check boot time settings for the device.
578  *      The found settings are set for the device to be used
579  *      later in the device probing.
580  *      Returns 0 if no settings found, 1 if they are.
581  */
582 int netdev_boot_setup_check(struct net_device *dev)
583 {
584         struct netdev_boot_setup *s = dev_boot_setup;
585         int i;
586
587         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
588                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
589                     !strcmp(dev->name, s[i].name)) {
590                         dev->irq        = s[i].map.irq;
591                         dev->base_addr  = s[i].map.base_addr;
592                         dev->mem_start  = s[i].map.mem_start;
593                         dev->mem_end    = s[i].map.mem_end;
594                         return 1;
595                 }
596         }
597         return 0;
598 }
599 EXPORT_SYMBOL(netdev_boot_setup_check);
600
601
602 /**
603  *      netdev_boot_base        - get address from boot time settings
604  *      @prefix: prefix for network device
605  *      @unit: id for network device
606  *
607  *      Check boot time settings for the base address of device.
608  *      The found settings are set for the device to be used
609  *      later in the device probing.
610  *      Returns 0 if no settings found.
611  */
612 unsigned long netdev_boot_base(const char *prefix, int unit)
613 {
614         const struct netdev_boot_setup *s = dev_boot_setup;
615         char name[IFNAMSIZ];
616         int i;
617
618         sprintf(name, "%s%d", prefix, unit);
619
620         /*
621          * If device already registered then return base of 1
622          * to indicate not to probe for this interface
623          */
624         if (__dev_get_by_name(&init_net, name))
625                 return 1;
626
627         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
628                 if (!strcmp(name, s[i].name))
629                         return s[i].map.base_addr;
630         return 0;
631 }
632
633 /*
634  * Saves at boot time configured settings for any netdevice.
635  */
636 int __init netdev_boot_setup(char *str)
637 {
638         int ints[5];
639         struct ifmap map;
640
641         str = get_options(str, ARRAY_SIZE(ints), ints);
642         if (!str || !*str)
643                 return 0;
644
645         /* Save settings */
646         memset(&map, 0, sizeof(map));
647         if (ints[0] > 0)
648                 map.irq = ints[1];
649         if (ints[0] > 1)
650                 map.base_addr = ints[2];
651         if (ints[0] > 2)
652                 map.mem_start = ints[3];
653         if (ints[0] > 3)
654                 map.mem_end = ints[4];
655
656         /* Add new entry to the list */
657         return netdev_boot_setup_add(str, &map);
658 }
659
660 __setup("netdev=", netdev_boot_setup);
661
662 /*******************************************************************************
663
664                             Device Interface Subroutines
665
666 *******************************************************************************/
667
668 /**
669  *      dev_get_iflink  - get 'iflink' value of a interface
670  *      @dev: targeted interface
671  *
672  *      Indicates the ifindex the interface is linked to.
673  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
674  */
675
676 int dev_get_iflink(const struct net_device *dev)
677 {
678         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
679                 return dev->netdev_ops->ndo_get_iflink(dev);
680
681         return dev->ifindex;
682 }
683 EXPORT_SYMBOL(dev_get_iflink);
684
685 /**
686  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
687  *      @dev: targeted interface
688  *      @skb: The packet.
689  *
690  *      For better visibility of tunnel traffic OVS needs to retrieve
691  *      egress tunnel information for a packet. Following API allows
692  *      user to get this info.
693  */
694 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
695 {
696         struct ip_tunnel_info *info;
697
698         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
699                 return -EINVAL;
700
701         info = skb_tunnel_info_unclone(skb);
702         if (!info)
703                 return -ENOMEM;
704         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
705                 return -EINVAL;
706
707         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
708 }
709 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
710
711 /**
712  *      __dev_get_by_name       - find a device by its name
713  *      @net: the applicable net namespace
714  *      @name: name to find
715  *
716  *      Find an interface by name. Must be called under RTNL semaphore
717  *      or @dev_base_lock. If the name is found a pointer to the device
718  *      is returned. If the name is not found then %NULL is returned. The
719  *      reference counters are not incremented so the caller must be
720  *      careful with locks.
721  */
722
723 struct net_device *__dev_get_by_name(struct net *net, const char *name)
724 {
725         struct net_device *dev;
726         struct hlist_head *head = dev_name_hash(net, name);
727
728         hlist_for_each_entry(dev, head, name_hlist)
729                 if (!strncmp(dev->name, name, IFNAMSIZ))
730                         return dev;
731
732         return NULL;
733 }
734 EXPORT_SYMBOL(__dev_get_by_name);
735
736 /**
737  *      dev_get_by_name_rcu     - find a device by its name
738  *      @net: the applicable net namespace
739  *      @name: name to find
740  *
741  *      Find an interface by name.
742  *      If the name is found a pointer to the device is returned.
743  *      If the name is not found then %NULL is returned.
744  *      The reference counters are not incremented so the caller must be
745  *      careful with locks. The caller must hold RCU lock.
746  */
747
748 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
749 {
750         struct net_device *dev;
751         struct hlist_head *head = dev_name_hash(net, name);
752
753         hlist_for_each_entry_rcu(dev, head, name_hlist)
754                 if (!strncmp(dev->name, name, IFNAMSIZ))
755                         return dev;
756
757         return NULL;
758 }
759 EXPORT_SYMBOL(dev_get_by_name_rcu);
760
761 /**
762  *      dev_get_by_name         - find a device by its name
763  *      @net: the applicable net namespace
764  *      @name: name to find
765  *
766  *      Find an interface by name. This can be called from any
767  *      context and does its own locking. The returned handle has
768  *      the usage count incremented and the caller must use dev_put() to
769  *      release it when it is no longer needed. %NULL is returned if no
770  *      matching device is found.
771  */
772
773 struct net_device *dev_get_by_name(struct net *net, const char *name)
774 {
775         struct net_device *dev;
776
777         rcu_read_lock();
778         dev = dev_get_by_name_rcu(net, name);
779         if (dev)
780                 dev_hold(dev);
781         rcu_read_unlock();
782         return dev;
783 }
784 EXPORT_SYMBOL(dev_get_by_name);
785
786 /**
787  *      __dev_get_by_index - find a device by its ifindex
788  *      @net: the applicable net namespace
789  *      @ifindex: index of device
790  *
791  *      Search for an interface by index. Returns %NULL if the device
792  *      is not found or a pointer to the device. The device has not
793  *      had its reference counter increased so the caller must be careful
794  *      about locking. The caller must hold either the RTNL semaphore
795  *      or @dev_base_lock.
796  */
797
798 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
799 {
800         struct net_device *dev;
801         struct hlist_head *head = dev_index_hash(net, ifindex);
802
803         hlist_for_each_entry(dev, head, index_hlist)
804                 if (dev->ifindex == ifindex)
805                         return dev;
806
807         return NULL;
808 }
809 EXPORT_SYMBOL(__dev_get_by_index);
810
811 /**
812  *      dev_get_by_index_rcu - find a device by its ifindex
813  *      @net: the applicable net namespace
814  *      @ifindex: index of device
815  *
816  *      Search for an interface by index. Returns %NULL if the device
817  *      is not found or a pointer to the device. The device has not
818  *      had its reference counter increased so the caller must be careful
819  *      about locking. The caller must hold RCU lock.
820  */
821
822 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
823 {
824         struct net_device *dev;
825         struct hlist_head *head = dev_index_hash(net, ifindex);
826
827         hlist_for_each_entry_rcu(dev, head, index_hlist)
828                 if (dev->ifindex == ifindex)
829                         return dev;
830
831         return NULL;
832 }
833 EXPORT_SYMBOL(dev_get_by_index_rcu);
834
835
836 /**
837  *      dev_get_by_index - find a device by its ifindex
838  *      @net: the applicable net namespace
839  *      @ifindex: index of device
840  *
841  *      Search for an interface by index. Returns NULL if the device
842  *      is not found or a pointer to the device. The device returned has
843  *      had a reference added and the pointer is safe until the user calls
844  *      dev_put to indicate they have finished with it.
845  */
846
847 struct net_device *dev_get_by_index(struct net *net, int ifindex)
848 {
849         struct net_device *dev;
850
851         rcu_read_lock();
852         dev = dev_get_by_index_rcu(net, ifindex);
853         if (dev)
854                 dev_hold(dev);
855         rcu_read_unlock();
856         return dev;
857 }
858 EXPORT_SYMBOL(dev_get_by_index);
859
860 /**
861  *      netdev_get_name - get a netdevice name, knowing its ifindex.
862  *      @net: network namespace
863  *      @name: a pointer to the buffer where the name will be stored.
864  *      @ifindex: the ifindex of the interface to get the name from.
865  *
866  *      The use of raw_seqcount_begin() and cond_resched() before
867  *      retrying is required as we want to give the writers a chance
868  *      to complete when CONFIG_PREEMPT is not set.
869  */
870 int netdev_get_name(struct net *net, char *name, int ifindex)
871 {
872         struct net_device *dev;
873         unsigned int seq;
874
875 retry:
876         seq = raw_seqcount_begin(&devnet_rename_seq);
877         rcu_read_lock();
878         dev = dev_get_by_index_rcu(net, ifindex);
879         if (!dev) {
880                 rcu_read_unlock();
881                 return -ENODEV;
882         }
883
884         strcpy(name, dev->name);
885         rcu_read_unlock();
886         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
887                 cond_resched();
888                 goto retry;
889         }
890
891         return 0;
892 }
893
894 /**
895  *      dev_getbyhwaddr_rcu - find a device by its hardware address
896  *      @net: the applicable net namespace
897  *      @type: media type of device
898  *      @ha: hardware address
899  *
900  *      Search for an interface by MAC address. Returns NULL if the device
901  *      is not found or a pointer to the device.
902  *      The caller must hold RCU or RTNL.
903  *      The returned device has not had its ref count increased
904  *      and the caller must therefore be careful about locking
905  *
906  */
907
908 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
909                                        const char *ha)
910 {
911         struct net_device *dev;
912
913         for_each_netdev_rcu(net, dev)
914                 if (dev->type == type &&
915                     !memcmp(dev->dev_addr, ha, dev->addr_len))
916                         return dev;
917
918         return NULL;
919 }
920 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
921
922 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
923 {
924         struct net_device *dev;
925
926         ASSERT_RTNL();
927         for_each_netdev(net, dev)
928                 if (dev->type == type)
929                         return dev;
930
931         return NULL;
932 }
933 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
934
935 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
936 {
937         struct net_device *dev, *ret = NULL;
938
939         rcu_read_lock();
940         for_each_netdev_rcu(net, dev)
941                 if (dev->type == type) {
942                         dev_hold(dev);
943                         ret = dev;
944                         break;
945                 }
946         rcu_read_unlock();
947         return ret;
948 }
949 EXPORT_SYMBOL(dev_getfirstbyhwtype);
950
951 /**
952  *      __dev_get_by_flags - find any device with given flags
953  *      @net: the applicable net namespace
954  *      @if_flags: IFF_* values
955  *      @mask: bitmask of bits in if_flags to check
956  *
957  *      Search for any interface with the given flags. Returns NULL if a device
958  *      is not found or a pointer to the device. Must be called inside
959  *      rtnl_lock(), and result refcount is unchanged.
960  */
961
962 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
963                                       unsigned short mask)
964 {
965         struct net_device *dev, *ret;
966
967         ASSERT_RTNL();
968
969         ret = NULL;
970         for_each_netdev(net, dev) {
971                 if (((dev->flags ^ if_flags) & mask) == 0) {
972                         ret = dev;
973                         break;
974                 }
975         }
976         return ret;
977 }
978 EXPORT_SYMBOL(__dev_get_by_flags);
979
980 /**
981  *      dev_valid_name - check if name is okay for network device
982  *      @name: name string
983  *
984  *      Network device names need to be valid file names to
985  *      to allow sysfs to work.  We also disallow any kind of
986  *      whitespace.
987  */
988 bool dev_valid_name(const char *name)
989 {
990         if (*name == '\0')
991                 return false;
992         if (strlen(name) >= IFNAMSIZ)
993                 return false;
994         if (!strcmp(name, ".") || !strcmp(name, ".."))
995                 return false;
996
997         while (*name) {
998                 if (*name == '/' || *name == ':' || isspace(*name))
999                         return false;
1000                 name++;
1001         }
1002         return true;
1003 }
1004 EXPORT_SYMBOL(dev_valid_name);
1005
1006 /**
1007  *      __dev_alloc_name - allocate a name for a device
1008  *      @net: network namespace to allocate the device name in
1009  *      @name: name format string
1010  *      @buf:  scratch buffer and result name string
1011  *
1012  *      Passed a format string - eg "lt%d" it will try and find a suitable
1013  *      id. It scans list of devices to build up a free map, then chooses
1014  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1015  *      while allocating the name and adding the device in order to avoid
1016  *      duplicates.
1017  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1018  *      Returns the number of the unit assigned or a negative errno code.
1019  */
1020
1021 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1022 {
1023         int i = 0;
1024         const char *p;
1025         const int max_netdevices = 8*PAGE_SIZE;
1026         unsigned long *inuse;
1027         struct net_device *d;
1028
1029         p = strnchr(name, IFNAMSIZ-1, '%');
1030         if (p) {
1031                 /*
1032                  * Verify the string as this thing may have come from
1033                  * the user.  There must be either one "%d" and no other "%"
1034                  * characters.
1035                  */
1036                 if (p[1] != 'd' || strchr(p + 2, '%'))
1037                         return -EINVAL;
1038
1039                 /* Use one page as a bit array of possible slots */
1040                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1041                 if (!inuse)
1042                         return -ENOMEM;
1043
1044                 for_each_netdev(net, d) {
1045                         if (!sscanf(d->name, name, &i))
1046                                 continue;
1047                         if (i < 0 || i >= max_netdevices)
1048                                 continue;
1049
1050                         /*  avoid cases where sscanf is not exact inverse of printf */
1051                         snprintf(buf, IFNAMSIZ, name, i);
1052                         if (!strncmp(buf, d->name, IFNAMSIZ))
1053                                 set_bit(i, inuse);
1054                 }
1055
1056                 i = find_first_zero_bit(inuse, max_netdevices);
1057                 free_page((unsigned long) inuse);
1058         }
1059
1060         if (buf != name)
1061                 snprintf(buf, IFNAMSIZ, name, i);
1062         if (!__dev_get_by_name(net, buf))
1063                 return i;
1064
1065         /* It is possible to run out of possible slots
1066          * when the name is long and there isn't enough space left
1067          * for the digits, or if all bits are used.
1068          */
1069         return -ENFILE;
1070 }
1071
1072 /**
1073  *      dev_alloc_name - allocate a name for a device
1074  *      @dev: device
1075  *      @name: name format string
1076  *
1077  *      Passed a format string - eg "lt%d" it will try and find a suitable
1078  *      id. It scans list of devices to build up a free map, then chooses
1079  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1080  *      while allocating the name and adding the device in order to avoid
1081  *      duplicates.
1082  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1083  *      Returns the number of the unit assigned or a negative errno code.
1084  */
1085
1086 int dev_alloc_name(struct net_device *dev, const char *name)
1087 {
1088         char buf[IFNAMSIZ];
1089         struct net *net;
1090         int ret;
1091
1092         BUG_ON(!dev_net(dev));
1093         net = dev_net(dev);
1094         ret = __dev_alloc_name(net, name, buf);
1095         if (ret >= 0)
1096                 strlcpy(dev->name, buf, IFNAMSIZ);
1097         return ret;
1098 }
1099 EXPORT_SYMBOL(dev_alloc_name);
1100
1101 static int dev_alloc_name_ns(struct net *net,
1102                              struct net_device *dev,
1103                              const char *name)
1104 {
1105         char buf[IFNAMSIZ];
1106         int ret;
1107
1108         ret = __dev_alloc_name(net, name, buf);
1109         if (ret >= 0)
1110                 strlcpy(dev->name, buf, IFNAMSIZ);
1111         return ret;
1112 }
1113
1114 static int dev_get_valid_name(struct net *net,
1115                               struct net_device *dev,
1116                               const char *name)
1117 {
1118         BUG_ON(!net);
1119
1120         if (!dev_valid_name(name))
1121                 return -EINVAL;
1122
1123         if (strchr(name, '%'))
1124                 return dev_alloc_name_ns(net, dev, name);
1125         else if (__dev_get_by_name(net, name))
1126                 return -EEXIST;
1127         else if (dev->name != name)
1128                 strlcpy(dev->name, name, IFNAMSIZ);
1129
1130         return 0;
1131 }
1132
1133 /**
1134  *      dev_change_name - change name of a device
1135  *      @dev: device
1136  *      @newname: name (or format string) must be at least IFNAMSIZ
1137  *
1138  *      Change name of a device, can pass format strings "eth%d".
1139  *      for wildcarding.
1140  */
1141 int dev_change_name(struct net_device *dev, const char *newname)
1142 {
1143         unsigned char old_assign_type;
1144         char oldname[IFNAMSIZ];
1145         int err = 0;
1146         int ret;
1147         struct net *net;
1148
1149         ASSERT_RTNL();
1150         BUG_ON(!dev_net(dev));
1151
1152         net = dev_net(dev);
1153         if (dev->flags & IFF_UP)
1154                 return -EBUSY;
1155
1156         write_seqcount_begin(&devnet_rename_seq);
1157
1158         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1159                 write_seqcount_end(&devnet_rename_seq);
1160                 return 0;
1161         }
1162
1163         memcpy(oldname, dev->name, IFNAMSIZ);
1164
1165         err = dev_get_valid_name(net, dev, newname);
1166         if (err < 0) {
1167                 write_seqcount_end(&devnet_rename_seq);
1168                 return err;
1169         }
1170
1171         if (oldname[0] && !strchr(oldname, '%'))
1172                 netdev_info(dev, "renamed from %s\n", oldname);
1173
1174         old_assign_type = dev->name_assign_type;
1175         dev->name_assign_type = NET_NAME_RENAMED;
1176
1177 rollback:
1178         ret = device_rename(&dev->dev, dev->name);
1179         if (ret) {
1180                 memcpy(dev->name, oldname, IFNAMSIZ);
1181                 dev->name_assign_type = old_assign_type;
1182                 write_seqcount_end(&devnet_rename_seq);
1183                 return ret;
1184         }
1185
1186         write_seqcount_end(&devnet_rename_seq);
1187
1188         netdev_adjacent_rename_links(dev, oldname);
1189
1190         write_lock_bh(&dev_base_lock);
1191         hlist_del_rcu(&dev->name_hlist);
1192         write_unlock_bh(&dev_base_lock);
1193
1194         synchronize_rcu();
1195
1196         write_lock_bh(&dev_base_lock);
1197         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1198         write_unlock_bh(&dev_base_lock);
1199
1200         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1201         ret = notifier_to_errno(ret);
1202
1203         if (ret) {
1204                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1205                 if (err >= 0) {
1206                         err = ret;
1207                         write_seqcount_begin(&devnet_rename_seq);
1208                         memcpy(dev->name, oldname, IFNAMSIZ);
1209                         memcpy(oldname, newname, IFNAMSIZ);
1210                         dev->name_assign_type = old_assign_type;
1211                         old_assign_type = NET_NAME_RENAMED;
1212                         goto rollback;
1213                 } else {
1214                         pr_err("%s: name change rollback failed: %d\n",
1215                                dev->name, ret);
1216                 }
1217         }
1218
1219         return err;
1220 }
1221
1222 /**
1223  *      dev_set_alias - change ifalias of a device
1224  *      @dev: device
1225  *      @alias: name up to IFALIASZ
1226  *      @len: limit of bytes to copy from info
1227  *
1228  *      Set ifalias for a device,
1229  */
1230 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1231 {
1232         char *new_ifalias;
1233
1234         ASSERT_RTNL();
1235
1236         if (len >= IFALIASZ)
1237                 return -EINVAL;
1238
1239         if (!len) {
1240                 kfree(dev->ifalias);
1241                 dev->ifalias = NULL;
1242                 return 0;
1243         }
1244
1245         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1246         if (!new_ifalias)
1247                 return -ENOMEM;
1248         dev->ifalias = new_ifalias;
1249
1250         strlcpy(dev->ifalias, alias, len+1);
1251         return len;
1252 }
1253
1254
1255 /**
1256  *      netdev_features_change - device changes features
1257  *      @dev: device to cause notification
1258  *
1259  *      Called to indicate a device has changed features.
1260  */
1261 void netdev_features_change(struct net_device *dev)
1262 {
1263         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1264 }
1265 EXPORT_SYMBOL(netdev_features_change);
1266
1267 /**
1268  *      netdev_state_change - device changes state
1269  *      @dev: device to cause notification
1270  *
1271  *      Called to indicate a device has changed state. This function calls
1272  *      the notifier chains for netdev_chain and sends a NEWLINK message
1273  *      to the routing socket.
1274  */
1275 void netdev_state_change(struct net_device *dev)
1276 {
1277         if (dev->flags & IFF_UP) {
1278                 struct netdev_notifier_change_info change_info;
1279
1280                 change_info.flags_changed = 0;
1281                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1282                                               &change_info.info);
1283                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1284         }
1285 }
1286 EXPORT_SYMBOL(netdev_state_change);
1287
1288 /**
1289  *      netdev_notify_peers - notify network peers about existence of @dev
1290  *      @dev: network device
1291  *
1292  * Generate traffic such that interested network peers are aware of
1293  * @dev, such as by generating a gratuitous ARP. This may be used when
1294  * a device wants to inform the rest of the network about some sort of
1295  * reconfiguration such as a failover event or virtual machine
1296  * migration.
1297  */
1298 void netdev_notify_peers(struct net_device *dev)
1299 {
1300         rtnl_lock();
1301         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1302         rtnl_unlock();
1303 }
1304 EXPORT_SYMBOL(netdev_notify_peers);
1305
1306 static int __dev_open(struct net_device *dev)
1307 {
1308         const struct net_device_ops *ops = dev->netdev_ops;
1309         int ret;
1310
1311         ASSERT_RTNL();
1312
1313         if (!netif_device_present(dev))
1314                 return -ENODEV;
1315
1316         /* Block netpoll from trying to do any rx path servicing.
1317          * If we don't do this there is a chance ndo_poll_controller
1318          * or ndo_poll may be running while we open the device
1319          */
1320         netpoll_poll_disable(dev);
1321
1322         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1323         ret = notifier_to_errno(ret);
1324         if (ret)
1325                 return ret;
1326
1327         set_bit(__LINK_STATE_START, &dev->state);
1328
1329         if (ops->ndo_validate_addr)
1330                 ret = ops->ndo_validate_addr(dev);
1331
1332         if (!ret && ops->ndo_open)
1333                 ret = ops->ndo_open(dev);
1334
1335         netpoll_poll_enable(dev);
1336
1337         if (ret)
1338                 clear_bit(__LINK_STATE_START, &dev->state);
1339         else {
1340                 dev->flags |= IFF_UP;
1341                 dev_set_rx_mode(dev);
1342                 dev_activate(dev);
1343                 add_device_randomness(dev->dev_addr, dev->addr_len);
1344         }
1345
1346         return ret;
1347 }
1348
1349 /**
1350  *      dev_open        - prepare an interface for use.
1351  *      @dev:   device to open
1352  *
1353  *      Takes a device from down to up state. The device's private open
1354  *      function is invoked and then the multicast lists are loaded. Finally
1355  *      the device is moved into the up state and a %NETDEV_UP message is
1356  *      sent to the netdev notifier chain.
1357  *
1358  *      Calling this function on an active interface is a nop. On a failure
1359  *      a negative errno code is returned.
1360  */
1361 int dev_open(struct net_device *dev)
1362 {
1363         int ret;
1364
1365         if (dev->flags & IFF_UP)
1366                 return 0;
1367
1368         ret = __dev_open(dev);
1369         if (ret < 0)
1370                 return ret;
1371
1372         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1373         call_netdevice_notifiers(NETDEV_UP, dev);
1374
1375         return ret;
1376 }
1377 EXPORT_SYMBOL(dev_open);
1378
1379 static int __dev_close_many(struct list_head *head)
1380 {
1381         struct net_device *dev;
1382
1383         ASSERT_RTNL();
1384         might_sleep();
1385
1386         list_for_each_entry(dev, head, close_list) {
1387                 /* Temporarily disable netpoll until the interface is down */
1388                 netpoll_poll_disable(dev);
1389
1390                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1391
1392                 clear_bit(__LINK_STATE_START, &dev->state);
1393
1394                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1395                  * can be even on different cpu. So just clear netif_running().
1396                  *
1397                  * dev->stop() will invoke napi_disable() on all of it's
1398                  * napi_struct instances on this device.
1399                  */
1400                 smp_mb__after_atomic(); /* Commit netif_running(). */
1401         }
1402
1403         dev_deactivate_many(head);
1404
1405         list_for_each_entry(dev, head, close_list) {
1406                 const struct net_device_ops *ops = dev->netdev_ops;
1407
1408                 /*
1409                  *      Call the device specific close. This cannot fail.
1410                  *      Only if device is UP
1411                  *
1412                  *      We allow it to be called even after a DETACH hot-plug
1413                  *      event.
1414                  */
1415                 if (ops->ndo_stop)
1416                         ops->ndo_stop(dev);
1417
1418                 dev->flags &= ~IFF_UP;
1419                 netpoll_poll_enable(dev);
1420         }
1421
1422         return 0;
1423 }
1424
1425 static int __dev_close(struct net_device *dev)
1426 {
1427         int retval;
1428         LIST_HEAD(single);
1429
1430         list_add(&dev->close_list, &single);
1431         retval = __dev_close_many(&single);
1432         list_del(&single);
1433
1434         return retval;
1435 }
1436
1437 int dev_close_many(struct list_head *head, bool unlink)
1438 {
1439         struct net_device *dev, *tmp;
1440
1441         /* Remove the devices that don't need to be closed */
1442         list_for_each_entry_safe(dev, tmp, head, close_list)
1443                 if (!(dev->flags & IFF_UP))
1444                         list_del_init(&dev->close_list);
1445
1446         __dev_close_many(head);
1447
1448         list_for_each_entry_safe(dev, tmp, head, close_list) {
1449                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1450                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1451                 if (unlink)
1452                         list_del_init(&dev->close_list);
1453         }
1454
1455         return 0;
1456 }
1457 EXPORT_SYMBOL(dev_close_many);
1458
1459 /**
1460  *      dev_close - shutdown an interface.
1461  *      @dev: device to shutdown
1462  *
1463  *      This function moves an active device into down state. A
1464  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1465  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1466  *      chain.
