]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - net/vmw_vsock/vmci_transport.c
Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[karo-tx-linux.git] / net / vmw_vsock / vmci_transport.c
1 /*
2  * VMware vSockets Driver
3  *
4  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation version 2 and no later version.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  */
15
16 #include <linux/types.h>
17 #include <linux/bitops.h>
18 #include <linux/cred.h>
19 #include <linux/init.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/kmod.h>
23 #include <linux/list.h>
24 #include <linux/miscdevice.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/net.h>
28 #include <linux/poll.h>
29 #include <linux/skbuff.h>
30 #include <linux/smp.h>
31 #include <linux/socket.h>
32 #include <linux/stddef.h>
33 #include <linux/unistd.h>
34 #include <linux/wait.h>
35 #include <linux/workqueue.h>
36 #include <net/sock.h>
37 #include <net/af_vsock.h>
38
39 #include "vmci_transport_notify.h"
40
41 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg);
42 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg);
43 static void vmci_transport_peer_detach_cb(u32 sub_id,
44                                           const struct vmci_event_data *ed,
45                                           void *client_data);
46 static void vmci_transport_recv_pkt_work(struct work_struct *work);
47 static void vmci_transport_cleanup(struct work_struct *work);
48 static int vmci_transport_recv_listen(struct sock *sk,
49                                       struct vmci_transport_packet *pkt);
50 static int vmci_transport_recv_connecting_server(
51                                         struct sock *sk,
52                                         struct sock *pending,
53                                         struct vmci_transport_packet *pkt);
54 static int vmci_transport_recv_connecting_client(
55                                         struct sock *sk,
56                                         struct vmci_transport_packet *pkt);
57 static int vmci_transport_recv_connecting_client_negotiate(
58                                         struct sock *sk,
59                                         struct vmci_transport_packet *pkt);
60 static int vmci_transport_recv_connecting_client_invalid(
61                                         struct sock *sk,
62                                         struct vmci_transport_packet *pkt);
63 static int vmci_transport_recv_connected(struct sock *sk,
64                                          struct vmci_transport_packet *pkt);
65 static bool vmci_transport_old_proto_override(bool *old_pkt_proto);
66 static u16 vmci_transport_new_proto_supported_versions(void);
67 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto,
68                                                   bool old_pkt_proto);
69
70 struct vmci_transport_recv_pkt_info {
71         struct work_struct work;
72         struct sock *sk;
73         struct vmci_transport_packet pkt;
74 };
75
76 static LIST_HEAD(vmci_transport_cleanup_list);
77 static DEFINE_SPINLOCK(vmci_transport_cleanup_lock);
78 static DECLARE_WORK(vmci_transport_cleanup_work, vmci_transport_cleanup);
79
80 static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID,
81                                                            VMCI_INVALID_ID };
82 static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
83
84 static int PROTOCOL_OVERRIDE = -1;
85
86 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN   128
87 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE       262144
88 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX   262144
89
90 /* The default peer timeout indicates how long we will wait for a peer response
91  * to a control message.
92  */
93 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
94
95 #define SS_LISTEN 255
96
97 /* Helper function to convert from a VMCI error code to a VSock error code. */
98
99 static s32 vmci_transport_error_to_vsock_error(s32 vmci_error)
100 {
101         int err;
102
103         switch (vmci_error) {
104         case VMCI_ERROR_NO_MEM:
105                 err = ENOMEM;
106                 break;
107         case VMCI_ERROR_DUPLICATE_ENTRY:
108         case VMCI_ERROR_ALREADY_EXISTS:
109                 err = EADDRINUSE;
110                 break;
111         case VMCI_ERROR_NO_ACCESS:
112                 err = EPERM;
113                 break;
114         case VMCI_ERROR_NO_RESOURCES:
115                 err = ENOBUFS;
116                 break;
117         case VMCI_ERROR_INVALID_RESOURCE:
118                 err = EHOSTUNREACH;
119                 break;
120         case VMCI_ERROR_INVALID_ARGS:
121         default:
122                 err = EINVAL;
123         }
124
125         return err > 0 ? -err : err;
126 }
127
128 static u32 vmci_transport_peer_rid(u32 peer_cid)
129 {
130         if (VMADDR_CID_HYPERVISOR == peer_cid)
131                 return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID;
132
133         return VMCI_TRANSPORT_PACKET_RID;
134 }
135
136 static inline void
137 vmci_transport_packet_init(struct vmci_transport_packet *pkt,
138                            struct sockaddr_vm *src,
139                            struct sockaddr_vm *dst,
140                            u8 type,
141                            u64 size,
142                            u64 mode,
143                            struct vmci_transport_waiting_info *wait,
144                            u16 proto,
145                            struct vmci_handle handle)
146 {
147         /* We register the stream control handler as an any cid handle so we
148          * must always send from a source address of VMADDR_CID_ANY
149          */
150         pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY,
151                                        VMCI_TRANSPORT_PACKET_RID);
152         pkt->dg.dst = vmci_make_handle(dst->svm_cid,
153                                        vmci_transport_peer_rid(dst->svm_cid));
154         pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg);
155         pkt->version = VMCI_TRANSPORT_PACKET_VERSION;
156         pkt->type = type;
157         pkt->src_port = src->svm_port;
158         pkt->dst_port = dst->svm_port;
159         memset(&pkt->proto, 0, sizeof(pkt->proto));
160         memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2));
161
162         switch (pkt->type) {
163         case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
164                 pkt->u.size = 0;
165                 break;
166
167         case VMCI_TRANSPORT_PACKET_TYPE_REQUEST:
168         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
169                 pkt->u.size = size;
170                 break;
171
172         case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
173         case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
174                 pkt->u.handle = handle;
175                 break;
176
177         case VMCI_TRANSPORT_PACKET_TYPE_WROTE:
178         case VMCI_TRANSPORT_PACKET_TYPE_READ:
179         case VMCI_TRANSPORT_PACKET_TYPE_RST:
180                 pkt->u.size = 0;
181                 break;
182
183         case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
184                 pkt->u.mode = mode;
185                 break;
186
187         case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ:
188         case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE:
189                 memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait));
190                 break;
191
192         case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2:
193         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
194                 pkt->u.size = size;
195                 pkt->proto = proto;
196                 break;
197         }
198 }
199
200 static inline void
201 vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt,
202                                     struct sockaddr_vm *local,
203                                     struct sockaddr_vm *remote)
204 {
205         vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port);
206         vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port);
207 }
208
209 static int
210 __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt,
211                                   struct sockaddr_vm *src,
212                                   struct sockaddr_vm *dst,
213                                   enum vmci_transport_packet_type type,
214                                   u64 size,
215                                   u64 mode,
216                                   struct vmci_transport_waiting_info *wait,
217                                   u16 proto,
218                                   struct vmci_handle handle,
219                                   bool convert_error)
220 {
221         int err;
222
223         vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait,
224                                    proto, handle);
225         err = vmci_datagram_send(&pkt->dg);
226         if (convert_error && (err < 0))
227                 return vmci_transport_error_to_vsock_error(err);
228
229         return err;
230 }
231
232 static int
233 vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt,
234                                       enum vmci_transport_packet_type type,
235                                       u64 size,
236                                       u64 mode,
237                                       struct vmci_transport_waiting_info *wait,
238                                       struct vmci_handle handle)
239 {
240         struct vmci_transport_packet reply;
241         struct sockaddr_vm src, dst;
242
243         if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) {
244                 return 0;
245         } else {
246                 vmci_transport_packet_get_addresses(pkt, &src, &dst);
247                 return __vmci_transport_send_control_pkt(&reply, &src, &dst,
248                                                          type,
249                                                          size, mode, wait,
250                                                          VSOCK_PROTO_INVALID,
251                                                          handle, true);
252         }
253 }
254
255 static int
256 vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src,
257                                    struct sockaddr_vm *dst,
258                                    enum vmci_transport_packet_type type,
259                                    u64 size,
260                                    u64 mode,
261                                    struct vmci_transport_waiting_info *wait,
262                                    struct vmci_handle handle)
263 {
264         /* Note that it is safe to use a single packet across all CPUs since
265          * two tasklets of the same type are guaranteed to not ever run
266          * simultaneously. If that ever changes, or VMCI stops using tasklets,
267          * we can use per-cpu packets.
