]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - arch/arm/cpu/armv7/omap-common/emif-common.c
ARM: DRA72x: Update EMIF data
[karo-tx-uboot.git] / arch / arm / cpu / armv7 / omap-common / emif-common.c
1 /*
2  * EMIF programming
3  *
4  * (C) Copyright 2010
5  * Texas Instruments, <www.ti.com>
6  *
7  * Aneesh V <aneesh@ti.com>
8  *
9  * SPDX-License-Identifier:     GPL-2.0+
10  */
11
12 #include <common.h>
13 #include <asm/emif.h>
14 #include <asm/arch/clock.h>
15 #include <asm/arch/sys_proto.h>
16 #include <asm/omap_common.h>
17 #include <asm/utils.h>
18 #include <linux/compiler.h>
19
20 static int emif1_enabled = -1, emif2_enabled = -1;
21
22 void set_lpmode_selfrefresh(u32 base)
23 {
24         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
25         u32 reg;
26
27         reg = readl(&emif->emif_pwr_mgmt_ctrl);
28         reg &= ~EMIF_REG_LP_MODE_MASK;
29         reg |= LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT;
30         reg &= ~EMIF_REG_SR_TIM_MASK;
31         writel(reg, &emif->emif_pwr_mgmt_ctrl);
32
33         /* dummy read for the new SR_TIM to be loaded */
34         readl(&emif->emif_pwr_mgmt_ctrl);
35 }
36
37 void force_emif_self_refresh()
38 {
39         set_lpmode_selfrefresh(EMIF1_BASE);
40         set_lpmode_selfrefresh(EMIF2_BASE);
41 }
42
43 inline u32 emif_num(u32 base)
44 {
45         if (base == EMIF1_BASE)
46                 return 1;
47         else if (base == EMIF2_BASE)
48                 return 2;
49         else
50                 return 0;
51 }
52
53 static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
54 {
55         u32 mr;
56         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
57
58         mr_addr |= cs << EMIF_REG_CS_SHIFT;
59         writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
60         if (omap_revision() == OMAP4430_ES2_0)
61                 mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
62         else
63                 mr = readl(&emif->emif_lpddr2_mode_reg_data);
64         debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
65               cs, mr_addr, mr);
66         if (((mr & 0x0000ff00) >>  8) == (mr & 0xff) &&
67             ((mr & 0x00ff0000) >> 16) == (mr & 0xff) &&
68             ((mr & 0xff000000) >> 24) == (mr & 0xff))
69                 return mr & 0xff;
70         else
71                 return mr;
72 }
73
74 static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
75 {
76         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
77
78         mr_addr |= cs << EMIF_REG_CS_SHIFT;
79         writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
80         writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
81 }
82
83 void emif_reset_phy(u32 base)
84 {
85         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
86         u32 iodft;
87
88         iodft = readl(&emif->emif_iodft_tlgc);
89         iodft |= EMIF_REG_RESET_PHY_MASK;
90         writel(iodft, &emif->emif_iodft_tlgc);
91 }
92
93 static void do_lpddr2_init(u32 base, u32 cs)
94 {
95         u32 mr_addr;
96         const struct lpddr2_mr_regs *mr_regs;
97
98         get_lpddr2_mr_regs(&mr_regs);
99         /* Wait till device auto initialization is complete */
100         while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
101                 ;
102         set_mr(base, cs, LPDDR2_MR10, mr_regs->mr10);
103         /*
104          * tZQINIT = 1 us
105          * Enough loops assuming a maximum of 2GHz
106          */
107
108         sdelay(2000);
109
110         set_mr(base, cs, LPDDR2_MR1, mr_regs->mr1);
111         set_mr(base, cs, LPDDR2_MR16, mr_regs->mr16);
112
113         /*
114          * Enable refresh along with writing MR2
115          * Encoding of RL in MR2 is (RL - 2)
116          */
117         mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
118         set_mr(base, cs, mr_addr, mr_regs->mr2);
119
120         if (mr_regs->mr3 > 0)
121                 set_mr(base, cs, LPDDR2_MR3, mr_regs->mr3);
122 }
123
124 static void lpddr2_init(u32 base, const struct emif_regs *regs)
125 {
126         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
127
128         /* Not NVM */
129         clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);
130
131         /*
