]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - tools/perf/builtin-sched.c
Merge branch 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / tools / perf / builtin-sched.c
1 #include "builtin.h"
2 #include "perf.h"
3
4 #include "util/util.h"
5 #include "util/evlist.h"
6 #include "util/cache.h"
7 #include "util/evsel.h"
8 #include "util/symbol.h"
9 #include "util/thread.h"
10 #include "util/header.h"
11 #include "util/session.h"
12 #include "util/tool.h"
13 #include "util/cloexec.h"
14
15 #include "util/parse-options.h"
16 #include "util/trace-event.h"
17
18 #include "util/debug.h"
19
20 #include <sys/prctl.h>
21 #include <sys/resource.h>
22
23 #include <semaphore.h>
24 #include <pthread.h>
25 #include <math.h>
26 #include <api/fs/fs.h>
27
28 #define PR_SET_NAME             15               /* Set process name */
29 #define MAX_CPUS                4096
30 #define COMM_LEN                20
31 #define SYM_LEN                 129
32 #define MAX_PID                 1024000
33
34 struct sched_atom;
35
36 struct task_desc {
37         unsigned long           nr;
38         unsigned long           pid;
39         char                    comm[COMM_LEN];
40
41         unsigned long           nr_events;
42         unsigned long           curr_event;
43         struct sched_atom       **atoms;
44
45         pthread_t               thread;
46         sem_t                   sleep_sem;
47
48         sem_t                   ready_for_work;
49         sem_t                   work_done_sem;
50
51         u64                     cpu_usage;
52 };
53
54 enum sched_event_type {
55         SCHED_EVENT_RUN,
56         SCHED_EVENT_SLEEP,
57         SCHED_EVENT_WAKEUP,
58         SCHED_EVENT_MIGRATION,
59 };
60
61 struct sched_atom {
62         enum sched_event_type   type;
63         int                     specific_wait;
64         u64                     timestamp;
65         u64                     duration;
66         unsigned long           nr;
67         sem_t                   *wait_sem;
68         struct task_desc        *wakee;
69 };
70
71 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
72
73 enum thread_state {
74         THREAD_SLEEPING = 0,
75         THREAD_WAIT_CPU,
76         THREAD_SCHED_IN,
77         THREAD_IGNORE
78 };
79
80 struct work_atom {
81         struct list_head        list;
82         enum thread_state       state;
83         u64                     sched_out_time;
84         u64                     wake_up_time;
85         u64                     sched_in_time;
86         u64                     runtime;
87 };
88
89 struct work_atoms {
90         struct list_head        work_list;
91         struct thread           *thread;
92         struct rb_node          node;
93         u64                     max_lat;
94         u64                     max_lat_at;
95         u64                     total_lat;
96         u64                     nb_atoms;
97         u64                     total_runtime;
98         int                     num_merged;
99 };
100
101 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
102
103 struct perf_sched;
104
105 struct trace_sched_handler {
106         int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
107                             struct perf_sample *sample, struct machine *machine);
108
109         int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
110                              struct perf_sample *sample, struct machine *machine);
111
112         int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
113                             struct perf_sample *sample, struct machine *machine);
114
115         /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
116         int (*fork_event)(struct perf_sched *sched, union perf_event *event,
117                           struct machine *machine);
118
119         int (*migrate_task_event)(struct perf_sched *sched,
120                                   struct perf_evsel *evsel,
121                                   struct perf_sample *sample,
122                                   struct machine *machine);
123 };
124
125 struct perf_sched {
126         struct perf_tool tool;
127         const char       *sort_order;
128         unsigned long    nr_tasks;
129         struct task_desc **pid_to_task;
130         struct task_desc **tasks;
131         const struct trace_sched_handler *tp_handler;
132         pthread_mutex_t  start_work_mutex;
133         pthread_mutex_t  work_done_wait_mutex;
134         int              profile_cpu;
135 /*
136  * Track the current task - that way we can know whether there's any
137  * weird events, such as a task being switched away that is not current.
138  */
139         int              max_cpu;
140         u32              curr_pid[MAX_CPUS];
141         struct thread    *curr_thread[MAX_CPUS];
142         char             next_shortname1;
143         char             next_shortname2;
144         unsigned int     replay_repeat;
145         unsigned long    nr_run_events;
146         unsigned long    nr_sleep_events;
147         unsigned long    nr_wakeup_events;
148         unsigned long    nr_sleep_corrections;
149         unsigned long    nr_run_events_optimized;
150         unsigned long    targetless_wakeups;
151         unsigned long    multitarget_wakeups;
152         unsigned long    nr_runs;
153         unsigned long    nr_timestamps;
154         unsigned long    nr_unordered_timestamps;
155         unsigned long    nr_context_switch_bugs;
156         unsigned long    nr_events;
157         unsigned long    nr_lost_chunks;
158         unsigned long    nr_lost_events;
159         u64              run_measurement_overhead;
160         u64              sleep_measurement_overhead;
161         u64              start_time;
162         u64              cpu_usage;
163         u64              runavg_cpu_usage;
164         u64              parent_cpu_usage;
165         u64              runavg_parent_cpu_usage;
166         u64              sum_runtime;
167         u64              sum_fluct;
168         u64              run_avg;
169         u64              all_runtime;
170         u64              all_count;
171         u64              cpu_last_switched[MAX_CPUS];
172         struct rb_root   atom_root, sorted_atom_root, merged_atom_root;
173         struct list_head sort_list, cmp_pid;
174         bool force;
175         bool skip_merge;
176 };
177
178 static u64 get_nsecs(void)
179 {
180         struct timespec ts;
181
182         clock_gettime(CLOCK_MONOTONIC, &ts);
183
184         return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
185 }
186
187 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
188 {
189         u64 T0 = get_nsecs(), T1;
190
191         do {
192                 T1 = get_nsecs();
193         } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
194 }
195
196 static void sleep_nsecs(u64 nsecs)
197 {
198         struct timespec ts;
199
200         ts.tv_nsec = nsecs % 999999999;
201         ts.tv_sec = nsecs / 999999999;
202
203         nanosleep(&ts, NULL);
204 }
205
206 static void calibrate_run_measurement_overhead(struct perf_sched *sched)
207 {
208         u64 T0, T1, delta, min_delta = 1000000000ULL;
209         int i;
210
211         for (i = 0; i < 10; i++) {
212                 T0 = get_nsecs();
213                 burn_nsecs(sched, 0);
214                 T1 = get_nsecs();
215                 delta = T1-T0;
216                 min_delta = min(min_delta, delta);
217         }
218         sched->run_measurement_overhead = min_delta;
219
220         printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
221 }
222
223 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
224 {
225         u64 T0, T1, delta, min_delta = 1000000000ULL;
226         int i;
227
228         for (i = 0; i < 10; i++) {
229                 T0 = get_nsecs();
230                 sleep_nsecs(10000);
231                 T1 = get_nsecs();
232                 delta = T1-T0;
233                 min_delta = min(min_delta, delta);
234         }
235         min_delta -= 10000;
236         sched->sleep_measurement_overhead = min_delta;
237
238         printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
239 }
240
241 static struct sched_atom *
242 get_new_event(struct task_desc *task, u64 timestamp)
243 {
244         struct sched_atom *event = zalloc(sizeof(*event));
245         unsigned long idx = task->nr_events;
246         size_t size;
247
248         event->timestamp = timestamp;
249         event->nr = idx;
250