268          */
269         static struct vmci_transport_packet pkt;
270
271         return __vmci_transport_send_control_pkt(&pkt, src, dst, type,
272                                                  size, mode, wait,
273                                                  VSOCK_PROTO_INVALID, handle,
274                                                  false);
275 }
276
277 static int
278 vmci_transport_send_control_pkt(struct sock *sk,
279                                 enum vmci_transport_packet_type type,
280                                 u64 size,
281                                 u64 mode,
282                                 struct vmci_transport_waiting_info *wait,
283                                 u16 proto,
284                                 struct vmci_handle handle)
285 {
286         struct vmci_transport_packet *pkt;
287         struct vsock_sock *vsk;
288         int err;
289
290         vsk = vsock_sk(sk);
291
292         if (!vsock_addr_bound(&vsk->local_addr))
293                 return -EINVAL;
294
295         if (!vsock_addr_bound(&vsk->remote_addr))
296                 return -EINVAL;
297
298         pkt = kmalloc(sizeof(*pkt), GFP_KERNEL);
299         if (!pkt)
300                 return -ENOMEM;
301
302         err = __vmci_transport_send_control_pkt(pkt, &vsk->local_addr,
303                                                 &vsk->remote_addr, type, size,
304                                                 mode, wait, proto, handle,
305                                                 true);
306         kfree(pkt);
307
308         return err;
309 }
310
311 static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst,
312                                         struct sockaddr_vm *src,
313                                         struct vmci_transport_packet *pkt)
314 {
315         if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
316                 return 0;
317         return vmci_transport_send_control_pkt_bh(
318                                         dst, src,
319                                         VMCI_TRANSPORT_PACKET_TYPE_RST, 0,
320                                         0, NULL, VMCI_INVALID_HANDLE);
321 }
322
323 static int vmci_transport_send_reset(struct sock *sk,
324                                      struct vmci_transport_packet *pkt)
325 {
326         if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
327                 return 0;
328         return vmci_transport_send_control_pkt(sk,
329                                         VMCI_TRANSPORT_PACKET_TYPE_RST,
330                                         0, 0, NULL, VSOCK_PROTO_INVALID,
331                                         VMCI_INVALID_HANDLE);
332 }
333
334 static int vmci_transport_send_negotiate(struct sock *sk, size_t size)
335 {
336         return vmci_transport_send_control_pkt(
337                                         sk,
338                                         VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE,
339                                         size, 0, NULL,
340                                         VSOCK_PROTO_INVALID,
341                                         VMCI_INVALID_HANDLE);
342 }
343
344 static int vmci_transport_send_negotiate2(struct sock *sk, size_t size,
345                                           u16 version)
346 {
347         return vmci_transport_send_control_pkt(
348                                         sk,
349                                         VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2,
350                                         size, 0, NULL, version,
351                                         VMCI_INVALID_HANDLE);
352 }
353
354 static int vmci_transport_send_qp_offer(struct sock *sk,
355                                         struct vmci_handle handle)
356 {
357         return vmci_transport_send_control_pkt(
358                                         sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0,
359                                         0, NULL,
360                                         VSOCK_PROTO_INVALID, handle);
361 }
362
363 static int vmci_transport_send_attach(struct sock *sk,
364                                       struct vmci_handle handle)
365 {
366         return vmci_transport_send_control_pkt(
367                                         sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH,
368                                         0, 0, NULL, VSOCK_PROTO_INVALID,
369                                         handle);
370 }
371
372 static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt)
373 {
374         return vmci_transport_reply_control_pkt_fast(
375                                                 pkt,
376                                                 VMCI_TRANSPORT_PACKET_TYPE_RST,
377                                                 0, 0, NULL,
378                                                 VMCI_INVALID_HANDLE);
379 }
380
381 static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst,
382                                           struct sockaddr_vm *src)
383 {
384         return vmci_transport_send_control_pkt_bh(
385                                         dst, src,
386                                         VMCI_TRANSPORT_PACKET_TYPE_INVALID,
387                                         0, 0, NULL, VMCI_INVALID_HANDLE);
388 }
389
390 int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst,
391                                  struct sockaddr_vm *src)
392 {
393         return vmci_transport_send_control_pkt_bh(
394                                         dst, src,
395                                         VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
396                                         0, NULL, VMCI_INVALID_HANDLE);
397 }
398
399 int vmci_transport_send_read_bh(struct sockaddr_vm *dst,
400                                 struct sockaddr_vm *src)
401 {
402         return vmci_transport_send_control_pkt_bh(
403                                         dst, src,
404                                         VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
405                                         0, NULL, VMCI_INVALID_HANDLE);
406 }
407
408 int vmci_transport_send_wrote(struct sock *sk)
409 {
410         return vmci_transport_send_control_pkt(
411                                         sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
412                                         0, NULL, VSOCK_PROTO_INVALID,
413                                         VMCI_INVALID_HANDLE);
414 }
415
416 int vmci_transport_send_read(struct sock *sk)
417 {
418         return vmci_transport_send_control_pkt(
419                                         sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
420                                         0, NULL, VSOCK_PROTO_INVALID,
421                                         VMCI_INVALID_HANDLE);
422 }
423
424 int vmci_transport_send_waiting_write(struct sock *sk,
425                                       struct vmci_transport_waiting_info *wait)
426 {
427         return vmci_transport_send_control_pkt(
428                                 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE,
429                                 0, 0, wait, VSOCK_PROTO_INVALID,
430                                 VMCI_INVALID_HANDLE);
431 }
432
433 int vmci_transport_send_waiting_read(struct sock *sk,
434                                      struct vmci_transport_waiting_info *wait)
435 {
436         return vmci_transport_send_control_pkt(
437                                 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ,
438                                 0, 0, wait, VSOCK_PROTO_INVALID,
439                                 VMCI_INVALID_HANDLE);
440 }
441
442 static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode)
443 {
444         return vmci_transport_send_control_pkt(
445                                         &vsk->sk,
446                                         VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN,
447                                         0, mode, NULL,
448                                         VSOCK_PROTO_INVALID,
449                                         VMCI_INVALID_HANDLE);
450 }
451
452 static int vmci_transport_send_conn_request(struct sock *sk, size_t size)
453 {
454         return vmci_transport_send_control_pkt(sk,
455                                         VMCI_TRANSPORT_PACKET_TYPE_REQUEST,
456                                         size, 0, NULL,
457                                         VSOCK_PROTO_INVALID,
458                                         VMCI_INVALID_HANDLE);
459 }
460
461 static int vmci_transport_send_conn_request2(struct sock *sk, size_t size,
462                                              u16 version)
463 {
464         return vmci_transport_send_control_pkt(
465                                         sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2,
466                                         size, 0, NULL, version,
467                                         VMCI_INVALID_HANDLE);
468 }
469
470 static struct sock *vmci_transport_get_pending(
471                                         struct sock *listener,
472                                         struct vmci_transport_packet *pkt)
473 {
474         struct vsock_sock *vlistener;
475         struct vsock_sock *vpending;
476         struct sock *pending;
477         struct sockaddr_vm src;
478
479         vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
480
481         vlistener = vsock_sk(listener);
482
483         list_for_each_entry(vpending, &vlistener->pending_links,
484                             pending_links) {
485                 if (vsock_addr_equals_addr(&src, &vpending->remote_addr) &&
486                     pkt->dst_port == vpending->local_addr.svm_port) {
487                         pending = sk_vsock(vpending);
488                         sock_hold(pending);
489                         goto found;
490                 }
491         }
492
493         pending = NULL;
494 found:
495         return pending;
496
497 }
498
499 static void vmci_transport_release_pending(struct sock *pending)
500 {
501         sock_put(pending);
502 }
503
504 /* We allow two kinds of sockets to communicate with a restricted VM: 1)
505  * trusted sockets 2) sockets from applications running as the same user as the
506  * VM (this is only true for the host side and only when using hosted products)
507  */
508
509 static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid)
510 {
511         return vsock->trusted ||
512                vmci_is_context_owner(peer_cid, vsock->owner->uid);
513 }
514
515 /* We allow sending datagrams to and receiving datagrams from a restricted VM
516  * only if it is trusted as described in vmci_transport_is_trusted.
517  */
518
519 static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid)
520 {
521         if (VMADDR_CID_HYPERVISOR == peer_cid)
522                 return true;
523
524         if (vsock->cached_peer != peer_cid) {
525                 vsock->cached_peer = peer_cid;
526                 if (!vmci_transport_is_trusted(vsock, peer_cid) &&
527                     (vmci_context_get_priv_flags(peer_cid) &
528                      VMCI_PRIVILEGE_FLAG_RESTRICTED)) {
529                         vsock->cached_peer_allow_dgram = false;
530                 } else {
531                         vsock->cached_peer_allow_dgram = true;
532                 }
533         }
534
535         return vsock->cached_peer_allow_dgram;
536 }
537
538 static int
539 vmci_transport_queue_pair_alloc(struct vmci_qp **qpair,
540                                 struct vmci_handle *handle,
541                                 u64 produce_size,
542                                 u64 consume_size,
543                                 u32 peer, u32 flags, bool trusted)
544 {
545         int err = 0;
546
547         if (trusted) {
548                 /* Try to allocate our queue pair as trusted. This will only
549                  * work if vsock is running in the host.
550                  */
551
552                 err = vmci_qpair_alloc(qpair, handle, produce_size,
553                                        consume_size,
554                                        peer, flags,
555                                        VMCI_PRIVILEGE_FLAG_TRUSTED);
556                 if (err != VMCI_ERROR_NO_ACCESS)
557                         goto out;
558
559         }
560
561         err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size,
562                                peer, flags, VMCI_NO_PRIVILEGE_FLAGS);
563 out:
564         if (err < 0) {
565                 pr_err("Could not attach to queue pair with %d\n",
566                        err);
567                 err = vmci_transport_error_to_vsock_error(err);
568         }
569
570         return err;
571 }
572
573 static int
574 vmci_transport_datagram_create_hnd(u32 resource_id,
575                                    u32 flags,
576                                    vmci_datagram_recv_cb recv_cb,
577                                    void *client_data,
578                                    struct vmci_handle *out_handle)
579 {
580         int err = 0;
581
582         /* Try to allocate our datagram handler as trusted. This will only work
583          * if vsock is running in the host.
