]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - net/ipv6/ip6_fib.c
rbd: require stable pages if message data CRCs are enabled
[karo-tx-linux.git] / net / ipv6 / ip6_fib.c
1 /*
2  *      Linux INET6 implementation
3  *      Forwarding Information Database
4  *
5  *      Authors:
6  *      Pedro Roque             <roque@di.fc.ul.pt>
7  *
8  *      This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  *
13  *      Changes:
14  *      Yuji SEKIYA @USAGI:     Support default route on router node;
15  *                              remove ip6_null_entry from the top of
16  *                              routing table.
17  *      Ville Nuorvala:         Fixed routing subtrees.
18  */
19
20 #define pr_fmt(fmt) "IPv6: " fmt
21
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31
32 #include <net/ipv6.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
35 #include <net/lwtunnel.h>
36
37 #include <net/ip6_fib.h>
38 #include <net/ip6_route.h>
39
40 #define RT6_DEBUG 2
41
42 #if RT6_DEBUG >= 3
43 #define RT6_TRACE(x...) pr_debug(x)
44 #else
45 #define RT6_TRACE(x...) do { ; } while (0)
46 #endif
47
48 static struct kmem_cache *fib6_node_kmem __read_mostly;
49
50 struct fib6_cleaner {
51         struct fib6_walker w;
52         struct net *net;
53         int (*func)(struct rt6_info *, void *arg);
54         int sernum;
55         void *arg;
56 };
57
58 static DEFINE_RWLOCK(fib6_walker_lock);
59
60 #ifdef CONFIG_IPV6_SUBTREES
61 #define FWS_INIT FWS_S
62 #else
63 #define FWS_INIT FWS_L
64 #endif
65
66 static void fib6_prune_clones(struct net *net, struct fib6_node *fn);
67 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
68 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
69 static int fib6_walk(struct fib6_walker *w);
70 static int fib6_walk_continue(struct fib6_walker *w);
71
72 /*
73  *      A routing update causes an increase of the serial number on the
74  *      affected subtree. This allows for cached routes to be asynchronously
75  *      tested when modifications are made to the destination cache as a
76  *      result of redirects, path MTU changes, etc.
77  */
78
79 static void fib6_gc_timer_cb(unsigned long arg);
80
81 static LIST_HEAD(fib6_walkers);
82 #define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
83
84 static void fib6_walker_link(struct fib6_walker *w)
85 {
86         write_lock_bh(&fib6_walker_lock);
87         list_add(&w->lh, &fib6_walkers);
88         write_unlock_bh(&fib6_walker_lock);
89 }
90
91 static void fib6_walker_unlink(struct fib6_walker *w)
92 {
93         write_lock_bh(&fib6_walker_lock);
94         list_del(&w->lh);
95         write_unlock_bh(&fib6_walker_lock);
96 }
97
98 static int fib6_new_sernum(struct net *net)
99 {
100         int new, old;
101
102         do {
103                 old = atomic_read(&net->ipv6.fib6_sernum);
104                 new = old < INT_MAX ? old + 1 : 1;
105         } while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
106                                 old, new) != old);
107         return new;
108 }
109
110 enum {
111         FIB6_NO_SERNUM_CHANGE = 0,
112 };
113
114 /*
115  *      Auxiliary address test functions for the radix tree.
116  *
117  *      These assume a 32bit processor (although it will work on
118  *      64bit processors)
119  */
120
121 /*
122  *      test bit
123  */
124 #if defined(__LITTLE_ENDIAN)
125 # define BITOP_BE32_SWIZZLE     (0x1F & ~7)
126 #else
127 # define BITOP_BE32_SWIZZLE     0
128 #endif
129
130 static __be32 addr_bit_set(const void *token, int fn_bit)
131 {
132         const __be32 *addr = token;
133         /*
134          * Here,
135          *      1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
136          * is optimized version of
137          *      htonl(1 << ((~fn_bit)&0x1F))
138          * See include/asm-generic/bitops/le.h.
139          */
140         return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
141                addr[fn_bit >> 5];
142 }
143
144 static struct fib6_node *node_alloc(void)
145 {
146         struct fib6_node *fn;
147
148         fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
149
150         return fn;
151 }
152
153 static void node_free(struct fib6_node *fn)
154 {
155         kmem_cache_free(fib6_node_kmem, fn);
156 }
157
158 static void rt6_rcu_free(struct rt6_info *rt)
159 {
160         call_rcu(&rt->dst.rcu_head, dst_rcu_free);
161 }
162
163 static void rt6_free_pcpu(struct rt6_info *non_pcpu_rt)
164 {
165         int cpu;
166
167         if (!non_pcpu_rt->rt6i_pcpu)
168                 return;
169
170         for_each_possible_cpu(cpu) {
171                 struct rt6_info **ppcpu_rt;
172                 struct rt6_info *pcpu_rt;
173
174                 ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu);
175                 pcpu_rt = *ppcpu_rt;
176                 if (pcpu_rt) {
177                         rt6_rcu_free(pcpu_rt);
178                         *ppcpu_rt = NULL;
179                 }
180         }
181
182         non_pcpu_rt->rt6i_pcpu = NULL;
183 }
184
185 static void rt6_release(struct rt6_info *rt)
186 {
187         if (atomic_dec_and_test(&rt->rt6i_ref)) {
188                 rt6_free_pcpu(rt);
189                 rt6_rcu_free(rt);
190         }
191 }
192
193 static void fib6_link_table(struct net *net, struct fib6_table *tb)
194 {
195         unsigned int h;
196
197         /*
198          * Initialize table lock at a single place to give lockdep a key,
199          * tables aren't visible prior to being linked to the list.
200          */
201         rwlock_init(&tb->tb6_lock);
202
203         h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
204
205         /*
206          * No protection necessary, this is the only list mutatation
207          * operation, tables never disappear once they exist.
