]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - arch/arm/cpu/arm926ejs/mxs/spl_power_init.c
Merge branch 'master' of git://www.denx.de/git/u-boot-imx
[karo-tx-uboot.git] / arch / arm / cpu / arm926ejs / mxs / spl_power_init.c
1 /*
2  * Freescale i.MX28 Boot PMIC init
3  *
4  * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
5  * on behalf of DENX Software Engineering GmbH
6  *
7  * SPDX-License-Identifier:     GPL-2.0+
8  */
9
10 #include <common.h>
11 #include <config.h>
12 #include <asm/io.h>
13 #include <asm/arch/imx-regs.h>
14
15 #include "mxs_init.h"
16
17 /**
18  * mxs_power_clock2xtal() - Switch CPU core clock source to 24MHz XTAL
19  *
20  * This function switches the CPU core clock from PLL to 24MHz XTAL
21  * oscilator. This is necessary if the PLL is being reconfigured to
22  * prevent crash of the CPU core.
23  */
24 static void mxs_power_clock2xtal(void)
25 {
26         struct mxs_clkctrl_regs *clkctrl_regs =
27                 (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
28
29         /* Set XTAL as CPU reference clock */
30         writel(CLKCTRL_CLKSEQ_BYPASS_CPU,
31                 &clkctrl_regs->hw_clkctrl_clkseq_set);
32 }
33
34 /**
35  * mxs_power_clock2pll() - Switch CPU core clock source to PLL
36  *
37  * This function switches the CPU core clock from 24MHz XTAL oscilator
38  * to PLL. This can only be called once the PLL has re-locked and once
39  * the PLL is stable after reconfiguration.
40  */
41 static void mxs_power_clock2pll(void)
42 {
43         struct mxs_clkctrl_regs *clkctrl_regs =
44                 (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
45
46         setbits_le32(&clkctrl_regs->hw_clkctrl_pll0ctrl0,
47                         CLKCTRL_PLL0CTRL0_POWER);
48         early_delay(100);
49         setbits_le32(&clkctrl_regs->hw_clkctrl_clkseq,
50                         CLKCTRL_CLKSEQ_BYPASS_CPU);
51 }
52
53 /**
54  * mxs_power_set_auto_restart() - Set the auto-restart bit
55  *
56  * This function ungates the RTC block and sets the AUTO_RESTART
57  * bit to work around a design bug on MX28EVK Rev. A .
58  */
59
60 static void mxs_power_set_auto_restart(void)
61 {
62         struct mxs_rtc_regs *rtc_regs =
63                 (struct mxs_rtc_regs *)MXS_RTC_BASE;
64
65         writel(RTC_CTRL_SFTRST, &rtc_regs->hw_rtc_ctrl_clr);
66         while (readl(&rtc_regs->hw_rtc_ctrl) & RTC_CTRL_SFTRST)
67                 ;
68
69         writel(RTC_CTRL_CLKGATE, &rtc_regs->hw_rtc_ctrl_clr);
70         while (readl(&rtc_regs->hw_rtc_ctrl) & RTC_CTRL_CLKGATE)
71                 ;
72
73         /* Do nothing if flag already set */
74         if (readl(&rtc_regs->hw_rtc_persistent0) & RTC_PERSISTENT0_AUTO_RESTART)
75                 return;
76
77         while (readl(&rtc_regs->hw_rtc_stat) & RTC_STAT_NEW_REGS_MASK)
78                 ;
79
80         setbits_le32(&rtc_regs->hw_rtc_persistent0,
81                         RTC_PERSISTENT0_AUTO_RESTART);
82         writel(RTC_CTRL_FORCE_UPDATE, &rtc_regs->hw_rtc_ctrl_set);
83         writel(RTC_CTRL_FORCE_UPDATE, &rtc_regs->hw_rtc_ctrl_clr);
84         while (readl(&rtc_regs->hw_rtc_stat) & RTC_STAT_NEW_REGS_MASK)
85                 ;
86         while (readl(&rtc_regs->hw_rtc_stat) & RTC_STAT_STALE_REGS_MASK)
87                 ;
88 }
89
90 /**
91  * mxs_power_set_linreg() - Set linear regulators 25mV below DC-DC converter
92  *
93  * This function configures the VDDIO, VDDA and VDDD linear regulators output
94  * to be 25mV below the VDDIO, VDDA and VDDD output from the DC-DC switching
95  * converter. This is the recommended setting for the case where we use both
96  * linear regulators and DC-DC converter to power the VDDIO rail.
97  */
98 static void mxs_power_set_linreg(void)
99 {
100         struct mxs_power_regs *power_regs =
101                 (struct mxs_power_regs *)MXS_POWER_BASE;
102
103         /* Set linear regulator 25mV below switching converter */
104         clrsetbits_le32(&power_regs->hw_power_vdddctrl,
105                         POWER_VDDDCTRL_LINREG_OFFSET_MASK,
106                         POWER_VDDDCTRL_LINREG_OFFSET_1STEPS_BELOW);
107
108         clrsetbits_le32(&power_regs->hw_power_vddactrl,
109                         POWER_VDDACTRL_LINREG_OFFSET_MASK,
110                         POWER_VDDACTRL_LINREG_OFFSET_1STEPS_BELOW);
111
112         clrsetbits_le32(&power_regs->hw_power_vddioctrl,
113                         POWER_VDDIOCTRL_LINREG_OFFSET_MASK,
114                         POWER_VDDIOCTRL_LINREG_OFFSET_1STEPS_BELOW);
115 }
116
117 /**
118  * mxs_get_batt_volt() - Measure battery input voltage
119  *
120  * This function retrieves the battery input voltage and returns it.
121  */
122 static int mxs_get_batt_volt(void)
123 {
124         struct mxs_power_regs *power_regs =
125                 (struct mxs_power_regs *)MXS_POWER_BASE;
126         uint32_t volt = readl(&power_regs->hw_power_battmonitor);
127         volt &= POWER_BATTMONITOR_BATT_VAL_MASK;
128         volt >>= POWER_BATTMONITOR_BATT_VAL_OFFSET;
129         volt *= 8;
130         return volt;
131 }
132
133 /**
134  * mxs_is_batt_ready() - Test if the battery provides enough voltage to boot
135  *
136  * This function checks if the battery input voltage is higher than 3.6V and
137  * therefore allows the system to successfully boot using this power source.