251         task->nr_events++;
252         size = sizeof(struct sched_atom *) * task->nr_events;
253         task->atoms = realloc(task->atoms, size);
254         BUG_ON(!task->atoms);
255
256         task->atoms[idx] = event;
257
258         return event;
259 }
260
261 static struct sched_atom *last_event(struct task_desc *task)
262 {
263         if (!task->nr_events)
264                 return NULL;
265
266         return task->atoms[task->nr_events - 1];
267 }
268
269 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
270                                 u64 timestamp, u64 duration)
271 {
272         struct sched_atom *event, *curr_event = last_event(task);
273
274         /*
275          * optimize an existing RUN event by merging this one
276          * to it:
277          */
278         if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
279                 sched->nr_run_events_optimized++;
280                 curr_event->duration += duration;
281                 return;
282         }
283
284         event = get_new_event(task, timestamp);
285
286         event->type = SCHED_EVENT_RUN;
287         event->duration = duration;
288
289         sched->nr_run_events++;
290 }
291
292 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
293                                    u64 timestamp, struct task_desc *wakee)
294 {
295         struct sched_atom *event, *wakee_event;
296
297         event = get_new_event(task, timestamp);
298         event->type = SCHED_EVENT_WAKEUP;
299         event->wakee = wakee;
300
301         wakee_event = last_event(wakee);
302         if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
303                 sched->targetless_wakeups++;
304                 return;
305         }
306         if (wakee_event->wait_sem) {
307                 sched->multitarget_wakeups++;
308                 return;
309         }
310
311         wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
312         sem_init(wakee_event->wait_sem, 0, 0);
313         wakee_event->specific_wait = 1;
314         event->wait_sem = wakee_event->wait_sem;
315
316         sched->nr_wakeup_events++;
317 }
318
319 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
320                                   u64 timestamp, u64 task_state __maybe_unused)
321 {
322         struct sched_atom *event = get_new_event(task, timestamp);
323
324         event->type = SCHED_EVENT_SLEEP;
325
326         sched->nr_sleep_events++;
327 }
328
329 static struct task_desc *register_pid(struct perf_sched *sched,
330                                       unsigned long pid, const char *comm)
331 {
332         struct task_desc *task;
333         static int pid_max;
334
335         if (sched->pid_to_task == NULL) {
336                 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
337                         pid_max = MAX_PID;
338                 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
339         }
340         if (pid >= (unsigned long)pid_max) {
341                 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
342                         sizeof(struct task_desc *))) == NULL);
343                 while (pid >= (unsigned long)pid_max)
344                         sched->pid_to_task[pid_max++] = NULL;
345         }
346
347         task = sched->pid_to_task[pid];
348
349         if (task)
350                 return task;
351
352         task = zalloc(sizeof(*task));
353         task->pid = pid;
354         task->nr = sched->nr_tasks;
355         strcpy(task->comm, comm);
356         /*
357          * every task starts in sleeping state - this gets ignored
358          * if there's no wakeup pointing to this sleep state:
359          */
360         add_sched_event_sleep(sched, task, 0, 0);
361
362         sched->pid_to_task[pid] = task;
363         sched->nr_tasks++;
364         sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
365         BUG_ON(!sched->tasks);
366         sched->tasks[task->nr] = task;
367
368         if (verbose)
369                 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
370
371         return task;
372 }
373
374
375 static void print_task_traces(struct perf_sched *sched)
376 {
377         struct task_desc *task;
378         unsigned long i;
379
380         for (i = 0; i < sched->nr_tasks; i++) {
381                 task = sched->tasks[i];
382                 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
383                         task->nr, task->comm, task->pid, task->nr_events);
384         }
385 }
386
387 static void add_cross_task_wakeups(struct perf_sched *sched)
388 {
389         struct task_desc *task1, *task2;
390         unsigned long i, j;
391
392         for (i = 0; i < sched->nr_tasks; i++) {
393                 task1 = sched->tasks[i];
394                 j = i + 1;
395                 if (j == sched->nr_tasks)
396                         j = 0;
397                 task2 = sched->tasks[j];
398                 add_sched_event_wakeup(sched, task1, 0, task2);
399         }
400 }
401
402 static void perf_sched__process_event(struct perf_sched *sched,
403                                       struct sched_atom *atom)
404 {
405         int ret = 0;
406
407         switch (atom->type) {
408                 case SCHED_EVENT_RUN:
409                         burn_nsecs(sched, atom->duration);
410                         break;
411                 case SCHED_EVENT_SLEEP:
412                         if (atom->wait_sem)
413                                 ret = sem_wait(atom->wait_sem);
414                         BUG_ON(ret);
415                         break;
416                 case SCHED_EVENT_WAKEUP:
417                         if (atom->wait_sem)
418                                 ret = sem_post(atom->wait_sem);
419                         BUG_ON(ret);
420                         break;
421                 case SCHED_EVENT_MIGRATION:
422                         break;
423                 default:
424                         BUG_ON(1);
425         }
426 }
427
428 static u64 get_cpu_usage_nsec_parent(void)
429 {
430         struct rusage ru;
431         u64 sum;
432         int err;
433
434         err = getrusage(RUSAGE_SELF, &ru);
435         BUG_ON(err);
436
437         sum =  ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
438         sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
439
440         return sum;
441 }
442
443 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
444 {
445         struct perf_event_attr attr;
446         char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
447         int fd;
448         struct rlimit limit;
449         bool need_privilege = false;
450
451         memset(&attr, 0, sizeof(attr));
452
453         attr.type = PERF_TYPE_SOFTWARE;
454         attr.config = PERF_COUNT_SW_TASK_CLOCK;
455
456 force_again:
457         fd = sys_perf_event_open(&attr, 0, -1, -1,
458                                  perf_event_open_cloexec_flag());
459
460         if (fd < 0) {
461                 if (errno == EMFILE) {
462                         if (sched->force) {
463                                 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
464                                 limit.rlim_cur += sched->nr_tasks - cur_task;
465                                 if (limit.rlim_cur > limit.rlim_max) {
466                                         limit.rlim_max = limit.rlim_cur;
467                                         need_privilege = true;
468                                 }
469                                 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
470                                         if (need_privilege && errno == EPERM)
471                                                 strcpy(info, "Need privilege\n");
472                                 } else
473                                         goto force_again;
474                         } else
475                                 strcpy(info, "Have a try with -f option\n");
476                 }
477                 pr_err("Error: sys_perf_event_open() syscall returned "
478                        "with %d (%s)\n%s", fd,
479                        strerror_r(errno, sbuf, sizeof(sbuf)), info);
480                 exit(EXIT_FAILURE);
481         }
482         return fd;
483 }
484
485 static u64 get_cpu_usage_nsec_self(int fd)
486 {
487         u64 runtime;
488         int ret;
489
490         ret = read(fd, &runtime, sizeof(runtime));
491         BUG_ON(ret != sizeof(runtime));
492
493         return runtime;