208          */
209         hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
210 }
211
212 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
213
214 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
215 {
216         struct fib6_table *table;
217
218         table = kzalloc(sizeof(*table), GFP_ATOMIC);
219         if (table) {
220                 table->tb6_id = id;
221                 table->tb6_root.leaf = net->ipv6.ip6_null_entry;
222                 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
223                 inet_peer_base_init(&table->tb6_peers);
224         }
225
226         return table;
227 }
228
229 struct fib6_table *fib6_new_table(struct net *net, u32 id)
230 {
231         struct fib6_table *tb;
232
233         if (id == 0)
234                 id = RT6_TABLE_MAIN;
235         tb = fib6_get_table(net, id);
236         if (tb)
237                 return tb;
238
239         tb = fib6_alloc_table(net, id);
240         if (tb)
241                 fib6_link_table(net, tb);
242
243         return tb;
244 }
245
246 struct fib6_table *fib6_get_table(struct net *net, u32 id)
247 {
248         struct fib6_table *tb;
249         struct hlist_head *head;
250         unsigned int h;
251
252         if (id == 0)
253                 id = RT6_TABLE_MAIN;
254         h = id & (FIB6_TABLE_HASHSZ - 1);
255         rcu_read_lock();
256         head = &net->ipv6.fib_table_hash[h];
257         hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
258                 if (tb->tb6_id == id) {
259                         rcu_read_unlock();
260                         return tb;
261                 }
262         }
263         rcu_read_unlock();
264
265         return NULL;
266 }
267
268 static void __net_init fib6_tables_init(struct net *net)
269 {
270         fib6_link_table(net, net->ipv6.fib6_main_tbl);
271         fib6_link_table(net, net->ipv6.fib6_local_tbl);
272 }
273 #else
274
275 struct fib6_table *fib6_new_table(struct net *net, u32 id)
276 {
277         return fib6_get_table(net, id);
278 }
279
280 struct fib6_table *fib6_get_table(struct net *net, u32 id)
281 {
282           return net->ipv6.fib6_main_tbl;
283 }
284
285 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
286                                    int flags, pol_lookup_t lookup)
287 {
288         return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
289 }
290
291 static void __net_init fib6_tables_init(struct net *net)
292 {
293         fib6_link_table(net, net->ipv6.fib6_main_tbl);
294 }
295
296 #endif
297
298 static int fib6_dump_node(struct fib6_walker *w)
299 {
300         int res;
301         struct rt6_info *rt;
302
303         for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
304                 res = rt6_dump_route(rt, w->args);
305                 if (res < 0) {
306                         /* Frame is full, suspend walking */
307                         w->leaf = rt;
308                         return 1;
309                 }
310         }
311         w->leaf = NULL;
312         return 0;
313 }
314
315 static void fib6_dump_end(struct netlink_callback *cb)
316 {
317         struct fib6_walker *w = (void *)cb->args[2];
318
319         if (w) {
320                 if (cb->args[4]) {
321                         cb->args[4] = 0;
322                         fib6_walker_unlink(w);
323                 }
324                 cb->args[2] = 0;
325                 kfree(w);
326         }
327         cb->done = (void *)cb->args[3];
328         cb->args[1] = 3;
329 }
330
331 static int fib6_dump_done(struct netlink_callback *cb)
332 {
333         fib6_dump_end(cb);
334         return cb->done ? cb->done(cb) : 0;
335 }
336
337 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
338                            struct netlink_callback *cb)
339 {
340         struct fib6_walker *w;
341         int res;
342
343         w = (void *)cb->args[2];
344         w->root = &table->tb6_root;
345
346         if (cb->args[4] == 0) {
347                 w->count = 0;
348                 w->skip = 0;
349
350                 read_lock_bh(&table->tb6_lock);
351                 res = fib6_walk(w);
352                 read_unlock_bh(&table->tb6_lock);
353                 if (res > 0) {
354                         cb->args[4] = 1;
355                         cb->args[5] = w->root->fn_sernum;
356                 }
357         } else {
358                 if (cb->args[5] != w->root->fn_sernum) {
359                         /* Begin at the root if the tree changed */
360                         cb->args[5] = w->root->fn_sernum;
361                         w->state = FWS_INIT;
362                         w->node = w->root;
363                         w->skip = w->count;
364                 } else
365                         w->skip = 0;
366
367                 read_lock_bh(&table->tb6_lock);
368                 res = fib6_walk_continue(w);
369                 read_unlock_bh(&table->tb6_lock);
370                 if (res <= 0) {
371                         fib6_walker_unlink(w);
372                         cb->args[4] = 0;
373                 }
374         }
375
376         return res;
377 }
378
379 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
380 {
381         struct net *net = sock_net(skb->sk);
382         unsigned int h, s_h;
383         unsigned int e = 0, s_e;
384         struct rt6_rtnl_dump_arg arg;
385         struct fib6_walker *w;
386         struct fib6_table *tb;
387         struct hlist_head *head;
388         int res = 0;
389
390         s_h = cb->args[0];
391         s_e = cb->args[1];
392
393         w = (void *)cb->args[2];
394         if (!w) {
395                 /* New dump:
396                  *
397                  * 1. hook callback destructor.
398                  */
399                 cb->args[3] = (long)cb->done;
400                 cb->done = fib6_dump_done;
401
402                 /*
403                  * 2. allocate and initialize walker.
404                  */
405                 w = kzalloc(sizeof(*w), GFP_ATOMIC);
406                 if (!w)
407                         return -ENOMEM;
408                 w->func = fib6_dump_node;
409                 cb->args[2] = (long)w;
410         }
411
412         arg.skb = skb;
413         arg.cb = cb;
414         arg.net = net;
415         w->args = &arg;
416
417         rcu_read_lock();
418         for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
419                 e = 0;
420                 head = &net->ipv6.fib_table_hash[h];
421                 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
422                         if (e < s_e)
423                                 goto next;
424                         res = fib6_dump_table(tb, skb, cb);
425                         if (res != 0)
426                                 goto out;
427 next:
428                         e++;
429                 }
430         }
431 out:
432         rcu_read_unlock();
433         cb->args[1] = e;
434         cb->args[0] = h;
435
436         res = res < 0 ? res : skb->len;
437         if (res <= 0)
438                 fib6_dump_end(cb);
439         return res;
440 }
441
442 /*
443  *      Routing Table
444  *
445  *      return the appropriate node for a routing tree "add" operation
446  *      by either creating and inserting or by returning an existing
447  *      node.
448  */
449
450 static struct fib6_node *fib6_add_1(struct fib6_node *root,
451                                      struct in6_addr *addr, int plen,
452                                      int offset, int allow_create,
453                                      int replace_required, int sernum)
454 {
455         struct fib6_node *fn, *in, *ln;
456         struct fib6_node *pn = NULL;
457         struct rt6key *key;
458         int     bit;
459         __be32  dir = 0;
460
461         RT6_TRACE("fib6_add_1\n");
462
463         /* insert node in tree */
464
465         fn = root;
466
467         do {
468                 key = (struct rt6key *)((u8 *)fn->leaf + offset);
469
470                 /*
471                  *      Prefix match
472                  */
473                 if (plen < fn->fn_bit ||
474                     !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
475                         if (!allow_create) {
476                                 if (replace_required) {
477                                         pr_warn("Can't replace route, no match found\n");
478                                         return ERR_PTR(-ENOENT);
479                                 }
480                                 pr_warn("NLM_F_CREATE should be set when creating new route\n");
481                         }
482                         goto insert_above;
483                 }
484
485                 /*
486                  *      Exact match ?
487                  */
488
489                 if (plen == fn->fn_bit) {
490                         /* clean up an intermediate node */
491                         if (!(fn->fn_flags & RTN_RTINFO)) {
492                                 rt6_release(fn->leaf);
493                                 fn->leaf = NULL;
494                         }
495
496                         fn->fn_sernum = sernum;
497
498                         return fn;
499                 }
500
501                 /*
502                  *      We have more bits to go
503                  */
504
505                 /* Try to walk down on tree. */
506                 fn->fn_sernum = sernum;
507                 dir = addr_bit_set(addr, fn->fn_bit);
508                 pn = fn;
509                 fn = dir ? fn->right : fn->left;
510         } while (fn);
511
512         if (!allow_create) {
513                 /* We should not create new node because
514                  * NLM_F_REPLACE was specified without NLM_F_CREATE
515                  * I assume it is safe to require NLM_F_CREATE when
516                  * REPLACE flag is used! Later we may want to remove the
517                  * check for replace_required, because according
518                  * to netlink specification, NLM_F_CREATE
519                  * MUST be specified if new route is created.
520                  * That would keep IPv6 consistent with IPv4
521                  */
522                 if (replace_required) {
523                         pr_warn("Can't replace route, no match found\n");
524                         return ERR_PTR(-ENOENT);
525                 }
526                 pr_warn("NLM_F_CREATE should be set when creating new route\n");
527         }
528         /*
529          *      We walked to the bottom of tree.
530          *      Create new leaf node without children.
531          */
532
533         ln = node_alloc();
534
535         if (!ln)
536                 return ERR_PTR(-ENOMEM);
537         ln->fn_bit = plen;
538
539         ln->parent = pn;
540         ln->fn_sernum = sernum;
541
542         if (dir)
543                 pn->right = ln;
544         else
545                 pn->left  = ln;
546
547         return ln;
548
549
550 insert_above:
551         /*
552          * split since we don't have a common prefix anymore or
553          * we have a less significant route.
554          * we've to insert an intermediate node on the list
555          * this new node will point to the one we need to create
556          * and the current
557          */
558
559         pn = fn->parent;
560
561         /* find 1st bit in difference between the 2 addrs.
562
563            See comment in __ipv6_addr_diff: bit may be an invalid value,
564            but if it is >= plen, the value is ignored in any case.