138  */
139 static int mxs_is_batt_ready(void)
140 {
141         return (mxs_get_batt_volt() >= 3600);
142 }
143
144 /**
145  * mxs_is_batt_good() - Test if battery is operational at all
146  *
147  * This function starts recharging the battery and tests if the input current
148  * provided by the 5V input recharging the battery is also sufficient to power
149  * the DC-DC converter.
150  */
151 static int mxs_is_batt_good(void)
152 {
153         struct mxs_power_regs *power_regs =
154                 (struct mxs_power_regs *)MXS_POWER_BASE;
155         uint32_t volt = mxs_get_batt_volt();
156
157         if ((volt >= 2400) && (volt <= 4300))
158                 return 1;
159
160         clrsetbits_le32(&power_regs->hw_power_5vctrl,
161                 POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK,
162                 0x3 << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET);
163         writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK,
164                 &power_regs->hw_power_5vctrl_clr);
165
166         clrsetbits_le32(&power_regs->hw_power_charge,
167                 POWER_CHARGE_STOP_ILIMIT_MASK | POWER_CHARGE_BATTCHRG_I_MASK,
168                 POWER_CHARGE_STOP_ILIMIT_10MA | 0x3);
169
170         writel(POWER_CHARGE_PWD_BATTCHRG, &power_regs->hw_power_charge_clr);
171         writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK,
172                 &power_regs->hw_power_5vctrl_clr);
173
174         early_delay(500000);
175
176         volt = mxs_get_batt_volt();
177
178         if (volt >= 3500)
179                 return 0;
180
181         if (volt >= 2400)
182                 return 1;
183
184         writel(POWER_CHARGE_STOP_ILIMIT_MASK | POWER_CHARGE_BATTCHRG_I_MASK,
185                 &power_regs->hw_power_charge_clr);
186         writel(POWER_CHARGE_PWD_BATTCHRG, &power_regs->hw_power_charge_set);
187
188         return 0;
189 }
190
191 /**
192  * mxs_power_setup_5v_detect() - Start the 5V input detection comparator
193  *
194  * This function enables the 5V detection comparator and sets the 5V valid
195  * threshold to 4.4V . We use 4.4V threshold here to make sure that even
196  * under high load, the voltage drop on the 5V input won't be so critical
197  * to cause undervolt on the 4P2 linear regulator supplying the DC-DC
198  * converter and thus making the system crash.
199  */
200 static void mxs_power_setup_5v_detect(void)
201 {
202         struct mxs_power_regs *power_regs =
203                 (struct mxs_power_regs *)MXS_POWER_BASE;
204
205         /* Start 5V detection */
206         clrsetbits_le32(&power_regs->hw_power_5vctrl,
207                         POWER_5VCTRL_VBUSVALID_TRSH_MASK,
208                         POWER_5VCTRL_VBUSVALID_TRSH_4V4 |
209                         POWER_5VCTRL_PWRUP_VBUS_CMPS);
210 }
211
212 /**
213  * mxs_src_power_init() - Preconfigure the power block
214  *
215  * This function configures reasonable values for the DC-DC control loop
216  * and battery monitor.
217  */
218 static void mxs_src_power_init(void)
219 {
220         struct mxs_power_regs *power_regs =
221                 (struct mxs_power_regs *)MXS_POWER_BASE;
222
223         /* Improve efficieny and reduce transient ripple */
224         writel(POWER_LOOPCTRL_TOGGLE_DIF | POWER_LOOPCTRL_EN_CM_HYST |
225                 POWER_LOOPCTRL_EN_DF_HYST, &power_regs->hw_power_loopctrl_set);
226
227         clrsetbits_le32(&power_regs->hw_power_dclimits,
228                         POWER_DCLIMITS_POSLIMIT_BUCK_MASK,
229                         0x30 << POWER_DCLIMITS_POSLIMIT_BUCK_OFFSET);
230
231         setbits_le32(&power_regs->hw_power_battmonitor,
232                         POWER_BATTMONITOR_EN_BATADJ);
233
234         /* Increase the RCSCALE level for quick DCDC response to dynamic load */
235         clrsetbits_le32(&power_regs->hw_power_loopctrl,
236                         POWER_LOOPCTRL_EN_RCSCALE_MASK,
237                         POWER_LOOPCTRL_RCSCALE_THRESH |
238                         POWER_LOOPCTRL_EN_RCSCALE_8X);
239
240         clrsetbits_le32(&power_regs->hw_power_minpwr,
241                         POWER_MINPWR_HALFFETS, POWER_MINPWR_DOUBLE_FETS);
242
243         /* 5V to battery handoff ... FIXME */
244         setbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER);
245         early_delay(30);
246         clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER);
247 }
248
249 /**
250  * mxs_power_init_4p2_params() - Configure the parameters of the 4P2 regulator
251  *
252  * This function configures the necessary parameters for the 4P2 linear
253  * regulator to supply the DC-DC converter from 5V input.
254  */
255 static void mxs_power_init_4p2_params(void)
256 {
257         struct mxs_power_regs *power_regs =
258                 (struct mxs_power_regs *)MXS_POWER_BASE;
259
260         /* Setup 4P2 parameters */
261         clrsetbits_le32(&power_regs->hw_power_dcdc4p2,
262                 POWER_DCDC4P2_CMPTRIP_MASK | POWER_DCDC4P2_TRG_MASK,
263                 POWER_DCDC4P2_TRG_4V2 | (31 << POWER_DCDC4P2_CMPTRIP_OFFSET));
264
265         clrsetbits_le32(&power_regs->hw_power_5vctrl,
266                 POWER_5VCTRL_HEADROOM_ADJ_MASK,
267                 0x4 << POWER_5VCTRL_HEADROOM_ADJ_OFFSET);
268
269         clrsetbits_le32(&power_regs->hw_power_dcdc4p2,
270                 POWER_DCDC4P2_DROPOUT_CTRL_MASK,
271                 POWER_DCDC4P2_DROPOUT_CTRL_100MV |
272                 POWER_DCDC4P2_DROPOUT_CTRL_SRC_SEL);
273
274         clrsetbits_le32(&power_regs->hw_power_5vctrl,
275                 POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK,
276                 0x3f << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET);
277 }
278
279 /**
280  * mxs_enable_4p2_dcdc_input() - Enable or disable the DCDC input from 4P2
281  * @xfer:       Select if the input shall be enabled or disabled
282  *
283  * This function enables or disables the 4P2 input into the DC-DC converter.