1467  */
1468 int dev_close(struct net_device *dev)
1469 {
1470         if (dev->flags & IFF_UP) {
1471                 LIST_HEAD(single);
1472
1473                 list_add(&dev->close_list, &single);
1474                 dev_close_many(&single, true);
1475                 list_del(&single);
1476         }
1477         return 0;
1478 }
1479 EXPORT_SYMBOL(dev_close);
1480
1481
1482 /**
1483  *      dev_disable_lro - disable Large Receive Offload on a device
1484  *      @dev: device
1485  *
1486  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1487  *      called under RTNL.  This is needed if received packets may be
1488  *      forwarded to another interface.
1489  */
1490 void dev_disable_lro(struct net_device *dev)
1491 {
1492         struct net_device *lower_dev;
1493         struct list_head *iter;
1494
1495         dev->wanted_features &= ~NETIF_F_LRO;
1496         netdev_update_features(dev);
1497
1498         if (unlikely(dev->features & NETIF_F_LRO))
1499                 netdev_WARN(dev, "failed to disable LRO!\n");
1500
1501         netdev_for_each_lower_dev(dev, lower_dev, iter)
1502                 dev_disable_lro(lower_dev);
1503 }
1504 EXPORT_SYMBOL(dev_disable_lro);
1505
1506 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1507                                    struct net_device *dev)
1508 {
1509         struct netdev_notifier_info info;
1510
1511         netdev_notifier_info_init(&info, dev);
1512         return nb->notifier_call(nb, val, &info);
1513 }
1514
1515 static int dev_boot_phase = 1;
1516
1517 /**
1518  *      register_netdevice_notifier - register a network notifier block
1519  *      @nb: notifier
1520  *
1521  *      Register a notifier to be called when network device events occur.
1522  *      The notifier passed is linked into the kernel structures and must
1523  *      not be reused until it has been unregistered. A negative errno code
1524  *      is returned on a failure.
1525  *
1526  *      When registered all registration and up events are replayed
1527  *      to the new notifier to allow device to have a race free
1528  *      view of the network device list.
1529  */
1530
1531 int register_netdevice_notifier(struct notifier_block *nb)
1532 {
1533         struct net_device *dev;
1534         struct net_device *last;
1535         struct net *net;
1536         int err;
1537
1538         rtnl_lock();
1539         err = raw_notifier_chain_register(&netdev_chain, nb);
1540         if (err)
1541                 goto unlock;
1542         if (dev_boot_phase)
1543                 goto unlock;
1544         for_each_net(net) {
1545                 for_each_netdev(net, dev) {
1546                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1547                         err = notifier_to_errno(err);
1548                         if (err)
1549                                 goto rollback;
1550
1551                         if (!(dev->flags & IFF_UP))
1552                                 continue;
1553
1554                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1555                 }
1556         }
1557
1558 unlock:
1559         rtnl_unlock();
1560         return err;
1561
1562 rollback:
1563         last = dev;
1564         for_each_net(net) {
1565                 for_each_netdev(net, dev) {
1566                         if (dev == last)
1567                                 goto outroll;
1568
1569                         if (dev->flags & IFF_UP) {
1570                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1571                                                         dev);
1572                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1573                         }
1574                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1575                 }
1576         }
1577
1578 outroll:
1579         raw_notifier_chain_unregister(&netdev_chain, nb);
1580         goto unlock;
1581 }
1582 EXPORT_SYMBOL(register_netdevice_notifier);
1583
1584 /**
1585  *      unregister_netdevice_notifier - unregister a network notifier block
1586  *      @nb: notifier
1587  *
1588  *      Unregister a notifier previously registered by
1589  *      register_netdevice_notifier(). The notifier is unlinked into the
1590  *      kernel structures and may then be reused. A negative errno code
1591  *      is returned on a failure.
1592  *
1593  *      After unregistering unregister and down device events are synthesized
1594  *      for all devices on the device list to the removed notifier to remove
1595  *      the need for special case cleanup code.
1596  */
1597
1598 int unregister_netdevice_notifier(struct notifier_block *nb)
1599 {
1600         struct net_device *dev;
1601         struct net *net;
1602         int err;
1603
1604         rtnl_lock();
1605         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1606         if (err)
1607                 goto unlock;
1608
1609         for_each_net(net) {
1610                 for_each_netdev(net, dev) {
1611                         if (dev->flags & IFF_UP) {
1612                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1613                                                         dev);
1614                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1615                         }
1616                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1617                 }
1618         }
1619 unlock:
1620         rtnl_unlock();
1621         return err;
1622 }
1623 EXPORT_SYMBOL(unregister_netdevice_notifier);
1624
1625 /**
1626  *      call_netdevice_notifiers_info - call all network notifier blocks
1627  *      @val: value passed unmodified to notifier function
1628  *      @dev: net_device pointer passed unmodified to notifier function
1629  *      @info: notifier information data
1630  *
1631  *      Call all network notifier blocks.  Parameters and return value
1632  *      are as for raw_notifier_call_chain().
1633  */
1634
1635 static int call_netdevice_notifiers_info(unsigned long val,
1636                                          struct net_device *dev,
1637                                          struct netdev_notifier_info *info)
1638 {
1639         ASSERT_RTNL();
1640         netdev_notifier_info_init(info, dev);
1641         return raw_notifier_call_chain(&netdev_chain, val, info);
1642 }
1643
1644 /**
1645  *      call_netdevice_notifiers - call all network notifier blocks
1646  *      @val: value passed unmodified to notifier function
1647  *      @dev: net_device pointer passed unmodified to notifier function
1648  *
1649  *      Call all network notifier blocks.  Parameters and return value
1650  *      are as for raw_notifier_call_chain().
1651  */
1652
1653 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1654 {
1655         struct netdev_notifier_info info;
1656
1657         return call_netdevice_notifiers_info(val, dev, &info);
1658 }
1659 EXPORT_SYMBOL(call_netdevice_notifiers);
1660
1661 #ifdef CONFIG_NET_INGRESS
1662 static struct static_key ingress_needed __read_mostly;
1663
1664 void net_inc_ingress_queue(void)
1665 {
1666         static_key_slow_inc(&ingress_needed);
1667 }
1668 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1669
1670 void net_dec_ingress_queue(void)
1671 {
1672         static_key_slow_dec(&ingress_needed);
1673 }
1674 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1675 #endif
1676
1677 static struct static_key netstamp_needed __read_mostly;
1678 #ifdef HAVE_JUMP_LABEL
1679 /* We are not allowed to call static_key_slow_dec() from irq context
1680  * If net_disable_timestamp() is called from irq context, defer the
1681  * static_key_slow_dec() calls.
1682  */
1683 static atomic_t netstamp_needed_deferred;
1684 #endif
1685
1686 void net_enable_timestamp(void)
1687 {
1688 #ifdef HAVE_JUMP_LABEL
1689         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1690
1691         if (deferred) {
1692                 while (--deferred)
1693                         static_key_slow_dec(&netstamp_needed);
1694                 return;
1695         }
1696 #endif
1697         static_key_slow_inc(&netstamp_needed);
1698 }
1699 EXPORT_SYMBOL(net_enable_timestamp);
1700
1701 void net_disable_timestamp(void)
1702 {
1703 #ifdef HAVE_JUMP_LABEL
1704         if (in_interrupt()) {
1705                 atomic_inc(&netstamp_needed_deferred);
1706                 return;
1707         }
1708 #endif
1709         static_key_slow_dec(&netstamp_needed);
1710 }
1711 EXPORT_SYMBOL(net_disable_timestamp);
1712
1713 static inline void net_timestamp_set(struct sk_buff *skb)
1714 {
1715         skb->tstamp.tv64 = 0;
1716         if (static_key_false(&netstamp_needed))
1717                 __net_timestamp(skb);
1718 }
1719
1720 #define net_timestamp_check(COND, SKB)                  \
1721         if (static_key_false(&netstamp_needed)) {               \
1722                 if ((COND) && !(SKB)->tstamp.tv64)      \
1723                         __net_timestamp(SKB);           \
1724         }                                               \
1725
1726 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1727 {
1728         unsigned int len;
1729
1730         if (!(dev->flags & IFF_UP))
1731                 return false;
1732
1733         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1734         if (skb->len <= len)
1735                 return true;
1736
1737         /* if TSO is enabled, we don't care about the length as the packet
1738          * could be forwarded without being segmented before
1739          */
1740         if (skb_is_gso(skb))
1741                 return true;
1742
1743         return false;
1744 }
1745 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1746
1747 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1748 {
1749         if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1750             unlikely(!is_skb_forwardable(dev, skb))) {
1751                 atomic_long_inc(&dev->rx_dropped);
1752                 kfree_skb(skb);
1753                 return NET_RX_DROP;
1754         }
1755
1756         skb_scrub_packet(skb, true);
1757         skb->priority = 0;
1758         skb->protocol = eth_type_trans(skb, dev);
1759         skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1760
1761         return 0;
1762 }
1763 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1764
1765 /**
1766  * dev_forward_skb - loopback an skb to another netif
1767  *
1768  * @dev: destination network device
1769  * @skb: buffer to forward
1770  *
1771  * return values:
1772  *      NET_RX_SUCCESS  (no congestion)
1773  *      NET_RX_DROP     (packet was dropped, but freed)
1774  *
1775  * dev_forward_skb can be used for injecting an skb from the
1776  * start_xmit function of one device into the receive queue
1777  * of another device.
1778  *
1779  * The receiving device may be in another namespace, so
1780  * we have to clear all information in the skb that could
1781  * impact namespace isolation.
1782  */
1783 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1784 {
1785         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1786 }
1787 EXPORT_SYMBOL_GPL(dev_forward_skb);
1788
1789 static inline int deliver_skb(struct sk_buff *skb,
1790                               struct packet_type *pt_prev,
1791                               struct net_device *orig_dev)
1792 {
1793         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1794                 return -ENOMEM;
1795         atomic_inc(&skb->users);
1796         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1797 }
1798
1799 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1800                                           struct packet_type **pt,
1801                                           struct net_device *orig_dev,
1802                                           __be16 type,
1803                                           struct list_head *ptype_list)
1804 {
1805         struct packet_type *ptype, *pt_prev = *pt;
1806
1807         list_for_each_entry_rcu(ptype, ptype_list, list) {
1808                 if (ptype->type != type)
1809                         continue;
1810                 if (pt_prev)
1811                         deliver_skb(skb, pt_prev, orig_dev);
1812                 pt_prev = ptype;
1813         }
1814         *pt = pt_prev;
1815 }
1816
1817 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1818 {
1819         if (!ptype->af_packet_priv || !skb->sk)
1820                 return false;
1821
1822         if (ptype->id_match)
1823                 return ptype->id_match(ptype, skb->sk);
1824         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1825                 return true;
1826
1827         return false;
1828 }
1829
1830 /*
1831  *      Support routine. Sends outgoing frames to any network
1832  *      taps currently in use.
1833  */
1834
1835 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1836 {
1837         struct packet_type *ptype;
1838         struct sk_buff *skb2 = NULL;
1839         struct packet_type *pt_prev = NULL;
1840         struct list_head *ptype_list = &ptype_all;
1841
1842         rcu_read_lock();
1843 again:
1844         list_for_each_entry_rcu(ptype, ptype_list, list) {
1845                 /* Never send packets back to the socket
1846                  * they originated from - MvS (miquels@drinkel.ow.org)
1847                  */
1848                 if (skb_loop_sk(ptype, skb))
1849                         continue;
1850
1851                 if (pt_prev) {
1852                         deliver_skb(skb2, pt_prev, skb->dev);
1853                         pt_prev = ptype;
1854                         continue;
1855                 }
1856
1857                 /* need to clone skb, done only once */
1858                 skb2 = skb_clone(skb, GFP_ATOMIC);
1859                 if (!skb2)
1860                         goto out_unlock;
1861
1862                 net_timestamp_set(skb2);
1863
1864                 /* skb->nh should be correctly
1865                  * set by sender, so that the second statement is
1866                  * just protection against buggy protocols.
1867                  */
1868                 skb_reset_mac_header(skb2);
1869
1870                 if (skb_network_header(skb2) < skb2->data ||
1871                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1872                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1873                                              ntohs(skb2->protocol),
1874                                              dev->name);
1875                         skb_reset_network_header(skb2);
1876                 }
1877
1878                 skb2->transport_header = skb2->network_header;
1879                 skb2->pkt_type = PACKET_OUTGOING;
1880                 pt_prev = ptype;
1881         }
1882
1883         if (ptype_list == &ptype_all) {
1884                 ptype_list = &dev->ptype_all;
1885                 goto again;
1886         }
1887 out_unlock:
1888         if (pt_prev)
1889                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1890         rcu_read_unlock();
1891 }
1892
1893 /**
1894  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1895  * @dev: Network device
1896  * @txq: number of queues available
1897  *
1898  * If real_num_tx_queues is changed the tc mappings may no longer be
1899  * valid. To resolve this verify the tc mapping remains valid and if
1900  * not NULL the mapping. With no priorities mapping to this
1901  * offset/count pair it will no longer be used. In the worst case TC0
1902  * is invalid nothing can be done so disable priority mappings. If is
1903  * expected that drivers will fix this mapping if they can before
1904  * calling netif_set_real_num_tx_queues.
1905  */
1906 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1907 {
1908         int i;
1909         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1910
1911         /* If TC0 is invalidated disable TC mapping */
1912         if (tc->offset + tc->count > txq) {
1913                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1914                 dev->num_tc = 0;
1915                 return;
1916         }
1917
1918         /* Invalidated prio to tc mappings set to TC0 */
1919         for (i = 1; i < TC_BITMASK + 1; i++) {
1920                 int q = netdev_get_prio_tc_map(dev, i);
1921
1922                 tc = &dev->tc_to_txq[q];
1923                 if (tc->offset + tc->count > txq) {
1924                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1925                                 i, q);
1926                         netdev_set_prio_tc_map(dev, i, 0);
1927                 }
1928         }
1929 }
1930
1931 #ifdef CONFIG_XPS
1932 static DEFINE_MUTEX(xps_map_mutex);
1933 #define xmap_dereference(P)             \
1934         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1935
1936 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1937                                         int cpu, u16 index)
1938 {
1939         struct xps_map *map = NULL;
1940         int pos;
1941
1942         if (dev_maps)
1943                 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1944
1945         for (pos = 0; map && pos < map->len; pos++) {
1946                 if (map->queues[pos] == index) {
1947                         if (map->len > 1) {
1948                                 map->queues[pos] = map->queues[--map->len];
1949                         } else {
1950                                 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1951                                 kfree_rcu(map, rcu);
1952                                 map = NULL;
1953                         }
1954                         break;
1955                 }
1956         }
1957
1958         return map;
1959 }
1960
1961 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1962 {
1963         struct xps_dev_maps *dev_maps;
1964         int cpu, i;
1965         bool active = false;
1966
1967         mutex_lock(&xps_map_mutex);
1968         dev_maps = xmap_dereference(dev->xps_maps);
1969
1970         if (!dev_maps)
1971                 goto out_no_maps;
1972
1973         for_each_possible_cpu(cpu) {
1974                 for (i = index; i < dev->num_tx_queues; i++) {
1975                         if (!remove_xps_queue(dev_maps, cpu, i))
1976                                 break;
1977                 }
1978                 if (i == dev->num_tx_queues)
1979                         active = true;
1980         }
1981
1982         if (!active) {
1983                 RCU_INIT_POINTER(dev->xps_maps, NULL);
1984                 kfree_rcu(dev_maps, rcu);
1985         }
1986
1987         for (i = index; i < dev->num_tx_queues; i++)
1988                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1989                                              NUMA_NO_NODE);
1990
1991 out_no_maps:
1992         mutex_unlock(&xps_map_mutex);
1993 }
1994
1995 static struct xps_map *expand_xps_map(struct xps_map *map,
1996                                       int cpu, u16 index)
1997 {
1998         struct xps_map *new_map;
1999         int alloc_len = XPS_MIN_MAP_ALLOC;
2000         int i, pos;
2001
2002         for (pos = 0; map && pos < map->len; pos++) {
2003                 if (map->queues[pos] != index)
2004                         continue;
2005                 return map;
2006         }
2007
2008         /* Need to add queue to this CPU's existing map */
2009         if (map) {
2010                 if (pos < map->alloc_len)
2011                         return map;
2012
2013                 alloc_len = map->alloc_len * 2;
2014         }
2015
2016         /* Need to allocate new map to store queue on this CPU's map */
2017         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2018                                cpu_to_node(cpu));
2019         if (!new_map)
2020                 return NULL;
2021
2022         for (i = 0; i < pos; i++)
2023                 new_map->queues[i] = map->queues[i];
2024         new_map->alloc_len = alloc_len;
2025         new_map->len = pos;
2026
2027         return new_map;
2028 }
2029
2030 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2031                         u16 index)
2032 {
2033         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2034         struct xps_map *map, *new_map;
2035         int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2036         int cpu, numa_node_id = -2;
2037         bool active = false;
2038
2039         mutex_lock(&xps_map_mutex);
2040
2041         dev_maps = xmap_dereference(dev->xps_maps);
2042
2043         /* allocate memory for queue storage */
2044         for_each_online_cpu(cpu) {
2045                 if (!cpumask_test_cpu(cpu, mask))
2046                         continue;
2047
2048                 if (!new_dev_maps)
2049                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2050                 if (!new_dev_maps) {
2051                         mutex_unlock(&xps_map_mutex);
2052                         return -ENOMEM;
2053                 }
2054
2055                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2056                                  NULL;
2057
2058                 map = expand_xps_map(map, cpu, index);
2059                 if (!map)
2060                         goto error;
2061
2062                 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2063         }
2064
2065         if (!new_dev_maps)
2066                 goto out_no_new_maps;
2067
2068         for_each_possible_cpu(cpu) {
2069                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2070                         /* add queue to CPU maps */
2071                         int pos = 0;
2072
2073                         map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2074                         while ((pos < map->len) && (map->queues[pos] != index))
2075                                 pos++;
2076
2077                         if (pos == map->len)
2078                                 map->queues[map->len++] = index;
2079 #ifdef CONFIG_NUMA
2080                         if (numa_node_id == -2)
2081                                 numa_node_id = cpu_to_node(cpu);
2082                         else if (numa_node_id != cpu_to_node(cpu))
2083                                 numa_node_id = -1;
2084 #endif
2085                 } else if (dev_maps) {
2086                         /* fill in the new device map from the old device map */
2087                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2088                         RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2089                 }
2090
2091         }
2092
2093         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2094
2095         /* Cleanup old maps */
2096         if (dev_maps) {
2097                 for_each_possible_cpu(cpu) {
2098                         new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2099                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2100                         if (map && map != new_map)
2101                                 kfree_rcu(map, rcu);
2102                 }
2103
2104                 kfree_rcu(dev_maps, rcu);
2105         }
2106
2107         dev_maps = new_dev_maps;
2108         active = true;
2109
2110 out_no_new_maps:
2111         /* update Tx queue numa node */
2112         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2113                                      (numa_node_id >= 0) ? numa_node_id :
2114                                      NUMA_NO_NODE);
2115
2116         if (!dev_maps)
2117                 goto out_no_maps;
2118
2119         /* removes queue from unused CPUs */
2120         for_each_possible_cpu(cpu) {
2121                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2122                         continue;
2123
2124                 if (remove_xps_queue(dev_maps, cpu, index))
2125                         active = true;
2126         }
2127
2128         /* free map if not active */
2129         if (!active) {
2130                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2131                 kfree_rcu(dev_maps, rcu);
2132         }
2133
2134 out_no_maps:
2135         mutex_unlock(&xps_map_mutex);
2136
2137         return 0;
2138 error:
2139         /* remove any maps that we added */
2140         for_each_possible_cpu(cpu) {
2141                 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2142                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2143                                  NULL;
2144                 if (new_map && new_map != map)
2145                         kfree(new_map);
2146         }
2147
2148         mutex_unlock(&xps_map_mutex);
2149
2150         kfree(new_dev_maps);
2151         return -ENOMEM;
2152 }
2153 EXPORT_SYMBOL(netif_set_xps_queue);
2154
2155 #endif
2156 /*
2157  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2158  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2159  */
2160 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2161 {
2162         int rc;
2163
2164         if (txq < 1 || txq > dev->num_tx_queues)
2165                 return -EINVAL;
2166
2167         if (dev->reg_state == NETREG_REGISTERED ||
2168             dev->reg_state == NETREG_UNREGISTERING) {
2169                 ASSERT_RTNL();
2170
2171                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2172                                                   txq);
2173                 if (rc)
2174                         return rc;
2175
2176                 if (dev->num_tc)
2177                         netif_setup_tc(dev, txq);
2178
2179                 if (txq < dev->real_num_tx_queues) {
2180                         qdisc_reset_all_tx_gt(dev, txq);
2181 #ifdef CONFIG_XPS
2182                         netif_reset_xps_queues_gt(dev, txq);
2183 #endif
2184                 }
2185         }
2186
2187         dev->real_num_tx_queues = txq;
2188         return 0;
2189 }
2190 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2191
2192 #ifdef CONFIG_SYSFS
2193 /**
2194  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2195  *      @dev: Network device
2196  *      @rxq: Actual number of RX queues
2197  *
2198  *      This must be called either with the rtnl_lock held or before
2199  *      registration of the net device.  Returns 0 on success, or a
2200  *      negative error code.  If called before registration, it always
2201  *      succeeds.
2202  */
2203 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2204 {
2205         int rc;
2206
2207         if (rxq < 1 || rxq > dev->num_rx_queues)
2208                 return -EINVAL;
2209
2210         if (dev->reg_state == NETREG_REGISTERED) {
2211                 ASSERT_RTNL();
2212
2213                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2214                                                   rxq);
2215                 if (rc)
2216                         return rc;
2217         }
2218
2219         dev->real_num_rx_queues = rxq;
2220         return 0;
2221 }
2222 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2223 #endif
2224
2225 /**
2226  * netif_get_num_default_rss_queues - default number of RSS queues
2227  *
2228  * This routine should set an upper limit on the number of RSS queues
2229  * used by default by multiqueue devices.
2230  */
2231 int netif_get_num_default_rss_queues(void)
2232 {
2233         return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2234 }
2235 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2236
2237 static inline void __netif_reschedule(struct Qdisc *q)
2238 {
2239         struct softnet_data *sd;
2240         unsigned long flags;
2241
2242         local_irq_save(flags);
2243         sd = this_cpu_ptr(&softnet_data);
2244         q->next_sched = NULL;
2245         *sd->output_queue_tailp = q;
2246         sd->output_queue_tailp = &q->next_sched;
2247         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2248         local_irq_restore(flags);
2249 }
2250
2251 void __netif_schedule(struct Qdisc *q)
2252 {
2253         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2254                 __netif_reschedule(q);
2255 }
2256 EXPORT_SYMBOL(__netif_schedule);
2257
2258 struct dev_kfree_skb_cb {
2259         enum skb_free_reason reason;
2260 };
2261
2262 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2263 {
2264         return (struct dev_kfree_skb_cb *)skb->cb;
2265 }
2266
2267 void netif_schedule_queue(struct netdev_queue *txq)
2268 {
2269         rcu_read_lock();
2270         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2271                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2272
2273                 __netif_schedule(q);
2274         }
2275         rcu_read_unlock();
2276 }
2277 EXPORT_SYMBOL(netif_schedule_queue);
2278
2279 /**
2280  *      netif_wake_subqueue - allow sending packets on subqueue
2281  *      @dev: network device
2282  *      @queue_index: sub queue index
2283  *
2284  * Resume individual transmit queue of a device with multiple transmit queues.
2285  */
2286 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2287 {
2288         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2289
2290         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2291                 struct Qdisc *q;
2292
2293                 rcu_read_lock();
2294                 q = rcu_dereference(txq->qdisc);
2295                 __netif_schedule(q);
2296                 rcu_read_unlock();
2297         }
2298 }
2299 EXPORT_SYMBOL(netif_wake_subqueue);
2300
2301 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2302 {
2303         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2304                 struct Qdisc *q;
2305
2306                 rcu_read_lock();
2307                 q = rcu_dereference(dev_queue->qdisc);
2308                 __netif_schedule(q);
2309                 rcu_read_unlock();
2310         }
2311 }
2312 EXPORT_SYMBOL(netif_tx_wake_queue);
2313
2314 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2315 {
2316         unsigned long flags;
2317
2318         if (likely(atomic_read(&skb->users) == 1)) {
2319                 smp_rmb();
2320                 atomic_set(&skb->users, 0);
2321         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2322                 return;
2323         }
2324         get_kfree_skb_cb(skb)->reason = reason;
2325         local_irq_save(flags);
2326         skb->next = __this_cpu_read(softnet_data.completion_queue);
2327         __this_cpu_write(softnet_data.completion_queue, skb);
2328         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2329         local_irq_restore(flags);
2330 }
2331 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2332
2333 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2334 {
2335         if (in_irq() || irqs_disabled())
2336                 __dev_kfree_skb_irq(skb, reason);
2337         else
2338                 dev_kfree_skb(skb);
2339 }
2340 EXPORT_SYMBOL(__dev_kfree_skb_any);
2341
2342
2343 /**
2344  * netif_device_detach - mark device as removed
2345  * @dev: network device
2346  *
2347  * Mark device as removed from system and therefore no longer available.
2348  */
2349 void netif_device_detach(struct net_device *dev)
2350 {
2351         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2352             netif_running(dev)) {
2353                 netif_tx_stop_all_queues(dev);
2354         }
2355 }
2356 EXPORT_SYMBOL(netif_device_detach);
2357
2358 /**
2359  * netif_device_attach - mark device as attached
2360  * @dev: network device
2361  *
2362  * Mark device as attached from system and restart if needed.
2363  */
2364 void netif_device_attach(struct net_device *dev)
2365 {
2366         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2367             netif_running(dev)) {
2368                 netif_tx_wake_all_queues(dev);
2369                 __netdev_watchdog_up(dev);
2370         }
2371 }
2372 EXPORT_SYMBOL(netif_device_attach);
2373
2374 /*
2375  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2376  * to be used as a distribution range.
2377  */
2378 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2379                   unsigned int num_tx_queues)
2380 {
2381         u32 hash;
2382         u16 qoffset = 0;
2383         u16 qcount = num_tx_queues;
2384
2385         if (skb_rx_queue_recorded(skb)) {
2386                 hash = skb_get_rx_queue(skb);
2387                 while (unlikely(hash >= num_tx_queues))
2388                         hash -= num_tx_queues;
2389                 return hash;
2390         }
2391
2392         if (dev->num_tc) {
2393                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2394                 qoffset = dev->tc_to_txq[tc].offset;
2395                 qcount = dev->tc_to_txq[tc].count;
2396         }
2397
2398         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2399 }
2400 EXPORT_SYMBOL(__skb_tx_hash);
2401
2402 static void skb_warn_bad_offload(const struct sk_buff *skb)
2403 {
2404         static const netdev_features_t null_features = 0;
2405         struct net_device *dev = skb->dev;
2406         const char *driver = "";
2407
2408         if (!net_ratelimit())
2409                 return;
2410
2411         if (dev && dev->dev.parent)
2412                 driver = dev_driver_string(dev->dev.parent);
2413
2414         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2415              "gso_type=%d ip_summed=%d\n",
2416              driver, dev ? &dev->features : &null_features,
2417              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2418              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2419              skb_shinfo(skb)->gso_type, skb->ip_summed);
2420 }
2421
2422 /*
2423  * Invalidate hardware checksum when packet is to be mangled, and
2424  * complete checksum manually on outgoing path.