132          * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
133          * when EMIF_SDRAM_CONFIG register is written
134          */
135         setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
136
137         /*
138          * Set the SDRAM_CONFIG and PHY_CTRL for the
139          * un-locked frequency & default RL
140          */
141         writel(regs->sdram_config_init, &emif->emif_sdram_config);
142         writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
143
144         do_ext_phy_settings(base, regs);
145
146         do_lpddr2_init(base, CS0);
147         if (regs->sdram_config & EMIF_REG_EBANK_MASK)
148                 do_lpddr2_init(base, CS1);
149
150         writel(regs->sdram_config, &emif->emif_sdram_config);
151         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
152
153         /* Enable refresh now */
154         clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
155
156         }
157
158 __weak void do_ext_phy_settings(u32 base, const struct emif_regs *regs)
159 {
160 }
161
162 void emif_update_timings(u32 base, const struct emif_regs *regs)
163 {
164         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
165
166         writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
167         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
168         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
169         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
170         if (omap_revision() == OMAP4430_ES1_0) {
171                 /* ES1 bug EMIF should be in force idle during freq_update */
172                 writel(0, &emif->emif_pwr_mgmt_ctrl);
173         } else {
174                 writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
175                 writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
176         }
177         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
178         writel(regs->zq_config, &emif->emif_zq_config);
179         writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
180         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
181
182         if ((omap_revision() >= OMAP5430_ES1_0) || is_dra7xx()) {
183                 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
184                         &emif->emif_l3_config);
185         } else if (omap_revision() >= OMAP4460_ES1_0) {
186                 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
187                         &emif->emif_l3_config);
188         } else {
189                 writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
190                         &emif->emif_l3_config);
191         }
192 }
193
194 static void omap5_ddr3_leveling(u32 base, const struct emif_regs *regs)
195 {
196         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
197
198         /* keep sdram in self-refresh */
199         writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT)
200                 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
201         __udelay(130);
202
203         /*
204          * Set invert_clkout (if activated)--DDR_PHYCTRL_1
205          * Invert clock adds an additional half cycle delay on the
206          * command interface.  The additional half cycle, is usually
207          * meant to enable leveling in the situation that DQS is later
208          * than CK on the board.It also helps provide some additional
209          * margin for leveling.
210          */
211         writel(regs->emif_ddr_phy_ctlr_1,
212                &emif->emif_ddr_phy_ctrl_1);
213
214         writel(regs->emif_ddr_phy_ctlr_1,
215                &emif->emif_ddr_phy_ctrl_1_shdw);
216         __udelay(130);
217
218         writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT)
219                & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
220
221         /* Launch Full leveling */
222         writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
223
224         /* Wait till full leveling is complete */
225         readl(&emif->emif_rd_wr_lvl_ctl);
226               __udelay(130);
227
228         /* Read data eye leveling no of samples */
229         config_data_eye_leveling_samples(base);
230
231         /*
232          * Launch 8 incremental WR_LVL- to compensate for
233          * PHY limitation.
