]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - virt/kvm/arm/vgic.c
Merge remote-tracking branch 'kvm/linux-next'
[karo-tx-linux.git] / virt / kvm / arm / vgic.c
1 /*
2  * Copyright (C) 2012 ARM Ltd.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  */
18
19 #include <linux/cpu.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29
30 #include <asm/kvm_emulate.h>
31 #include <asm/kvm_arm.h>
32 #include <asm/kvm_mmu.h>
33 #include <trace/events/kvm.h>
34 #include <asm/kvm.h>
35 #include <kvm/iodev.h>
36
37 #define CREATE_TRACE_POINTS
38 #include "trace.h"
39
40 /*
41  * How the whole thing works (courtesy of Christoffer Dall):
42  *
43  * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
44  *   something is pending on the CPU interface.
45  * - Interrupts that are pending on the distributor are stored on the
46  *   vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
47  *   ioctls and guest mmio ops, and other in-kernel peripherals such as the
48  *   arch. timers).
49  * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
50  *   recalculated
51  * - To calculate the oracle, we need info for each cpu from
52  *   compute_pending_for_cpu, which considers:
53  *   - PPI: dist->irq_pending & dist->irq_enable
54  *   - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
55  *   - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
56  *     registers, stored on each vcpu. We only keep one bit of
57  *     information per interrupt, making sure that only one vcpu can
58  *     accept the interrupt.
59  * - If any of the above state changes, we must recalculate the oracle.
60  * - The same is true when injecting an interrupt, except that we only
61  *   consider a single interrupt at a time. The irq_spi_cpu array
62  *   contains the target CPU for each SPI.
63  *
64  * The handling of level interrupts adds some extra complexity. We
65  * need to track when the interrupt has been EOIed, so we can sample
66  * the 'line' again. This is achieved as such:
67  *
68  * - When a level interrupt is moved onto a vcpu, the corresponding
69  *   bit in irq_queued is set. As long as this bit is set, the line
70  *   will be ignored for further interrupts. The interrupt is injected
71  *   into the vcpu with the GICH_LR_EOI bit set (generate a
72  *   maintenance interrupt on EOI).
73  * - When the interrupt is EOIed, the maintenance interrupt fires,
74  *   and clears the corresponding bit in irq_queued. This allows the
75  *   interrupt line to be sampled again.
76  * - Note that level-triggered interrupts can also be set to pending from
77  *   writes to GICD_ISPENDRn and lowering the external input line does not
78  *   cause the interrupt to become inactive in such a situation.
79  *   Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
80  *   inactive as long as the external input line is held high.
81  *
82  *
83  * Initialization rules: there are multiple stages to the vgic
84  * initialization, both for the distributor and the CPU interfaces.
85  *
86  * Distributor:
87  *
88  * - kvm_vgic_early_init(): initialization of static data that doesn't
89  *   depend on any sizing information or emulation type. No allocation
90  *   is allowed there.
91  *
92  * - vgic_init(): allocation and initialization of the generic data
93  *   structures that depend on sizing information (number of CPUs,
94  *   number of interrupts). Also initializes the vcpu specific data
95  *   structures. Can be executed lazily for GICv2.
96  *   [to be renamed to kvm_vgic_init??]
97  *
98  * CPU Interface:
99  *
100  * - kvm_vgic_cpu_early_init(): initialization of static data that
101  *   doesn't depend on any sizing information or emulation type. No
102  *   allocation is allowed there.
103  */
104
105 #include "vgic.h"
106
107 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
108 static void vgic_retire_lr(int lr_nr, struct kvm_vcpu *vcpu);
109 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
110 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
111 static u64 vgic_get_elrsr(struct kvm_vcpu *vcpu);
112 static struct irq_phys_map *vgic_irq_map_search(struct kvm_vcpu *vcpu,
113                                                 int virt_irq);
114 static int compute_pending_for_cpu(struct kvm_vcpu *vcpu);
115
116 static const struct vgic_ops *vgic_ops;
117 static const struct vgic_params *vgic;
118
119 static void add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
120 {
121         vcpu->kvm->arch.vgic.vm_ops.add_sgi_source(vcpu, irq, source);
122 }
123
124 static bool queue_sgi(struct kvm_vcpu *vcpu, int irq)
125 {
126         return vcpu->kvm->arch.vgic.vm_ops.queue_sgi(vcpu, irq);
127 }
128
129 int kvm_vgic_map_resources(struct kvm *kvm)
130 {
131         return kvm->arch.vgic.vm_ops.map_resources(kvm, vgic);
132 }
133
134 /*
135  * struct vgic_bitmap contains a bitmap made of unsigned longs, but
136  * extracts u32s out of them.
137  *
138  * This does not work on 64-bit BE systems, because the bitmap access
139  * will store two consecutive 32-bit words with the higher-addressed
140  * register's bits at the lower index and the lower-addressed register's
141  * bits at the higher index.
142  *
143  * Therefore, swizzle the register index when accessing the 32-bit word
144  * registers to access the right register's value.
145  */
146 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
147 #define REG_OFFSET_SWIZZLE      1
148 #else
149 #define REG_OFFSET_SWIZZLE      0
150 #endif
151
152 static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
153 {
154         int nr_longs;
155
156         nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
157
158         b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
159         if (!b->private)
160                 return -ENOMEM;
161
162         b->shared = b->private + nr_cpus;
163
164         return 0;
165 }
166
167 static void vgic_free_bitmap(struct vgic_bitmap *b)
168 {
169         kfree(b->private);
170         b->private = NULL;
171         b->shared = NULL;
172 }
173
174 /*
175  * Call this function to convert a u64 value to an unsigned long * bitmask
176  * in a way that works on both 32-bit and 64-bit LE and BE platforms.
177  *
178  * Warning: Calling this function may modify *val.
179  */
180 static unsigned long *u64_to_bitmask(u64 *val)
181 {
182 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32
183         *val = (*val >> 32) | (*val << 32);
184 #endif
185         return (unsigned long *)val;
186 }
187
188 u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset)
189 {
190         offset >>= 2;
191         if (!offset)
192                 return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
193         else
194                 return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
195 }
196
197 static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
198                                    int cpuid, int irq)
199 {
200         if (irq < VGIC_NR_PRIVATE_IRQS)
201                 return test_bit(irq, x->private + cpuid);
202
203         return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
204 }
205
206 void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
207                              int irq, int val)
208 {
209         unsigned long *reg;
210
211         if (irq < VGIC_NR_PRIVATE_IRQS) {
212                 reg = x->private + cpuid;
213         } else {
214                 reg = x->shared;
215                 irq -= VGIC_NR_PRIVATE_IRQS;
216         }
217
218         if (val)
219                 set_bit(irq, reg);
220         else
221                 clear_bit(irq, reg);
222 }
223
224 static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
225 {
226         return x->private + cpuid;
227 }
228
229 unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
230 {
231         return x->shared;
232 }
233
234 static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
235 {
236         int size;
237
238         size  = nr_cpus * VGIC_NR_PRIVATE_IRQS;
239         size += nr_irqs - VGIC_NR_PRIVATE_IRQS;
240
241         x->private = kzalloc(size, GFP_KERNEL);
242         if (!x->private)
243                 return -ENOMEM;
244
245         x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
246         return 0;
247 }
248
249 static void vgic_free_bytemap(struct vgic_bytemap *b)
250 {
251         kfree(b->private);
252         b->private = NULL;
253         b->shared = NULL;
254 }
255
256 u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
257 {
258         u32 *reg;
259
260         if (offset < VGIC_NR_PRIVATE_IRQS) {
261                 reg = x->private;
262                 offset += cpuid * VGIC_NR_PRIVATE_IRQS;
263         } else {
264                 reg = x->shared;
265                 offset -= VGIC_NR_PRIVATE_IRQS;
266         }
267
268         return reg + (offset / sizeof(u32));
269 }
270
271 #define VGIC_CFG_LEVEL  0
272 #define VGIC_CFG_EDGE   1
273
274 static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
275 {
276         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
277         int irq_val;
278
279         irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
280         return irq_val == VGIC_CFG_EDGE;
281 }
282
283 static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
284 {
285         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
286
287         return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
288 }
289
290 static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
291 {
292         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
293
294         return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
295 }
296
297 static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
298 {
299         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
300
301         return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
302 }
303
304 static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
305 {
306         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
307
308         vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
309 }
310
311 static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
312 {
313         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
314
315         vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
316 }
317
318 static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
319 {
320         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
321
322         vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
323 }
324
325 static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
326 {
327         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
328
329         vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
330 }
331
332 static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
333 {
334         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
335
336         return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
337 }
338
339 static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
340 {
341         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
342
343         vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
344 }
345
346 static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
347 {
348         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
349
350         vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
351 }
352
353 static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
354 {
355         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
356
357         return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
358 }
359
360 static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
361 {
362         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
363
364         vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
365         if (!vgic_dist_irq_get_level(vcpu, irq)) {
366                 vgic_dist_irq_clear_pending(vcpu, irq);
367                 if (!compute_pending_for_cpu(vcpu))
368                         clear_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
369         }
370 }
371
372 static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
373 {
374         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
375
376         return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
377 }
378
379 void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
380 {
381         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
382
383         vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
384 }
385
386 void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
387 {
388         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
389
390         vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
391 }
392
393 static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
394 {
395         if (irq < VGIC_NR_PRIVATE_IRQS)
396                 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
397         else
398                 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
399                         vcpu->arch.vgic_cpu.pending_shared);
400 }
401
402 void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
403 {
404         if (irq < VGIC_NR_PRIVATE_IRQS)
405                 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
406         else
407                 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
408                           vcpu->arch.vgic_cpu.pending_shared);
409 }
410
411 static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
412 {
413         return !vgic_irq_is_queued(vcpu, irq);
414 }
415
416 /**
417  * vgic_reg_access - access vgic register
418  * @mmio:   pointer to the data describing the mmio access
419  * @reg:    pointer to the virtual backing of vgic distributor data
420  * @offset: least significant 2 bits used for word offset
421  * @mode:   ACCESS_ mode (see defines above)
422  *
423  * Helper to make vgic register access easier using one of the access
424  * modes defined for vgic register access
425  * (read,raz,write-ignored,setbit,clearbit,write)
426  */
427 void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
428                      phys_addr_t offset, int mode)
429 {
430         int word_offset = (offset & 3) * 8;
431         u32 mask = (1UL << (mmio->len * 8)) - 1;
432         u32 regval;
433
434         /*
435          * Any alignment fault should have been delivered to the guest
436          * directly (ARM ARM B3.12.7 "Prioritization of aborts").