2425  */
2426 int skb_checksum_help(struct sk_buff *skb)
2427 {
2428         __wsum csum;
2429         int ret = 0, offset;
2430
2431         if (skb->ip_summed == CHECKSUM_COMPLETE)
2432                 goto out_set_summed;
2433
2434         if (unlikely(skb_shinfo(skb)->gso_size)) {
2435                 skb_warn_bad_offload(skb);
2436                 return -EINVAL;
2437         }
2438
2439         /* Before computing a checksum, we should make sure no frag could
2440          * be modified by an external entity : checksum could be wrong.
2441          */
2442         if (skb_has_shared_frag(skb)) {
2443                 ret = __skb_linearize(skb);
2444                 if (ret)
2445                         goto out;
2446         }
2447
2448         offset = skb_checksum_start_offset(skb);
2449         BUG_ON(offset >= skb_headlen(skb));
2450         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2451
2452         offset += skb->csum_offset;
2453         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2454
2455         if (skb_cloned(skb) &&
2456             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2457                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2458                 if (ret)
2459                         goto out;
2460         }
2461
2462         *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2463 out_set_summed:
2464         skb->ip_summed = CHECKSUM_NONE;
2465 out:
2466         return ret;
2467 }
2468 EXPORT_SYMBOL(skb_checksum_help);
2469
2470 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2471 {
2472         __be16 type = skb->protocol;
2473
2474         /* Tunnel gso handlers can set protocol to ethernet. */
2475         if (type == htons(ETH_P_TEB)) {
2476                 struct ethhdr *eth;
2477
2478                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2479                         return 0;
2480
2481                 eth = (struct ethhdr *)skb_mac_header(skb);
2482                 type = eth->h_proto;
2483         }
2484
2485         return __vlan_get_protocol(skb, type, depth);
2486 }
2487
2488 /**
2489  *      skb_mac_gso_segment - mac layer segmentation handler.
2490  *      @skb: buffer to segment
2491  *      @features: features for the output path (see dev->features)
2492  */
2493 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2494                                     netdev_features_t features)
2495 {
2496         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2497         struct packet_offload *ptype;
2498         int vlan_depth = skb->mac_len;
2499         __be16 type = skb_network_protocol(skb, &vlan_depth);
2500
2501         if (unlikely(!type))
2502                 return ERR_PTR(-EINVAL);
2503
2504         __skb_pull(skb, vlan_depth);
2505
2506         rcu_read_lock();
2507         list_for_each_entry_rcu(ptype, &offload_base, list) {
2508                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2509                         segs = ptype->callbacks.gso_segment(skb, features);
2510                         break;
2511                 }
2512         }
2513         rcu_read_unlock();
2514
2515         __skb_push(skb, skb->data - skb_mac_header(skb));
2516
2517         return segs;
2518 }
2519 EXPORT_SYMBOL(skb_mac_gso_segment);
2520
2521
2522 /* openvswitch calls this on rx path, so we need a different check.
2523  */
2524 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2525 {
2526         if (tx_path)
2527                 return skb->ip_summed != CHECKSUM_PARTIAL;
2528         else
2529                 return skb->ip_summed == CHECKSUM_NONE;
2530 }
2531
2532 /**
2533  *      __skb_gso_segment - Perform segmentation on skb.
2534  *      @skb: buffer to segment
2535  *      @features: features for the output path (see dev->features)
2536  *      @tx_path: whether it is called in TX path
2537  *
2538  *      This function segments the given skb and returns a list of segments.
2539  *
2540  *      It may return NULL if the skb requires no segmentation.  This is
2541  *      only possible when GSO is used for verifying header integrity.
2542  */
2543 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2544                                   netdev_features_t features, bool tx_path)
2545 {
2546         if (unlikely(skb_needs_check(skb, tx_path))) {
2547                 int err;
2548
2549                 skb_warn_bad_offload(skb);
2550
2551                 err = skb_cow_head(skb, 0);
2552                 if (err < 0)
2553                         return ERR_PTR(err);
2554         }
2555
2556         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2557         SKB_GSO_CB(skb)->encap_level = 0;
2558
2559         skb_reset_mac_header(skb);
2560         skb_reset_mac_len(skb);
2561
2562         return skb_mac_gso_segment(skb, features);
2563 }
2564 EXPORT_SYMBOL(__skb_gso_segment);
2565
2566 /* Take action when hardware reception checksum errors are detected. */
2567 #ifdef CONFIG_BUG
2568 void netdev_rx_csum_fault(struct net_device *dev)
2569 {
2570         if (net_ratelimit()) {
2571                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2572                 dump_stack();
2573         }
2574 }
2575 EXPORT_SYMBOL(netdev_rx_csum_fault);
2576 #endif
2577
2578 /* Actually, we should eliminate this check as soon as we know, that:
2579  * 1. IOMMU is present and allows to map all the memory.
2580  * 2. No high memory really exists on this machine.
2581  */
2582
2583 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2584 {
2585 #ifdef CONFIG_HIGHMEM
2586         int i;
2587         if (!(dev->features & NETIF_F_HIGHDMA)) {
2588                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2589                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2590                         if (PageHighMem(skb_frag_page(frag)))
2591                                 return 1;
2592                 }
2593         }
2594
2595         if (PCI_DMA_BUS_IS_PHYS) {
2596                 struct device *pdev = dev->dev.parent;
2597
2598                 if (!pdev)
2599                         return 0;
2600                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2601                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2602                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2603                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2604                                 return 1;
2605                 }
2606         }
2607 #endif
2608         return 0;
2609 }
2610
2611 /* If MPLS offload request, verify we are testing hardware MPLS features
2612  * instead of standard features for the netdev.
2613  */
2614 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2615 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2616                                            netdev_features_t features,
2617                                            __be16 type)
2618 {
2619         if (eth_p_mpls(type))
2620                 features &= skb->dev->mpls_features;
2621
2622         return features;
2623 }
2624 #else
2625 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2626                                            netdev_features_t features,
2627                                            __be16 type)
2628 {
2629         return features;
2630 }
2631 #endif
2632
2633 static netdev_features_t harmonize_features(struct sk_buff *skb,
2634         netdev_features_t features)
2635 {
2636         int tmp;
2637         __be16 type;
2638
2639         type = skb_network_protocol(skb, &tmp);
2640         features = net_mpls_features(skb, features, type);
2641
2642         if (skb->ip_summed != CHECKSUM_NONE &&
2643             !can_checksum_protocol(features, type)) {
2644                 features &= ~NETIF_F_ALL_CSUM;
2645         } else if (illegal_highdma(skb->dev, skb)) {
2646                 features &= ~NETIF_F_SG;
2647         }
2648
2649         return features;
2650 }
2651
2652 netdev_features_t passthru_features_check(struct sk_buff *skb,
2653                                           struct net_device *dev,
2654                                           netdev_features_t features)
2655 {
2656         return features;
2657 }
2658 EXPORT_SYMBOL(passthru_features_check);
2659
2660 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2661                                              struct net_device *dev,
2662                                              netdev_features_t features)
2663 {
2664         return vlan_features_check(skb, features);
2665 }
2666
2667 netdev_features_t netif_skb_features(struct sk_buff *skb)
2668 {
2669         struct net_device *dev = skb->dev;
2670         netdev_features_t features = dev->features;
2671         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2672
2673         if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2674                 features &= ~NETIF_F_GSO_MASK;
2675
2676         /* If encapsulation offload request, verify we are testing
2677          * hardware encapsulation features instead of standard
2678          * features for the netdev
2679          */
2680         if (skb->encapsulation)
2681                 features &= dev->hw_enc_features;
2682
2683         if (skb_vlan_tagged(skb))
2684                 features = netdev_intersect_features(features,
2685                                                      dev->vlan_features |
2686                                                      NETIF_F_HW_VLAN_CTAG_TX |
2687                                                      NETIF_F_HW_VLAN_STAG_TX);
2688
2689         if (dev->netdev_ops->ndo_features_check)
2690                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2691                                                                 features);
2692         else
2693                 features &= dflt_features_check(skb, dev, features);
2694
2695         return harmonize_features(skb, features);
2696 }
2697 EXPORT_SYMBOL(netif_skb_features);
2698
2699 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2700                     struct netdev_queue *txq, bool more)
2701 {
2702         unsigned int len;
2703         int rc;
2704
2705         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2706                 dev_queue_xmit_nit(skb, dev);
2707
2708         len = skb->len;
2709         trace_net_dev_start_xmit(skb, dev);
2710         rc = netdev_start_xmit(skb, dev, txq, more);
2711         trace_net_dev_xmit(skb, rc, dev, len);
2712
2713         return rc;
2714 }
2715
2716 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2717                                     struct netdev_queue *txq, int *ret)
2718 {
2719         struct sk_buff *skb = first;
2720         int rc = NETDEV_TX_OK;
2721
2722         while (skb) {
2723                 struct sk_buff *next = skb->next;
2724
2725                 skb->next = NULL;
2726                 rc = xmit_one(skb, dev, txq, next != NULL);
2727                 if (unlikely(!dev_xmit_complete(rc))) {
2728                         skb->next = next;
2729                         goto out;
2730                 }
2731
2732                 skb = next;
2733                 if (netif_xmit_stopped(txq) && skb) {
2734                         rc = NETDEV_TX_BUSY;
2735                         break;
2736                 }
2737         }
2738
2739 out:
2740         *ret = rc;
2741         return skb;
2742 }
2743
2744 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2745                                           netdev_features_t features)
2746 {
2747         if (skb_vlan_tag_present(skb) &&
2748             !vlan_hw_offload_capable(features, skb->vlan_proto))
2749                 skb = __vlan_hwaccel_push_inside(skb);
2750         return skb;
2751 }
2752
2753 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2754 {
2755         netdev_features_t features;
2756
2757         if (skb->next)
2758                 return skb;
2759
2760         features = netif_skb_features(skb);
2761         skb = validate_xmit_vlan(skb, features);
2762         if (unlikely(!skb))
2763                 goto out_null;
2764
2765         if (netif_needs_gso(skb, features)) {
2766                 struct sk_buff *segs;
2767
2768                 segs = skb_gso_segment(skb, features);
2769                 if (IS_ERR(segs)) {
2770                         goto out_kfree_skb;
2771                 } else if (segs) {
2772                         consume_skb(skb);
2773                         skb = segs;
2774                 }
2775         } else {
2776                 if (skb_needs_linearize(skb, features) &&
2777                     __skb_linearize(skb))
2778                         goto out_kfree_skb;
2779
2780                 /* If packet is not checksummed and device does not
2781                  * support checksumming for this protocol, complete
2782                  * checksumming here.
2783                  */
2784                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2785                         if (skb->encapsulation)
2786                                 skb_set_inner_transport_header(skb,
2787                                                                skb_checksum_start_offset(skb));
2788                         else
2789                                 skb_set_transport_header(skb,
2790                                                          skb_checksum_start_offset(skb));
2791                         if (!(features & NETIF_F_ALL_CSUM) &&
2792                             skb_checksum_help(skb))
2793                                 goto out_kfree_skb;
2794                 }
2795         }
2796
2797         return skb;
2798
2799 out_kfree_skb:
2800         kfree_skb(skb);
2801 out_null:
2802         return NULL;
2803 }
2804
2805 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2806 {
2807         struct sk_buff *next, *head = NULL, *tail;
2808
2809         for (; skb != NULL; skb = next) {
2810                 next = skb->next;
2811                 skb->next = NULL;
2812
2813                 /* in case skb wont be segmented, point to itself */
2814                 skb->prev = skb;
2815
2816                 skb = validate_xmit_skb(skb, dev);
2817                 if (!skb)
2818                         continue;
2819
2820                 if (!head)
2821                         head = skb;
2822                 else
2823                         tail->next = skb;
2824                 /* If skb was segmented, skb->prev points to
2825                  * the last segment. If not, it still contains skb.
2826                  */
2827                 tail = skb->prev;
2828         }
2829         return head;
2830 }
2831
2832 static void qdisc_pkt_len_init(struct sk_buff *skb)
2833 {
2834         const struct skb_shared_info *shinfo = skb_shinfo(skb);
2835
2836         qdisc_skb_cb(skb)->pkt_len = skb->len;
2837
2838         /* To get more precise estimation of bytes sent on wire,
2839          * we add to pkt_len the headers size of all segments
2840          */
2841         if (shinfo->gso_size)  {
2842                 unsigned int hdr_len;
2843                 u16 gso_segs = shinfo->gso_segs;
2844
2845                 /* mac layer + network layer */
2846                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2847
2848                 /* + transport layer */
2849                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2850                         hdr_len += tcp_hdrlen(skb);
2851                 else
2852                         hdr_len += sizeof(struct udphdr);
2853
2854                 if (shinfo->gso_type & SKB_GSO_DODGY)
2855                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2856                                                 shinfo->gso_size);
2857
2858                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2859         }
2860 }
2861
2862 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2863                                  struct net_device *dev,
2864                                  struct netdev_queue *txq)
2865 {
2866         spinlock_t *root_lock = qdisc_lock(q);
2867         bool contended;
2868         int rc;
2869
2870         qdisc_pkt_len_init(skb);
2871         qdisc_calculate_pkt_len(skb, q);
2872         /*
2873          * Heuristic to force contended enqueues to serialize on a
2874          * separate lock before trying to get qdisc main lock.
2875          * This permits __QDISC___STATE_RUNNING owner to get the lock more
2876          * often and dequeue packets faster.
2877          */
2878         contended = qdisc_is_running(q);
2879         if (unlikely(contended))
2880                 spin_lock(&q->busylock);
2881
2882         spin_lock(root_lock);
2883         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2884                 kfree_skb(skb);
2885                 rc = NET_XMIT_DROP;
2886         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2887                    qdisc_run_begin(q)) {
2888                 /*
2889                  * This is a work-conserving queue; there are no old skbs
2890                  * waiting to be sent out; and the qdisc is not running -
2891                  * xmit the skb directly.
2892                  */
2893
2894                 qdisc_bstats_update(q, skb);
2895
2896                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2897                         if (unlikely(contended)) {
2898                                 spin_unlock(&q->busylock);
2899                                 contended = false;
2900                         }
2901                         __qdisc_run(q);
2902                 } else
2903                         qdisc_run_end(q);
2904
2905                 rc = NET_XMIT_SUCCESS;
2906         } else {
2907                 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2908                 if (qdisc_run_begin(q)) {
2909                         if (unlikely(contended)) {
2910                                 spin_unlock(&q->busylock);
2911                                 contended = false;
2912                         }
2913                         __qdisc_run(q);
2914                 }
2915         }
2916         spin_unlock(root_lock);
2917         if (unlikely(contended))
2918                 spin_unlock(&q->busylock);
2919         return rc;
2920 }
2921
2922 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2923 static void skb_update_prio(struct sk_buff *skb)
2924 {
2925         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2926
2927         if (!skb->priority && skb->sk && map) {
2928                 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2929
2930                 if (prioidx < map->priomap_len)
2931                         skb->priority = map->priomap[prioidx];
2932         }
2933 }
2934 #else
2935 #define skb_update_prio(skb)
2936 #endif
2937
2938 DEFINE_PER_CPU(int, xmit_recursion);
2939 EXPORT_SYMBOL(xmit_recursion);
2940
2941 #define RECURSION_LIMIT 10
2942
2943 /**
2944  *      dev_loopback_xmit - loop back @skb
2945  *      @skb: buffer to transmit
2946  */
2947 int dev_loopback_xmit(struct sock *sk, struct sk_buff *skb)
2948 {
2949         skb_reset_mac_header(skb);
2950         __skb_pull(skb, skb_network_offset(skb));
2951         skb->pkt_type = PACKET_LOOPBACK;
2952         skb->ip_summed = CHECKSUM_UNNECESSARY;
2953         WARN_ON(!skb_dst(skb));
2954         skb_dst_force(skb);
2955         netif_rx_ni(skb);
2956         return 0;
2957 }
2958 EXPORT_SYMBOL(dev_loopback_xmit);
2959
2960 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2961 {
2962 #ifdef CONFIG_XPS
2963         struct xps_dev_maps *dev_maps;
2964         struct xps_map *map;
2965         int queue_index = -1;
2966
2967         rcu_read_lock();
2968         dev_maps = rcu_dereference(dev->xps_maps);
2969         if (dev_maps) {
2970                 map = rcu_dereference(
2971                     dev_maps->cpu_map[skb->sender_cpu - 1]);
2972                 if (map) {
2973                         if (map->len == 1)
2974                                 queue_index = map->queues[0];
2975                         else
2976                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
2977                                                                            map->len)];
2978                         if (unlikely(queue_index >= dev->real_num_tx_queues))
2979                                 queue_index = -1;
2980                 }
2981         }
2982         rcu_read_unlock();
2983
2984         return queue_index;
2985 #else
2986         return -1;
2987 #endif
2988 }
2989
2990 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
2991 {
2992         struct sock *sk = skb->sk;
2993         int queue_index = sk_tx_queue_get(sk);
2994
2995         if (queue_index < 0 || skb->ooo_okay ||
2996             queue_index >= dev->real_num_tx_queues) {
2997                 int new_index = get_xps_queue(dev, skb);
2998                 if (new_index < 0)
2999                         new_index = skb_tx_hash(dev, skb);
3000
3001                 if (queue_index != new_index && sk &&
3002                     rcu_access_pointer(sk->sk_dst_cache))
3003                         sk_tx_queue_set(sk, new_index);
3004
3005                 queue_index = new_index;
3006         }
3007
3008         return queue_index;
3009 }
3010
3011 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3012                                     struct sk_buff *skb,
3013                                     void *accel_priv)
3014 {
3015         int queue_index = 0;
3016
3017 #ifdef CONFIG_XPS
3018         if (skb->sender_cpu == 0)
3019                 skb->sender_cpu = raw_smp_processor_id() + 1;
3020 #endif
3021
3022         if (dev->real_num_tx_queues != 1) {
3023                 const struct net_device_ops *ops = dev->netdev_ops;
3024                 if (ops->ndo_select_queue)
3025                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3026                                                             __netdev_pick_tx);
3027                 else
3028                         queue_index = __netdev_pick_tx(dev, skb);
3029
3030                 if (!accel_priv)
3031                         queue_index = netdev_cap_txqueue(dev, queue_index);
3032         }
3033
3034         skb_set_queue_mapping(skb, queue_index);
3035         return netdev_get_tx_queue(dev, queue_index);
3036 }
3037
3038 /**
3039  *      __dev_queue_xmit - transmit a buffer
3040  *      @skb: buffer to transmit
3041  *      @accel_priv: private data used for L2 forwarding offload
3042  *
3043  *      Queue a buffer for transmission to a network device. The caller must
3044  *      have set the device and priority and built the buffer before calling
3045  *      this function. The function can be called from an interrupt.
3046  *
3047  *      A negative errno code is returned on a failure. A success does not
3048  *      guarantee the frame will be transmitted as it may be dropped due
3049  *      to congestion or traffic shaping.
3050  *
3051  * -----------------------------------------------------------------------------------
3052  *      I notice this method can also return errors from the queue disciplines,
3053  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3054  *      be positive.
3055  *
3056  *      Regardless of the return value, the skb is consumed, so it is currently
3057  *      difficult to retry a send to this method.  (You can bump the ref count
3058  *      before sending to hold a reference for retry if you are careful.)
3059  *
3060  *      When calling this method, interrupts MUST be enabled.  This is because
3061  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3062  *          --BLG
3063  */
3064 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3065 {
3066         struct net_device *dev = skb->dev;
3067         struct netdev_queue *txq;
3068         struct Qdisc *q;
3069         int rc = -ENOMEM;
3070
3071         skb_reset_mac_header(skb);
3072
3073         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3074                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3075
3076         /* Disable soft irqs for various locks below. Also
3077          * stops preemption for RCU.
3078          */
3079         rcu_read_lock_bh();
3080
3081         skb_update_prio(skb);
3082
3083         /* If device/qdisc don't need skb->dst, release it right now while
3084          * its hot in this cpu cache.
3085          */
3086         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3087                 skb_dst_drop(skb);
3088         else
3089                 skb_dst_force(skb);
3090
3091 #ifdef CONFIG_NET_SWITCHDEV
3092         /* Don't forward if offload device already forwarded */
3093         if (skb->offload_fwd_mark &&
3094             skb->offload_fwd_mark == dev->offload_fwd_mark) {
3095                 consume_skb(skb);
3096                 rc = NET_XMIT_SUCCESS;
3097                 goto out;
3098         }
3099 #endif
3100
3101         txq = netdev_pick_tx(dev, skb, accel_priv);
3102         q = rcu_dereference_bh(txq->qdisc);
3103
3104 #ifdef CONFIG_NET_CLS_ACT
3105         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3106 #endif
3107         trace_net_dev_queue(skb);
3108         if (q->enqueue) {
3109                 rc = __dev_xmit_skb(skb, q, dev, txq);
3110                 goto out;
3111         }
3112
3113         /* The device has no queue. Common case for software devices:
3114            loopback, all the sorts of tunnels...
3115
3116            Really, it is unlikely that netif_tx_lock protection is necessary
3117            here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3118            counters.)
3119            However, it is possible, that they rely on protection
3120            made by us here.
3121
3122            Check this and shot the lock. It is not prone from deadlocks.
3123            Either shot noqueue qdisc, it is even simpler 8)
3124          */
3125         if (dev->flags & IFF_UP) {
3126                 int cpu = smp_processor_id(); /* ok because BHs are off */
3127
3128                 if (txq->xmit_lock_owner != cpu) {
3129
3130                         if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3131                                 goto recursion_alert;
3132
3133                         skb = validate_xmit_skb(skb, dev);
3134                         if (!skb)
3135                                 goto drop;
3136
3137                         HARD_TX_LOCK(dev, txq, cpu);
3138
3139                         if (!netif_xmit_stopped(txq)) {
3140                                 __this_cpu_inc(xmit_recursion);
3141                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3142                                 __this_cpu_dec(xmit_recursion);
3143                                 if (dev_xmit_complete(rc)) {
3144                                         HARD_TX_UNLOCK(dev, txq);
3145                                         goto out;
3146                                 }
3147                         }
3148                         HARD_TX_UNLOCK(dev, txq);
3149                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3150                                              dev->name);
3151                 } else {
3152                         /* Recursion is detected! It is possible,
3153                          * unfortunately
3154                          */
3155 recursion_alert:
3156                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3157                                              dev->name);
3158                 }
3159         }
3160
3161         rc = -ENETDOWN;
3162 drop:
3163         rcu_read_unlock_bh();
3164
3165         atomic_long_inc(&dev->tx_dropped);
3166         kfree_skb_list(skb);
3167         return rc;
3168 out:
3169         rcu_read_unlock_bh();
3170         return rc;
3171 }
3172
3173 int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb)
3174 {
3175         return __dev_queue_xmit(skb, NULL);
3176 }
3177 EXPORT_SYMBOL(dev_queue_xmit_sk);
3178
3179 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3180 {
3181         return __dev_queue_xmit(skb, accel_priv);
3182 }
3183 EXPORT_SYMBOL(dev_queue_xmit_accel);
3184
3185
3186 /*=======================================================================
3187                         Receiver routines
3188   =======================================================================*/
3189
3190 int netdev_max_backlog __read_mostly = 1000;
3191 EXPORT_SYMBOL(netdev_max_backlog);
3192
3193 int netdev_tstamp_prequeue __read_mostly = 1;
3194 int netdev_budget __read_mostly = 300;
3195 int weight_p __read_mostly = 64;            /* old backlog weight */
3196
3197 /* Called with irq disabled */
3198 static inline void ____napi_schedule(struct softnet_data *sd,
3199                                      struct napi_struct *napi)
3200 {
3201         list_add_tail(&napi->poll_list, &sd->poll_list);
3202         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3203 }
3204
3205 #ifdef CONFIG_RPS
3206
3207 /* One global table that all flow-based protocols share. */
3208 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3209 EXPORT_SYMBOL(rps_sock_flow_table);
3210 u32 rps_cpu_mask __read_mostly;
3211 EXPORT_SYMBOL(rps_cpu_mask);
3212
3213 struct static_key rps_needed __read_mostly;
3214
3215 static struct rps_dev_flow *
3216 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3217             struct rps_dev_flow *rflow, u16 next_cpu)
3218 {
3219         if (next_cpu < nr_cpu_ids) {
3220 #ifdef CONFIG_RFS_ACCEL
3221                 struct netdev_rx_queue *rxqueue;
3222                 struct rps_dev_flow_table *flow_table;
3223                 struct rps_dev_flow *old_rflow;
3224                 u32 flow_id;
3225                 u16 rxq_index;
3226                 int rc;
3227
3228                 /* Should we steer this flow to a different hardware queue? */
3229                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3230                     !(dev->features & NETIF_F_NTUPLE))
3231                         goto out;
3232                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3233                 if (rxq_index == skb_get_rx_queue(skb))
3234                         goto out;
3235
3236                 rxqueue = dev->_rx + rxq_index;
3237                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3238                 if (!flow_table)
3239                         goto out;
3240                 flow_id = skb_get_hash(skb) & flow_table->mask;
3241                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3242                                                         rxq_index, flow_id);
3243                 if (rc < 0)
3244                         goto out;
3245                 old_rflow = rflow;
3246                 rflow = &flow_table->flows[flow_id];
3247                 rflow->filter = rc;
3248                 if (old_rflow->filter == rflow->filter)
3249                         old_rflow->filter = RPS_NO_FILTER;
3250         out:
3251 #endif
3252                 rflow->last_qtail =
3253                         per_cpu(softnet_data, next_cpu).input_queue_head;
3254         }
3255
3256         rflow->cpu = next_cpu;
3257         return rflow;
3258 }
3259
3260 /*
3261  * get_rps_cpu is called from netif_receive_skb and returns the target
3262  * CPU from the RPS map of the receiving queue for a given skb.
3263  * rcu_read_lock must be held on entry.