284  */
285 static void mxs_enable_4p2_dcdc_input(int xfer)
286 {
287         struct mxs_power_regs *power_regs =
288                 (struct mxs_power_regs *)MXS_POWER_BASE;
289         uint32_t tmp, vbus_thresh, vbus_5vdetect, pwd_bo;
290         uint32_t prev_5v_brnout, prev_5v_droop;
291
292         prev_5v_brnout = readl(&power_regs->hw_power_5vctrl) &
293                                 POWER_5VCTRL_PWDN_5VBRNOUT;
294         prev_5v_droop = readl(&power_regs->hw_power_ctrl) &
295                                 POWER_CTRL_ENIRQ_VDD5V_DROOP;
296
297         clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_PWDN_5VBRNOUT);
298         writel(POWER_RESET_UNLOCK_KEY | POWER_RESET_PWD_OFF,
299                 &power_regs->hw_power_reset);
300
301         clrbits_le32(&power_regs->hw_power_ctrl, POWER_CTRL_ENIRQ_VDD5V_DROOP);
302
303         if (xfer && (readl(&power_regs->hw_power_5vctrl) &
304                         POWER_5VCTRL_ENABLE_DCDC)) {
305                 return;
306         }
307
308         /*
309          * Recording orignal values that will be modified temporarlily
310          * to handle a chip bug. See chip errata for CQ ENGR00115837
311          */
312         tmp = readl(&power_regs->hw_power_5vctrl);
313         vbus_thresh = tmp & POWER_5VCTRL_VBUSVALID_TRSH_MASK;
314         vbus_5vdetect = tmp & POWER_5VCTRL_VBUSVALID_5VDETECT;
315
316         pwd_bo = readl(&power_regs->hw_power_minpwr) & POWER_MINPWR_PWD_BO;
317
318         /*
319          * Disable mechanisms that get erroneously tripped by when setting
320          * the DCDC4P2 EN_DCDC
321          */
322         clrbits_le32(&power_regs->hw_power_5vctrl,
323                 POWER_5VCTRL_VBUSVALID_5VDETECT |
324                 POWER_5VCTRL_VBUSVALID_TRSH_MASK);
325
326         writel(POWER_MINPWR_PWD_BO, &power_regs->hw_power_minpwr_set);
327
328         if (xfer) {
329                 setbits_le32(&power_regs->hw_power_5vctrl,
330                                 POWER_5VCTRL_DCDC_XFER);
331                 early_delay(20);
332                 clrbits_le32(&power_regs->hw_power_5vctrl,
333                                 POWER_5VCTRL_DCDC_XFER);
334
335                 setbits_le32(&power_regs->hw_power_5vctrl,
336                                 POWER_5VCTRL_ENABLE_DCDC);
337         } else {
338                 setbits_le32(&power_regs->hw_power_dcdc4p2,
339                                 POWER_DCDC4P2_ENABLE_DCDC);
340         }
341
342         early_delay(25);
343
344         clrsetbits_le32(&power_regs->hw_power_5vctrl,
345                         POWER_5VCTRL_VBUSVALID_TRSH_MASK, vbus_thresh);
346
347         if (vbus_5vdetect)
348                 writel(vbus_5vdetect, &power_regs->hw_power_5vctrl_set);
349
350         if (!pwd_bo)
351                 clrbits_le32(&power_regs->hw_power_minpwr, POWER_MINPWR_PWD_BO);
352
353         while (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VBUS_VALID_IRQ)
354                 writel(POWER_CTRL_VBUS_VALID_IRQ,
355                         &power_regs->hw_power_ctrl_clr);
356
357         if (prev_5v_brnout) {
358                 writel(POWER_5VCTRL_PWDN_5VBRNOUT,
359                         &power_regs->hw_power_5vctrl_set);
360                 writel(POWER_RESET_UNLOCK_KEY,
361                         &power_regs->hw_power_reset);
362         } else {
363                 writel(POWER_5VCTRL_PWDN_5VBRNOUT,
364                         &power_regs->hw_power_5vctrl_clr);
365                 writel(POWER_RESET_UNLOCK_KEY | POWER_RESET_PWD_OFF,
366                         &power_regs->hw_power_reset);
367         }
368
369         while (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VDD5V_DROOP_IRQ)
370                 writel(POWER_CTRL_VDD5V_DROOP_IRQ,
371                         &power_regs->hw_power_ctrl_clr);
372
373         if (prev_5v_droop)
374                 clrbits_le32(&power_regs->hw_power_ctrl,
375                                 POWER_CTRL_ENIRQ_VDD5V_DROOP);
376         else
377                 setbits_le32(&power_regs->hw_power_ctrl,
378                                 POWER_CTRL_ENIRQ_VDD5V_DROOP);
379 }
380
381 /**
382  * mxs_power_init_4p2_regulator() - Start the 4P2 regulator
383  *
384  * This function enables the 4P2 regulator and switches the DC-DC converter
385  * to use the 4P2 input.
386  */
387 static void mxs_power_init_4p2_regulator(void)
388 {
389         struct mxs_power_regs *power_regs =
390                 (struct mxs_power_regs *)MXS_POWER_BASE;
391         uint32_t tmp, tmp2;
392
393         setbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_ENABLE_4P2);
394
395         writel(POWER_CHARGE_ENABLE_LOAD, &power_regs->hw_power_charge_set);
396
397         writel(POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK,
398                 &power_regs->hw_power_5vctrl_clr);
399         clrbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_TRG_MASK);
400
401         /* Power up the 4p2 rail and logic/control */
402         writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK,
403                 &power_regs->hw_power_5vctrl_clr);
404
405         /*
406          * Start charging up the 4p2 capacitor. We ramp of this charge
407          * gradually to avoid large inrush current from the 5V cable which can
408          * cause transients/problems
409          */
410         mxs_enable_4p2_dcdc_input(0);
411
412         if (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VBUS_VALID_IRQ) {
413                 /*
414                  * If we arrived here, we were unable to recover from mx23 chip
415                  * errata 5837. 4P2 is disabled and sufficient battery power is
416                  * not present. Exiting to not enable DCDC power during 5V
417                  * connected state.