584          */
585
586         err = vmci_datagram_create_handle_priv(resource_id, flags,
587                                                VMCI_PRIVILEGE_FLAG_TRUSTED,
588                                                recv_cb,
589                                                client_data, out_handle);
590
591         if (err == VMCI_ERROR_NO_ACCESS)
592                 err = vmci_datagram_create_handle(resource_id, flags,
593                                                   recv_cb, client_data,
594                                                   out_handle);
595
596         return err;
597 }
598
599 /* This is invoked as part of a tasklet that's scheduled when the VMCI
600  * interrupt fires.  This is run in bottom-half context and if it ever needs to
601  * sleep it should defer that work to a work queue.
602  */
603
604 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg)
605 {
606         struct sock *sk;
607         size_t size;
608         struct sk_buff *skb;
609         struct vsock_sock *vsk;
610
611         sk = (struct sock *)data;
612
613         /* This handler is privileged when this module is running on the host.
614          * We will get datagrams from all endpoints (even VMs that are in a
615          * restricted context). If we get one from a restricted context then
616          * the destination socket must be trusted.
617          *
618          * NOTE: We access the socket struct without holding the lock here.
619          * This is ok because the field we are interested is never modified
620          * outside of the create and destruct socket functions.
621          */
622         vsk = vsock_sk(sk);
623         if (!vmci_transport_allow_dgram(vsk, dg->src.context))
624                 return VMCI_ERROR_NO_ACCESS;
625
626         size = VMCI_DG_SIZE(dg);
627
628         /* Attach the packet to the socket's receive queue as an sk_buff. */
629         skb = alloc_skb(size, GFP_ATOMIC);
630         if (!skb)
631                 return VMCI_ERROR_NO_MEM;
632
633         /* sk_receive_skb() will do a sock_put(), so hold here. */
634         sock_hold(sk);
635         skb_put(skb, size);
636         memcpy(skb->data, dg, size);
637         sk_receive_skb(sk, skb, 0);
638
639         return VMCI_SUCCESS;
640 }
641
642 static bool vmci_transport_stream_allow(u32 cid, u32 port)
643 {
644         static const u32 non_socket_contexts[] = {
645                 VMADDR_CID_RESERVED,
646         };
647         int i;
648
649         BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts));
650
651         for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) {
652                 if (cid == non_socket_contexts[i])
653                         return false;
654         }
655
656         return true;
657 }
658
659 /* This is invoked as part of a tasklet that's scheduled when the VMCI
660  * interrupt fires.  This is run in bottom-half context but it defers most of
661  * its work to the packet handling work queue.
662  */
663
664 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg)
665 {
666         struct sock *sk;
667         struct sockaddr_vm dst;
668         struct sockaddr_vm src;
669         struct vmci_transport_packet *pkt;
670         struct vsock_sock *vsk;
671         bool bh_process_pkt;
672         int err;
673
674         sk = NULL;
675         err = VMCI_SUCCESS;
676         bh_process_pkt = false;
677
678         /* Ignore incoming packets from contexts without sockets, or resources
679          * that aren't vsock implementations.
680          */
681
682         if (!vmci_transport_stream_allow(dg->src.context, -1)
683             || vmci_transport_peer_rid(dg->src.context) != dg->src.resource)
684                 return VMCI_ERROR_NO_ACCESS;
685
686         if (VMCI_DG_SIZE(dg) < sizeof(*pkt))
687                 /* Drop datagrams that do not contain full VSock packets. */
688                 return VMCI_ERROR_INVALID_ARGS;
689
690         pkt = (struct vmci_transport_packet *)dg;
691
692         /* Find the socket that should handle this packet.  First we look for a
693          * connected socket and if there is none we look for a socket bound to
694          * the destintation address.
695          */
696         vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
697         vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port);
698
699         sk = vsock_find_connected_socket(&src, &dst);
700         if (!sk) {
701                 sk = vsock_find_bound_socket(&dst);
702                 if (!sk) {
703                         /* We could not find a socket for this specified
704                          * address.  If this packet is a RST, we just drop it.
705                          * If it is another packet, we send a RST.  Note that
706                          * we do not send a RST reply to RSTs so that we do not
707                          * continually send RSTs between two endpoints.
708                          *
709                          * Note that since this is a reply, dst is src and src
710                          * is dst.
711                          */
712                         if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
713                                 pr_err("unable to send reset\n");
714
715                         err = VMCI_ERROR_NOT_FOUND;
716                         goto out;
717                 }
718         }
719
720         /* If the received packet type is beyond all types known to this
721          * implementation, reply with an invalid message.  Hopefully this will
722          * help when implementing backwards compatibility in the future.
723          */
724         if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) {
725                 vmci_transport_send_invalid_bh(&dst, &src);
726                 err = VMCI_ERROR_INVALID_ARGS;
727                 goto out;
728         }
729
730         /* This handler is privileged when this module is running on the host.
731          * We will get datagram connect requests from all endpoints (even VMs
732          * that are in a restricted context). If we get one from a restricted
733          * context then the destination socket must be trusted.
734          *
735          * NOTE: We access the socket struct without holding the lock here.
736          * This is ok because the field we are interested is never modified
737          * outside of the create and destruct socket functions.
738          */
739         vsk = vsock_sk(sk);
740         if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) {
741                 err = VMCI_ERROR_NO_ACCESS;
742                 goto out;
743         }
744
745         /* We do most everything in a work queue, but let's fast path the
746          * notification of reads and writes to help data transfer performance.
747          * We can only do this if there is no process context code executing
748          * for this socket since that may change the state.
749          */
750         bh_lock_sock(sk);
751
752         if (!sock_owned_by_user(sk)) {
753                 /* The local context ID may be out of date, update it. */
754                 vsk->local_addr.svm_cid = dst.svm_cid;
755
756                 if (sk->sk_state == SS_CONNECTED)
757                         vmci_trans(vsk)->notify_ops->handle_notify_pkt(
758                                         sk, pkt, true, &dst, &src,
759                                         &bh_process_pkt);
760         }
761
762         bh_unlock_sock(sk);
763
764         if (!bh_process_pkt) {
765                 struct vmci_transport_recv_pkt_info *recv_pkt_info;
766
767                 recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC);
768                 if (!recv_pkt_info) {
769                         if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
770                                 pr_err("unable to send reset\n");
771
772                         err = VMCI_ERROR_NO_MEM;
773                         goto out;
774                 }
775
776                 recv_pkt_info->sk = sk;
777                 memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt));
778                 INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work);
779
780                 schedule_work(&recv_pkt_info->work);
781                 /* Clear sk so that the reference count incremented by one of
782                  * the Find functions above is not decremented below.  We need
783                  * that reference count for the packet handler we've scheduled
784                  * to run.
785                  */
786                 sk = NULL;
787         }
788
789 out:
790         if (sk)
791                 sock_put(sk);
792
793         return err;
794 }
795
796 static void vmci_transport_handle_detach(struct sock *sk)
797 {
798         struct vsock_sock *vsk;
799
800         vsk = vsock_sk(sk);
801         if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
802                 sock_set_flag(sk, SOCK_DONE);
803
804                 /* On a detach the peer will not be sending or receiving
805                  * anymore.
806                  */
807                 vsk->peer_shutdown = SHUTDOWN_MASK;
808
809                 /* We should not be sending anymore since the peer won't be
810                  * there to receive, but we can still receive if there is data
811                  * left in our consume queue.
812                  */
813                 if (vsock_stream_has_data(vsk) <= 0) {
814                         if (sk->sk_state == SS_CONNECTING) {
815                                 /* The peer may detach from a queue pair while
816                                  * we are still in the connecting state, i.e.,
817                                  * if the peer VM is killed after attaching to
818                                  * a queue pair, but before we complete the
819                                  * handshake. In that case, we treat the detach
820                                  * event like a reset.
821                                  */
822
823                                 sk->sk_state = SS_UNCONNECTED;
824                                 sk->sk_err = ECONNRESET;
825                                 sk->sk_error_report(sk);
826                                 return;
827                         }
828                         sk->sk_state = SS_UNCONNECTED;
829                 }
830                 sk->sk_state_change(sk);
831         }
832 }
833
834 static void vmci_transport_peer_detach_cb(u32 sub_id,
835                                           const struct vmci_event_data *e_data,
836                                           void *client_data)
837 {
838         struct vmci_transport *trans = client_data;
839         const struct vmci_event_payload_qp *e_payload;
840
841         e_payload = vmci_event_data_const_payload(e_data);
842
843         /* XXX This is lame, we should provide a way to lookup sockets by
844          * qp_handle.
845          */
846         if (vmci_handle_is_invalid(e_payload->handle) ||
847             vmci_handle_is_equal(trans->qp_handle, e_payload->handle))
848                 return;
849
850         /* We don't ask for delayed CBs when we subscribe to this event (we
851          * pass 0 as flags to vmci_event_subscribe()).  VMCI makes no
852          * guarantees in that case about what context we might be running in,
853          * so it could be BH or process, blockable or non-blockable.  So we
854          * need to account for all possible contexts here.
855          */
856         spin_lock_bh(&trans->lock);
857         if (!trans->sk)
858                 goto out;
859
860         /* Apart from here, trans->lock is only grabbed as part of sk destruct,
861          * where trans->sk isn't locked.