3264  */
3265 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3266                        struct rps_dev_flow **rflowp)
3267 {
3268         const struct rps_sock_flow_table *sock_flow_table;
3269         struct netdev_rx_queue *rxqueue = dev->_rx;
3270         struct rps_dev_flow_table *flow_table;
3271         struct rps_map *map;
3272         int cpu = -1;
3273         u32 tcpu;
3274         u32 hash;
3275
3276         if (skb_rx_queue_recorded(skb)) {
3277                 u16 index = skb_get_rx_queue(skb);
3278
3279                 if (unlikely(index >= dev->real_num_rx_queues)) {
3280                         WARN_ONCE(dev->real_num_rx_queues > 1,
3281                                   "%s received packet on queue %u, but number "
3282                                   "of RX queues is %u\n",
3283                                   dev->name, index, dev->real_num_rx_queues);
3284                         goto done;
3285                 }
3286                 rxqueue += index;
3287         }
3288
3289         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3290
3291         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3292         map = rcu_dereference(rxqueue->rps_map);
3293         if (!flow_table && !map)
3294                 goto done;
3295
3296         skb_reset_network_header(skb);
3297         hash = skb_get_hash(skb);
3298         if (!hash)
3299                 goto done;
3300
3301         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3302         if (flow_table && sock_flow_table) {
3303                 struct rps_dev_flow *rflow;
3304                 u32 next_cpu;
3305                 u32 ident;
3306
3307                 /* First check into global flow table if there is a match */
3308                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3309                 if ((ident ^ hash) & ~rps_cpu_mask)
3310                         goto try_rps;
3311
3312                 next_cpu = ident & rps_cpu_mask;
3313
3314                 /* OK, now we know there is a match,
3315                  * we can look at the local (per receive queue) flow table
3316                  */
3317                 rflow = &flow_table->flows[hash & flow_table->mask];
3318                 tcpu = rflow->cpu;
3319
3320                 /*
3321                  * If the desired CPU (where last recvmsg was done) is
3322                  * different from current CPU (one in the rx-queue flow
3323                  * table entry), switch if one of the following holds:
3324                  *   - Current CPU is unset (>= nr_cpu_ids).
3325                  *   - Current CPU is offline.
3326                  *   - The current CPU's queue tail has advanced beyond the
3327                  *     last packet that was enqueued using this table entry.
3328                  *     This guarantees that all previous packets for the flow
3329                  *     have been dequeued, thus preserving in order delivery.
3330                  */
3331                 if (unlikely(tcpu != next_cpu) &&
3332                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3333                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3334                       rflow->last_qtail)) >= 0)) {
3335                         tcpu = next_cpu;
3336                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3337                 }
3338
3339                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3340                         *rflowp = rflow;
3341                         cpu = tcpu;
3342                         goto done;
3343                 }
3344         }
3345
3346 try_rps:
3347
3348         if (map) {
3349                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3350                 if (cpu_online(tcpu)) {
3351                         cpu = tcpu;
3352                         goto done;
3353                 }
3354         }
3355
3356 done:
3357         return cpu;
3358 }
3359
3360 #ifdef CONFIG_RFS_ACCEL
3361
3362 /**
3363  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3364  * @dev: Device on which the filter was set
3365  * @rxq_index: RX queue index
3366  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3367  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3368  *
3369  * Drivers that implement ndo_rx_flow_steer() should periodically call
3370  * this function for each installed filter and remove the filters for
3371  * which it returns %true.
3372  */
3373 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3374                          u32 flow_id, u16 filter_id)
3375 {
3376         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3377         struct rps_dev_flow_table *flow_table;
3378         struct rps_dev_flow *rflow;
3379         bool expire = true;
3380         unsigned int cpu;
3381
3382         rcu_read_lock();
3383         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3384         if (flow_table && flow_id <= flow_table->mask) {
3385                 rflow = &flow_table->flows[flow_id];
3386                 cpu = ACCESS_ONCE(rflow->cpu);
3387                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3388                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3389                            rflow->last_qtail) <
3390                      (int)(10 * flow_table->mask)))
3391                         expire = false;
3392         }
3393         rcu_read_unlock();
3394         return expire;
3395 }
3396 EXPORT_SYMBOL(rps_may_expire_flow);
3397
3398 #endif /* CONFIG_RFS_ACCEL */
3399
3400 /* Called from hardirq (IPI) context */
3401 static void rps_trigger_softirq(void *data)
3402 {
3403         struct softnet_data *sd = data;
3404
3405         ____napi_schedule(sd, &sd->backlog);
3406         sd->received_rps++;
3407 }
3408
3409 #endif /* CONFIG_RPS */
3410
3411 /*
3412  * Check if this softnet_data structure is another cpu one
3413  * If yes, queue it to our IPI list and return 1
3414  * If no, return 0
3415  */
3416 static int rps_ipi_queued(struct softnet_data *sd)
3417 {
3418 #ifdef CONFIG_RPS
3419         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3420
3421         if (sd != mysd) {
3422                 sd->rps_ipi_next = mysd->rps_ipi_list;
3423                 mysd->rps_ipi_list = sd;
3424
3425                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3426                 return 1;
3427         }
3428 #endif /* CONFIG_RPS */
3429         return 0;
3430 }
3431
3432 #ifdef CONFIG_NET_FLOW_LIMIT
3433 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3434 #endif
3435
3436 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3437 {
3438 #ifdef CONFIG_NET_FLOW_LIMIT
3439         struct sd_flow_limit *fl;
3440         struct softnet_data *sd;
3441         unsigned int old_flow, new_flow;
3442
3443         if (qlen < (netdev_max_backlog >> 1))
3444                 return false;
3445
3446         sd = this_cpu_ptr(&softnet_data);
3447
3448         rcu_read_lock();
3449         fl = rcu_dereference(sd->flow_limit);
3450         if (fl) {
3451                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3452                 old_flow = fl->history[fl->history_head];
3453                 fl->history[fl->history_head] = new_flow;
3454
3455                 fl->history_head++;
3456                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3457
3458                 if (likely(fl->buckets[old_flow]))
3459                         fl->buckets[old_flow]--;
3460
3461                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3462                         fl->count++;
3463                         rcu_read_unlock();
3464                         return true;
3465                 }
3466         }
3467         rcu_read_unlock();
3468 #endif
3469         return false;
3470 }
3471
3472 /*
3473  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3474  * queue (may be a remote CPU queue).
3475  */
3476 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3477                               unsigned int *qtail)
3478 {
3479         struct softnet_data *sd;
3480         unsigned long flags;
3481         unsigned int qlen;
3482
3483         sd = &per_cpu(softnet_data, cpu);
3484
3485         local_irq_save(flags);
3486
3487         rps_lock(sd);
3488         if (!netif_running(skb->dev))
3489                 goto drop;
3490         qlen = skb_queue_len(&sd->input_pkt_queue);
3491         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3492                 if (qlen) {
3493 enqueue:
3494                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3495                         input_queue_tail_incr_save(sd, qtail);
3496                         rps_unlock(sd);
3497                         local_irq_restore(flags);
3498                         return NET_RX_SUCCESS;
3499                 }
3500
3501                 /* Schedule NAPI for backlog device
3502                  * We can use non atomic operation since we own the queue lock
3503                  */
3504                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3505                         if (!rps_ipi_queued(sd))
3506                                 ____napi_schedule(sd, &sd->backlog);
3507                 }
3508                 goto enqueue;
3509         }
3510
3511 drop:
3512         sd->dropped++;
3513         rps_unlock(sd);
3514
3515         local_irq_restore(flags);
3516
3517         atomic_long_inc(&skb->dev->rx_dropped);
3518         kfree_skb(skb);
3519         return NET_RX_DROP;
3520 }
3521
3522 static int netif_rx_internal(struct sk_buff *skb)
3523 {
3524         int ret;
3525
3526         net_timestamp_check(netdev_tstamp_prequeue, skb);
3527
3528         trace_netif_rx(skb);
3529 #ifdef CONFIG_RPS
3530         if (static_key_false(&rps_needed)) {
3531                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3532                 int cpu;
3533
3534                 preempt_disable();
3535                 rcu_read_lock();
3536
3537                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3538                 if (cpu < 0)
3539                         cpu = smp_processor_id();
3540
3541                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3542
3543                 rcu_read_unlock();
3544                 preempt_enable();
3545         } else
3546 #endif
3547         {
3548                 unsigned int qtail;
3549                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3550                 put_cpu();
3551         }
3552         return ret;
3553 }
3554
3555 /**
3556  *      netif_rx        -       post buffer to the network code
3557  *      @skb: buffer to post
3558  *
3559  *      This function receives a packet from a device driver and queues it for
3560  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3561  *      may be dropped during processing for congestion control or by the
3562  *      protocol layers.
3563  *
3564  *      return values:
3565  *      NET_RX_SUCCESS  (no congestion)
3566  *      NET_RX_DROP     (packet was dropped)
3567  *
3568  */
3569
3570 int netif_rx(struct sk_buff *skb)
3571 {
3572         trace_netif_rx_entry(skb);
3573
3574         return netif_rx_internal(skb);
3575 }
3576 EXPORT_SYMBOL(netif_rx);
3577
3578 int netif_rx_ni(struct sk_buff *skb)
3579 {
3580         int err;
3581
3582         trace_netif_rx_ni_entry(skb);
3583
3584         preempt_disable();
3585         err = netif_rx_internal(skb);
3586         if (local_softirq_pending())
3587                 do_softirq();
3588         preempt_enable();
3589
3590         return err;
3591 }
3592 EXPORT_SYMBOL(netif_rx_ni);
3593
3594 static void net_tx_action(struct softirq_action *h)
3595 {
3596         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3597
3598         if (sd->completion_queue) {
3599                 struct sk_buff *clist;
3600
3601                 local_irq_disable();
3602                 clist = sd->completion_queue;
3603                 sd->completion_queue = NULL;
3604                 local_irq_enable();
3605
3606                 while (clist) {
3607                         struct sk_buff *skb = clist;
3608                         clist = clist->next;
3609
3610                         WARN_ON(atomic_read(&skb->users));
3611                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3612                                 trace_consume_skb(skb);
3613                         else
3614                                 trace_kfree_skb(skb, net_tx_action);
3615                         __kfree_skb(skb);
3616                 }
3617         }
3618
3619         if (sd->output_queue) {
3620                 struct Qdisc *head;
3621
3622                 local_irq_disable();
3623                 head = sd->output_queue;
3624                 sd->output_queue = NULL;
3625                 sd->output_queue_tailp = &sd->output_queue;
3626                 local_irq_enable();
3627
3628                 while (head) {
3629                         struct Qdisc *q = head;
3630                         spinlock_t *root_lock;
3631
3632                         head = head->next_sched;
3633
3634                         root_lock = qdisc_lock(q);
3635                         if (spin_trylock(root_lock)) {
3636                                 smp_mb__before_atomic();
3637                                 clear_bit(__QDISC_STATE_SCHED,
3638                                           &q->state);
3639                                 qdisc_run(q);
3640                                 spin_unlock(root_lock);
3641                         } else {
3642                                 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3643                                               &q->state)) {
3644                                         __netif_reschedule(q);
3645                                 } else {
3646                                         smp_mb__before_atomic();
3647                                         clear_bit(__QDISC_STATE_SCHED,
3648                                                   &q->state);
3649                                 }
3650                         }
3651                 }
3652         }
3653 }
3654
3655 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3656     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3657 /* This hook is defined here for ATM LANE */
3658 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3659                              unsigned char *addr) __read_mostly;
3660 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3661 #endif
3662
3663 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3664                                          struct packet_type **pt_prev,
3665                                          int *ret, struct net_device *orig_dev)
3666 {
3667 #ifdef CONFIG_NET_CLS_ACT
3668         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3669         struct tcf_result cl_res;
3670
3671         /* If there's at least one ingress present somewhere (so
3672          * we get here via enabled static key), remaining devices
3673          * that are not configured with an ingress qdisc will bail
3674          * out here.
3675          */
3676         if (!cl)
3677                 return skb;
3678         if (*pt_prev) {
3679                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3680                 *pt_prev = NULL;
3681         }
3682
3683         qdisc_skb_cb(skb)->pkt_len = skb->len;
3684         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3685         qdisc_bstats_cpu_update(cl->q, skb);
3686
3687         switch (tc_classify(skb, cl, &cl_res, false)) {
3688         case TC_ACT_OK:
3689         case TC_ACT_RECLASSIFY:
3690                 skb->tc_index = TC_H_MIN(cl_res.classid);
3691                 break;
3692         case TC_ACT_SHOT:
3693                 qdisc_qstats_cpu_drop(cl->q);
3694         case TC_ACT_STOLEN:
3695         case TC_ACT_QUEUED:
3696                 kfree_skb(skb);
3697                 return NULL;
3698         default:
3699                 break;
3700         }
3701 #endif /* CONFIG_NET_CLS_ACT */
3702         return skb;
3703 }
3704
3705 /**
3706  *      netdev_rx_handler_register - register receive handler
3707  *      @dev: device to register a handler for
3708  *      @rx_handler: receive handler to register
3709  *      @rx_handler_data: data pointer that is used by rx handler
3710  *
3711  *      Register a receive handler for a device. This handler will then be
3712  *      called from __netif_receive_skb. A negative errno code is returned
3713  *      on a failure.
3714  *
3715  *      The caller must hold the rtnl_mutex.
3716  *
3717  *      For a general description of rx_handler, see enum rx_handler_result.
3718  */
3719 int netdev_rx_handler_register(struct net_device *dev,
3720                                rx_handler_func_t *rx_handler,
3721                                void *rx_handler_data)
3722 {
3723         ASSERT_RTNL();
3724
3725         if (dev->rx_handler)
3726                 return -EBUSY;
3727
3728         /* Note: rx_handler_data must be set before rx_handler */
3729         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3730         rcu_assign_pointer(dev->rx_handler, rx_handler);
3731
3732         return 0;
3733 }
3734 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3735
3736 /**
3737  *      netdev_rx_handler_unregister - unregister receive handler
3738  *      @dev: device to unregister a handler from
3739  *
3740  *      Unregister a receive handler from a device.
3741  *
3742  *      The caller must hold the rtnl_mutex.
3743  */
3744 void netdev_rx_handler_unregister(struct net_device *dev)
3745 {
3746
3747         ASSERT_RTNL();
3748         RCU_INIT_POINTER(dev->rx_handler, NULL);
3749         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3750          * section has a guarantee to see a non NULL rx_handler_data
3751          * as well.
3752          */
3753         synchronize_net();
3754         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3755 }
3756 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3757
3758 /*
3759  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3760  * the special handling of PFMEMALLOC skbs.
3761  */
3762 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3763 {
3764         switch (skb->protocol) {
3765         case htons(ETH_P_ARP):
3766         case htons(ETH_P_IP):
3767         case htons(ETH_P_IPV6):
3768         case htons(ETH_P_8021Q):
3769         case htons(ETH_P_8021AD):
3770                 return true;
3771         default:
3772                 return false;
3773         }
3774 }
3775
3776 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3777                              int *ret, struct net_device *orig_dev)
3778 {
3779 #ifdef CONFIG_NETFILTER_INGRESS
3780         if (nf_hook_ingress_active(skb)) {
3781                 if (*pt_prev) {
3782                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
3783                         *pt_prev = NULL;
3784                 }
3785
3786                 return nf_hook_ingress(skb);
3787         }
3788 #endif /* CONFIG_NETFILTER_INGRESS */
3789         return 0;
3790 }
3791
3792 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3793 {
3794         struct packet_type *ptype, *pt_prev;
3795         rx_handler_func_t *rx_handler;
3796         struct net_device *orig_dev;
3797         bool deliver_exact = false;
3798         int ret = NET_RX_DROP;
3799         __be16 type;
3800
3801         net_timestamp_check(!netdev_tstamp_prequeue, skb);
3802
3803         trace_netif_receive_skb(skb);
3804
3805         orig_dev = skb->dev;
3806
3807         skb_reset_network_header(skb);
3808         if (!skb_transport_header_was_set(skb))
3809                 skb_reset_transport_header(skb);
3810         skb_reset_mac_len(skb);
3811
3812         pt_prev = NULL;
3813
3814 another_round:
3815         skb->skb_iif = skb->dev->ifindex;
3816
3817         __this_cpu_inc(softnet_data.processed);
3818
3819         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3820             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3821                 skb = skb_vlan_untag(skb);
3822                 if (unlikely(!skb))
3823                         goto out;
3824         }
3825
3826 #ifdef CONFIG_NET_CLS_ACT
3827         if (skb->tc_verd & TC_NCLS) {
3828                 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3829                 goto ncls;
3830         }
3831 #endif
3832
3833         if (pfmemalloc)
3834                 goto skip_taps;
3835
3836         list_for_each_entry_rcu(ptype, &ptype_all, list) {
3837                 if (pt_prev)
3838                         ret = deliver_skb(skb, pt_prev, orig_dev);
3839                 pt_prev = ptype;
3840         }
3841
3842         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3843                 if (pt_prev)
3844                         ret = deliver_skb(skb, pt_prev, orig_dev);
3845                 pt_prev = ptype;
3846         }
3847
3848 skip_taps:
3849 #ifdef CONFIG_NET_INGRESS
3850         if (static_key_false(&ingress_needed)) {
3851                 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3852                 if (!skb)
3853                         goto out;
3854
3855                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
3856                         goto out;
3857         }
3858 #endif
3859 #ifdef CONFIG_NET_CLS_ACT
3860         skb->tc_verd = 0;
3861 ncls:
3862 #endif
3863         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3864                 goto drop;
3865
3866         if (skb_vlan_tag_present(skb)) {
3867                 if (pt_prev) {
3868                         ret = deliver_skb(skb, pt_prev, orig_dev);
3869                         pt_prev = NULL;
3870                 }
3871                 if (vlan_do_receive(&skb))
3872                         goto another_round;
3873                 else if (unlikely(!skb))
3874                         goto out;
3875         }
3876
3877         rx_handler = rcu_dereference(skb->dev->rx_handler);
3878         if (rx_handler) {
3879                 if (pt_prev) {
3880                         ret = deliver_skb(skb, pt_prev, orig_dev);
3881                         pt_prev = NULL;
3882                 }
3883                 switch (rx_handler(&skb)) {
3884                 case RX_HANDLER_CONSUMED:
3885                         ret = NET_RX_SUCCESS;
3886                         goto out;
3887                 case RX_HANDLER_ANOTHER:
3888                         goto another_round;
3889                 case RX_HANDLER_EXACT:
3890                         deliver_exact = true;
3891                 case RX_HANDLER_PASS:
3892                         break;
3893                 default:
3894                         BUG();
3895                 }
3896         }
3897
3898         if (unlikely(skb_vlan_tag_present(skb))) {
3899                 if (skb_vlan_tag_get_id(skb))
3900                         skb->pkt_type = PACKET_OTHERHOST;
3901                 /* Note: we might in the future use prio bits
3902                  * and set skb->priority like in vlan_do_receive()
3903                  * For the time being, just ignore Priority Code Point
3904                  */
3905                 skb->vlan_tci = 0;
3906         }
3907
3908         type = skb->protocol;
3909
3910         /* deliver only exact match when indicated */
3911         if (likely(!deliver_exact)) {
3912                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3913                                        &ptype_base[ntohs(type) &
3914                                                    PTYPE_HASH_MASK]);
3915         }
3916
3917         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3918                                &orig_dev->ptype_specific);
3919
3920         if (unlikely(skb->dev != orig_dev)) {
3921                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3922                                        &skb->dev->ptype_specific);
3923         }
3924
3925         if (pt_prev) {
3926                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3927                         goto drop;
3928                 else
3929                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3930         } else {
3931 drop:
3932                 atomic_long_inc(&skb->dev->rx_dropped);
3933                 kfree_skb(skb);
3934                 /* Jamal, now you will not able to escape explaining
3935                  * me how you were going to use this. :-)
3936                  */
3937                 ret = NET_RX_DROP;
3938         }
3939
3940 out:
3941         return ret;
3942 }
3943
3944 static int __netif_receive_skb(struct sk_buff *skb)
3945 {
3946         int ret;
3947
3948         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3949                 unsigned long pflags = current->flags;
3950
3951                 /*
3952                  * PFMEMALLOC skbs are special, they should
3953                  * - be delivered to SOCK_MEMALLOC sockets only
3954                  * - stay away from userspace
3955                  * - have bounded memory usage
3956                  *
3957                  * Use PF_MEMALLOC as this saves us from propagating the allocation
3958                  * context down to all allocation sites.
3959                  */
3960                 current->flags |= PF_MEMALLOC;
3961                 ret = __netif_receive_skb_core(skb, true);
3962                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3963         } else
3964                 ret = __netif_receive_skb_core(skb, false);
3965
3966         return ret;
3967 }
3968
3969 static int netif_receive_skb_internal(struct sk_buff *skb)
3970 {
3971         int ret;
3972
3973         net_timestamp_check(netdev_tstamp_prequeue, skb);
3974
3975         if (skb_defer_rx_timestamp(skb))
3976                 return NET_RX_SUCCESS;
3977
3978         rcu_read_lock();
3979
3980 #ifdef CONFIG_RPS
3981         if (static_key_false(&rps_needed)) {
3982                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3983                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
3984
3985                 if (cpu >= 0) {
3986                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3987                         rcu_read_unlock();
3988                         return ret;
3989                 }
3990         }
3991 #endif
3992         ret = __netif_receive_skb(skb);
3993         rcu_read_unlock();
3994         return ret;
3995 }
3996
3997 /**
3998  *      netif_receive_skb - process receive buffer from network
3999  *      @skb: buffer to process
4000  *
4001  *      netif_receive_skb() is the main receive data processing function.
4002  *      It always succeeds. The buffer may be dropped during processing
4003  *      for congestion control or by the protocol layers.
4004  *
4005  *      This function may only be called from softirq context and interrupts
4006  *      should be enabled.
4007  *
4008  *      Return values (usually ignored):
4009  *      NET_RX_SUCCESS: no congestion
4010  *      NET_RX_DROP: packet was dropped
4011  */
4012 int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb)
4013 {
4014         trace_netif_receive_skb_entry(skb);
4015
4016         return netif_receive_skb_internal(skb);
4017 }
4018 EXPORT_SYMBOL(netif_receive_skb_sk);
4019
4020 /* Network device is going away, flush any packets still pending
4021  * Called with irqs disabled.
4022  */
4023 static void flush_backlog(void *arg)
4024 {
4025         struct net_device *dev = arg;
4026         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4027         struct sk_buff *skb, *tmp;
4028
4029         rps_lock(sd);
4030         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4031                 if (skb->dev == dev) {
4032                         __skb_unlink(skb, &sd->input_pkt_queue);
4033                         kfree_skb(skb);
4034                         input_queue_head_incr(sd);
4035                 }
4036         }
4037         rps_unlock(sd);
4038
4039         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4040                 if (skb->dev == dev) {
4041                         __skb_unlink(skb, &sd->process_queue);
4042                         kfree_skb(skb);
4043                         input_queue_head_incr(sd);
4044                 }
4045         }
4046 }
4047
4048 static int napi_gro_complete(struct sk_buff *skb)
4049 {
4050         struct packet_offload *ptype;
4051         __be16 type = skb->protocol;
4052         struct list_head *head = &offload_base;
4053         int err = -ENOENT;
4054
4055         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4056
4057         if (NAPI_GRO_CB(skb)->count == 1) {
4058                 skb_shinfo(skb)->gso_size = 0;
4059                 goto out;
4060         }
4061
4062         rcu_read_lock();
4063         list_for_each_entry_rcu(ptype, head, list) {
4064                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4065                         continue;
4066
4067                 err = ptype->callbacks.gro_complete(skb, 0);
4068                 break;
4069         }
4070         rcu_read_unlock();
4071
4072         if (err) {
4073                 WARN_ON(&ptype->list == head);
4074                 kfree_skb(skb);
4075                 return NET_RX_SUCCESS;
4076         }
4077
4078 out:
4079         return netif_receive_skb_internal(skb);
4080 }
4081
4082 /* napi->gro_list contains packets ordered by age.
4083  * youngest packets at the head of it.
4084  * Complete skbs in reverse order to reduce latencies.