234          */
235         writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT,
236                &emif->emif_rd_wr_lvl_ctl);
237
238         __udelay(130);
239
240         /* Launch Incremental leveling */
241         writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl);
242                __udelay(130);
243 }
244
245 static void dra7_ddr3_leveling(u32 base, const struct emif_regs *regs)
246 {
247         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
248
249         u32 fifo_reg;
250
251         fifo_reg = readl(&emif->emif_ddr_fifo_misaligned_clear_1);
252         writel(fifo_reg | 0x00000100,
253                &emif->emif_ddr_fifo_misaligned_clear_1);
254
255         fifo_reg = readl(&emif->emif_ddr_fifo_misaligned_clear_2);
256         writel(fifo_reg | 0x00000100,
257                &emif->emif_ddr_fifo_misaligned_clear_2);
258
259         /* Launch Full leveling */
260         writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
261
262         /* Wait till full leveling is complete */
263         readl(&emif->emif_rd_wr_lvl_ctl);
264               __udelay(130);
265
266         /* Read data eye leveling no of samples */
267         config_data_eye_leveling_samples(base);
268
269         /*
270          * Disable leveling. This is because if leveling is kept
271          * enabled, then PHY triggers a false leveling during
272          * EMIF-idle scenario which results in wrong delay
273          * values getting updated. After this the EMIF becomes
274          * unaccessible. So disable it after the first time
275          */
276         writel(0x0, &emif->emif_rd_wr_lvl_rmp_ctl);
277 }
278
279 static void ddr3_leveling(u32 base, const struct emif_regs *regs)
280 {
281         if (is_omap54xx())
282                 omap5_ddr3_leveling(base, regs);
283         else
284                 dra7_ddr3_leveling(base, regs);
285 }
286
287 static void ddr3_init(u32 base, const struct emif_regs *regs)
288 {
289         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
290
291         /*
292          * Set SDRAM_CONFIG and PHY control registers to locked frequency
293          * and RL =7. As the default values of the Mode Registers are not
294          * defined, contents of mode Registers must be fully initialized.
295          * H/W takes care of this initialization
296          */
297         writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
298
299         /* Update timing registers */
300         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
301         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
302         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
303
304         writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
305         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
306
307         /*
308          * The same sequence should work on OMAP5432 as well. But strange that
309          * it is not working
310          */
311         if (is_dra7xx()) {
312                 do_ext_phy_settings(base, regs);
313                 writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
314                 writel(regs->sdram_config_init, &emif->emif_sdram_config);
315         } else {
316                 writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
317                 writel(regs->sdram_config_init, &emif->emif_sdram_config);
318                 do_ext_phy_settings(base, regs);
319         }
320
321         /* enable leveling */
322         writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
323
324         ddr3_leveling(base, regs);
325 }
326
327 #ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
328 #define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
329
330 /*
331  * Organization and refresh requirements for LPDDR2 devices of different
332  * types and densities. Derived from JESD209-2 section 2.4
333  */
334 const struct lpddr2_addressing addressing_table[] = {
335         /* Banks tREFIx10     rowx32,rowx16      colx32,colx16  density */
336         {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
337         {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
338         {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
339         {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
340         {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
341         {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
342         {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
343         {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
344         {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
345         {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
346 };
347
348 static const u32 lpddr2_density_2_size_in_mbytes[] = {
349         8,                      /* 64Mb */
350         16,                     /* 128Mb */
351         32,                     /* 256Mb */
352         64,                     /* 512Mb */
353         128,                    /* 1Gb   */
354         256,                    /* 2Gb   */
355         512,                    /* 4Gb   */
356         1024,                   /* 8Gb   */
357         2048,                   /* 16Gb  */
358         4096                    /* 32Gb  */
359 };
360
361 /*
362  * Calculate the period of DDR clock from frequency value and set the
363  * denominator and numerator in global variables for easy access later
364  */