437          */
438
439         if (reg) {
440                 regval = *reg;
441         } else {
442                 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
443                 regval = 0;
444         }
445
446         if (mmio->is_write) {
447                 u32 data = mmio_data_read(mmio, mask) << word_offset;
448                 switch (ACCESS_WRITE_MASK(mode)) {
449                 case ACCESS_WRITE_IGNORED:
450                         return;
451
452                 case ACCESS_WRITE_SETBIT:
453                         regval |= data;
454                         break;
455
456                 case ACCESS_WRITE_CLEARBIT:
457                         regval &= ~data;
458                         break;
459
460                 case ACCESS_WRITE_VALUE:
461                         regval = (regval & ~(mask << word_offset)) | data;
462                         break;
463                 }
464                 *reg = regval;
465         } else {
466                 switch (ACCESS_READ_MASK(mode)) {
467                 case ACCESS_READ_RAZ:
468                         regval = 0;
469                         /* fall through */
470
471                 case ACCESS_READ_VALUE:
472                         mmio_data_write(mmio, mask, regval >> word_offset);
473                 }
474         }
475 }
476
477 bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
478                         phys_addr_t offset)
479 {
480         vgic_reg_access(mmio, NULL, offset,
481                         ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
482         return false;
483 }
484
485 bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
486                             phys_addr_t offset, int vcpu_id, int access)
487 {
488         u32 *reg;
489         int mode = ACCESS_READ_VALUE | access;
490         struct kvm_vcpu *target_vcpu = kvm_get_vcpu(kvm, vcpu_id);
491
492         reg = vgic_bitmap_get_reg(&kvm->arch.vgic.irq_enabled, vcpu_id, offset);
493         vgic_reg_access(mmio, reg, offset, mode);
494         if (mmio->is_write) {
495                 if (access & ACCESS_WRITE_CLEARBIT) {
496                         if (offset < 4) /* Force SGI enabled */
497                                 *reg |= 0xffff;
498                         vgic_retire_disabled_irqs(target_vcpu);
499                 }
500                 vgic_update_state(kvm);
501                 return true;
502         }
503
504         return false;
505 }
506
507 bool vgic_handle_set_pending_reg(struct kvm *kvm,
508                                  struct kvm_exit_mmio *mmio,
509                                  phys_addr_t offset, int vcpu_id)
510 {
511         u32 *reg, orig;
512         u32 level_mask;
513         int mode = ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT;
514         struct vgic_dist *dist = &kvm->arch.vgic;
515
516         reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu_id, offset);
517         level_mask = (~(*reg));
518
519         /* Mark both level and edge triggered irqs as pending */
520         reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
521         orig = *reg;
522         vgic_reg_access(mmio, reg, offset, mode);
523
524         if (mmio->is_write) {
525                 /* Set the soft-pending flag only for level-triggered irqs */
526                 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
527                                           vcpu_id, offset);
528                 vgic_reg_access(mmio, reg, offset, mode);
529                 *reg &= level_mask;
530
531                 /* Ignore writes to SGIs */
532                 if (offset < 2) {
533                         *reg &= ~0xffff;
534                         *reg |= orig & 0xffff;
535                 }
536
537                 vgic_update_state(kvm);
538                 return true;
539         }
540
541         return false;
542 }
543
544 bool vgic_handle_clear_pending_reg(struct kvm *kvm,
545                                    struct kvm_exit_mmio *mmio,
546                                    phys_addr_t offset, int vcpu_id)
547 {
548         u32 *level_active;
549         u32 *reg, orig;
550         int mode = ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT;
551         struct vgic_dist *dist = &kvm->arch.vgic;
552
553         reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
554         orig = *reg;
555         vgic_reg_access(mmio, reg, offset, mode);
556         if (mmio->is_write) {
557                 /* Re-set level triggered level-active interrupts */
558                 level_active = vgic_bitmap_get_reg(&dist->irq_level,
559                                           vcpu_id, offset);
560                 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
561                 *reg |= *level_active;
562
563                 /* Ignore writes to SGIs */
564                 if (offset < 2) {
565                         *reg &= ~0xffff;
566                         *reg |= orig & 0xffff;
567                 }
568
569                 /* Clear soft-pending flags */
570                 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
571                                           vcpu_id, offset);
572                 vgic_reg_access(mmio, reg, offset, mode);
573
574                 vgic_update_state(kvm);
575                 return true;
576         }
577         return false;
578 }
579
580 bool vgic_handle_set_active_reg(struct kvm *kvm,
581                                 struct kvm_exit_mmio *mmio,
582                                 phys_addr_t offset, int vcpu_id)
583 {
584         u32 *reg;
585         struct vgic_dist *dist = &kvm->arch.vgic;
586
587         reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
588         vgic_reg_access(mmio, reg, offset,
589                         ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
590
591         if (mmio->is_write) {
592                 vgic_update_state(kvm);
593                 return true;
594         }
595
596         return false;
597 }
598
599 bool vgic_handle_clear_active_reg(struct kvm *kvm,
600                                   struct kvm_exit_mmio *mmio,
601                                   phys_addr_t offset, int vcpu_id)
602 {
603         u32 *reg;
604         struct vgic_dist *dist = &kvm->arch.vgic;
605
606         reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
607         vgic_reg_access(mmio, reg, offset,
608                         ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
609
610         if (mmio->is_write) {
611                 vgic_update_state(kvm);
612                 return true;
613         }
614
615         return false;
616 }
617
618 static u32 vgic_cfg_expand(u16 val)
619 {
620         u32 res = 0;
621         int i;
622
623         /*
624          * Turn a 16bit value like abcd...mnop into a 32bit word
625          * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
626          */
627         for (i = 0; i < 16; i++)
628                 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
629
630         return res;
631 }
632
633 static u16 vgic_cfg_compress(u32 val)
634 {
635         u16 res = 0;
636         int i;
637
638         /*
639          * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
640          * abcd...mnop which is what we really care about.
641          */
642         for (i = 0; i < 16; i++)
643                 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
644
645         return res;
646 }
647
648 /*
649  * The distributor uses 2 bits per IRQ for the CFG register, but the
650  * LSB is always 0. As such, we only keep the upper bit, and use the
651  * two above functions to compress/expand the bits
652  */
653 bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio,
654                          phys_addr_t offset)
655 {
656         u32 val;
657
658         if (offset & 4)
659                 val = *reg >> 16;
660         else
661                 val = *reg & 0xffff;
662
663         val = vgic_cfg_expand(val);
664         vgic_reg_access(mmio, &val, offset,
665                         ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
666         if (mmio->is_write) {
667                 /* Ignore writes to read-only SGI and PPI bits */
668                 if (offset < 8)
669                         return false;
670
671                 val = vgic_cfg_compress(val);
672                 if (offset & 4) {
673                         *reg &= 0xffff;
674                         *reg |= val << 16;
675                 } else {
676                         *reg &= 0xffff << 16;
677                         *reg |= val;
678                 }
679         }
680
681         return false;
682 }
683
684 /**
685  * vgic_unqueue_irqs - move pending/active IRQs from LRs to the distributor
686  * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
687  *
688  * Move any IRQs that have already been assigned to LRs back to the
689  * emulated distributor state so that the complete emulated state can be read
690  * from the main emulation structures without investigating the LRs.
691  */
692 void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
693 {
694         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
695         u64 elrsr = vgic_get_elrsr(vcpu);
696         unsigned long *elrsr_ptr = u64_to_bitmask(&elrsr);
697         int i;
698
699         for_each_clear_bit(i, elrsr_ptr, vgic_cpu->nr_lr) {
700                 struct vgic_lr lr = vgic_get_lr(vcpu, i);
701
702                 /*
703                  * There are three options for the state bits:
704                  *
705                  * 01: pending
706                  * 10: active
707                  * 11: pending and active
708                  */
709                 BUG_ON(!(lr.state & LR_STATE_MASK));
710
711                 /* Reestablish SGI source for pending and active IRQs */
712                 if (lr.irq < VGIC_NR_SGIS)
713                         add_sgi_source(vcpu, lr.irq, lr.source);
714
715                 /*
716                  * If the LR holds an active (10) or a pending and active (11)
717                  * interrupt then move the active state to the
718                  * distributor tracking bit.
719                  */
720                 if (lr.state & LR_STATE_ACTIVE)
721                         vgic_irq_set_active(vcpu, lr.irq);
722
723                 /*
724                  * Reestablish the pending state on the distributor and the
725                  * CPU interface and mark the LR as free for other use.
726                  */
727                 vgic_retire_lr(i, vcpu);
728
729                 /* Finally update the VGIC state. */
730                 vgic_update_state(vcpu->kvm);
731         }
732 }
733
734 const
735 struct vgic_io_range *vgic_find_range(const struct vgic_io_range *ranges,
736                                       int len, gpa_t offset)
737 {
738         while (ranges->len) {
739                 if (offset >= ranges->base &&
740                     (offset + len) <= (ranges->base + ranges->len))
741                         return ranges;
742                 ranges++;
743         }
744
745         return NULL;
746 }
747
748 static bool vgic_validate_access(const struct vgic_dist *dist,
749                                  const struct vgic_io_range *range,
750                                  unsigned long offset)
751 {
752         int irq;
753
754         if (!range->bits_per_irq)
755                 return true;    /* Not an irq-based access */
756
757         irq = offset * 8 / range->bits_per_irq;
758         if (irq >= dist->nr_irqs)
759                 return false;
760
761         return true;
762 }
763
764 /*
765  * Call the respective handler function for the given range.
