]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - tools/perf/util/machine.c
Merge branch 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / tools / perf / util / machine.c
1 #include "callchain.h"
2 #include "debug.h"
3 #include "event.h"
4 #include "evsel.h"
5 #include "hist.h"
6 #include "machine.h"
7 #include "map.h"
8 #include "sort.h"
9 #include "strlist.h"
10 #include "thread.h"
11 #include "vdso.h"
12 #include <stdbool.h>
13 #include <symbol/kallsyms.h>
14 #include "unwind.h"
15 #include "linux/hash.h"
16
17 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
18
19 static void dsos__init(struct dsos *dsos)
20 {
21         INIT_LIST_HEAD(&dsos->head);
22         dsos->root = RB_ROOT;
23         pthread_rwlock_init(&dsos->lock, NULL);
24 }
25
26 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
27 {
28         map_groups__init(&machine->kmaps, machine);
29         RB_CLEAR_NODE(&machine->rb_node);
30         dsos__init(&machine->dsos);
31
32         machine->threads = RB_ROOT;
33         pthread_rwlock_init(&machine->threads_lock, NULL);
34         INIT_LIST_HEAD(&machine->dead_threads);
35         machine->last_match = NULL;
36
37         machine->vdso_info = NULL;
38         machine->env = NULL;
39
40         machine->pid = pid;
41
42         machine->symbol_filter = NULL;
43         machine->id_hdr_size = 0;
44         machine->comm_exec = false;
45         machine->kernel_start = 0;
46
47         machine->root_dir = strdup(root_dir);
48         if (machine->root_dir == NULL)
49                 return -ENOMEM;
50
51         if (pid != HOST_KERNEL_ID) {
52                 struct thread *thread = machine__findnew_thread(machine, -1,
53                                                                 pid);
54                 char comm[64];
55
56                 if (thread == NULL)
57                         return -ENOMEM;
58
59                 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
60                 thread__set_comm(thread, comm, 0);
61                 thread__put(thread);
62         }
63
64         machine->current_tid = NULL;
65
66         return 0;
67 }
68
69 struct machine *machine__new_host(void)
70 {
71         struct machine *machine = malloc(sizeof(*machine));
72
73         if (machine != NULL) {
74                 machine__init(machine, "", HOST_KERNEL_ID);
75
76                 if (machine__create_kernel_maps(machine) < 0)
77                         goto out_delete;
78         }
79
80         return machine;
81 out_delete:
82         free(machine);
83         return NULL;
84 }
85
86 static void dsos__purge(struct dsos *dsos)
87 {
88         struct dso *pos, *n;
89
90         pthread_rwlock_wrlock(&dsos->lock);
91
92         list_for_each_entry_safe(pos, n, &dsos->head, node) {
93                 RB_CLEAR_NODE(&pos->rb_node);
94                 list_del_init(&pos->node);
95                 dso__put(pos);
96         }
97
98         pthread_rwlock_unlock(&dsos->lock);
99 }
100
101 static void dsos__exit(struct dsos *dsos)
102 {
103         dsos__purge(dsos);
104         pthread_rwlock_destroy(&dsos->lock);
105 }
106
107 void machine__delete_threads(struct machine *machine)
108 {
109         struct rb_node *nd;
110
111         pthread_rwlock_wrlock(&machine->threads_lock);
112         nd = rb_first(&machine->threads);
113         while (nd) {
114                 struct thread *t = rb_entry(nd, struct thread, rb_node);
115
116                 nd = rb_next(nd);
117                 __machine__remove_thread(machine, t, false);
118         }
119         pthread_rwlock_unlock(&machine->threads_lock);
120 }
121
122 void machine__exit(struct machine *machine)
123 {
124         map_groups__exit(&machine->kmaps);
125         dsos__exit(&machine->dsos);
126         machine__exit_vdso(machine);
127         zfree(&machine->root_dir);
128         zfree(&machine->current_tid);
129         pthread_rwlock_destroy(&machine->threads_lock);
130 }
131
132 void machine__delete(struct machine *machine)
133 {
134         machine__exit(machine);
135         free(machine);
136 }
137
138 void machines__init(struct machines *machines)
139 {
140         machine__init(&machines->host, "", HOST_KERNEL_ID);
141         machines->guests = RB_ROOT;
142         machines->symbol_filter = NULL;
143 }
144
145 void machines__exit(struct machines *machines)
146 {
147         machine__exit(&machines->host);
148         /* XXX exit guest */
149 }
150
151 struct machine *machines__add(struct machines *machines, pid_t pid,
152                               const char *root_dir)
153 {
154         struct rb_node **p = &machines->guests.rb_node;
155         struct rb_node *parent = NULL;
156         struct machine *pos, *machine = malloc(sizeof(*machine));
157
158         if (machine == NULL)
159                 return NULL;
160
161         if (machine__init(machine, root_dir, pid) != 0) {
162                 free(machine);
163                 return NULL;
164         }
165
166         machine->symbol_filter = machines->symbol_filter;
167
168         while (*p != NULL) {
169                 parent = *p;
170                 pos = rb_entry(parent, struct machine, rb_node);
171                 if (pid < pos->pid)
172                         p = &(*p)->rb_left;
173                 else
174                         p = &(*p)->rb_right;
175         }
176
177         rb_link_node(&machine->rb_node, parent, p);
178         rb_insert_color(&machine->rb_node, &machines->guests);
179
180         return machine;
181 }
182
183 void machines__set_symbol_filter(struct machines *machines,
184                                  symbol_filter_t symbol_filter)
185 {
186         struct rb_node *nd;
187
188         machines->symbol_filter = symbol_filter;
189         machines->host.symbol_filter = symbol_filter;
190
191         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
192                 struct machine *machine = rb_entry(nd, struct machine, rb_node);
193
194                 machine->symbol_filter = symbol_filter;
195         }
196 }
197
198 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
199 {
200         struct rb_node *nd;
201
202         machines->host.comm_exec = comm_exec;
203
204         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
205                 struct machine *machine = rb_entry(nd, struct machine, rb_node);
206
207                 machine->comm_exec = comm_exec;
208         }
209 }
210
211 struct machine *machines__find(struct machines *machines, pid_t pid)
212 {
213         struct rb_node **p = &machines->guests.rb_node;
214         struct rb_node *parent = NULL;
215         struct machine *machine;
216         struct machine *default_machine = NULL;
217
218         if (pid == HOST_KERNEL_ID)
219                 return &machines->host;
220
221         while (*p != NULL) {
222                 parent = *p;
223                 machine = rb_entry(parent, struct machine, rb_node);
224                 if (pid < machine->pid)
225                         p = &(*p)->rb_left;
226                 else if (pid > machine->pid)
227                         p = &(*p)->rb_right;
228                 else
229                         return machine;
230                 if (!machine->pid)
231                         default_machine = machine;
232         }
233
234         return default_machine;
235 }
236
237 struct machine *machines__findnew(struct machines *machines, pid_t pid)
238 {
239         char path[PATH_MAX];
240         const char *root_dir = "";
241         struct machine *machine = machines__find(machines, pid);
242
243         if (machine && (machine->pid == pid))
244                 goto out;
245
246         if ((pid != HOST_KERNEL_ID) &&
247             (pid != DEFAULT_GUEST_KERNEL_ID) &&
248             (symbol_conf.guestmount)) {
249                 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
250                 if (access(path, R_OK)) {
251                         static struct strlist *seen;
252
253                         if (!seen)
254                                 seen = strlist__new(NULL, NULL);
255
256                         if (!strlist__has_entry(seen, path)) {
257                                 pr_err("Can't access file %s\n", path);
258                                 strlist__add(seen, path);
259                         }
260                         machine = NULL;
261                         goto out;
262                 }
263                 root_dir = path;
264         }
265
266         machine = machines__add(machines, pid, root_dir);
267 out:
268         return machine;
269 }
270
271 void machines__process_guests(struct machines *machines,
272                               machine__process_t process, void *data)
273 {
274         struct rb_node *nd;
275
276         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
277                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
278                 process(pos, data);
279         }
280 }
281
282 char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
283 {
284         if (machine__is_host(machine))
285                 snprintf(bf, size, "[%s]", "kernel.kallsyms");
286         else if (machine__is_default_guest(machine))
287                 snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
288         else {
289                 snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
290                          machine->pid);
291         }
292
293         return bf;
294 }
295
296 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
297 {
298         struct rb_node *node;
299         struct machine *machine;
300
301         machines->host.id_hdr_size = id_hdr_size;
302
303         for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
304                 machine = rb_entry(node, struct machine, rb_node);
305                 machine->id_hdr_size = id_hdr_size;
306         }
307
308         return;
309 }
310
311 static void machine__update_thread_pid(struct machine *machine,
312                                        struct thread *th, pid_t pid)
313 {
314         struct thread *leader;
315
316         if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
317                 return;
318
319         th->pid_ = pid;
320
321         if (th->pid_ == th->tid)
322                 return;
323
324         leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
325         if (!leader)
326                 goto out_err;
327
328         if (!leader->mg)
329                 leader->mg = map_groups__new(machine);
330
331         if (!leader->mg)
332                 goto out_err;
333
334         if (th->mg == leader->mg)
335                 return;
336
337         if (th->mg) {
338                 /*
339                  * Maps are created from MMAP events which provide the pid and
340                  * tid.  Consequently there never should be any maps on a thread
341                  * with an unknown pid.  Just print an error if there are.