494 }
495
496 struct sched_thread_parms {
497         struct task_desc  *task;
498         struct perf_sched *sched;
499         int fd;
500 };
501
502 static void *thread_func(void *ctx)
503 {
504         struct sched_thread_parms *parms = ctx;
505         struct task_desc *this_task = parms->task;
506         struct perf_sched *sched = parms->sched;
507         u64 cpu_usage_0, cpu_usage_1;
508         unsigned long i, ret;
509         char comm2[22];
510         int fd = parms->fd;
511
512         zfree(&parms);
513
514         sprintf(comm2, ":%s", this_task->comm);
515         prctl(PR_SET_NAME, comm2);
516         if (fd < 0)
517                 return NULL;
518 again:
519         ret = sem_post(&this_task->ready_for_work);
520         BUG_ON(ret);
521         ret = pthread_mutex_lock(&sched->start_work_mutex);
522         BUG_ON(ret);
523         ret = pthread_mutex_unlock(&sched->start_work_mutex);
524         BUG_ON(ret);
525
526         cpu_usage_0 = get_cpu_usage_nsec_self(fd);
527
528         for (i = 0; i < this_task->nr_events; i++) {
529                 this_task->curr_event = i;
530                 perf_sched__process_event(sched, this_task->atoms[i]);
531         }
532
533         cpu_usage_1 = get_cpu_usage_nsec_self(fd);
534         this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
535         ret = sem_post(&this_task->work_done_sem);
536         BUG_ON(ret);
537
538         ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
539         BUG_ON(ret);
540         ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
541         BUG_ON(ret);
542
543         goto again;
544 }
545
546 static void create_tasks(struct perf_sched *sched)
547 {
548         struct task_desc *task;
549         pthread_attr_t attr;
550         unsigned long i;
551         int err;
552
553         err = pthread_attr_init(&attr);
554         BUG_ON(err);
555         err = pthread_attr_setstacksize(&attr,
556                         (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
557         BUG_ON(err);
558         err = pthread_mutex_lock(&sched->start_work_mutex);
559         BUG_ON(err);
560         err = pthread_mutex_lock(&sched->work_done_wait_mutex);
561         BUG_ON(err);
562         for (i = 0; i < sched->nr_tasks; i++) {
563                 struct sched_thread_parms *parms = malloc(sizeof(*parms));
564                 BUG_ON(parms == NULL);
565                 parms->task = task = sched->tasks[i];
566                 parms->sched = sched;
567                 parms->fd = self_open_counters(sched, i);
568                 sem_init(&task->sleep_sem, 0, 0);
569                 sem_init(&task->ready_for_work, 0, 0);
570                 sem_init(&task->work_done_sem, 0, 0);
571                 task->curr_event = 0;
572                 err = pthread_create(&task->thread, &attr, thread_func, parms);
573                 BUG_ON(err);
574         }
575 }
576
577 static void wait_for_tasks(struct perf_sched *sched)
578 {
579         u64 cpu_usage_0, cpu_usage_1;
580         struct task_desc *task;
581         unsigned long i, ret;
582
583         sched->start_time = get_nsecs();
584         sched->cpu_usage = 0;
585         pthread_mutex_unlock(&sched->work_done_wait_mutex);
586
587         for (i = 0; i < sched->nr_tasks; i++) {
588                 task = sched->tasks[i];
589                 ret = sem_wait(&task->ready_for_work);
590                 BUG_ON(ret);
591                 sem_init(&task->ready_for_work, 0, 0);
592         }
593         ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
594         BUG_ON(ret);
595
596         cpu_usage_0 = get_cpu_usage_nsec_parent();
597
598         pthread_mutex_unlock(&sched->start_work_mutex);
599
600         for (i = 0; i < sched->nr_tasks; i++) {
601                 task = sched->tasks[i];
602                 ret = sem_wait(&task->work_done_sem);
603                 BUG_ON(ret);
604                 sem_init(&task->work_done_sem, 0, 0);
605                 sched->cpu_usage += task->cpu_usage;
606                 task->cpu_usage = 0;
607         }
608
609         cpu_usage_1 = get_cpu_usage_nsec_parent();
610         if (!sched->runavg_cpu_usage)
611                 sched->runavg_cpu_usage = sched->cpu_usage;
612         sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
613
614         sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
615         if (!sched->runavg_parent_cpu_usage)
616                 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
617         sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
618                                          sched->parent_cpu_usage)/sched->replay_repeat;
619
620         ret = pthread_mutex_lock(&sched->start_work_mutex);
621         BUG_ON(ret);
622
623         for (i = 0; i < sched->nr_tasks; i++) {
624                 task = sched->tasks[i];
625                 sem_init(&task->sleep_sem, 0, 0);
626                 task->curr_event = 0;
627         }
628 }
629
630 static void run_one_test(struct perf_sched *sched)
631 {
632         u64 T0, T1, delta, avg_delta, fluct;
633
634         T0 = get_nsecs();
635         wait_for_tasks(sched);
636         T1 = get_nsecs();
637
638         delta = T1 - T0;
639         sched->sum_runtime += delta;
640         sched->nr_runs++;
641
642         avg_delta = sched->sum_runtime / sched->nr_runs;
643         if (delta < avg_delta)
644                 fluct = avg_delta - delta;
645         else
646                 fluct = delta - avg_delta;
647         sched->sum_fluct += fluct;
648         if (!sched->run_avg)
649                 sched->run_avg = delta;
650         sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
651
652         printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / 1000000.0);
653
654         printf("ravg: %0.2f, ", (double)sched->run_avg / 1e6);
655
656         printf("cpu: %0.2f / %0.2f",
657                 (double)sched->cpu_usage / 1e6, (double)sched->runavg_cpu_usage / 1e6);
658
659 #if 0
660         /*
661          * rusage statistics done by the parent, these are less
662          * accurate than the sched->sum_exec_runtime based statistics:
663          */
664         printf(" [%0.2f / %0.2f]",
665                 (double)sched->parent_cpu_usage/1e6,
666                 (double)sched->runavg_parent_cpu_usage/1e6);
667 #endif
668
669         printf("\n");
670
671         if (sched->nr_sleep_corrections)
672                 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
673         sched->nr_sleep_corrections = 0;
674 }
675
676 static void test_calibrations(struct perf_sched *sched)
677 {
678         u64 T0, T1;
679
680         T0 = get_nsecs();
681         burn_nsecs(sched, 1e6);
682         T1 = get_nsecs();
683
684         printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
685
686         T0 = get_nsecs();
687         sleep_nsecs(1e6);
688         T1 = get_nsecs();
689
690         printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
691 }
692
693 static int
694 replay_wakeup_event(struct perf_sched *sched,
695                     struct perf_evsel *evsel, struct perf_sample *sample,
696                     struct machine *machine __maybe_unused)
697 {
698         const char *comm = perf_evsel__strval(evsel, sample, "comm");
699         const u32 pid    = perf_evsel__intval(evsel, sample, "pid");
700         struct task_desc *waker, *wakee;
701
702         if (verbose) {
703                 printf("sched_wakeup event %p\n", evsel);
704
705                 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
706         }
707
708         waker = register_pid(sched, sample->tid, "<unknown>");
709         wakee = register_pid(sched, pid, comm);
710
711         add_sched_event_wakeup(sched, waker, sample->time, wakee);
712         return 0;
713 }
714
715 static int replay_switch_event(struct perf_sched *sched,
716                                struct perf_evsel *evsel,
717                                struct perf_sample *sample,
718                                struct machine *machine __maybe_unused)
719 {
720         const char *prev_comm  = perf_evsel__strval(evsel, sample, "prev_comm"),
721                    *next_comm  = perf_evsel__strval(evsel, sample, "next_comm");
722         const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
723                   next_pid = perf_evsel__intval(evsel, sample, "next_pid");
724         const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
725         struct task_desc *prev, __maybe_unused *next;