4085  */
4086 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4087 {
4088         struct sk_buff *skb, *prev = NULL;
4089
4090         /* scan list and build reverse chain */
4091         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4092                 skb->prev = prev;
4093                 prev = skb;
4094         }
4095
4096         for (skb = prev; skb; skb = prev) {
4097                 skb->next = NULL;
4098
4099                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4100                         return;
4101
4102                 prev = skb->prev;
4103                 napi_gro_complete(skb);
4104                 napi->gro_count--;
4105         }
4106
4107         napi->gro_list = NULL;
4108 }
4109 EXPORT_SYMBOL(napi_gro_flush);
4110
4111 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4112 {
4113         struct sk_buff *p;
4114         unsigned int maclen = skb->dev->hard_header_len;
4115         u32 hash = skb_get_hash_raw(skb);
4116
4117         for (p = napi->gro_list; p; p = p->next) {
4118                 unsigned long diffs;
4119
4120                 NAPI_GRO_CB(p)->flush = 0;
4121
4122                 if (hash != skb_get_hash_raw(p)) {
4123                         NAPI_GRO_CB(p)->same_flow = 0;
4124                         continue;
4125                 }
4126
4127                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4128                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4129                 if (maclen == ETH_HLEN)
4130                         diffs |= compare_ether_header(skb_mac_header(p),
4131                                                       skb_mac_header(skb));
4132                 else if (!diffs)
4133                         diffs = memcmp(skb_mac_header(p),
4134                                        skb_mac_header(skb),
4135                                        maclen);
4136                 NAPI_GRO_CB(p)->same_flow = !diffs;
4137         }
4138 }
4139
4140 static void skb_gro_reset_offset(struct sk_buff *skb)
4141 {
4142         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4143         const skb_frag_t *frag0 = &pinfo->frags[0];
4144
4145         NAPI_GRO_CB(skb)->data_offset = 0;
4146         NAPI_GRO_CB(skb)->frag0 = NULL;
4147         NAPI_GRO_CB(skb)->frag0_len = 0;
4148
4149         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4150             pinfo->nr_frags &&
4151             !PageHighMem(skb_frag_page(frag0))) {
4152                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4153                 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4154         }
4155 }
4156
4157 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4158 {
4159         struct skb_shared_info *pinfo = skb_shinfo(skb);
4160
4161         BUG_ON(skb->end - skb->tail < grow);
4162
4163         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4164
4165         skb->data_len -= grow;
4166         skb->tail += grow;
4167
4168         pinfo->frags[0].page_offset += grow;
4169         skb_frag_size_sub(&pinfo->frags[0], grow);
4170
4171         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4172                 skb_frag_unref(skb, 0);
4173                 memmove(pinfo->frags, pinfo->frags + 1,
4174                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4175         }
4176 }
4177
4178 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4179 {
4180         struct sk_buff **pp = NULL;
4181         struct packet_offload *ptype;
4182         __be16 type = skb->protocol;
4183         struct list_head *head = &offload_base;
4184         int same_flow;
4185         enum gro_result ret;
4186         int grow;
4187
4188         if (!(skb->dev->features & NETIF_F_GRO))
4189                 goto normal;
4190
4191         if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4192                 goto normal;
4193
4194         gro_list_prepare(napi, skb);
4195
4196         rcu_read_lock();
4197         list_for_each_entry_rcu(ptype, head, list) {
4198                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4199                         continue;
4200
4201                 skb_set_network_header(skb, skb_gro_offset(skb));
4202                 skb_reset_mac_len(skb);
4203                 NAPI_GRO_CB(skb)->same_flow = 0;
4204                 NAPI_GRO_CB(skb)->flush = 0;
4205                 NAPI_GRO_CB(skb)->free = 0;
4206                 NAPI_GRO_CB(skb)->udp_mark = 0;
4207                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4208
4209                 /* Setup for GRO checksum validation */
4210                 switch (skb->ip_summed) {
4211                 case CHECKSUM_COMPLETE:
4212                         NAPI_GRO_CB(skb)->csum = skb->csum;
4213                         NAPI_GRO_CB(skb)->csum_valid = 1;
4214                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4215                         break;
4216                 case CHECKSUM_UNNECESSARY:
4217                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4218                         NAPI_GRO_CB(skb)->csum_valid = 0;
4219                         break;
4220                 default:
4221                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4222                         NAPI_GRO_CB(skb)->csum_valid = 0;
4223                 }
4224
4225                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4226                 break;
4227         }
4228         rcu_read_unlock();
4229
4230         if (&ptype->list == head)
4231                 goto normal;
4232
4233         same_flow = NAPI_GRO_CB(skb)->same_flow;
4234         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4235
4236         if (pp) {
4237                 struct sk_buff *nskb = *pp;
4238
4239                 *pp = nskb->next;
4240                 nskb->next = NULL;
4241                 napi_gro_complete(nskb);
4242                 napi->gro_count--;
4243         }
4244
4245         if (same_flow)
4246                 goto ok;
4247
4248         if (NAPI_GRO_CB(skb)->flush)
4249                 goto normal;
4250
4251         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4252                 struct sk_buff *nskb = napi->gro_list;
4253
4254                 /* locate the end of the list to select the 'oldest' flow */
4255                 while (nskb->next) {
4256                         pp = &nskb->next;
4257                         nskb = *pp;
4258                 }
4259                 *pp = NULL;
4260                 nskb->next = NULL;
4261                 napi_gro_complete(nskb);
4262         } else {
4263                 napi->gro_count++;
4264         }
4265         NAPI_GRO_CB(skb)->count = 1;
4266         NAPI_GRO_CB(skb)->age = jiffies;
4267         NAPI_GRO_CB(skb)->last = skb;
4268         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4269         skb->next = napi->gro_list;
4270         napi->gro_list = skb;
4271         ret = GRO_HELD;
4272
4273 pull:
4274         grow = skb_gro_offset(skb) - skb_headlen(skb);
4275         if (grow > 0)
4276                 gro_pull_from_frag0(skb, grow);
4277 ok:
4278         return ret;
4279
4280 normal:
4281         ret = GRO_NORMAL;
4282         goto pull;
4283 }
4284
4285 struct packet_offload *gro_find_receive_by_type(__be16 type)
4286 {
4287         struct list_head *offload_head = &offload_base;
4288         struct packet_offload *ptype;
4289
4290         list_for_each_entry_rcu(ptype, offload_head, list) {
4291                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4292                         continue;
4293                 return ptype;
4294         }
4295         return NULL;
4296 }
4297 EXPORT_SYMBOL(gro_find_receive_by_type);
4298
4299 struct packet_offload *gro_find_complete_by_type(__be16 type)
4300 {
4301         struct list_head *offload_head = &offload_base;
4302         struct packet_offload *ptype;
4303
4304         list_for_each_entry_rcu(ptype, offload_head, list) {
4305                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4306                         continue;
4307                 return ptype;
4308         }
4309         return NULL;
4310 }
4311 EXPORT_SYMBOL(gro_find_complete_by_type);
4312
4313 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4314 {
4315         switch (ret) {
4316         case GRO_NORMAL:
4317                 if (netif_receive_skb_internal(skb))
4318                         ret = GRO_DROP;
4319                 break;
4320
4321         case GRO_DROP:
4322                 kfree_skb(skb);
4323                 break;
4324
4325         case GRO_MERGED_FREE:
4326                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4327                         kmem_cache_free(skbuff_head_cache, skb);
4328                 else
4329                         __kfree_skb(skb);
4330                 break;
4331
4332         case GRO_HELD:
4333         case GRO_MERGED:
4334                 break;
4335         }
4336
4337         return ret;
4338 }
4339
4340 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4341 {
4342         trace_napi_gro_receive_entry(skb);
4343
4344         skb_gro_reset_offset(skb);
4345
4346         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4347 }
4348 EXPORT_SYMBOL(napi_gro_receive);
4349
4350 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4351 {
4352         if (unlikely(skb->pfmemalloc)) {
4353                 consume_skb(skb);
4354                 return;
4355         }
4356         __skb_pull(skb, skb_headlen(skb));
4357         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4358         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4359         skb->vlan_tci = 0;
4360         skb->dev = napi->dev;
4361         skb->skb_iif = 0;
4362         skb->encapsulation = 0;
4363         skb_shinfo(skb)->gso_type = 0;
4364         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4365
4366         napi->skb = skb;
4367 }
4368
4369 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4370 {
4371         struct sk_buff *skb = napi->skb;
4372
4373         if (!skb) {
4374                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4375                 napi->skb = skb;
4376         }
4377         return skb;
4378 }
4379 EXPORT_SYMBOL(napi_get_frags);
4380
4381 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4382                                       struct sk_buff *skb,
4383                                       gro_result_t ret)
4384 {
4385         switch (ret) {
4386         case GRO_NORMAL:
4387         case GRO_HELD:
4388                 __skb_push(skb, ETH_HLEN);
4389                 skb->protocol = eth_type_trans(skb, skb->dev);
4390                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4391                         ret = GRO_DROP;
4392                 break;
4393
4394         case GRO_DROP:
4395         case GRO_MERGED_FREE:
4396                 napi_reuse_skb(napi, skb);
4397                 break;
4398
4399         case GRO_MERGED:
4400                 break;
4401         }
4402
4403         return ret;
4404 }
4405
4406 /* Upper GRO stack assumes network header starts at gro_offset=0
4407  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4408  * We copy ethernet header into skb->data to have a common layout.
4409  */
4410 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4411 {
4412         struct sk_buff *skb = napi->skb;
4413         const struct ethhdr *eth;
4414         unsigned int hlen = sizeof(*eth);
4415
4416         napi->skb = NULL;
4417
4418         skb_reset_mac_header(skb);
4419         skb_gro_reset_offset(skb);
4420
4421         eth = skb_gro_header_fast(skb, 0);
4422         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4423                 eth = skb_gro_header_slow(skb, hlen, 0);
4424                 if (unlikely(!eth)) {
4425                         napi_reuse_skb(napi, skb);
4426                         return NULL;
4427                 }
4428         } else {
4429                 gro_pull_from_frag0(skb, hlen);
4430                 NAPI_GRO_CB(skb)->frag0 += hlen;
4431                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4432         }
4433         __skb_pull(skb, hlen);
4434
4435         /*
4436          * This works because the only protocols we care about don't require
4437          * special handling.
4438          * We'll fix it up properly in napi_frags_finish()
4439          */
4440         skb->protocol = eth->h_proto;
4441
4442         return skb;
4443 }
4444
4445 gro_result_t napi_gro_frags(struct napi_struct *napi)
4446 {
4447         struct sk_buff *skb = napi_frags_skb(napi);
4448
4449         if (!skb)
4450                 return GRO_DROP;
4451
4452         trace_napi_gro_frags_entry(skb);
4453
4454         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4455 }
4456 EXPORT_SYMBOL(napi_gro_frags);
4457
4458 /* Compute the checksum from gro_offset and return the folded value
4459  * after adding in any pseudo checksum.
4460  */
4461 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4462 {
4463         __wsum wsum;
4464         __sum16 sum;
4465
4466         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4467
4468         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4469         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4470         if (likely(!sum)) {
4471                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4472                     !skb->csum_complete_sw)
4473                         netdev_rx_csum_fault(skb->dev);
4474         }
4475
4476         NAPI_GRO_CB(skb)->csum = wsum;
4477         NAPI_GRO_CB(skb)->csum_valid = 1;
4478
4479         return sum;
4480 }
4481 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4482
4483 /*
4484  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4485  * Note: called with local irq disabled, but exits with local irq enabled.
4486  */
4487 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4488 {
4489 #ifdef CONFIG_RPS
4490         struct softnet_data *remsd = sd->rps_ipi_list;
4491
4492         if (remsd) {
4493                 sd->rps_ipi_list = NULL;
4494
4495                 local_irq_enable();
4496
4497                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4498                 while (remsd) {
4499                         struct softnet_data *next = remsd->rps_ipi_next;
4500
4501                         if (cpu_online(remsd->cpu))
4502                                 smp_call_function_single_async(remsd->cpu,
4503                                                            &remsd->csd);
4504                         remsd = next;
4505                 }
4506         } else
4507 #endif
4508                 local_irq_enable();
4509 }
4510
4511 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4512 {
4513 #ifdef CONFIG_RPS
4514         return sd->rps_ipi_list != NULL;
4515 #else
4516         return false;
4517 #endif
4518 }
4519
4520 static int process_backlog(struct napi_struct *napi, int quota)
4521 {
4522         int work = 0;
4523         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4524
4525         /* Check if we have pending ipi, its better to send them now,
4526          * not waiting net_rx_action() end.
4527          */
4528         if (sd_has_rps_ipi_waiting(sd)) {
4529                 local_irq_disable();
4530                 net_rps_action_and_irq_enable(sd);
4531         }
4532
4533         napi->weight = weight_p;
4534         local_irq_disable();
4535         while (1) {
4536                 struct sk_buff *skb;
4537
4538                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4539                         rcu_read_lock();
4540                         local_irq_enable();
4541                         __netif_receive_skb(skb);
4542                         rcu_read_unlock();
4543                         local_irq_disable();
4544                         input_queue_head_incr(sd);
4545                         if (++work >= quota) {
4546                                 local_irq_enable();
4547                                 return work;
4548                         }
4549                 }
4550
4551                 rps_lock(sd);
4552                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4553                         /*
4554                          * Inline a custom version of __napi_complete().
4555                          * only current cpu owns and manipulates this napi,
4556                          * and NAPI_STATE_SCHED is the only possible flag set
4557                          * on backlog.
4558                          * We can use a plain write instead of clear_bit(),
4559                          * and we dont need an smp_mb() memory barrier.
4560                          */
4561                         napi->state = 0;
4562                         rps_unlock(sd);
4563
4564                         break;
4565                 }
4566
4567                 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4568                                            &sd->process_queue);
4569                 rps_unlock(sd);
4570         }
4571         local_irq_enable();
4572
4573         return work;
4574 }
4575
4576 /**
4577  * __napi_schedule - schedule for receive
4578  * @n: entry to schedule
4579  *
4580  * The entry's receive function will be scheduled to run.
4581  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4582  */
4583 void __napi_schedule(struct napi_struct *n)
4584 {
4585         unsigned long flags;
4586
4587         local_irq_save(flags);
4588         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4589         local_irq_restore(flags);
4590 }
4591 EXPORT_SYMBOL(__napi_schedule);
4592
4593 /**
4594  * __napi_schedule_irqoff - schedule for receive
4595  * @n: entry to schedule
4596  *
4597  * Variant of __napi_schedule() assuming hard irqs are masked
4598  */
4599 void __napi_schedule_irqoff(struct napi_struct *n)
4600 {
4601         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4602 }
4603 EXPORT_SYMBOL(__napi_schedule_irqoff);
4604
4605 void __napi_complete(struct napi_struct *n)
4606 {
4607         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4608
4609         list_del_init(&n->poll_list);
4610         smp_mb__before_atomic();
4611         clear_bit(NAPI_STATE_SCHED, &n->state);
4612 }
4613 EXPORT_SYMBOL(__napi_complete);
4614
4615 void napi_complete_done(struct napi_struct *n, int work_done)
4616 {
4617         unsigned long flags;
4618
4619         /*
4620          * don't let napi dequeue from the cpu poll list
4621          * just in case its running on a different cpu
4622          */
4623         if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4624                 return;
4625
4626         if (n->gro_list) {
4627                 unsigned long timeout = 0;
4628
4629                 if (work_done)
4630                         timeout = n->dev->gro_flush_timeout;
4631
4632                 if (timeout)
4633                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
4634                                       HRTIMER_MODE_REL_PINNED);
4635                 else
4636                         napi_gro_flush(n, false);
4637         }
4638         if (likely(list_empty(&n->poll_list))) {
4639                 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4640         } else {
4641                 /* If n->poll_list is not empty, we need to mask irqs */
4642                 local_irq_save(flags);
4643                 __napi_complete(n);
4644                 local_irq_restore(flags);
4645         }
4646 }
4647 EXPORT_SYMBOL(napi_complete_done);
4648
4649 /* must be called under rcu_read_lock(), as we dont take a reference */
4650 struct napi_struct *napi_by_id(unsigned int napi_id)
4651 {
4652         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4653         struct napi_struct *napi;
4654
4655         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4656                 if (napi->napi_id == napi_id)
4657                         return napi;
4658
4659         return NULL;
4660 }
4661 EXPORT_SYMBOL_GPL(napi_by_id);
4662
4663 void napi_hash_add(struct napi_struct *napi)
4664 {
4665         if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4666
4667                 spin_lock(&napi_hash_lock);
4668
4669                 /* 0 is not a valid id, we also skip an id that is taken
4670                  * we expect both events to be extremely rare
4671                  */
4672                 napi->napi_id = 0;
4673                 while (!napi->napi_id) {
4674                         napi->napi_id = ++napi_gen_id;
4675                         if (napi_by_id(napi->napi_id))
4676                                 napi->napi_id = 0;
4677                 }
4678
4679                 hlist_add_head_rcu(&napi->napi_hash_node,
4680                         &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4681
4682                 spin_unlock(&napi_hash_lock);
4683         }
4684 }
4685 EXPORT_SYMBOL_GPL(napi_hash_add);
4686
4687 /* Warning : caller is responsible to make sure rcu grace period
4688  * is respected before freeing memory containing @napi
4689  */
4690 void napi_hash_del(struct napi_struct *napi)
4691 {
4692         spin_lock(&napi_hash_lock);
4693
4694         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4695                 hlist_del_rcu(&napi->napi_hash_node);
4696
4697         spin_unlock(&napi_hash_lock);
4698 }
4699 EXPORT_SYMBOL_GPL(napi_hash_del);
4700
4701 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4702 {
4703         struct napi_struct *napi;
4704
4705         napi = container_of(timer, struct napi_struct, timer);
4706         if (napi->gro_list)
4707                 napi_schedule(napi);
4708
4709         return HRTIMER_NORESTART;
4710 }
4711
4712 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4713                     int (*poll)(struct napi_struct *, int), int weight)
4714 {
4715         INIT_LIST_HEAD(&napi->poll_list);
4716         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4717         napi->timer.function = napi_watchdog;
4718         napi->gro_count = 0;
4719         napi->gro_list = NULL;
4720         napi->skb = NULL;
4721         napi->poll = poll;
4722         if (weight > NAPI_POLL_WEIGHT)
4723                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4724                             weight, dev->name);
4725         napi->weight = weight;
4726         list_add(&napi->dev_list, &dev->napi_list);
4727         napi->dev = dev;
4728 #ifdef CONFIG_NETPOLL
4729         spin_lock_init(&napi->poll_lock);
4730         napi->poll_owner = -1;
4731 #endif
4732         set_bit(NAPI_STATE_SCHED, &napi->state);
4733 }
4734 EXPORT_SYMBOL(netif_napi_add);
4735
4736 void napi_disable(struct napi_struct *n)
4737 {
4738         might_sleep();
4739         set_bit(NAPI_STATE_DISABLE, &n->state);
4740
4741         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4742                 msleep(1);
4743         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
4744                 msleep(1);
4745
4746         hrtimer_cancel(&n->timer);
4747
4748         clear_bit(NAPI_STATE_DISABLE, &n->state);
4749 }
4750 EXPORT_SYMBOL(napi_disable);
4751
4752 void netif_napi_del(struct napi_struct *napi)
4753 {
4754         list_del_init(&napi->dev_list);
4755         napi_free_frags(napi);
4756
4757         kfree_skb_list(napi->gro_list);
4758         napi->gro_list = NULL;
4759         napi->gro_count = 0;
4760 }
4761 EXPORT_SYMBOL(netif_napi_del);
4762
4763 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4764 {
4765         void *have;
4766         int work, weight;
4767
4768         list_del_init(&n->poll_list);
4769
4770         have = netpoll_poll_lock(n);
4771
4772         weight = n->weight;
4773
4774         /* This NAPI_STATE_SCHED test is for avoiding a race
4775          * with netpoll's poll_napi().  Only the entity which
4776          * obtains the lock and sees NAPI_STATE_SCHED set will
4777          * actually make the ->poll() call.  Therefore we avoid
4778          * accidentally calling ->poll() when NAPI is not scheduled.
4779          */
4780         work = 0;
4781         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4782                 work = n->poll(n, weight);
4783                 trace_napi_poll(n);
4784         }
4785
4786         WARN_ON_ONCE(work > weight);
4787
4788         if (likely(work < weight))
4789                 goto out_unlock;
4790
4791         /* Drivers must not modify the NAPI state if they
4792          * consume the entire weight.  In such cases this code
4793          * still "owns" the NAPI instance and therefore can
4794          * move the instance around on the list at-will.
4795          */
4796         if (unlikely(napi_disable_pending(n))) {
4797                 napi_complete(n);
4798                 goto out_unlock;
4799         }
4800
4801         if (n->gro_list) {
4802                 /* flush too old packets
4803                  * If HZ < 1000, flush all packets.
4804                  */
4805                 napi_gro_flush(n, HZ >= 1000);
4806         }
4807
4808         /* Some drivers may have called napi_schedule
4809          * prior to exhausting their budget.
4810          */
4811         if (unlikely(!list_empty(&n->poll_list))) {
4812                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4813                              n->dev ? n->dev->name : "backlog");
4814                 goto out_unlock;
4815         }
4816
4817         list_add_tail(&n->poll_list, repoll);
4818
4819 out_unlock:
4820         netpoll_poll_unlock(have);
4821
4822         return work;
4823 }
4824
4825 static void net_rx_action(struct softirq_action *h)
4826 {
4827         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4828         unsigned long time_limit = jiffies + 2;
4829         int budget = netdev_budget;
4830         LIST_HEAD(list);
4831         LIST_HEAD(repoll);
4832
4833         local_irq_disable();
4834         list_splice_init(&sd->poll_list, &list);
4835         local_irq_enable();
4836
4837         for (;;) {
4838                 struct napi_struct *n;
4839
4840                 if (list_empty(&list)) {
4841                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4842                                 return;
4843                         break;
4844                 }
4845
4846                 n = list_first_entry(&list, struct napi_struct, poll_list);
4847                 budget -= napi_poll(n, &repoll);
4848
4849                 /* If softirq window is exhausted then punt.
4850                  * Allow this to run for 2 jiffies since which will allow
4851                  * an average latency of 1.5/HZ.
4852                  */
4853                 if (unlikely(budget <= 0 ||
4854                              time_after_eq(jiffies, time_limit))) {
4855                         sd->time_squeeze++;
4856                         break;
4857                 }
4858         }
4859
4860         local_irq_disable();
4861
4862         list_splice_tail_init(&sd->poll_list, &list);
4863         list_splice_tail(&repoll, &list);
4864         list_splice(&list, &sd->poll_list);
4865         if (!list_empty(&sd->poll_list))
4866                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4867
4868         net_rps_action_and_irq_enable(sd);
4869 }
4870
4871 struct netdev_adjacent {
4872         struct net_device *dev;
4873
4874         /* upper master flag, there can only be one master device per list */
4875         bool master;
4876
4877         /* counter for the number of times this device was added to us */
4878         u16 ref_nr;
4879
4880         /* private field for the users */
4881         void *private;
4882
4883         struct list_head list;
4884         struct rcu_head rcu;
4885 };
4886
4887 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4888                                                  struct net_device *adj_dev,
4889                                                  struct list_head *adj_list)
4890 {
4891         struct netdev_adjacent *adj;
4892
4893         list_for_each_entry(adj, adj_list, list) {
4894                 if (adj->dev == adj_dev)
4895                         return adj;
4896         }
4897         return NULL;
4898 }
4899
4900 /**
4901  * netdev_has_upper_dev - Check if device is linked to an upper device
4902  * @dev: device
4903  * @upper_dev: upper device to check
4904  *
4905  * Find out if a device is linked to specified upper device and return true
4906  * in case it is. Note that this checks only immediate upper device,
4907  * not through a complete stack of devices. The caller must hold the RTNL lock.
4908  */
4909 bool netdev_has_upper_dev(struct net_device *dev,
4910                           struct net_device *upper_dev)
4911 {
4912         ASSERT_RTNL();
4913
4914         return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4915 }
4916 EXPORT_SYMBOL(netdev_has_upper_dev);
4917
4918 /**
4919  * netdev_has_any_upper_dev - Check if device is linked to some device
4920  * @dev: device
4921  *
4922  * Find out if a device is linked to an upper device and return true in case
4923  * it is. The caller must hold the RTNL lock.
4924  */
4925 static bool netdev_has_any_upper_dev(struct net_device *dev)
4926 {
4927         ASSERT_RTNL();
4928
4929         return !list_empty(&dev->all_adj_list.upper);
4930 }
4931
4932 /**
4933  * netdev_master_upper_dev_get - Get master upper device
4934  * @dev: device
4935  *
4936  * Find a master upper device and return pointer to it or NULL in case
4937  * it's not there. The caller must hold the RTNL lock.
4938  */
4939 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4940 {
4941         struct netdev_adjacent *upper;
4942
4943         ASSERT_RTNL();
4944
4945         if (list_empty(&dev->adj_list.upper))
4946                 return NULL;
4947
4948         upper = list_first_entry(&dev->adj_list.upper,
4949                                  struct netdev_adjacent, list);
4950         if (likely(upper->master))
4951                 return upper->dev;
4952         return NULL;
4953 }
4954 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4955
4956 void *netdev_adjacent_get_private(struct list_head *adj_list)
4957 {
4958         struct netdev_adjacent *adj;
4959
4960         adj = list_entry(adj_list, struct netdev_adjacent, list);
4961
4962         return adj->private;
4963 }
4964 EXPORT_SYMBOL(netdev_adjacent_get_private);
4965
4966 /**
4967  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4968  * @dev: device
4969  * @iter: list_head ** of the current position
4970  *
4971  * Gets the next device from the dev's upper list, starting from iter
4972  * position. The caller must hold RCU read lock.
4973  */
4974 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4975                                                  struct list_head **iter)
4976 {
4977         struct netdev_adjacent *upper;
4978
4979         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4980
4981         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4982
4983         if (&upper->list == &dev->adj_list.upper)
4984                 return NULL;
4985
4986         *iter = &upper->list;
4987
4988         return upper->dev;
4989 }
4990 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4991
4992 /**
4993  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4994  * @dev: device
4995  * @iter: list_head ** of the current position
4996  *
4997  * Gets the next device from the dev's upper list, starting from iter
4998  * position. The caller must hold RCU read lock.
4999  */
5000 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5001                                                      struct list_head **iter)
5002 {
5003         struct netdev_adjacent *upper;
5004
5005         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5006
5007         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5008
5009         if (&upper->list == &dev->all_adj_list.upper)
5010                 return NULL;
5011
5012         *iter = &upper->list;
5013
5014         return upper->dev;
5015 }
5016 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5017
5018 /**
5019  * netdev_lower_get_next_private - Get the next ->private from the
5020  *                                 lower neighbour list
5021  * @dev: device
5022  * @iter: list_head ** of the current position
5023  *
5024  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5025  * list, starting from iter position. The caller must hold either hold the
5026  * RTNL lock or its own locking that guarantees that the neighbour lower
5027  * list will remain unchanged.
5028  */
5029 void *netdev_lower_get_next_private(struct net_device *dev,
5030                                     struct list_head **iter)
5031 {
5032         struct netdev_adjacent *lower;
5033
5034         lower = list_entry(*iter, struct netdev_adjacent, list);
5035
5036         if (&lower->list == &dev->adj_list.lower)
5037                 return NULL;
5038
5039         *iter = lower->list.next;
5040
5041         return lower->private;
5042 }
5043 EXPORT_SYMBOL(netdev_lower_get_next_private);
5044
5045 /**
5046  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5047  *                                     lower neighbour list, RCU
5048  *                                     variant
5049  * @dev: device
5050  * @iter: list_head ** of the current position
5051  *
5052  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5053  * list, starting from iter position. The caller must hold RCU read lock.
5054  */
5055 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5056                                         struct list_head **iter)
5057 {
5058         struct netdev_adjacent *lower;
5059
5060         WARN_ON_ONCE(!rcu_read_lock_held());
5061
5062         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5063
5064         if (&lower->list == &dev->adj_list.lower)
5065                 return NULL;
5066
5067         *iter = &lower->list;
5068
5069         return lower->private;
5070 }
5071 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5072
5073 /**
5074  * netdev_lower_get_next - Get the next device from the lower neighbour
5075  *                         list
5076  * @dev: device
5077  * @iter: list_head ** of the current position
5078  *
5079  * Gets the next netdev_adjacent from the dev's lower neighbour
5080  * list, starting from iter position. The caller must hold RTNL lock or
5081  * its own locking that guarantees that the neighbour lower
5082  * list will remain unchanged.
5083  */
5084 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5085 {
5086         struct netdev_adjacent *lower;
5087
5088         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5089
5090         if (&lower->list == &dev->adj_list.lower)
5091                 return NULL;
5092
5093         *iter = &lower->list;
5094
5095         return lower->dev;
5096 }
5097 EXPORT_SYMBOL(netdev_lower_get_next);
5098
5099 /**
5100  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5101  *                                     lower neighbour list, RCU
5102  *                                     variant
5103  * @dev: device
5104  *
5105  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5106  * list. The caller must hold RCU read lock.