766  * We split up any 64 bit accesses into two consecutive 32 bit
767  * handler calls and merge the result afterwards.
768  * We do this in a little endian fashion regardless of the host's
769  * or guest's endianness, because the GIC is always LE and the rest of
770  * the code (vgic_reg_access) also puts it in a LE fashion already.
771  * At this point we have already identified the handle function, so
772  * range points to that one entry and offset is relative to this.
773  */
774 static bool call_range_handler(struct kvm_vcpu *vcpu,
775                                struct kvm_exit_mmio *mmio,
776                                unsigned long offset,
777                                const struct vgic_io_range *range)
778 {
779         struct kvm_exit_mmio mmio32;
780         bool ret;
781
782         if (likely(mmio->len <= 4))
783                 return range->handle_mmio(vcpu, mmio, offset);
784
785         /*
786          * Any access bigger than 4 bytes (that we currently handle in KVM)
787          * is actually 8 bytes long, caused by a 64-bit access
788          */
789
790         mmio32.len = 4;
791         mmio32.is_write = mmio->is_write;
792         mmio32.private = mmio->private;
793
794         mmio32.phys_addr = mmio->phys_addr + 4;
795         mmio32.data = &((u32 *)mmio->data)[1];
796         ret = range->handle_mmio(vcpu, &mmio32, offset + 4);
797
798         mmio32.phys_addr = mmio->phys_addr;
799         mmio32.data = &((u32 *)mmio->data)[0];
800         ret |= range->handle_mmio(vcpu, &mmio32, offset);
801
802         return ret;
803 }
804
805 /**
806  * vgic_handle_mmio_access - handle an in-kernel MMIO access
807  * This is called by the read/write KVM IO device wrappers below.
808  * @vcpu:       pointer to the vcpu performing the access
809  * @this:       pointer to the KVM IO device in charge
810  * @addr:       guest physical address of the access
811  * @len:        size of the access
812  * @val:        pointer to the data region
813  * @is_write:   read or write access
814  *
815  * returns true if the MMIO access could be performed
816  */
817 static int vgic_handle_mmio_access(struct kvm_vcpu *vcpu,
818                                    struct kvm_io_device *this, gpa_t addr,
819                                    int len, void *val, bool is_write)
820 {
821         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
822         struct vgic_io_device *iodev = container_of(this,
823                                                     struct vgic_io_device, dev);
824         struct kvm_run *run = vcpu->run;
825         const struct vgic_io_range *range;
826         struct kvm_exit_mmio mmio;
827         bool updated_state;
828         gpa_t offset;
829
830         offset = addr - iodev->addr;
831         range = vgic_find_range(iodev->reg_ranges, len, offset);
832         if (unlikely(!range || !range->handle_mmio)) {
833                 pr_warn("Unhandled access %d %08llx %d\n", is_write, addr, len);
834                 return -ENXIO;
835         }
836
837         mmio.phys_addr = addr;
838         mmio.len = len;
839         mmio.is_write = is_write;
840         mmio.data = val;
841         mmio.private = iodev->redist_vcpu;
842
843         spin_lock(&dist->lock);
844         offset -= range->base;
845         if (vgic_validate_access(dist, range, offset)) {
846                 updated_state = call_range_handler(vcpu, &mmio, offset, range);
847         } else {
848                 if (!is_write)
849                         memset(val, 0, len);
850                 updated_state = false;
851         }
852         spin_unlock(&dist->lock);
853         run->mmio.is_write      = is_write;
854         run->mmio.len           = len;
855         run->mmio.phys_addr     = addr;
856         memcpy(run->mmio.data, val, len);
857
858         kvm_handle_mmio_return(vcpu, run);
859
860         if (updated_state)
861                 vgic_kick_vcpus(vcpu->kvm);
862
863         return 0;
864 }
865
866 static int vgic_handle_mmio_read(struct kvm_vcpu *vcpu,
867                                  struct kvm_io_device *this,
868                                  gpa_t addr, int len, void *val)
869 {
870         return vgic_handle_mmio_access(vcpu, this, addr, len, val, false);
871 }
872
873 static int vgic_handle_mmio_write(struct kvm_vcpu *vcpu,
874                                   struct kvm_io_device *this,
875                                   gpa_t addr, int len, const void *val)
876 {
877         return vgic_handle_mmio_access(vcpu, this, addr, len, (void *)val,
878                                        true);
879 }
880
881 struct kvm_io_device_ops vgic_io_ops = {
882         .read   = vgic_handle_mmio_read,
883         .write  = vgic_handle_mmio_write,
884 };
885
886 /**
887  * vgic_register_kvm_io_dev - register VGIC register frame on the KVM I/O bus
888  * @kvm:            The VM structure pointer
889  * @base:           The (guest) base address for the register frame
890  * @len:            Length of the register frame window
891  * @ranges:         Describing the handler functions for each register
892  * @redist_vcpu_id: The VCPU ID to pass on to the handlers on call
893  * @iodev:          Points to memory to be passed on to the handler
894  *
895  * @iodev stores the parameters of this function to be usable by the handler
896  * respectively the dispatcher function (since the KVM I/O bus framework lacks
897  * an opaque parameter). Initialization is done in this function, but the
898  * reference should be valid and unique for the whole VGIC lifetime.
899  * If the register frame is not mapped for a specific VCPU, pass -1 to
900  * @redist_vcpu_id.
901  */
902 int vgic_register_kvm_io_dev(struct kvm *kvm, gpa_t base, int len,
903                              const struct vgic_io_range *ranges,
904                              int redist_vcpu_id,
905                              struct vgic_io_device *iodev)
906 {
907         struct kvm_vcpu *vcpu = NULL;
908         int ret;
909
910         if (redist_vcpu_id >= 0)
911                 vcpu = kvm_get_vcpu(kvm, redist_vcpu_id);
912
913         iodev->addr             = base;
914         iodev->len              = len;
915         iodev->reg_ranges       = ranges;
916         iodev->redist_vcpu      = vcpu;
917
918         kvm_iodevice_init(&iodev->dev, &vgic_io_ops);
919
920         mutex_lock(&kvm->slots_lock);
921
922         ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, base, len,
923                                       &iodev->dev);
924         mutex_unlock(&kvm->slots_lock);
925
926         /* Mark the iodev as invalid if registration fails. */
927         if (ret)
928                 iodev->dev.ops = NULL;
929
930         return ret;
931 }
932
933 static int vgic_nr_shared_irqs(struct vgic_dist *dist)
934 {
935         return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
936 }
937
938 static int compute_active_for_cpu(struct kvm_vcpu *vcpu)
939 {
940         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
941         unsigned long *active, *enabled, *act_percpu, *act_shared;
942         unsigned long active_private, active_shared;
943         int nr_shared = vgic_nr_shared_irqs(dist);
944         int vcpu_id;
945
946         vcpu_id = vcpu->vcpu_id;
947         act_percpu = vcpu->arch.vgic_cpu.active_percpu;
948         act_shared = vcpu->arch.vgic_cpu.active_shared;
949
950         active = vgic_bitmap_get_cpu_map(&dist->irq_active, vcpu_id);
951         enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
952         bitmap_and(act_percpu, active, enabled, VGIC_NR_PRIVATE_IRQS);
953
954         active = vgic_bitmap_get_shared_map(&dist->irq_active);
955         enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
956         bitmap_and(act_shared, active, enabled, nr_shared);
957         bitmap_and(act_shared, act_shared,
958                    vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
959                    nr_shared);
960
961         active_private = find_first_bit(act_percpu, VGIC_NR_PRIVATE_IRQS);
962         active_shared = find_first_bit(act_shared, nr_shared);
963
964         return (active_private < VGIC_NR_PRIVATE_IRQS ||
965                 active_shared < nr_shared);
966 }
967
968 static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
969 {
970         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
971         unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
972         unsigned long pending_private, pending_shared;
973         int nr_shared = vgic_nr_shared_irqs(dist);
974         int vcpu_id;
975
976         vcpu_id = vcpu->vcpu_id;
977         pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
978         pend_shared = vcpu->arch.vgic_cpu.pending_shared;
979
980         if (!dist->enabled) {
981                 bitmap_zero(pend_percpu, VGIC_NR_PRIVATE_IRQS);
982                 bitmap_zero(pend_shared, nr_shared);
983                 return 0;
984         }
985
986         pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
987         enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
988         bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
989
990         pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
991         enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
992         bitmap_and(pend_shared, pending, enabled, nr_shared);
993         bitmap_and(pend_shared, pend_shared,
994                    vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
995                    nr_shared);
996
997         pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
998         pending_shared = find_first_bit(pend_shared, nr_shared);
999         return (pending_private < VGIC_NR_PRIVATE_IRQS ||
1000                 pending_shared < vgic_nr_shared_irqs(dist));
1001 }
1002
1003 /*
1004  * Update the interrupt state and determine which CPUs have pending
1005  * or active interrupts. Must be called with distributor lock held.