862          */
863         bh_lock_sock(trans->sk);
864
865         vmci_transport_handle_detach(trans->sk);
866
867         bh_unlock_sock(trans->sk);
868  out:
869         spin_unlock_bh(&trans->lock);
870 }
871
872 static void vmci_transport_qp_resumed_cb(u32 sub_id,
873                                          const struct vmci_event_data *e_data,
874                                          void *client_data)
875 {
876         vsock_for_each_connected_socket(vmci_transport_handle_detach);
877 }
878
879 static void vmci_transport_recv_pkt_work(struct work_struct *work)
880 {
881         struct vmci_transport_recv_pkt_info *recv_pkt_info;
882         struct vmci_transport_packet *pkt;
883         struct sock *sk;
884
885         recv_pkt_info =
886                 container_of(work, struct vmci_transport_recv_pkt_info, work);
887         sk = recv_pkt_info->sk;
888         pkt = &recv_pkt_info->pkt;
889
890         lock_sock(sk);
891
892         /* The local context ID may be out of date. */
893         vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context;
894
895         switch (sk->sk_state) {
896         case SS_LISTEN:
897                 vmci_transport_recv_listen(sk, pkt);
898                 break;
899         case SS_CONNECTING:
900                 /* Processing of pending connections for servers goes through
901                  * the listening socket, so see vmci_transport_recv_listen()
902                  * for that path.
903                  */
904                 vmci_transport_recv_connecting_client(sk, pkt);
905                 break;
906         case SS_CONNECTED:
907                 vmci_transport_recv_connected(sk, pkt);
908                 break;
909         default:
910                 /* Because this function does not run in the same context as
911                  * vmci_transport_recv_stream_cb it is possible that the
912                  * socket has closed. We need to let the other side know or it
913                  * could be sitting in a connect and hang forever. Send a
914                  * reset to prevent that.
915                  */
916                 vmci_transport_send_reset(sk, pkt);
917                 break;
918         }
919
920         release_sock(sk);
921         kfree(recv_pkt_info);
922         /* Release reference obtained in the stream callback when we fetched
923          * this socket out of the bound or connected list.
924          */
925         sock_put(sk);
926 }
927
928 static int vmci_transport_recv_listen(struct sock *sk,
929                                       struct vmci_transport_packet *pkt)
930 {
931         struct sock *pending;
932         struct vsock_sock *vpending;
933         int err;
934         u64 qp_size;
935         bool old_request = false;
936         bool old_pkt_proto = false;
937
938         err = 0;
939
940         /* Because we are in the listen state, we could be receiving a packet
941          * for ourself or any previous connection requests that we received.
942          * If it's the latter, we try to find a socket in our list of pending
943          * connections and, if we do, call the appropriate handler for the
944          * state that that socket is in.  Otherwise we try to service the
945          * connection request.
946          */
947         pending = vmci_transport_get_pending(sk, pkt);
948         if (pending) {
949                 lock_sock(pending);
950
951                 /* The local context ID may be out of date. */
952                 vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context;
953
954                 switch (pending->sk_state) {
955                 case SS_CONNECTING:
956                         err = vmci_transport_recv_connecting_server(sk,
957                                                                     pending,
958                                                                     pkt);
959                         break;
960                 default:
961                         vmci_transport_send_reset(pending, pkt);
962                         err = -EINVAL;
963                 }
964
965                 if (err < 0)
966                         vsock_remove_pending(sk, pending);
967
968                 release_sock(pending);
969                 vmci_transport_release_pending(pending);
970
971                 return err;
972         }
973
974         /* The listen state only accepts connection requests.  Reply with a
975          * reset unless we received a reset.
976          */
977
978         if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST ||
979               pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) {
980                 vmci_transport_reply_reset(pkt);
981                 return -EINVAL;
982         }
983
984         if (pkt->u.size == 0) {
985                 vmci_transport_reply_reset(pkt);
986                 return -EINVAL;
987         }
988
989         /* If this socket can't accommodate this connection request, we send a
990          * reset.  Otherwise we create and initialize a child socket and reply
991          * with a connection negotiation.
992          */
993         if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) {
994                 vmci_transport_reply_reset(pkt);
995                 return -ECONNREFUSED;
996         }
997
998         pending = __vsock_create(sock_net(sk), NULL, sk, GFP_KERNEL,
999                                  sk->sk_type, 0);
1000         if (!pending) {
1001                 vmci_transport_send_reset(sk, pkt);
1002                 return -ENOMEM;
1003         }
1004
1005         vpending = vsock_sk(pending);
1006
1007         vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context,
1008                         pkt->dst_port);
1009         vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context,
1010                         pkt->src_port);
1011
1012         /* If the proposed size fits within our min/max, accept it. Otherwise
1013          * propose our own size.
1014          */
1015         if (pkt->u.size >= vmci_trans(vpending)->queue_pair_min_size &&
1016             pkt->u.size <= vmci_trans(vpending)->queue_pair_max_size) {
1017                 qp_size = pkt->u.size;
1018         } else {
1019                 qp_size = vmci_trans(vpending)->queue_pair_size;
1020         }
1021
1022         /* Figure out if we are using old or new requests based on the
1023          * overrides pkt types sent by our peer.
1024          */
1025         if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1026                 old_request = old_pkt_proto;
1027         } else {
1028                 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST)
1029                         old_request = true;
1030                 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)
1031                         old_request = false;
1032
1033         }
1034
1035         if (old_request) {
1036                 /* Handle a REQUEST (or override) */
1037                 u16 version = VSOCK_PROTO_INVALID;
1038                 if (vmci_transport_proto_to_notify_struct(
1039                         pending, &version, true))
1040                         err = vmci_transport_send_negotiate(pending, qp_size);
1041                 else
1042                         err = -EINVAL;
1043
1044         } else {
1045                 /* Handle a REQUEST2 (or override) */
1046                 int proto_int = pkt->proto;
1047                 int pos;
1048                 u16 active_proto_version = 0;
1049
1050                 /* The list of possible protocols is the intersection of all
1051                  * protocols the client supports ... plus all the protocols we
1052                  * support.
1053                  */
1054                 proto_int &= vmci_transport_new_proto_supported_versions();
1055
1056                 /* We choose the highest possible protocol version and use that
1057                  * one.
1058                  */
1059                 pos = fls(proto_int);
1060                 if (pos) {
1061                         active_proto_version = (1 << (pos - 1));
1062                         if (vmci_transport_proto_to_notify_struct(
1063                                 pending, &active_proto_version, false))
1064                                 err = vmci_transport_send_negotiate2(pending,
1065                                                         qp_size,
1066                                                         active_proto_version);
1067                         else
1068                                 err = -EINVAL;
1069
1070                 } else {
1071                         err = -EINVAL;
1072                 }
1073         }
1074
1075         if (err < 0) {
1076                 vmci_transport_send_reset(sk, pkt);
1077                 sock_put(pending);
1078                 err = vmci_transport_error_to_vsock_error(err);
1079                 goto out;
1080         }
1081
1082         vsock_add_pending(sk, pending);
1083         sk->sk_ack_backlog++;
1084
1085         pending->sk_state = SS_CONNECTING;
1086         vmci_trans(vpending)->produce_size =
1087                 vmci_trans(vpending)->consume_size = qp_size;
1088         vmci_trans(vpending)->queue_pair_size = qp_size;
1089
1090         vmci_trans(vpending)->notify_ops->process_request(pending);
1091
1092         /* We might never receive another message for this socket and it's not
1093          * connected to any process, so we have to ensure it gets cleaned up
1094          * ourself.  Our delayed work function will take care of that.  Note
1095          * that we do not ever cancel this function since we have few
1096          * guarantees about its state when calling cancel_delayed_work().
1097          * Instead we hold a reference on the socket for that function and make
1098          * it capable of handling cases where it needs to do nothing but
1099          * release that reference.
1100          */
1101         vpending->listener = sk;
1102         sock_hold(sk);
1103         sock_hold(pending);
1104         INIT_DELAYED_WORK(&vpending->dwork, vsock_pending_work);
1105         schedule_delayed_work(&vpending->dwork, HZ);
1106
1107 out:
1108         return err;
1109 }
1110
1111 static int
1112 vmci_transport_recv_connecting_server(struct sock *listener,
1113                                       struct sock *pending,
1114                                       struct vmci_transport_packet *pkt)
1115 {
1116         struct vsock_sock *vpending;
1117         struct vmci_handle handle;
1118         struct vmci_qp *qpair;
1119         bool is_local;
1120         u32 flags;
1121         u32 detach_sub_id;
1122         int err;
1123         int skerr;
1124
1125         vpending = vsock_sk(pending);
1126         detach_sub_id = VMCI_INVALID_ID;
1127
1128         switch (pkt->type) {
1129         case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
1130                 if (vmci_handle_is_invalid(pkt->u.handle)) {
1131                         vmci_transport_send_reset(pending, pkt);
1132                         skerr = EPROTO;
1133                         err = -EINVAL;
1134                         goto destroy;
1135                 }
1136                 break;
1137         default:
1138                 /* Close and cleanup the connection. */
1139                 vmci_transport_send_reset(pending, pkt);
1140                 skerr = EPROTO;
1141                 err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL;
1142                 goto destroy;
1143         }
1144
1145         /* In order to complete the connection we need to attach to the offered
1146          * queue pair and send an attach notification.  We also subscribe to the
1147          * detach event so we know when our peer goes away, and we do that
1148          * before attaching so we don't miss an event.  If all this succeeds,
1149          * we update our state and wakeup anything waiting in accept() for a
1150          * connection.
1151          */
1152
1153         /* We don't care about attach since we ensure the other side has
1154          * attached by specifying the ATTACH_ONLY flag below.