565          */
566
567         bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
568
569         /*
570          *              (intermediate)[in]
571          *                /        \
572          *      (new leaf node)[ln] (old node)[fn]
573          */
574         if (plen > bit) {
575                 in = node_alloc();
576                 ln = node_alloc();
577
578                 if (!in || !ln) {
579                         if (in)
580                                 node_free(in);
581                         if (ln)
582                                 node_free(ln);
583                         return ERR_PTR(-ENOMEM);
584                 }
585
586                 /*
587                  * new intermediate node.
588                  * RTN_RTINFO will
589                  * be off since that an address that chooses one of
590                  * the branches would not match less specific routes
591                  * in the other branch
592                  */
593
594                 in->fn_bit = bit;
595
596                 in->parent = pn;
597                 in->leaf = fn->leaf;
598                 atomic_inc(&in->leaf->rt6i_ref);
599
600                 in->fn_sernum = sernum;
601
602                 /* update parent pointer */
603                 if (dir)
604                         pn->right = in;
605                 else
606                         pn->left  = in;
607
608                 ln->fn_bit = plen;
609
610                 ln->parent = in;
611                 fn->parent = in;
612
613                 ln->fn_sernum = sernum;
614
615                 if (addr_bit_set(addr, bit)) {
616                         in->right = ln;
617                         in->left  = fn;
618                 } else {
619                         in->left  = ln;
620                         in->right = fn;
621                 }
622         } else { /* plen <= bit */
623
624                 /*
625                  *              (new leaf node)[ln]
626                  *                /        \
627                  *           (old node)[fn] NULL
628                  */
629
630                 ln = node_alloc();
631
632                 if (!ln)
633                         return ERR_PTR(-ENOMEM);
634
635                 ln->fn_bit = plen;
636
637                 ln->parent = pn;
638
639                 ln->fn_sernum = sernum;
640
641                 if (dir)
642                         pn->right = ln;
643                 else
644                         pn->left  = ln;
645
646                 if (addr_bit_set(&key->addr, plen))
647                         ln->right = fn;
648                 else
649                         ln->left  = fn;
650
651                 fn->parent = ln;
652         }
653         return ln;
654 }
655
656 static bool rt6_qualify_for_ecmp(struct rt6_info *rt)
657 {
658         return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
659                RTF_GATEWAY;
660 }
661
662 static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
663 {
664         int i;
665
666         for (i = 0; i < RTAX_MAX; i++) {
667                 if (test_bit(i, mxc->mx_valid))
668                         mp[i] = mxc->mx[i];
669         }
670 }
671
672 static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
673 {
674         if (!mxc->mx)
675                 return 0;
676
677         if (dst->flags & DST_HOST) {
678                 u32 *mp = dst_metrics_write_ptr(dst);
679
680                 if (unlikely(!mp))
681                         return -ENOMEM;
682
683                 fib6_copy_metrics(mp, mxc);
684         } else {
685                 dst_init_metrics(dst, mxc->mx, false);
686
687                 /* We've stolen mx now. */
688                 mxc->mx = NULL;
689         }
690
691         return 0;
692 }
693
694 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
695                           struct net *net)
696 {
697         if (atomic_read(&rt->rt6i_ref) != 1) {
698                 /* This route is used as dummy address holder in some split
699                  * nodes. It is not leaked, but it still holds other resources,
700                  * which must be released in time. So, scan ascendant nodes
701                  * and replace dummy references to this route with references
702                  * to still alive ones.
703                  */
704                 while (fn) {
705                         if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
706                                 fn->leaf = fib6_find_prefix(net, fn);
707                                 atomic_inc(&fn->leaf->rt6i_ref);
708                                 rt6_release(rt);
709                         }
710                         fn = fn->parent;
711                 }
712                 /* No more references are possible at this point. */
713                 BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
714         }
715 }
716
717 /*
718  *      Insert routing information in a node.
719  */
720
721 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
722                             struct nl_info *info, struct mx6_config *mxc)
723 {
724         struct rt6_info *iter = NULL;
725         struct rt6_info **ins;
726         struct rt6_info **fallback_ins = NULL;
727         int replace = (info->nlh &&
728                        (info->nlh->nlmsg_flags & NLM_F_REPLACE));
729         int add = (!info->nlh ||
730                    (info->nlh->nlmsg_flags & NLM_F_CREATE));
731         int found = 0;
732         bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
733         int err;
734
735         ins = &fn->leaf;
736
737         for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
738                 /*
739                  *      Search for duplicates
740                  */
741
742                 if (iter->rt6i_metric == rt->rt6i_metric) {
743                         /*
744                          *      Same priority level
745                          */
746                         if (info->nlh &&
747                             (info->nlh->nlmsg_flags & NLM_F_EXCL))
748                                 return -EEXIST;
749                         if (replace) {
750                                 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
751                                         found++;
752                                         break;
753                                 }
754                                 if (rt_can_ecmp)
755                                         fallback_ins = fallback_ins ?: ins;
756                                 goto next_iter;
757                         }
758
759                         if (iter->dst.dev == rt->dst.dev &&
760                             iter->rt6i_idev == rt->rt6i_idev &&
761                             ipv6_addr_equal(&iter->rt6i_gateway,
762                                             &rt->rt6i_gateway)) {
763                                 if (rt->rt6i_nsiblings)
764                                         rt->rt6i_nsiblings = 0;
765                                 if (!(iter->rt6i_flags & RTF_EXPIRES))
766                                         return -EEXIST;
767                                 if (!(rt->rt6i_flags & RTF_EXPIRES))
768                                         rt6_clean_expires(iter);
769                                 else
770                                         rt6_set_expires(iter, rt->dst.expires);
771                                 iter->rt6i_pmtu = rt->rt6i_pmtu;
772                                 return -EEXIST;
773                         }
774                         /* If we have the same destination and the same metric,
775                          * but not the same gateway, then the route we try to
776                          * add is sibling to this route, increment our counter
777                          * of siblings, and later we will add our route to the
778                          * list.
779                          * Only static routes (which don't have flag
780                          * RTF_EXPIRES) are used for ECMPv6.
781                          *
782                          * To avoid long list, we only had siblings if the
783                          * route have a gateway.
784                          */
785                         if (rt_can_ecmp &&
786                             rt6_qualify_for_ecmp(iter))
787                                 rt->rt6i_nsiblings++;
788                 }
789
790                 if (iter->rt6i_metric > rt->rt6i_metric)
791                         break;
792
793 next_iter:
794                 ins = &iter->dst.rt6_next;
795         }
796
797         if (fallback_ins && !found) {
798                 /* No ECMP-able route found, replace first non-ECMP one */
799                 ins = fallback_ins;
800                 iter = *ins;
801                 found++;
802         }
803
804         /* Reset round-robin state, if necessary */
805         if (ins == &fn->leaf)
806                 fn->rr_ptr = NULL;
807
808         /* Link this route to others same route. */
809         if (rt->rt6i_nsiblings) {
810                 unsigned int rt6i_nsiblings;
811                 struct rt6_info *sibling, *temp_sibling;
812
813                 /* Find the first route that have the same metric */
814                 sibling = fn->leaf;
815                 while (sibling) {
816                         if (sibling->rt6i_metric == rt->rt6i_metric &&
817                             rt6_qualify_for_ecmp(sibling)) {
818                                 list_add_tail(&rt->rt6i_siblings,
819                                               &sibling->rt6i_siblings);
820                                 break;
821                         }
822                         sibling = sibling->dst.rt6_next;
823                 }
824                 /* For each sibling in the list, increment the counter of
825                  * siblings. BUG() if counters does not match, list of siblings
826                  * is broken!