418                  */
419                 clrbits_le32(&power_regs->hw_power_dcdc4p2,
420                         POWER_DCDC4P2_ENABLE_DCDC);
421                 writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK,
422                         &power_regs->hw_power_5vctrl_set);
423                 hang();
424         }
425
426         /*
427          * Here we set the 4p2 brownout level to something very close to 4.2V.
428          * We then check the brownout status. If the brownout status is false,
429          * the voltage is already close to the target voltage of 4.2V so we
430          * can go ahead and set the 4P2 current limit to our max target limit.
431          * If the brownout status is true, we need to ramp us the current limit
432          * so that we don't cause large inrush current issues. We step up the
433          * current limit until the brownout status is false or until we've
434          * reached our maximum defined 4p2 current limit.
435          */
436         clrsetbits_le32(&power_regs->hw_power_dcdc4p2,
437                         POWER_DCDC4P2_BO_MASK,
438                         22 << POWER_DCDC4P2_BO_OFFSET); /* 4.15V */
439
440         if (!(readl(&power_regs->hw_power_sts) & POWER_STS_DCDC_4P2_BO)) {
441                 setbits_le32(&power_regs->hw_power_5vctrl,
442                         0x3f << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET);
443         } else {
444                 tmp = (readl(&power_regs->hw_power_5vctrl) &
445                         POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK) >>
446                         POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET;
447                 while (tmp < 0x3f) {
448                         if (!(readl(&power_regs->hw_power_sts) &
449                                         POWER_STS_DCDC_4P2_BO)) {
450                                 tmp = readl(&power_regs->hw_power_5vctrl);
451                                 tmp |= POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK;
452                                 early_delay(100);
453                                 writel(tmp, &power_regs->hw_power_5vctrl);
454                                 break;
455                         } else {
456                                 tmp++;
457                                 tmp2 = readl(&power_regs->hw_power_5vctrl);
458                                 tmp2 &= ~POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK;
459                                 tmp2 |= tmp <<
460                                         POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET;
461                                 writel(tmp2, &power_regs->hw_power_5vctrl);
462                                 early_delay(100);
463                         }
464                 }
465         }
466
467         clrbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_BO_MASK);
468         writel(POWER_CTRL_DCDC4P2_BO_IRQ, &power_regs->hw_power_ctrl_clr);
469 }
470
471 /**
472  * mxs_power_init_dcdc_4p2_source() - Switch DC-DC converter to 4P2 source
473  *
474  * This function configures the DC-DC converter to be supplied from the 4P2
475  * linear regulator.
476  */
477 static void mxs_power_init_dcdc_4p2_source(void)
478 {
479         struct mxs_power_regs *power_regs =
480                 (struct mxs_power_regs *)MXS_POWER_BASE;
481
482         if (!(readl(&power_regs->hw_power_dcdc4p2) &
483                 POWER_DCDC4P2_ENABLE_DCDC)) {
484                 hang();
485         }
486
487         mxs_enable_4p2_dcdc_input(1);
488
489         if (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VBUS_VALID_IRQ) {
490                 clrbits_le32(&power_regs->hw_power_dcdc4p2,
491                         POWER_DCDC4P2_ENABLE_DCDC);
492                 writel(POWER_5VCTRL_ENABLE_DCDC,
493                         &power_regs->hw_power_5vctrl_clr);
494                 writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK,
495                         &power_regs->hw_power_5vctrl_set);
496         }
497 }
498
499 /**
500  * mxs_power_enable_4p2() - Power up the 4P2 regulator
501  *
502  * This function drives the process of powering up the 4P2 linear regulator
503  * and switching the DC-DC converter input over to the 4P2 linear regulator.
504  */
505 static void mxs_power_enable_4p2(void)
506 {
507         struct mxs_power_regs *power_regs =
508                 (struct mxs_power_regs *)MXS_POWER_BASE;
509         uint32_t vdddctrl, vddactrl, vddioctrl;
510         uint32_t tmp;
511
512         vdddctrl = readl(&power_regs->hw_power_vdddctrl);
513         vddactrl = readl(&power_regs->hw_power_vddactrl);
514         vddioctrl = readl(&power_regs->hw_power_vddioctrl);
515
516         setbits_le32(&power_regs->hw_power_vdddctrl,
517                 POWER_VDDDCTRL_DISABLE_FET | POWER_VDDDCTRL_ENABLE_LINREG |
518                 POWER_VDDDCTRL_PWDN_BRNOUT);
519
520         setbits_le32(&power_regs->hw_power_vddactrl,
521                 POWER_VDDACTRL_DISABLE_FET | POWER_VDDACTRL_ENABLE_LINREG |
522                 POWER_VDDACTRL_PWDN_BRNOUT);
523
524         setbits_le32(&power_regs->hw_power_vddioctrl,
525                 POWER_VDDIOCTRL_DISABLE_FET | POWER_VDDIOCTRL_PWDN_BRNOUT);
526
527         mxs_power_init_4p2_params();
528         mxs_power_init_4p2_regulator();
529
530         /* Shutdown battery (none present) */
531         if (!mxs_is_batt_ready()) {
532                 clrbits_le32(&power_regs->hw_power_dcdc4p2,
533                                 POWER_DCDC4P2_BO_MASK);
534                 writel(POWER_CTRL_DCDC4P2_BO_IRQ,
535                                 &power_regs->hw_power_ctrl_clr);
536                 writel(POWER_CTRL_ENIRQ_DCDC4P2_BO,
537                                 &power_regs->hw_power_ctrl_clr);
538         }
539
540         mxs_power_init_dcdc_4p2_source();
541
542         writel(vdddctrl, &power_regs->hw_power_vdddctrl);
543         early_delay(20);
544         writel(vddactrl, &power_regs->hw_power_vddactrl);
545         early_delay(20);
546         writel(vddioctrl, &power_regs->hw_power_vddioctrl);
547
548         /*
549          * Check if FET is enabled on either powerout and if so,
550          * disable load.
