]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - virt/kvm/arm/vgic.c
Merge branch 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / virt / kvm / arm / vgic.c
1 /*
2  * Copyright (C) 2012 ARM Ltd.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  */
18
19 #include <linux/cpu.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29
30 #include <asm/kvm_emulate.h>
31 #include <asm/kvm_arm.h>
32 #include <asm/kvm_mmu.h>
33 #include <trace/events/kvm.h>
34 #include <asm/kvm.h>
35 #include <kvm/iodev.h>
36
37 /*
38  * How the whole thing works (courtesy of Christoffer Dall):
39  *
40  * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
41  *   something is pending on the CPU interface.
42  * - Interrupts that are pending on the distributor are stored on the
43  *   vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
44  *   ioctls and guest mmio ops, and other in-kernel peripherals such as the
45  *   arch. timers).
46  * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
47  *   recalculated
48  * - To calculate the oracle, we need info for each cpu from
49  *   compute_pending_for_cpu, which considers:
50  *   - PPI: dist->irq_pending & dist->irq_enable
51  *   - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
52  *   - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
53  *     registers, stored on each vcpu. We only keep one bit of
54  *     information per interrupt, making sure that only one vcpu can
55  *     accept the interrupt.
56  * - If any of the above state changes, we must recalculate the oracle.
57  * - The same is true when injecting an interrupt, except that we only
58  *   consider a single interrupt at a time. The irq_spi_cpu array
59  *   contains the target CPU for each SPI.
60  *
61  * The handling of level interrupts adds some extra complexity. We
62  * need to track when the interrupt has been EOIed, so we can sample
63  * the 'line' again. This is achieved as such:
64  *
65  * - When a level interrupt is moved onto a vcpu, the corresponding
66  *   bit in irq_queued is set. As long as this bit is set, the line
67  *   will be ignored for further interrupts. The interrupt is injected
68  *   into the vcpu with the GICH_LR_EOI bit set (generate a
69  *   maintenance interrupt on EOI).
70  * - When the interrupt is EOIed, the maintenance interrupt fires,
71  *   and clears the corresponding bit in irq_queued. This allows the
72  *   interrupt line to be sampled again.
73  * - Note that level-triggered interrupts can also be set to pending from
74  *   writes to GICD_ISPENDRn and lowering the external input line does not
75  *   cause the interrupt to become inactive in such a situation.
76  *   Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
77  *   inactive as long as the external input line is held high.
78  *
79  *
80  * Initialization rules: there are multiple stages to the vgic
81  * initialization, both for the distributor and the CPU interfaces.
82  *
83  * Distributor:
84  *
85  * - kvm_vgic_early_init(): initialization of static data that doesn't
86  *   depend on any sizing information or emulation type. No allocation
87  *   is allowed there.
88  *
89  * - vgic_init(): allocation and initialization of the generic data
90  *   structures that depend on sizing information (number of CPUs,
91  *   number of interrupts). Also initializes the vcpu specific data
92  *   structures. Can be executed lazily for GICv2.
93  *   [to be renamed to kvm_vgic_init??]
94  *
95  * CPU Interface:
96  *
97  * - kvm_vgic_cpu_early_init(): initialization of static data that
98  *   doesn't depend on any sizing information or emulation type. No
99  *   allocation is allowed there.
100  */
101
102 #include "vgic.h"
103
104 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
105 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
106 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
107 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
108 static struct irq_phys_map *vgic_irq_map_search(struct kvm_vcpu *vcpu,
109                                                 int virt_irq);
110
111 static const struct vgic_ops *vgic_ops;
112 static const struct vgic_params *vgic;
113
114 static void add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
115 {
116         vcpu->kvm->arch.vgic.vm_ops.add_sgi_source(vcpu, irq, source);
117 }
118
119 static bool queue_sgi(struct kvm_vcpu *vcpu, int irq)
120 {
121         return vcpu->kvm->arch.vgic.vm_ops.queue_sgi(vcpu, irq);
122 }
123
124 int kvm_vgic_map_resources(struct kvm *kvm)
125 {
126         return kvm->arch.vgic.vm_ops.map_resources(kvm, vgic);
127 }
128
129 /*
130  * struct vgic_bitmap contains a bitmap made of unsigned longs, but
131  * extracts u32s out of them.
132  *
133  * This does not work on 64-bit BE systems, because the bitmap access
134  * will store two consecutive 32-bit words with the higher-addressed
135  * register's bits at the lower index and the lower-addressed register's
136  * bits at the higher index.
137  *
138  * Therefore, swizzle the register index when accessing the 32-bit word
139  * registers to access the right register's value.
140  */
141 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
142 #define REG_OFFSET_SWIZZLE      1
143 #else
144 #define REG_OFFSET_SWIZZLE      0
145 #endif
146
147 static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
148 {
149         int nr_longs;
150
151         nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
152
153         b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
154         if (!b->private)
155                 return -ENOMEM;
156
157         b->shared = b->private + nr_cpus;
158
159         return 0;
160 }
161
162 static void vgic_free_bitmap(struct vgic_bitmap *b)
163 {
164         kfree(b->private);
165         b->private = NULL;
166         b->shared = NULL;
167 }
168
169 /*
170  * Call this function to convert a u64 value to an unsigned long * bitmask
171  * in a way that works on both 32-bit and 64-bit LE and BE platforms.
172  *
173  * Warning: Calling this function may modify *val.
174  */
175 static unsigned long *u64_to_bitmask(u64 *val)
176 {
177 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32
178         *val = (*val >> 32) | (*val << 32);
179 #endif
180         return (unsigned long *)val;
181 }
182
183 u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset)
184 {
185         offset >>= 2;
186         if (!offset)
187                 return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
188         else
189                 return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
190 }
191
192 static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
193                                    int cpuid, int irq)
194 {
195         if (irq < VGIC_NR_PRIVATE_IRQS)
196                 return test_bit(irq, x->private + cpuid);
197
198         return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
199 }
200
201 void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
202                              int irq, int val)
203 {
204         unsigned long *reg;
205
206         if (irq < VGIC_NR_PRIVATE_IRQS) {
207                 reg = x->private + cpuid;
208         } else {
209                 reg = x->shared;
210                 irq -= VGIC_NR_PRIVATE_IRQS;
211         }
212
213         if (val)
214                 set_bit(irq, reg);
215         else
216                 clear_bit(irq, reg);
217 }
218
219 static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
220 {
221         return x->private + cpuid;
222 }
223
224 unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
225 {
226         return x->shared;
227 }
228
229 static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
230 {
231         int size;
232
233         size  = nr_cpus * VGIC_NR_PRIVATE_IRQS;
234         size += nr_irqs - VGIC_NR_PRIVATE_IRQS;
235
236         x->private = kzalloc(size, GFP_KERNEL);
237         if (!x->private)
238                 return -ENOMEM;
239
240         x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
241         return 0;
242 }
243
244 static void vgic_free_bytemap(struct vgic_bytemap *b)
245 {
246         kfree(b->private);
247         b->private = NULL;
248         b->shared = NULL;
249 }
250
251 u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
252 {
253         u32 *reg;
254
255         if (offset < VGIC_NR_PRIVATE_IRQS) {
256                 reg = x->private;
257                 offset += cpuid * VGIC_NR_PRIVATE_IRQS;
258         } else {
259                 reg = x->shared;
260                 offset -= VGIC_NR_PRIVATE_IRQS;
261         }
262
263         return reg + (offset / sizeof(u32));
264 }
265
266 #define VGIC_CFG_LEVEL  0
267 #define VGIC_CFG_EDGE   1
268
269 static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
270 {
271         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
272         int irq_val;
273
274         irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
275         return irq_val == VGIC_CFG_EDGE;
276 }
277
278 static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
279 {
280         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
281
282         return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
283 }
284
285 static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
286 {
287         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
288
289         return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
290 }
291
292 static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
293 {
294         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
295
296         return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
297 }
298
299 static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
300 {
301         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
302
303         vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
304 }
305
306 static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
307 {
308         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
309
310         vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
311 }
312
313 static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
314 {
315         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
316
317         vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
318 }
319
320 static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
321 {
322         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
323
324         vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
325 }
326
327 static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
328 {
329         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
330
331         return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
332 }
333
334 static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
335 {
336         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
337
338         vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
339 }
340
341 static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
342 {
343         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
344
345         vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
346 }
347
348 static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
349 {
350         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
351
352         return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
353 }
354
355 static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
356 {
357         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
358
359         vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
360 }
361
362 static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
363 {
364         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
365
366         return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
367 }
368
369 void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
370 {
371         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
372
373         vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
374 }
375
376 void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
377 {
378         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
379
380         vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
381 }
382
383 static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
384 {
385         if (irq < VGIC_NR_PRIVATE_IRQS)
386                 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
387         else
388                 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
389                         vcpu->arch.vgic_cpu.pending_shared);
390 }
391
392 void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
393 {
394         if (irq < VGIC_NR_PRIVATE_IRQS)
395                 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
396         else
397                 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
398                           vcpu->arch.vgic_cpu.pending_shared);
399 }
400
401 static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
402 {
403         return !vgic_irq_is_queued(vcpu, irq);
404 }
405
406 /**
407  * vgic_reg_access - access vgic register
408  * @mmio:   pointer to the data describing the mmio access
409  * @reg:    pointer to the virtual backing of vgic distributor data
410  * @offset: least significant 2 bits used for word offset
411  * @mode:   ACCESS_ mode (see defines above)
412  *
413  * Helper to make vgic register access easier using one of the access
414  * modes defined for vgic register access
415  * (read,raz,write-ignored,setbit,clearbit,write)
416  */
417 void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
418                      phys_addr_t offset, int mode)
419 {
420         int word_offset = (offset & 3) * 8;
421         u32 mask = (1UL << (mmio->len * 8)) - 1;
422         u32 regval;
423
424         /*
425          * Any alignment fault should have been delivered to the guest
426          * directly (ARM ARM B3.12.7 "Prioritization of aborts").