1155          */
1156         err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1157                                    vmci_transport_peer_detach_cb,
1158                                    vmci_trans(vpending), &detach_sub_id);
1159         if (err < VMCI_SUCCESS) {
1160                 vmci_transport_send_reset(pending, pkt);
1161                 err = vmci_transport_error_to_vsock_error(err);
1162                 skerr = -err;
1163                 goto destroy;
1164         }
1165
1166         vmci_trans(vpending)->detach_sub_id = detach_sub_id;
1167
1168         /* Now attach to the queue pair the client created. */
1169         handle = pkt->u.handle;
1170
1171         /* vpending->local_addr always has a context id so we do not need to
1172          * worry about VMADDR_CID_ANY in this case.
1173          */
1174         is_local =
1175             vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid;
1176         flags = VMCI_QPFLAG_ATTACH_ONLY;
1177         flags |= is_local ? VMCI_QPFLAG_LOCAL : 0;
1178
1179         err = vmci_transport_queue_pair_alloc(
1180                                         &qpair,
1181                                         &handle,
1182                                         vmci_trans(vpending)->produce_size,
1183                                         vmci_trans(vpending)->consume_size,
1184                                         pkt->dg.src.context,
1185                                         flags,
1186                                         vmci_transport_is_trusted(
1187                                                 vpending,
1188                                                 vpending->remote_addr.svm_cid));
1189         if (err < 0) {
1190                 vmci_transport_send_reset(pending, pkt);
1191                 skerr = -err;
1192                 goto destroy;
1193         }
1194
1195         vmci_trans(vpending)->qp_handle = handle;
1196         vmci_trans(vpending)->qpair = qpair;
1197
1198         /* When we send the attach message, we must be ready to handle incoming
1199          * control messages on the newly connected socket. So we move the
1200          * pending socket to the connected state before sending the attach
1201          * message. Otherwise, an incoming packet triggered by the attach being
1202          * received by the peer may be processed concurrently with what happens
1203          * below after sending the attach message, and that incoming packet
1204          * will find the listening socket instead of the (currently) pending
1205          * socket. Note that enqueueing the socket increments the reference
1206          * count, so even if a reset comes before the connection is accepted,
1207          * the socket will be valid until it is removed from the queue.
1208          *
1209          * If we fail sending the attach below, we remove the socket from the
1210          * connected list and move the socket to SS_UNCONNECTED before
1211          * releasing the lock, so a pending slow path processing of an incoming
1212          * packet will not see the socket in the connected state in that case.
1213          */
1214         pending->sk_state = SS_CONNECTED;
1215
1216         vsock_insert_connected(vpending);
1217
1218         /* Notify our peer of our attach. */
1219         err = vmci_transport_send_attach(pending, handle);
1220         if (err < 0) {
1221                 vsock_remove_connected(vpending);
1222                 pr_err("Could not send attach\n");
1223                 vmci_transport_send_reset(pending, pkt);
1224                 err = vmci_transport_error_to_vsock_error(err);
1225                 skerr = -err;
1226                 goto destroy;
1227         }
1228
1229         /* We have a connection. Move the now connected socket from the
1230          * listener's pending list to the accept queue so callers of accept()
1231          * can find it.
1232          */
1233         vsock_remove_pending(listener, pending);
1234         vsock_enqueue_accept(listener, pending);
1235
1236         /* Callers of accept() will be be waiting on the listening socket, not
1237          * the pending socket.
1238          */
1239         listener->sk_state_change(listener);
1240
1241         return 0;
1242
1243 destroy:
1244         pending->sk_err = skerr;
1245         pending->sk_state = SS_UNCONNECTED;
1246         /* As long as we drop our reference, all necessary cleanup will handle
1247          * when the cleanup function drops its reference and our destruct
1248          * implementation is called.  Note that since the listen handler will
1249          * remove pending from the pending list upon our failure, the cleanup
1250          * function won't drop the additional reference, which is why we do it
1251          * here.
1252          */
1253         sock_put(pending);
1254
1255         return err;
1256 }
1257
1258 static int
1259 vmci_transport_recv_connecting_client(struct sock *sk,
1260                                       struct vmci_transport_packet *pkt)
1261 {
1262         struct vsock_sock *vsk;
1263         int err;
1264         int skerr;
1265
1266         vsk = vsock_sk(sk);
1267
1268         switch (pkt->type) {
1269         case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
1270                 if (vmci_handle_is_invalid(pkt->u.handle) ||
1271                     !vmci_handle_is_equal(pkt->u.handle,
1272                                           vmci_trans(vsk)->qp_handle)) {
1273                         skerr = EPROTO;
1274                         err = -EINVAL;
1275                         goto destroy;
1276                 }
1277
1278                 /* Signify the socket is connected and wakeup the waiter in
1279                  * connect(). Also place the socket in the connected table for
1280                  * accounting (it can already be found since it's in the bound
1281                  * table).
1282                  */
1283                 sk->sk_state = SS_CONNECTED;
1284                 sk->sk_socket->state = SS_CONNECTED;
1285                 vsock_insert_connected(vsk);
1286                 sk->sk_state_change(sk);
1287
1288                 break;
1289         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
1290         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
1291                 if (pkt->u.size == 0
1292                     || pkt->dg.src.context != vsk->remote_addr.svm_cid
1293                     || pkt->src_port != vsk->remote_addr.svm_port
1294                     || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)
1295                     || vmci_trans(vsk)->qpair
1296                     || vmci_trans(vsk)->produce_size != 0
1297                     || vmci_trans(vsk)->consume_size != 0
1298                     || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
1299                         skerr = EPROTO;
1300                         err = -EINVAL;
1301
1302                         goto destroy;
1303                 }
1304
1305                 err = vmci_transport_recv_connecting_client_negotiate(sk, pkt);
1306                 if (err) {
1307                         skerr = -err;
1308                         goto destroy;
1309                 }
1310
1311                 break;
1312         case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
1313                 err = vmci_transport_recv_connecting_client_invalid(sk, pkt);
1314                 if (err) {
1315                         skerr = -err;
1316                         goto destroy;
1317                 }
1318
1319                 break;
1320         case VMCI_TRANSPORT_PACKET_TYPE_RST:
1321                 /* Older versions of the linux code (WS 6.5 / ESX 4.0) used to
1322                  * continue processing here after they sent an INVALID packet.
1323                  * This meant that we got a RST after the INVALID. We ignore a
1324                  * RST after an INVALID. The common code doesn't send the RST
1325                  * ... so we can hang if an old version of the common code
1326                  * fails between getting a REQUEST and sending an OFFER back.
1327                  * Not much we can do about it... except hope that it doesn't
1328                  * happen.
1329                  */
1330                 if (vsk->ignore_connecting_rst) {
1331                         vsk->ignore_connecting_rst = false;
1332                 } else {
1333                         skerr = ECONNRESET;
1334                         err = 0;
1335                         goto destroy;
1336                 }
1337
1338                 break;
1339         default:
1340                 /* Close and cleanup the connection. */
1341                 skerr = EPROTO;
1342                 err = -EINVAL;
1343                 goto destroy;
1344         }
1345
1346         return 0;
1347
1348 destroy:
1349         vmci_transport_send_reset(sk, pkt);
1350
1351         sk->sk_state = SS_UNCONNECTED;
1352         sk->sk_err = skerr;
1353         sk->sk_error_report(sk);
1354         return err;
1355 }
1356
1357 static int vmci_transport_recv_connecting_client_negotiate(
1358                                         struct sock *sk,
1359                                         struct vmci_transport_packet *pkt)
1360 {
1361         int err;
1362         struct vsock_sock *vsk;
1363         struct vmci_handle handle;
1364         struct vmci_qp *qpair;
1365         u32 detach_sub_id;
1366         bool is_local;
1367         u32 flags;
1368         bool old_proto = true;
1369         bool old_pkt_proto;
1370         u16 version;
1371
1372         vsk = vsock_sk(sk);
1373         handle = VMCI_INVALID_HANDLE;
1374         detach_sub_id = VMCI_INVALID_ID;
1375
1376         /* If we have gotten here then we should be past the point where old
1377          * linux vsock could have sent the bogus rst.
1378          */
1379         vsk->sent_request = false;
1380         vsk->ignore_connecting_rst = false;
1381
1382         /* Verify that we're OK with the proposed queue pair size */
1383         if (pkt->u.size < vmci_trans(vsk)->queue_pair_min_size ||
1384             pkt->u.size > vmci_trans(vsk)->queue_pair_max_size) {
1385                 err = -EINVAL;
1386                 goto destroy;
1387         }
1388
1389         /* At this point we know the CID the peer is using to talk to us. */
1390
1391         if (vsk->local_addr.svm_cid == VMADDR_CID_ANY)
1392                 vsk->local_addr.svm_cid = pkt->dg.dst.context;
1393
1394         /* Setup the notify ops to be the highest supported version that both
1395          * the server and the client support.
1396          */
1397
1398         if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1399                 old_proto = old_pkt_proto;
1400         } else {
1401                 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE)
1402                         old_proto = true;
1403                 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2)
1404                         old_proto = false;
1405
1406         }
1407
1408         if (old_proto)
1409                 version = VSOCK_PROTO_INVALID;
1410         else
1411                 version = pkt->proto;
1412
1413         if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) {
1414                 err = -EINVAL;
1415                 goto destroy;
1416         }
1417
1418         /* Subscribe to detach events first.