551          */
552         tmp = 0;
553         tmp |= !(readl(&power_regs->hw_power_vdddctrl) &
554                         POWER_VDDDCTRL_DISABLE_FET);
555         tmp |= !(readl(&power_regs->hw_power_vddactrl) &
556                         POWER_VDDACTRL_DISABLE_FET);
557         tmp |= !(readl(&power_regs->hw_power_vddioctrl) &
558                         POWER_VDDIOCTRL_DISABLE_FET);
559         if (tmp)
560                 writel(POWER_CHARGE_ENABLE_LOAD,
561                         &power_regs->hw_power_charge_clr);
562 }
563
564 /**
565  * mxs_boot_valid_5v() - Boot from 5V supply
566  *
567  * This function configures the power block to boot from valid 5V input.
568  * This is called only if the 5V is reliable and can properly supply the
569  * CPU. This function proceeds to configure the 4P2 converter to be supplied
570  * from the 5V input.
571  */
572 static void mxs_boot_valid_5v(void)
573 {
574         struct mxs_power_regs *power_regs =
575                 (struct mxs_power_regs *)MXS_POWER_BASE;
576
577         /*
578          * Use VBUSVALID level instead of VDD5V_GT_VDDIO level to trigger a 5V
579          * disconnect event. FIXME
580          */
581         writel(POWER_5VCTRL_VBUSVALID_5VDETECT,
582                 &power_regs->hw_power_5vctrl_set);
583
584         /* Configure polarity to check for 5V disconnection. */
585         writel(POWER_CTRL_POLARITY_VBUSVALID |
586                 POWER_CTRL_POLARITY_VDD5V_GT_VDDIO,
587                 &power_regs->hw_power_ctrl_clr);
588
589         writel(POWER_CTRL_VBUS_VALID_IRQ | POWER_CTRL_VDD5V_GT_VDDIO_IRQ,
590                 &power_regs->hw_power_ctrl_clr);
591
592         mxs_power_enable_4p2();
593 }
594
595 /**
596  * mxs_powerdown() - Shut down the system
597  *
598  * This function powers down the CPU completely.
599  */
600 static void mxs_powerdown(void)
601 {
602         struct mxs_power_regs *power_regs =
603                 (struct mxs_power_regs *)MXS_POWER_BASE;
604         writel(POWER_RESET_UNLOCK_KEY, &power_regs->hw_power_reset);
605         writel(POWER_RESET_UNLOCK_KEY | POWER_RESET_PWD_OFF,
606                 &power_regs->hw_power_reset);
607 }
608
609 /**
610  * mxs_batt_boot() - Configure the power block to boot from battery input
611  *
612  * This function configures the power block to boot from the battery voltage
613  * supply.
614  */
615 static void mxs_batt_boot(void)
616 {
617         struct mxs_power_regs *power_regs =
618                 (struct mxs_power_regs *)MXS_POWER_BASE;
619
620         clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_PWDN_5VBRNOUT);
621         clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_ENABLE_DCDC);
622
623         clrbits_le32(&power_regs->hw_power_dcdc4p2,
624                         POWER_DCDC4P2_ENABLE_DCDC | POWER_DCDC4P2_ENABLE_4P2);
625         writel(POWER_CHARGE_ENABLE_LOAD, &power_regs->hw_power_charge_clr);
626
627         /* 5V to battery handoff. */
628         setbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER);
629         early_delay(30);
630         clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER);
631
632         writel(POWER_CTRL_ENIRQ_DCDC4P2_BO, &power_regs->hw_power_ctrl_clr);
633
634         clrsetbits_le32(&power_regs->hw_power_minpwr,
635                         POWER_MINPWR_HALFFETS, POWER_MINPWR_DOUBLE_FETS);
636
637         mxs_power_set_linreg();
638
639         clrbits_le32(&power_regs->hw_power_vdddctrl,
640                 POWER_VDDDCTRL_DISABLE_FET | POWER_VDDDCTRL_ENABLE_LINREG);
641
642         clrbits_le32(&power_regs->hw_power_vddactrl,
643                 POWER_VDDACTRL_DISABLE_FET | POWER_VDDACTRL_ENABLE_LINREG);
644
645         clrbits_le32(&power_regs->hw_power_vddioctrl,
646                 POWER_VDDIOCTRL_DISABLE_FET);
647
648         setbits_le32(&power_regs->hw_power_5vctrl,
649                 POWER_5VCTRL_PWD_CHARGE_4P2_MASK);
650
651         setbits_le32(&power_regs->hw_power_5vctrl,
652                 POWER_5VCTRL_ENABLE_DCDC);
653
654         clrsetbits_le32(&power_regs->hw_power_5vctrl,
655                 POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK,
656                 0x8 << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET);
657
658         mxs_power_enable_4p2();
659 }
660
661 /**
662  * mxs_handle_5v_conflict() - Test if the 5V input is reliable
663  *
664  * This function tests if the 5V input can reliably supply the system. If it
665  * can, then proceed to configuring the system to boot from 5V source, otherwise
666  * try booting from battery supply. If we can not boot from battery supply
667  * either, shut down the system.
668  */
669 static void mxs_handle_5v_conflict(void)
670 {
671         struct mxs_power_regs *power_regs =
672                 (struct mxs_power_regs *)MXS_POWER_BASE;
673         uint32_t tmp;
674
675         setbits_le32(&power_regs->hw_power_vddioctrl,
676                         POWER_VDDIOCTRL_BO_OFFSET_MASK);
677
678         for (;;) {
679                 tmp = readl(&power_regs->hw_power_sts);
680
681                 if (tmp & POWER_STS_VDDIO_BO) {
682                         /*
683                          * VDDIO has a brownout, then the VDD5V_GT_VDDIO becomes
684                          * unreliable
685                          */
686                         mxs_powerdown();
687                         break;
688                 }
689
690                 if (tmp & POWER_STS_VDD5V_GT_VDDIO) {
691                         mxs_boot_valid_5v();
692                         break;
693                 } else {
694                         mxs_powerdown();
695                         break;
696                 }
697
698                 if (tmp & POWER_STS_PSWITCH_MASK) {
699                         mxs_batt_boot();
700                         break;
701                 }
702         }
703 }
704
705 /**
706  * mxs_5v_boot() - Configure the power block to boot from 5V input
707  *
708  * This function handles configuration of the power block when supplied by
709  * a 5V input.