342                  */
343                 if (!map_groups__empty(th->mg))
344                         pr_err("Discarding thread maps for %d:%d\n",
345                                th->pid_, th->tid);
346                 map_groups__put(th->mg);
347         }
348
349         th->mg = map_groups__get(leader->mg);
350
351         return;
352
353 out_err:
354         pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
355 }
356
357 static struct thread *____machine__findnew_thread(struct machine *machine,
358                                                   pid_t pid, pid_t tid,
359                                                   bool create)
360 {
361         struct rb_node **p = &machine->threads.rb_node;
362         struct rb_node *parent = NULL;
363         struct thread *th;
364
365         /*
366          * Front-end cache - TID lookups come in blocks,
367          * so most of the time we dont have to look up
368          * the full rbtree:
369          */
370         th = machine->last_match;
371         if (th != NULL) {
372                 if (th->tid == tid) {
373                         machine__update_thread_pid(machine, th, pid);
374                         return th;
375                 }
376
377                 machine->last_match = NULL;
378         }
379
380         while (*p != NULL) {
381                 parent = *p;
382                 th = rb_entry(parent, struct thread, rb_node);
383
384                 if (th->tid == tid) {
385                         machine->last_match = th;
386                         machine__update_thread_pid(machine, th, pid);
387                         return th;
388                 }
389
390                 if (tid < th->tid)
391                         p = &(*p)->rb_left;
392                 else
393                         p = &(*p)->rb_right;
394         }
395
396         if (!create)
397                 return NULL;
398
399         th = thread__new(pid, tid);
400         if (th != NULL) {
401                 rb_link_node(&th->rb_node, parent, p);
402                 rb_insert_color(&th->rb_node, &machine->threads);
403
404                 /*
405                  * We have to initialize map_groups separately
406                  * after rb tree is updated.
407                  *
408                  * The reason is that we call machine__findnew_thread
409                  * within thread__init_map_groups to find the thread
410                  * leader and that would screwed the rb tree.
411                  */
412                 if (thread__init_map_groups(th, machine)) {
413                         rb_erase_init(&th->rb_node, &machine->threads);
414                         RB_CLEAR_NODE(&th->rb_node);
415                         thread__delete(th);
416                         return NULL;
417                 }
418                 /*
419                  * It is now in the rbtree, get a ref
420                  */
421                 thread__get(th);
422                 machine->last_match = th;
423         }
424
425         return th;
426 }
427
428 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
429 {
430         return ____machine__findnew_thread(machine, pid, tid, true);
431 }
432
433 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
434                                        pid_t tid)
435 {
436         struct thread *th;
437
438         pthread_rwlock_wrlock(&machine->threads_lock);
439         th = thread__get(__machine__findnew_thread(machine, pid, tid));
440         pthread_rwlock_unlock(&machine->threads_lock);
441         return th;
442 }
443
444 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
445                                     pid_t tid)
446 {
447         struct thread *th;
448         pthread_rwlock_rdlock(&machine->threads_lock);
449         th =  thread__get(____machine__findnew_thread(machine, pid, tid, false));
450         pthread_rwlock_unlock(&machine->threads_lock);
451         return th;
452 }
453
454 struct comm *machine__thread_exec_comm(struct machine *machine,
455                                        struct thread *thread)
456 {
457         if (machine->comm_exec)
458                 return thread__exec_comm(thread);
459         else
460                 return thread__comm(thread);
461 }
462
463 int machine__process_comm_event(struct machine *machine, union perf_event *event,
464                                 struct perf_sample *sample)
465 {
466         struct thread *thread = machine__findnew_thread(machine,
467                                                         event->comm.pid,
468                                                         event->comm.tid);
469         bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
470         int err = 0;
471
472         if (exec)
473                 machine->comm_exec = true;
474
475         if (dump_trace)
476                 perf_event__fprintf_comm(event, stdout);
477
478         if (thread == NULL ||
479             __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
480                 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
481                 err = -1;
482         }
483
484         thread__put(thread);
485
486         return err;
487 }
488
489 int machine__process_lost_event(struct machine *machine __maybe_unused,
490                                 union perf_event *event, struct perf_sample *sample __maybe_unused)
491 {
492         dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
493                     event->lost.id, event->lost.lost);
494         return 0;
495 }
496
497 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
498                                         union perf_event *event, struct perf_sample *sample)
499 {
500         dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
501                     sample->id, event->lost_samples.lost);
502         return 0;
503 }
504
505 static struct dso *machine__findnew_module_dso(struct machine *machine,
506                                                struct kmod_path *m,
507                                                const char *filename)
508 {
509         struct dso *dso;
510
511         pthread_rwlock_wrlock(&machine->dsos.lock);
512
513         dso = __dsos__find(&machine->dsos, m->name, true);
514         if (!dso) {
515                 dso = __dsos__addnew(&machine->dsos, m->name);
516                 if (dso == NULL)
517                         goto out_unlock;
518
519                 if (machine__is_host(machine))
520                         dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
521                 else
522                         dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;
523
524                 /* _KMODULE_COMP should be next to _KMODULE */
525                 if (m->kmod && m->comp)
526                         dso->symtab_type++;
527
528                 dso__set_short_name(dso, strdup(m->name), true);
529                 dso__set_long_name(dso, strdup(filename), true);
530         }
531
532         dso__get(dso);
533 out_unlock:
534         pthread_rwlock_unlock(&machine->dsos.lock);
535         return dso;
536 }
537
538 int machine__process_aux_event(struct machine *machine __maybe_unused,
539                                union perf_event *event)
540 {
541         if (dump_trace)
542                 perf_event__fprintf_aux(event, stdout);
543         return 0;
544 }
545
546 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
547                                         union perf_event *event)
548 {
549         if (dump_trace)
550                 perf_event__fprintf_itrace_start(event, stdout);
551         return 0;
552 }
553
554 int machine__process_switch_event(struct machine *machine __maybe_unused,
555                                   union perf_event *event)
556 {
557         if (dump_trace)