5107  */
5108 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5109 {
5110         struct netdev_adjacent *lower;
5111
5112         lower = list_first_or_null_rcu(&dev->adj_list.lower,
5113                         struct netdev_adjacent, list);
5114         if (lower)
5115                 return lower->private;
5116         return NULL;
5117 }
5118 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5119
5120 /**
5121  * netdev_master_upper_dev_get_rcu - Get master upper device
5122  * @dev: device
5123  *
5124  * Find a master upper device and return pointer to it or NULL in case
5125  * it's not there. The caller must hold the RCU read lock.
5126  */
5127 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5128 {
5129         struct netdev_adjacent *upper;
5130
5131         upper = list_first_or_null_rcu(&dev->adj_list.upper,
5132                                        struct netdev_adjacent, list);
5133         if (upper && likely(upper->master))
5134                 return upper->dev;
5135         return NULL;
5136 }
5137 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5138
5139 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5140                               struct net_device *adj_dev,
5141                               struct list_head *dev_list)
5142 {
5143         char linkname[IFNAMSIZ+7];
5144         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5145                 "upper_%s" : "lower_%s", adj_dev->name);
5146         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5147                                  linkname);
5148 }
5149 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5150                                char *name,
5151                                struct list_head *dev_list)
5152 {
5153         char linkname[IFNAMSIZ+7];
5154         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5155                 "upper_%s" : "lower_%s", name);
5156         sysfs_remove_link(&(dev->dev.kobj), linkname);
5157 }
5158
5159 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5160                                                  struct net_device *adj_dev,
5161                                                  struct list_head *dev_list)
5162 {
5163         return (dev_list == &dev->adj_list.upper ||
5164                 dev_list == &dev->adj_list.lower) &&
5165                 net_eq(dev_net(dev), dev_net(adj_dev));
5166 }
5167
5168 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5169                                         struct net_device *adj_dev,
5170                                         struct list_head *dev_list,
5171                                         void *private, bool master)
5172 {
5173         struct netdev_adjacent *adj;
5174         int ret;
5175
5176         adj = __netdev_find_adj(dev, adj_dev, dev_list);
5177
5178         if (adj) {
5179                 adj->ref_nr++;
5180                 return 0;
5181         }
5182
5183         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5184         if (!adj)
5185                 return -ENOMEM;
5186
5187         adj->dev = adj_dev;
5188         adj->master = master;
5189         adj->ref_nr = 1;
5190         adj->private = private;
5191         dev_hold(adj_dev);
5192
5193         pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5194                  adj_dev->name, dev->name, adj_dev->name);
5195
5196         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5197                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5198                 if (ret)
5199                         goto free_adj;
5200         }
5201
5202         /* Ensure that master link is always the first item in list. */
5203         if (master) {
5204                 ret = sysfs_create_link(&(dev->dev.kobj),
5205                                         &(adj_dev->dev.kobj), "master");
5206                 if (ret)
5207                         goto remove_symlinks;
5208
5209                 list_add_rcu(&adj->list, dev_list);
5210         } else {
5211                 list_add_tail_rcu(&adj->list, dev_list);
5212         }
5213
5214         return 0;
5215
5216 remove_symlinks:
5217         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5218                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5219 free_adj:
5220         kfree(adj);
5221         dev_put(adj_dev);
5222
5223         return ret;
5224 }
5225
5226 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5227                                          struct net_device *adj_dev,
5228                                          struct list_head *dev_list)
5229 {
5230         struct netdev_adjacent *adj;
5231
5232         adj = __netdev_find_adj(dev, adj_dev, dev_list);
5233
5234         if (!adj) {
5235                 pr_err("tried to remove device %s from %s\n",
5236                        dev->name, adj_dev->name);
5237                 BUG();
5238         }
5239
5240         if (adj->ref_nr > 1) {
5241                 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5242                          adj->ref_nr-1);
5243                 adj->ref_nr--;
5244                 return;
5245         }
5246
5247         if (adj->master)
5248                 sysfs_remove_link(&(dev->dev.kobj), "master");
5249
5250         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5251                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5252
5253         list_del_rcu(&adj->list);
5254         pr_debug("dev_put for %s, because link removed from %s to %s\n",
5255                  adj_dev->name, dev->name, adj_dev->name);
5256         dev_put(adj_dev);
5257         kfree_rcu(adj, rcu);
5258 }
5259
5260 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5261                                             struct net_device *upper_dev,
5262                                             struct list_head *up_list,
5263                                             struct list_head *down_list,
5264                                             void *private, bool master)
5265 {
5266         int ret;
5267
5268         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5269                                            master);
5270         if (ret)
5271                 return ret;
5272
5273         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5274                                            false);
5275         if (ret) {
5276                 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5277                 return ret;
5278         }
5279
5280         return 0;
5281 }
5282
5283 static int __netdev_adjacent_dev_link(struct net_device *dev,
5284                                       struct net_device *upper_dev)
5285 {
5286         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5287                                                 &dev->all_adj_list.upper,
5288                                                 &upper_dev->all_adj_list.lower,
5289                                                 NULL, false);
5290 }
5291
5292 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5293                                                struct net_device *upper_dev,
5294                                                struct list_head *up_list,
5295                                                struct list_head *down_list)
5296 {
5297         __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5298         __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5299 }
5300
5301 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5302                                          struct net_device *upper_dev)
5303 {
5304         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5305                                            &dev->all_adj_list.upper,
5306                                            &upper_dev->all_adj_list.lower);
5307 }
5308
5309 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5310                                                 struct net_device *upper_dev,
5311                                                 void *private, bool master)
5312 {
5313         int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5314
5315         if (ret)
5316                 return ret;
5317
5318         ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5319                                                &dev->adj_list.upper,
5320                                                &upper_dev->adj_list.lower,
5321                                                private, master);
5322         if (ret) {
5323                 __netdev_adjacent_dev_unlink(dev, upper_dev);
5324                 return ret;
5325         }
5326
5327         return 0;
5328 }
5329
5330 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5331                                                    struct net_device *upper_dev)
5332 {
5333         __netdev_adjacent_dev_unlink(dev, upper_dev);
5334         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5335                                            &dev->adj_list.upper,
5336                                            &upper_dev->adj_list.lower);
5337 }
5338
5339 static int __netdev_upper_dev_link(struct net_device *dev,
5340                                    struct net_device *upper_dev, bool master,
5341                                    void *private)
5342 {
5343         struct netdev_notifier_changeupper_info changeupper_info;
5344         struct netdev_adjacent *i, *j, *to_i, *to_j;
5345         int ret = 0;
5346
5347         ASSERT_RTNL();
5348
5349         if (dev == upper_dev)
5350                 return -EBUSY;
5351
5352         /* To prevent loops, check if dev is not upper device to upper_dev. */
5353         if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5354                 return -EBUSY;
5355
5356         if (__netdev_find_adj(dev, upper_dev, &dev->adj_list.upper))
5357                 return -EEXIST;
5358
5359         if (master && netdev_master_upper_dev_get(dev))
5360                 return -EBUSY;
5361
5362         changeupper_info.upper_dev = upper_dev;
5363         changeupper_info.master = master;
5364         changeupper_info.linking = true;
5365
5366         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5367                                                    master);
5368         if (ret)
5369                 return ret;
5370
5371         /* Now that we linked these devs, make all the upper_dev's
5372          * all_adj_list.upper visible to every dev's all_adj_list.lower an
5373          * versa, and don't forget the devices itself. All of these
5374          * links are non-neighbours.
5375          */
5376         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5377                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5378                         pr_debug("Interlinking %s with %s, non-neighbour\n",
5379                                  i->dev->name, j->dev->name);
5380                         ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5381                         if (ret)
5382                                 goto rollback_mesh;
5383                 }
5384         }
5385
5386         /* add dev to every upper_dev's upper device */
5387         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5388                 pr_debug("linking %s's upper device %s with %s\n",
5389                          upper_dev->name, i->dev->name, dev->name);
5390                 ret = __netdev_adjacent_dev_link(dev, i->dev);
5391                 if (ret)
5392                         goto rollback_upper_mesh;
5393         }
5394
5395         /* add upper_dev to every dev's lower device */
5396         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5397                 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5398                          i->dev->name, upper_dev->name);
5399                 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5400                 if (ret)
5401                         goto rollback_lower_mesh;
5402         }
5403
5404         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5405                                       &changeupper_info.info);
5406         return 0;
5407
5408 rollback_lower_mesh:
5409         to_i = i;
5410         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5411                 if (i == to_i)
5412                         break;
5413                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5414         }
5415
5416         i = NULL;
5417
5418 rollback_upper_mesh:
5419         to_i = i;
5420         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5421                 if (i == to_i)
5422                         break;
5423                 __netdev_adjacent_dev_unlink(dev, i->dev);
5424         }
5425
5426         i = j = NULL;
5427
5428 rollback_mesh:
5429         to_i = i;
5430         to_j = j;
5431         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5432                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5433                         if (i == to_i && j == to_j)
5434                                 break;
5435                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5436                 }
5437                 if (i == to_i)
5438                         break;
5439         }
5440
5441         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5442
5443         return ret;
5444 }
5445
5446 /**
5447  * netdev_upper_dev_link - Add a link to the upper device
5448  * @dev: device
5449  * @upper_dev: new upper device
5450  *
5451  * Adds a link to device which is upper to this one. The caller must hold
5452  * the RTNL lock. On a failure a negative errno code is returned.
5453  * On success the reference counts are adjusted and the function
5454  * returns zero.
5455  */
5456 int netdev_upper_dev_link(struct net_device *dev,
5457                           struct net_device *upper_dev)
5458 {
5459         return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5460 }
5461 EXPORT_SYMBOL(netdev_upper_dev_link);
5462
5463 /**
5464  * netdev_master_upper_dev_link - Add a master link to the upper device
5465  * @dev: device
5466  * @upper_dev: new upper device
5467  *
5468  * Adds a link to device which is upper to this one. In this case, only
5469  * one master upper device can be linked, although other non-master devices
5470  * might be linked as well. The caller must hold the RTNL lock.
5471  * On a failure a negative errno code is returned. On success the reference
5472  * counts are adjusted and the function returns zero.
5473  */
5474 int netdev_master_upper_dev_link(struct net_device *dev,
5475                                  struct net_device *upper_dev)
5476 {
5477         return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5478 }
5479 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5480
5481 int netdev_master_upper_dev_link_private(struct net_device *dev,
5482                                          struct net_device *upper_dev,
5483                                          void *private)
5484 {
5485         return __netdev_upper_dev_link(dev, upper_dev, true, private);
5486 }
5487 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5488
5489 /**
5490  * netdev_upper_dev_unlink - Removes a link to upper device
5491  * @dev: device
5492  * @upper_dev: new upper device
5493  *
5494  * Removes a link to device which is upper to this one. The caller must hold
5495  * the RTNL lock.
5496  */
5497 void netdev_upper_dev_unlink(struct net_device *dev,
5498                              struct net_device *upper_dev)
5499 {
5500         struct netdev_notifier_changeupper_info changeupper_info;
5501         struct netdev_adjacent *i, *j;
5502         ASSERT_RTNL();
5503
5504         changeupper_info.upper_dev = upper_dev;
5505         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5506         changeupper_info.linking = false;
5507
5508         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5509
5510         /* Here is the tricky part. We must remove all dev's lower
5511          * devices from all upper_dev's upper devices and vice
5512          * versa, to maintain the graph relationship.
5513          */
5514         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5515                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5516                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5517
5518         /* remove also the devices itself from lower/upper device
5519          * list
5520          */
5521         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5522                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5523
5524         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5525                 __netdev_adjacent_dev_unlink(dev, i->dev);
5526
5527         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5528                                       &changeupper_info.info);
5529 }
5530 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5531
5532 /**
5533  * netdev_bonding_info_change - Dispatch event about slave change
5534  * @dev: device
5535  * @bonding_info: info to dispatch
5536  *
5537  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5538  * The caller must hold the RTNL lock.
5539  */
5540 void netdev_bonding_info_change(struct net_device *dev,
5541                                 struct netdev_bonding_info *bonding_info)
5542 {
5543         struct netdev_notifier_bonding_info     info;
5544
5545         memcpy(&info.bonding_info, bonding_info,
5546                sizeof(struct netdev_bonding_info));
5547         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5548                                       &info.info);
5549 }
5550 EXPORT_SYMBOL(netdev_bonding_info_change);
5551
5552 static void netdev_adjacent_add_links(struct net_device *dev)
5553 {
5554         struct netdev_adjacent *iter;
5555
5556         struct net *net = dev_net(dev);
5557
5558         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5559                 if (!net_eq(net,dev_net(iter->dev)))
5560                         continue;
5561                 netdev_adjacent_sysfs_add(iter->dev, dev,
5562                                           &iter->dev->adj_list.lower);
5563                 netdev_adjacent_sysfs_add(dev, iter->dev,
5564                                           &dev->adj_list.upper);
5565         }
5566
5567         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5568                 if (!net_eq(net,dev_net(iter->dev)))
5569                         continue;
5570                 netdev_adjacent_sysfs_add(iter->dev, dev,
5571                                           &iter->dev->adj_list.upper);
5572                 netdev_adjacent_sysfs_add(dev, iter->dev,
5573                                           &dev->adj_list.lower);
5574         }
5575 }
5576
5577 static void netdev_adjacent_del_links(struct net_device *dev)
5578 {
5579         struct netdev_adjacent *iter;
5580
5581         struct net *net = dev_net(dev);
5582
5583         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5584                 if (!net_eq(net,dev_net(iter->dev)))
5585                         continue;
5586                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5587                                           &iter->dev->adj_list.lower);
5588                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5589                                           &dev->adj_list.upper);
5590         }
5591
5592         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5593                 if (!net_eq(net,dev_net(iter->dev)))
5594                         continue;
5595                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5596                                           &iter->dev->adj_list.upper);
5597                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5598                                           &dev->adj_list.lower);
5599         }
5600 }
5601
5602 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5603 {
5604         struct netdev_adjacent *iter;
5605
5606         struct net *net = dev_net(dev);
5607
5608         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5609                 if (!net_eq(net,dev_net(iter->dev)))
5610                         continue;
5611                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5612                                           &iter->dev->adj_list.lower);
5613                 netdev_adjacent_sysfs_add(iter->dev, dev,
5614                                           &iter->dev->adj_list.lower);
5615         }
5616
5617         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5618                 if (!net_eq(net,dev_net(iter->dev)))
5619                         continue;
5620                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5621                                           &iter->dev->adj_list.upper);
5622                 netdev_adjacent_sysfs_add(iter->dev, dev,
5623                                           &iter->dev->adj_list.upper);
5624         }
5625 }
5626
5627 void *netdev_lower_dev_get_private(struct net_device *dev,
5628                                    struct net_device *lower_dev)
5629 {
5630         struct netdev_adjacent *lower;
5631
5632         if (!lower_dev)
5633                 return NULL;
5634         lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5635         if (!lower)
5636                 return NULL;
5637
5638         return lower->private;
5639 }
5640 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5641
5642
5643 int dev_get_nest_level(struct net_device *dev,
5644                        bool (*type_check)(struct net_device *dev))
5645 {
5646         struct net_device *lower = NULL;
5647         struct list_head *iter;
5648         int max_nest = -1;
5649         int nest;
5650
5651         ASSERT_RTNL();
5652
5653         netdev_for_each_lower_dev(dev, lower, iter) {
5654                 nest = dev_get_nest_level(lower, type_check);
5655                 if (max_nest < nest)
5656                         max_nest = nest;
5657         }
5658
5659         if (type_check(dev))
5660                 max_nest++;
5661
5662         return max_nest;
5663 }
5664 EXPORT_SYMBOL(dev_get_nest_level);
5665
5666 static void dev_change_rx_flags(struct net_device *dev, int flags)
5667 {
5668         const struct net_device_ops *ops = dev->netdev_ops;
5669
5670         if (ops->ndo_change_rx_flags)
5671                 ops->ndo_change_rx_flags(dev, flags);
5672 }
5673
5674 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5675 {
5676         unsigned int old_flags = dev->flags;
5677         kuid_t uid;
5678         kgid_t gid;
5679
5680         ASSERT_RTNL();
5681
5682         dev->flags |= IFF_PROMISC;
5683         dev->promiscuity += inc;
5684         if (dev->promiscuity == 0) {
5685                 /*
5686                  * Avoid overflow.
5687                  * If inc causes overflow, untouch promisc and return error.
5688                  */
5689                 if (inc < 0)
5690                         dev->flags &= ~IFF_PROMISC;
5691                 else {
5692                         dev->promiscuity -= inc;
5693                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5694                                 dev->name);
5695                         return -EOVERFLOW;
5696                 }
5697         }
5698         if (dev->flags != old_flags) {
5699                 pr_info("device %s %s promiscuous mode\n",
5700                         dev->name,
5701                         dev->flags & IFF_PROMISC ? "entered" : "left");
5702                 if (audit_enabled) {
5703                         current_uid_gid(&uid, &gid);
5704                         audit_log(current->audit_context, GFP_ATOMIC,
5705                                 AUDIT_ANOM_PROMISCUOUS,
5706                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5707                                 dev->name, (dev->flags & IFF_PROMISC),
5708                                 (old_flags & IFF_PROMISC),
5709                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5710                                 from_kuid(&init_user_ns, uid),
5711                                 from_kgid(&init_user_ns, gid),
5712                                 audit_get_sessionid(current));
5713                 }
5714
5715                 dev_change_rx_flags(dev, IFF_PROMISC);
5716         }
5717         if (notify)
5718                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5719         return 0;
5720 }
5721
5722 /**
5723  *      dev_set_promiscuity     - update promiscuity count on a device
5724  *      @dev: device
5725  *      @inc: modifier
5726  *
5727  *      Add or remove promiscuity from a device. While the count in the device
5728  *      remains above zero the interface remains promiscuous. Once it hits zero
5729  *      the device reverts back to normal filtering operation. A negative inc
5730  *      value is used to drop promiscuity on the device.
5731  *      Return 0 if successful or a negative errno code on error.
5732  */
5733 int dev_set_promiscuity(struct net_device *dev, int inc)
5734 {
5735         unsigned int old_flags = dev->flags;
5736         int err;
5737
5738         err = __dev_set_promiscuity(dev, inc, true);
5739         if (err < 0)
5740                 return err;
5741         if (dev->flags != old_flags)
5742                 dev_set_rx_mode(dev);
5743         return err;
5744 }
5745 EXPORT_SYMBOL(dev_set_promiscuity);
5746
5747 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5748 {
5749         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5750
5751         ASSERT_RTNL();
5752
5753         dev->flags |= IFF_ALLMULTI;
5754         dev->allmulti += inc;
5755         if (dev->allmulti == 0) {
5756                 /*
5757                  * Avoid overflow.
5758                  * If inc causes overflow, untouch allmulti and return error.
5759                  */
5760                 if (inc < 0)
5761                         dev->flags &= ~IFF_ALLMULTI;
5762                 else {
5763                         dev->allmulti -= inc;
5764                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5765                                 dev->name);
5766                         return -EOVERFLOW;
5767                 }
5768         }
5769         if (dev->flags ^ old_flags) {
5770                 dev_change_rx_flags(dev, IFF_ALLMULTI);
5771                 dev_set_rx_mode(dev);
5772                 if (notify)
5773                         __dev_notify_flags(dev, old_flags,
5774                                            dev->gflags ^ old_gflags);
5775         }
5776         return 0;
5777 }
5778
5779 /**
5780  *      dev_set_allmulti        - update allmulti count on a device
5781  *      @dev: device
5782  *      @inc: modifier
5783  *
5784  *      Add or remove reception of all multicast frames to a device. While the
5785  *      count in the device remains above zero the interface remains listening
5786  *      to all interfaces. Once it hits zero the device reverts back to normal
5787  *      filtering operation. A negative @inc value is used to drop the counter
5788  *      when releasing a resource needing all multicasts.
5789  *      Return 0 if successful or a negative errno code on error.
5790  */
5791
5792 int dev_set_allmulti(struct net_device *dev, int inc)
5793 {
5794         return __dev_set_allmulti(dev, inc, true);
5795 }
5796 EXPORT_SYMBOL(dev_set_allmulti);
5797
5798 /*
5799  *      Upload unicast and multicast address lists to device and
5800  *      configure RX filtering. When the device doesn't support unicast
5801  *      filtering it is put in promiscuous mode while unicast addresses
5802  *      are present.
5803  */
5804 void __dev_set_rx_mode(struct net_device *dev)
5805 {
5806         const struct net_device_ops *ops = dev->netdev_ops;
5807
5808         /* dev_open will call this function so the list will stay sane. */
5809         if (!(dev->flags&IFF_UP))
5810                 return;
5811
5812         if (!netif_device_present(dev))
5813                 return;
5814
5815         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5816                 /* Unicast addresses changes may only happen under the rtnl,
5817                  * therefore calling __dev_set_promiscuity here is safe.
5818                  */
5819                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5820                         __dev_set_promiscuity(dev, 1, false);
5821                         dev->uc_promisc = true;
5822                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5823                         __dev_set_promiscuity(dev, -1, false);
5824                         dev->uc_promisc = false;
5825                 }
5826         }
5827
5828         if (ops->ndo_set_rx_mode)
5829                 ops->ndo_set_rx_mode(dev);
5830 }
5831
5832 void dev_set_rx_mode(struct net_device *dev)
5833 {
5834         netif_addr_lock_bh(dev);
5835         __dev_set_rx_mode(dev);
5836         netif_addr_unlock_bh(dev);
5837 }
5838
5839 /**
5840  *      dev_get_flags - get flags reported to userspace
5841  *      @dev: device
5842  *
5843  *      Get the combination of flag bits exported through APIs to userspace.
5844  */
5845 unsigned int dev_get_flags(const struct net_device *dev)
5846 {
5847         unsigned int flags;
5848
5849         flags = (dev->flags & ~(IFF_PROMISC |
5850                                 IFF_ALLMULTI |
5851                                 IFF_RUNNING |
5852                                 IFF_LOWER_UP |
5853                                 IFF_DORMANT)) |
5854                 (dev->gflags & (IFF_PROMISC |
5855                                 IFF_ALLMULTI));
5856
5857         if (netif_running(dev)) {
5858                 if (netif_oper_up(dev))
5859                         flags |= IFF_RUNNING;
5860                 if (netif_carrier_ok(dev))
5861                         flags |= IFF_LOWER_UP;
5862                 if (netif_dormant(dev))
5863                         flags |= IFF_DORMANT;
5864         }
5865
5866         return flags;
5867 }
5868 EXPORT_SYMBOL(dev_get_flags);
5869
5870 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5871 {
5872         unsigned int old_flags = dev->flags;
5873         int ret;
5874
5875         ASSERT_RTNL();
5876
5877         /*
5878          *      Set the flags on our device.
5879          */
5880
5881         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5882                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5883                                IFF_AUTOMEDIA)) |
5884                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5885                                     IFF_ALLMULTI));
5886
5887         /*
5888          *      Load in the correct multicast list now the flags have changed.
5889          */
5890
5891         if ((old_flags ^ flags) & IFF_MULTICAST)
5892                 dev_change_rx_flags(dev, IFF_MULTICAST);
5893
5894         dev_set_rx_mode(dev);
5895
5896         /*
5897          *      Have we downed the interface. We handle IFF_UP ourselves
5898          *      according to user attempts to set it, rather than blindly
5899          *      setting it.
5900          */
5901
5902         ret = 0;
5903         if ((old_flags ^ flags) & IFF_UP)
5904                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5905
5906         if ((flags ^ dev->gflags) & IFF_PROMISC) {
5907                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5908                 unsigned int old_flags = dev->flags;
5909
5910                 dev->gflags ^= IFF_PROMISC;
5911
5912                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5913                         if (dev->flags != old_flags)
5914                                 dev_set_rx_mode(dev);
5915         }
5916
5917         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5918            is important. Some (broken) drivers set IFF_PROMISC, when
5919            IFF_ALLMULTI is requested not asking us and not reporting.
5920          */
5921         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5922                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5923
5924                 dev->gflags ^= IFF_ALLMULTI;
5925                 __dev_set_allmulti(dev, inc, false);
5926         }
5927
5928         return ret;
5929 }
5930
5931 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5932                         unsigned int gchanges)
5933 {
5934         unsigned int changes = dev->flags ^ old_flags;
5935
5936         if (gchanges)
5937                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5938
5939         if (changes & IFF_UP) {
5940                 if (dev->flags & IFF_UP)
5941                         call_netdevice_notifiers(NETDEV_UP, dev);
5942                 else
5943                         call_netdevice_notifiers(NETDEV_DOWN, dev);
5944         }
5945
5946         if (dev->flags & IFF_UP &&
5947             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5948                 struct netdev_notifier_change_info change_info;
5949
5950                 change_info.flags_changed = changes;
5951                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5952                                               &change_info.info);
5953         }
5954 }
5955
5956 /**
5957  *      dev_change_flags - change device settings
5958  *      @dev: device
5959  *      @flags: device state flags
5960  *
5961  *      Change settings on device based state flags. The flags are
5962  *      in the userspace exported format.
5963  */
5964 int dev_change_flags(struct net_device *dev, unsigned int flags)
5965 {
5966         int ret;
5967         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5968
5969         ret = __dev_change_flags(dev, flags);
5970         if (ret < 0)
5971                 return ret;
5972
5973         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5974         __dev_notify_flags(dev, old_flags, changes);
5975         return ret;
5976 }
5977 EXPORT_SYMBOL(dev_change_flags);
5978
5979 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5980 {
5981         const struct net_device_ops *ops = dev->netdev_ops;
5982
5983         if (ops->ndo_change_mtu)
5984                 return ops->ndo_change_mtu(dev, new_mtu);
5985
5986         dev->mtu = new_mtu;
5987         return 0;
5988 }
5989
5990 /**
5991  *      dev_set_mtu - Change maximum transfer unit
5992  *      @dev: device
5993  *      @new_mtu: new transfer unit
5994  *
5995  *      Change the maximum transfer size of the network device.
5996  */
5997 int dev_set_mtu(struct net_device *dev, int new_mtu)
5998 {
5999         int err, orig_mtu;
6000
6001         if (new_mtu == dev->mtu)
6002                 return 0;
6003
6004         /*      MTU must be positive.    */
6005         if (new_mtu < 0)
6006                 return -EINVAL;
6007
6008         if (!netif_device_present(dev))
6009                 return -ENODEV;
6010
6011         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6012         err = notifier_to_errno(err);
6013         if (err)
6014                 return err;
6015
6016         orig_mtu = dev->mtu;
6017         err = __dev_set_mtu(dev, new_mtu);
6018
6019         if (!err) {
6020                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6021                 err = notifier_to_errno(err);
6022                 if (err) {
6023                         /* setting mtu back and notifying everyone again,
6024                          * so that they have a chance to revert changes.