710  */
711 static void mxs_5v_boot(void)
712 {
713         struct mxs_power_regs *power_regs =
714                 (struct mxs_power_regs *)MXS_POWER_BASE;
715
716         /*
717          * NOTE: In original IMX-Bootlets, this also checks for VBUSVALID,
718          * but their implementation always returns 1 so we omit it here.
719          */
720         if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) {
721                 mxs_boot_valid_5v();
722                 return;
723         }
724
725         early_delay(1000);
726         if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) {
727                 mxs_boot_valid_5v();
728                 return;
729         }
730
731         mxs_handle_5v_conflict();
732 }
733
734 /**
735  * mxs_init_batt_bo() - Configure battery brownout threshold
736  *
737  * This function configures the battery input brownout threshold. The value
738  * at which the battery brownout happens is configured to 3.0V in the code.
739  */
740 static void mxs_init_batt_bo(void)
741 {
742         struct mxs_power_regs *power_regs =
743                 (struct mxs_power_regs *)MXS_POWER_BASE;
744
745         /* Brownout at 3V */
746         clrsetbits_le32(&power_regs->hw_power_battmonitor,
747                 POWER_BATTMONITOR_BRWNOUT_LVL_MASK,
748                 15 << POWER_BATTMONITOR_BRWNOUT_LVL_OFFSET);
749
750         writel(POWER_CTRL_BATT_BO_IRQ, &power_regs->hw_power_ctrl_clr);
751         writel(POWER_CTRL_ENIRQ_BATT_BO, &power_regs->hw_power_ctrl_clr);
752 }
753
754 /**
755  * mxs_switch_vddd_to_dcdc_source() - Switch VDDD rail to DC-DC converter
756  *
757  * This function turns off the VDDD linear regulator and therefore makes
758  * the VDDD rail be supplied only by the DC-DC converter.
759  */
760 static void mxs_switch_vddd_to_dcdc_source(void)
761 {
762         struct mxs_power_regs *power_regs =
763                 (struct mxs_power_regs *)MXS_POWER_BASE;
764
765         clrsetbits_le32(&power_regs->hw_power_vdddctrl,
766                 POWER_VDDDCTRL_LINREG_OFFSET_MASK,
767                 POWER_VDDDCTRL_LINREG_OFFSET_1STEPS_BELOW);
768
769         clrbits_le32(&power_regs->hw_power_vdddctrl,
770                 POWER_VDDDCTRL_DISABLE_FET | POWER_VDDDCTRL_ENABLE_LINREG |
771                 POWER_VDDDCTRL_DISABLE_STEPPING);
772 }
773
774 /**
775  * mxs_power_configure_power_source() - Configure power block source
776  *
777  * This function is the core of the power configuration logic. The function
778  * selects the power block input source and configures the whole power block
779  * accordingly. After the configuration is complete and the system is stable
780  * again, the function switches the CPU clock source back to PLL. Finally,
781  * the function switches the voltage rails to DC-DC converter.
782  */
783 static void mxs_power_configure_power_source(void)
784 {
785         int batt_ready, batt_good;
786         struct mxs_power_regs *power_regs =
787                 (struct mxs_power_regs *)MXS_POWER_BASE;
788         struct mxs_lradc_regs *lradc_regs =
789                 (struct mxs_lradc_regs *)MXS_LRADC_BASE;
790
791         mxs_src_power_init();
792
793         if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) {
794                 batt_ready = mxs_is_batt_ready();
795                 if (batt_ready) {
796                         /* 5V source detected, good battery detected. */
797                         mxs_batt_boot();
798                 } else {
799                         batt_good = mxs_is_batt_good();
800                         if (!batt_good) {
801                                 /* 5V source detected, bad battery detected. */
802                                 writel(LRADC_CONVERSION_AUTOMATIC,
803                                         &lradc_regs->hw_lradc_conversion_clr);
804                                 clrbits_le32(&power_regs->hw_power_battmonitor,
805                                         POWER_BATTMONITOR_BATT_VAL_MASK);
806                         }
807                         mxs_5v_boot();
808                 }
809         } else {
810                 /* 5V not detected, booting from battery. */
811                 mxs_batt_boot();
812         }
813
814         mxs_power_clock2pll();
815
816         mxs_init_batt_bo();
817
818         mxs_switch_vddd_to_dcdc_source();
819
820 #ifdef CONFIG_MX23
821         /* Fire up the VDDMEM LinReg now that we're all set. */
822         writel(POWER_VDDMEMCTRL_ENABLE_LINREG | POWER_VDDMEMCTRL_ENABLE_ILIMIT,
823                 &power_regs->hw_power_vddmemctrl);
824 #endif
825 }
826
827 /**
828  * mxs_enable_output_rail_protection() - Enable power rail protection
829  *
830  * This function enables overload protection on the power rails. This is
831  * triggered if the power rails' voltage drops rapidly due to overload and
832  * in such case, the supply to the powerrail is cut-off, protecting the
833  * CPU from damage. Note that under such condition, the system will likely
834  * crash or misbehave.
835  */
836 static void mxs_enable_output_rail_protection(void)
837 {
838         struct mxs_power_regs *power_regs =
839                 (struct mxs_power_regs *)MXS_POWER_BASE;
840
841         writel(POWER_CTRL_VDDD_BO_IRQ | POWER_CTRL_VDDA_BO_IRQ |
842                 POWER_CTRL_VDDIO_BO_IRQ, &power_regs->hw_power_ctrl_clr);
843
844         setbits_le32(&power_regs->hw_power_vdddctrl,
845                         POWER_VDDDCTRL_PWDN_BRNOUT);
846
847         setbits_le32(&power_regs->hw_power_vddactrl,
848                         POWER_VDDACTRL_PWDN_BRNOUT);
849
850         setbits_le32(&power_regs->hw_power_vddioctrl,
851                         POWER_VDDIOCTRL_PWDN_BRNOUT);
852 }
853
854 /**
855  * mxs_get_vddio_power_source_off() - Get VDDIO rail power source
856  *
857  * This function tests if the VDDIO rail is supplied by linear regulator
858  * or by the DC-DC converter. Returns 1 if powered by linear regulator,
859  * returns 0 if powered by the DC-DC converter.