558                 perf_event__fprintf_switch(event, stdout);
559         return 0;
560 }
561
562 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
563                                         const char *filename)
564 {
565         struct map *map = NULL;
566         struct dso *dso;
567         struct kmod_path m;
568
569         if (kmod_path__parse_name(&m, filename))
570                 return NULL;
571
572         map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
573                                        m.name);
574         if (map)
575                 goto out;
576
577         dso = machine__findnew_module_dso(machine, &m, filename);
578         if (dso == NULL)
579                 goto out;
580
581         map = map__new2(start, dso, MAP__FUNCTION);
582         if (map == NULL)
583                 goto out;
584
585         map_groups__insert(&machine->kmaps, map);
586
587 out:
588         free(m.name);
589         return map;
590 }
591
592 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
593 {
594         struct rb_node *nd;
595         size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
596
597         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
598                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
599                 ret += __dsos__fprintf(&pos->dsos.head, fp);
600         }
601
602         return ret;
603 }
604
605 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
606                                      bool (skip)(struct dso *dso, int parm), int parm)
607 {
608         return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
609 }
610
611 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
612                                      bool (skip)(struct dso *dso, int parm), int parm)
613 {
614         struct rb_node *nd;
615         size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
616
617         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
618                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
619                 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
620         }
621         return ret;
622 }
623
624 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
625 {
626         int i;
627         size_t printed = 0;
628         struct dso *kdso = machine__kernel_map(machine)->dso;
629
630         if (kdso->has_build_id) {
631                 char filename[PATH_MAX];
632                 if (dso__build_id_filename(kdso, filename, sizeof(filename)))
633                         printed += fprintf(fp, "[0] %s\n", filename);
634         }
635
636         for (i = 0; i < vmlinux_path__nr_entries; ++i)
637                 printed += fprintf(fp, "[%d] %s\n",
638                                    i + kdso->has_build_id, vmlinux_path[i]);
639
640         return printed;
641 }
642
643 size_t machine__fprintf(struct machine *machine, FILE *fp)
644 {
645         size_t ret = 0;
646         struct rb_node *nd;
647
648         pthread_rwlock_rdlock(&machine->threads_lock);
649
650         for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
651                 struct thread *pos = rb_entry(nd, struct thread, rb_node);
652
653                 ret += thread__fprintf(pos, fp);
654         }
655
656         pthread_rwlock_unlock(&machine->threads_lock);
657
658         return ret;
659 }
660
661 static struct dso *machine__get_kernel(struct machine *machine)
662 {
663         const char *vmlinux_name = NULL;
664         struct dso *kernel;
665
666         if (machine__is_host(machine)) {
667                 vmlinux_name = symbol_conf.vmlinux_name;
668                 if (!vmlinux_name)
669                         vmlinux_name = "[kernel.kallsyms]";
670
671                 kernel = machine__findnew_kernel(machine, vmlinux_name,
672                                                  "[kernel]", DSO_TYPE_KERNEL);
673         } else {
674                 char bf[PATH_MAX];
675
676                 if (machine__is_default_guest(machine))
677                         vmlinux_name = symbol_conf.default_guest_vmlinux_name;
678                 if (!vmlinux_name)
679                         vmlinux_name = machine__mmap_name(machine, bf,
680                                                           sizeof(bf));
681
682                 kernel = machine__findnew_kernel(machine, vmlinux_name,
683                                                  "[guest.kernel]",
684                                                  DSO_TYPE_GUEST_KERNEL);
685         }
686
687         if (kernel != NULL && (!kernel->has_build_id))
688                 dso__read_running_kernel_build_id(kernel, machine);
689
690         return kernel;
691 }
692
693 struct process_args {
694         u64 start;
695 };
696
697 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
698                                            size_t bufsz)
699 {
700         if (machine__is_default_guest(machine))
701                 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
702         else
703                 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
704 }
705
706 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
707
708 /* Figure out the start address of kernel map from /proc/kallsyms.
709  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
710  * symbol_name if it's not that important.
711  */
712 static u64 machine__get_running_kernel_start(struct machine *machine,
713                                              const char **symbol_name)
714 {
715         char filename[PATH_MAX];
716         int i;
717         const char *name;
718         u64 addr = 0;
719
720         machine__get_kallsyms_filename(machine, filename, PATH_MAX);
721
722         if (symbol__restricted_filename(filename, "/proc/kallsyms"))
723                 return 0;
724
725         for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
726                 addr = kallsyms__get_function_start(filename, name);
727                 if (addr)
728                         break;
729         }
730
731         if (symbol_name)
732                 *symbol_name = name;
733
734         return addr;
735 }
736
737 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
738 {
739         enum map_type type;
740         u64 start = machine__get_running_kernel_start(machine, NULL);
741
742         for (type = 0; type < MAP__NR_TYPES; ++type) {
743                 struct kmap *kmap;
744                 struct map *map;
745
746                 machine->vmlinux_maps[type] = map__new2(start, kernel, type);
747                 if (machine->vmlinux_maps[type] == NULL)
748                         return -1;
749
750                 machine->vmlinux_maps[type]->map_ip =
751                         machine->vmlinux_maps[type]->unmap_ip =
752                                 identity__map_ip;
753                 map = __machine__kernel_map(machine, type);
754                 kmap = map__kmap(map);
755                 if (!kmap)
756                         return -1;
757
758                 kmap->kmaps = &machine->kmaps;
759                 map_groups__insert(&machine->kmaps, map);
760         }
761
762         return 0;
763 }
764
765 void machine__destroy_kernel_maps(struct machine *machine)
766 {
767         enum map_type type;
768
769         for (type = 0; type < MAP__NR_TYPES; ++type) {
770                 struct kmap *kmap;
771                 struct map *map = __machine__kernel_map(machine, type);
772
773                 if (map == NULL)
774                         continue;
775
776                 kmap = map__kmap(map);
777                 map_groups__remove(&machine->kmaps, map);
778                 if (kmap && kmap->ref_reloc_sym) {
779                         /*
780                          * ref_reloc_sym is shared among all maps, so free just
781                          * on one of them.