827                  */
828                 rt6i_nsiblings = 0;
829                 list_for_each_entry_safe(sibling, temp_sibling,
830                                          &rt->rt6i_siblings, rt6i_siblings) {
831                         sibling->rt6i_nsiblings++;
832                         BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
833                         rt6i_nsiblings++;
834                 }
835                 BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
836         }
837
838         /*
839          *      insert node
840          */
841         if (!replace) {
842                 if (!add)
843                         pr_warn("NLM_F_CREATE should be set when creating new route\n");
844
845 add:
846                 err = fib6_commit_metrics(&rt->dst, mxc);
847                 if (err)
848                         return err;
849
850                 rt->dst.rt6_next = iter;
851                 *ins = rt;
852                 rt->rt6i_node = fn;
853                 atomic_inc(&rt->rt6i_ref);
854                 inet6_rt_notify(RTM_NEWROUTE, rt, info, 0);
855                 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
856
857                 if (!(fn->fn_flags & RTN_RTINFO)) {
858                         info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
859                         fn->fn_flags |= RTN_RTINFO;
860                 }
861
862         } else {
863                 int nsiblings;
864
865                 if (!found) {
866                         if (add)
867                                 goto add;
868                         pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
869                         return -ENOENT;
870                 }
871
872                 err = fib6_commit_metrics(&rt->dst, mxc);
873                 if (err)
874                         return err;
875
876                 *ins = rt;
877                 rt->rt6i_node = fn;
878                 rt->dst.rt6_next = iter->dst.rt6_next;
879                 atomic_inc(&rt->rt6i_ref);
880                 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
881                 if (!(fn->fn_flags & RTN_RTINFO)) {
882                         info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
883                         fn->fn_flags |= RTN_RTINFO;
884                 }
885                 nsiblings = iter->rt6i_nsiblings;
886                 fib6_purge_rt(iter, fn, info->nl_net);
887                 rt6_release(iter);
888
889                 if (nsiblings) {
890                         /* Replacing an ECMP route, remove all siblings */
891                         ins = &rt->dst.rt6_next;
892                         iter = *ins;
893                         while (iter) {
894                                 if (rt6_qualify_for_ecmp(iter)) {
895                                         *ins = iter->dst.rt6_next;
896                                         fib6_purge_rt(iter, fn, info->nl_net);
897                                         rt6_release(iter);
898                                         nsiblings--;
899                                 } else {
900                                         ins = &iter->dst.rt6_next;
901                                 }
902                                 iter = *ins;
903                         }
904                         WARN_ON(nsiblings != 0);
905                 }
906         }
907
908         return 0;
909 }
910
911 static void fib6_start_gc(struct net *net, struct rt6_info *rt)
912 {
913         if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
914             (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
915                 mod_timer(&net->ipv6.ip6_fib_timer,
916                           jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
917 }
918
919 void fib6_force_start_gc(struct net *net)
920 {
921         if (!timer_pending(&net->ipv6.ip6_fib_timer))
922                 mod_timer(&net->ipv6.ip6_fib_timer,
923                           jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
924 }
925
926 /*
927  *      Add routing information to the routing tree.
928  *      <destination addr>/<source addr>
929  *      with source addr info in sub-trees
930  */
931
932 int fib6_add(struct fib6_node *root, struct rt6_info *rt,
933              struct nl_info *info, struct mx6_config *mxc)
934 {
935         struct fib6_node *fn, *pn = NULL;
936         int err = -ENOMEM;
937         int allow_create = 1;
938         int replace_required = 0;
939         int sernum = fib6_new_sernum(info->nl_net);
940
941         if (WARN_ON_ONCE((rt->dst.flags & DST_NOCACHE) &&
942                          !atomic_read(&rt->dst.__refcnt)))
943                 return -EINVAL;
944
945         if (info->nlh) {
946                 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
947                         allow_create = 0;
948                 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
949                         replace_required = 1;
950         }
951         if (!allow_create && !replace_required)
952                 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
953
954         fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
955                         offsetof(struct rt6_info, rt6i_dst), allow_create,
956                         replace_required, sernum);
957         if (IS_ERR(fn)) {
958                 err = PTR_ERR(fn);
959                 fn = NULL;
960                 goto out;
961         }
962
963         pn = fn;
964
965 #ifdef CONFIG_IPV6_SUBTREES
966         if (rt->rt6i_src.plen) {
967                 struct fib6_node *sn;
968
969                 if (!fn->subtree) {
970                         struct fib6_node *sfn;
971
972                         /*
973                          * Create subtree.
974                          *
975                          *              fn[main tree]
976                          *              |
977                          *              sfn[subtree root]
978                          *                 \
979                          *                  sn[new leaf node]
980                          */
981
982                         /* Create subtree root node */
983                         sfn = node_alloc();
984                         if (!sfn)
985                                 goto st_failure;
986
987                         sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
988                         atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
989                         sfn->fn_flags = RTN_ROOT;
990                         sfn->fn_sernum = sernum;
991
992                         /* Now add the first leaf node to new subtree */
993
994                         sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
995                                         rt->rt6i_src.plen,
996                                         offsetof(struct rt6_info, rt6i_src),
997                                         allow_create, replace_required, sernum);
998
999                         if (IS_ERR(sn)) {
1000                                 /* If it is failed, discard just allocated
1001                                    root, and then (in st_failure) stale node
1002                                    in main tree.
1003                                  */
1004                                 node_free(sfn);
1005                                 err = PTR_ERR(sn);
1006                                 goto st_failure;
1007                         }
1008
1009                         /* Now link new subtree to main tree */
1010                         sfn->parent = fn;
1011                         fn->subtree = sfn;
1012                 } else {
1013                         sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
1014                                         rt->rt6i_src.plen,
1015                                         offsetof(struct rt6_info, rt6i_src),
1016                                         allow_create, replace_required, sernum);
1017
1018                         if (IS_ERR(sn)) {
1019                                 err = PTR_ERR(sn);
1020                                 goto st_failure;
1021                         }
1022                 }
1023
1024                 if (!fn->leaf) {
1025                         fn->leaf = rt;
1026                         atomic_inc(&rt->rt6i_ref);
1027                 }
1028                 fn = sn;
1029         }
1030 #endif
1031
1032         err = fib6_add_rt2node(fn, rt, info, mxc);
1033         if (!err) {
1034                 fib6_start_gc(info->nl_net, rt);
1035                 if (!(rt->rt6i_flags & RTF_CACHE))
1036                         fib6_prune_clones(info->nl_net, pn);
1037                 rt->dst.flags &= ~DST_NOCACHE;
1038         }
1039
1040 out:
1041         if (err) {
1042 #ifdef CONFIG_IPV6_SUBTREES
1043                 /*
1044                  * If fib6_add_1 has cleared the old leaf pointer in the
1045                  * super-tree leaf node we have to find a new one for it.
1046                  */
1047                 if (pn != fn && pn->leaf == rt) {
1048                         pn->leaf = NULL;
1049                         atomic_dec(&rt->rt6i_ref);
1050                 }
1051                 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
1052                         pn->leaf = fib6_find_prefix(info->nl_net, pn);
1053 #if RT6_DEBUG >= 2
1054                         if (!pn->leaf) {
1055                                 WARN_ON(pn->leaf == NULL);
1056                                 pn->leaf = info->nl_net->ipv6.ip6_null_entry;
1057                         }
1058 #endif
1059                         atomic_inc(&pn->leaf->rt6i_ref);
1060                 }
1061 #endif
1062                 if (!(rt->dst.flags & DST_NOCACHE))
1063                         dst_free(&rt->dst);
1064         }
1065         return err;
1066
1067 #ifdef CONFIG_IPV6_SUBTREES
1068         /* Subtree creation failed, probably main tree node
1069            is orphan. If it is, shoot it.