1006  */
1007 void vgic_update_state(struct kvm *kvm)
1008 {
1009         struct vgic_dist *dist = &kvm->arch.vgic;
1010         struct kvm_vcpu *vcpu;
1011         int c;
1012
1013         kvm_for_each_vcpu(c, vcpu, kvm) {
1014                 if (compute_pending_for_cpu(vcpu))
1015                         set_bit(c, dist->irq_pending_on_cpu);
1016
1017                 if (compute_active_for_cpu(vcpu))
1018                         set_bit(c, dist->irq_active_on_cpu);
1019                 else
1020                         clear_bit(c, dist->irq_active_on_cpu);
1021         }
1022 }
1023
1024 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
1025 {
1026         return vgic_ops->get_lr(vcpu, lr);
1027 }
1028
1029 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
1030                                struct vgic_lr vlr)
1031 {
1032         vgic_ops->set_lr(vcpu, lr, vlr);
1033 }
1034
1035 static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
1036 {
1037         return vgic_ops->get_elrsr(vcpu);
1038 }
1039
1040 static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
1041 {
1042         return vgic_ops->get_eisr(vcpu);
1043 }
1044
1045 static inline void vgic_clear_eisr(struct kvm_vcpu *vcpu)
1046 {
1047         vgic_ops->clear_eisr(vcpu);
1048 }
1049
1050 static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
1051 {
1052         return vgic_ops->get_interrupt_status(vcpu);
1053 }
1054
1055 static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
1056 {
1057         vgic_ops->enable_underflow(vcpu);
1058 }
1059
1060 static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
1061 {
1062         vgic_ops->disable_underflow(vcpu);
1063 }
1064
1065 void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1066 {
1067         vgic_ops->get_vmcr(vcpu, vmcr);
1068 }
1069
1070 void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1071 {
1072         vgic_ops->set_vmcr(vcpu, vmcr);
1073 }
1074
1075 static inline void vgic_enable(struct kvm_vcpu *vcpu)
1076 {
1077         vgic_ops->enable(vcpu);
1078 }
1079
1080 static void vgic_retire_lr(int lr_nr, struct kvm_vcpu *vcpu)
1081 {
1082         struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
1083
1084         vgic_irq_clear_queued(vcpu, vlr.irq);
1085
1086         /*
1087          * We must transfer the pending state back to the distributor before
1088          * retiring the LR, otherwise we may loose edge-triggered interrupts.
1089          */
1090         if (vlr.state & LR_STATE_PENDING) {
1091                 vgic_dist_irq_set_pending(vcpu, vlr.irq);
1092                 vlr.hwirq = 0;
1093         }
1094
1095         vlr.state = 0;
1096         vgic_set_lr(vcpu, lr_nr, vlr);
1097 }
1098
1099 /*
1100  * An interrupt may have been disabled after being made pending on the
1101  * CPU interface (the classic case is a timer running while we're
1102  * rebooting the guest - the interrupt would kick as soon as the CPU
1103  * interface gets enabled, with deadly consequences).
1104  *
1105  * The solution is to examine already active LRs, and check the
1106  * interrupt is still enabled. If not, just retire it.
1107  */
1108 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
1109 {
1110         u64 elrsr = vgic_get_elrsr(vcpu);
1111         unsigned long *elrsr_ptr = u64_to_bitmask(&elrsr);
1112         int lr;
1113
1114         for_each_clear_bit(lr, elrsr_ptr, vgic->nr_lr) {
1115                 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1116
1117                 if (!vgic_irq_is_enabled(vcpu, vlr.irq))
1118                         vgic_retire_lr(lr, vcpu);
1119         }
1120 }
1121
1122 static void vgic_queue_irq_to_lr(struct kvm_vcpu *vcpu, int irq,
1123                                  int lr_nr, struct vgic_lr vlr)
1124 {
1125         if (vgic_irq_is_active(vcpu, irq)) {
1126                 vlr.state |= LR_STATE_ACTIVE;
1127                 kvm_debug("Set active, clear distributor: 0x%x\n", vlr.state);
1128                 vgic_irq_clear_active(vcpu, irq);
1129                 vgic_update_state(vcpu->kvm);
1130         } else {
1131                 WARN_ON(!vgic_dist_irq_is_pending(vcpu, irq));
1132                 vlr.state |= LR_STATE_PENDING;
1133                 kvm_debug("Set pending: 0x%x\n", vlr.state);
1134         }
1135
1136         if (!vgic_irq_is_edge(vcpu, irq))
1137                 vlr.state |= LR_EOI_INT;
1138
1139         if (vlr.irq >= VGIC_NR_SGIS) {
1140                 struct irq_phys_map *map;
1141                 map = vgic_irq_map_search(vcpu, irq);
1142
1143                 if (map) {
1144                         vlr.hwirq = map->phys_irq;
1145                         vlr.state |= LR_HW;
1146                         vlr.state &= ~LR_EOI_INT;
1147
1148                         /*
1149                          * Make sure we're not going to sample this
1150                          * again, as a HW-backed interrupt cannot be
1151                          * in the PENDING_ACTIVE stage.
1152                          */
1153                         vgic_irq_set_queued(vcpu, irq);
1154                 }
1155         }
1156
1157         vgic_set_lr(vcpu, lr_nr, vlr);
1158 }
1159
1160 /*
1161  * Queue an interrupt to a CPU virtual interface. Return true on success,
1162  * or false if it wasn't possible to queue it.
1163  * sgi_source must be zero for any non-SGI interrupts.
1164  */
1165 bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
1166 {
1167         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1168         u64 elrsr = vgic_get_elrsr(vcpu);
1169         unsigned long *elrsr_ptr = u64_to_bitmask(&elrsr);
1170         struct vgic_lr vlr;
1171         int lr;
1172
1173         /* Sanitize the input... */
1174         BUG_ON(sgi_source_id & ~7);
1175         BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
1176         BUG_ON(irq >= dist->nr_irqs);
1177
1178         kvm_debug("Queue IRQ%d\n", irq);
1179
1180         /* Do we have an active interrupt for the same CPUID? */
1181         for_each_clear_bit(lr, elrsr_ptr, vgic->nr_lr) {
1182                 vlr = vgic_get_lr(vcpu, lr);
1183                 if (vlr.irq == irq && vlr.source == sgi_source_id) {
1184                         kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
1185                         vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
1186                         return true;
1187                 }
1188         }
1189
1190         /* Try to use another LR for this interrupt */
1191         lr = find_first_bit(elrsr_ptr, vgic->nr_lr);
1192         if (lr >= vgic->nr_lr)
1193                 return false;
1194
1195         kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
1196
1197         vlr.irq = irq;
1198         vlr.source = sgi_source_id;
1199         vlr.state = 0;
1200         vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
1201
1202         return true;
1203 }
1204
1205 static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1206 {
1207         if (!vgic_can_sample_irq(vcpu, irq))
1208                 return true; /* level interrupt, already queued */
1209
1210         if (vgic_queue_irq(vcpu, 0, irq)) {
1211                 if (vgic_irq_is_edge(vcpu, irq)) {
1212                         vgic_dist_irq_clear_pending(vcpu, irq);
1213                         vgic_cpu_irq_clear(vcpu, irq);
1214                 } else {
1215                         vgic_irq_set_queued(vcpu, irq);
1216                 }
1217
1218                 return true;
1219         }
1220
1221         return false;
1222 }
1223
1224 /*
1225  * Fill the list registers with pending interrupts before running the
1226  * guest.
1227  */
1228 static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1229 {
1230         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1231         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1232         unsigned long *pa_percpu, *pa_shared;
1233         int i, vcpu_id;
1234         int overflow = 0;
1235         int nr_shared = vgic_nr_shared_irqs(dist);
1236
1237         vcpu_id = vcpu->vcpu_id;
1238
1239         pa_percpu = vcpu->arch.vgic_cpu.pend_act_percpu;
1240         pa_shared = vcpu->arch.vgic_cpu.pend_act_shared;
1241
1242         bitmap_or(pa_percpu, vgic_cpu->pending_percpu, vgic_cpu->active_percpu,
1243                   VGIC_NR_PRIVATE_IRQS);
1244         bitmap_or(pa_shared, vgic_cpu->pending_shared, vgic_cpu->active_shared,
1245                   nr_shared);
1246         /*
1247          * We may not have any pending interrupt, or the interrupts
1248          * may have been serviced from another vcpu. In all cases,
1249          * move along.
1250          */
1251         if (!kvm_vgic_vcpu_pending_irq(vcpu) && !kvm_vgic_vcpu_active_irq(vcpu))
1252                 goto epilog;
1253
1254         /* SGIs */
1255         for_each_set_bit(i, pa_percpu, VGIC_NR_SGIS) {
1256                 if (!queue_sgi(vcpu, i))
1257                         overflow = 1;
1258         }
1259
1260         /* PPIs */
1261         for_each_set_bit_from(i, pa_percpu, VGIC_NR_PRIVATE_IRQS) {
1262                 if (!vgic_queue_hwirq(vcpu, i))
1263                         overflow = 1;
1264         }
1265
1266         /* SPIs */
1267         for_each_set_bit(i, pa_shared, nr_shared) {
1268                 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1269                         overflow = 1;
1270         }
1271
1272
1273
1274
1275 epilog:
1276         if (overflow) {
1277                 vgic_enable_underflow(vcpu);
1278         } else {
1279                 vgic_disable_underflow(vcpu);
1280                 /*
1281                  * We're about to run this VCPU, and we've consumed
1282                  * everything the distributor had in store for
1283                  * us. Claim we don't have anything pending. We'll
1284                  * adjust that if needed while exiting.
1285                  */
1286                 clear_bit(vcpu_id, dist->irq_pending_on_cpu);
1287         }
1288 }
1289
1290 static int process_queued_irq(struct kvm_vcpu *vcpu,
1291                                    int lr, struct vgic_lr vlr)
1292 {
1293         int pending = 0;
1294
1295         /*
1296          * If the IRQ was EOIed (called from vgic_process_maintenance) or it
1297          * went from active to non-active (called from vgic_sync_hwirq) it was
1298          * also ACKed and we we therefore assume we can clear the soft pending
1299          * state (should it had been set) for this interrupt.