860  */
861 static int mxs_get_vddio_power_source_off(void)
862 {
863         struct mxs_power_regs *power_regs =
864                 (struct mxs_power_regs *)MXS_POWER_BASE;
865         uint32_t tmp;
866
867         if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) {
868                 tmp = readl(&power_regs->hw_power_vddioctrl);
869                 if (tmp & POWER_VDDIOCTRL_DISABLE_FET) {
870                         if ((tmp & POWER_VDDIOCTRL_LINREG_OFFSET_MASK) ==
871                                 POWER_VDDIOCTRL_LINREG_OFFSET_0STEPS) {
872                                 return 1;
873                         }
874                 }
875
876                 if (!(readl(&power_regs->hw_power_5vctrl) &
877                         POWER_5VCTRL_ENABLE_DCDC)) {
878                         if ((tmp & POWER_VDDIOCTRL_LINREG_OFFSET_MASK) ==
879                                 POWER_VDDIOCTRL_LINREG_OFFSET_0STEPS) {
880                                 return 1;
881                         }
882                 }
883         }
884
885         return 0;
886
887 }
888
889 /**
890  * mxs_get_vddd_power_source_off() - Get VDDD rail power source
891  *
892  * This function tests if the VDDD rail is supplied by linear regulator
893  * or by the DC-DC converter. Returns 1 if powered by linear regulator,
894  * returns 0 if powered by the DC-DC converter.
895  */
896 static int mxs_get_vddd_power_source_off(void)
897 {
898         struct mxs_power_regs *power_regs =
899                 (struct mxs_power_regs *)MXS_POWER_BASE;
900         uint32_t tmp;
901
902         tmp = readl(&power_regs->hw_power_vdddctrl);
903         if (tmp & POWER_VDDDCTRL_DISABLE_FET) {
904                 if ((tmp & POWER_VDDDCTRL_LINREG_OFFSET_MASK) ==
905                         POWER_VDDDCTRL_LINREG_OFFSET_0STEPS) {
906                         return 1;
907                 }
908         }
909
910         if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) {
911                 if (!(readl(&power_regs->hw_power_5vctrl) &
912                         POWER_5VCTRL_ENABLE_DCDC)) {
913                         return 1;
914                 }
915         }
916
917         if (!(tmp & POWER_VDDDCTRL_ENABLE_LINREG)) {
918                 if ((tmp & POWER_VDDDCTRL_LINREG_OFFSET_MASK) ==
919                         POWER_VDDDCTRL_LINREG_OFFSET_1STEPS_BELOW) {
920                         return 1;
921                 }
922         }
923
924         return 0;
925 }
926
927 struct mxs_vddx_cfg {
928         uint32_t                *reg;
929         uint8_t                 step_mV;
930         uint16_t                lowest_mV;
931         int                     (*powered_by_linreg)(void);
932         uint32_t                trg_mask;
933         uint32_t                bo_irq;
934         uint32_t                bo_enirq;
935         uint32_t                bo_offset_mask;
936         uint32_t                bo_offset_offset;
937 };
938
939 static const struct mxs_vddx_cfg mxs_vddio_cfg = {
940         .reg                    = &(((struct mxs_power_regs *)MXS_POWER_BASE)->
941                                         hw_power_vddioctrl),
942 #if defined(CONFIG_MX23)
943         .step_mV                = 25,
944 #else
945         .step_mV                = 50,
946 #endif
947         .lowest_mV              = 2800,
948         .powered_by_linreg      = mxs_get_vddio_power_source_off,
949         .trg_mask               = POWER_VDDIOCTRL_TRG_MASK,
950         .bo_irq                 = POWER_CTRL_VDDIO_BO_IRQ,
951         .bo_enirq               = POWER_CTRL_ENIRQ_VDDIO_BO,
952         .bo_offset_mask         = POWER_VDDIOCTRL_BO_OFFSET_MASK,
953         .bo_offset_offset       = POWER_VDDIOCTRL_BO_OFFSET_OFFSET,
954 };
955
956 static const struct mxs_vddx_cfg mxs_vddd_cfg = {
957         .reg                    = &(((struct mxs_power_regs *)MXS_POWER_BASE)->
958                                         hw_power_vdddctrl),
959         .step_mV                = 25,
960         .lowest_mV              = 800,
961         .powered_by_linreg      = mxs_get_vddd_power_source_off,
962         .trg_mask               = POWER_VDDDCTRL_TRG_MASK,
963         .bo_irq                 = POWER_CTRL_VDDD_BO_IRQ,
964         .bo_enirq               = POWER_CTRL_ENIRQ_VDDD_BO,
965         .bo_offset_mask         = POWER_VDDDCTRL_BO_OFFSET_MASK,
966         .bo_offset_offset       = POWER_VDDDCTRL_BO_OFFSET_OFFSET,
967 };
968
969 #ifdef CONFIG_MX23
970 static const struct mxs_vddx_cfg mxs_vddmem_cfg = {
971         .reg                    = &(((struct mxs_power_regs *)MXS_POWER_BASE)->
972                                         hw_power_vddmemctrl),
973         .step_mV                = 50,
974         .lowest_mV              = 1700,
975         .powered_by_linreg      = NULL,
976         .trg_mask               = POWER_VDDMEMCTRL_TRG_MASK,
977         .bo_irq                 = 0,
978         .bo_enirq               = 0,
979         .bo_offset_mask         = 0,
980         .bo_offset_offset       = 0,
981 };
982 #endif
983
984 /**
985  * mxs_power_set_vddx() - Configure voltage on DC-DC converter rail
986  * @cfg:                Configuration data of the DC-DC converter rail
987  * @new_target:         New target voltage of the DC-DC converter rail
988  * @new_brownout:       New brownout trigger voltage
989  *
990  * This function configures the output voltage on the DC-DC converter rail.
991  * The rail is selected by the @cfg argument. The new voltage target is
992  * selected by the @new_target and the voltage is specified in mV. The
993  * new brownout value is selected by the @new_brownout argument and the
994  * value is also in mV.