427          */
428
429         if (reg) {
430                 regval = *reg;
431         } else {
432                 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
433                 regval = 0;
434         }
435
436         if (mmio->is_write) {
437                 u32 data = mmio_data_read(mmio, mask) << word_offset;
438                 switch (ACCESS_WRITE_MASK(mode)) {
439                 case ACCESS_WRITE_IGNORED:
440                         return;
441
442                 case ACCESS_WRITE_SETBIT:
443                         regval |= data;
444                         break;
445
446                 case ACCESS_WRITE_CLEARBIT:
447                         regval &= ~data;
448                         break;
449
450                 case ACCESS_WRITE_VALUE:
451                         regval = (regval & ~(mask << word_offset)) | data;
452                         break;
453                 }
454                 *reg = regval;
455         } else {
456                 switch (ACCESS_READ_MASK(mode)) {
457                 case ACCESS_READ_RAZ:
458                         regval = 0;
459                         /* fall through */
460
461                 case ACCESS_READ_VALUE:
462                         mmio_data_write(mmio, mask, regval >> word_offset);
463                 }
464         }
465 }
466
467 bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
468                         phys_addr_t offset)
469 {
470         vgic_reg_access(mmio, NULL, offset,
471                         ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
472         return false;
473 }
474
475 bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
476                             phys_addr_t offset, int vcpu_id, int access)
477 {
478         u32 *reg;
479         int mode = ACCESS_READ_VALUE | access;
480         struct kvm_vcpu *target_vcpu = kvm_get_vcpu(kvm, vcpu_id);
481
482         reg = vgic_bitmap_get_reg(&kvm->arch.vgic.irq_enabled, vcpu_id, offset);
483         vgic_reg_access(mmio, reg, offset, mode);
484         if (mmio->is_write) {
485                 if (access & ACCESS_WRITE_CLEARBIT) {
486                         if (offset < 4) /* Force SGI enabled */
487                                 *reg |= 0xffff;
488                         vgic_retire_disabled_irqs(target_vcpu);
489                 }
490                 vgic_update_state(kvm);
491                 return true;
492         }
493
494         return false;
495 }
496
497 bool vgic_handle_set_pending_reg(struct kvm *kvm,
498                                  struct kvm_exit_mmio *mmio,
499                                  phys_addr_t offset, int vcpu_id)
500 {
501         u32 *reg, orig;
502         u32 level_mask;
503         int mode = ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT;
504         struct vgic_dist *dist = &kvm->arch.vgic;
505
506         reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu_id, offset);
507         level_mask = (~(*reg));
508
509         /* Mark both level and edge triggered irqs as pending */
510         reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
511         orig = *reg;
512         vgic_reg_access(mmio, reg, offset, mode);
513
514         if (mmio->is_write) {
515                 /* Set the soft-pending flag only for level-triggered irqs */
516                 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
517                                           vcpu_id, offset);
518                 vgic_reg_access(mmio, reg, offset, mode);
519                 *reg &= level_mask;
520
521                 /* Ignore writes to SGIs */
522                 if (offset < 2) {
523                         *reg &= ~0xffff;
524                         *reg |= orig & 0xffff;
525                 }
526
527                 vgic_update_state(kvm);
528                 return true;
529         }
530
531         return false;
532 }
533
534 /*
535  * If a mapped interrupt's state has been modified by the guest such that it
536  * is no longer active or pending, without it have gone through the sync path,
537  * then the map->active field must be cleared so the interrupt can be taken
538  * again.
539  */
540 static void vgic_handle_clear_mapped_irq(struct kvm_vcpu *vcpu)
541 {
542         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
543         struct list_head *root;
544         struct irq_phys_map_entry *entry;
545         struct irq_phys_map *map;
546
547         rcu_read_lock();
548
549         /* Check for PPIs */
550         root = &vgic_cpu->irq_phys_map_list;
551         list_for_each_entry_rcu(entry, root, entry) {
552                 map = &entry->map;
553
554                 if (!vgic_dist_irq_is_pending(vcpu, map->virt_irq) &&
555                     !vgic_irq_is_active(vcpu, map->virt_irq))
556                         map->active = false;
557         }
558
559         rcu_read_unlock();
560 }
561
562 bool vgic_handle_clear_pending_reg(struct kvm *kvm,
563                                    struct kvm_exit_mmio *mmio,
564                                    phys_addr_t offset, int vcpu_id)
565 {
566         u32 *level_active;
567         u32 *reg, orig;
568         int mode = ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT;
569         struct vgic_dist *dist = &kvm->arch.vgic;
570
571         reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
572         orig = *reg;
573         vgic_reg_access(mmio, reg, offset, mode);
574         if (mmio->is_write) {
575                 /* Re-set level triggered level-active interrupts */
576                 level_active = vgic_bitmap_get_reg(&dist->irq_level,
577                                           vcpu_id, offset);
578                 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
579                 *reg |= *level_active;
580
581                 /* Ignore writes to SGIs */
582                 if (offset < 2) {
583                         *reg &= ~0xffff;
584                         *reg |= orig & 0xffff;
585                 }
586
587                 /* Clear soft-pending flags */
588                 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
589                                           vcpu_id, offset);
590                 vgic_reg_access(mmio, reg, offset, mode);
591
592                 vgic_handle_clear_mapped_irq(kvm_get_vcpu(kvm, vcpu_id));
593                 vgic_update_state(kvm);
594                 return true;
595         }
596         return false;
597 }
598
599 bool vgic_handle_set_active_reg(struct kvm *kvm,
600                                 struct kvm_exit_mmio *mmio,
601                                 phys_addr_t offset, int vcpu_id)
602 {
603         u32 *reg;
604         struct vgic_dist *dist = &kvm->arch.vgic;
605
606         reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
607         vgic_reg_access(mmio, reg, offset,
608                         ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
609
610         if (mmio->is_write) {
611                 vgic_update_state(kvm);
612                 return true;
613         }
614
615         return false;
616 }
617
618 bool vgic_handle_clear_active_reg(struct kvm *kvm,
619                                   struct kvm_exit_mmio *mmio,
620                                   phys_addr_t offset, int vcpu_id)
621 {
622         u32 *reg;
623         struct vgic_dist *dist = &kvm->arch.vgic;
624
625         reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
626         vgic_reg_access(mmio, reg, offset,
627                         ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
628
629         if (mmio->is_write) {
630                 vgic_handle_clear_mapped_irq(kvm_get_vcpu(kvm, vcpu_id));
631                 vgic_update_state(kvm);
632                 return true;
633         }
634
635         return false;
636 }
637
638 static u32 vgic_cfg_expand(u16 val)
639 {
640         u32 res = 0;
641         int i;
642
643         /*
644          * Turn a 16bit value like abcd...mnop into a 32bit word
645          * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
646          */
647         for (i = 0; i < 16; i++)
648                 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
649
650         return res;
651 }
652
653 static u16 vgic_cfg_compress(u32 val)
654 {
655         u16 res = 0;
656         int i;
657
658         /*
659          * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
660          * abcd...mnop which is what we really care about.
661          */
662         for (i = 0; i < 16; i++)
663                 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
664
665         return res;
666 }
667
668 /*
669  * The distributor uses 2 bits per IRQ for the CFG register, but the
670  * LSB is always 0. As such, we only keep the upper bit, and use the
671  * two above functions to compress/expand the bits
672  */
673 bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio,
674                          phys_addr_t offset)
675 {
676         u32 val;
677
678         if (offset & 4)
679                 val = *reg >> 16;
680         else
681                 val = *reg & 0xffff;
682
683         val = vgic_cfg_expand(val);
684         vgic_reg_access(mmio, &val, offset,
685                         ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
686         if (mmio->is_write) {
687                 if (offset < 8) {
688                         *reg = ~0U; /* Force PPIs/SGIs to 1 */
689                         return false;
690                 }
691
692                 val = vgic_cfg_compress(val);
693                 if (offset & 4) {
694                         *reg &= 0xffff;
695                         *reg |= val << 16;
696                 } else {
697                         *reg &= 0xffff << 16;
698                         *reg |= val;
699                 }
700         }
701
702         return false;
703 }
704
705 /**
706  * vgic_unqueue_irqs - move pending/active IRQs from LRs to the distributor
707  * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
708  *
709  * Move any IRQs that have already been assigned to LRs back to the
710  * emulated distributor state so that the complete emulated state can be read
711  * from the main emulation structures without investigating the LRs.
712  */
713 void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
714 {
715         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
716         int i;
717
718         for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
719                 struct vgic_lr lr = vgic_get_lr(vcpu, i);
720
721                 /*
722                  * There are three options for the state bits:
723                  *
724                  * 01: pending
725                  * 10: active
726                  * 11: pending and active
727                  */
728                 BUG_ON(!(lr.state & LR_STATE_MASK));
729
730                 /* Reestablish SGI source for pending and active IRQs */
731                 if (lr.irq < VGIC_NR_SGIS)
732                         add_sgi_source(vcpu, lr.irq, lr.source);
733
734                 /*
735                  * If the LR holds an active (10) or a pending and active (11)
736                  * interrupt then move the active state to the
737                  * distributor tracking bit.
738                  */
739                 if (lr.state & LR_STATE_ACTIVE) {
740                         vgic_irq_set_active(vcpu, lr.irq);
741                         lr.state &= ~LR_STATE_ACTIVE;
742                 }
743
744                 /*
745                  * Reestablish the pending state on the distributor and the
746                  * CPU interface.  It may have already been pending, but that
747                  * is fine, then we are only setting a few bits that were
748                  * already set.
749                  */
750                 if (lr.state & LR_STATE_PENDING) {
751                         vgic_dist_irq_set_pending(vcpu, lr.irq);
752                         lr.state &= ~LR_STATE_PENDING;
753                 }
754
755                 vgic_set_lr(vcpu, i, lr);
756
757                 /*
758                  * Mark the LR as free for other use.