726         u64 timestamp0, timestamp = sample->time;
727         int cpu = sample->cpu;
728         s64 delta;
729
730         if (verbose)
731                 printf("sched_switch event %p\n", evsel);
732
733         if (cpu >= MAX_CPUS || cpu < 0)
734                 return 0;
735
736         timestamp0 = sched->cpu_last_switched[cpu];
737         if (timestamp0)
738                 delta = timestamp - timestamp0;
739         else
740                 delta = 0;
741
742         if (delta < 0) {
743                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
744                 return -1;
745         }
746
747         pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
748                  prev_comm, prev_pid, next_comm, next_pid, delta);
749
750         prev = register_pid(sched, prev_pid, prev_comm);
751         next = register_pid(sched, next_pid, next_comm);
752
753         sched->cpu_last_switched[cpu] = timestamp;
754
755         add_sched_event_run(sched, prev, timestamp, delta);
756         add_sched_event_sleep(sched, prev, timestamp, prev_state);
757
758         return 0;
759 }
760
761 static int replay_fork_event(struct perf_sched *sched,
762                              union perf_event *event,
763                              struct machine *machine)
764 {
765         struct thread *child, *parent;
766
767         child = machine__findnew_thread(machine, event->fork.pid,
768                                         event->fork.tid);
769         parent = machine__findnew_thread(machine, event->fork.ppid,
770                                          event->fork.ptid);
771
772         if (child == NULL || parent == NULL) {
773                 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
774                                  child, parent);
775                 goto out_put;
776         }
777
778         if (verbose) {
779                 printf("fork event\n");
780                 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
781                 printf("...  child: %s/%d\n", thread__comm_str(child), child->tid);
782         }
783
784         register_pid(sched, parent->tid, thread__comm_str(parent));
785         register_pid(sched, child->tid, thread__comm_str(child));
786 out_put:
787         thread__put(child);
788         thread__put(parent);
789         return 0;
790 }
791
792 struct sort_dimension {
793         const char              *name;
794         sort_fn_t               cmp;
795         struct list_head        list;
796 };
797
798 static int
799 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
800 {
801         struct sort_dimension *sort;
802         int ret = 0;
803
804         BUG_ON(list_empty(list));
805
806         list_for_each_entry(sort, list, list) {
807                 ret = sort->cmp(l, r);
808                 if (ret)
809                         return ret;
810         }
811
812         return ret;
813 }
814
815 static struct work_atoms *
816 thread_atoms_search(struct rb_root *root, struct thread *thread,
817                          struct list_head *sort_list)
818 {
819         struct rb_node *node = root->rb_node;
820         struct work_atoms key = { .thread = thread };
821
822         while (node) {
823                 struct work_atoms *atoms;
824                 int cmp;
825
826                 atoms = container_of(node, struct work_atoms, node);
827
828                 cmp = thread_lat_cmp(sort_list, &key, atoms);
829                 if (cmp > 0)
830                         node = node->rb_left;
831                 else if (cmp < 0)
832                         node = node->rb_right;
833                 else {
834                         BUG_ON(thread != atoms->thread);
835                         return atoms;
836                 }
837         }
838         return NULL;
839 }
840
841 static void
842 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
843                          struct list_head *sort_list)
844 {
845         struct rb_node **new = &(root->rb_node), *parent = NULL;
846
847         while (*new) {
848                 struct work_atoms *this;
849                 int cmp;
850
851                 this = container_of(*new, struct work_atoms, node);
852                 parent = *new;
853
854                 cmp = thread_lat_cmp(sort_list, data, this);
855
856                 if (cmp > 0)
857                         new = &((*new)->rb_left);
858                 else
859                         new = &((*new)->rb_right);
860         }
861
862         rb_link_node(&data->node, parent, new);
863         rb_insert_color(&data->node, root);
864 }
865
866 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
867 {
868         struct work_atoms *atoms = zalloc(sizeof(*atoms));
869         if (!atoms) {
870                 pr_err("No memory at %s\n", __func__);
871                 return -1;
872         }
873
874         atoms->thread = thread__get(thread);
875         INIT_LIST_HEAD(&atoms->work_list);
876         __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
877         return 0;
878 }
879
880 static char sched_out_state(u64 prev_state)
881 {
882         const char *str = TASK_STATE_TO_CHAR_STR;
883
884         return str[prev_state];
885 }
886
887 static int
888 add_sched_out_event(struct work_atoms *atoms,
889                     char run_state,
890                     u64 timestamp)
891 {
892         struct work_atom *atom = zalloc(sizeof(*atom));
893         if (!atom) {
894                 pr_err("Non memory at %s", __func__);
895                 return -1;
896         }
897
898         atom->sched_out_time = timestamp;
899
900         if (run_state == 'R') {
901                 atom->state = THREAD_WAIT_CPU;
902                 atom->wake_up_time = atom->sched_out_time;
903         }
904
905         list_add_tail(&atom->list, &atoms->work_list);
906         return 0;
907 }
908
909 static void
910 add_runtime_event(struct work_atoms *atoms, u64 delta,
911                   u64 timestamp __maybe_unused)
912 {
913         struct work_atom *atom;
914
915         BUG_ON(list_empty(&atoms->work_list));
916
917         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
918
919         atom->runtime += delta;
920         atoms->total_runtime += delta;
921 }
922
923 static void
924 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
925 {
926         struct work_atom *atom;
927         u64 delta;
928
929         if (list_empty(&atoms->work_list))
930                 return;
931
932         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
933
934         if (atom->state != THREAD_WAIT_CPU)
935                 return;
936
937         if (timestamp < atom->wake_up_time) {
938                 atom->state = THREAD_IGNORE;
939                 return;
940         }
941
942         atom->state = THREAD_SCHED_IN;
943         atom->sched_in_time = timestamp;
944
945         delta = atom->sched_in_time - atom->wake_up_time;
946         atoms->total_lat += delta;
947         if (delta > atoms->max_lat) {
948                 atoms->max_lat = delta;
949                 atoms->max_lat_at = timestamp;
950         }
951         atoms->nb_atoms++;
952 }
953
954 static int latency_switch_event(struct perf_sched *sched,
955                                 struct perf_evsel *evsel,
956                                 struct perf_sample *sample,
957                                 struct machine *machine)
958 {
959         const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
960                   next_pid = perf_evsel__intval(evsel, sample, "next_pid");
961         const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
962         struct work_atoms *out_events, *in_events;
963         struct thread *sched_out, *sched_in;
964         u64 timestamp0, timestamp = sample->time;
965         int cpu = sample->cpu, err = -1;
966         s64 delta;
967
968         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
969
970         timestamp0 = sched->cpu_last_switched[cpu];
971         sched->cpu_last_switched[cpu] = timestamp;
972         if (timestamp0)
973                 delta = timestamp - timestamp0;
974         else
975                 delta = 0;
976
977         if (delta < 0) {
978                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
979                 return -1;
980         }
981
982         sched_out = machine__findnew_thread(machine, -1, prev_pid);
983         sched_in = machine__findnew_thread(machine, -1, next_pid);
984         if (sched_out == NULL || sched_in == NULL)