782                          */
783                         if (type == MAP__FUNCTION) {
784                                 zfree((char **)&kmap->ref_reloc_sym->name);
785                                 zfree(&kmap->ref_reloc_sym);
786                         } else
787                                 kmap->ref_reloc_sym = NULL;
788                 }
789
790                 machine->vmlinux_maps[type] = NULL;
791         }
792 }
793
794 int machines__create_guest_kernel_maps(struct machines *machines)
795 {
796         int ret = 0;
797         struct dirent **namelist = NULL;
798         int i, items = 0;
799         char path[PATH_MAX];
800         pid_t pid;
801         char *endp;
802
803         if (symbol_conf.default_guest_vmlinux_name ||
804             symbol_conf.default_guest_modules ||
805             symbol_conf.default_guest_kallsyms) {
806                 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
807         }
808
809         if (symbol_conf.guestmount) {
810                 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
811                 if (items <= 0)
812                         return -ENOENT;
813                 for (i = 0; i < items; i++) {
814                         if (!isdigit(namelist[i]->d_name[0])) {
815                                 /* Filter out . and .. */
816                                 continue;
817                         }
818                         pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
819                         if ((*endp != '\0') ||
820                             (endp == namelist[i]->d_name) ||
821                             (errno == ERANGE)) {
822                                 pr_debug("invalid directory (%s). Skipping.\n",
823                                          namelist[i]->d_name);
824                                 continue;
825                         }
826                         sprintf(path, "%s/%s/proc/kallsyms",
827                                 symbol_conf.guestmount,
828                                 namelist[i]->d_name);
829                         ret = access(path, R_OK);
830                         if (ret) {
831                                 pr_debug("Can't access file %s\n", path);
832                                 goto failure;
833                         }
834                         machines__create_kernel_maps(machines, pid);
835                 }
836 failure:
837                 free(namelist);
838         }
839
840         return ret;
841 }
842
843 void machines__destroy_kernel_maps(struct machines *machines)
844 {
845         struct rb_node *next = rb_first(&machines->guests);
846
847         machine__destroy_kernel_maps(&machines->host);
848
849         while (next) {
850                 struct machine *pos = rb_entry(next, struct machine, rb_node);
851
852                 next = rb_next(&pos->rb_node);
853                 rb_erase(&pos->rb_node, &machines->guests);
854                 machine__delete(pos);
855         }
856 }
857
858 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
859 {
860         struct machine *machine = machines__findnew(machines, pid);
861
862         if (machine == NULL)
863                 return -1;
864
865         return machine__create_kernel_maps(machine);
866 }
867
868 int machine__load_kallsyms(struct machine *machine, const char *filename,
869                            enum map_type type, symbol_filter_t filter)
870 {
871         struct map *map = machine__kernel_map(machine);
872         int ret = dso__load_kallsyms(map->dso, filename, map, filter);
873
874         if (ret > 0) {
875                 dso__set_loaded(map->dso, type);
876                 /*
877                  * Since /proc/kallsyms will have multiple sessions for the
878                  * kernel, with modules between them, fixup the end of all
879                  * sections.
880                  */
881                 __map_groups__fixup_end(&machine->kmaps, type);
882         }
883
884         return ret;
885 }
886
887 int machine__load_vmlinux_path(struct machine *machine, enum map_type type,
888                                symbol_filter_t filter)
889 {
890         struct map *map = machine__kernel_map(machine);
891         int ret = dso__load_vmlinux_path(map->dso, map, filter);
892
893         if (ret > 0)
894                 dso__set_loaded(map->dso, type);
895
896         return ret;
897 }
898
899 static void map_groups__fixup_end(struct map_groups *mg)
900 {
901         int i;
902         for (i = 0; i < MAP__NR_TYPES; ++i)
903                 __map_groups__fixup_end(mg, i);
904 }
905
906 static char *get_kernel_version(const char *root_dir)
907 {
908         char version[PATH_MAX];
909         FILE *file;
910         char *name, *tmp;
911         const char *prefix = "Linux version ";
912
913         sprintf(version, "%s/proc/version", root_dir);
914         file = fopen(version, "r");
915         if (!file)
916                 return NULL;
917
918         version[0] = '\0';
919         tmp = fgets(version, sizeof(version), file);
920         fclose(file);
921
922         name = strstr(version, prefix);
923         if (!name)
924                 return NULL;
925         name += strlen(prefix);
926         tmp = strchr(name, ' ');
927         if (tmp)
928                 *tmp = '\0';
929
930         return strdup(name);
931 }
932
933 static bool is_kmod_dso(struct dso *dso)
934 {
935         return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
936                dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
937 }
938
939 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
940                                        struct kmod_path *m)
941 {
942         struct map *map;
943         char *long_name;
944
945         map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
946         if (map == NULL)
947                 return 0;
948
949         long_name = strdup(path);
950         if (long_name == NULL)
951                 return -ENOMEM;
952
953         dso__set_long_name(map->dso, long_name, true);
954         dso__kernel_module_get_build_id(map->dso, "");
955
956         /*
957          * Full name could reveal us kmod compression, so
958          * we need to update the symtab_type if needed.
959          */
960         if (m->comp && is_kmod_dso(map->dso))
961                 map->dso->symtab_type++;
962
963         return 0;
964 }
965
966 static int map_groups__set_modules_path_dir(struct map_groups *mg,
967                                 const char *dir_name, int depth)
968 {
969         struct dirent *dent;
970         DIR *dir = opendir(dir_name);
971         int ret = 0;
972
973         if (!dir) {
974                 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
975                 return -1;
976         }
977
978         while ((dent = readdir(dir)) != NULL) {
979                 char path[PATH_MAX];
980                 struct stat st;
981
982                 /*sshfs might return bad dent->d_type, so we have to stat*/
983                 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
984                 if (stat(path, &st))
985                         continue;
986
987                 if (S_ISDIR(st.st_mode)) {
988                         if (!strcmp(dent->d_name, ".") ||
989                             !strcmp(dent->d_name, ".."))
990                                 continue;
991
992                         /* Do not follow top-level source and build symlinks */
993                         if (depth == 0) {
994                                 if (!strcmp(dent->d_name, "source") ||
995                                     !strcmp(dent->d_name, "build"))
996                                         continue;
997                         }
998
999                         ret = map_groups__set_modules_path_dir(mg, path,
1000                                                                depth + 1);
1001                         if (ret < 0)
1002                                 goto out;
1003                 } else {
1004                         struct kmod_path m;
1005
1006                         ret = kmod_path__parse_name(&m, dent->d_name);
1007                         if (ret)
1008                                 goto out;
1009
1010                         if (m.kmod)
1011                                 ret = map_groups__set_module_path(mg, path, &m);
1012
1013                         free(m.name);
1014
1015                         if (ret)
1016                                 goto out;
1017                 }
1018         }
1019
1020 out:
1021         closedir(dir);
1022         return ret;
1023 }
1024
1025 static int machine__set_modules_path(struct machine *machine)
1026 {
1027         char *version;
1028         char modules_path[PATH_MAX];
1029
1030         version = get_kernel_version(machine->root_dir);
1031         if (!version)
1032                 return -1;
1033
1034         snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1035                  machine->root_dir, version);
1036         free(version);
1037
1038         return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1039 }
1040
1041 static int machine__create_module(void *arg, const char *name, u64 start)
1042 {
1043         struct machine *machine = arg;
1044         struct map *map;
1045
1046         map = machine__findnew_module_map(machine, start, name);
1047         if (map == NULL)
1048                 return -1;
1049
1050         dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1051
1052         return 0;
1053 }
1054
1055 static int machine__create_modules(struct machine *machine)
1056 {
1057         const char *modules;
1058         char path[PATH_MAX];
1059
1060         if (machine__is_default_guest(machine)) {
1061                 modules = symbol_conf.default_guest_modules;
1062         } else {
1063                 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1064                 modules = path;
1065         }
1066
1067         if (symbol__restricted_filename(modules, "/proc/modules"))
1068                 return -1;
1069
1070         if (modules__parse(modules, machine, machine__create_module))
1071                 return -1;
1072
1073         if (!machine__set_modules_path(machine))
1074                 return 0;
1075
1076         pr_debug("Problems setting modules path maps, continuing anyway...\n");
1077
1078         return 0;
1079 }
1080
1081 int machine__create_kernel_maps(struct machine *machine)
1082 {
1083         struct dso *kernel = machine__get_kernel(machine);
1084         const char *name;
1085         u64 addr = machine__get_running_kernel_start(machine, &name);
1086         if (!addr)
1087                 return -1;
1088
1089         if (kernel == NULL ||
1090             __machine__create_kernel_maps(machine, kernel) < 0)
1091                 return -1;
1092
1093         if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1094                 if (machine__is_host(machine))
1095                         pr_debug("Problems creating module maps, "
1096                                  "continuing anyway...\n");
1097                 else
1098                         pr_debug("Problems creating module maps for guest %d, "
1099                                  "continuing anyway...\n", machine->pid);
1100         }
1101
1102         /*
1103          * Now that we have all the maps created, just set the ->end of them:
1104          */
1105         map_groups__fixup_end(&machine->kmaps);
1106
1107         if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name,
1108                                              addr)) {
1109                 machine__destroy_kernel_maps(machine);
1110                 return -1;
1111         }
1112
1113         return 0;
1114 }
1115
1116 static void machine__set_kernel_mmap_len(struct machine *machine,
1117                                          union perf_event *event)
1118 {
1119         int i;
1120
1121         for (i = 0; i < MAP__NR_TYPES; i++) {
1122                 machine->vmlinux_maps[i]->start = event->mmap.start;
1123                 machine->vmlinux_maps[i]->end   = (event->mmap.start +
1124                                                    event->mmap.len);
1125                 /*
1126                  * Be a bit paranoid here, some perf.data file came with
1127                  * a zero sized synthesized MMAP event for the kernel.