6025                          */
6026                         __dev_set_mtu(dev, orig_mtu);
6027                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6028                 }
6029         }
6030         return err;
6031 }
6032 EXPORT_SYMBOL(dev_set_mtu);
6033
6034 /**
6035  *      dev_set_group - Change group this device belongs to
6036  *      @dev: device
6037  *      @new_group: group this device should belong to
6038  */
6039 void dev_set_group(struct net_device *dev, int new_group)
6040 {
6041         dev->group = new_group;
6042 }
6043 EXPORT_SYMBOL(dev_set_group);
6044
6045 /**
6046  *      dev_set_mac_address - Change Media Access Control Address
6047  *      @dev: device
6048  *      @sa: new address
6049  *
6050  *      Change the hardware (MAC) address of the device
6051  */
6052 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6053 {
6054         const struct net_device_ops *ops = dev->netdev_ops;
6055         int err;
6056
6057         if (!ops->ndo_set_mac_address)
6058                 return -EOPNOTSUPP;
6059         if (sa->sa_family != dev->type)
6060                 return -EINVAL;
6061         if (!netif_device_present(dev))
6062                 return -ENODEV;
6063         err = ops->ndo_set_mac_address(dev, sa);
6064         if (err)
6065                 return err;
6066         dev->addr_assign_type = NET_ADDR_SET;
6067         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6068         add_device_randomness(dev->dev_addr, dev->addr_len);
6069         return 0;
6070 }
6071 EXPORT_SYMBOL(dev_set_mac_address);
6072
6073 /**
6074  *      dev_change_carrier - Change device carrier
6075  *      @dev: device
6076  *      @new_carrier: new value
6077  *
6078  *      Change device carrier
6079  */
6080 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6081 {
6082         const struct net_device_ops *ops = dev->netdev_ops;
6083
6084         if (!ops->ndo_change_carrier)
6085                 return -EOPNOTSUPP;
6086         if (!netif_device_present(dev))
6087                 return -ENODEV;
6088         return ops->ndo_change_carrier(dev, new_carrier);
6089 }
6090 EXPORT_SYMBOL(dev_change_carrier);
6091
6092 /**
6093  *      dev_get_phys_port_id - Get device physical port ID
6094  *      @dev: device
6095  *      @ppid: port ID
6096  *
6097  *      Get device physical port ID
6098  */
6099 int dev_get_phys_port_id(struct net_device *dev,
6100                          struct netdev_phys_item_id *ppid)
6101 {
6102         const struct net_device_ops *ops = dev->netdev_ops;
6103
6104         if (!ops->ndo_get_phys_port_id)
6105                 return -EOPNOTSUPP;
6106         return ops->ndo_get_phys_port_id(dev, ppid);
6107 }
6108 EXPORT_SYMBOL(dev_get_phys_port_id);
6109
6110 /**
6111  *      dev_get_phys_port_name - Get device physical port name
6112  *      @dev: device
6113  *      @name: port name
6114  *
6115  *      Get device physical port name
6116  */
6117 int dev_get_phys_port_name(struct net_device *dev,
6118                            char *name, size_t len)
6119 {
6120         const struct net_device_ops *ops = dev->netdev_ops;
6121
6122         if (!ops->ndo_get_phys_port_name)
6123                 return -EOPNOTSUPP;
6124         return ops->ndo_get_phys_port_name(dev, name, len);
6125 }
6126 EXPORT_SYMBOL(dev_get_phys_port_name);
6127
6128 /**
6129  *      dev_change_proto_down - update protocol port state information
6130  *      @dev: device
6131  *      @proto_down: new value
6132  *
6133  *      This info can be used by switch drivers to set the phys state of the
6134  *      port.
6135  */
6136 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6137 {
6138         const struct net_device_ops *ops = dev->netdev_ops;
6139
6140         if (!ops->ndo_change_proto_down)
6141                 return -EOPNOTSUPP;
6142         if (!netif_device_present(dev))
6143                 return -ENODEV;
6144         return ops->ndo_change_proto_down(dev, proto_down);
6145 }
6146 EXPORT_SYMBOL(dev_change_proto_down);
6147
6148 /**
6149  *      dev_new_index   -       allocate an ifindex
6150  *      @net: the applicable net namespace
6151  *
6152  *      Returns a suitable unique value for a new device interface
6153  *      number.  The caller must hold the rtnl semaphore or the
6154  *      dev_base_lock to be sure it remains unique.
6155  */
6156 static int dev_new_index(struct net *net)
6157 {
6158         int ifindex = net->ifindex;
6159         for (;;) {
6160                 if (++ifindex <= 0)
6161                         ifindex = 1;
6162                 if (!__dev_get_by_index(net, ifindex))
6163                         return net->ifindex = ifindex;
6164         }
6165 }
6166
6167 /* Delayed registration/unregisteration */
6168 static LIST_HEAD(net_todo_list);
6169 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6170
6171 static void net_set_todo(struct net_device *dev)
6172 {
6173         list_add_tail(&dev->todo_list, &net_todo_list);
6174         dev_net(dev)->dev_unreg_count++;
6175 }
6176
6177 static void rollback_registered_many(struct list_head *head)
6178 {
6179         struct net_device *dev, *tmp;
6180         LIST_HEAD(close_head);
6181
6182         BUG_ON(dev_boot_phase);
6183         ASSERT_RTNL();
6184
6185         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6186                 /* Some devices call without registering
6187                  * for initialization unwind. Remove those
6188                  * devices and proceed with the remaining.
6189                  */
6190                 if (dev->reg_state == NETREG_UNINITIALIZED) {
6191                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6192                                  dev->name, dev);
6193
6194                         WARN_ON(1);
6195                         list_del(&dev->unreg_list);
6196                         continue;
6197                 }
6198                 dev->dismantle = true;
6199                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6200         }
6201
6202         /* If device is running, close it first. */
6203         list_for_each_entry(dev, head, unreg_list)
6204                 list_add_tail(&dev->close_list, &close_head);
6205         dev_close_many(&close_head, true);
6206
6207         list_for_each_entry(dev, head, unreg_list) {
6208                 /* And unlink it from device chain. */
6209                 unlist_netdevice(dev);
6210
6211                 dev->reg_state = NETREG_UNREGISTERING;
6212                 on_each_cpu(flush_backlog, dev, 1);
6213         }
6214
6215         synchronize_net();
6216
6217         list_for_each_entry(dev, head, unreg_list) {
6218                 struct sk_buff *skb = NULL;
6219
6220                 /* Shutdown queueing discipline. */
6221                 dev_shutdown(dev);
6222
6223
6224                 /* Notify protocols, that we are about to destroy
6225                    this device. They should clean all the things.
6226                 */
6227                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6228
6229                 if (!dev->rtnl_link_ops ||
6230                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6231                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6232                                                      GFP_KERNEL);
6233
6234                 /*
6235                  *      Flush the unicast and multicast chains
6236                  */
6237                 dev_uc_flush(dev);
6238                 dev_mc_flush(dev);
6239
6240                 if (dev->netdev_ops->ndo_uninit)
6241                         dev->netdev_ops->ndo_uninit(dev);
6242
6243                 if (skb)
6244                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6245
6246                 /* Notifier chain MUST detach us all upper devices. */
6247                 WARN_ON(netdev_has_any_upper_dev(dev));
6248
6249                 /* Remove entries from kobject tree */
6250                 netdev_unregister_kobject(dev);
6251 #ifdef CONFIG_XPS
6252                 /* Remove XPS queueing entries */
6253                 netif_reset_xps_queues_gt(dev, 0);
6254 #endif
6255         }
6256
6257         synchronize_net();
6258
6259         list_for_each_entry(dev, head, unreg_list)
6260                 dev_put(dev);
6261 }
6262
6263 static void rollback_registered(struct net_device *dev)
6264 {
6265         LIST_HEAD(single);
6266
6267         list_add(&dev->unreg_list, &single);
6268         rollback_registered_many(&single);
6269         list_del(&single);
6270 }
6271
6272 static netdev_features_t netdev_fix_features(struct net_device *dev,
6273         netdev_features_t features)
6274 {
6275         /* Fix illegal checksum combinations */
6276         if ((features & NETIF_F_HW_CSUM) &&
6277             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6278                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6279                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6280         }
6281
6282         /* TSO requires that SG is present as well. */
6283         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6284                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6285                 features &= ~NETIF_F_ALL_TSO;
6286         }
6287
6288         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6289                                         !(features & NETIF_F_IP_CSUM)) {
6290                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6291                 features &= ~NETIF_F_TSO;
6292                 features &= ~NETIF_F_TSO_ECN;
6293         }
6294
6295         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6296                                          !(features & NETIF_F_IPV6_CSUM)) {
6297                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6298                 features &= ~NETIF_F_TSO6;
6299         }
6300
6301         /* TSO ECN requires that TSO is present as well. */
6302         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6303                 features &= ~NETIF_F_TSO_ECN;
6304
6305         /* Software GSO depends on SG. */
6306         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6307                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6308                 features &= ~NETIF_F_GSO;
6309         }
6310
6311         /* UFO needs SG and checksumming */
6312         if (features & NETIF_F_UFO) {
6313                 /* maybe split UFO into V4 and V6? */
6314                 if (!((features & NETIF_F_GEN_CSUM) ||
6315                     (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6316                             == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6317                         netdev_dbg(dev,
6318                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6319                         features &= ~NETIF_F_UFO;
6320                 }
6321
6322                 if (!(features & NETIF_F_SG)) {
6323                         netdev_dbg(dev,
6324                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6325                         features &= ~NETIF_F_UFO;
6326                 }
6327         }
6328
6329 #ifdef CONFIG_NET_RX_BUSY_POLL
6330         if (dev->netdev_ops->ndo_busy_poll)
6331                 features |= NETIF_F_BUSY_POLL;
6332         else
6333 #endif
6334                 features &= ~NETIF_F_BUSY_POLL;
6335
6336         return features;
6337 }
6338
6339 int __netdev_update_features(struct net_device *dev)
6340 {
6341         netdev_features_t features;
6342         int err = 0;
6343
6344         ASSERT_RTNL();
6345
6346         features = netdev_get_wanted_features(dev);
6347
6348         if (dev->netdev_ops->ndo_fix_features)
6349                 features = dev->netdev_ops->ndo_fix_features(dev, features);
6350
6351         /* driver might be less strict about feature dependencies */
6352         features = netdev_fix_features(dev, features);
6353
6354         if (dev->features == features)
6355                 return 0;
6356
6357         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6358                 &dev->features, &features);
6359
6360         if (dev->netdev_ops->ndo_set_features)
6361                 err = dev->netdev_ops->ndo_set_features(dev, features);
6362
6363         if (unlikely(err < 0)) {
6364                 netdev_err(dev,
6365                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
6366                         err, &features, &dev->features);
6367                 return -1;
6368         }
6369
6370         if (!err)
6371                 dev->features = features;
6372
6373         return 1;
6374 }
6375
6376 /**
6377  *      netdev_update_features - recalculate device features
6378  *      @dev: the device to check
6379  *
6380  *      Recalculate dev->features set and send notifications if it
6381  *      has changed. Should be called after driver or hardware dependent
6382  *      conditions might have changed that influence the features.
6383  */
6384 void netdev_update_features(struct net_device *dev)
6385 {
6386         if (__netdev_update_features(dev))
6387                 netdev_features_change(dev);
6388 }
6389 EXPORT_SYMBOL(netdev_update_features);
6390
6391 /**
6392  *      netdev_change_features - recalculate device features
6393  *      @dev: the device to check
6394  *
6395  *      Recalculate dev->features set and send notifications even
6396  *      if they have not changed. Should be called instead of
6397  *      netdev_update_features() if also dev->vlan_features might
6398  *      have changed to allow the changes to be propagated to stacked
6399  *      VLAN devices.
6400  */
6401 void netdev_change_features(struct net_device *dev)
6402 {
6403         __netdev_update_features(dev);
6404         netdev_features_change(dev);
6405 }
6406 EXPORT_SYMBOL(netdev_change_features);
6407
6408 /**
6409  *      netif_stacked_transfer_operstate -      transfer operstate
6410  *      @rootdev: the root or lower level device to transfer state from
6411  *      @dev: the device to transfer operstate to
6412  *
6413  *      Transfer operational state from root to device. This is normally
6414  *      called when a stacking relationship exists between the root
6415  *      device and the device(a leaf device).
6416  */
6417 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6418                                         struct net_device *dev)
6419 {
6420         if (rootdev->operstate == IF_OPER_DORMANT)
6421                 netif_dormant_on(dev);
6422         else
6423                 netif_dormant_off(dev);
6424
6425         if (netif_carrier_ok(rootdev)) {
6426                 if (!netif_carrier_ok(dev))
6427                         netif_carrier_on(dev);
6428         } else {
6429                 if (netif_carrier_ok(dev))
6430                         netif_carrier_off(dev);
6431         }
6432 }
6433 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6434
6435 #ifdef CONFIG_SYSFS
6436 static int netif_alloc_rx_queues(struct net_device *dev)
6437 {
6438         unsigned int i, count = dev->num_rx_queues;
6439         struct netdev_rx_queue *rx;
6440         size_t sz = count * sizeof(*rx);
6441
6442         BUG_ON(count < 1);
6443
6444         rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6445         if (!rx) {
6446                 rx = vzalloc(sz);
6447                 if (!rx)
6448                         return -ENOMEM;
6449         }
6450         dev->_rx = rx;
6451
6452         for (i = 0; i < count; i++)
6453                 rx[i].dev = dev;
6454         return 0;
6455 }
6456 #endif
6457
6458 static void netdev_init_one_queue(struct net_device *dev,
6459                                   struct netdev_queue *queue, void *_unused)
6460 {
6461         /* Initialize queue lock */
6462         spin_lock_init(&queue->_xmit_lock);
6463         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6464         queue->xmit_lock_owner = -1;
6465         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6466         queue->dev = dev;
6467 #ifdef CONFIG_BQL
6468         dql_init(&queue->dql, HZ);
6469 #endif
6470 }
6471
6472 static void netif_free_tx_queues(struct net_device *dev)
6473 {
6474         kvfree(dev->_tx);
6475 }
6476
6477 static int netif_alloc_netdev_queues(struct net_device *dev)
6478 {
6479         unsigned int count = dev->num_tx_queues;
6480         struct netdev_queue *tx;
6481         size_t sz = count * sizeof(*tx);
6482
6483         if (count < 1 || count > 0xffff)
6484                 return -EINVAL;
6485
6486         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6487         if (!tx) {
6488                 tx = vzalloc(sz);
6489                 if (!tx)
6490                         return -ENOMEM;
6491         }
6492         dev->_tx = tx;
6493
6494         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6495         spin_lock_init(&dev->tx_global_lock);
6496
6497         return 0;
6498 }
6499
6500 void netif_tx_stop_all_queues(struct net_device *dev)
6501 {
6502         unsigned int i;
6503
6504         for (i = 0; i < dev->num_tx_queues; i++) {
6505                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6506                 netif_tx_stop_queue(txq);
6507         }
6508 }
6509 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6510
6511 /**
6512  *      register_netdevice      - register a network device
6513  *      @dev: device to register
6514  *
6515  *      Take a completed network device structure and add it to the kernel
6516  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6517  *      chain. 0 is returned on success. A negative errno code is returned
6518  *      on a failure to set up the device, or if the name is a duplicate.
6519  *
6520  *      Callers must hold the rtnl semaphore. You may want
6521  *      register_netdev() instead of this.
6522  *
6523  *      BUGS:
6524  *      The locking appears insufficient to guarantee two parallel registers
6525  *      will not get the same name.
6526  */
6527
6528 int register_netdevice(struct net_device *dev)
6529 {
6530         int ret;
6531         struct net *net = dev_net(dev);
6532
6533         BUG_ON(dev_boot_phase);
6534         ASSERT_RTNL();
6535
6536         might_sleep();
6537
6538         /* When net_device's are persistent, this will be fatal. */
6539         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6540         BUG_ON(!net);
6541
6542         spin_lock_init(&dev->addr_list_lock);
6543         netdev_set_addr_lockdep_class(dev);
6544
6545         ret = dev_get_valid_name(net, dev, dev->name);
6546         if (ret < 0)
6547                 goto out;
6548
6549         /* Init, if this function is available */
6550         if (dev->netdev_ops->ndo_init) {
6551                 ret = dev->netdev_ops->ndo_init(dev);
6552                 if (ret) {
6553                         if (ret > 0)
6554                                 ret = -EIO;
6555                         goto out;
6556                 }
6557         }
6558
6559         if (((dev->hw_features | dev->features) &
6560              NETIF_F_HW_VLAN_CTAG_FILTER) &&
6561             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6562              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6563                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6564                 ret = -EINVAL;
6565                 goto err_uninit;
6566         }
6567
6568         ret = -EBUSY;
6569         if (!dev->ifindex)
6570                 dev->ifindex = dev_new_index(net);
6571         else if (__dev_get_by_index(net, dev->ifindex))
6572                 goto err_uninit;
6573
6574         /* Transfer changeable features to wanted_features and enable
6575          * software offloads (GSO and GRO).
6576          */
6577         dev->hw_features |= NETIF_F_SOFT_FEATURES;
6578         dev->features |= NETIF_F_SOFT_FEATURES;
6579         dev->wanted_features = dev->features & dev->hw_features;
6580
6581         if (!(dev->flags & IFF_LOOPBACK)) {
6582                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6583         }
6584
6585         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6586          */
6587         dev->vlan_features |= NETIF_F_HIGHDMA;
6588
6589         /* Make NETIF_F_SG inheritable to tunnel devices.
6590          */
6591         dev->hw_enc_features |= NETIF_F_SG;
6592
6593         /* Make NETIF_F_SG inheritable to MPLS.
6594          */
6595         dev->mpls_features |= NETIF_F_SG;
6596
6597         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6598         ret = notifier_to_errno(ret);
6599         if (ret)
6600                 goto err_uninit;
6601
6602         ret = netdev_register_kobject(dev);
6603         if (ret)
6604                 goto err_uninit;
6605         dev->reg_state = NETREG_REGISTERED;
6606
6607         __netdev_update_features(dev);
6608
6609         /*
6610          *      Default initial state at registry is that the
6611          *      device is present.
6612          */
6613
6614         set_bit(__LINK_STATE_PRESENT, &dev->state);
6615
6616         linkwatch_init_dev(dev);
6617
6618         dev_init_scheduler(dev);
6619         dev_hold(dev);
6620         list_netdevice(dev);
6621         add_device_randomness(dev->dev_addr, dev->addr_len);
6622
6623         /* If the device has permanent device address, driver should
6624          * set dev_addr and also addr_assign_type should be set to
6625          * NET_ADDR_PERM (default value).
6626          */
6627         if (dev->addr_assign_type == NET_ADDR_PERM)
6628                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6629
6630         /* Notify protocols, that a new device appeared. */
6631         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6632         ret = notifier_to_errno(ret);
6633         if (ret) {
6634                 rollback_registered(dev);
6635                 dev->reg_state = NETREG_UNREGISTERED;
6636         }
6637         /*
6638          *      Prevent userspace races by waiting until the network
6639          *      device is fully setup before sending notifications.
6640          */
6641         if (!dev->rtnl_link_ops ||
6642             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6643                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6644
6645 out:
6646         return ret;
6647
6648 err_uninit:
6649         if (dev->netdev_ops->ndo_uninit)
6650                 dev->netdev_ops->ndo_uninit(dev);
6651         goto out;
6652 }
6653 EXPORT_SYMBOL(register_netdevice);
6654
6655 /**
6656  *      init_dummy_netdev       - init a dummy network device for NAPI
6657  *      @dev: device to init
6658  *
6659  *      This takes a network device structure and initialize the minimum
6660  *      amount of fields so it can be used to schedule NAPI polls without
6661  *      registering a full blown interface. This is to be used by drivers
6662  *      that need to tie several hardware interfaces to a single NAPI
6663  *      poll scheduler due to HW limitations.
6664  */
6665 int init_dummy_netdev(struct net_device *dev)
6666 {
6667         /* Clear everything. Note we don't initialize spinlocks
6668          * are they aren't supposed to be taken by any of the
6669          * NAPI code and this dummy netdev is supposed to be
6670          * only ever used for NAPI polls
6671          */
6672         memset(dev, 0, sizeof(struct net_device));
6673
6674         /* make sure we BUG if trying to hit standard
6675          * register/unregister code path
6676          */
6677         dev->reg_state = NETREG_DUMMY;
6678
6679         /* NAPI wants this */
6680         INIT_LIST_HEAD(&dev->napi_list);
6681
6682         /* a dummy interface is started by default */
6683         set_bit(__LINK_STATE_PRESENT, &dev->state);
6684         set_bit(__LINK_STATE_START, &dev->state);
6685
6686         /* Note : We dont allocate pcpu_refcnt for dummy devices,
6687          * because users of this 'device' dont need to change
6688          * its refcount.
6689          */
6690
6691         return 0;
6692 }
6693 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6694
6695
6696 /**
6697  *      register_netdev - register a network device
6698  *      @dev: device to register
6699  *
6700  *      Take a completed network device structure and add it to the kernel
6701  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6702  *      chain. 0 is returned on success. A negative errno code is returned
6703  *      on a failure to set up the device, or if the name is a duplicate.
6704  *
6705  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
6706  *      and expands the device name if you passed a format string to
6707  *      alloc_netdev.
6708  */
6709 int register_netdev(struct net_device *dev)
6710 {
6711         int err;
6712
6713         rtnl_lock();
6714         err = register_netdevice(dev);
6715         rtnl_unlock();
6716         return err;
6717 }
6718 EXPORT_SYMBOL(register_netdev);
6719
6720 int netdev_refcnt_read(const struct net_device *dev)
6721 {
6722         int i, refcnt = 0;
6723
6724         for_each_possible_cpu(i)
6725                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6726         return refcnt;
6727 }
6728 EXPORT_SYMBOL(netdev_refcnt_read);
6729
6730 /**
6731  * netdev_wait_allrefs - wait until all references are gone.
6732  * @dev: target net_device
6733  *
6734  * This is called when unregistering network devices.
6735  *
6736  * Any protocol or device that holds a reference should register
6737  * for netdevice notification, and cleanup and put back the
6738  * reference if they receive an UNREGISTER event.
6739  * We can get stuck here if buggy protocols don't correctly
6740  * call dev_put.
6741  */
6742 static void netdev_wait_allrefs(struct net_device *dev)
6743 {
6744         unsigned long rebroadcast_time, warning_time;
6745         int refcnt;
6746
6747         linkwatch_forget_dev(dev);
6748
6749         rebroadcast_time = warning_time = jiffies;
6750         refcnt = netdev_refcnt_read(dev);
6751
6752         while (refcnt != 0) {
6753                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6754                         rtnl_lock();
6755
6756                         /* Rebroadcast unregister notification */
6757                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6758
6759                         __rtnl_unlock();
6760                         rcu_barrier();
6761                         rtnl_lock();
6762
6763                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6764                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6765                                      &dev->state)) {
6766                                 /* We must not have linkwatch events
6767                                  * pending on unregister. If this
6768                                  * happens, we simply run the queue
6769                                  * unscheduled, resulting in a noop
6770                                  * for this device.
6771                                  */
6772                                 linkwatch_run_queue();
6773                         }
6774
6775                         __rtnl_unlock();
6776
6777                         rebroadcast_time = jiffies;
6778                 }
6779
6780                 msleep(250);
6781
6782                 refcnt = netdev_refcnt_read(dev);
6783
6784                 if (time_after(jiffies, warning_time + 10 * HZ)) {
6785                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6786                                  dev->name, refcnt);
6787                         warning_time = jiffies;
6788                 }
6789         }
6790 }
6791
6792 /* The sequence is:
6793  *
6794  *      rtnl_lock();
6795  *      ...
6796  *      register_netdevice(x1);
6797  *      register_netdevice(x2);
6798  *      ...
6799  *      unregister_netdevice(y1);
6800  *      unregister_netdevice(y2);
6801  *      ...
6802  *      rtnl_unlock();
6803  *      free_netdev(y1);
6804  *      free_netdev(y2);
6805  *
6806  * We are invoked by rtnl_unlock().
6807  * This allows us to deal with problems:
6808  * 1) We can delete sysfs objects which invoke hotplug
6809  *    without deadlocking with linkwatch via keventd.
6810  * 2) Since we run with the RTNL semaphore not held, we can sleep
6811  *    safely in order to wait for the netdev refcnt to drop to zero.
6812  *
6813  * We must not return until all unregister events added during
6814  * the interval the lock was held have been completed.
6815  */
6816 void netdev_run_todo(void)
6817 {
6818         struct list_head list;
6819
6820         /* Snapshot list, allow later requests */
6821         list_replace_init(&net_todo_list, &list);
6822
6823         __rtnl_unlock();
6824
6825
6826         /* Wait for rcu callbacks to finish before next phase */
6827         if (!list_empty(&list))
6828                 rcu_barrier();
6829
6830         while (!list_empty(&list)) {
6831                 struct net_device *dev
6832                         = list_first_entry(&list, struct net_device, todo_list);
6833                 list_del(&dev->todo_list);
6834
6835                 rtnl_lock();
6836                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6837                 __rtnl_unlock();
6838
6839                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6840                         pr_err("network todo '%s' but state %d\n",
6841                                dev->name, dev->reg_state);
6842                         dump_stack();
6843                         continue;
6844                 }
6845
6846                 dev->reg_state = NETREG_UNREGISTERED;
6847
6848                 netdev_wait_allrefs(dev);
6849
6850                 /* paranoia */
6851                 BUG_ON(netdev_refcnt_read(dev));
6852                 BUG_ON(!list_empty(&dev->ptype_all));
6853                 BUG_ON(!list_empty(&dev->ptype_specific));
6854                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6855                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6856                 WARN_ON(dev->dn_ptr);
6857
6858                 if (dev->destructor)
6859                         dev->destructor(dev);
6860
6861                 /* Report a network device has been unregistered */
6862                 rtnl_lock();
6863                 dev_net(dev)->dev_unreg_count--;
6864                 __rtnl_unlock();
6865                 wake_up(&netdev_unregistering_wq);
6866
6867                 /* Free network device */
6868                 kobject_put(&dev->dev.kobj);
6869         }
6870 }
6871
6872 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6873  * fields in the same order, with only the type differing.
6874  */
6875 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6876                              const struct net_device_stats *netdev_stats)
6877 {
6878 #if BITS_PER_LONG == 64
6879         BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6880         memcpy(stats64, netdev_stats, sizeof(*stats64));
6881 #else
6882         size_t i, n = sizeof(*stats64) / sizeof(u64);
6883         const unsigned long *src = (const unsigned long *)netdev_stats;
6884         u64 *dst = (u64 *)stats64;
6885
6886         BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6887                      sizeof(*stats64) / sizeof(u64));
6888         for (i = 0; i < n; i++)
6889                 dst[i] = src[i];
6890 #endif
6891 }
6892 EXPORT_SYMBOL(netdev_stats_to_stats64);
6893
6894 /**
6895  *      dev_get_stats   - get network device statistics
6896  *      @dev: device to get statistics from
6897  *      @storage: place to store stats
6898  *
6899  *      Get network statistics from device. Return @storage.