1300          *
1301          * Note: if the IRQ soft pending state was set after the IRQ was
1302          * acked, it actually shouldn't be cleared, but we have no way of
1303          * knowing that unless we start trapping ACKs when the soft-pending
1304          * state is set.
1305          */
1306         vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);
1307
1308         /*
1309          * Tell the gic to start sampling this interrupt again.
1310          */
1311         vgic_irq_clear_queued(vcpu, vlr.irq);
1312
1313         /* Any additional pending interrupt? */
1314         if (vgic_irq_is_edge(vcpu, vlr.irq)) {
1315                 BUG_ON(!(vlr.state & LR_HW));
1316                 pending = vgic_dist_irq_is_pending(vcpu, vlr.irq);
1317         } else {
1318                 if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
1319                         vgic_cpu_irq_set(vcpu, vlr.irq);
1320                         pending = 1;
1321                 } else {
1322                         vgic_dist_irq_clear_pending(vcpu, vlr.irq);
1323                         vgic_cpu_irq_clear(vcpu, vlr.irq);
1324                 }
1325         }
1326
1327         /*
1328          * Despite being EOIed, the LR may not have
1329          * been marked as empty.
1330          */
1331         vlr.state = 0;
1332         vlr.hwirq = 0;
1333         vgic_set_lr(vcpu, lr, vlr);
1334
1335         return pending;
1336 }
1337
1338 static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1339 {
1340         u32 status = vgic_get_interrupt_status(vcpu);
1341         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1342         struct kvm *kvm = vcpu->kvm;
1343         int level_pending = 0;
1344
1345         kvm_debug("STATUS = %08x\n", status);
1346
1347         if (status & INT_STATUS_EOI) {
1348                 /*
1349                  * Some level interrupts have been EOIed. Clear their
1350                  * active bit.
1351                  */
1352                 u64 eisr = vgic_get_eisr(vcpu);
1353                 unsigned long *eisr_ptr = u64_to_bitmask(&eisr);
1354                 int lr;
1355
1356                 for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
1357                         struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1358
1359                         WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
1360                         WARN_ON(vlr.state & LR_STATE_MASK);
1361
1362
1363                         /*
1364                          * kvm_notify_acked_irq calls kvm_set_irq()
1365                          * to reset the IRQ level, which grabs the dist->lock
1366                          * so we call this before taking the dist->lock.
1367                          */
1368                         kvm_notify_acked_irq(kvm, 0,
1369                                              vlr.irq - VGIC_NR_PRIVATE_IRQS);
1370
1371                         spin_lock(&dist->lock);
1372                         level_pending |= process_queued_irq(vcpu, lr, vlr);
1373                         spin_unlock(&dist->lock);
1374                 }
1375         }
1376
1377         if (status & INT_STATUS_UNDERFLOW)
1378                 vgic_disable_underflow(vcpu);
1379
1380         /*
1381          * In the next iterations of the vcpu loop, if we sync the vgic state
1382          * after flushing it, but before entering the guest (this happens for
1383          * pending signals and vmid rollovers), then make sure we don't pick
1384          * up any old maintenance interrupts here.
1385          */
1386         vgic_clear_eisr(vcpu);
1387
1388         return level_pending;
1389 }
1390
1391 /*
1392  * Save the physical active state, and reset it to inactive.
1393  *
1394  * Return true if there's a pending forwarded interrupt to queue.
1395  */
1396 static bool vgic_sync_hwirq(struct kvm_vcpu *vcpu, int lr, struct vgic_lr vlr)
1397 {
1398         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1399         struct irq_phys_map *map;
1400         bool phys_active;
1401         bool level_pending;
1402         int ret;
1403
1404         if (!(vlr.state & LR_HW))
1405                 return false;
1406
1407         map = vgic_irq_map_search(vcpu, vlr.irq);
1408         BUG_ON(!map);
1409
1410         ret = irq_get_irqchip_state(map->irq,
1411                                     IRQCHIP_STATE_ACTIVE,
1412                                     &phys_active);
1413
1414         WARN_ON(ret);
1415
1416         if (phys_active)
1417                 return 0;
1418
1419         spin_lock(&dist->lock);
1420         level_pending = process_queued_irq(vcpu, lr, vlr);
1421         spin_unlock(&dist->lock);
1422         return level_pending;
1423 }
1424
1425 /* Sync back the VGIC state after a guest run */
1426 static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1427 {
1428         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1429         u64 elrsr;
1430         unsigned long *elrsr_ptr;
1431         int lr, pending;
1432         bool level_pending;
1433
1434         level_pending = vgic_process_maintenance(vcpu);
1435
1436         /* Deal with HW interrupts, and clear mappings for empty LRs */
1437         for (lr = 0; lr < vgic->nr_lr; lr++) {
1438                 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1439
1440                 level_pending |= vgic_sync_hwirq(vcpu, lr, vlr);
1441                 BUG_ON(vlr.irq >= dist->nr_irqs);
1442         }
1443
1444         /* Check if we still have something up our sleeve... */
1445         elrsr = vgic_get_elrsr(vcpu);
1446         elrsr_ptr = u64_to_bitmask(&elrsr);
1447         pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
1448         if (level_pending || pending < vgic->nr_lr)
1449                 set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1450 }
1451
1452 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1453 {
1454         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1455
1456         if (!irqchip_in_kernel(vcpu->kvm))
1457                 return;
1458
1459         spin_lock(&dist->lock);
1460         __kvm_vgic_flush_hwstate(vcpu);
1461         spin_unlock(&dist->lock);
1462 }
1463
1464 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1465 {
1466         if (!irqchip_in_kernel(vcpu->kvm))
1467                 return;
1468
1469         __kvm_vgic_sync_hwstate(vcpu);
1470 }
1471
1472 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1473 {
1474         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1475
1476         if (!irqchip_in_kernel(vcpu->kvm))
1477                 return 0;
1478
1479         return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1480 }
1481
1482 int kvm_vgic_vcpu_active_irq(struct kvm_vcpu *vcpu)
1483 {
1484         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1485
1486         if (!irqchip_in_kernel(vcpu->kvm))
1487                 return 0;
1488
1489         return test_bit(vcpu->vcpu_id, dist->irq_active_on_cpu);
1490 }
1491
1492
1493 void vgic_kick_vcpus(struct kvm *kvm)
1494 {
1495         struct kvm_vcpu *vcpu;
1496         int c;
1497
1498         /*
1499          * We've injected an interrupt, time to find out who deserves
1500          * a good kick...
1501          */
1502         kvm_for_each_vcpu(c, vcpu, kvm) {
1503                 if (kvm_vgic_vcpu_pending_irq(vcpu))
1504                         kvm_vcpu_kick(vcpu);
1505         }
1506 }
1507
1508 static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1509 {
1510         int edge_triggered = vgic_irq_is_edge(vcpu, irq);
1511
1512         /*
1513          * Only inject an interrupt if:
1514          * - edge triggered and we have a rising edge
1515          * - level triggered and we change level
1516          */
1517         if (edge_triggered) {
1518                 int state = vgic_dist_irq_is_pending(vcpu, irq);
1519                 return level > state;
1520         } else {
1521                 int state = vgic_dist_irq_get_level(vcpu, irq);
1522                 return level != state;
1523         }
1524 }
1525
1526 static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
1527                                    struct irq_phys_map *map,
1528                                    unsigned int irq_num, bool level)
1529 {
1530         struct vgic_dist *dist = &kvm->arch.vgic;
1531         struct kvm_vcpu *vcpu;
1532         int edge_triggered, level_triggered;
1533         int enabled;
1534         bool ret = true, can_inject = true;
1535
1536         trace_vgic_update_irq_pending(cpuid, irq_num, level);
1537
1538         if (irq_num >= min(kvm->arch.vgic.nr_irqs, 1020))
1539                 return -EINVAL;
1540
1541         spin_lock(&dist->lock);
1542
1543         vcpu = kvm_get_vcpu(kvm, cpuid);
1544         edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
1545         level_triggered = !edge_triggered;
1546
1547         if (!vgic_validate_injection(vcpu, irq_num, level)) {
1548                 ret = false;
1549                 goto out;
1550         }
1551
1552         if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1553                 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1554                 if (cpuid == VCPU_NOT_ALLOCATED) {
1555                         /* Pretend we use CPU0, and prevent injection */
1556                         cpuid = 0;
1557                         can_inject = false;
1558                 }
1559                 vcpu = kvm_get_vcpu(kvm, cpuid);
1560         }
1561
1562         kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1563
1564         if (level) {
1565                 if (level_triggered)
1566                         vgic_dist_irq_set_level(vcpu, irq_num);
1567                 vgic_dist_irq_set_pending(vcpu, irq_num);
1568         } else {
1569                 if (level_triggered) {
1570                         vgic_dist_irq_clear_level(vcpu, irq_num);
1571                         if (!vgic_dist_irq_soft_pend(vcpu, irq_num)) {
1572                                 vgic_dist_irq_clear_pending(vcpu, irq_num);
1573                                 vgic_cpu_irq_clear(vcpu, irq_num);
1574                                 if (!compute_pending_for_cpu(vcpu))
1575                                         clear_bit(cpuid, dist->irq_pending_on_cpu);
1576                         }
1577                 }
1578
1579                 ret = false;
1580                 goto out;
1581         }
1582
1583         enabled = vgic_irq_is_enabled(vcpu, irq_num);
1584
1585         if (!enabled || !can_inject) {
1586                 ret = false;
1587                 goto out;
1588         }
1589
1590         if (!vgic_can_sample_irq(vcpu, irq_num)) {
1591                 /*
1592                  * Level interrupt in progress, will be picked up
1593                  * when EOId.