1070          */
1071 st_failure:
1072         if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
1073                 fib6_repair_tree(info->nl_net, fn);
1074         if (!(rt->dst.flags & DST_NOCACHE))
1075                 dst_free(&rt->dst);
1076         return err;
1077 #endif
1078 }
1079
1080 /*
1081  *      Routing tree lookup
1082  *
1083  */
1084
1085 struct lookup_args {
1086         int                     offset;         /* key offset on rt6_info       */
1087         const struct in6_addr   *addr;          /* search key                   */
1088 };
1089
1090 static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1091                                        struct lookup_args *args)
1092 {
1093         struct fib6_node *fn;
1094         __be32 dir;
1095
1096         if (unlikely(args->offset == 0))
1097                 return NULL;
1098
1099         /*
1100          *      Descend on a tree
1101          */
1102
1103         fn = root;
1104
1105         for (;;) {
1106                 struct fib6_node *next;
1107
1108                 dir = addr_bit_set(args->addr, fn->fn_bit);
1109
1110                 next = dir ? fn->right : fn->left;
1111
1112                 if (next) {
1113                         fn = next;
1114                         continue;
1115                 }
1116                 break;
1117         }
1118
1119         while (fn) {
1120                 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
1121                         struct rt6key *key;
1122
1123                         key = (struct rt6key *) ((u8 *) fn->leaf +
1124                                                  args->offset);
1125
1126                         if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1127 #ifdef CONFIG_IPV6_SUBTREES
1128                                 if (fn->subtree) {
1129                                         struct fib6_node *sfn;
1130                                         sfn = fib6_lookup_1(fn->subtree,
1131                                                             args + 1);
1132                                         if (!sfn)
1133                                                 goto backtrack;
1134                                         fn = sfn;
1135                                 }
1136 #endif
1137                                 if (fn->fn_flags & RTN_RTINFO)
1138                                         return fn;
1139                         }
1140                 }
1141 #ifdef CONFIG_IPV6_SUBTREES
1142 backtrack:
1143 #endif
1144                 if (fn->fn_flags & RTN_ROOT)
1145                         break;
1146
1147                 fn = fn->parent;
1148         }
1149
1150         return NULL;
1151 }
1152
1153 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1154                               const struct in6_addr *saddr)
1155 {
1156         struct fib6_node *fn;
1157         struct lookup_args args[] = {
1158                 {
1159                         .offset = offsetof(struct rt6_info, rt6i_dst),
1160                         .addr = daddr,
1161                 },
1162 #ifdef CONFIG_IPV6_SUBTREES
1163                 {
1164                         .offset = offsetof(struct rt6_info, rt6i_src),
1165                         .addr = saddr,
1166                 },
1167 #endif
1168                 {
1169                         .offset = 0,    /* sentinel */
1170                 }
1171         };
1172
1173         fn = fib6_lookup_1(root, daddr ? args : args + 1);
1174         if (!fn || fn->fn_flags & RTN_TL_ROOT)
1175                 fn = root;
1176
1177         return fn;
1178 }
1179
1180 /*
1181  *      Get node with specified destination prefix (and source prefix,
1182  *      if subtrees are used)
1183  */
1184
1185
1186 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1187                                        const struct in6_addr *addr,
1188                                        int plen, int offset)
1189 {
1190         struct fib6_node *fn;
1191
1192         for (fn = root; fn ; ) {
1193                 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1194
1195                 /*
1196                  *      Prefix match
1197                  */
1198                 if (plen < fn->fn_bit ||
1199                     !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1200                         return NULL;
1201
1202                 if (plen == fn->fn_bit)
1203                         return fn;
1204
1205                 /*
1206                  *      We have more bits to go
1207                  */
1208                 if (addr_bit_set(addr, fn->fn_bit))
1209                         fn = fn->right;
1210                 else
1211                         fn = fn->left;
1212         }
1213         return NULL;
1214 }
1215
1216 struct fib6_node *fib6_locate(struct fib6_node *root,
1217                               const struct in6_addr *daddr, int dst_len,
1218                               const struct in6_addr *saddr, int src_len)
1219 {
1220         struct fib6_node *fn;
1221
1222         fn = fib6_locate_1(root, daddr, dst_len,
1223                            offsetof(struct rt6_info, rt6i_dst));
1224
1225 #ifdef CONFIG_IPV6_SUBTREES
1226         if (src_len) {
1227                 WARN_ON(saddr == NULL);
1228                 if (fn && fn->subtree)
1229                         fn = fib6_locate_1(fn->subtree, saddr, src_len,
1230                                            offsetof(struct rt6_info, rt6i_src));
1231         }
1232 #endif
1233
1234         if (fn && fn->fn_flags & RTN_RTINFO)
1235                 return fn;
1236
1237         return NULL;
1238 }
1239
1240
1241 /*
1242  *      Deletion
1243  *
1244  */
1245
1246 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1247 {
1248         if (fn->fn_flags & RTN_ROOT)
1249                 return net->ipv6.ip6_null_entry;
1250
1251         while (fn) {
1252                 if (fn->left)
1253                         return fn->left->leaf;
1254                 if (fn->right)
1255                         return fn->right->leaf;
1256
1257                 fn = FIB6_SUBTREE(fn);
1258         }
1259         return NULL;
1260 }
1261
1262 /*
1263  *      Called to trim the tree of intermediate nodes when possible. "fn"
1264  *      is the node we want to try and remove.
1265  */
1266
1267 static struct fib6_node *fib6_repair_tree(struct net *net,
1268                                            struct fib6_node *fn)
1269 {
1270         int children;
1271         int nstate;
1272         struct fib6_node *child, *pn;
1273         struct fib6_walker *w;
1274         int iter = 0;
1275
1276         for (;;) {
1277                 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1278                 iter++;
1279
1280                 WARN_ON(fn->fn_flags & RTN_RTINFO);
1281                 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1282                 WARN_ON(fn->leaf);
1283
1284                 children = 0;
1285                 child = NULL;
1286                 if (fn->right)
1287                         child = fn->right, children |= 1;
1288                 if (fn->left)
1289                         child = fn->left, children |= 2;
1290
1291                 if (children == 3 || FIB6_SUBTREE(fn)
1292 #ifdef CONFIG_IPV6_SUBTREES
1293                     /* Subtree root (i.e. fn) may have one child */
1294                     || (children && fn->fn_flags & RTN_ROOT)
1295 #endif
1296                     ) {
1297                         fn->leaf = fib6_find_prefix(net, fn);
1298 #if RT6_DEBUG >= 2
1299                         if (!fn->leaf) {
1300                                 WARN_ON(!fn->leaf);
1301                                 fn->leaf = net->ipv6.ip6_null_entry;
1302                         }
1303 #endif
1304                         atomic_inc(&fn->leaf->rt6i_ref);
1305                         return fn->parent;
1306                 }
1307
1308                 pn = fn->parent;
1309 #ifdef CONFIG_IPV6_SUBTREES
1310                 if (FIB6_SUBTREE(pn) == fn) {
1311                         WARN_ON(!(fn->fn_flags & RTN_ROOT));
1312                         FIB6_SUBTREE(pn) = NULL;
1313                         nstate = FWS_L;
1314                 } else {
1315                         WARN_ON(fn->fn_flags & RTN_ROOT);
1316 #endif
1317                         if (pn->right == fn)
1318                                 pn->right = child;
1319                         else if (pn->left == fn)
1320                                 pn->left = child;
1321 #if RT6_DEBUG >= 2
1322                         else
1323                                 WARN_ON(1);
1324 #endif
1325                         if (child)
1326                                 child->parent = pn;
1327                         nstate = FWS_R;
1328 #ifdef CONFIG_IPV6_SUBTREES
1329                 }
1330 #endif
1331
1332                 read_lock(&fib6_walker_lock);
1333                 FOR_WALKERS(w) {
1334                         if (!child) {
1335                                 if (w->root == fn) {
1336                                         w->root = w->node = NULL;
1337                                         RT6_TRACE("W %p adjusted by delroot 1\n", w);
1338                                 } else if (w->node == fn) {
1339                                         RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1340                                         w->node = pn;
1341                                         w->state = nstate;
1342                                 }
1343                         } else {
1344                                 if (w->root == fn) {
1345                                         w->root = child;
1346                                         RT6_TRACE("W %p adjusted by delroot 2\n", w);
1347                                 }
1348                                 if (w->node == fn) {
1349                                         w->node = child;
1350                                         if (children&2) {
1351                                                 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1352                                                 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1353                                         } else {