1128                  */
1129                 if (machine->vmlinux_maps[i]->end == 0)
1130                         machine->vmlinux_maps[i]->end = ~0ULL;
1131         }
1132 }
1133
1134 static bool machine__uses_kcore(struct machine *machine)
1135 {
1136         struct dso *dso;
1137
1138         list_for_each_entry(dso, &machine->dsos.head, node) {
1139                 if (dso__is_kcore(dso))
1140                         return true;
1141         }
1142
1143         return false;
1144 }
1145
1146 static int machine__process_kernel_mmap_event(struct machine *machine,
1147                                               union perf_event *event)
1148 {
1149         struct map *map;
1150         char kmmap_prefix[PATH_MAX];
1151         enum dso_kernel_type kernel_type;
1152         bool is_kernel_mmap;
1153
1154         /* If we have maps from kcore then we do not need or want any others */
1155         if (machine__uses_kcore(machine))
1156                 return 0;
1157
1158         machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1159         if (machine__is_host(machine))
1160                 kernel_type = DSO_TYPE_KERNEL;
1161         else
1162                 kernel_type = DSO_TYPE_GUEST_KERNEL;
1163
1164         is_kernel_mmap = memcmp(event->mmap.filename,
1165                                 kmmap_prefix,
1166                                 strlen(kmmap_prefix) - 1) == 0;
1167         if (event->mmap.filename[0] == '/' ||
1168             (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1169                 map = machine__findnew_module_map(machine, event->mmap.start,
1170                                                   event->mmap.filename);
1171                 if (map == NULL)
1172                         goto out_problem;
1173
1174                 map->end = map->start + event->mmap.len;
1175         } else if (is_kernel_mmap) {
1176                 const char *symbol_name = (event->mmap.filename +
1177                                 strlen(kmmap_prefix));
1178                 /*
1179                  * Should be there already, from the build-id table in
1180                  * the header.
1181                  */
1182                 struct dso *kernel = NULL;
1183                 struct dso *dso;
1184
1185                 pthread_rwlock_rdlock(&machine->dsos.lock);
1186
1187                 list_for_each_entry(dso, &machine->dsos.head, node) {
1188
1189                         /*
1190                          * The cpumode passed to is_kernel_module is not the
1191                          * cpumode of *this* event. If we insist on passing
1192                          * correct cpumode to is_kernel_module, we should
1193                          * record the cpumode when we adding this dso to the
1194                          * linked list.
1195                          *
1196                          * However we don't really need passing correct
1197                          * cpumode.  We know the correct cpumode must be kernel
1198                          * mode (if not, we should not link it onto kernel_dsos
1199                          * list).
1200                          *
1201                          * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1202                          * is_kernel_module() treats it as a kernel cpumode.
1203                          */
1204
1205                         if (!dso->kernel ||
1206                             is_kernel_module(dso->long_name,
1207                                              PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1208                                 continue;
1209
1210
1211                         kernel = dso;
1212                         break;
1213                 }
1214
1215                 pthread_rwlock_unlock(&machine->dsos.lock);
1216
1217                 if (kernel == NULL)
1218                         kernel = machine__findnew_dso(machine, kmmap_prefix);
1219                 if (kernel == NULL)
1220                         goto out_problem;
1221
1222                 kernel->kernel = kernel_type;
1223                 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1224                         dso__put(kernel);
1225                         goto out_problem;
1226                 }
1227
1228                 if (strstr(kernel->long_name, "vmlinux"))
1229                         dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1230
1231                 machine__set_kernel_mmap_len(machine, event);
1232
1233                 /*
1234                  * Avoid using a zero address (kptr_restrict) for the ref reloc
1235                  * symbol. Effectively having zero here means that at record
1236                  * time /proc/sys/kernel/kptr_restrict was non zero.
1237                  */
1238                 if (event->mmap.pgoff != 0) {
1239                         maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1240                                                          symbol_name,
1241                                                          event->mmap.pgoff);
1242                 }
1243
1244                 if (machine__is_default_guest(machine)) {
1245                         /*
1246                          * preload dso of guest kernel and modules
1247                          */
1248                         dso__load(kernel, machine__kernel_map(machine), NULL);
1249                 }
1250         }
1251         return 0;
1252 out_problem:
1253         return -1;
1254 }
1255
1256 int machine__process_mmap2_event(struct machine *machine,
1257                                  union perf_event *event,
1258                                  struct perf_sample *sample __maybe_unused)
1259 {
1260         u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1261         struct thread *thread;
1262         struct map *map;
1263         enum map_type type;
1264         int ret = 0;
1265
1266         if (dump_trace)
1267                 perf_event__fprintf_mmap2(event, stdout);
1268
1269         if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1270             cpumode == PERF_RECORD_MISC_KERNEL) {
1271                 ret = machine__process_kernel_mmap_event(machine, event);
1272                 if (ret < 0)
1273                         goto out_problem;
1274                 return 0;
1275         }
1276
1277         thread = machine__findnew_thread(machine, event->mmap2.pid,
1278                                         event->mmap2.tid);
1279         if (thread == NULL)
1280                 goto out_problem;
1281
1282         if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1283                 type = MAP__VARIABLE;
1284         else
1285                 type = MAP__FUNCTION;
1286
1287         map = map__new(machine, event->mmap2.start,
1288                         event->mmap2.len, event->mmap2.pgoff,
1289                         event->mmap2.pid, event->mmap2.maj,
1290                         event->mmap2.min, event->mmap2.ino,
1291                         event->mmap2.ino_generation,
1292                         event->mmap2.prot,
1293                         event->mmap2.flags,
1294                         event->mmap2.filename, type, thread);
1295
1296         if (map == NULL)
1297                 goto out_problem_map;
1298
1299         thread__insert_map(thread, map);
1300         thread__put(thread);
1301         map__put(map);
1302         return 0;
1303
1304 out_problem_map:
1305         thread__put(thread);
1306 out_problem:
1307         dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1308         return 0;
1309 }
1310
1311 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1312                                 struct perf_sample *sample __maybe_unused)
1313 {
1314         u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1315         struct thread *thread;
1316         struct map *map;
1317         enum map_type type;
1318         int ret = 0;
1319
1320         if (dump_trace)
1321                 perf_event__fprintf_mmap(event, stdout);
1322
1323         if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1324             cpumode == PERF_RECORD_MISC_KERNEL) {
1325                 ret = machine__process_kernel_mmap_event(machine, event);
1326                 if (ret < 0)
1327                         goto out_problem;
1328                 return 0;
1329         }
1330
1331         thread = machine__findnew_thread(machine, event->mmap.pid,
1332                                          event->mmap.tid);
1333         if (thread == NULL)
1334                 goto out_problem;
1335
1336         if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1337                 type = MAP__VARIABLE;
1338         else
1339                 type = MAP__FUNCTION;
1340
1341         map = map__new(machine, event->mmap.start,
1342                         event->mmap.len, event->mmap.pgoff,
1343                         event->mmap.pid, 0, 0, 0, 0, 0, 0,
1344                         event->mmap.filename,
1345                         type, thread);
1346
1347         if (map == NULL)
1348                 goto out_problem_map;
1349
1350         thread__insert_map(thread, map);
1351         thread__put(thread);
1352         map__put(map);
1353         return 0;
1354
1355 out_problem_map:
1356         thread__put(thread);
1357 out_problem:
1358         dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1359         return 0;
1360 }
1361
1362 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1363 {
1364         if (machine->last_match == th)
1365                 machine->last_match = NULL;
1366
1367         BUG_ON(atomic_read(&th->refcnt) == 0);
1368         if (lock)
1369                 pthread_rwlock_wrlock(&machine->threads_lock);
1370         rb_erase_init(&th->rb_node, &machine->threads);
1371         RB_CLEAR_NODE(&th->rb_node);
1372         /*
1373          * Move it first to the dead_threads list, then drop the reference,
1374          * if this is the last reference, then the thread__delete destructor
1375          * will be called and we will remove it from the dead_threads list.