1594                  */
1595                 ret = false;
1596                 goto out;
1597         }
1598
1599         if (level) {
1600                 vgic_cpu_irq_set(vcpu, irq_num);
1601                 set_bit(cpuid, dist->irq_pending_on_cpu);
1602         }
1603
1604 out:
1605         spin_unlock(&dist->lock);
1606
1607         if (ret) {
1608                 /* kick the specified vcpu */
1609                 kvm_vcpu_kick(kvm_get_vcpu(kvm, cpuid));
1610         }
1611
1612         return 0;
1613 }
1614
1615 static int vgic_lazy_init(struct kvm *kvm)
1616 {
1617         int ret = 0;
1618
1619         if (unlikely(!vgic_initialized(kvm))) {
1620                 /*
1621                  * We only provide the automatic initialization of the VGIC
1622                  * for the legacy case of a GICv2. Any other type must
1623                  * be explicitly initialized once setup with the respective
1624                  * KVM device call.
1625                  */
1626                 if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2)
1627                         return -EBUSY;
1628
1629                 mutex_lock(&kvm->lock);
1630                 ret = vgic_init(kvm);
1631                 mutex_unlock(&kvm->lock);
1632         }
1633
1634         return ret;
1635 }
1636
1637 /**
1638  * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1639  * @kvm:     The VM structure pointer
1640  * @cpuid:   The CPU for PPIs
1641  * @irq_num: The IRQ number that is assigned to the device. This IRQ
1642  *           must not be mapped to a HW interrupt.
1643  * @level:   Edge-triggered:  true:  to trigger the interrupt
1644  *                            false: to ignore the call
1645  *           Level-sensitive  true:  raise the input signal
1646  *                            false: lower the input signal
1647  *
1648  * The GIC is not concerned with devices being active-LOW or active-HIGH for
1649  * level-sensitive interrupts.  You can think of the level parameter as 1
1650  * being HIGH and 0 being LOW and all devices being active-HIGH.
1651  */
1652 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1653                         bool level)
1654 {
1655         struct irq_phys_map *map;
1656         int ret;
1657
1658         ret = vgic_lazy_init(kvm);
1659         if (ret)
1660                 return ret;
1661
1662         map = vgic_irq_map_search(kvm_get_vcpu(kvm, cpuid), irq_num);
1663         if (map)
1664                 return -EINVAL;
1665
1666         return vgic_update_irq_pending(kvm, cpuid, NULL, irq_num, level);
1667 }
1668
1669 /**
1670  * kvm_vgic_inject_mapped_irq - Inject a physically mapped IRQ to the vgic
1671  * @kvm:     The VM structure pointer
1672  * @cpuid:   The CPU for PPIs
1673  * @map:     Pointer to a irq_phys_map structure describing the mapping
1674  * @level:   Edge-triggered:  true:  to trigger the interrupt
1675  *                            false: to ignore the call
1676  *           Level-sensitive  true:  raise the input signal
1677  *                            false: lower the input signal
1678  *
1679  * The GIC is not concerned with devices being active-LOW or active-HIGH for
1680  * level-sensitive interrupts.  You can think of the level parameter as 1
1681  * being HIGH and 0 being LOW and all devices being active-HIGH.
1682  */
1683 int kvm_vgic_inject_mapped_irq(struct kvm *kvm, int cpuid,
1684                                struct irq_phys_map *map, bool level)
1685 {
1686         int ret;
1687
1688         ret = vgic_lazy_init(kvm);
1689         if (ret)
1690                 return ret;
1691
1692         return vgic_update_irq_pending(kvm, cpuid, map, map->virt_irq, level);
1693 }
1694
1695 static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1696 {
1697         /*
1698          * We cannot rely on the vgic maintenance interrupt to be
1699          * delivered synchronously. This means we can only use it to
1700          * exit the VM, and we perform the handling of EOIed
1701          * interrupts on the exit path (see vgic_process_maintenance).
1702          */
1703         return IRQ_HANDLED;
1704 }
1705
1706 static struct list_head *vgic_get_irq_phys_map_list(struct kvm_vcpu *vcpu,
1707                                                     int virt_irq)
1708 {
1709         if (virt_irq < VGIC_NR_PRIVATE_IRQS)
1710                 return &vcpu->arch.vgic_cpu.irq_phys_map_list;
1711         else
1712                 return &vcpu->kvm->arch.vgic.irq_phys_map_list;
1713 }
1714
1715 /**
1716  * kvm_vgic_map_phys_irq - map a virtual IRQ to a physical IRQ
1717  * @vcpu: The VCPU pointer
1718  * @virt_irq: The virtual irq number
1719  * @irq: The Linux IRQ number
1720  *
1721  * Establish a mapping between a guest visible irq (@virt_irq) and a
1722  * Linux irq (@irq). On injection, @virt_irq will be associated with
1723  * the physical interrupt represented by @irq. This mapping can be
1724  * established multiple times as long as the parameters are the same.
1725  *
1726  * Returns a valid pointer on success, and an error pointer otherwise
1727  */
1728 struct irq_phys_map *kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu,
1729                                            int virt_irq, int irq)
1730 {
1731         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1732         struct list_head *root = vgic_get_irq_phys_map_list(vcpu, virt_irq);
1733         struct irq_phys_map *map;
1734         struct irq_phys_map_entry *entry;
1735         struct irq_desc *desc;
1736         struct irq_data *data;
1737         int phys_irq;
1738
1739         desc = irq_to_desc(irq);
1740         if (!desc) {
1741                 kvm_err("%s: no interrupt descriptor\n", __func__);
1742                 return ERR_PTR(-EINVAL);
1743         }
1744
1745         data = irq_desc_get_irq_data(desc);
1746         while (data->parent_data)
1747                 data = data->parent_data;
1748
1749         phys_irq = data->hwirq;
1750
1751         /* Create a new mapping */
1752         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
1753         if (!entry)
1754                 return ERR_PTR(-ENOMEM);
1755
1756         spin_lock(&dist->irq_phys_map_lock);
1757
1758         /* Try to match an existing mapping */
1759         map = vgic_irq_map_search(vcpu, virt_irq);
1760         if (map) {
1761                 /* Make sure this mapping matches */
1762                 if (map->phys_irq != phys_irq   ||
1763                     map->irq      != irq)
1764                         map = ERR_PTR(-EINVAL);
1765
1766                 /* Found an existing, valid mapping */
1767                 goto out;
1768         }
1769
1770         map           = &entry->map;
1771         map->virt_irq = virt_irq;
1772         map->phys_irq = phys_irq;
1773         map->irq      = irq;
1774
1775         list_add_tail_rcu(&entry->entry, root);
1776
1777 out:
1778         spin_unlock(&dist->irq_phys_map_lock);
1779         /* If we've found a hit in the existing list, free the useless
1780          * entry */
1781         if (IS_ERR(map) || map != &entry->map)
1782                 kfree(entry);
1783         return map;
1784 }
1785
1786 static struct irq_phys_map *vgic_irq_map_search(struct kvm_vcpu *vcpu,
1787                                                 int virt_irq)
1788 {
1789         struct list_head *root = vgic_get_irq_phys_map_list(vcpu, virt_irq);
1790         struct irq_phys_map_entry *entry;
1791         struct irq_phys_map *map;
1792
1793         rcu_read_lock();
1794
1795         list_for_each_entry_rcu(entry, root, entry) {
1796                 map = &entry->map;
1797                 if (map->virt_irq == virt_irq) {
1798                         rcu_read_unlock();
1799                         return map;
1800                 }
1801         }
1802
1803         rcu_read_unlock();
1804
1805         return NULL;
1806 }
1807
1808 static void vgic_free_phys_irq_map_rcu(struct rcu_head *rcu)
1809 {
1810         struct irq_phys_map_entry *entry;
1811
1812         entry = container_of(rcu, struct irq_phys_map_entry, rcu);
1813         kfree(entry);
1814 }
1815
1816 /**
1817  * kvm_vgic_unmap_phys_irq - Remove a virtual to physical IRQ mapping
1818  * @vcpu: The VCPU pointer
1819  * @map: The pointer to a mapping obtained through kvm_vgic_map_phys_irq
1820  *
1821  * Remove an existing mapping between virtual and physical interrupts.
1822  */
1823 int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, struct irq_phys_map *map)
1824 {
1825         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1826         struct irq_phys_map_entry *entry;
1827         struct list_head *root;
1828
1829         if (!map)
1830                 return -EINVAL;
1831
1832         root = vgic_get_irq_phys_map_list(vcpu, map->virt_irq);
1833
1834         spin_lock(&dist->irq_phys_map_lock);
1835
1836         list_for_each_entry(entry, root, entry) {
1837                 if (&entry->map == map) {
1838                         list_del_rcu(&entry->entry);
1839                         call_rcu(&entry->rcu, vgic_free_phys_irq_map_rcu);
1840                         break;
1841                 }
1842         }
1843
1844         spin_unlock(&dist->irq_phys_map_lock);
1845
1846         return 0;
1847 }
1848
1849 static void vgic_destroy_irq_phys_map(struct kvm *kvm, struct list_head *root)
1850 {
1851         struct vgic_dist *dist = &kvm->arch.vgic;
1852         struct irq_phys_map_entry *entry;
1853
1854         spin_lock(&dist->irq_phys_map_lock);
1855
1856         list_for_each_entry(entry, root, entry) {
1857                 list_del_rcu(&entry->entry);
1858                 call_rcu(&entry->rcu, vgic_free_phys_irq_map_rcu);
1859         }
1860
1861         spin_unlock(&dist->irq_phys_map_lock);
1862 }
1863
1864 void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
1865 {
1866         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1867
1868         kfree(vgic_cpu->pending_shared);
1869         kfree(vgic_cpu->active_shared);
1870         kfree(vgic_cpu->pend_act_shared);
1871         vgic_destroy_irq_phys_map(vcpu->kvm, &vgic_cpu->irq_phys_map_list);
1872         vgic_cpu->pending_shared = NULL;
1873         vgic_cpu->active_shared = NULL;
1874         vgic_cpu->pend_act_shared = NULL;
1875 }
1876
1877 static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
1878 {
1879         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1880
1881         int sz = (nr_irqs - VGIC_NR_PRIVATE_IRQS) / 8;
1882         vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
1883         vgic_cpu->active_shared = kzalloc(sz, GFP_KERNEL);
1884         vgic_cpu->pend_act_shared = kzalloc(sz, GFP_KERNEL);
1885
1886         if (!vgic_cpu->pending_shared
1887                 || !vgic_cpu->active_shared
1888                 || !vgic_cpu->pend_act_shared) {
1889                 kvm_vgic_vcpu_destroy(vcpu);
1890                 return -ENOMEM;
1891         }
1892
1893         /*
1894          * Store the number of LRs per vcpu, so we don't have to go
1895          * all the way to the distributor structure to find out. Only
1896          * assembly code should use this one.