995  */
996 static void mxs_power_set_vddx(const struct mxs_vddx_cfg *cfg,
997                                 uint32_t new_target, uint32_t new_brownout)
998 {
999         struct mxs_power_regs *power_regs =
1000                 (struct mxs_power_regs *)MXS_POWER_BASE;
1001         uint32_t cur_target, diff, bo_int = 0;
1002         uint32_t powered_by_linreg = 0;
1003         int adjust_up, tmp;
1004
1005         new_brownout = DIV_ROUND_CLOSEST(new_target - new_brownout,
1006                                          cfg->step_mV);
1007
1008         cur_target = readl(cfg->reg);
1009         cur_target &= cfg->trg_mask;
1010         cur_target *= cfg->step_mV;
1011         cur_target += cfg->lowest_mV;
1012
1013         adjust_up = new_target > cur_target;
1014         if (cfg->powered_by_linreg)
1015                 powered_by_linreg = cfg->powered_by_linreg();
1016
1017         if (adjust_up && cfg->bo_irq) {
1018                 if (powered_by_linreg) {
1019                         bo_int = readl(cfg->reg);
1020                         clrbits_le32(cfg->reg, cfg->bo_enirq);
1021                 }
1022                 setbits_le32(cfg->reg, cfg->bo_offset_mask);
1023         }
1024
1025         do {
1026                 if (abs(new_target - cur_target) > 100) {
1027                         if (adjust_up)
1028                                 diff = cur_target + 100;
1029                         else
1030                                 diff = cur_target - 100;
1031                 } else {
1032                         diff = new_target;
1033                 }
1034
1035                 diff -= cfg->lowest_mV;
1036                 diff /= cfg->step_mV;
1037
1038                 clrsetbits_le32(cfg->reg, cfg->trg_mask, diff);
1039
1040                 if (powered_by_linreg ||
1041                         (readl(&power_regs->hw_power_sts) &
1042                                 POWER_STS_VDD5V_GT_VDDIO))
1043                         early_delay(500);
1044                 else {
1045                         for (;;) {
1046                                 tmp = readl(&power_regs->hw_power_sts);
1047                                 if (tmp & POWER_STS_DC_OK)
1048                                         break;
1049                         }
1050                 }
1051
1052                 cur_target = readl(cfg->reg);
1053                 cur_target &= cfg->trg_mask;
1054                 cur_target *= cfg->step_mV;
1055                 cur_target += cfg->lowest_mV;
1056         } while (new_target > cur_target);
1057
1058         if (cfg->bo_irq) {
1059                 if (adjust_up && powered_by_linreg) {
1060                         writel(cfg->bo_irq, &power_regs->hw_power_ctrl_clr);
1061                         if (bo_int & cfg->bo_enirq)
1062                                 setbits_le32(cfg->reg, cfg->bo_enirq);
1063                 }
1064
1065                 clrsetbits_le32(cfg->reg, cfg->bo_offset_mask,
1066                                 new_brownout << cfg->bo_offset_offset);
1067         }
1068 }
1069
1070 /**
1071  * mxs_setup_batt_detect() - Start the battery voltage measurement logic
1072  *
1073  * This function starts and configures the LRADC block. This allows the
1074  * power initialization code to measure battery voltage and based on this
1075  * knowledge, decide whether to boot at all, boot from battery or boot
1076  * from 5V input.
1077  */
1078 static void mxs_setup_batt_detect(void)
1079 {
1080         mxs_lradc_init();
1081         mxs_lradc_enable_batt_measurement();
1082         early_delay(10);
1083 }
1084
1085 /**
1086  * mxs_ungate_power() - Ungate the POWER block
1087  *
1088  * This function ungates clock to the power block. In case the power block
1089  * was still gated at this point, it will not be possible to configure the
1090  * block and therefore the power initialization would fail. This function
1091  * is only needed on i.MX233, on i.MX28 the power block is always ungated.
1092  */
1093 static void mxs_ungate_power(void)
1094 {
1095 #ifdef CONFIG_MX23
1096         struct mxs_power_regs *power_regs =
1097                 (struct mxs_power_regs *)MXS_POWER_BASE;
1098
1099         writel(POWER_CTRL_CLKGATE, &power_regs->hw_power_ctrl_clr);
1100 #endif
1101 }
1102
1103 /**
1104  * mxs_power_init() - The power block init main function
1105  *
1106  * This function calls all the power block initialization functions in
1107  * proper sequence to start the power block.
1108  */
1109 void mxs_power_init(void)
1110 {
1111         struct mxs_power_regs *power_regs =
1112                 (struct mxs_power_regs *)MXS_POWER_BASE;
1113
1114         mxs_ungate_power();
1115
1116         mxs_power_clock2xtal();
1117         mxs_power_set_auto_restart();
1118         mxs_power_set_linreg();
1119         mxs_power_setup_5v_detect();
1120
1121         mxs_setup_batt_detect();
1122
1123         mxs_power_configure_power_source();
1124         mxs_enable_output_rail_protection();
1125
1126         mxs_power_set_vddx(&mxs_vddio_cfg, 3300, 3150);
1127         mxs_power_set_vddx(&mxs_vddd_cfg, 1500, 1000);
1128 #ifdef CONFIG_MX23
1129         mxs_power_set_vddx(&mxs_vddmem_cfg, 2500, 1700);
1130 #endif
1131         writel(POWER_CTRL_VDDD_BO_IRQ | POWER_CTRL_VDDA_BO_IRQ |
1132                 POWER_CTRL_VDDIO_BO_IRQ | POWER_CTRL_VDD5V_DROOP_IRQ |
1133                 POWER_CTRL_VBUS_VALID_IRQ | POWER_CTRL_BATT_BO_IRQ |
1134                 POWER_CTRL_DCDC4P2_BO_IRQ, &power_regs->hw_power_ctrl_clr);
1135
1136         writel(POWER_5VCTRL_PWDN_5VBRNOUT, &power_regs->hw_power_5vctrl_set);
1137
1138         early_delay(1000);
1139 }
1140
1141 #ifdef  CONFIG_SPL_MXS_PSWITCH_WAIT
1142 /**
1143  * mxs_power_wait_pswitch() - Wait for power switch to be pressed
1144  *
1145  * This function waits until the power-switch was pressed to start booting
1146  * the board.
1147  */
1148 void mxs_power_wait_pswitch(void)
1149 {
1150         struct mxs_power_regs *power_regs =
1151                 (struct mxs_power_regs *)MXS_POWER_BASE;
1152
1153         while (!(readl(&power_regs->hw_power_sts) & POWER_STS_PSWITCH_MASK))
1154                 ;
1155 }
1156 #endif