1376          */
1377         list_add_tail(&th->node, &machine->dead_threads);
1378         if (lock)
1379                 pthread_rwlock_unlock(&machine->threads_lock);
1380         thread__put(th);
1381 }
1382
1383 void machine__remove_thread(struct machine *machine, struct thread *th)
1384 {
1385         return __machine__remove_thread(machine, th, true);
1386 }
1387
1388 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1389                                 struct perf_sample *sample)
1390 {
1391         struct thread *thread = machine__find_thread(machine,
1392                                                      event->fork.pid,
1393                                                      event->fork.tid);
1394         struct thread *parent = machine__findnew_thread(machine,
1395                                                         event->fork.ppid,
1396                                                         event->fork.ptid);
1397         int err = 0;
1398
1399         if (dump_trace)
1400                 perf_event__fprintf_task(event, stdout);
1401
1402         /*
1403          * There may be an existing thread that is not actually the parent,
1404          * either because we are processing events out of order, or because the
1405          * (fork) event that would have removed the thread was lost. Assume the
1406          * latter case and continue on as best we can.
1407          */
1408         if (parent->pid_ != (pid_t)event->fork.ppid) {
1409                 dump_printf("removing erroneous parent thread %d/%d\n",
1410                             parent->pid_, parent->tid);
1411                 machine__remove_thread(machine, parent);
1412                 thread__put(parent);
1413                 parent = machine__findnew_thread(machine, event->fork.ppid,
1414                                                  event->fork.ptid);
1415         }
1416
1417         /* if a thread currently exists for the thread id remove it */
1418         if (thread != NULL) {
1419                 machine__remove_thread(machine, thread);
1420                 thread__put(thread);
1421         }
1422
1423         thread = machine__findnew_thread(machine, event->fork.pid,
1424                                          event->fork.tid);
1425
1426         if (thread == NULL || parent == NULL ||
1427             thread__fork(thread, parent, sample->time) < 0) {
1428                 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1429                 err = -1;
1430         }
1431         thread__put(thread);
1432         thread__put(parent);
1433
1434         return err;
1435 }
1436
1437 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1438                                 struct perf_sample *sample __maybe_unused)
1439 {
1440         struct thread *thread = machine__find_thread(machine,
1441                                                      event->fork.pid,
1442                                                      event->fork.tid);
1443
1444         if (dump_trace)
1445                 perf_event__fprintf_task(event, stdout);
1446
1447         if (thread != NULL) {
1448                 thread__exited(thread);
1449                 thread__put(thread);
1450         }
1451
1452         return 0;
1453 }
1454
1455 int machine__process_event(struct machine *machine, union perf_event *event,
1456                            struct perf_sample *sample)
1457 {
1458         int ret;
1459
1460         switch (event->header.type) {
1461         case PERF_RECORD_COMM:
1462                 ret = machine__process_comm_event(machine, event, sample); break;
1463         case PERF_RECORD_MMAP:
1464                 ret = machine__process_mmap_event(machine, event, sample); break;
1465         case PERF_RECORD_MMAP2:
1466                 ret = machine__process_mmap2_event(machine, event, sample); break;
1467         case PERF_RECORD_FORK:
1468                 ret = machine__process_fork_event(machine, event, sample); break;
1469         case PERF_RECORD_EXIT:
1470                 ret = machine__process_exit_event(machine, event, sample); break;
1471         case PERF_RECORD_LOST:
1472                 ret = machine__process_lost_event(machine, event, sample); break;
1473         case PERF_RECORD_AUX:
1474                 ret = machine__process_aux_event(machine, event); break;
1475         case PERF_RECORD_ITRACE_START:
1476                 ret = machine__process_itrace_start_event(machine, event); break;
1477         case PERF_RECORD_LOST_SAMPLES:
1478                 ret = machine__process_lost_samples_event(machine, event, sample); break;
1479         case PERF_RECORD_SWITCH:
1480         case PERF_RECORD_SWITCH_CPU_WIDE:
1481                 ret = machine__process_switch_event(machine, event); break;
1482         default:
1483                 ret = -1;
1484                 break;
1485         }
1486
1487         return ret;
1488 }
1489
1490 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1491 {
1492         if (sym->name && !regexec(regex, sym->name, 0, NULL, 0))
1493                 return 1;
1494         return 0;
1495 }
1496
1497 static void ip__resolve_ams(struct thread *thread,
1498                             struct addr_map_symbol *ams,
1499                             u64 ip)
1500 {
1501         struct addr_location al;
1502
1503         memset(&al, 0, sizeof(al));
1504         /*
1505          * We cannot use the header.misc hint to determine whether a
1506          * branch stack address is user, kernel, guest, hypervisor.
1507          * Branches may straddle the kernel/user/hypervisor boundaries.
1508          * Thus, we have to try consecutively until we find a match
1509          * or else, the symbol is unknown
1510          */
1511         thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1512
1513         ams->addr = ip;
1514         ams->al_addr = al.addr;
1515         ams->sym = al.sym;
1516         ams->map = al.map;
1517 }
1518
1519 static void ip__resolve_data(struct thread *thread,
1520                              u8 m, struct addr_map_symbol *ams, u64 addr)
1521 {
1522         struct addr_location al;
1523
1524         memset(&al, 0, sizeof(al));
1525
1526         thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1527         if (al.map == NULL) {
1528                 /*
1529                  * some shared data regions have execute bit set which puts
1530                  * their mapping in the MAP__FUNCTION type array.
1531                  * Check there as a fallback option before dropping the sample.
1532                  */
1533                 thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1534         }
1535
1536         ams->addr = addr;
1537         ams->al_addr = al.addr;
1538         ams->sym = al.sym;
1539         ams->map = al.map;
1540 }
1541
1542 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1543                                      struct addr_location *al)
1544 {
1545         struct mem_info *mi = zalloc(sizeof(*mi));
1546
1547         if (!mi)
1548                 return NULL;
1549
1550         ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1551         ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1552         mi->data_src.val = sample->data_src;
1553
1554         return mi;
1555 }
1556
1557 static int add_callchain_ip(struct thread *thread,
1558                             struct symbol **parent,
1559                             struct addr_location *root_al,
1560                             u8 *cpumode,
1561                             u64 ip)
1562 {
1563         struct addr_location al;
1564
1565         al.filtered = 0;
1566         al.sym = NULL;
1567         if (!cpumode) {
1568                 thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1569                                                    ip, &al);
1570         } else {
1571                 if (ip >= PERF_CONTEXT_MAX) {
1572                         switch (ip) {
1573                         case PERF_CONTEXT_HV:
1574                                 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
1575                                 break;
1576                         case PERF_CONTEXT_KERNEL:
1577                                 *cpumode = PERF_RECORD_MISC_KERNEL;
1578                                 break;
1579                         case PERF_CONTEXT_USER:
1580                                 *cpumode = PERF_RECORD_MISC_USER;
1581                                 break;
1582                         default:
1583                                 pr_debug("invalid callchain context: "
1584                                          "%"PRId64"\n", (s64) ip);
1585                                 /*
1586                                  * It seems the callchain is corrupted.