1897          */
1898         vgic_cpu->nr_lr = vgic->nr_lr;
1899
1900         return 0;
1901 }
1902
1903 /**
1904  * kvm_vgic_vcpu_early_init - Earliest possible per-vcpu vgic init stage
1905  *
1906  * No memory allocation should be performed here, only static init.
1907  */
1908 void kvm_vgic_vcpu_early_init(struct kvm_vcpu *vcpu)
1909 {
1910         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1911         INIT_LIST_HEAD(&vgic_cpu->irq_phys_map_list);
1912 }
1913
1914 /**
1915  * kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW
1916  *
1917  * The host's GIC naturally limits the maximum amount of VCPUs a guest
1918  * can use.
1919  */
1920 int kvm_vgic_get_max_vcpus(void)
1921 {
1922         return vgic->max_gic_vcpus;
1923 }
1924
1925 void kvm_vgic_destroy(struct kvm *kvm)
1926 {
1927         struct vgic_dist *dist = &kvm->arch.vgic;
1928         struct kvm_vcpu *vcpu;
1929         int i;
1930
1931         kvm_for_each_vcpu(i, vcpu, kvm)
1932                 kvm_vgic_vcpu_destroy(vcpu);
1933
1934         vgic_free_bitmap(&dist->irq_enabled);
1935         vgic_free_bitmap(&dist->irq_level);
1936         vgic_free_bitmap(&dist->irq_pending);
1937         vgic_free_bitmap(&dist->irq_soft_pend);
1938         vgic_free_bitmap(&dist->irq_queued);
1939         vgic_free_bitmap(&dist->irq_cfg);
1940         vgic_free_bytemap(&dist->irq_priority);
1941         if (dist->irq_spi_target) {
1942                 for (i = 0; i < dist->nr_cpus; i++)
1943                         vgic_free_bitmap(&dist->irq_spi_target[i]);
1944         }
1945         kfree(dist->irq_sgi_sources);
1946         kfree(dist->irq_spi_cpu);
1947         kfree(dist->irq_spi_mpidr);
1948         kfree(dist->irq_spi_target);
1949         kfree(dist->irq_pending_on_cpu);
1950         kfree(dist->irq_active_on_cpu);
1951         vgic_destroy_irq_phys_map(kvm, &dist->irq_phys_map_list);
1952         dist->irq_sgi_sources = NULL;
1953         dist->irq_spi_cpu = NULL;
1954         dist->irq_spi_target = NULL;
1955         dist->irq_pending_on_cpu = NULL;
1956         dist->irq_active_on_cpu = NULL;
1957         dist->nr_cpus = 0;
1958 }
1959
1960 /*
1961  * Allocate and initialize the various data structures. Must be called
1962  * with kvm->lock held!
1963  */
1964 int vgic_init(struct kvm *kvm)
1965 {
1966         struct vgic_dist *dist = &kvm->arch.vgic;
1967         struct kvm_vcpu *vcpu;
1968         int nr_cpus, nr_irqs;
1969         int ret, i, vcpu_id;
1970
1971         if (vgic_initialized(kvm))
1972                 return 0;
1973
1974         nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus);
1975         if (!nr_cpus)           /* No vcpus? Can't be good... */
1976                 return -ENODEV;
1977
1978         /*
1979          * If nobody configured the number of interrupts, use the
1980          * legacy one.
1981          */
1982         if (!dist->nr_irqs)
1983                 dist->nr_irqs = VGIC_NR_IRQS_LEGACY;
1984
1985         nr_irqs = dist->nr_irqs;
1986
1987         ret  = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
1988         ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
1989         ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
1990         ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
1991         ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
1992         ret |= vgic_init_bitmap(&dist->irq_active, nr_cpus, nr_irqs);
1993         ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
1994         ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);
1995
1996         if (ret)
1997                 goto out;
1998
1999         dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
2000         dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
2001         dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
2002                                        GFP_KERNEL);
2003         dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
2004                                            GFP_KERNEL);
2005         dist->irq_active_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
2006                                            GFP_KERNEL);
2007         if (!dist->irq_sgi_sources ||
2008             !dist->irq_spi_cpu ||
2009             !dist->irq_spi_target ||
2010             !dist->irq_pending_on_cpu ||
2011             !dist->irq_active_on_cpu) {
2012                 ret = -ENOMEM;
2013                 goto out;
2014         }
2015
2016         for (i = 0; i < nr_cpus; i++)
2017                 ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
2018                                         nr_cpus, nr_irqs);
2019
2020         if (ret)
2021                 goto out;
2022
2023         ret = kvm->arch.vgic.vm_ops.init_model(kvm);
2024         if (ret)
2025                 goto out;
2026
2027         kvm_for_each_vcpu(vcpu_id, vcpu, kvm) {
2028                 ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
2029                 if (ret) {
2030                         kvm_err("VGIC: Failed to allocate vcpu memory\n");
2031                         break;
2032                 }
2033
2034                 /*
2035                  * Enable and configure all SGIs to be edge-triggere and
2036                  * configure all PPIs as level-triggered.
2037                  */
2038                 for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) {
2039                         if (i < VGIC_NR_SGIS) {
2040                                 /* SGIs */
2041                                 vgic_bitmap_set_irq_val(&dist->irq_enabled,
2042                                                         vcpu->vcpu_id, i, 1);
2043                                 vgic_bitmap_set_irq_val(&dist->irq_cfg,
2044                                                         vcpu->vcpu_id, i,
2045                                                         VGIC_CFG_EDGE);
2046                         } else if (i < VGIC_NR_PRIVATE_IRQS) {
2047                                 /* PPIs */
2048                                 vgic_bitmap_set_irq_val(&dist->irq_cfg,
2049                                                         vcpu->vcpu_id, i,
2050                                                         VGIC_CFG_LEVEL);
2051                         }
2052                 }
2053
2054                 vgic_enable(vcpu);
2055         }
2056
2057 out:
2058         if (ret)
2059                 kvm_vgic_destroy(kvm);
2060
2061         return ret;
2062 }
2063
2064 static int init_vgic_model(struct kvm *kvm, int type)
2065 {
2066         switch (type) {
2067         case KVM_DEV_TYPE_ARM_VGIC_V2:
2068                 vgic_v2_init_emulation(kvm);
2069                 break;
2070 #ifdef CONFIG_KVM_ARM_VGIC_V3
2071         case KVM_DEV_TYPE_ARM_VGIC_V3:
2072                 vgic_v3_init_emulation(kvm);
2073                 break;
2074 #endif
2075         default:
2076                 return -ENODEV;
2077         }
2078
2079         if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus)
2080                 return -E2BIG;
2081
2082         return 0;
2083 }
2084
2085 /**
2086  * kvm_vgic_early_init - Earliest possible vgic initialization stage
2087  *
2088  * No memory allocation should be performed here, only static init.
2089  */
2090 void kvm_vgic_early_init(struct kvm *kvm)
2091 {
2092         spin_lock_init(&kvm->arch.vgic.lock);
2093         spin_lock_init(&kvm->arch.vgic.irq_phys_map_lock);
2094         INIT_LIST_HEAD(&kvm->arch.vgic.irq_phys_map_list);
2095 }
2096
2097 int kvm_vgic_create(struct kvm *kvm, u32 type)
2098 {
2099         int i, vcpu_lock_idx = -1, ret;
2100         struct kvm_vcpu *vcpu;
2101
2102         mutex_lock(&kvm->lock);
2103
2104         if (irqchip_in_kernel(kvm)) {
2105                 ret = -EEXIST;
2106                 goto out;
2107         }
2108
2109         /*
2110          * This function is also called by the KVM_CREATE_IRQCHIP handler,
2111          * which had no chance yet to check the availability of the GICv2
2112          * emulation. So check this here again. KVM_CREATE_DEVICE does
2113          * the proper checks already.
2114          */
2115         if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && !vgic->can_emulate_gicv2) {
2116                 ret = -ENODEV;
2117                 goto out;
2118         }
2119
2120         /*
2121          * Any time a vcpu is run, vcpu_load is called which tries to grab the
2122          * vcpu->mutex.  By grabbing the vcpu->mutex of all VCPUs we ensure
2123          * that no other VCPUs are run while we create the vgic.