985                 goto out_put;
986
987         out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
988         if (!out_events) {
989                 if (thread_atoms_insert(sched, sched_out))
990                         goto out_put;
991                 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
992                 if (!out_events) {
993                         pr_err("out-event: Internal tree error");
994                         goto out_put;
995                 }
996         }
997         if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
998                 return -1;
999
1000         in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1001         if (!in_events) {
1002                 if (thread_atoms_insert(sched, sched_in))
1003                         goto out_put;
1004                 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1005                 if (!in_events) {
1006                         pr_err("in-event: Internal tree error");
1007                         goto out_put;
1008                 }
1009                 /*
1010                  * Take came in we have not heard about yet,
1011                  * add in an initial atom in runnable state:
1012                  */
1013                 if (add_sched_out_event(in_events, 'R', timestamp))
1014                         goto out_put;
1015         }
1016         add_sched_in_event(in_events, timestamp);
1017         err = 0;
1018 out_put:
1019         thread__put(sched_out);
1020         thread__put(sched_in);
1021         return err;
1022 }
1023
1024 static int latency_runtime_event(struct perf_sched *sched,
1025                                  struct perf_evsel *evsel,
1026                                  struct perf_sample *sample,
1027                                  struct machine *machine)
1028 {
1029         const u32 pid      = perf_evsel__intval(evsel, sample, "pid");
1030         const u64 runtime  = perf_evsel__intval(evsel, sample, "runtime");
1031         struct thread *thread = machine__findnew_thread(machine, -1, pid);
1032         struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1033         u64 timestamp = sample->time;
1034         int cpu = sample->cpu, err = -1;
1035
1036         if (thread == NULL)
1037                 return -1;
1038
1039         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1040         if (!atoms) {
1041                 if (thread_atoms_insert(sched, thread))
1042                         goto out_put;
1043                 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1044                 if (!atoms) {
1045                         pr_err("in-event: Internal tree error");
1046                         goto out_put;
1047                 }
1048                 if (add_sched_out_event(atoms, 'R', timestamp))
1049                         goto out_put;
1050         }
1051
1052         add_runtime_event(atoms, runtime, timestamp);
1053         err = 0;
1054 out_put:
1055         thread__put(thread);
1056         return err;
1057 }
1058
1059 static int latency_wakeup_event(struct perf_sched *sched,
1060                                 struct perf_evsel *evsel,
1061                                 struct perf_sample *sample,
1062                                 struct machine *machine)
1063 {
1064         const u32 pid     = perf_evsel__intval(evsel, sample, "pid");
1065         struct work_atoms *atoms;
1066         struct work_atom *atom;
1067         struct thread *wakee;
1068         u64 timestamp = sample->time;
1069         int err = -1;
1070
1071         wakee = machine__findnew_thread(machine, -1, pid);
1072         if (wakee == NULL)
1073                 return -1;
1074         atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1075         if (!atoms) {
1076                 if (thread_atoms_insert(sched, wakee))
1077                         goto out_put;
1078                 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1079                 if (!atoms) {
1080                         pr_err("wakeup-event: Internal tree error");
1081                         goto out_put;
1082                 }
1083                 if (add_sched_out_event(atoms, 'S', timestamp))
1084                         goto out_put;
1085         }
1086
1087         BUG_ON(list_empty(&atoms->work_list));
1088
1089         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1090
1091         /*
1092          * As we do not guarantee the wakeup event happens when
1093          * task is out of run queue, also may happen when task is
1094          * on run queue and wakeup only change ->state to TASK_RUNNING,
1095          * then we should not set the ->wake_up_time when wake up a
1096          * task which is on run queue.
1097          *
1098          * You WILL be missing events if you've recorded only
1099          * one CPU, or are only looking at only one, so don't
1100          * skip in this case.
1101          */
1102         if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1103                 goto out_ok;
1104
1105         sched->nr_timestamps++;
1106         if (atom->sched_out_time > timestamp) {
1107                 sched->nr_unordered_timestamps++;
1108                 goto out_ok;
1109         }
1110
1111         atom->state = THREAD_WAIT_CPU;
1112         atom->wake_up_time = timestamp;
1113 out_ok:
1114         err = 0;
1115 out_put:
1116         thread__put(wakee);
1117         return err;
1118 }
1119
1120 static int latency_migrate_task_event(struct perf_sched *sched,
1121                                       struct perf_evsel *evsel,
1122                                       struct perf_sample *sample,
1123                                       struct machine *machine)
1124 {
1125         const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1126         u64 timestamp = sample->time;
1127         struct work_atoms *atoms;
1128         struct work_atom *atom;
1129         struct thread *migrant;
1130         int err = -1;
1131
1132         /*
1133          * Only need to worry about migration when profiling one CPU.
1134          */
1135         if (sched->profile_cpu == -1)
1136                 return 0;
1137
1138         migrant = machine__findnew_thread(machine, -1, pid);
1139         if (migrant == NULL)
1140                 return -1;
1141         atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1142         if (!atoms) {
1143                 if (thread_atoms_insert(sched, migrant))
1144                         goto out_put;
1145                 register_pid(sched, migrant->tid, thread__comm_str(migrant));
1146                 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1147                 if (!atoms) {
1148                         pr_err("migration-event: Internal tree error");
1149                         goto out_put;
1150                 }
1151                 if (add_sched_out_event(atoms, 'R', timestamp))
1152                         goto out_put;
1153         }
1154
1155         BUG_ON(list_empty(&atoms->work_list));
1156
1157         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1158         atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1159
1160         sched->nr_timestamps++;
1161
1162         if (atom->sched_out_time > timestamp)
1163                 sched->nr_unordered_timestamps++;
1164         err = 0;
1165 out_put:
1166         thread__put(migrant);
1167         return err;
1168 }
1169
1170 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1171 {
1172         int i;
1173         int ret;
1174         u64 avg;
1175
1176         if (!work_list->nb_atoms)
1177                 return;
1178         /*
1179          * Ignore idle threads:
1180          */
1181         if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1182                 return;
1183
1184         sched->all_runtime += work_list->total_runtime;
1185         sched->all_count   += work_list->nb_atoms;
1186
1187         if (work_list->num_merged > 1)
1188                 ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1189         else
1190                 ret = printf("  %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1191
1192         for (i = 0; i < 24 - ret; i++)
1193                 printf(" ");
1194
1195         avg = work_list->total_lat / work_list->nb_atoms;
1196
1197         printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13.6f s\n",
1198               (double)work_list->total_runtime / 1e6,
1199                  work_list->nb_atoms, (double)avg / 1e6,