1587                                  * Discard all.
1588                                  */
1589                                 callchain_cursor_reset(&callchain_cursor);
1590                                 return 1;
1591                         }
1592                         return 0;
1593                 }
1594                 thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1595                                            ip, &al);
1596         }
1597
1598         if (al.sym != NULL) {
1599                 if (sort__has_parent && !*parent &&
1600                     symbol__match_regex(al.sym, &parent_regex))
1601                         *parent = al.sym;
1602                 else if (have_ignore_callees && root_al &&
1603                   symbol__match_regex(al.sym, &ignore_callees_regex)) {
1604                         /* Treat this symbol as the root,
1605                            forgetting its callees. */
1606                         *root_al = al;
1607                         callchain_cursor_reset(&callchain_cursor);
1608                 }
1609         }
1610
1611         return callchain_cursor_append(&callchain_cursor, al.addr, al.map, al.sym);
1612 }
1613
1614 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1615                                            struct addr_location *al)
1616 {
1617         unsigned int i;
1618         const struct branch_stack *bs = sample->branch_stack;
1619         struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1620
1621         if (!bi)
1622                 return NULL;
1623
1624         for (i = 0; i < bs->nr; i++) {
1625                 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1626                 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1627                 bi[i].flags = bs->entries[i].flags;
1628         }
1629         return bi;
1630 }
1631
1632 #define CHASHSZ 127
1633 #define CHASHBITS 7
1634 #define NO_ENTRY 0xff
1635
1636 #define PERF_MAX_BRANCH_DEPTH 127
1637
1638 /* Remove loops. */
1639 static int remove_loops(struct branch_entry *l, int nr)
1640 {
1641         int i, j, off;
1642         unsigned char chash[CHASHSZ];
1643
1644         memset(chash, NO_ENTRY, sizeof(chash));
1645
1646         BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1647
1648         for (i = 0; i < nr; i++) {
1649                 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1650
1651                 /* no collision handling for now */
1652                 if (chash[h] == NO_ENTRY) {
1653                         chash[h] = i;
1654                 } else if (l[chash[h]].from == l[i].from) {
1655                         bool is_loop = true;
1656                         /* check if it is a real loop */
1657                         off = 0;
1658                         for (j = chash[h]; j < i && i + off < nr; j++, off++)
1659                                 if (l[j].from != l[i + off].from) {
1660                                         is_loop = false;
1661                                         break;
1662                                 }
1663                         if (is_loop) {
1664                                 memmove(l + i, l + i + off,
1665                                         (nr - (i + off)) * sizeof(*l));
1666                                 nr -= off;
1667                         }
1668                 }
1669         }
1670         return nr;
1671 }
1672
1673 /*
1674  * Recolve LBR callstack chain sample
1675  * Return:
1676  * 1 on success get LBR callchain information
1677  * 0 no available LBR callchain information, should try fp
1678  * negative error code on other errors.
1679  */
1680 static int resolve_lbr_callchain_sample(struct thread *thread,
1681                                         struct perf_sample *sample,
1682                                         struct symbol **parent,
1683                                         struct addr_location *root_al,
1684                                         int max_stack)
1685 {
1686         struct ip_callchain *chain = sample->callchain;
1687         int chain_nr = min(max_stack, (int)chain->nr);
1688         u8 cpumode = PERF_RECORD_MISC_USER;
1689         int i, j, err;
1690         u64 ip;
1691
1692         for (i = 0; i < chain_nr; i++) {
1693                 if (chain->ips[i] == PERF_CONTEXT_USER)
1694                         break;
1695         }
1696
1697         /* LBR only affects the user callchain */
1698         if (i != chain_nr) {
1699                 struct branch_stack *lbr_stack = sample->branch_stack;
1700                 int lbr_nr = lbr_stack->nr;
1701                 /*
1702                  * LBR callstack can only get user call chain.
1703                  * The mix_chain_nr is kernel call chain
1704                  * number plus LBR user call chain number.
1705                  * i is kernel call chain number,
1706                  * 1 is PERF_CONTEXT_USER,
1707                  * lbr_nr + 1 is the user call chain number.
1708                  * For details, please refer to the comments
1709                  * in callchain__printf
1710                  */
1711                 int mix_chain_nr = i + 1 + lbr_nr + 1;
1712
1713                 if (mix_chain_nr > PERF_MAX_STACK_DEPTH + PERF_MAX_BRANCH_DEPTH) {
1714                         pr_warning("corrupted callchain. skipping...\n");
1715                         return 0;
1716                 }
1717
1718                 for (j = 0; j < mix_chain_nr; j++) {
1719                         if (callchain_param.order == ORDER_CALLEE) {
1720                                 if (j < i + 1)
1721                                         ip = chain->ips[j];
1722                                 else if (j > i + 1)
1723                                         ip = lbr_stack->entries[j - i - 2].from;
1724                                 else
1725                                         ip = lbr_stack->entries[0].to;
1726                         } else {
1727                                 if (j < lbr_nr)
1728                                         ip = lbr_stack->entries[lbr_nr - j - 1].from;
1729                                 else if (j > lbr_nr)
1730                                         ip = chain->ips[i + 1 - (j - lbr_nr)];
1731                                 else
1732                                         ip = lbr_stack->entries[0].to;
1733                         }
1734
1735                         err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
1736                         if (err)
1737                                 return (err < 0) ? err : 0;
1738                 }
1739                 return 1;
1740         }
1741
1742         return 0;
1743 }
1744
1745 static int thread__resolve_callchain_sample(struct thread *thread,
1746                                             struct perf_evsel *evsel,
1747                                             struct perf_sample *sample,
1748                                             struct symbol **parent,
1749                                             struct addr_location *root_al,
1750                                             int max_stack)
1751 {
1752         struct branch_stack *branch = sample->branch_stack;
1753         struct ip_callchain *chain = sample->callchain;
1754         int chain_nr = min(max_stack, (int)chain->nr);
1755         u8 cpumode = PERF_RECORD_MISC_USER;
1756         int i, j, err;
1757         int skip_idx = -1;
1758         int first_call = 0;
1759
1760         callchain_cursor_reset(&callchain_cursor);
1761
1762         if (has_branch_callstack(evsel)) {
1763                 err = resolve_lbr_callchain_sample(thread, sample, parent,
1764                                                    root_al, max_stack);
1765                 if (err)
1766                         return (err < 0) ? err : 0;
1767         }
1768
1769         /*
1770          * Based on DWARF debug information, some architectures skip
1771          * a callchain entry saved by the kernel.
1772          */
1773         if (chain->nr < PERF_MAX_STACK_DEPTH)
1774                 skip_idx = arch_skip_callchain_idx(thread, chain);
1775
1776         /*
1777          * Add branches to call stack for easier browsing. This gives
1778          * more context for a sample than just the callers.
1779          *
1780          * This uses individual histograms of paths compared to the
1781          * aggregated histograms the normal LBR mode uses.