365 static void set_ddr_clk_period(u32 freq)
366 {
367         /*
368          * period = 1/freq
369          * period_in_ns = 10^9/freq
370          */
371         *T_num = 1000000000;
372         *T_den = freq;
373         cancel_out(T_num, T_den, 200);
374
375 }
376
377 /*
378  * Convert time in nano seconds to number of cycles of DDR clock
379  */
380 static inline u32 ns_2_cycles(u32 ns)
381 {
382         return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
383 }
384
385 /*
386  * ns_2_cycles with the difference that the time passed is 2 times the actual
387  * value(to avoid fractions). The cycles returned is for the original value of
388  * the timing parameter
389  */
390 static inline u32 ns_x2_2_cycles(u32 ns)
391 {
392         return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
393 }
394
395 /*
396  * Find addressing table index based on the device's type(S2 or S4) and
397  * density
398  */
399 s8 addressing_table_index(u8 type, u8 density, u8 width)
400 {
401         u8 index;
402         if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
403                 return -1;
404
405         /*
406          * Look at the way ADDR_TABLE_INDEX* values have been defined
407          * in emif.h compared to LPDDR2_DENSITY_* values
408          * The table is layed out in the increasing order of density
409          * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
410          * at the end
411          */
412         if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
413                 index = ADDR_TABLE_INDEX1GS2;
414         else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
415                 index = ADDR_TABLE_INDEX2GS2;
416         else
417                 index = density;
418
419         debug("emif: addressing table index %d\n", index);
420
421         return index;
422 }
423
424 /*
425  * Find the the right timing table from the array of timing
426  * tables of the device using DDR clock frequency
427  */
428 static const struct lpddr2_ac_timings *get_timings_table(const struct
429                         lpddr2_ac_timings const *const *device_timings,
430                         u32 freq)
431 {
432         u32 i, temp, freq_nearest;
433         const struct lpddr2_ac_timings *timings = 0;
434
435         emif_assert(freq <= MAX_LPDDR2_FREQ);
436         emif_assert(device_timings);
437
438         /*
439          * Start with the maximum allowed frequency - that is always safe
440          */
441         freq_nearest = MAX_LPDDR2_FREQ;
442         /*
443          * Find the timings table that has the max frequency value:
444          *   i.  Above or equal to the DDR frequency - safe
445          *   ii. The lowest that satisfies condition (i) - optimal
446          */
447         for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
448                 temp = device_timings[i]->max_freq;
449                 if ((temp >= freq) && (temp <= freq_nearest)) {
450                         freq_nearest = temp;
451                         timings = device_timings[i];
452                 }
453         }
454         debug("emif: timings table: %d\n", freq_nearest);
455         return timings;
456 }
457
458 /*
459  * Finds the value of emif_sdram_config_reg
460  * All parameters are programmed based on the device on CS0.
461  * If there is a device on CS1, it will be same as that on CS0 or
462  * it will be NVM. We don't support NVM yet.
463  * If cs1_device pointer is NULL it is assumed that there is no device
464  * on CS1
465  */
466 static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
467                                 const struct lpddr2_device_details *cs1_device,
468                                 const struct lpddr2_addressing *addressing,
469                                 u8 RL)
470 {
471         u32 config_reg = 0;
472
473         config_reg |=  (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
474         config_reg |=  EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
475                         EMIF_REG_IBANK_POS_SHIFT;
476
477         config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;
478
479         config_reg |= RL << EMIF_REG_CL_SHIFT;
480
481         config_reg |= addressing->row_sz[cs0_device->io_width] <<
482                         EMIF_REG_ROWSIZE_SHIFT;
483
484         config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;
485
486         config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
487                         EMIF_REG_EBANK_SHIFT;
488
489         config_reg |= addressing->col_sz[cs0_device->io_width] <<
490                         EMIF_REG_PAGESIZE_SHIFT;
491
492         return config_reg;
493 }
494
495 static u32 get_sdram_ref_ctrl(u32 freq,
496                               const struct lpddr2_addressing *addressing)
497 {
498         u32 ref_ctrl = 0, val = 0, freq_khz;
499         freq_khz = freq / 1000;
500         /*
501          * refresh rate to be set is 'tREFI * freq in MHz
502          * division by 10000 to account for khz and x10 in t_REFI_us_x10
503          */
504         val = addressing->t_REFI_us_x10 * freq_khz / 10000;
505         ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;
506
507         return ref_ctrl;
508 }
509
510 static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
511                                const struct lpddr2_min_tck *min_tck,
512                                const struct lpddr2_addressing *addressing)