1200                  (double)work_list->max_lat / 1e6,
1201                  (double)work_list->max_lat_at / 1e9);
1202 }
1203
1204 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1205 {
1206         if (l->thread->tid < r->thread->tid)
1207                 return -1;
1208         if (l->thread->tid > r->thread->tid)
1209                 return 1;
1210
1211         return 0;
1212 }
1213
1214 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1215 {
1216         u64 avgl, avgr;
1217
1218         if (!l->nb_atoms)
1219                 return -1;
1220
1221         if (!r->nb_atoms)
1222                 return 1;
1223
1224         avgl = l->total_lat / l->nb_atoms;
1225         avgr = r->total_lat / r->nb_atoms;
1226
1227         if (avgl < avgr)
1228                 return -1;
1229         if (avgl > avgr)
1230                 return 1;
1231
1232         return 0;
1233 }
1234
1235 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1236 {
1237         if (l->max_lat < r->max_lat)
1238                 return -1;
1239         if (l->max_lat > r->max_lat)
1240                 return 1;
1241
1242         return 0;
1243 }
1244
1245 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1246 {
1247         if (l->nb_atoms < r->nb_atoms)
1248                 return -1;
1249         if (l->nb_atoms > r->nb_atoms)
1250                 return 1;
1251
1252         return 0;
1253 }
1254
1255 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1256 {
1257         if (l->total_runtime < r->total_runtime)
1258                 return -1;
1259         if (l->total_runtime > r->total_runtime)
1260                 return 1;
1261
1262         return 0;
1263 }
1264
1265 static int sort_dimension__add(const char *tok, struct list_head *list)
1266 {
1267         size_t i;
1268         static struct sort_dimension avg_sort_dimension = {
1269                 .name = "avg",
1270                 .cmp  = avg_cmp,
1271         };
1272         static struct sort_dimension max_sort_dimension = {
1273                 .name = "max",
1274                 .cmp  = max_cmp,
1275         };
1276         static struct sort_dimension pid_sort_dimension = {
1277                 .name = "pid",
1278                 .cmp  = pid_cmp,
1279         };
1280         static struct sort_dimension runtime_sort_dimension = {
1281                 .name = "runtime",
1282                 .cmp  = runtime_cmp,
1283         };
1284         static struct sort_dimension switch_sort_dimension = {
1285                 .name = "switch",
1286                 .cmp  = switch_cmp,
1287         };
1288         struct sort_dimension *available_sorts[] = {
1289                 &pid_sort_dimension,
1290                 &avg_sort_dimension,
1291                 &max_sort_dimension,
1292                 &switch_sort_dimension,
1293                 &runtime_sort_dimension,
1294         };
1295
1296         for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1297                 if (!strcmp(available_sorts[i]->name, tok)) {
1298                         list_add_tail(&available_sorts[i]->list, list);
1299
1300                         return 0;
1301                 }
1302         }
1303
1304         return -1;
1305 }
1306
1307 static void perf_sched__sort_lat(struct perf_sched *sched)
1308 {
1309         struct rb_node *node;
1310         struct rb_root *root = &sched->atom_root;
1311 again:
1312         for (;;) {
1313                 struct work_atoms *data;
1314                 node = rb_first(root);
1315                 if (!node)
1316                         break;
1317
1318                 rb_erase(node, root);
1319                 data = rb_entry(node, struct work_atoms, node);
1320                 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1321         }
1322         if (root == &sched->atom_root) {
1323                 root = &sched->merged_atom_root;
1324                 goto again;
1325         }
1326 }
1327
1328 static int process_sched_wakeup_event(struct perf_tool *tool,
1329                                       struct perf_evsel *evsel,
1330                                       struct perf_sample *sample,
1331                                       struct machine *machine)
1332 {
1333         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1334
1335         if (sched->tp_handler->wakeup_event)
1336                 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1337
1338         return 0;
1339 }
1340
1341 static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1342                             struct perf_sample *sample, struct machine *machine)
1343 {
1344         const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1345         struct thread *sched_in;
1346         int new_shortname;
1347         u64 timestamp0, timestamp = sample->time;
1348         s64 delta;
1349         int cpu, this_cpu = sample->cpu;
1350
1351         BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1352
1353         if (this_cpu > sched->max_cpu)
1354                 sched->max_cpu = this_cpu;
1355
1356         timestamp0 = sched->cpu_last_switched[this_cpu];
1357         sched->cpu_last_switched[this_cpu] = timestamp;
1358         if (timestamp0)
1359                 delta = timestamp - timestamp0;
1360         else
1361                 delta = 0;
1362
1363         if (delta < 0) {
1364                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1365                 return -1;
1366         }
1367
1368         sched_in = machine__findnew_thread(machine, -1, next_pid);
1369         if (sched_in == NULL)
1370                 return -1;
1371
1372         sched->curr_thread[this_cpu] = thread__get(sched_in);
1373
1374         printf("  ");
1375
1376         new_shortname = 0;
1377         if (!sched_in->shortname[0]) {
1378                 if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1379                         /*
1380                          * Don't allocate a letter-number for swapper:0
1381                          * as a shortname. Instead, we use '.' for it.
1382                          */
1383                         sched_in->shortname[0] = '.';
1384                         sched_in->shortname[1] = ' ';
1385                 } else {
1386                         sched_in->shortname[0] = sched->next_shortname1;
1387                         sched_in->shortname[1] = sched->next_shortname2;
1388
1389                         if (sched->next_shortname1 < 'Z') {
1390                                 sched->next_shortname1++;
1391                         } else {
1392                                 sched->next_shortname1 = 'A';
1393                                 if (sched->next_shortname2 < '9')
1394                                         sched->next_shortname2++;
1395                                 else
1396                                         sched->next_shortname2 = '0';
1397                         }
1398                 }
1399                 new_shortname = 1;
1400         }
1401
1402         for (cpu = 0; cpu <= sched->max_cpu; cpu++) {
1403                 if (cpu != this_cpu)
1404                         printf(" ");
1405                 else
1406                         printf("*");
1407
1408                 if (sched->curr_thread[cpu])
1409                         printf("%2s ", sched->curr_thread[cpu]->shortname);
1410                 else
1411                         printf("   ");
1412         }
1413
1414         printf("  %12.6f secs ", (double)timestamp/1e9);
1415         if (new_shortname) {
1416                 printf("%s => %s:%d\n",
1417                        sched_in->shortname, thread__comm_str(sched_in), sched_in->tid);
1418         } else {
1419                 printf("\n");
1420         }
1421
1422         thread__put(sched_in);
1423
1424         return 0;
1425 }
1426
1427 static int process_sched_switch_event(struct perf_tool *tool,
1428                                       struct perf_evsel *evsel,
1429                                       struct perf_sample *sample,
1430                                       struct machine *machine)
1431 {
1432         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1433         int this_cpu = sample->cpu, err = 0;
1434         u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1435             next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1436
1437         if (sched->curr_pid[this_cpu] != (u32)-1) {
1438                 /*
1439                  * Are we trying to switch away a PID that is
1440                  * not current?