759                  */
760                 BUG_ON(lr.state & LR_STATE_MASK);
761                 vgic_retire_lr(i, lr.irq, vcpu);
762                 vgic_irq_clear_queued(vcpu, lr.irq);
763
764                 /* Finally update the VGIC state. */
765                 vgic_update_state(vcpu->kvm);
766         }
767 }
768
769 const
770 struct vgic_io_range *vgic_find_range(const struct vgic_io_range *ranges,
771                                       int len, gpa_t offset)
772 {
773         while (ranges->len) {
774                 if (offset >= ranges->base &&
775                     (offset + len) <= (ranges->base + ranges->len))
776                         return ranges;
777                 ranges++;
778         }
779
780         return NULL;
781 }
782
783 static bool vgic_validate_access(const struct vgic_dist *dist,
784                                  const struct vgic_io_range *range,
785                                  unsigned long offset)
786 {
787         int irq;
788
789         if (!range->bits_per_irq)
790                 return true;    /* Not an irq-based access */
791
792         irq = offset * 8 / range->bits_per_irq;
793         if (irq >= dist->nr_irqs)
794                 return false;
795
796         return true;
797 }
798
799 /*
800  * Call the respective handler function for the given range.
801  * We split up any 64 bit accesses into two consecutive 32 bit
802  * handler calls and merge the result afterwards.
803  * We do this in a little endian fashion regardless of the host's
804  * or guest's endianness, because the GIC is always LE and the rest of
805  * the code (vgic_reg_access) also puts it in a LE fashion already.
806  * At this point we have already identified the handle function, so
807  * range points to that one entry and offset is relative to this.
808  */
809 static bool call_range_handler(struct kvm_vcpu *vcpu,
810                                struct kvm_exit_mmio *mmio,
811                                unsigned long offset,
812                                const struct vgic_io_range *range)
813 {
814         struct kvm_exit_mmio mmio32;
815         bool ret;
816
817         if (likely(mmio->len <= 4))
818                 return range->handle_mmio(vcpu, mmio, offset);
819
820         /*
821          * Any access bigger than 4 bytes (that we currently handle in KVM)
822          * is actually 8 bytes long, caused by a 64-bit access
823          */
824
825         mmio32.len = 4;
826         mmio32.is_write = mmio->is_write;
827         mmio32.private = mmio->private;
828
829         mmio32.phys_addr = mmio->phys_addr + 4;
830         mmio32.data = &((u32 *)mmio->data)[1];
831         ret = range->handle_mmio(vcpu, &mmio32, offset + 4);
832
833         mmio32.phys_addr = mmio->phys_addr;
834         mmio32.data = &((u32 *)mmio->data)[0];
835         ret |= range->handle_mmio(vcpu, &mmio32, offset);
836
837         return ret;
838 }
839
840 /**
841  * vgic_handle_mmio_access - handle an in-kernel MMIO access
842  * This is called by the read/write KVM IO device wrappers below.
843  * @vcpu:       pointer to the vcpu performing the access
844  * @this:       pointer to the KVM IO device in charge
845  * @addr:       guest physical address of the access
846  * @len:        size of the access
847  * @val:        pointer to the data region
848  * @is_write:   read or write access
849  *
850  * returns true if the MMIO access could be performed
851  */
852 static int vgic_handle_mmio_access(struct kvm_vcpu *vcpu,
853                                    struct kvm_io_device *this, gpa_t addr,
854                                    int len, void *val, bool is_write)
855 {
856         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
857         struct vgic_io_device *iodev = container_of(this,
858                                                     struct vgic_io_device, dev);
859         struct kvm_run *run = vcpu->run;
860         const struct vgic_io_range *range;
861         struct kvm_exit_mmio mmio;
862         bool updated_state;
863         gpa_t offset;
864
865         offset = addr - iodev->addr;
866         range = vgic_find_range(iodev->reg_ranges, len, offset);
867         if (unlikely(!range || !range->handle_mmio)) {
868                 pr_warn("Unhandled access %d %08llx %d\n", is_write, addr, len);
869                 return -ENXIO;
870         }
871
872         mmio.phys_addr = addr;
873         mmio.len = len;
874         mmio.is_write = is_write;
875         mmio.data = val;
876         mmio.private = iodev->redist_vcpu;
877
878         spin_lock(&dist->lock);
879         offset -= range->base;
880         if (vgic_validate_access(dist, range, offset)) {
881                 updated_state = call_range_handler(vcpu, &mmio, offset, range);
882         } else {
883                 if (!is_write)
884                         memset(val, 0, len);
885                 updated_state = false;
886         }
887         spin_unlock(&dist->lock);
888         run->mmio.is_write      = is_write;
889         run->mmio.len           = len;
890         run->mmio.phys_addr     = addr;
891         memcpy(run->mmio.data, val, len);
892
893         kvm_handle_mmio_return(vcpu, run);
894
895         if (updated_state)
896                 vgic_kick_vcpus(vcpu->kvm);
897
898         return 0;
899 }
900
901 static int vgic_handle_mmio_read(struct kvm_vcpu *vcpu,
902                                  struct kvm_io_device *this,
903                                  gpa_t addr, int len, void *val)
904 {
905         return vgic_handle_mmio_access(vcpu, this, addr, len, val, false);
906 }
907
908 static int vgic_handle_mmio_write(struct kvm_vcpu *vcpu,
909                                   struct kvm_io_device *this,
910                                   gpa_t addr, int len, const void *val)
911 {
912         return vgic_handle_mmio_access(vcpu, this, addr, len, (void *)val,
913                                        true);
914 }
915
916 struct kvm_io_device_ops vgic_io_ops = {
917         .read   = vgic_handle_mmio_read,
918         .write  = vgic_handle_mmio_write,
919 };
920
921 /**
922  * vgic_register_kvm_io_dev - register VGIC register frame on the KVM I/O bus
923  * @kvm:            The VM structure pointer
924  * @base:           The (guest) base address for the register frame
925  * @len:            Length of the register frame window
926  * @ranges:         Describing the handler functions for each register
927  * @redist_vcpu_id: The VCPU ID to pass on to the handlers on call
928  * @iodev:          Points to memory to be passed on to the handler
929  *
930  * @iodev stores the parameters of this function to be usable by the handler
931  * respectively the dispatcher function (since the KVM I/O bus framework lacks
932  * an opaque parameter). Initialization is done in this function, but the
933  * reference should be valid and unique for the whole VGIC lifetime.
934  * If the register frame is not mapped for a specific VCPU, pass -1 to
935  * @redist_vcpu_id.
936  */
937 int vgic_register_kvm_io_dev(struct kvm *kvm, gpa_t base, int len,
938                              const struct vgic_io_range *ranges,
939                              int redist_vcpu_id,
940                              struct vgic_io_device *iodev)
941 {
942         struct kvm_vcpu *vcpu = NULL;
943         int ret;
944
945         if (redist_vcpu_id >= 0)
946                 vcpu = kvm_get_vcpu(kvm, redist_vcpu_id);
947
948         iodev->addr             = base;
949         iodev->len              = len;
950         iodev->reg_ranges       = ranges;
951         iodev->redist_vcpu      = vcpu;
952
953         kvm_iodevice_init(&iodev->dev, &vgic_io_ops);
954
955         mutex_lock(&kvm->slots_lock);
956
957         ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, base, len,
958                                       &iodev->dev);
959         mutex_unlock(&kvm->slots_lock);
960
961         /* Mark the iodev as invalid if registration fails. */
962         if (ret)
963                 iodev->dev.ops = NULL;
964
965         return ret;
966 }
967
968 static int vgic_nr_shared_irqs(struct vgic_dist *dist)
969 {
970         return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
971 }
972
973 static int compute_active_for_cpu(struct kvm_vcpu *vcpu)
974 {
975         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
976         unsigned long *active, *enabled, *act_percpu, *act_shared;
977         unsigned long active_private, active_shared;
978         int nr_shared = vgic_nr_shared_irqs(dist);
979         int vcpu_id;
980
981         vcpu_id = vcpu->vcpu_id;
982         act_percpu = vcpu->arch.vgic_cpu.active_percpu;
983         act_shared = vcpu->arch.vgic_cpu.active_shared;
984
985         active = vgic_bitmap_get_cpu_map(&dist->irq_active, vcpu_id);
986         enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
987         bitmap_and(act_percpu, active, enabled, VGIC_NR_PRIVATE_IRQS);
988
989         active = vgic_bitmap_get_shared_map(&dist->irq_active);
990         enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
991         bitmap_and(act_shared, active, enabled, nr_shared);
992         bitmap_and(act_shared, act_shared,
993                    vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
994                    nr_shared);
995
996         active_private = find_first_bit(act_percpu, VGIC_NR_PRIVATE_IRQS);
997         active_shared = find_first_bit(act_shared, nr_shared);
998
999         return (active_private < VGIC_NR_PRIVATE_IRQS ||
1000                 active_shared < nr_shared);
1001 }
1002
1003 static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
1004 {
1005         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1006         unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
1007         unsigned long pending_private, pending_shared;
1008         int nr_shared = vgic_nr_shared_irqs(dist);
1009         int vcpu_id;
1010
1011         vcpu_id = vcpu->vcpu_id;
1012         pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
1013         pend_shared = vcpu->arch.vgic_cpu.pending_shared;
1014
1015         if (!dist->enabled) {
1016                 bitmap_zero(pend_percpu, VGIC_NR_PRIVATE_IRQS);
1017                 bitmap_zero(pend_shared, nr_shared);
1018                 return 0;
1019         }
1020
1021         pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
1022         enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
1023         bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
1024
1025         pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
1026         enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
1027         bitmap_and(pend_shared, pending, enabled, nr_shared);
1028         bitmap_and(pend_shared, pend_shared,
1029                    vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
1030                    nr_shared);
1031
1032         pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
1033         pending_shared = find_first_bit(pend_shared, nr_shared);
1034         return (pending_private < VGIC_NR_PRIVATE_IRQS ||
1035                 pending_shared < vgic_nr_shared_irqs(dist));
1036 }
1037
1038 /*
1039  * Update the interrupt state and determine which CPUs have pending
1040  * or active interrupts. Must be called with distributor lock held.