513 {
514         u32 tim1 = 0, val = 0;
515         val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
516         tim1 |= val << EMIF_REG_T_WTR_SHIFT;
517
518         if (addressing->num_banks == BANKS8)
519                 val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
520                                                         (4 * (*T_num)) - 1;
521         else
522                 val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
523
524         tim1 |= val << EMIF_REG_T_RRD_SHIFT;
525
526         val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
527         tim1 |= val << EMIF_REG_T_RC_SHIFT;
528
529         val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
530         tim1 |= val << EMIF_REG_T_RAS_SHIFT;
531
532         val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
533         tim1 |= val << EMIF_REG_T_WR_SHIFT;
534
535         val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
536         tim1 |= val << EMIF_REG_T_RCD_SHIFT;
537
538         val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
539         tim1 |= val << EMIF_REG_T_RP_SHIFT;
540
541         return tim1;
542 }
543
544 static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
545                                const struct lpddr2_min_tck *min_tck)
546 {
547         u32 tim2 = 0, val = 0;
548         val = max(min_tck->tCKE, timings->tCKE) - 1;
549         tim2 |= val << EMIF_REG_T_CKE_SHIFT;
550
551         val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
552         tim2 |= val << EMIF_REG_T_RTP_SHIFT;
553
554         /*
555          * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
556          * same value
557          */
558         val = ns_2_cycles(timings->tXSR) - 1;
559         tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
560         tim2 |= val << EMIF_REG_T_XSNR_SHIFT;
561
562         val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
563         tim2 |= val << EMIF_REG_T_XP_SHIFT;
564
565         return tim2;
566 }
567
568 static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
569                                const struct lpddr2_min_tck *min_tck,
570                                const struct lpddr2_addressing *addressing)
571 {
572         u32 tim3 = 0, val = 0;
573         val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
574         tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;
575
576         val = ns_2_cycles(timings->tRFCab) - 1;
577         tim3 |= val << EMIF_REG_T_RFC_SHIFT;
578
579         val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
580         tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;
581
582         val = ns_2_cycles(timings->tZQCS) - 1;
583         tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;
584
585         val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
586         tim3 |= val << EMIF_REG_T_CKESR_SHIFT;
587
588         return tim3;
589 }
590
591 static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
592                              const struct lpddr2_addressing *addressing,
593                              u8 volt_ramp)
594 {
595         u32 zq = 0, val = 0;
596         if (volt_ramp)
597                 val =
598                     EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
599                     addressing->t_REFI_us_x10;
600         else
601                 val =
602                     EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
603                     addressing->t_REFI_us_x10;
604         zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;
605
606         zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;
607
608         zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;
609
610         zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;
611
612         /*
613          * Assuming that two chipselects have a single calibration resistor
614          * If there are indeed two calibration resistors, then this flag should
615          * be enabled to take advantage of dual calibration feature.
616          * This data should ideally come from board files. But considering
617          * that none of the boards today have calibration resistors per CS,
618          * it would be an unnecessary overhead.
619          */
620         zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;
621
622         zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;
623
624         zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;
625
626         return zq;
627 }
628
629 static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
630                                  const struct lpddr2_addressing *addressing,
631                                  u8 is_derated)
632 {
633         u32 alert = 0, interval;
634         interval =
635             TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
636         if (is_derated)
637                 interval *= 4;
638         alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;
639
640         alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;
641
642         alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;
643
644         alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;
645
646         alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;
647
648         alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;
649