1441                  */
1442                 if (sched->curr_pid[this_cpu] != prev_pid)
1443                         sched->nr_context_switch_bugs++;
1444         }
1445
1446         if (sched->tp_handler->switch_event)
1447                 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1448
1449         sched->curr_pid[this_cpu] = next_pid;
1450         return err;
1451 }
1452
1453 static int process_sched_runtime_event(struct perf_tool *tool,
1454                                        struct perf_evsel *evsel,
1455                                        struct perf_sample *sample,
1456                                        struct machine *machine)
1457 {
1458         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1459
1460         if (sched->tp_handler->runtime_event)
1461                 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1462
1463         return 0;
1464 }
1465
1466 static int perf_sched__process_fork_event(struct perf_tool *tool,
1467                                           union perf_event *event,
1468                                           struct perf_sample *sample,
1469                                           struct machine *machine)
1470 {
1471         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1472
1473         /* run the fork event through the perf machineruy */
1474         perf_event__process_fork(tool, event, sample, machine);
1475
1476         /* and then run additional processing needed for this command */
1477         if (sched->tp_handler->fork_event)
1478                 return sched->tp_handler->fork_event(sched, event, machine);
1479
1480         return 0;
1481 }
1482
1483 static int process_sched_migrate_task_event(struct perf_tool *tool,
1484                                             struct perf_evsel *evsel,
1485                                             struct perf_sample *sample,
1486                                             struct machine *machine)
1487 {
1488         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1489
1490         if (sched->tp_handler->migrate_task_event)
1491                 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1492
1493         return 0;
1494 }
1495
1496 typedef int (*tracepoint_handler)(struct perf_tool *tool,
1497                                   struct perf_evsel *evsel,
1498                                   struct perf_sample *sample,
1499                                   struct machine *machine);
1500
1501 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1502                                                  union perf_event *event __maybe_unused,
1503                                                  struct perf_sample *sample,
1504                                                  struct perf_evsel *evsel,
1505                                                  struct machine *machine)
1506 {
1507         int err = 0;
1508
1509         if (evsel->handler != NULL) {
1510                 tracepoint_handler f = evsel->handler;
1511                 err = f(tool, evsel, sample, machine);
1512         }
1513
1514         return err;
1515 }
1516
1517 static int perf_sched__read_events(struct perf_sched *sched)
1518 {
1519         const struct perf_evsel_str_handler handlers[] = {
1520                 { "sched:sched_switch",       process_sched_switch_event, },
1521                 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1522                 { "sched:sched_wakeup",       process_sched_wakeup_event, },
1523                 { "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1524                 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1525         };
1526         struct perf_session *session;
1527         struct perf_data_file file = {
1528                 .path = input_name,
1529                 .mode = PERF_DATA_MODE_READ,
1530                 .force = sched->force,
1531         };
1532         int rc = -1;
1533
1534         session = perf_session__new(&file, false, &sched->tool);
1535         if (session == NULL) {
1536                 pr_debug("No Memory for session\n");
1537                 return -1;
1538         }
1539
1540         symbol__init(&session->header.env);
1541
1542         if (perf_session__set_tracepoints_handlers(session, handlers))
1543                 goto out_delete;
1544
1545         if (perf_session__has_traces(session, "record -R")) {
1546                 int err = perf_session__process_events(session);
1547                 if (err) {
1548                         pr_err("Failed to process events, error %d", err);
1549                         goto out_delete;
1550                 }
1551
1552                 sched->nr_events      = session->evlist->stats.nr_events[0];
1553                 sched->nr_lost_events = session->evlist->stats.total_lost;
1554                 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1555         }
1556
1557         rc = 0;
1558 out_delete:
1559         perf_session__delete(session);
1560         return rc;
1561 }
1562
1563 static void print_bad_events(struct perf_sched *sched)
1564 {
1565         if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
1566                 printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1567                         (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
1568                         sched->nr_unordered_timestamps, sched->nr_timestamps);
1569         }
1570         if (sched->nr_lost_events && sched->nr_events) {
1571                 printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1572                         (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
1573                         sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
1574         }
1575         if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
1576                 printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
1577                         (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
1578                         sched->nr_context_switch_bugs, sched->nr_timestamps);
1579                 if (sched->nr_lost_events)
1580                         printf(" (due to lost events?)");
1581                 printf("\n");
1582         }
1583 }
1584
1585 static void __merge_work_atoms(struct rb_root *root, struct work_atoms *data)
1586 {
1587         struct rb_node **new = &(root->rb_node), *parent = NULL;
1588         struct work_atoms *this;
1589         const char *comm = thread__comm_str(data->thread), *this_comm;
1590
1591         while (*new) {
1592                 int cmp;
1593
1594                 this = container_of(*new, struct work_atoms, node);
1595                 parent = *new;
1596
1597                 this_comm = thread__comm_str(this->thread);
1598                 cmp = strcmp(comm, this_comm);
1599                 if (cmp > 0) {
1600                         new = &((*new)->rb_left);
1601                 } else if (cmp < 0) {
1602                         new = &((*new)->rb_right);
1603                 } else {
1604                         this->num_merged++;
1605                         this->total_runtime += data->total_runtime;
1606                         this->nb_atoms += data->nb_atoms;
1607                         this->total_lat += data->total_lat;
1608                         list_splice(&data->work_list, &this->work_list);
1609                         if (this->max_lat < data->max_lat) {
1610                                 this->max_lat = data->max_lat;
1611                                 this->max_lat_at = data->max_lat_at;
1612                         }
1613                         zfree(&data);
1614                         return;
1615                 }
1616         }
1617
1618         data->num_merged++;
1619         rb_link_node(&data->node, parent, new);
1620         rb_insert_color(&data->node, root);
1621 }
1622
1623 static void perf_sched__merge_lat(struct perf_sched *sched)
1624 {
1625         struct work_atoms *data;
1626         struct rb_node *node;
1627
1628         if (sched->skip_merge)
1629                 return;
1630
1631         while ((node = rb_first(&sched->atom_root))) {
1632                 rb_erase(node, &sched->atom_root);
1633                 data = rb_entry(node, struct work_atoms, node);
1634                 __merge_work_atoms(&sched->merged_atom_root, data);
1635         }
1636 }
1637
1638 static int perf_sched__lat(struct perf_sched *sched)
1639 {
1640         struct rb_node *next;
1641
1642         setup_pager();
1643
1644         if (perf_sched__read_events(sched))
1645                 return -1;
1646
1647         perf_sched__merge_lat(sched);
1648         perf_sched__sort_lat(sched);
1649
1650         printf("\n -----------------------------------------------------------------------------------------------------------------\n");
1651         printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at       |\n");
1652         printf(" -----------------------------------------------------------------------------------------------------------------\n");
1653
1654         next = rb_first(&sched->sorted_atom_root);
1655
1656         while (next) {
1657                 struct work_atoms *work_list;
1658
1659                 work_list = rb_entry(next, struct work_atoms, node);
1660                 output_lat_thread(sched, work_list);
1661                 next = rb_next(next);
1662                 thread__zput(work_list->thread);
1663         }
1664
1665         printf(" -----------------------------------------------------------------------------------------------------------------\n");
1666         printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
1667                 (double)sched->all_runtime / 1e6, sched->all_count);
1668
1669         printf(" ---------------------------------------------------\n");
1670
1671         print_bad_events(sched);
1672         printf("\n");
1673
1674         return 0;
1675 }
1676
1677 static int perf_sched__map(struct perf_sched *sched)