1354                                                 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1355                                                 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1356                                         }
1357                                 }
1358                         }
1359                 }
1360                 read_unlock(&fib6_walker_lock);
1361
1362                 node_free(fn);
1363                 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1364                         return pn;
1365
1366                 rt6_release(pn->leaf);
1367                 pn->leaf = NULL;
1368                 fn = pn;
1369         }
1370 }
1371
1372 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1373                            struct nl_info *info)
1374 {
1375         struct fib6_walker *w;
1376         struct rt6_info *rt = *rtp;
1377         struct net *net = info->nl_net;
1378
1379         RT6_TRACE("fib6_del_route\n");
1380
1381         /* Unlink it */
1382         *rtp = rt->dst.rt6_next;
1383         rt->rt6i_node = NULL;
1384         net->ipv6.rt6_stats->fib_rt_entries--;
1385         net->ipv6.rt6_stats->fib_discarded_routes++;
1386
1387         /* Reset round-robin state, if necessary */
1388         if (fn->rr_ptr == rt)
1389                 fn->rr_ptr = NULL;
1390
1391         /* Remove this entry from other siblings */
1392         if (rt->rt6i_nsiblings) {
1393                 struct rt6_info *sibling, *next_sibling;
1394
1395                 list_for_each_entry_safe(sibling, next_sibling,
1396                                          &rt->rt6i_siblings, rt6i_siblings)
1397                         sibling->rt6i_nsiblings--;
1398                 rt->rt6i_nsiblings = 0;
1399                 list_del_init(&rt->rt6i_siblings);
1400         }
1401
1402         /* Adjust walkers */
1403         read_lock(&fib6_walker_lock);
1404         FOR_WALKERS(w) {
1405                 if (w->state == FWS_C && w->leaf == rt) {
1406                         RT6_TRACE("walker %p adjusted by delroute\n", w);
1407                         w->leaf = rt->dst.rt6_next;
1408                         if (!w->leaf)
1409                                 w->state = FWS_U;
1410                 }
1411         }
1412         read_unlock(&fib6_walker_lock);
1413
1414         rt->dst.rt6_next = NULL;
1415
1416         /* If it was last route, expunge its radix tree node */
1417         if (!fn->leaf) {
1418                 fn->fn_flags &= ~RTN_RTINFO;
1419                 net->ipv6.rt6_stats->fib_route_nodes--;
1420                 fn = fib6_repair_tree(net, fn);
1421         }
1422
1423         fib6_purge_rt(rt, fn, net);
1424
1425         inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1426         rt6_release(rt);
1427 }
1428
1429 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1430 {
1431         struct net *net = info->nl_net;
1432         struct fib6_node *fn = rt->rt6i_node;
1433         struct rt6_info **rtp;
1434
1435 #if RT6_DEBUG >= 2
1436         if (rt->dst.obsolete > 0) {
1437                 WARN_ON(fn);
1438                 return -ENOENT;
1439         }
1440 #endif
1441         if (!fn || rt == net->ipv6.ip6_null_entry)
1442                 return -ENOENT;
1443
1444         WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1445
1446         if (!(rt->rt6i_flags & RTF_CACHE)) {
1447                 struct fib6_node *pn = fn;
1448 #ifdef CONFIG_IPV6_SUBTREES
1449                 /* clones of this route might be in another subtree */
1450                 if (rt->rt6i_src.plen) {
1451                         while (!(pn->fn_flags & RTN_ROOT))
1452                                 pn = pn->parent;
1453                         pn = pn->parent;
1454                 }
1455 #endif
1456                 fib6_prune_clones(info->nl_net, pn);
1457         }
1458
1459         /*
1460          *      Walk the leaf entries looking for ourself
1461          */
1462
1463         for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1464                 if (*rtp == rt) {
1465                         fib6_del_route(fn, rtp, info);
1466                         return 0;
1467                 }
1468         }
1469         return -ENOENT;
1470 }
1471
1472 /*
1473  *      Tree traversal function.
1474  *
1475  *      Certainly, it is not interrupt safe.
1476  *      However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1477  *      It means, that we can modify tree during walking
1478  *      and use this function for garbage collection, clone pruning,
1479  *      cleaning tree when a device goes down etc. etc.
1480  *
1481  *      It guarantees that every node will be traversed,
1482  *      and that it will be traversed only once.
1483  *
1484  *      Callback function w->func may return:
1485  *      0 -> continue walking.
1486  *      positive value -> walking is suspended (used by tree dumps,
1487  *      and probably by gc, if it will be split to several slices)
1488  *      negative value -> terminate walking.
1489  *
1490  *      The function itself returns:
1491  *      0   -> walk is complete.
1492  *      >0  -> walk is incomplete (i.e. suspended)
1493  *      <0  -> walk is terminated by an error.
1494  */
1495
1496 static int fib6_walk_continue(struct fib6_walker *w)
1497 {
1498         struct fib6_node *fn, *pn;
1499
1500         for (;;) {
1501                 fn = w->node;
1502                 if (!fn)
1503                         return 0;
1504
1505                 if (w->prune && fn != w->root &&
1506                     fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1507                         w->state = FWS_C;
1508                         w->leaf = fn->leaf;
1509                 }
1510                 switch (w->state) {
1511 #ifdef CONFIG_IPV6_SUBTREES
1512                 case FWS_S:
1513                         if (FIB6_SUBTREE(fn)) {
1514                                 w->node = FIB6_SUBTREE(fn);
1515                                 continue;
1516                         }
1517                         w->state = FWS_L;
1518 #endif
1519                 case FWS_L:
1520                         if (fn->left) {
1521                                 w->node = fn->left;
1522                                 w->state = FWS_INIT;
1523                                 continue;
1524                         }
1525                         w->state = FWS_R;
1526                 case FWS_R:
1527                         if (fn->right) {
1528                                 w->node = fn->right;
1529                                 w->state = FWS_INIT;
1530                                 continue;
1531                         }
1532                         w->state = FWS_C;
1533                         w->leaf = fn->leaf;
1534                 case FWS_C:
1535                         if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1536                                 int err;
1537
1538                                 if (w->skip) {
1539                                         w->skip--;
1540                                         goto skip;
1541                                 }
1542
1543                                 err = w->func(w);
1544                                 if (err)
1545                                         return err;
1546
1547                                 w->count++;
1548                                 continue;
1549                         }
1550 skip:
1551                         w->state = FWS_U;
1552                 case FWS_U:
1553                         if (fn == w->root)
1554                                 return 0;
1555                         pn = fn->parent;
1556                         w->node = pn;
1557 #ifdef CONFIG_IPV6_SUBTREES
1558                         if (FIB6_SUBTREE(pn) == fn) {
1559                                 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1560                                 w->state = FWS_L;
1561                                 continue;
1562                         }
1563 #endif
1564                         if (pn->left == fn) {
1565                                 w->state = FWS_R;
1566                                 continue;
1567                         }
1568                         if (pn->right == fn) {
1569                                 w->state = FWS_C;
1570                                 w->leaf = w->node->leaf;
1571                                 continue;
1572                         }
1573 #if RT6_DEBUG >= 2
1574                         WARN_ON(1);
1575 #endif
1576                 }
1577         }
1578 }
1579
1580 static int fib6_walk(struct fib6_walker *w)
1581 {
1582         int res;
1583
1584         w->state = FWS_INIT;
1585         w->node = w->root;
1586
1587         fib6_walker_link(w);
1588         res = fib6_walk_continue(w);
1589         if (res <= 0)
1590                 fib6_walker_unlink(w);
1591         return res;
1592 }
1593
1594 static int fib6_clean_node(struct fib6_walker *w)
1595 {
1596         int res;
1597         struct rt6_info *rt;
1598         struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1599         struct nl_info info = {
1600                 .nl_net = c->net,
1601         };
1602
1603         if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1604             w->node->fn_sernum != c->sernum)
1605                 w->node->fn_sernum = c->sernum;
1606
1607         if (!c->func) {
1608                 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1609                 w->leaf = NULL;
1610                 return 0;
1611         }
1612
1613         for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1614                 res = c->func(rt, c->arg);
1615                 if (res < 0) {
1616                         w->leaf = rt;
1617                         res = fib6_del(rt, &info);
1618                         if (res) {
1619 #if RT6_DEBUG >= 2
1620                                 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1621                                          __func__, rt, rt->rt6i_node, res);
1622 #endif
1623                                 continue;
1624                         }
1625                         return 0;
1626                 }
1627                 WARN_ON(res != 0);
1628         }
1629         w->leaf = rt;
1630         return 0;
1631 }
1632
1633 /*
1634  *      Convenient frontend to tree walker.