1419          *
1420          * XXX We attach once for each queue pair created for now so it is easy
1421          * to find the socket (it's provided), but later we should only
1422          * subscribe once and add a way to lookup sockets by queue pair handle.
1423          */
1424         err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1425                                    vmci_transport_peer_detach_cb,
1426                                    vmci_trans(vsk), &detach_sub_id);
1427         if (err < VMCI_SUCCESS) {
1428                 err = vmci_transport_error_to_vsock_error(err);
1429                 goto destroy;
1430         }
1431
1432         /* Make VMCI select the handle for us. */
1433         handle = VMCI_INVALID_HANDLE;
1434         is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid;
1435         flags = is_local ? VMCI_QPFLAG_LOCAL : 0;
1436
1437         err = vmci_transport_queue_pair_alloc(&qpair,
1438                                               &handle,
1439                                               pkt->u.size,
1440                                               pkt->u.size,
1441                                               vsk->remote_addr.svm_cid,
1442                                               flags,
1443                                               vmci_transport_is_trusted(
1444                                                   vsk,
1445                                                   vsk->
1446                                                   remote_addr.svm_cid));
1447         if (err < 0)
1448                 goto destroy;
1449
1450         err = vmci_transport_send_qp_offer(sk, handle);
1451         if (err < 0) {
1452                 err = vmci_transport_error_to_vsock_error(err);
1453                 goto destroy;
1454         }
1455
1456         vmci_trans(vsk)->qp_handle = handle;
1457         vmci_trans(vsk)->qpair = qpair;
1458
1459         vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size =
1460                 pkt->u.size;
1461
1462         vmci_trans(vsk)->detach_sub_id = detach_sub_id;
1463
1464         vmci_trans(vsk)->notify_ops->process_negotiate(sk);
1465
1466         return 0;
1467
1468 destroy:
1469         if (detach_sub_id != VMCI_INVALID_ID)
1470                 vmci_event_unsubscribe(detach_sub_id);
1471
1472         if (!vmci_handle_is_invalid(handle))
1473                 vmci_qpair_detach(&qpair);
1474
1475         return err;
1476 }
1477
1478 static int
1479 vmci_transport_recv_connecting_client_invalid(struct sock *sk,
1480                                               struct vmci_transport_packet *pkt)
1481 {
1482         int err = 0;
1483         struct vsock_sock *vsk = vsock_sk(sk);
1484
1485         if (vsk->sent_request) {
1486                 vsk->sent_request = false;
1487                 vsk->ignore_connecting_rst = true;
1488
1489                 err = vmci_transport_send_conn_request(
1490                         sk, vmci_trans(vsk)->queue_pair_size);
1491                 if (err < 0)
1492                         err = vmci_transport_error_to_vsock_error(err);
1493                 else
1494                         err = 0;
1495
1496         }
1497
1498         return err;
1499 }
1500
1501 static int vmci_transport_recv_connected(struct sock *sk,
1502                                          struct vmci_transport_packet *pkt)
1503 {
1504         struct vsock_sock *vsk;
1505         bool pkt_processed = false;
1506
1507         /* In cases where we are closing the connection, it's sufficient to
1508          * mark the state change (and maybe error) and wake up any waiting
1509          * threads. Since this is a connected socket, it's owned by a user
1510          * process and will be cleaned up when the failure is passed back on
1511          * the current or next system call.  Our system call implementations
1512          * must therefore check for error and state changes on entry and when
1513          * being awoken.
1514          */
1515         switch (pkt->type) {
1516         case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
1517                 if (pkt->u.mode) {
1518                         vsk = vsock_sk(sk);
1519
1520                         vsk->peer_shutdown |= pkt->u.mode;
1521                         sk->sk_state_change(sk);
1522                 }
1523                 break;
1524
1525         case VMCI_TRANSPORT_PACKET_TYPE_RST:
1526                 vsk = vsock_sk(sk);
1527                 /* It is possible that we sent our peer a message (e.g a
1528                  * WAITING_READ) right before we got notified that the peer had
1529                  * detached. If that happens then we can get a RST pkt back
1530                  * from our peer even though there is data available for us to
1531                  * read. In that case, don't shutdown the socket completely but
1532                  * instead allow the local client to finish reading data off
1533                  * the queuepair. Always treat a RST pkt in connected mode like
1534                  * a clean shutdown.
1535                  */
1536                 sock_set_flag(sk, SOCK_DONE);
1537                 vsk->peer_shutdown = SHUTDOWN_MASK;
1538                 if (vsock_stream_has_data(vsk) <= 0)
1539                         sk->sk_state = SS_DISCONNECTING;
1540
1541                 sk->sk_state_change(sk);
1542                 break;
1543
1544         default:
1545                 vsk = vsock_sk(sk);
1546                 vmci_trans(vsk)->notify_ops->handle_notify_pkt(
1547                                 sk, pkt, false, NULL, NULL,
1548                                 &pkt_processed);
1549                 if (!pkt_processed)
1550                         return -EINVAL;
1551
1552                 break;
1553         }
1554
1555         return 0;
1556 }
1557
1558 static int vmci_transport_socket_init(struct vsock_sock *vsk,
1559                                       struct vsock_sock *psk)
1560 {
1561         vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL);
1562         if (!vsk->trans)
1563                 return -ENOMEM;
1564
1565         vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1566         vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
1567         vmci_trans(vsk)->qpair = NULL;
1568         vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0;
1569         vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID;
1570         vmci_trans(vsk)->notify_ops = NULL;
1571         INIT_LIST_HEAD(&vmci_trans(vsk)->elem);
1572         vmci_trans(vsk)->sk = &vsk->sk;
1573         spin_lock_init(&vmci_trans(vsk)->lock);
1574         if (psk) {
1575                 vmci_trans(vsk)->queue_pair_size =
1576                         vmci_trans(psk)->queue_pair_size;
1577                 vmci_trans(vsk)->queue_pair_min_size =
1578                         vmci_trans(psk)->queue_pair_min_size;
1579                 vmci_trans(vsk)->queue_pair_max_size =
1580                         vmci_trans(psk)->queue_pair_max_size;
1581         } else {
1582                 vmci_trans(vsk)->queue_pair_size =
1583                         VMCI_TRANSPORT_DEFAULT_QP_SIZE;
1584                 vmci_trans(vsk)->queue_pair_min_size =
1585                          VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN;
1586                 vmci_trans(vsk)->queue_pair_max_size =
1587                         VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX;
1588         }
1589
1590         return 0;
1591 }
1592
1593 static void vmci_transport_free_resources(struct list_head *transport_list)
1594 {
1595         while (!list_empty(transport_list)) {
1596                 struct vmci_transport *transport =
1597                     list_first_entry(transport_list, struct vmci_transport,
1598                                      elem);
1599                 list_del(&transport->elem);
1600
1601                 if (transport->detach_sub_id != VMCI_INVALID_ID) {
1602                         vmci_event_unsubscribe(transport->detach_sub_id);
1603                         transport->detach_sub_id = VMCI_INVALID_ID;
1604                 }
1605
1606                 if (!vmci_handle_is_invalid(transport->qp_handle)) {
1607                         vmci_qpair_detach(&transport->qpair);
1608                         transport->qp_handle = VMCI_INVALID_HANDLE;
1609                         transport->produce_size = 0;
1610                         transport->consume_size = 0;
1611                 }
1612
1613                 kfree(transport);
1614         }
1615 }
1616
1617 static void vmci_transport_cleanup(struct work_struct *work)
1618 {
1619         LIST_HEAD(pending);
1620
1621         spin_lock_bh(&vmci_transport_cleanup_lock);
1622         list_replace_init(&vmci_transport_cleanup_list, &pending);
1623         spin_unlock_bh(&vmci_transport_cleanup_lock);
1624         vmci_transport_free_resources(&pending);
1625 }
1626
1627 static void vmci_transport_destruct(struct vsock_sock *vsk)
1628 {
1629         /* Ensure that the detach callback doesn't use the sk/vsk
1630          * we are about to destruct.
1631          */
1632         spin_lock_bh(&vmci_trans(vsk)->lock);
1633         vmci_trans(vsk)->sk = NULL;
1634         spin_unlock_bh(&vmci_trans(vsk)->lock);
1635
1636         if (vmci_trans(vsk)->notify_ops)
1637                 vmci_trans(vsk)->notify_ops->socket_destruct(vsk);
1638
1639         spin_lock_bh(&vmci_transport_cleanup_lock);
1640         list_add(&vmci_trans(vsk)->elem, &vmci_transport_cleanup_list);
1641         spin_unlock_bh(&vmci_transport_cleanup_lock);
1642         schedule_work(&vmci_transport_cleanup_work);
1643
1644         vsk->trans = NULL;
1645 }
1646
1647 static void vmci_transport_release(struct vsock_sock *vsk)
1648 {
1649         if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) {
1650                 vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle);
1651                 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1652         }
1653 }
1654
1655 static int vmci_transport_dgram_bind(struct vsock_sock *vsk,
1656                                      struct sockaddr_vm *addr)
1657 {
1658         u32 port;
1659         u32 flags;
1660         int err;
1661
1662         /* VMCI will select a resource ID for us if we provide
1663          * VMCI_INVALID_ID.
1664          */
1665         port = addr->svm_port == VMADDR_PORT_ANY ?