2124          */
2125         ret = -EBUSY;
2126         kvm_for_each_vcpu(i, vcpu, kvm) {
2127                 if (!mutex_trylock(&vcpu->mutex))
2128                         goto out_unlock;
2129                 vcpu_lock_idx = i;
2130         }
2131
2132         kvm_for_each_vcpu(i, vcpu, kvm) {
2133                 if (vcpu->arch.has_run_once)
2134                         goto out_unlock;
2135         }
2136         ret = 0;
2137
2138         ret = init_vgic_model(kvm, type);
2139         if (ret)
2140                 goto out_unlock;
2141
2142         kvm->arch.vgic.in_kernel = true;
2143         kvm->arch.vgic.vgic_model = type;
2144         kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
2145         kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
2146         kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
2147         kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF;
2148
2149 out_unlock:
2150         for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
2151                 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
2152                 mutex_unlock(&vcpu->mutex);
2153         }
2154
2155 out:
2156         mutex_unlock(&kvm->lock);
2157         return ret;
2158 }
2159
2160 static int vgic_ioaddr_overlap(struct kvm *kvm)
2161 {
2162         phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
2163         phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
2164
2165         if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
2166                 return 0;
2167         if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
2168             (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
2169                 return -EBUSY;
2170         return 0;
2171 }
2172
2173 static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
2174                               phys_addr_t addr, phys_addr_t size)
2175 {
2176         int ret;
2177
2178         if (addr & ~KVM_PHYS_MASK)
2179                 return -E2BIG;
2180
2181         if (addr & (SZ_4K - 1))
2182                 return -EINVAL;
2183
2184         if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
2185                 return -EEXIST;
2186         if (addr + size < addr)
2187                 return -EINVAL;
2188
2189         *ioaddr = addr;
2190         ret = vgic_ioaddr_overlap(kvm);
2191         if (ret)
2192                 *ioaddr = VGIC_ADDR_UNDEF;
2193
2194         return ret;
2195 }
2196
2197 /**
2198  * kvm_vgic_addr - set or get vgic VM base addresses
2199  * @kvm:   pointer to the vm struct
2200  * @type:  the VGIC addr type, one of KVM_VGIC_V[23]_ADDR_TYPE_XXX
2201  * @addr:  pointer to address value
2202  * @write: if true set the address in the VM address space, if false read the
2203  *          address
2204  *
2205  * Set or get the vgic base addresses for the distributor and the virtual CPU
2206  * interface in the VM physical address space.  These addresses are properties
2207  * of the emulated core/SoC and therefore user space initially knows this
2208  * information.
2209  */
2210 int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
2211 {
2212         int r = 0;
2213         struct vgic_dist *vgic = &kvm->arch.vgic;
2214         int type_needed;
2215         phys_addr_t *addr_ptr, block_size;
2216         phys_addr_t alignment;
2217
2218         mutex_lock(&kvm->lock);
2219         switch (type) {
2220         case KVM_VGIC_V2_ADDR_TYPE_DIST:
2221                 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
2222                 addr_ptr = &vgic->vgic_dist_base;
2223                 block_size = KVM_VGIC_V2_DIST_SIZE;
2224                 alignment = SZ_4K;
2225                 break;
2226         case KVM_VGIC_V2_ADDR_TYPE_CPU:
2227                 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
2228                 addr_ptr = &vgic->vgic_cpu_base;
2229                 block_size = KVM_VGIC_V2_CPU_SIZE;
2230                 alignment = SZ_4K;
2231                 break;
2232 #ifdef CONFIG_KVM_ARM_VGIC_V3
2233         case KVM_VGIC_V3_ADDR_TYPE_DIST:
2234                 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
2235                 addr_ptr = &vgic->vgic_dist_base;
2236                 block_size = KVM_VGIC_V3_DIST_SIZE;
2237                 alignment = SZ_64K;
2238                 break;
2239         case KVM_VGIC_V3_ADDR_TYPE_REDIST:
2240                 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
2241                 addr_ptr = &vgic->vgic_redist_base;
2242                 block_size = KVM_VGIC_V3_REDIST_SIZE;
2243                 alignment = SZ_64K;
2244                 break;
2245 #endif
2246         default:
2247                 r = -ENODEV;
2248                 goto out;
2249         }
2250
2251         if (vgic->vgic_model != type_needed) {
2252                 r = -ENODEV;
2253                 goto out;
2254         }
2255
2256         if (write) {
2257                 if (!IS_ALIGNED(*addr, alignment))
2258                         r = -EINVAL;
2259                 else
2260                         r = vgic_ioaddr_assign(kvm, addr_ptr, *addr,
2261                                                block_size);
2262         } else {
2263                 *addr = *addr_ptr;
2264         }
2265
2266 out:
2267         mutex_unlock(&kvm->lock);
2268         return r;
2269 }
2270
2271 int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2272 {
2273         int r;
2274
2275         switch (attr->group) {
2276         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2277                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2278                 u64 addr;
2279                 unsigned long type = (unsigned long)attr->attr;
2280
2281                 if (copy_from_user(&addr, uaddr, sizeof(addr)))
2282                         return -EFAULT;
2283
2284                 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
2285                 return (r == -ENODEV) ? -ENXIO : r;
2286         }
2287         case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
2288                 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2289                 u32 val;
2290                 int ret = 0;
2291
2292                 if (get_user(val, uaddr))
2293                         return -EFAULT;
2294
2295                 /*
2296                  * We require:
2297                  * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
2298                  * - at most 1024 interrupts
2299                  * - a multiple of 32 interrupts
2300                  */
2301                 if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
2302                     val > VGIC_MAX_IRQS ||
2303                     (val & 31))
2304                         return -EINVAL;
2305
2306                 mutex_lock(&dev->kvm->lock);
2307
2308                 if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_irqs)
2309                         ret = -EBUSY;
2310                 else
2311                         dev->kvm->arch.vgic.nr_irqs = val;
2312
2313                 mutex_unlock(&dev->kvm->lock);
2314
2315                 return ret;
2316         }
2317         case KVM_DEV_ARM_VGIC_GRP_CTRL: {
2318                 switch (attr->attr) {
2319                 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2320                         r = vgic_init(dev->kvm);
2321                         return r;
2322                 }
2323                 break;
2324         }
2325         }
2326
2327         return -ENXIO;
2328 }
2329
2330 int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2331 {
2332         int r = -ENXIO;
2333
2334         switch (attr->group) {
2335         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2336                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2337                 u64 addr;
2338                 unsigned long type = (unsigned long)attr->attr;
2339
2340                 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
2341                 if (r)
2342                         return (r == -ENODEV) ? -ENXIO : r;
2343
2344                 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2345                         return -EFAULT;
2346                 break;
2347         }
2348         case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
2349                 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2350
2351                 r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr);
2352                 break;
2353         }
2354
2355         }
2356
2357         return r;
2358 }
2359
2360 int vgic_has_attr_regs(const struct vgic_io_range *ranges, phys_addr_t offset)
2361 {
2362         if (vgic_find_range(ranges, 4, offset))
2363                 return 0;
2364         else
2365                 return -ENXIO;
2366 }
2367
2368 static void vgic_init_maintenance_interrupt(void *info)
2369 {
2370         enable_percpu_irq(vgic->maint_irq, 0);
2371 }
2372
2373 static int vgic_cpu_notify(struct notifier_block *self,
2374                            unsigned long action, void *cpu)
2375 {
2376         switch (action) {
2377         case CPU_STARTING:
2378         case CPU_STARTING_FROZEN:
2379                 vgic_init_maintenance_interrupt(NULL);
2380                 break;
2381         case CPU_DYING:
2382         case CPU_DYING_FROZEN:
2383                 disable_percpu_irq(vgic->maint_irq);
2384                 break;
2385         }
2386
2387         return NOTIFY_OK;
2388 }
2389
2390 static struct notifier_block vgic_cpu_nb = {
2391         .notifier_call = vgic_cpu_notify,
2392 };
2393
2394 static const struct of_device_id vgic_ids[] = {
2395         { .compatible = "arm,cortex-a15-gic",   .data = vgic_v2_probe, },
2396         { .compatible = "arm,cortex-a7-gic",    .data = vgic_v2_probe, },
2397         { .compatible = "arm,gic-400",          .data = vgic_v2_probe, },
2398         { .compatible = "arm,gic-v3",           .data = vgic_v3_probe, },
2399         {},
2400 };
2401
2402 int kvm_vgic_hyp_init(void)
2403 {
2404         const struct of_device_id *matched_id;
2405         const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
2406                                 const struct vgic_params **);
2407         struct device_node *vgic_node;
2408         int ret;
2409
2410         vgic_node = of_find_matching_node_and_match(NULL,
2411                                                     vgic_ids, &matched_id);
2412         if (!vgic_node) {
2413                 kvm_err("error: no compatible GIC node found\n");
2414                 return -ENODEV;
2415         }
2416
2417         vgic_probe = matched_id->data;
2418         ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
2419         if (ret)
2420                 return ret;
2421
2422         ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
2423                                  "vgic", kvm_get_running_vcpus());
2424         if (ret) {
2425                 kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
2426                 return ret;
2427         }
2428
2429         ret = __register_cpu_notifier(&vgic_cpu_nb);
2430         if (ret) {
2431                 kvm_err("Cannot register vgic CPU notifier\n");
2432                 goto out_free_irq;
2433         }
2434
2435         on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
2436
2437         return 0;
2438
2439 out_free_irq:
2440         free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
2441         return ret;
2442 }
2443
2444 int kvm_irq_map_gsi(struct kvm *kvm,
2445                     struct kvm_kernel_irq_routing_entry *entries,
2446                     int gsi)
2447 {
2448         return 0;
2449 }
2450
2451 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin)
2452 {
2453         return pin;
2454 }
2455
2456 int kvm_set_irq(struct kvm *kvm, int irq_source_id,
2457                 u32 irq, int level, bool line_status)
2458 {
2459         unsigned int spi = irq + VGIC_NR_PRIVATE_IRQS;
2460
2461         trace_kvm_set_irq(irq, level, irq_source_id);
2462
2463         BUG_ON(!vgic_initialized(kvm));
2464
2465         return kvm_vgic_inject_irq(kvm, 0, spi, level);
2466 }
2467
2468 /* MSI not implemented yet */
2469 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e,
2470                 struct kvm *kvm, int irq_source_id,
2471                 int level, bool line_status)
2472 {
2473         return 0;
2474 }