1782          *
1783          * Limitations for now:
1784          * - No extra filters
1785          * - No annotations (should annotate somehow)
1786          */
1787
1788         if (branch && callchain_param.branch_callstack) {
1789                 int nr = min(max_stack, (int)branch->nr);
1790                 struct branch_entry be[nr];
1791
1792                 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
1793                         pr_warning("corrupted branch chain. skipping...\n");
1794                         goto check_calls;
1795                 }
1796
1797                 for (i = 0; i < nr; i++) {
1798                         if (callchain_param.order == ORDER_CALLEE) {
1799                                 be[i] = branch->entries[i];
1800                                 /*
1801                                  * Check for overlap into the callchain.
1802                                  * The return address is one off compared to
1803                                  * the branch entry. To adjust for this
1804                                  * assume the calling instruction is not longer
1805                                  * than 8 bytes.
1806                                  */
1807                                 if (i == skip_idx ||
1808                                     chain->ips[first_call] >= PERF_CONTEXT_MAX)
1809                                         first_call++;
1810                                 else if (be[i].from < chain->ips[first_call] &&
1811                                     be[i].from >= chain->ips[first_call] - 8)
1812                                         first_call++;
1813                         } else
1814                                 be[i] = branch->entries[branch->nr - i - 1];
1815                 }
1816
1817                 nr = remove_loops(be, nr);
1818
1819                 for (i = 0; i < nr; i++) {
1820                         err = add_callchain_ip(thread, parent, root_al,
1821                                                NULL, be[i].to);
1822                         if (!err)
1823                                 err = add_callchain_ip(thread, parent, root_al,
1824                                                        NULL, be[i].from);
1825                         if (err == -EINVAL)
1826                                 break;
1827                         if (err)
1828                                 return err;
1829                 }
1830                 chain_nr -= nr;
1831         }
1832
1833 check_calls:
1834         if (chain->nr > PERF_MAX_STACK_DEPTH && (int)chain->nr > max_stack) {
1835                 pr_warning("corrupted callchain. skipping...\n");
1836                 return 0;
1837         }
1838
1839         for (i = first_call; i < chain_nr; i++) {
1840                 u64 ip;
1841
1842                 if (callchain_param.order == ORDER_CALLEE)
1843                         j = i;
1844                 else
1845                         j = chain->nr - i - 1;
1846
1847 #ifdef HAVE_SKIP_CALLCHAIN_IDX
1848                 if (j == skip_idx)
1849                         continue;
1850 #endif
1851                 ip = chain->ips[j];
1852
1853                 err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
1854
1855                 if (err)
1856                         return (err < 0) ? err : 0;
1857         }
1858
1859         return 0;
1860 }
1861
1862 static int unwind_entry(struct unwind_entry *entry, void *arg)
1863 {
1864         struct callchain_cursor *cursor = arg;
1865         return callchain_cursor_append(cursor, entry->ip,
1866                                        entry->map, entry->sym);
1867 }
1868
1869 int thread__resolve_callchain(struct thread *thread,
1870                               struct perf_evsel *evsel,
1871                               struct perf_sample *sample,
1872                               struct symbol **parent,
1873                               struct addr_location *root_al,
1874                               int max_stack)
1875 {
1876         int ret = thread__resolve_callchain_sample(thread, evsel,
1877                                                    sample, parent,
1878                                                    root_al, max_stack);
1879         if (ret)
1880                 return ret;
1881
1882         /* Can we do dwarf post unwind? */
1883         if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
1884               (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
1885                 return 0;
1886
1887         /* Bail out if nothing was captured. */
1888         if ((!sample->user_regs.regs) ||
1889             (!sample->user_stack.size))
1890                 return 0;
1891
1892         return unwind__get_entries(unwind_entry, &callchain_cursor,
1893                                    thread, sample, max_stack);
1894
1895 }
1896
1897 int machine__for_each_thread(struct machine *machine,
1898                              int (*fn)(struct thread *thread, void *p),
1899                              void *priv)
1900 {
1901         struct rb_node *nd;
1902         struct thread *thread;
1903         int rc = 0;
1904
1905         for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
1906                 thread = rb_entry(nd, struct thread, rb_node);
1907                 rc = fn(thread, priv);
1908                 if (rc != 0)
1909                         return rc;
1910         }
1911
1912         list_for_each_entry(thread, &machine->dead_threads, node) {
1913                 rc = fn(thread, priv);
1914                 if (rc != 0)
1915                         return rc;
1916         }
1917         return rc;
1918 }
1919
1920 int machines__for_each_thread(struct machines *machines,
1921                               int (*fn)(struct thread *thread, void *p),
1922                               void *priv)
1923 {
1924         struct rb_node *nd;
1925         int rc = 0;
1926
1927         rc = machine__for_each_thread(&machines->host, fn, priv);
1928         if (rc != 0)
1929                 return rc;
1930
1931         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
1932                 struct machine *machine = rb_entry(nd, struct machine, rb_node);
1933
1934                 rc = machine__for_each_thread(machine, fn, priv);
1935                 if (rc != 0)
1936                         return rc;
1937         }
1938         return rc;
1939 }
1940
1941 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
1942                                   struct target *target, struct thread_map *threads,
1943                                   perf_event__handler_t process, bool data_mmap,
1944                                   unsigned int proc_map_timeout)
1945 {
1946         if (target__has_task(target))
1947                 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
1948         else if (target__has_cpu(target))
1949                 return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
1950         /* command specified */
1951         return 0;
1952 }
1953
1954 pid_t machine__get_current_tid(struct machine *machine, int cpu)
1955 {
1956         if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
1957                 return -1;
1958
1959         return machine->current_tid[cpu];
1960 }
1961
1962 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
1963                              pid_t tid)
1964 {
1965         struct thread *thread;
1966
1967         if (cpu < 0)
1968                 return -EINVAL;
1969
1970         if (!machine->current_tid) {
1971                 int i;
1972
1973                 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
1974                 if (!machine->current_tid)
1975                         return -ENOMEM;
1976                 for (i = 0; i < MAX_NR_CPUS; i++)
1977                         machine->current_tid[i] = -1;
1978         }
1979
1980         if (cpu >= MAX_NR_CPUS) {
1981                 pr_err("Requested CPU %d too large. ", cpu);
1982                 pr_err("Consider raising MAX_NR_CPUS\n");
1983                 return -EINVAL;
1984         }
1985
1986         machine->current_tid[cpu] = tid;
1987
1988         thread = machine__findnew_thread(machine, pid, tid);
1989         if (!thread)
1990                 return -ENOMEM;
1991
1992         thread->cpu = cpu;
1993         thread__put(thread);
1994
1995         return 0;
1996 }
1997
1998 int machine__get_kernel_start(struct machine *machine)
1999 {
2000         struct map *map = machine__kernel_map(machine);
2001         int err = 0;
2002
2003         /*
2004          * The only addresses above 2^63 are kernel addresses of a 64-bit
2005          * kernel.  Note that addresses are unsigned so that on a 32-bit system
2006          * all addresses including kernel addresses are less than 2^32.  In
2007          * that case (32-bit system), if the kernel mapping is unknown, all
2008          * addresses will be assumed to be in user space - see
2009          * machine__kernel_ip().
2010          */
2011         machine->kernel_start = 1ULL << 63;
2012         if (map) {
2013                 err = map__load(map, machine->symbol_filter);
2014                 if (map->start)
2015                         machine->kernel_start = map->start;
2016         }
2017         return err;
2018 }
2019
2020 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2021 {
2022         return dsos__findnew(&machine->dsos, filename);
2023 }
2024
2025 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2026 {
2027         struct machine *machine = vmachine;
2028         struct map *map;
2029         struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map,  NULL);
2030
2031         if (sym == NULL)
2032                 return NULL;
2033
2034         *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2035         *addrp = map->unmap_ip(map, sym->start);
2036         return sym->name;
2037 }