650         return alert;
651 }
652
653 static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
654 {
655         u32 idle = 0, val = 0;
656         if (volt_ramp)
657                 val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
658         else
659                 /*Maximum value in normal conditions - suggested by hw team */
660                 val = 0x1FF;
661         idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;
662
663         idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;
664
665         return idle;
666 }
667
668 static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
669 {
670         u32 phy = 0, val = 0;
671
672         phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;
673
674         if (freq <= 100000000)
675                 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
676         else if (freq <= 200000000)
677                 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
678         else
679                 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
680         phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
681
682         /* Other fields are constant magic values. Hardcode them together */
683         phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
684                 EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
685
686         return phy;
687 }
688
689 static u32 get_emif_mem_size(u32 base)
690 {
691         u32 size_mbytes = 0, temp;
692         struct emif_device_details dev_details;
693         struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
694         u32 emif_nr = emif_num(base);
695
696         emif_reset_phy(base);
697         dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
698                                                 &cs0_dev_details);
699         dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
700                                                 &cs1_dev_details);
701         emif_reset_phy(base);
702
703         if (dev_details.cs0_device_details) {
704                 temp = dev_details.cs0_device_details->density;
705                 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
706         }
707
708         if (dev_details.cs1_device_details) {
709                 temp = dev_details.cs1_device_details->density;
710                 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
711         }
712         /* convert to bytes */
713         return size_mbytes << 20;
714 }
715
716 /* Gets the encoding corresponding to a given DMM section size */
717 u32 get_dmm_section_size_map(u32 section_size)
718 {
719         /*
720          * Section size mapping:
721          * 0x0: 16-MiB section
722          * 0x1: 32-MiB section
723          * 0x2: 64-MiB section
724          * 0x3: 128-MiB section
725          * 0x4: 256-MiB section
726          * 0x5: 512-MiB section
727          * 0x6: 1-GiB section
728          * 0x7: 2-GiB section
729          */
730         section_size >>= 24; /* divide by 16 MB */
731         return log_2_n_round_down(section_size);
732 }
733
734 static void emif_calculate_regs(
735                 const struct emif_device_details *emif_dev_details,
736                 u32 freq, struct emif_regs *regs)
737 {
738         u32 temp, sys_freq;
739         const struct lpddr2_addressing *addressing;
740         const struct lpddr2_ac_timings *timings;
741         const struct lpddr2_min_tck *min_tck;
742         const struct lpddr2_device_details *cs0_dev_details =
743                                         emif_dev_details->cs0_device_details;
744         const struct lpddr2_device_details *cs1_dev_details =
745                                         emif_dev_details->cs1_device_details;
746         const struct lpddr2_device_timings *cs0_dev_timings =
747                                         emif_dev_details->cs0_device_timings;
748
749         emif_assert(emif_dev_details);
750         emif_assert(regs);
751         /*
752          * You can not have a device on CS1 without one on CS0
753          * So configuring EMIF without a device on CS0 doesn't
754          * make sense
755          */
756         emif_assert(cs0_dev_details);
757         emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
758         /*
759          * If there is a device on CS1 it should be same type as CS0
760          * (or NVM. But NVM is not supported in this driver yet)
761          */
762         emif_assert((cs1_dev_details == NULL) ||
763                     (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
764                     (cs0_dev_details->type == cs1_dev_details->type));
765         emif_assert(freq <= MAX_LPDDR2_FREQ);
766
767         set_ddr_clk_period(freq);
768
769         /*
770          * The device on CS0 is used for all timing calculations
771          * There is only one set of registers for timings per EMIF. So, if the
772          * second CS(CS1) has a device, it should have the same timings as the
773          * device on CS0
774          */
775         timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
776         emif_assert(timings);
777         min_tck = cs0_dev_timings->min_tck;
778
779         temp = addressing_table_index(cs0_dev_details->type,
780                                       cs0_dev_details->density,
781                                       cs0_dev_details->io_width);
782
783         emif_assert((temp >= 0));