1041  */
1042 void vgic_update_state(struct kvm *kvm)
1043 {
1044         struct vgic_dist *dist = &kvm->arch.vgic;
1045         struct kvm_vcpu *vcpu;
1046         int c;
1047
1048         kvm_for_each_vcpu(c, vcpu, kvm) {
1049                 if (compute_pending_for_cpu(vcpu))
1050                         set_bit(c, dist->irq_pending_on_cpu);
1051
1052                 if (compute_active_for_cpu(vcpu))
1053                         set_bit(c, dist->irq_active_on_cpu);
1054                 else
1055                         clear_bit(c, dist->irq_active_on_cpu);
1056         }
1057 }
1058
1059 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
1060 {
1061         return vgic_ops->get_lr(vcpu, lr);
1062 }
1063
1064 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
1065                                struct vgic_lr vlr)
1066 {
1067         vgic_ops->set_lr(vcpu, lr, vlr);
1068 }
1069
1070 static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
1071                                struct vgic_lr vlr)
1072 {
1073         vgic_ops->sync_lr_elrsr(vcpu, lr, vlr);
1074 }
1075
1076 static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
1077 {
1078         return vgic_ops->get_elrsr(vcpu);
1079 }
1080
1081 static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
1082 {
1083         return vgic_ops->get_eisr(vcpu);
1084 }
1085
1086 static inline void vgic_clear_eisr(struct kvm_vcpu *vcpu)
1087 {
1088         vgic_ops->clear_eisr(vcpu);
1089 }
1090
1091 static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
1092 {
1093         return vgic_ops->get_interrupt_status(vcpu);
1094 }
1095
1096 static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
1097 {
1098         vgic_ops->enable_underflow(vcpu);
1099 }
1100
1101 static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
1102 {
1103         vgic_ops->disable_underflow(vcpu);
1104 }
1105
1106 void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1107 {
1108         vgic_ops->get_vmcr(vcpu, vmcr);
1109 }
1110
1111 void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1112 {
1113         vgic_ops->set_vmcr(vcpu, vmcr);
1114 }
1115
1116 static inline void vgic_enable(struct kvm_vcpu *vcpu)
1117 {
1118         vgic_ops->enable(vcpu);
1119 }
1120
1121 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
1122 {
1123         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1124         struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
1125
1126         /*
1127          * We must transfer the pending state back to the distributor before
1128          * retiring the LR, otherwise we may loose edge-triggered interrupts.
1129          */
1130         if (vlr.state & LR_STATE_PENDING) {
1131                 vgic_dist_irq_set_pending(vcpu, irq);
1132                 vlr.hwirq = 0;
1133         }
1134
1135         vlr.state = 0;
1136         vgic_set_lr(vcpu, lr_nr, vlr);
1137         clear_bit(lr_nr, vgic_cpu->lr_used);
1138         vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
1139         vgic_sync_lr_elrsr(vcpu, lr_nr, vlr);
1140 }
1141
1142 /*
1143  * An interrupt may have been disabled after being made pending on the
1144  * CPU interface (the classic case is a timer running while we're
1145  * rebooting the guest - the interrupt would kick as soon as the CPU
1146  * interface gets enabled, with deadly consequences).
1147  *
1148  * The solution is to examine already active LRs, and check the
1149  * interrupt is still enabled. If not, just retire it.
1150  */
1151 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
1152 {
1153         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1154         int lr;
1155
1156         for_each_set_bit(lr, vgic_cpu->lr_used, vgic->nr_lr) {
1157                 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1158
1159                 if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
1160                         vgic_retire_lr(lr, vlr.irq, vcpu);
1161                         if (vgic_irq_is_queued(vcpu, vlr.irq))
1162                                 vgic_irq_clear_queued(vcpu, vlr.irq);
1163                 }
1164         }
1165 }
1166
1167 static void vgic_queue_irq_to_lr(struct kvm_vcpu *vcpu, int irq,
1168                                  int lr_nr, struct vgic_lr vlr)
1169 {
1170         if (vgic_irq_is_active(vcpu, irq)) {
1171                 vlr.state |= LR_STATE_ACTIVE;
1172                 kvm_debug("Set active, clear distributor: 0x%x\n", vlr.state);
1173                 vgic_irq_clear_active(vcpu, irq);
1174                 vgic_update_state(vcpu->kvm);
1175         } else {
1176                 WARN_ON(!vgic_dist_irq_is_pending(vcpu, irq));
1177                 vlr.state |= LR_STATE_PENDING;
1178                 kvm_debug("Set pending: 0x%x\n", vlr.state);
1179         }
1180
1181         if (!vgic_irq_is_edge(vcpu, irq))
1182                 vlr.state |= LR_EOI_INT;
1183
1184         if (vlr.irq >= VGIC_NR_SGIS) {
1185                 struct irq_phys_map *map;
1186                 map = vgic_irq_map_search(vcpu, irq);
1187
1188                 if (map) {
1189                         vlr.hwirq = map->phys_irq;
1190                         vlr.state |= LR_HW;
1191                         vlr.state &= ~LR_EOI_INT;
1192
1193                         /*
1194                          * Make sure we're not going to sample this
1195                          * again, as a HW-backed interrupt cannot be
1196                          * in the PENDING_ACTIVE stage.
1197                          */
1198                         vgic_irq_set_queued(vcpu, irq);
1199                 }
1200         }
1201
1202         vgic_set_lr(vcpu, lr_nr, vlr);
1203         vgic_sync_lr_elrsr(vcpu, lr_nr, vlr);
1204 }
1205
1206 /*
1207  * Queue an interrupt to a CPU virtual interface. Return true on success,
1208  * or false if it wasn't possible to queue it.
1209  * sgi_source must be zero for any non-SGI interrupts.
1210  */
1211 bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
1212 {
1213         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1214         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1215         struct vgic_lr vlr;
1216         int lr;
1217
1218         /* Sanitize the input... */
1219         BUG_ON(sgi_source_id & ~7);
1220         BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
1221         BUG_ON(irq >= dist->nr_irqs);
1222
1223         kvm_debug("Queue IRQ%d\n", irq);
1224
1225         lr = vgic_cpu->vgic_irq_lr_map[irq];
1226
1227         /* Do we have an active interrupt for the same CPUID? */
1228         if (lr != LR_EMPTY) {
1229                 vlr = vgic_get_lr(vcpu, lr);
1230                 if (vlr.source == sgi_source_id) {
1231                         kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
1232                         BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
1233                         vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
1234                         return true;
1235                 }
1236         }
1237
1238         /* Try to use another LR for this interrupt */
1239         lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
1240                                vgic->nr_lr);
1241         if (lr >= vgic->nr_lr)
1242                 return false;
1243
1244         kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
1245         vgic_cpu->vgic_irq_lr_map[irq] = lr;
1246         set_bit(lr, vgic_cpu->lr_used);
1247
1248         vlr.irq = irq;
1249         vlr.source = sgi_source_id;
1250         vlr.state = 0;
1251         vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
1252
1253         return true;
1254 }
1255
1256 static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1257 {
1258         if (!vgic_can_sample_irq(vcpu, irq))
1259                 return true; /* level interrupt, already queued */
1260
1261         if (vgic_queue_irq(vcpu, 0, irq)) {
1262                 if (vgic_irq_is_edge(vcpu, irq)) {
1263                         vgic_dist_irq_clear_pending(vcpu, irq);
1264                         vgic_cpu_irq_clear(vcpu, irq);
1265                 } else {
1266                         vgic_irq_set_queued(vcpu, irq);
1267                 }
1268
1269                 return true;
1270         }
1271
1272         return false;
1273 }
1274
1275 /*
1276  * Fill the list registers with pending interrupts before running the
1277  * guest.
1278  */
1279 static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1280 {
1281         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1282         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1283         unsigned long *pa_percpu, *pa_shared;
1284         int i, vcpu_id;
1285         int overflow = 0;
1286         int nr_shared = vgic_nr_shared_irqs(dist);
1287
1288         vcpu_id = vcpu->vcpu_id;
1289
1290         pa_percpu = vcpu->arch.vgic_cpu.pend_act_percpu;
1291         pa_shared = vcpu->arch.vgic_cpu.pend_act_shared;
1292
1293         bitmap_or(pa_percpu, vgic_cpu->pending_percpu, vgic_cpu->active_percpu,
1294                   VGIC_NR_PRIVATE_IRQS);
1295         bitmap_or(pa_shared, vgic_cpu->pending_shared, vgic_cpu->active_shared,
1296                   nr_shared);
1297         /*
1298          * We may not have any pending interrupt, or the interrupts
1299          * may have been serviced from another vcpu. In all cases,
1300          * move along.
1301          */
1302         if (!kvm_vgic_vcpu_pending_irq(vcpu) && !kvm_vgic_vcpu_active_irq(vcpu))
1303                 goto epilog;
1304
1305         /* SGIs */
1306         for_each_set_bit(i, pa_percpu, VGIC_NR_SGIS) {
1307                 if (!queue_sgi(vcpu, i))
1308                         overflow = 1;
1309         }
1310
1311         /* PPIs */
1312         for_each_set_bit_from(i, pa_percpu, VGIC_NR_PRIVATE_IRQS) {
1313                 if (!vgic_queue_hwirq(vcpu, i))
1314                         overflow = 1;
1315         }
1316
1317         /* SPIs */
1318         for_each_set_bit(i, pa_shared, nr_shared) {
1319                 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1320                         overflow = 1;
1321         }
1322
1323
1324
1325
1326 epilog:
1327         if (overflow) {
1328                 vgic_enable_underflow(vcpu);
1329         } else {
1330                 vgic_disable_underflow(vcpu);
1331                 /*
1332                  * We're about to run this VCPU, and we've consumed
1333                  * everything the distributor had in store for
1334                  * us. Claim we don't have anything pending. We'll
1335                  * adjust that if needed while exiting.
1336                  */
1337                 clear_bit(vcpu_id, dist->irq_pending_on_cpu);
1338         }
1339 }
1340
1341 static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1342 {
1343         u32 status = vgic_get_interrupt_status(vcpu);
1344         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1345         bool level_pending = false;
1346         struct kvm *kvm = vcpu->kvm;
1347
1348         kvm_debug("STATUS = %08x\n", status);
1349
1350         if (status & INT_STATUS_EOI) {
1351                 /*
1352                  * Some level interrupts have been EOIed. Clear their
1353                  * active bit.