1678 {
1679         sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1680
1681         setup_pager();
1682         if (perf_sched__read_events(sched))
1683                 return -1;
1684         print_bad_events(sched);
1685         return 0;
1686 }
1687
1688 static int perf_sched__replay(struct perf_sched *sched)
1689 {
1690         unsigned long i;
1691
1692         calibrate_run_measurement_overhead(sched);
1693         calibrate_sleep_measurement_overhead(sched);
1694
1695         test_calibrations(sched);
1696
1697         if (perf_sched__read_events(sched))
1698                 return -1;
1699
1700         printf("nr_run_events:        %ld\n", sched->nr_run_events);
1701         printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
1702         printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
1703
1704         if (sched->targetless_wakeups)
1705                 printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
1706         if (sched->multitarget_wakeups)
1707                 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
1708         if (sched->nr_run_events_optimized)
1709                 printf("run atoms optimized: %ld\n",
1710                         sched->nr_run_events_optimized);
1711
1712         print_task_traces(sched);
1713         add_cross_task_wakeups(sched);
1714
1715         create_tasks(sched);
1716         printf("------------------------------------------------------------\n");
1717         for (i = 0; i < sched->replay_repeat; i++)
1718                 run_one_test(sched);
1719
1720         return 0;
1721 }
1722
1723 static void setup_sorting(struct perf_sched *sched, const struct option *options,
1724                           const char * const usage_msg[])
1725 {
1726         char *tmp, *tok, *str = strdup(sched->sort_order);
1727
1728         for (tok = strtok_r(str, ", ", &tmp);
1729                         tok; tok = strtok_r(NULL, ", ", &tmp)) {
1730                 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
1731                         usage_with_options_msg(usage_msg, options,
1732                                         "Unknown --sort key: `%s'", tok);
1733                 }
1734         }
1735
1736         free(str);
1737
1738         sort_dimension__add("pid", &sched->cmp_pid);
1739 }
1740
1741 static int __cmd_record(int argc, const char **argv)
1742 {
1743         unsigned int rec_argc, i, j;
1744         const char **rec_argv;
1745         const char * const record_args[] = {
1746                 "record",
1747                 "-a",
1748                 "-R",
1749                 "-m", "1024",
1750                 "-c", "1",
1751                 "-e", "sched:sched_switch",
1752                 "-e", "sched:sched_stat_wait",
1753                 "-e", "sched:sched_stat_sleep",
1754                 "-e", "sched:sched_stat_iowait",
1755                 "-e", "sched:sched_stat_runtime",
1756                 "-e", "sched:sched_process_fork",
1757                 "-e", "sched:sched_wakeup",
1758                 "-e", "sched:sched_wakeup_new",
1759                 "-e", "sched:sched_migrate_task",
1760         };
1761
1762         rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1763         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1764
1765         if (rec_argv == NULL)
1766                 return -ENOMEM;
1767
1768         for (i = 0; i < ARRAY_SIZE(record_args); i++)
1769                 rec_argv[i] = strdup(record_args[i]);
1770
1771         for (j = 1; j < (unsigned int)argc; j++, i++)
1772                 rec_argv[i] = argv[j];
1773
1774         BUG_ON(i != rec_argc);
1775
1776         return cmd_record(i, rec_argv, NULL);
1777 }
1778
1779 int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
1780 {
1781         const char default_sort_order[] = "avg, max, switch, runtime";
1782         struct perf_sched sched = {
1783                 .tool = {
1784                         .sample          = perf_sched__process_tracepoint_sample,
1785                         .comm            = perf_event__process_comm,
1786                         .lost            = perf_event__process_lost,
1787                         .fork            = perf_sched__process_fork_event,
1788                         .ordered_events = true,
1789                 },
1790                 .cmp_pid              = LIST_HEAD_INIT(sched.cmp_pid),
1791                 .sort_list            = LIST_HEAD_INIT(sched.sort_list),
1792                 .start_work_mutex     = PTHREAD_MUTEX_INITIALIZER,
1793                 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
1794                 .sort_order           = default_sort_order,
1795                 .replay_repeat        = 10,
1796                 .profile_cpu          = -1,
1797                 .next_shortname1      = 'A',
1798                 .next_shortname2      = '0',
1799                 .skip_merge           = 0,
1800         };
1801         const struct option latency_options[] = {
1802         OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
1803                    "sort by key(s): runtime, switch, avg, max"),
1804         OPT_INCR('v', "verbose", &verbose,
1805                     "be more verbose (show symbol address, etc)"),
1806         OPT_INTEGER('C', "CPU", &sched.profile_cpu,
1807                     "CPU to profile on"),
1808         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1809                     "dump raw trace in ASCII"),
1810         OPT_BOOLEAN('p', "pids", &sched.skip_merge,
1811                     "latency stats per pid instead of per comm"),
1812         OPT_END()
1813         };
1814         const struct option replay_options[] = {
1815         OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
1816                      "repeat the workload replay N times (-1: infinite)"),
1817         OPT_INCR('v', "verbose", &verbose,
1818                     "be more verbose (show symbol address, etc)"),
1819         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1820                     "dump raw trace in ASCII"),
1821         OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
1822         OPT_END()
1823         };
1824         const struct option sched_options[] = {
1825         OPT_STRING('i', "input", &input_name, "file",
1826                     "input file name"),
1827         OPT_INCR('v', "verbose", &verbose,
1828                     "be more verbose (show symbol address, etc)"),
1829         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1830                     "dump raw trace in ASCII"),
1831         OPT_END()
1832         };
1833         const char * const latency_usage[] = {
1834                 "perf sched latency [<options>]",
1835                 NULL
1836         };
1837         const char * const replay_usage[] = {
1838                 "perf sched replay [<options>]",
1839                 NULL
1840         };
1841         const char *const sched_subcommands[] = { "record", "latency", "map",
1842                                                   "replay", "script", NULL };
1843         const char *sched_usage[] = {
1844                 NULL,
1845                 NULL
1846         };
1847         struct trace_sched_handler lat_ops  = {
1848                 .wakeup_event       = latency_wakeup_event,
1849                 .switch_event       = latency_switch_event,
1850                 .runtime_event      = latency_runtime_event,
1851                 .migrate_task_event = latency_migrate_task_event,
1852         };
1853         struct trace_sched_handler map_ops  = {
1854                 .switch_event       = map_switch_event,
1855         };
1856         struct trace_sched_handler replay_ops  = {
1857                 .wakeup_event       = replay_wakeup_event,
1858                 .switch_event       = replay_switch_event,
1859                 .fork_event         = replay_fork_event,
1860         };
1861         unsigned int i;
1862
1863         for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
1864                 sched.curr_pid[i] = -1;
1865
1866         argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
1867                                         sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1868         if (!argc)
1869                 usage_with_options(sched_usage, sched_options);
1870
1871         /*
1872          * Aliased to 'perf script' for now:
1873          */
1874         if (!strcmp(argv[0], "script"))
1875                 return cmd_script(argc, argv, prefix);
1876
1877         if (!strncmp(argv[0], "rec", 3)) {
1878                 return __cmd_record(argc, argv);
1879         } else if (!strncmp(argv[0], "lat", 3)) {
1880                 sched.tp_handler = &lat_ops;
1881                 if (argc > 1) {
1882                         argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1883                         if (argc)
1884                                 usage_with_options(latency_usage, latency_options);
1885                 }
1886                 setup_sorting(&sched, latency_options, latency_usage);
1887                 return perf_sched__lat(&sched);
1888         } else if (!strcmp(argv[0], "map")) {
1889                 sched.tp_handler = &map_ops;
1890                 setup_sorting(&sched, latency_options, latency_usage);
1891                 return perf_sched__map(&sched);
1892         } else if (!strncmp(argv[0], "rep", 3)) {
1893                 sched.tp_handler = &replay_ops;
1894                 if (argc) {
1895                         argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1896                         if (argc)
1897                                 usage_with_options(replay_usage, replay_options);
1898                 }
1899                 return perf_sched__replay(&sched);
1900         } else {
1901                 usage_with_options(sched_usage, sched_options);
1902         }
1903
1904         return 0;
1905 }