1635  *
1636  *      func is called on each route.
1637  *              It may return -1 -> delete this route.
1638  *                            0  -> continue walking
1639  *
1640  *      prune==1 -> only immediate children of node (certainly,
1641  *      ignoring pure split nodes) will be scanned.
1642  */
1643
1644 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1645                             int (*func)(struct rt6_info *, void *arg),
1646                             bool prune, int sernum, void *arg)
1647 {
1648         struct fib6_cleaner c;
1649
1650         c.w.root = root;
1651         c.w.func = fib6_clean_node;
1652         c.w.prune = prune;
1653         c.w.count = 0;
1654         c.w.skip = 0;
1655         c.func = func;
1656         c.sernum = sernum;
1657         c.arg = arg;
1658         c.net = net;
1659
1660         fib6_walk(&c.w);
1661 }
1662
1663 static void __fib6_clean_all(struct net *net,
1664                              int (*func)(struct rt6_info *, void *),
1665                              int sernum, void *arg)
1666 {
1667         struct fib6_table *table;
1668         struct hlist_head *head;
1669         unsigned int h;
1670
1671         rcu_read_lock();
1672         for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1673                 head = &net->ipv6.fib_table_hash[h];
1674                 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1675                         write_lock_bh(&table->tb6_lock);
1676                         fib6_clean_tree(net, &table->tb6_root,
1677                                         func, false, sernum, arg);
1678                         write_unlock_bh(&table->tb6_lock);
1679                 }
1680         }
1681         rcu_read_unlock();
1682 }
1683
1684 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1685                     void *arg)
1686 {
1687         __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1688 }
1689
1690 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1691 {
1692         if (rt->rt6i_flags & RTF_CACHE) {
1693                 RT6_TRACE("pruning clone %p\n", rt);
1694                 return -1;
1695         }
1696
1697         return 0;
1698 }
1699
1700 static void fib6_prune_clones(struct net *net, struct fib6_node *fn)
1701 {
1702         fib6_clean_tree(net, fn, fib6_prune_clone, true,
1703                         FIB6_NO_SERNUM_CHANGE, NULL);
1704 }
1705
1706 static void fib6_flush_trees(struct net *net)
1707 {
1708         int new_sernum = fib6_new_sernum(net);
1709
1710         __fib6_clean_all(net, NULL, new_sernum, NULL);
1711 }
1712
1713 /*
1714  *      Garbage collection
1715  */
1716
1717 static struct fib6_gc_args
1718 {
1719         int                     timeout;
1720         int                     more;
1721 } gc_args;
1722
1723 static int fib6_age(struct rt6_info *rt, void *arg)
1724 {
1725         unsigned long now = jiffies;
1726
1727         /*
1728          *      check addrconf expiration here.
1729          *      Routes are expired even if they are in use.
1730          *
1731          *      Also age clones. Note, that clones are aged out
1732          *      only if they are not in use now.
1733          */
1734
1735         if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1736                 if (time_after(now, rt->dst.expires)) {
1737                         RT6_TRACE("expiring %p\n", rt);
1738                         return -1;
1739                 }
1740                 gc_args.more++;
1741         } else if (rt->rt6i_flags & RTF_CACHE) {
1742                 if (atomic_read(&rt->dst.__refcnt) == 0 &&
1743                     time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1744                         RT6_TRACE("aging clone %p\n", rt);
1745                         return -1;
1746                 } else if (rt->rt6i_flags & RTF_GATEWAY) {
1747                         struct neighbour *neigh;
1748                         __u8 neigh_flags = 0;
1749
1750                         neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1751                         if (neigh) {
1752                                 neigh_flags = neigh->flags;
1753                                 neigh_release(neigh);
1754                         }
1755                         if (!(neigh_flags & NTF_ROUTER)) {
1756                                 RT6_TRACE("purging route %p via non-router but gateway\n",
1757                                           rt);
1758                                 return -1;
1759                         }
1760                 }
1761                 gc_args.more++;
1762         }
1763
1764         return 0;
1765 }
1766
1767 static DEFINE_SPINLOCK(fib6_gc_lock);
1768
1769 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1770 {
1771         unsigned long now;
1772
1773         if (force) {
1774                 spin_lock_bh(&fib6_gc_lock);
1775         } else if (!spin_trylock_bh(&fib6_gc_lock)) {
1776                 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1777                 return;
1778         }
1779         gc_args.timeout = expires ? (int)expires :
1780                           net->ipv6.sysctl.ip6_rt_gc_interval;
1781
1782         gc_args.more = icmp6_dst_gc();
1783
1784         fib6_clean_all(net, fib6_age, NULL);
1785         now = jiffies;
1786         net->ipv6.ip6_rt_last_gc = now;
1787
1788         if (gc_args.more)
1789                 mod_timer(&net->ipv6.ip6_fib_timer,
1790                           round_jiffies(now
1791                                         + net->ipv6.sysctl.ip6_rt_gc_interval));
1792         else
1793                 del_timer(&net->ipv6.ip6_fib_timer);
1794         spin_unlock_bh(&fib6_gc_lock);
1795 }
1796
1797 static void fib6_gc_timer_cb(unsigned long arg)
1798 {
1799         fib6_run_gc(0, (struct net *)arg, true);
1800 }
1801
1802 static int __net_init fib6_net_init(struct net *net)
1803 {
1804         size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1805
1806         setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1807
1808         net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1809         if (!net->ipv6.rt6_stats)
1810                 goto out_timer;
1811
1812         /* Avoid false sharing : Use at least a full cache line */
1813         size = max_t(size_t, size, L1_CACHE_BYTES);
1814
1815         net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1816         if (!net->ipv6.fib_table_hash)
1817                 goto out_rt6_stats;
1818
1819         net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1820                                           GFP_KERNEL);
1821         if (!net->ipv6.fib6_main_tbl)
1822                 goto out_fib_table_hash;
1823
1824         net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1825         net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1826         net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1827                 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1828         inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1829
1830 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1831         net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1832                                            GFP_KERNEL);
1833         if (!net->ipv6.fib6_local_tbl)
1834                 goto out_fib6_main_tbl;
1835         net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1836         net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1837         net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1838                 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1839         inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1840 #endif
1841         fib6_tables_init(net);
1842
1843         return 0;
1844
1845 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1846 out_fib6_main_tbl:
1847         kfree(net->ipv6.fib6_main_tbl);
1848 #endif
1849 out_fib_table_hash:
1850         kfree(net->ipv6.fib_table_hash);
1851 out_rt6_stats:
1852         kfree(net->ipv6.rt6_stats);
1853 out_timer:
1854         return -ENOMEM;
1855 }
1856
1857 static void fib6_net_exit(struct net *net)
1858 {
1859         rt6_ifdown(net, NULL);
1860         del_timer_sync(&net->ipv6.ip6_fib_timer);
1861
1862 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1863         inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1864         kfree(net->ipv6.fib6_local_tbl);
1865 #endif
1866         inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1867         kfree(net->ipv6.fib6_main_tbl);
1868         kfree(net->ipv6.fib_table_hash);
1869         kfree(net->ipv6.rt6_stats);
1870 }
1871
1872 static struct pernet_operations fib6_net_ops = {
1873         .init = fib6_net_init,
1874         .exit = fib6_net_exit,
1875 };
1876
1877 int __init fib6_init(void)
1878 {
1879         int ret = -ENOMEM;
1880
1881         fib6_node_kmem = kmem_cache_create("fib6_nodes",
1882                                            sizeof(struct fib6_node),
1883                                            0, SLAB_HWCACHE_ALIGN,
1884                                            NULL);
1885         if (!fib6_node_kmem)
1886                 goto out;
1887
1888         ret = register_pernet_subsys(&fib6_net_ops);
1889         if (ret)
1890                 goto out_kmem_cache_create;
1891
1892         ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1893                               NULL);
1894         if (ret)
1895                 goto out_unregister_subsys;
1896
1897         __fib6_flush_trees = fib6_flush_trees;
1898 out:
1899         return ret;
1900
1901 out_unregister_subsys:
1902         unregister_pernet_subsys(&fib6_net_ops);
1903 out_kmem_cache_create:
1904         kmem_cache_destroy(fib6_node_kmem);
1905         goto out;
1906 }
1907
1908 void fib6_gc_cleanup(void)
1909 {
1910         unregister_pernet_subsys(&fib6_net_ops);
1911         kmem_cache_destroy(fib6_node_kmem);
1912 }
1913
1914 #ifdef CONFIG_PROC_FS
1915
1916 struct ipv6_route_iter {
1917         struct seq_net_private p;
1918         struct fib6_walker w;
1919         loff_t skip;
1920         struct fib6_table *tbl;
1921         int sernum;
1922 };
1923
1924 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
1925 {
1926         struct rt6_info *rt = v;
1927         struct ipv6_route_iter *iter = seq->private;
1928
1929         seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
1930
1931 #ifdef CONFIG_IPV6_SUBTREES
1932         seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
1933 #else
1934         seq_puts(seq, "00000000000000000000000000000000 00 ");
1935 #endif
1936         if (rt->rt6i_flags & RTF_GATEWAY)
1937                 seq_printf(seq, "%pi6", &rt->rt6i_gateway);
1938         else
1939                 seq_puts(seq, "00000000000000000000000000000000");
1940
1941         seq_printf(seq, " %08x %08x %08x %08x %8s\n",
1942                    rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
1943                    rt->dst.__use, rt->rt6i_flags,
1944                    rt->dst.dev ? rt->dst.dev->name : "");
1945         iter->w.leaf = NULL;
1946         return 0;
1947 }
1948
1949 static int ipv6_route_yield(struct fib6_walker *w)
1950 {
1951         struct ipv6_route_iter *iter = w->args;
1952
1953         if (!iter->skip)
1954                 return 1;
1955
1956         do {
1957                 iter->w.leaf = iter->w.leaf->dst.rt6_next;
1958                 iter->skip--;
1959                 if (!iter->skip && iter->w.leaf)
1960                         return 1;
1961         } while (iter->w.leaf);
1962
1963         return 0;
1964 }
1965
1966 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter)
1967 {
1968         memset(&iter->w, 0, sizeof(iter->w));
1969         iter->w.func = ipv6_route_yield;
1970         iter->w.root = &iter->tbl->tb6_root;
1971         iter->w.state = FWS_INIT;
1972         iter->w.node = iter->w.root;
1973         iter->w.args = iter;
1974         iter->sernum = iter->w.root->fn_sernum;
1975         INIT_LIST_HEAD(&iter->w.lh);
1976         fib6_walker_link(&iter->w);
1977 }
1978
1979 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
1980                                                     struct net *net)
1981 {
1982         unsigned int h;
1983         struct hlist_node *node;
1984
1985         if (tbl) {
1986                 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
1987                 node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
1988         } else {
1989                 h = 0;
1990                 node = NULL;
1991         }
1992
1993         while (!node && h < FIB6_TABLE_HASHSZ) {
1994                 node = rcu_dereference_bh(
1995                         hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
1996         }
1997         return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
1998 }
1999
2000 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2001 {
2002         if (iter->sernum != iter->w.root->fn_sernum) {
2003                 iter->sernum = iter->w.root->fn_sernum;
2004                 iter->w.state = FWS_INIT;
2005                 iter->w.node = iter->w.root;
2006                 WARN_ON(iter->w.skip);
2007                 iter->w.skip = iter->w.count;
2008         }
2009 }
2010
2011 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2012 {
2013         int r;
2014         struct rt6_info *n;
2015         struct net *net = seq_file_net(seq);
2016         struct ipv6_route_iter *iter = seq->private;
2017
2018         if (!v)
2019                 goto iter_table;
2020
2021         n = ((struct rt6_info *)v)->dst.rt6_next;
2022         if (n) {
2023                 ++*pos;
2024                 return n;
2025         }
2026
2027 iter_table:
2028         ipv6_route_check_sernum(iter);
2029         read_lock(&iter->tbl->tb6_lock);
2030         r = fib6_walk_continue(&iter->w);
2031         read_unlock(&iter->tbl->tb6_lock);
2032         if (r > 0) {
2033                 if (v)
2034                         ++*pos;
2035                 return iter->w.leaf;
2036         } else if (r < 0) {
2037                 fib6_walker_unlink(&iter->w);
2038                 return NULL;
2039         }
2040         fib6_walker_unlink(&iter->w);
2041
2042         iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2043         if (!iter->tbl)
2044                 return NULL;
2045
2046         ipv6_route_seq_setup_walk(iter);
2047         goto iter_table;
2048 }
2049
2050 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2051         __acquires(RCU_BH)
2052 {
2053         struct net *net = seq_file_net(seq);
2054         struct ipv6_route_iter *iter = seq->private;
2055
2056         rcu_read_lock_bh();
2057         iter->tbl = ipv6_route_seq_next_table(NULL, net);
2058         iter->skip = *pos;
2059
2060         if (iter->tbl) {
2061                 ipv6_route_seq_setup_walk(iter);
2062                 return ipv6_route_seq_next(seq, NULL, pos);
2063         } else {
2064                 return NULL;
2065         }
2066 }
2067
2068 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2069 {
2070         struct fib6_walker *w = &iter->w;
2071         return w->node && !(w->state == FWS_U && w->node == w->root);
2072 }
2073
2074 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2075         __releases(RCU_BH)
2076 {
2077         struct ipv6_route_iter *iter = seq->private;
2078
2079         if (ipv6_route_iter_active(iter))
2080                 fib6_walker_unlink(&iter->w);
2081
2082         rcu_read_unlock_bh();
2083 }
2084
2085 static const struct seq_operations ipv6_route_seq_ops = {
2086         .start  = ipv6_route_seq_start,
2087         .next   = ipv6_route_seq_next,
2088         .stop   = ipv6_route_seq_stop,
2089         .show   = ipv6_route_seq_show
2090 };
2091
2092 int ipv6_route_open(struct inode *inode, struct file *file)
2093 {
2094         return seq_open_net(inode, file, &ipv6_route_seq_ops,
2095                             sizeof(struct ipv6_route_iter));
2096 }
2097
2098 #endif /* CONFIG_PROC_FS */