1354                  */
1355                 u64 eisr = vgic_get_eisr(vcpu);
1356                 unsigned long *eisr_ptr = u64_to_bitmask(&eisr);
1357                 int lr;
1358
1359                 for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
1360                         struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1361                         WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
1362
1363                         spin_lock(&dist->lock);
1364                         vgic_irq_clear_queued(vcpu, vlr.irq);
1365                         WARN_ON(vlr.state & LR_STATE_MASK);
1366                         vlr.state = 0;
1367                         vgic_set_lr(vcpu, lr, vlr);
1368
1369                         /*
1370                          * If the IRQ was EOIed it was also ACKed and we we
1371                          * therefore assume we can clear the soft pending
1372                          * state (should it had been set) for this interrupt.
1373                          *
1374                          * Note: if the IRQ soft pending state was set after
1375                          * the IRQ was acked, it actually shouldn't be
1376                          * cleared, but we have no way of knowing that unless
1377                          * we start trapping ACKs when the soft-pending state
1378                          * is set.
1379                          */
1380                         vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);
1381
1382                         /*
1383                          * kvm_notify_acked_irq calls kvm_set_irq()
1384                          * to reset the IRQ level. Need to release the
1385                          * lock for kvm_set_irq to grab it.
1386                          */
1387                         spin_unlock(&dist->lock);
1388
1389                         kvm_notify_acked_irq(kvm, 0,
1390                                              vlr.irq - VGIC_NR_PRIVATE_IRQS);
1391                         spin_lock(&dist->lock);
1392
1393                         /* Any additional pending interrupt? */
1394                         if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
1395                                 vgic_cpu_irq_set(vcpu, vlr.irq);
1396                                 level_pending = true;
1397                         } else {
1398                                 vgic_dist_irq_clear_pending(vcpu, vlr.irq);
1399                                 vgic_cpu_irq_clear(vcpu, vlr.irq);
1400                         }
1401
1402                         spin_unlock(&dist->lock);
1403
1404                         /*
1405                          * Despite being EOIed, the LR may not have
1406                          * been marked as empty.
1407                          */
1408                         vgic_sync_lr_elrsr(vcpu, lr, vlr);
1409                 }
1410         }
1411
1412         if (status & INT_STATUS_UNDERFLOW)
1413                 vgic_disable_underflow(vcpu);
1414
1415         /*
1416          * In the next iterations of the vcpu loop, if we sync the vgic state
1417          * after flushing it, but before entering the guest (this happens for
1418          * pending signals and vmid rollovers), then make sure we don't pick
1419          * up any old maintenance interrupts here.
1420          */
1421         vgic_clear_eisr(vcpu);
1422
1423         return level_pending;
1424 }
1425
1426 /*
1427  * Save the physical active state, and reset it to inactive.
1428  *
1429  * Return 1 if HW interrupt went from active to inactive, and 0 otherwise.
1430  */
1431 static int vgic_sync_hwirq(struct kvm_vcpu *vcpu, struct vgic_lr vlr)
1432 {
1433         struct irq_phys_map *map;
1434         int ret;
1435
1436         if (!(vlr.state & LR_HW))
1437                 return 0;
1438
1439         map = vgic_irq_map_search(vcpu, vlr.irq);
1440         BUG_ON(!map);
1441
1442         ret = irq_get_irqchip_state(map->irq,
1443                                     IRQCHIP_STATE_ACTIVE,
1444                                     &map->active);
1445
1446         WARN_ON(ret);
1447
1448         if (map->active)
1449                 return 0;
1450
1451         return 1;
1452 }
1453
1454 /* Sync back the VGIC state after a guest run */
1455 static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1456 {
1457         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1458         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1459         u64 elrsr;
1460         unsigned long *elrsr_ptr;
1461         int lr, pending;
1462         bool level_pending;
1463
1464         level_pending = vgic_process_maintenance(vcpu);
1465         elrsr = vgic_get_elrsr(vcpu);
1466         elrsr_ptr = u64_to_bitmask(&elrsr);
1467
1468         /* Deal with HW interrupts, and clear mappings for empty LRs */
1469         for (lr = 0; lr < vgic->nr_lr; lr++) {
1470                 struct vgic_lr vlr;
1471
1472                 if (!test_bit(lr, vgic_cpu->lr_used))
1473                         continue;
1474
1475                 vlr = vgic_get_lr(vcpu, lr);
1476                 if (vgic_sync_hwirq(vcpu, vlr)) {
1477                         /*
1478                          * So this is a HW interrupt that the guest
1479                          * EOI-ed. Clean the LR state and allow the
1480                          * interrupt to be sampled again.
1481                          */
1482                         vlr.state = 0;
1483                         vlr.hwirq = 0;
1484                         vgic_set_lr(vcpu, lr, vlr);
1485                         vgic_irq_clear_queued(vcpu, vlr.irq);
1486                         set_bit(lr, elrsr_ptr);
1487                 }
1488
1489                 if (!test_bit(lr, elrsr_ptr))
1490                         continue;
1491
1492                 clear_bit(lr, vgic_cpu->lr_used);
1493
1494                 BUG_ON(vlr.irq >= dist->nr_irqs);
1495                 vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
1496         }
1497
1498         /* Check if we still have something up our sleeve... */
1499         pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
1500         if (level_pending || pending < vgic->nr_lr)
1501                 set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1502 }
1503
1504 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1505 {
1506         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1507
1508         if (!irqchip_in_kernel(vcpu->kvm))
1509                 return;
1510
1511         spin_lock(&dist->lock);
1512         __kvm_vgic_flush_hwstate(vcpu);
1513         spin_unlock(&dist->lock);
1514 }
1515
1516 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1517 {
1518         if (!irqchip_in_kernel(vcpu->kvm))
1519                 return;
1520
1521         __kvm_vgic_sync_hwstate(vcpu);
1522 }
1523
1524 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1525 {
1526         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1527
1528         if (!irqchip_in_kernel(vcpu->kvm))
1529                 return 0;
1530
1531         return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1532 }
1533
1534 int kvm_vgic_vcpu_active_irq(struct kvm_vcpu *vcpu)
1535 {
1536         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1537
1538         if (!irqchip_in_kernel(vcpu->kvm))
1539                 return 0;
1540
1541         return test_bit(vcpu->vcpu_id, dist->irq_active_on_cpu);
1542 }
1543
1544
1545 void vgic_kick_vcpus(struct kvm *kvm)
1546 {
1547         struct kvm_vcpu *vcpu;
1548         int c;
1549
1550         /*
1551          * We've injected an interrupt, time to find out who deserves
1552          * a good kick...
1553          */
1554         kvm_for_each_vcpu(c, vcpu, kvm) {
1555                 if (kvm_vgic_vcpu_pending_irq(vcpu))
1556                         kvm_vcpu_kick(vcpu);
1557         }
1558 }
1559
1560 static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1561 {
1562         int edge_triggered = vgic_irq_is_edge(vcpu, irq);
1563
1564         /*
1565          * Only inject an interrupt if:
1566          * - edge triggered and we have a rising edge
1567          * - level triggered and we change level
1568          */
1569         if (edge_triggered) {
1570                 int state = vgic_dist_irq_is_pending(vcpu, irq);
1571                 return level > state;
1572         } else {
1573                 int state = vgic_dist_irq_get_level(vcpu, irq);
1574                 return level != state;
1575         }
1576 }
1577
1578 static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
1579                                    struct irq_phys_map *map,
1580                                    unsigned int irq_num, bool level)
1581 {
1582         struct vgic_dist *dist = &kvm->arch.vgic;
1583         struct kvm_vcpu *vcpu;
1584         int edge_triggered, level_triggered;
1585         int enabled;
1586         bool ret = true, can_inject = true;
1587
1588         if (irq_num >= min(kvm->arch.vgic.nr_irqs, 1020))
1589                 return -EINVAL;
1590
1591         spin_lock(&dist->lock);
1592
1593         vcpu = kvm_get_vcpu(kvm, cpuid);
1594         edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
1595         level_triggered = !edge_triggered;
1596
1597         if (!vgic_validate_injection(vcpu, irq_num, level)) {
1598                 ret = false;
1599                 goto out;
1600         }
1601
1602         if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1603                 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1604                 if (cpuid == VCPU_NOT_ALLOCATED) {
1605                         /* Pretend we use CPU0, and prevent injection */
1606                         cpuid = 0;
1607                         can_inject = false;
1608                 }
1609                 vcpu = kvm_get_vcpu(kvm, cpuid);
1610         }
1611
1612         kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1613
1614         if (level) {
1615                 if (level_triggered)
1616                         vgic_dist_irq_set_level(vcpu, irq_num);
1617                 vgic_dist_irq_set_pending(vcpu, irq_num);
1618         } else {
1619                 if (level_triggered) {
1620                         vgic_dist_irq_clear_level(vcpu, irq_num);
1621                         if (!vgic_dist_irq_soft_pend(vcpu, irq_num)) {
1622                                 vgic_dist_irq_clear_pending(vcpu, irq_num);
1623                                 vgic_cpu_irq_clear(vcpu, irq_num);
1624                                 if (!compute_pending_for_cpu(vcpu))
1625                                         clear_bit(cpuid, dist->irq_pending_on_cpu);
1626                         }
1627                 }
1628
1629                 ret = false;
1630                 goto out;
1631         }
1632
1633         enabled = vgic_irq_is_enabled(vcpu, irq_num);
1634
1635         if (!enabled || !can_inject) {
1636                 ret = false;
1637                 goto out;
1638         }
1639
1640         if (!vgic_can_sample_irq(vcpu, irq_num)) {
1641                 /*
1642                  * Level interrupt in progress, will be picked up
1643                  * when EOId.