1666                         VMCI_INVALID_ID : addr->svm_port;
1667
1668         if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE))
1669                 return -EACCES;
1670
1671         flags = addr->svm_cid == VMADDR_CID_ANY ?
1672                                 VMCI_FLAG_ANYCID_DG_HND : 0;
1673
1674         err = vmci_transport_datagram_create_hnd(port, flags,
1675                                                  vmci_transport_recv_dgram_cb,
1676                                                  &vsk->sk,
1677                                                  &vmci_trans(vsk)->dg_handle);
1678         if (err < VMCI_SUCCESS)
1679                 return vmci_transport_error_to_vsock_error(err);
1680         vsock_addr_init(&vsk->local_addr, addr->svm_cid,
1681                         vmci_trans(vsk)->dg_handle.resource);
1682
1683         return 0;
1684 }
1685
1686 static int vmci_transport_dgram_enqueue(
1687         struct vsock_sock *vsk,
1688         struct sockaddr_vm *remote_addr,
1689         struct msghdr *msg,
1690         size_t len)
1691 {
1692         int err;
1693         struct vmci_datagram *dg;
1694
1695         if (len > VMCI_MAX_DG_PAYLOAD_SIZE)
1696                 return -EMSGSIZE;
1697
1698         if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid))
1699                 return -EPERM;
1700
1701         /* Allocate a buffer for the user's message and our packet header. */
1702         dg = kmalloc(len + sizeof(*dg), GFP_KERNEL);
1703         if (!dg)
1704                 return -ENOMEM;
1705
1706         memcpy_from_msg(VMCI_DG_PAYLOAD(dg), msg, len);
1707
1708         dg->dst = vmci_make_handle(remote_addr->svm_cid,
1709                                    remote_addr->svm_port);
1710         dg->src = vmci_make_handle(vsk->local_addr.svm_cid,
1711                                    vsk->local_addr.svm_port);
1712         dg->payload_size = len;
1713
1714         err = vmci_datagram_send(dg);
1715         kfree(dg);
1716         if (err < 0)
1717                 return vmci_transport_error_to_vsock_error(err);
1718
1719         return err - sizeof(*dg);
1720 }
1721
1722 static int vmci_transport_dgram_dequeue(struct vsock_sock *vsk,
1723                                         struct msghdr *msg, size_t len,
1724                                         int flags)
1725 {
1726         int err;
1727         int noblock;
1728         struct vmci_datagram *dg;
1729         size_t payload_len;
1730         struct sk_buff *skb;
1731
1732         noblock = flags & MSG_DONTWAIT;
1733
1734         if (flags & MSG_OOB || flags & MSG_ERRQUEUE)
1735                 return -EOPNOTSUPP;
1736
1737         /* Retrieve the head sk_buff from the socket's receive queue. */
1738         err = 0;
1739         skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err);
1740         if (err)
1741                 return err;
1742
1743         if (!skb)
1744                 return -EAGAIN;
1745
1746         dg = (struct vmci_datagram *)skb->data;
1747         if (!dg)
1748                 /* err is 0, meaning we read zero bytes. */
1749                 goto out;
1750
1751         payload_len = dg->payload_size;
1752         /* Ensure the sk_buff matches the payload size claimed in the packet. */
1753         if (payload_len != skb->len - sizeof(*dg)) {
1754                 err = -EINVAL;
1755                 goto out;
1756         }
1757
1758         if (payload_len > len) {
1759                 payload_len = len;
1760                 msg->msg_flags |= MSG_TRUNC;
1761         }
1762
1763         /* Place the datagram payload in the user's iovec. */
1764         err = skb_copy_datagram_msg(skb, sizeof(*dg), msg, payload_len);
1765         if (err)
1766                 goto out;
1767
1768         if (msg->msg_name) {
1769                 /* Provide the address of the sender. */
1770                 DECLARE_SOCKADDR(struct sockaddr_vm *, vm_addr, msg->msg_name);
1771                 vsock_addr_init(vm_addr, dg->src.context, dg->src.resource);
1772                 msg->msg_namelen = sizeof(*vm_addr);
1773         }
1774         err = payload_len;
1775
1776 out:
1777         skb_free_datagram(&vsk->sk, skb);
1778         return err;
1779 }
1780
1781 static bool vmci_transport_dgram_allow(u32 cid, u32 port)
1782 {
1783         if (cid == VMADDR_CID_HYPERVISOR) {
1784                 /* Registrations of PBRPC Servers do not modify VMX/Hypervisor
1785                  * state and are allowed.
1786                  */
1787                 return port == VMCI_UNITY_PBRPC_REGISTER;
1788         }
1789
1790         return true;
1791 }
1792
1793 static int vmci_transport_connect(struct vsock_sock *vsk)
1794 {
1795         int err;
1796         bool old_pkt_proto = false;
1797         struct sock *sk = &vsk->sk;
1798
1799         if (vmci_transport_old_proto_override(&old_pkt_proto) &&
1800                 old_pkt_proto) {
1801                 err = vmci_transport_send_conn_request(
1802                         sk, vmci_trans(vsk)->queue_pair_size);
1803                 if (err < 0) {
1804                         sk->sk_state = SS_UNCONNECTED;
1805                         return err;
1806                 }
1807         } else {
1808                 int supported_proto_versions =
1809                         vmci_transport_new_proto_supported_versions();
1810                 err = vmci_transport_send_conn_request2(
1811                                 sk, vmci_trans(vsk)->queue_pair_size,
1812                                 supported_proto_versions);
1813                 if (err < 0) {
1814                         sk->sk_state = SS_UNCONNECTED;
1815                         return err;
1816                 }
1817
1818                 vsk->sent_request = true;
1819         }
1820
1821         return err;
1822 }
1823
1824 static ssize_t vmci_transport_stream_dequeue(
1825         struct vsock_sock *vsk,
1826         struct msghdr *msg,
1827         size_t len,
1828         int flags)
1829 {
1830         if (flags & MSG_PEEK)
1831                 return vmci_qpair_peekv(vmci_trans(vsk)->qpair, msg, len, 0);
1832         else
1833                 return vmci_qpair_dequev(vmci_trans(vsk)->qpair, msg, len, 0);
1834 }
1835
1836 static ssize_t vmci_transport_stream_enqueue(
1837         struct vsock_sock *vsk,
1838         struct msghdr *msg,
1839         size_t len)
1840 {
1841         return vmci_qpair_enquev(vmci_trans(vsk)->qpair, msg, len, 0);
1842 }
1843
1844 static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk)
1845 {
1846         return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair);
1847 }
1848
1849 static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk)
1850 {
1851         return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair);
1852 }
1853
1854 static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk)
1855 {
1856         return vmci_trans(vsk)->consume_size;
1857 }
1858
1859 static bool vmci_transport_stream_is_active(struct vsock_sock *vsk)
1860 {
1861         return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle);
1862 }
1863
1864 static u64 vmci_transport_get_buffer_size(struct vsock_sock *vsk)
1865 {
1866         return vmci_trans(vsk)->queue_pair_size;
1867 }
1868
1869 static u64 vmci_transport_get_min_buffer_size(struct vsock_sock *vsk)
1870 {
1871         return vmci_trans(vsk)->queue_pair_min_size;
1872 }
1873
1874 static u64 vmci_transport_get_max_buffer_size(struct vsock_sock *vsk)
1875 {
1876         return vmci_trans(vsk)->queue_pair_max_size;
1877 }
1878
1879 static void vmci_transport_set_buffer_size(struct vsock_sock *vsk, u64 val)
1880 {
1881         if (val < vmci_trans(vsk)->queue_pair_min_size)
1882                 vmci_trans(vsk)->queue_pair_min_size = val;
1883         if (val > vmci_trans(vsk)->queue_pair_max_size)
1884                 vmci_trans(vsk)->queue_pair_max_size = val;
1885         vmci_trans(vsk)->queue_pair_size = val;
1886 }
1887
1888 static void vmci_transport_set_min_buffer_size(struct vsock_sock *vsk,
1889                                                u64 val)
1890 {
1891         if (val > vmci_trans(vsk)->queue_pair_size)
1892                 vmci_trans(vsk)->queue_pair_size = val;
1893         vmci_trans(vsk)->queue_pair_min_size = val;
1894 }
1895
1896 static void vmci_transport_set_max_buffer_size(struct vsock_sock *vsk,
1897                                                u64 val)
1898 {
1899         if (val < vmci_trans(vsk)->queue_pair_size)
1900                 vmci_trans(vsk)->queue_pair_size = val;
1901         vmci_trans(vsk)->queue_pair_max_size = val;
1902 }
1903
1904 static int vmci_transport_notify_poll_in(
1905         struct vsock_sock *vsk,
1906         size_t target,
1907         bool *data_ready_now)
1908 {
1909         return vmci_trans(vsk)->notify_ops->poll_in(
1910                         &vsk->sk, target, data_ready_now);
1911 }
1912
1913 static int vmci_transport_notify_poll_out(
1914         struct vsock_sock *vsk,
1915         size_t target,
1916         bool *space_available_now)
1917 {
1918         return vmci_trans(vsk)->notify_ops->poll_out(
1919                         &vsk->sk, target, space_available_now);
1920 }
1921
1922 static int vmci_transport_notify_recv_init(
1923         struct vsock_sock *vsk,
1924         size_t target,
1925         struct vsock_transport_recv_notify_data *data)
1926 {
1927         return vmci_trans(vsk)->notify_ops->recv_init(
1928                         &vsk->sk, target,
1929                         (struct vmci_transport_recv_notify_data *)data);
1930 }
1931
1932 static int vmci_transport_notify_recv_pre_block(