6900  *      The device driver may provide its own method by setting
6901  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6902  *      otherwise the internal statistics structure is used.
6903  */
6904 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6905                                         struct rtnl_link_stats64 *storage)
6906 {
6907         const struct net_device_ops *ops = dev->netdev_ops;
6908
6909         if (ops->ndo_get_stats64) {
6910                 memset(storage, 0, sizeof(*storage));
6911                 ops->ndo_get_stats64(dev, storage);
6912         } else if (ops->ndo_get_stats) {
6913                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6914         } else {
6915                 netdev_stats_to_stats64(storage, &dev->stats);
6916         }
6917         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6918         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6919         return storage;
6920 }
6921 EXPORT_SYMBOL(dev_get_stats);
6922
6923 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6924 {
6925         struct netdev_queue *queue = dev_ingress_queue(dev);
6926
6927 #ifdef CONFIG_NET_CLS_ACT
6928         if (queue)
6929                 return queue;
6930         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6931         if (!queue)
6932                 return NULL;
6933         netdev_init_one_queue(dev, queue, NULL);
6934         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
6935         queue->qdisc_sleeping = &noop_qdisc;
6936         rcu_assign_pointer(dev->ingress_queue, queue);
6937 #endif
6938         return queue;
6939 }
6940
6941 static const struct ethtool_ops default_ethtool_ops;
6942
6943 void netdev_set_default_ethtool_ops(struct net_device *dev,
6944                                     const struct ethtool_ops *ops)
6945 {
6946         if (dev->ethtool_ops == &default_ethtool_ops)
6947                 dev->ethtool_ops = ops;
6948 }
6949 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6950
6951 void netdev_freemem(struct net_device *dev)
6952 {
6953         char *addr = (char *)dev - dev->padded;
6954
6955         kvfree(addr);
6956 }
6957
6958 /**
6959  *      alloc_netdev_mqs - allocate network device
6960  *      @sizeof_priv:           size of private data to allocate space for
6961  *      @name:                  device name format string
6962  *      @name_assign_type:      origin of device name
6963  *      @setup:                 callback to initialize device
6964  *      @txqs:                  the number of TX subqueues to allocate
6965  *      @rxqs:                  the number of RX subqueues to allocate
6966  *
6967  *      Allocates a struct net_device with private data area for driver use
6968  *      and performs basic initialization.  Also allocates subqueue structs
6969  *      for each queue on the device.
6970  */
6971 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6972                 unsigned char name_assign_type,
6973                 void (*setup)(struct net_device *),
6974                 unsigned int txqs, unsigned int rxqs)
6975 {
6976         struct net_device *dev;
6977         size_t alloc_size;
6978         struct net_device *p;
6979
6980         BUG_ON(strlen(name) >= sizeof(dev->name));
6981
6982         if (txqs < 1) {
6983                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6984                 return NULL;
6985         }
6986
6987 #ifdef CONFIG_SYSFS
6988         if (rxqs < 1) {
6989                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6990                 return NULL;
6991         }
6992 #endif
6993
6994         alloc_size = sizeof(struct net_device);
6995         if (sizeof_priv) {
6996                 /* ensure 32-byte alignment of private area */
6997                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6998                 alloc_size += sizeof_priv;
6999         }
7000         /* ensure 32-byte alignment of whole construct */
7001         alloc_size += NETDEV_ALIGN - 1;
7002
7003         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7004         if (!p)
7005                 p = vzalloc(alloc_size);
7006         if (!p)
7007                 return NULL;
7008
7009         dev = PTR_ALIGN(p, NETDEV_ALIGN);
7010         dev->padded = (char *)dev - (char *)p;
7011
7012         dev->pcpu_refcnt = alloc_percpu(int);
7013         if (!dev->pcpu_refcnt)
7014                 goto free_dev;
7015
7016         if (dev_addr_init(dev))
7017                 goto free_pcpu;
7018
7019         dev_mc_init(dev);
7020         dev_uc_init(dev);
7021
7022         dev_net_set(dev, &init_net);
7023
7024         dev->gso_max_size = GSO_MAX_SIZE;
7025         dev->gso_max_segs = GSO_MAX_SEGS;
7026         dev->gso_min_segs = 0;
7027
7028         INIT_LIST_HEAD(&dev->napi_list);
7029         INIT_LIST_HEAD(&dev->unreg_list);
7030         INIT_LIST_HEAD(&dev->close_list);
7031         INIT_LIST_HEAD(&dev->link_watch_list);
7032         INIT_LIST_HEAD(&dev->adj_list.upper);
7033         INIT_LIST_HEAD(&dev->adj_list.lower);
7034         INIT_LIST_HEAD(&dev->all_adj_list.upper);
7035         INIT_LIST_HEAD(&dev->all_adj_list.lower);
7036         INIT_LIST_HEAD(&dev->ptype_all);
7037         INIT_LIST_HEAD(&dev->ptype_specific);
7038         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7039         setup(dev);
7040
7041         if (!dev->tx_queue_len)
7042                 dev->priv_flags |= IFF_NO_QUEUE;
7043
7044         dev->num_tx_queues = txqs;
7045         dev->real_num_tx_queues = txqs;
7046         if (netif_alloc_netdev_queues(dev))
7047                 goto free_all;
7048
7049 #ifdef CONFIG_SYSFS
7050         dev->num_rx_queues = rxqs;
7051         dev->real_num_rx_queues = rxqs;
7052         if (netif_alloc_rx_queues(dev))
7053                 goto free_all;
7054 #endif
7055
7056         strcpy(dev->name, name);
7057         dev->name_assign_type = name_assign_type;
7058         dev->group = INIT_NETDEV_GROUP;
7059         if (!dev->ethtool_ops)
7060                 dev->ethtool_ops = &default_ethtool_ops;
7061
7062         nf_hook_ingress_init(dev);
7063
7064         return dev;
7065
7066 free_all:
7067         free_netdev(dev);
7068         return NULL;
7069
7070 free_pcpu:
7071         free_percpu(dev->pcpu_refcnt);
7072 free_dev:
7073         netdev_freemem(dev);
7074         return NULL;
7075 }
7076 EXPORT_SYMBOL(alloc_netdev_mqs);
7077
7078 /**
7079  *      free_netdev - free network device
7080  *      @dev: device
7081  *
7082  *      This function does the last stage of destroying an allocated device
7083  *      interface. The reference to the device object is released.
7084  *      If this is the last reference then it will be freed.
7085  */
7086 void free_netdev(struct net_device *dev)
7087 {
7088         struct napi_struct *p, *n;
7089
7090         netif_free_tx_queues(dev);
7091 #ifdef CONFIG_SYSFS
7092         kvfree(dev->_rx);
7093 #endif
7094
7095         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7096
7097         /* Flush device addresses */
7098         dev_addr_flush(dev);
7099
7100         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7101                 netif_napi_del(p);
7102
7103         free_percpu(dev->pcpu_refcnt);
7104         dev->pcpu_refcnt = NULL;
7105
7106         /*  Compatibility with error handling in drivers */
7107         if (dev->reg_state == NETREG_UNINITIALIZED) {
7108                 netdev_freemem(dev);
7109                 return;
7110         }
7111
7112         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7113         dev->reg_state = NETREG_RELEASED;
7114
7115         /* will free via device release */
7116         put_device(&dev->dev);
7117 }
7118 EXPORT_SYMBOL(free_netdev);
7119
7120 /**
7121  *      synchronize_net -  Synchronize with packet receive processing
7122  *
7123  *      Wait for packets currently being received to be done.
7124  *      Does not block later packets from starting.
7125  */
7126 void synchronize_net(void)
7127 {
7128         might_sleep();
7129         if (rtnl_is_locked())
7130                 synchronize_rcu_expedited();
7131         else
7132                 synchronize_rcu();
7133 }
7134 EXPORT_SYMBOL(synchronize_net);
7135
7136 /**
7137  *      unregister_netdevice_queue - remove device from the kernel
7138  *      @dev: device
7139  *      @head: list
7140  *
7141  *      This function shuts down a device interface and removes it
7142  *      from the kernel tables.
7143  *      If head not NULL, device is queued to be unregistered later.
7144  *
7145  *      Callers must hold the rtnl semaphore.  You may want
7146  *      unregister_netdev() instead of this.
7147  */
7148
7149 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7150 {
7151         ASSERT_RTNL();
7152
7153         if (head) {
7154                 list_move_tail(&dev->unreg_list, head);
7155         } else {
7156                 rollback_registered(dev);
7157                 /* Finish processing unregister after unlock */
7158                 net_set_todo(dev);
7159         }
7160 }
7161 EXPORT_SYMBOL(unregister_netdevice_queue);
7162
7163 /**
7164  *      unregister_netdevice_many - unregister many devices
7165  *      @head: list of devices
7166  *
7167  *  Note: As most callers use a stack allocated list_head,
7168  *  we force a list_del() to make sure stack wont be corrupted later.
7169  */
7170 void unregister_netdevice_many(struct list_head *head)
7171 {
7172         struct net_device *dev;
7173
7174         if (!list_empty(head)) {
7175                 rollback_registered_many(head);
7176                 list_for_each_entry(dev, head, unreg_list)
7177                         net_set_todo(dev);
7178                 list_del(head);
7179         }
7180 }
7181 EXPORT_SYMBOL(unregister_netdevice_many);
7182
7183 /**
7184  *      unregister_netdev - remove device from the kernel
7185  *      @dev: device
7186  *
7187  *      This function shuts down a device interface and removes it
7188  *      from the kernel tables.
7189  *
7190  *      This is just a wrapper for unregister_netdevice that takes
7191  *      the rtnl semaphore.  In general you want to use this and not
7192  *      unregister_netdevice.
7193  */
7194 void unregister_netdev(struct net_device *dev)
7195 {
7196         rtnl_lock();
7197         unregister_netdevice(dev);
7198         rtnl_unlock();
7199 }
7200 EXPORT_SYMBOL(unregister_netdev);
7201
7202 /**
7203  *      dev_change_net_namespace - move device to different nethost namespace
7204  *      @dev: device
7205  *      @net: network namespace
7206  *      @pat: If not NULL name pattern to try if the current device name
7207  *            is already taken in the destination network namespace.
7208  *
7209  *      This function shuts down a device interface and moves it
7210  *      to a new network namespace. On success 0 is returned, on
7211  *      a failure a netagive errno code is returned.
7212  *
7213  *      Callers must hold the rtnl semaphore.
7214  */
7215
7216 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7217 {
7218         int err;
7219
7220         ASSERT_RTNL();
7221
7222         /* Don't allow namespace local devices to be moved. */
7223         err = -EINVAL;
7224         if (dev->features & NETIF_F_NETNS_LOCAL)
7225                 goto out;
7226
7227         /* Ensure the device has been registrered */
7228         if (dev->reg_state != NETREG_REGISTERED)
7229                 goto out;
7230
7231         /* Get out if there is nothing todo */
7232         err = 0;
7233         if (net_eq(dev_net(dev), net))
7234                 goto out;
7235
7236         /* Pick the destination device name, and ensure
7237          * we can use it in the destination network namespace.
7238          */
7239         err = -EEXIST;
7240         if (__dev_get_by_name(net, dev->name)) {
7241                 /* We get here if we can't use the current device name */
7242                 if (!pat)
7243                         goto out;
7244                 if (dev_get_valid_name(net, dev, pat) < 0)
7245                         goto out;
7246         }
7247
7248         /*
7249          * And now a mini version of register_netdevice unregister_netdevice.
7250          */
7251
7252         /* If device is running close it first. */
7253         dev_close(dev);
7254
7255         /* And unlink it from device chain */
7256         err = -ENODEV;
7257         unlist_netdevice(dev);
7258
7259         synchronize_net();
7260
7261         /* Shutdown queueing discipline. */
7262         dev_shutdown(dev);
7263
7264         /* Notify protocols, that we are about to destroy
7265            this device. They should clean all the things.
7266
7267            Note that dev->reg_state stays at NETREG_REGISTERED.
7268            This is wanted because this way 8021q and macvlan know
7269            the device is just moving and can keep their slaves up.
7270         */
7271         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7272         rcu_barrier();
7273         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7274         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7275
7276         /*
7277          *      Flush the unicast and multicast chains
7278          */
7279         dev_uc_flush(dev);
7280         dev_mc_flush(dev);
7281
7282         /* Send a netdev-removed uevent to the old namespace */
7283         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7284         netdev_adjacent_del_links(dev);
7285
7286         /* Actually switch the network namespace */
7287         dev_net_set(dev, net);
7288
7289         /* If there is an ifindex conflict assign a new one */
7290         if (__dev_get_by_index(net, dev->ifindex))
7291                 dev->ifindex = dev_new_index(net);
7292
7293         /* Send a netdev-add uevent to the new namespace */
7294         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7295         netdev_adjacent_add_links(dev);
7296
7297         /* Fixup kobjects */
7298         err = device_rename(&dev->dev, dev->name);
7299         WARN_ON(err);
7300
7301         /* Add the device back in the hashes */
7302         list_netdevice(dev);
7303
7304         /* Notify protocols, that a new device appeared. */
7305         call_netdevice_notifiers(NETDEV_REGISTER, dev);
7306
7307         /*
7308          *      Prevent userspace races by waiting until the network
7309          *      device is fully setup before sending notifications.
7310          */
7311         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7312
7313         synchronize_net();
7314         err = 0;
7315 out:
7316         return err;
7317 }
7318 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7319
7320 static int dev_cpu_callback(struct notifier_block *nfb,
7321                             unsigned long action,
7322                             void *ocpu)
7323 {
7324         struct sk_buff **list_skb;
7325         struct sk_buff *skb;
7326         unsigned int cpu, oldcpu = (unsigned long)ocpu;
7327         struct softnet_data *sd, *oldsd;
7328
7329         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7330                 return NOTIFY_OK;
7331
7332         local_irq_disable();
7333         cpu = smp_processor_id();
7334         sd = &per_cpu(softnet_data, cpu);
7335         oldsd = &per_cpu(softnet_data, oldcpu);
7336
7337         /* Find end of our completion_queue. */
7338         list_skb = &sd->completion_queue;
7339         while (*list_skb)
7340                 list_skb = &(*list_skb)->next;
7341         /* Append completion queue from offline CPU. */
7342         *list_skb = oldsd->completion_queue;
7343         oldsd->completion_queue = NULL;
7344
7345         /* Append output queue from offline CPU. */
7346         if (oldsd->output_queue) {
7347                 *sd->output_queue_tailp = oldsd->output_queue;
7348                 sd->output_queue_tailp = oldsd->output_queue_tailp;
7349                 oldsd->output_queue = NULL;
7350                 oldsd->output_queue_tailp = &oldsd->output_queue;
7351         }
7352         /* Append NAPI poll list from offline CPU, with one exception :
7353          * process_backlog() must be called by cpu owning percpu backlog.
7354          * We properly handle process_queue & input_pkt_queue later.
7355          */
7356         while (!list_empty(&oldsd->poll_list)) {
7357                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7358                                                             struct napi_struct,
7359                                                             poll_list);
7360
7361                 list_del_init(&napi->poll_list);
7362                 if (napi->poll == process_backlog)
7363                         napi->state = 0;
7364                 else
7365                         ____napi_schedule(sd, napi);
7366         }
7367
7368         raise_softirq_irqoff(NET_TX_SOFTIRQ);
7369         local_irq_enable();
7370
7371         /* Process offline CPU's input_pkt_queue */
7372         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7373                 netif_rx_ni(skb);
7374                 input_queue_head_incr(oldsd);
7375         }
7376         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7377                 netif_rx_ni(skb);
7378                 input_queue_head_incr(oldsd);
7379         }
7380
7381         return NOTIFY_OK;
7382 }
7383
7384
7385 /**
7386  *      netdev_increment_features - increment feature set by one
7387  *      @all: current feature set
7388  *      @one: new feature set
7389  *      @mask: mask feature set
7390  *
7391  *      Computes a new feature set after adding a device with feature set
7392  *      @one to the master device with current feature set @all.  Will not
7393  *      enable anything that is off in @mask. Returns the new feature set.
7394  */
7395 netdev_features_t netdev_increment_features(netdev_features_t all,
7396         netdev_features_t one, netdev_features_t mask)
7397 {
7398         if (mask & NETIF_F_GEN_CSUM)
7399                 mask |= NETIF_F_ALL_CSUM;
7400         mask |= NETIF_F_VLAN_CHALLENGED;
7401
7402         all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7403         all &= one | ~NETIF_F_ALL_FOR_ALL;
7404
7405         /* If one device supports hw checksumming, set for all. */
7406         if (all & NETIF_F_GEN_CSUM)
7407                 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7408
7409         return all;
7410 }
7411 EXPORT_SYMBOL(netdev_increment_features);
7412
7413 static struct hlist_head * __net_init netdev_create_hash(void)
7414 {
7415         int i;
7416         struct hlist_head *hash;
7417
7418         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7419         if (hash != NULL)
7420                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7421                         INIT_HLIST_HEAD(&hash[i]);
7422
7423         return hash;
7424 }
7425
7426 /* Initialize per network namespace state */
7427 static int __net_init netdev_init(struct net *net)
7428 {
7429         if (net != &init_net)
7430                 INIT_LIST_HEAD(&net->dev_base_head);
7431
7432         net->dev_name_head = netdev_create_hash();
7433         if (net->dev_name_head == NULL)
7434                 goto err_name;
7435
7436         net->dev_index_head = netdev_create_hash();
7437         if (net->dev_index_head == NULL)
7438                 goto err_idx;
7439
7440         return 0;
7441
7442 err_idx:
7443         kfree(net->dev_name_head);
7444 err_name:
7445         return -ENOMEM;
7446 }
7447
7448 /**
7449  *      netdev_drivername - network driver for the device
7450  *      @dev: network device
7451  *
7452  *      Determine network driver for device.
7453  */
7454 const char *netdev_drivername(const struct net_device *dev)
7455 {
7456         const struct device_driver *driver;
7457         const struct device *parent;
7458         const char *empty = "";
7459
7460         parent = dev->dev.parent;
7461         if (!parent)
7462                 return empty;
7463
7464         driver = parent->driver;
7465         if (driver && driver->name)
7466                 return driver->name;
7467         return empty;
7468 }
7469
7470 static void __netdev_printk(const char *level, const struct net_device *dev,
7471                             struct va_format *vaf)
7472 {
7473         if (dev && dev->dev.parent) {
7474                 dev_printk_emit(level[1] - '0',
7475                                 dev->dev.parent,
7476                                 "%s %s %s%s: %pV",
7477                                 dev_driver_string(dev->dev.parent),
7478                                 dev_name(dev->dev.parent),
7479                                 netdev_name(dev), netdev_reg_state(dev),
7480                                 vaf);
7481         } else if (dev) {
7482                 printk("%s%s%s: %pV",
7483                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
7484         } else {
7485                 printk("%s(NULL net_device): %pV", level, vaf);
7486         }
7487 }
7488
7489 void netdev_printk(const char *level, const struct net_device *dev,
7490                    const char *format, ...)
7491 {
7492         struct va_format vaf;
7493         va_list args;
7494
7495         va_start(args, format);
7496
7497         vaf.fmt = format;
7498         vaf.va = &args;
7499
7500         __netdev_printk(level, dev, &vaf);
7501
7502         va_end(args);
7503 }
7504 EXPORT_SYMBOL(netdev_printk);
7505
7506 #define define_netdev_printk_level(func, level)                 \
7507 void func(const struct net_device *dev, const char *fmt, ...)   \
7508 {                                                               \
7509         struct va_format vaf;                                   \
7510         va_list args;                                           \
7511                                                                 \
7512         va_start(args, fmt);                                    \
7513                                                                 \
7514         vaf.fmt = fmt;                                          \
7515         vaf.va = &args;                                         \
7516                                                                 \
7517         __netdev_printk(level, dev, &vaf);                      \
7518                                                                 \
7519         va_end(args);                                           \
7520 }                                                               \
7521 EXPORT_SYMBOL(func);
7522
7523 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7524 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7525 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7526 define_netdev_printk_level(netdev_err, KERN_ERR);
7527 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7528 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7529 define_netdev_printk_level(netdev_info, KERN_INFO);
7530
7531 static void __net_exit netdev_exit(struct net *net)
7532 {
7533         kfree(net->dev_name_head);
7534         kfree(net->dev_index_head);
7535 }
7536
7537 static struct pernet_operations __net_initdata netdev_net_ops = {
7538         .init = netdev_init,
7539         .exit = netdev_exit,
7540 };
7541
7542 static void __net_exit default_device_exit(struct net *net)
7543 {
7544         struct net_device *dev, *aux;
7545         /*
7546          * Push all migratable network devices back to the
7547          * initial network namespace
7548          */
7549         rtnl_lock();
7550         for_each_netdev_safe(net, dev, aux) {
7551                 int err;
7552                 char fb_name[IFNAMSIZ];
7553
7554                 /* Ignore unmoveable devices (i.e. loopback) */
7555                 if (dev->features & NETIF_F_NETNS_LOCAL)
7556                         continue;
7557
7558                 /* Leave virtual devices for the generic cleanup */
7559                 if (dev->rtnl_link_ops)
7560                         continue;
7561
7562                 /* Push remaining network devices to init_net */
7563                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7564                 err = dev_change_net_namespace(dev, &init_net, fb_name);
7565                 if (err) {
7566                         pr_emerg("%s: failed to move %s to init_net: %d\n",
7567                                  __func__, dev->name, err);
7568                         BUG();
7569                 }
7570         }
7571         rtnl_unlock();
7572 }
7573
7574 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7575 {
7576         /* Return with the rtnl_lock held when there are no network
7577          * devices unregistering in any network namespace in net_list.
7578          */
7579         struct net *net;
7580         bool unregistering;
7581         DEFINE_WAIT_FUNC(wait, woken_wake_function);
7582
7583         add_wait_queue(&netdev_unregistering_wq, &wait);
7584         for (;;) {
7585                 unregistering = false;
7586                 rtnl_lock();
7587                 list_for_each_entry(net, net_list, exit_list) {
7588                         if (net->dev_unreg_count > 0) {
7589                                 unregistering = true;
7590                                 break;
7591                         }
7592                 }
7593                 if (!unregistering)
7594                         break;
7595                 __rtnl_unlock();
7596
7597                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7598         }
7599         remove_wait_queue(&netdev_unregistering_wq, &wait);
7600 }
7601
7602 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7603 {
7604         /* At exit all network devices most be removed from a network
7605          * namespace.  Do this in the reverse order of registration.
7606          * Do this across as many network namespaces as possible to
7607          * improve batching efficiency.
7608          */
7609         struct net_device *dev;
7610         struct net *net;
7611         LIST_HEAD(dev_kill_list);
7612
7613         /* To prevent network device cleanup code from dereferencing
7614          * loopback devices or network devices that have been freed
7615          * wait here for all pending unregistrations to complete,
7616          * before unregistring the loopback device and allowing the
7617          * network namespace be freed.
7618          *
7619          * The netdev todo list containing all network devices
7620          * unregistrations that happen in default_device_exit_batch
7621          * will run in the rtnl_unlock() at the end of
7622          * default_device_exit_batch.
7623          */
7624         rtnl_lock_unregistering(net_list);
7625         list_for_each_entry(net, net_list, exit_list) {
7626                 for_each_netdev_reverse(net, dev) {
7627                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7628                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7629                         else
7630                                 unregister_netdevice_queue(dev, &dev_kill_list);
7631                 }
7632         }
7633         unregister_netdevice_many(&dev_kill_list);
7634         rtnl_unlock();
7635 }
7636
7637 static struct pernet_operations __net_initdata default_device_ops = {
7638         .exit = default_device_exit,
7639         .exit_batch = default_device_exit_batch,
7640 };
7641
7642 /*
7643  *      Initialize the DEV module. At boot time this walks the device list and
7644  *      unhooks any devices that fail to initialise (normally hardware not
7645  *      present) and leaves us with a valid list of present and active devices.
7646  *
7647  */
7648
7649 /*
7650  *       This is called single threaded during boot, so no need
7651  *       to take the rtnl semaphore.
7652  */
7653 static int __init net_dev_init(void)
7654 {
7655         int i, rc = -ENOMEM;
7656
7657         BUG_ON(!dev_boot_phase);
7658
7659         if (dev_proc_init())
7660                 goto out;
7661
7662         if (netdev_kobject_init())
7663                 goto out;
7664
7665         INIT_LIST_HEAD(&ptype_all);
7666         for (i = 0; i < PTYPE_HASH_SIZE; i++)
7667                 INIT_LIST_HEAD(&ptype_base[i]);
7668
7669         INIT_LIST_HEAD(&offload_base);
7670
7671         if (register_pernet_subsys(&netdev_net_ops))
7672                 goto out;
7673
7674         /*
7675          *      Initialise the packet receive queues.
7676          */
7677
7678         for_each_possible_cpu(i) {
7679                 struct softnet_data *sd = &per_cpu(softnet_data, i);
7680
7681                 skb_queue_head_init(&sd->input_pkt_queue);
7682                 skb_queue_head_init(&sd->process_queue);
7683                 INIT_LIST_HEAD(&sd->poll_list);
7684                 sd->output_queue_tailp = &sd->output_queue;
7685 #ifdef CONFIG_RPS
7686                 sd->csd.func = rps_trigger_softirq;
7687                 sd->csd.info = sd;
7688                 sd->cpu = i;
7689 #endif
7690
7691                 sd->backlog.poll = process_backlog;
7692                 sd->backlog.weight = weight_p;
7693         }
7694
7695         dev_boot_phase = 0;
7696
7697         /* The loopback device is special if any other network devices
7698          * is present in a network namespace the loopback device must
7699          * be present. Since we now dynamically allocate and free the
7700          * loopback device ensure this invariant is maintained by
7701          * keeping the loopback device as the first device on the
7702          * list of network devices.  Ensuring the loopback devices
7703          * is the first device that appears and the last network device
7704          * that disappears.
7705          */
7706         if (register_pernet_device(&loopback_net_ops))
7707                 goto out;
7708
7709         if (register_pernet_device(&default_device_ops))
7710                 goto out;
7711
7712         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7713         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7714
7715         hotcpu_notifier(dev_cpu_callback, 0);
7716         dst_subsys_init();
7717         rc = 0;
7718 out:
7719         return rc;
7720 }
7721
7722 subsys_initcall(net_dev_init);