1644                  */
1645                 ret = false;
1646                 goto out;
1647         }
1648
1649         if (level) {
1650                 vgic_cpu_irq_set(vcpu, irq_num);
1651                 set_bit(cpuid, dist->irq_pending_on_cpu);
1652         }
1653
1654 out:
1655         spin_unlock(&dist->lock);
1656
1657         if (ret) {
1658                 /* kick the specified vcpu */
1659                 kvm_vcpu_kick(kvm_get_vcpu(kvm, cpuid));
1660         }
1661
1662         return 0;
1663 }
1664
1665 static int vgic_lazy_init(struct kvm *kvm)
1666 {
1667         int ret = 0;
1668
1669         if (unlikely(!vgic_initialized(kvm))) {
1670                 /*
1671                  * We only provide the automatic initialization of the VGIC
1672                  * for the legacy case of a GICv2. Any other type must
1673                  * be explicitly initialized once setup with the respective
1674                  * KVM device call.
1675                  */
1676                 if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2)
1677                         return -EBUSY;
1678
1679                 mutex_lock(&kvm->lock);
1680                 ret = vgic_init(kvm);
1681                 mutex_unlock(&kvm->lock);
1682         }
1683
1684         return ret;
1685 }
1686
1687 /**
1688  * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1689  * @kvm:     The VM structure pointer
1690  * @cpuid:   The CPU for PPIs
1691  * @irq_num: The IRQ number that is assigned to the device. This IRQ
1692  *           must not be mapped to a HW interrupt.
1693  * @level:   Edge-triggered:  true:  to trigger the interrupt
1694  *                            false: to ignore the call
1695  *           Level-sensitive  true:  raise the input signal
1696  *                            false: lower the input signal
1697  *
1698  * The GIC is not concerned with devices being active-LOW or active-HIGH for
1699  * level-sensitive interrupts.  You can think of the level parameter as 1
1700  * being HIGH and 0 being LOW and all devices being active-HIGH.
1701  */
1702 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1703                         bool level)
1704 {
1705         struct irq_phys_map *map;
1706         int ret;
1707
1708         ret = vgic_lazy_init(kvm);
1709         if (ret)
1710                 return ret;
1711
1712         map = vgic_irq_map_search(kvm_get_vcpu(kvm, cpuid), irq_num);
1713         if (map)
1714                 return -EINVAL;
1715
1716         return vgic_update_irq_pending(kvm, cpuid, NULL, irq_num, level);
1717 }
1718
1719 /**
1720  * kvm_vgic_inject_mapped_irq - Inject a physically mapped IRQ to the vgic
1721  * @kvm:     The VM structure pointer
1722  * @cpuid:   The CPU for PPIs
1723  * @map:     Pointer to a irq_phys_map structure describing the mapping
1724  * @level:   Edge-triggered:  true:  to trigger the interrupt
1725  *                            false: to ignore the call
1726  *           Level-sensitive  true:  raise the input signal
1727  *                            false: lower the input signal
1728  *
1729  * The GIC is not concerned with devices being active-LOW or active-HIGH for
1730  * level-sensitive interrupts.  You can think of the level parameter as 1
1731  * being HIGH and 0 being LOW and all devices being active-HIGH.
1732  */
1733 int kvm_vgic_inject_mapped_irq(struct kvm *kvm, int cpuid,
1734                                struct irq_phys_map *map, bool level)
1735 {
1736         int ret;
1737
1738         ret = vgic_lazy_init(kvm);
1739         if (ret)
1740                 return ret;
1741
1742         return vgic_update_irq_pending(kvm, cpuid, map, map->virt_irq, level);
1743 }
1744
1745 static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1746 {
1747         /*
1748          * We cannot rely on the vgic maintenance interrupt to be
1749          * delivered synchronously. This means we can only use it to
1750          * exit the VM, and we perform the handling of EOIed
1751          * interrupts on the exit path (see vgic_process_maintenance).
1752          */
1753         return IRQ_HANDLED;
1754 }
1755
1756 static struct list_head *vgic_get_irq_phys_map_list(struct kvm_vcpu *vcpu,
1757                                                     int virt_irq)
1758 {
1759         if (virt_irq < VGIC_NR_PRIVATE_IRQS)
1760                 return &vcpu->arch.vgic_cpu.irq_phys_map_list;
1761         else
1762                 return &vcpu->kvm->arch.vgic.irq_phys_map_list;
1763 }
1764
1765 /**
1766  * kvm_vgic_map_phys_irq - map a virtual IRQ to a physical IRQ
1767  * @vcpu: The VCPU pointer
1768  * @virt_irq: The virtual irq number
1769  * @irq: The Linux IRQ number
1770  *
1771  * Establish a mapping between a guest visible irq (@virt_irq) and a
1772  * Linux irq (@irq). On injection, @virt_irq will be associated with
1773  * the physical interrupt represented by @irq. This mapping can be
1774  * established multiple times as long as the parameters are the same.
1775  *
1776  * Returns a valid pointer on success, and an error pointer otherwise
1777  */
1778 struct irq_phys_map *kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu,
1779                                            int virt_irq, int irq)
1780 {
1781         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1782         struct list_head *root = vgic_get_irq_phys_map_list(vcpu, virt_irq);
1783         struct irq_phys_map *map;
1784         struct irq_phys_map_entry *entry;
1785         struct irq_desc *desc;
1786         struct irq_data *data;
1787         int phys_irq;
1788
1789         desc = irq_to_desc(irq);
1790         if (!desc) {
1791                 kvm_err("%s: no interrupt descriptor\n", __func__);
1792                 return ERR_PTR(-EINVAL);
1793         }
1794
1795         data = irq_desc_get_irq_data(desc);
1796         while (data->parent_data)
1797                 data = data->parent_data;
1798
1799         phys_irq = data->hwirq;
1800
1801         /* Create a new mapping */
1802         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
1803         if (!entry)
1804                 return ERR_PTR(-ENOMEM);
1805
1806         spin_lock(&dist->irq_phys_map_lock);
1807
1808         /* Try to match an existing mapping */
1809         map = vgic_irq_map_search(vcpu, virt_irq);
1810         if (map) {
1811                 /* Make sure this mapping matches */
1812                 if (map->phys_irq != phys_irq   ||
1813                     map->irq      != irq)
1814                         map = ERR_PTR(-EINVAL);
1815
1816                 /* Found an existing, valid mapping */
1817                 goto out;
1818         }
1819
1820         map           = &entry->map;
1821         map->virt_irq = virt_irq;
1822         map->phys_irq = phys_irq;
1823         map->irq      = irq;
1824
1825         list_add_tail_rcu(&entry->entry, root);
1826
1827 out:
1828         spin_unlock(&dist->irq_phys_map_lock);
1829         /* If we've found a hit in the existing list, free the useless
1830          * entry */
1831         if (IS_ERR(map) || map != &entry->map)
1832                 kfree(entry);
1833         return map;
1834 }
1835
1836 static struct irq_phys_map *vgic_irq_map_search(struct kvm_vcpu *vcpu,
1837                                                 int virt_irq)
1838 {
1839         struct list_head *root = vgic_get_irq_phys_map_list(vcpu, virt_irq);
1840         struct irq_phys_map_entry *entry;
1841         struct irq_phys_map *map;
1842
1843         rcu_read_lock();
1844
1845         list_for_each_entry_rcu(entry, root, entry) {
1846                 map = &entry->map;
1847                 if (map->virt_irq == virt_irq) {
1848                         rcu_read_unlock();
1849                         return map;
1850                 }
1851         }
1852
1853         rcu_read_unlock();
1854
1855         return NULL;
1856 }
1857
1858 static void vgic_free_phys_irq_map_rcu(struct rcu_head *rcu)
1859 {
1860         struct irq_phys_map_entry *entry;
1861
1862         entry = container_of(rcu, struct irq_phys_map_entry, rcu);
1863         kfree(entry);
1864 }
1865
1866 /**
1867  * kvm_vgic_get_phys_irq_active - Return the active state of a mapped IRQ
1868  *
1869  * Return the logical active state of a mapped interrupt. This doesn't
1870  * necessarily reflects the current HW state.
1871  */
1872 bool kvm_vgic_get_phys_irq_active(struct irq_phys_map *map)
1873 {
1874         BUG_ON(!map);
1875         return map->active;
1876 }
1877
1878 /**
1879  * kvm_vgic_set_phys_irq_active - Set the active state of a mapped IRQ
1880  *
1881  * Set the logical active state of a mapped interrupt. This doesn't
1882  * immediately affects the HW state.
1883  */
1884 void kvm_vgic_set_phys_irq_active(struct irq_phys_map *map, bool active)
1885 {
1886         BUG_ON(!map);
1887         map->active = active;
1888 }
1889
1890 /**
1891  * kvm_vgic_unmap_phys_irq - Remove a virtual to physical IRQ mapping
1892  * @vcpu: The VCPU pointer
1893  * @map: The pointer to a mapping obtained through kvm_vgic_map_phys_irq
1894  *
1895  * Remove an existing mapping between virtual and physical interrupts.