1933         struct vsock_sock *vsk,
1934         size_t target,
1935         struct vsock_transport_recv_notify_data *data)
1936 {
1937         return vmci_trans(vsk)->notify_ops->recv_pre_block(
1938                         &vsk->sk, target,
1939                         (struct vmci_transport_recv_notify_data *)data);
1940 }
1941
1942 static int vmci_transport_notify_recv_pre_dequeue(
1943         struct vsock_sock *vsk,
1944         size_t target,
1945         struct vsock_transport_recv_notify_data *data)
1946 {
1947         return vmci_trans(vsk)->notify_ops->recv_pre_dequeue(
1948                         &vsk->sk, target,
1949                         (struct vmci_transport_recv_notify_data *)data);
1950 }
1951
1952 static int vmci_transport_notify_recv_post_dequeue(
1953         struct vsock_sock *vsk,
1954         size_t target,
1955         ssize_t copied,
1956         bool data_read,
1957         struct vsock_transport_recv_notify_data *data)
1958 {
1959         return vmci_trans(vsk)->notify_ops->recv_post_dequeue(
1960                         &vsk->sk, target, copied, data_read,
1961                         (struct vmci_transport_recv_notify_data *)data);
1962 }
1963
1964 static int vmci_transport_notify_send_init(
1965         struct vsock_sock *vsk,
1966         struct vsock_transport_send_notify_data *data)
1967 {
1968         return vmci_trans(vsk)->notify_ops->send_init(
1969                         &vsk->sk,
1970                         (struct vmci_transport_send_notify_data *)data);
1971 }
1972
1973 static int vmci_transport_notify_send_pre_block(
1974         struct vsock_sock *vsk,
1975         struct vsock_transport_send_notify_data *data)
1976 {
1977         return vmci_trans(vsk)->notify_ops->send_pre_block(
1978                         &vsk->sk,
1979                         (struct vmci_transport_send_notify_data *)data);
1980 }
1981
1982 static int vmci_transport_notify_send_pre_enqueue(
1983         struct vsock_sock *vsk,
1984         struct vsock_transport_send_notify_data *data)
1985 {
1986         return vmci_trans(vsk)->notify_ops->send_pre_enqueue(
1987                         &vsk->sk,
1988                         (struct vmci_transport_send_notify_data *)data);
1989 }
1990
1991 static int vmci_transport_notify_send_post_enqueue(
1992         struct vsock_sock *vsk,
1993         ssize_t written,
1994         struct vsock_transport_send_notify_data *data)
1995 {
1996         return vmci_trans(vsk)->notify_ops->send_post_enqueue(
1997                         &vsk->sk, written,
1998                         (struct vmci_transport_send_notify_data *)data);
1999 }
2000
2001 static bool vmci_transport_old_proto_override(bool *old_pkt_proto)
2002 {
2003         if (PROTOCOL_OVERRIDE != -1) {
2004                 if (PROTOCOL_OVERRIDE == 0)
2005                         *old_pkt_proto = true;
2006                 else
2007                         *old_pkt_proto = false;
2008
2009                 pr_info("Proto override in use\n");
2010                 return true;
2011         }
2012
2013         return false;
2014 }
2015
2016 static bool vmci_transport_proto_to_notify_struct(struct sock *sk,
2017                                                   u16 *proto,
2018                                                   bool old_pkt_proto)
2019 {
2020         struct vsock_sock *vsk = vsock_sk(sk);
2021
2022         if (old_pkt_proto) {
2023                 if (*proto != VSOCK_PROTO_INVALID) {
2024                         pr_err("Can't set both an old and new protocol\n");
2025                         return false;
2026                 }
2027                 vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops;
2028                 goto exit;
2029         }
2030
2031         switch (*proto) {
2032         case VSOCK_PROTO_PKT_ON_NOTIFY:
2033                 vmci_trans(vsk)->notify_ops =
2034                         &vmci_transport_notify_pkt_q_state_ops;
2035                 break;
2036         default:
2037                 pr_err("Unknown notify protocol version\n");
2038                 return false;
2039         }
2040
2041 exit:
2042         vmci_trans(vsk)->notify_ops->socket_init(sk);
2043         return true;
2044 }
2045
2046 static u16 vmci_transport_new_proto_supported_versions(void)
2047 {
2048         if (PROTOCOL_OVERRIDE != -1)
2049                 return PROTOCOL_OVERRIDE;
2050
2051         return VSOCK_PROTO_ALL_SUPPORTED;
2052 }
2053
2054 static u32 vmci_transport_get_local_cid(void)
2055 {
2056         return vmci_get_context_id();
2057 }
2058
2059 static struct vsock_transport vmci_transport = {
2060         .init = vmci_transport_socket_init,
2061         .destruct = vmci_transport_destruct,
2062         .release = vmci_transport_release,
2063         .connect = vmci_transport_connect,
2064         .dgram_bind = vmci_transport_dgram_bind,
2065         .dgram_dequeue = vmci_transport_dgram_dequeue,
2066         .dgram_enqueue = vmci_transport_dgram_enqueue,
2067         .dgram_allow = vmci_transport_dgram_allow,
2068         .stream_dequeue = vmci_transport_stream_dequeue,
2069         .stream_enqueue = vmci_transport_stream_enqueue,
2070         .stream_has_data = vmci_transport_stream_has_data,
2071         .stream_has_space = vmci_transport_stream_has_space,
2072         .stream_rcvhiwat = vmci_transport_stream_rcvhiwat,
2073         .stream_is_active = vmci_transport_stream_is_active,
2074         .stream_allow = vmci_transport_stream_allow,
2075         .notify_poll_in = vmci_transport_notify_poll_in,
2076         .notify_poll_out = vmci_transport_notify_poll_out,
2077         .notify_recv_init = vmci_transport_notify_recv_init,
2078         .notify_recv_pre_block = vmci_transport_notify_recv_pre_block,
2079         .notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue,
2080         .notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue,
2081         .notify_send_init = vmci_transport_notify_send_init,
2082         .notify_send_pre_block = vmci_transport_notify_send_pre_block,
2083         .notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue,
2084         .notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue,
2085         .shutdown = vmci_transport_shutdown,
2086         .set_buffer_size = vmci_transport_set_buffer_size,
2087         .set_min_buffer_size = vmci_transport_set_min_buffer_size,
2088         .set_max_buffer_size = vmci_transport_set_max_buffer_size,
2089         .get_buffer_size = vmci_transport_get_buffer_size,
2090         .get_min_buffer_size = vmci_transport_get_min_buffer_size,
2091         .get_max_buffer_size = vmci_transport_get_max_buffer_size,
2092         .get_local_cid = vmci_transport_get_local_cid,
2093 };
2094
2095 static int __init vmci_transport_init(void)
2096 {
2097         int err;
2098
2099         /* Create the datagram handle that we will use to send and receive all
2100          * VSocket control messages for this context.
2101          */
2102         err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID,
2103                                                  VMCI_FLAG_ANYCID_DG_HND,
2104                                                  vmci_transport_recv_stream_cb,
2105                                                  NULL,
2106                                                  &vmci_transport_stream_handle);
2107         if (err < VMCI_SUCCESS) {
2108                 pr_err("Unable to create datagram handle. (%d)\n", err);
2109                 return vmci_transport_error_to_vsock_error(err);
2110         }
2111
2112         err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED,
2113                                    vmci_transport_qp_resumed_cb,
2114                                    NULL, &vmci_transport_qp_resumed_sub_id);
2115         if (err < VMCI_SUCCESS) {
2116                 pr_err("Unable to subscribe to resumed event. (%d)\n", err);
2117                 err = vmci_transport_error_to_vsock_error(err);
2118                 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2119                 goto err_destroy_stream_handle;
2120         }
2121
2122         err = vsock_core_init(&vmci_transport);
2123         if (err < 0)
2124                 goto err_unsubscribe;
2125
2126         return 0;
2127
2128 err_unsubscribe:
2129         vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2130 err_destroy_stream_handle:
2131         vmci_datagram_destroy_handle(vmci_transport_stream_handle);
2132         return err;
2133 }
2134 module_init(vmci_transport_init);
2135
2136 static void __exit vmci_transport_exit(void)
2137 {
2138         cancel_work_sync(&vmci_transport_cleanup_work);
2139         vmci_transport_free_resources(&vmci_transport_cleanup_list);
2140
2141         if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) {
2142                 if (vmci_datagram_destroy_handle(
2143                         vmci_transport_stream_handle) != VMCI_SUCCESS)
2144                         pr_err("Couldn't destroy datagram handle\n");
2145                 vmci_transport_stream_handle = VMCI_INVALID_HANDLE;
2146         }
2147
2148         if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) {
2149                 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2150                 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2151         }
2152
2153         vsock_core_exit();
2154 }
2155 module_exit(vmci_transport_exit);
2156
2157 MODULE_AUTHOR("VMware, Inc.");
2158 MODULE_DESCRIPTION("VMCI transport for Virtual Sockets");
2159 MODULE_VERSION("1.0.2.0-k");
2160 MODULE_LICENSE("GPL v2");
2161 MODULE_ALIAS("vmware_vsock");
2162 MODULE_ALIAS_NETPROTO(PF_VSOCK);