1896  */
1897 int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, struct irq_phys_map *map)
1898 {
1899         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1900         struct irq_phys_map_entry *entry;
1901         struct list_head *root;
1902
1903         if (!map)
1904                 return -EINVAL;
1905
1906         root = vgic_get_irq_phys_map_list(vcpu, map->virt_irq);
1907
1908         spin_lock(&dist->irq_phys_map_lock);
1909
1910         list_for_each_entry(entry, root, entry) {
1911                 if (&entry->map == map) {
1912                         list_del_rcu(&entry->entry);
1913                         call_rcu(&entry->rcu, vgic_free_phys_irq_map_rcu);
1914                         break;
1915                 }
1916         }
1917
1918         spin_unlock(&dist->irq_phys_map_lock);
1919
1920         return 0;
1921 }
1922
1923 static void vgic_destroy_irq_phys_map(struct kvm *kvm, struct list_head *root)
1924 {
1925         struct vgic_dist *dist = &kvm->arch.vgic;
1926         struct irq_phys_map_entry *entry;
1927
1928         spin_lock(&dist->irq_phys_map_lock);
1929
1930         list_for_each_entry(entry, root, entry) {
1931                 list_del_rcu(&entry->entry);
1932                 call_rcu(&entry->rcu, vgic_free_phys_irq_map_rcu);
1933         }
1934
1935         spin_unlock(&dist->irq_phys_map_lock);
1936 }
1937
1938 void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
1939 {
1940         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1941
1942         kfree(vgic_cpu->pending_shared);
1943         kfree(vgic_cpu->active_shared);
1944         kfree(vgic_cpu->pend_act_shared);
1945         kfree(vgic_cpu->vgic_irq_lr_map);
1946         vgic_destroy_irq_phys_map(vcpu->kvm, &vgic_cpu->irq_phys_map_list);
1947         vgic_cpu->pending_shared = NULL;
1948         vgic_cpu->active_shared = NULL;
1949         vgic_cpu->pend_act_shared = NULL;
1950         vgic_cpu->vgic_irq_lr_map = NULL;
1951 }
1952
1953 static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
1954 {
1955         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1956
1957         int sz = (nr_irqs - VGIC_NR_PRIVATE_IRQS) / 8;
1958         vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
1959         vgic_cpu->active_shared = kzalloc(sz, GFP_KERNEL);
1960         vgic_cpu->pend_act_shared = kzalloc(sz, GFP_KERNEL);
1961         vgic_cpu->vgic_irq_lr_map = kmalloc(nr_irqs, GFP_KERNEL);
1962
1963         if (!vgic_cpu->pending_shared
1964                 || !vgic_cpu->active_shared
1965                 || !vgic_cpu->pend_act_shared
1966                 || !vgic_cpu->vgic_irq_lr_map) {
1967                 kvm_vgic_vcpu_destroy(vcpu);
1968                 return -ENOMEM;
1969         }
1970
1971         memset(vgic_cpu->vgic_irq_lr_map, LR_EMPTY, nr_irqs);
1972
1973         /*
1974          * Store the number of LRs per vcpu, so we don't have to go
1975          * all the way to the distributor structure to find out. Only
1976          * assembly code should use this one.
1977          */
1978         vgic_cpu->nr_lr = vgic->nr_lr;
1979
1980         return 0;
1981 }
1982
1983 /**
1984  * kvm_vgic_vcpu_early_init - Earliest possible per-vcpu vgic init stage
1985  *
1986  * No memory allocation should be performed here, only static init.
1987  */
1988 void kvm_vgic_vcpu_early_init(struct kvm_vcpu *vcpu)
1989 {
1990         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1991         INIT_LIST_HEAD(&vgic_cpu->irq_phys_map_list);
1992 }
1993
1994 /**
1995  * kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW
1996  *
1997  * The host's GIC naturally limits the maximum amount of VCPUs a guest
1998  * can use.
1999  */
2000 int kvm_vgic_get_max_vcpus(void)
2001 {
2002         return vgic->max_gic_vcpus;
2003 }
2004
2005 void kvm_vgic_destroy(struct kvm *kvm)
2006 {
2007         struct vgic_dist *dist = &kvm->arch.vgic;
2008         struct kvm_vcpu *vcpu;
2009         int i;
2010
2011         kvm_for_each_vcpu(i, vcpu, kvm)
2012                 kvm_vgic_vcpu_destroy(vcpu);
2013
2014         vgic_free_bitmap(&dist->irq_enabled);
2015         vgic_free_bitmap(&dist->irq_level);
2016         vgic_free_bitmap(&dist->irq_pending);
2017         vgic_free_bitmap(&dist->irq_soft_pend);
2018         vgic_free_bitmap(&dist->irq_queued);
2019         vgic_free_bitmap(&dist->irq_cfg);
2020         vgic_free_bytemap(&dist->irq_priority);
2021         if (dist->irq_spi_target) {
2022                 for (i = 0; i < dist->nr_cpus; i++)
2023                         vgic_free_bitmap(&dist->irq_spi_target[i]);
2024         }
2025         kfree(dist->irq_sgi_sources);
2026         kfree(dist->irq_spi_cpu);
2027         kfree(dist->irq_spi_mpidr);
2028         kfree(dist->irq_spi_target);
2029         kfree(dist->irq_pending_on_cpu);
2030         kfree(dist->irq_active_on_cpu);
2031         vgic_destroy_irq_phys_map(kvm, &dist->irq_phys_map_list);
2032         dist->irq_sgi_sources = NULL;
2033         dist->irq_spi_cpu = NULL;
2034         dist->irq_spi_target = NULL;
2035         dist->irq_pending_on_cpu = NULL;
2036         dist->irq_active_on_cpu = NULL;
2037         dist->nr_cpus = 0;
2038 }
2039
2040 /*
2041  * Allocate and initialize the various data structures. Must be called
2042  * with kvm->lock held!
2043  */
2044 int vgic_init(struct kvm *kvm)
2045 {
2046         struct vgic_dist *dist = &kvm->arch.vgic;
2047         struct kvm_vcpu *vcpu;
2048         int nr_cpus, nr_irqs;
2049         int ret, i, vcpu_id;
2050
2051         if (vgic_initialized(kvm))
2052                 return 0;
2053
2054         nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus);
2055         if (!nr_cpus)           /* No vcpus? Can't be good... */
2056                 return -ENODEV;
2057
2058         /*
2059          * If nobody configured the number of interrupts, use the
2060          * legacy one.
2061          */
2062         if (!dist->nr_irqs)
2063                 dist->nr_irqs = VGIC_NR_IRQS_LEGACY;
2064
2065         nr_irqs = dist->nr_irqs;
2066
2067         ret  = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
2068         ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
2069         ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
2070         ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
2071         ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
2072         ret |= vgic_init_bitmap(&dist->irq_active, nr_cpus, nr_irqs);
2073         ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
2074         ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);
2075
2076         if (ret)
2077                 goto out;
2078
2079         dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
2080         dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
2081         dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
2082                                        GFP_KERNEL);
2083         dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
2084                                            GFP_KERNEL);
2085         dist->irq_active_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
2086                                            GFP_KERNEL);
2087         if (!dist->irq_sgi_sources ||
2088             !dist->irq_spi_cpu ||
2089             !dist->irq_spi_target ||
2090             !dist->irq_pending_on_cpu ||
2091             !dist->irq_active_on_cpu) {
2092                 ret = -ENOMEM;
2093                 goto out;
2094         }
2095
2096         for (i = 0; i < nr_cpus; i++)
2097                 ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
2098                                         nr_cpus, nr_irqs);
2099
2100         if (ret)
2101                 goto out;
2102
2103         ret = kvm->arch.vgic.vm_ops.init_model(kvm);
2104         if (ret)
2105                 goto out;
2106
2107         kvm_for_each_vcpu(vcpu_id, vcpu, kvm) {
2108                 ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
2109                 if (ret) {
2110                         kvm_err("VGIC: Failed to allocate vcpu memory\n");
2111                         break;
2112                 }
2113
2114                 for (i = 0; i < dist->nr_irqs; i++) {
2115                         if (i < VGIC_NR_PPIS)
2116                                 vgic_bitmap_set_irq_val(&dist->irq_enabled,
2117                                                         vcpu->vcpu_id, i, 1);
2118                         if (i < VGIC_NR_PRIVATE_IRQS)
2119                                 vgic_bitmap_set_irq_val(&dist->irq_cfg,
2120                                                         vcpu->vcpu_id, i,
2121                                                         VGIC_CFG_EDGE);
2122                 }
2123
2124                 vgic_enable(vcpu);
2125         }
2126
2127 out:
2128         if (ret)
2129                 kvm_vgic_destroy(kvm);
2130
2131         return ret;
2132 }
2133
2134 static int init_vgic_model(struct kvm *kvm, int type)
2135 {
2136         switch (type) {
2137         case KVM_DEV_TYPE_ARM_VGIC_V2:
2138                 vgic_v2_init_emulation(kvm);
2139                 break;
2140 #ifdef CONFIG_KVM_ARM_VGIC_V3
2141         case KVM_DEV_TYPE_ARM_VGIC_V3:
2142                 vgic_v3_init_emulation(kvm);
2143                 break;
2144 #endif
2145         default:
2146                 return -ENODEV;
2147         }
2148
2149         if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus)
2150                 return -E2BIG;
2151
2152         return 0;
2153 }
2154
2155 /**
2156  * kvm_vgic_early_init - Earliest possible vgic initialization stage
2157  *
2158  * No memory allocation should be performed here, only static init.
2159  */
2160 void kvm_vgic_early_init(struct kvm *kvm)
2161 {
2162         spin_lock_init(&kvm->arch.vgic.lock);
2163         spin_lock_init(&kvm->arch.vgic.irq_phys_map_lock);
2164         INIT_LIST_HEAD(&kvm->arch.vgic.irq_phys_map_list);
2165 }
2166
2167 int kvm_vgic_create(struct kvm *kvm, u32 type)
2168 {
2169         int i, vcpu_lock_idx = -1, ret;
2170         struct kvm_vcpu *vcpu;
2171
2172         mutex_lock(&kvm->lock);
2173
2174         if (irqchip_in_kernel(kvm)) {
2175                 ret = -EEXIST;
2176                 goto out;
2177         }
2178
2179         /*
2180          * This function is also called by the KVM_CREATE_IRQCHIP handler,
2181          * which had no chance yet to check the availability of the GICv2
2182          * emulation. So check this here again. KVM_CREATE_DEVICE does
2183          * the proper checks already.
2184          */
2185         if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && !vgic->can_emulate_gicv2) {
2186                 ret = -ENODEV;
2187                 goto out;
2188         }
2189
2190         /*
2191          * Any time a vcpu is run, vcpu_load is called which tries to grab the
2192          * vcpu->mutex.  By grabbing the vcpu->mutex of all VCPUs we ensure
2193          * that no other VCPUs are run while we create the vgic.
2194          */
2195         ret = -EBUSY;
2196         kvm_for_each_vcpu(i, vcpu, kvm) {
2197                 if (!mutex_trylock(&vcpu->mutex))
2198                         goto out_unlock;
2199                 vcpu_lock_idx = i;
2200         }
2201
2202         kvm_for_each_vcpu(i, vcpu, kvm) {
2203                 if (vcpu->arch.has_run_once)
2204                         goto out_unlock;
2205         }
2206         ret = 0;
2207
2208         ret = init_vgic_model(kvm, type);
2209         if (ret)
2210                 goto out_unlock;
2211
2212         kvm->arch.vgic.in_kernel = true;
2213         kvm->arch.vgic.vgic_model = type;
2214         kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
2215         kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
2216         kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
2217         kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF;
2218
2219 out_unlock:
2220         for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
2221                 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
2222                 mutex_unlock(&vcpu->mutex);
2223         }
2224
2225 out:
2226         mutex_unlock(&kvm->lock);
2227         return ret;
2228 }
2229
2230 static int vgic_ioaddr_overlap(struct kvm *kvm)
2231 {
2232         phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
2233         phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
2234
2235         if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
2236                 return 0;
2237         if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
2238             (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
2239                 return -EBUSY;
2240         return 0;
2241 }
2242
2243 static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
2244                               phys_addr_t addr, phys_addr_t size)
2245 {
2246         int ret;
2247
2248         if (addr & ~KVM_PHYS_MASK)
2249                 return -E2BIG;
2250
2251         if (addr & (SZ_4K - 1))
2252                 return -EINVAL;
2253
2254         if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
2255                 return -EEXIST;
2256         if (addr + size < addr)
2257                 return -EINVAL;
2258
2259         *ioaddr = addr;
2260         ret = vgic_ioaddr_overlap(kvm);
2261         if (ret)
2262                 *ioaddr = VGIC_ADDR_UNDEF;
2263
2264         return ret;
2265 }
2266
2267 /**
2268  * kvm_vgic_addr - set or get vgic VM base addresses
2269  * @kvm:   pointer to the vm struct
2270  * @type:  the VGIC addr type, one of KVM_VGIC_V[23]_ADDR_TYPE_XXX
2271  * @addr:  pointer to address value
2272  * @write: if true set the address in the VM address space, if false read the
2273  *          address
2274  *
2275  * Set or get the vgic base addresses for the distributor and the virtual CPU
2276  * interface in the VM physical address space.  These addresses are properties
2277  * of the emulated core/SoC and therefore user space initially knows this
2278  * information.
2279  */
2280 int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
2281 {
2282         int r = 0;
2283         struct vgic_dist *vgic = &kvm->arch.vgic;
2284         int type_needed;
2285         phys_addr_t *addr_ptr, block_size;
2286         phys_addr_t alignment;
2287
2288         mutex_lock(&kvm->lock);
2289         switch (type) {
2290         case KVM_VGIC_V2_ADDR_TYPE_DIST:
2291                 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
2292                 addr_ptr = &vgic->vgic_dist_base;
2293                 block_size = KVM_VGIC_V2_DIST_SIZE;
2294                 alignment = SZ_4K;
2295                 break;
2296         case KVM_VGIC_V2_ADDR_TYPE_CPU:
2297                 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
2298                 addr_ptr = &vgic->vgic_cpu_base;
2299                 block_size = KVM_VGIC_V2_CPU_SIZE;
2300                 alignment = SZ_4K;
2301                 break;
2302 #ifdef CONFIG_KVM_ARM_VGIC_V3
2303         case KVM_VGIC_V3_ADDR_TYPE_DIST:
2304                 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
2305                 addr_ptr = &vgic->vgic_dist_base;
2306                 block_size = KVM_VGIC_V3_DIST_SIZE;
2307                 alignment = SZ_64K;
2308                 break;
2309         case KVM_VGIC_V3_ADDR_TYPE_REDIST:
2310                 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
2311                 addr_ptr = &vgic->vgic_redist_base;
2312                 block_size = KVM_VGIC_V3_REDIST_SIZE;
2313                 alignment = SZ_64K;
2314                 break;
2315 #endif
2316         default:
2317                 r = -ENODEV;
2318                 goto out;
2319         }
2320
2321         if (vgic->vgic_model != type_needed) {
2322                 r = -ENODEV;
2323                 goto out;
2324         }
2325
2326         if (write) {
2327                 if (!IS_ALIGNED(*addr, alignment))
2328                         r = -EINVAL;
2329                 else
2330                         r = vgic_ioaddr_assign(kvm, addr_ptr, *addr,
2331                                                block_size);
2332         } else {
2333                 *addr = *addr_ptr;
2334         }
2335
2336 out:
2337         mutex_unlock(&kvm->lock);
2338         return r;
2339 }
2340
2341 int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2342 {
2343         int r;
2344
2345         switch (attr->group) {
2346         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2347                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2348                 u64 addr;
2349                 unsigned long type = (unsigned long)attr->attr;
2350
2351                 if (copy_from_user(&addr, uaddr, sizeof(addr)))
2352                         return -EFAULT;
2353
2354                 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
2355                 return (r == -ENODEV) ? -ENXIO : r;
2356         }
2357         case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
2358                 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2359                 u32 val;
2360                 int ret = 0;
2361
2362                 if (get_user(val, uaddr))
2363                         return -EFAULT;
2364
2365                 /*
2366                  * We require:
2367                  * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
2368                  * - at most 1024 interrupts
2369                  * - a multiple of 32 interrupts
2370                  */
2371                 if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
2372                     val > VGIC_MAX_IRQS ||
2373                     (val & 31))
2374                         return -EINVAL;
2375
2376                 mutex_lock(&dev->kvm->lock);
2377
2378                 if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_irqs)
2379                         ret = -EBUSY;
2380                 else
2381                         dev->kvm->arch.vgic.nr_irqs = val;
2382
2383                 mutex_unlock(&dev->kvm->lock);
2384
2385                 return ret;
2386         }
2387         case KVM_DEV_ARM_VGIC_GRP_CTRL: {
2388                 switch (attr->attr) {
2389                 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2390                         r = vgic_init(dev->kvm);
2391                         return r;
2392                 }
2393                 break;
2394         }
2395         }
2396
2397         return -ENXIO;
2398 }
2399
2400 int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2401 {
2402         int r = -ENXIO;
2403
2404         switch (attr->group) {
2405         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2406                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2407                 u64 addr;
2408                 unsigned long type = (unsigned long)attr->attr;
2409
2410                 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
2411                 if (r)
2412                         return (r == -ENODEV) ? -ENXIO : r;
2413
2414                 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2415                         return -EFAULT;
2416                 break;
2417         }
2418         case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
2419                 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2420
2421                 r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr);
2422                 break;
2423         }
2424
2425         }
2426
2427         return r;
2428 }
2429
2430 int vgic_has_attr_regs(const struct vgic_io_range *ranges, phys_addr_t offset)
2431 {
2432         if (vgic_find_range(ranges, 4, offset))
2433                 return 0;
2434         else
2435                 return -ENXIO;
2436 }
2437
2438 static void vgic_init_maintenance_interrupt(void *info)
2439 {
2440         enable_percpu_irq(vgic->maint_irq, 0);
2441 }
2442
2443 static int vgic_cpu_notify(struct notifier_block *self,
2444                            unsigned long action, void *cpu)
2445 {
2446         switch (action) {
2447         case CPU_STARTING:
2448         case CPU_STARTING_FROZEN:
2449                 vgic_init_maintenance_interrupt(NULL);
2450                 break;
2451         case CPU_DYING:
2452         case CPU_DYING_FROZEN:
2453                 disable_percpu_irq(vgic->maint_irq);
2454                 break;
2455         }
2456
2457         return NOTIFY_OK;
2458 }
2459
2460 static struct notifier_block vgic_cpu_nb = {
2461         .notifier_call = vgic_cpu_notify,
2462 };
2463
2464 static const struct of_device_id vgic_ids[] = {
2465         { .compatible = "arm,cortex-a15-gic",   .data = vgic_v2_probe, },
2466         { .compatible = "arm,cortex-a7-gic",    .data = vgic_v2_probe, },
2467         { .compatible = "arm,gic-400",          .data = vgic_v2_probe, },
2468         { .compatible = "arm,gic-v3",           .data = vgic_v3_probe, },
2469         {},
2470 };
2471
2472 int kvm_vgic_hyp_init(void)
2473 {
2474         const struct of_device_id *matched_id;
2475         const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
2476                                 const struct vgic_params **);
2477         struct device_node *vgic_node;
2478         int ret;
2479
2480         vgic_node = of_find_matching_node_and_match(NULL,
2481                                                     vgic_ids, &matched_id);
2482         if (!vgic_node) {
2483                 kvm_err("error: no compatible GIC node found\n");
2484                 return -ENODEV;
2485         }
2486
2487         vgic_probe = matched_id->data;
2488         ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
2489         if (ret)
2490                 return ret;
2491
2492         ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
2493                                  "vgic", kvm_get_running_vcpus());
2494         if (ret) {
2495                 kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
2496                 return ret;
2497         }
2498
2499         ret = __register_cpu_notifier(&vgic_cpu_nb);
2500         if (ret) {
2501                 kvm_err("Cannot register vgic CPU notifier\n");
2502                 goto out_free_irq;
2503         }
2504
2505         on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
2506
2507         return 0;
2508
2509 out_free_irq:
2510         free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
2511         return ret;
2512 }
2513
2514 int kvm_irq_map_gsi(struct kvm *kvm,
2515                     struct kvm_kernel_irq_routing_entry *entries,
2516                     int gsi)
2517 {
2518         return 0;
2519 }
2520
2521 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin)
2522 {
2523         return pin;
2524 }
2525
2526 int kvm_set_irq(struct kvm *kvm, int irq_source_id,
2527                 u32 irq, int level, bool line_status)
2528 {
2529         unsigned int spi = irq + VGIC_NR_PRIVATE_IRQS;
2530
2531         trace_kvm_set_irq(irq, level, irq_source_id);
2532
2533         BUG_ON(!vgic_initialized(kvm));
2534
2535         return kvm_vgic_inject_irq(kvm, 0, spi, level);
2536 }
2537
2538 /* MSI not implemented yet */
2539 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e,
2540                 struct kvm *kvm, int irq_source_id,
2541                 int level, bool line_status)
2542 {
2543         return 0;
2544 }