784         addressing = &(addressing_table[temp]);
785         emif_assert(addressing);
786
787         sys_freq = get_sys_clk_freq();
788
789         regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
790                                                         cs1_dev_details,
791                                                         addressing, RL_BOOT);
792
793         regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
794                                                 cs1_dev_details,
795                                                 addressing, RL_FINAL);
796
797         regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
798
799         regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
800
801         regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
802
803         regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
804
805         regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
806
807         regs->temp_alert_config =
808             get_temp_alert_config(cs1_dev_details, addressing, 0);
809
810         regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
811                                             LPDDR2_VOLTAGE_STABLE);
812
813         regs->emif_ddr_phy_ctlr_1_init =
814                         get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
815
816         regs->emif_ddr_phy_ctlr_1 =
817                         get_ddr_phy_ctrl_1(freq, RL_FINAL);
818
819         regs->freq = freq;
820
821         print_timing_reg(regs->sdram_config_init);
822         print_timing_reg(regs->sdram_config);
823         print_timing_reg(regs->ref_ctrl);
824         print_timing_reg(regs->sdram_tim1);
825         print_timing_reg(regs->sdram_tim2);
826         print_timing_reg(regs->sdram_tim3);
827         print_timing_reg(regs->read_idle_ctrl);
828         print_timing_reg(regs->temp_alert_config);
829         print_timing_reg(regs->zq_config);
830         print_timing_reg(regs->emif_ddr_phy_ctlr_1);
831         print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
832 }
833 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
834
835 #ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
836 const char *get_lpddr2_type(u8 type_id)
837 {
838         switch (type_id) {
839         case LPDDR2_TYPE_S4:
840                 return "LPDDR2-S4";
841         case LPDDR2_TYPE_S2:
842                 return "LPDDR2-S2";
843         default:
844                 return NULL;
845         }
846 }
847
848 const char *get_lpddr2_io_width(u8 width_id)
849 {
850         switch (width_id) {
851         case LPDDR2_IO_WIDTH_8:
852                 return "x8";
853         case LPDDR2_IO_WIDTH_16:
854                 return "x16";
855         case LPDDR2_IO_WIDTH_32:
856                 return "x32";
857         default:
858                 return NULL;
859         }
860 }
861
862 const char *get_lpddr2_manufacturer(u32 manufacturer)
863 {
864         switch (manufacturer) {
865         case LPDDR2_MANUFACTURER_SAMSUNG:
866                 return "Samsung";
867         case LPDDR2_MANUFACTURER_QIMONDA:
868                 return "Qimonda";
869         case LPDDR2_MANUFACTURER_ELPIDA:
870                 return "Elpida";
871         case LPDDR2_MANUFACTURER_ETRON:
872                 return "Etron";
873         case LPDDR2_MANUFACTURER_NANYA:
874                 return "Nanya";
875         case LPDDR2_MANUFACTURER_HYNIX:
876                 return "Hynix";
877         case LPDDR2_MANUFACTURER_MOSEL:
878                 return "Mosel";
879         case LPDDR2_MANUFACTURER_WINBOND:
880                 return "Winbond";
881         case LPDDR2_MANUFACTURER_ESMT:
882                 return "ESMT";
883         case LPDDR2_MANUFACTURER_SPANSION:
884                 return "Spansion";
885         case LPDDR2_MANUFACTURER_SST:
886                 return "SST";
887         case LPDDR2_MANUFACTURER_ZMOS:
888                 return "ZMOS";
889         case LPDDR2_MANUFACTURER_INTEL:
890                 return "Intel";
891         case LPDDR2_MANUFACTURER_NUMONYX:
892                 return "Numonyx";
893         case LPDDR2_MANUFACTURER_MICRON:
894                 return "Micron";
895         default:
896                 return NULL;
897         }
898 }
899
900 static void display_sdram_details(u32 emif_nr, u32 cs,
901                                   struct lpddr2_device_details *device)
902 {
903         const char *mfg_str;
904         const char *type_str;
905         char density_str[10];
906         u32 density;
907
908         debug("EMIF%d CS%d\t", emif_nr, cs);
909
910         if (!device) {
911                 debug("None\n");
912                 return;
913         }
914
915         mfg_str = get_lpddr2_manufacturer(device->manufacturer);
916         type_str = get_lpddr2_type(device->type);
917
918         density = lpddr2_density_2_size_in_mbytes[device->density];
919         if ((density / 1024 * 1024) == density) {
920                 density /= 1024;
921                 sprintf(density_str, "%d GB", density);
922         } else
923                 sprintf(density_str, "%d MB", density);
924         if (mfg_str && type_str)
925                 debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
926 }
927
928 static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
929                                   struct lpddr2_device_details *lpddr2_device)
930 {
931         u32 mr = 0, temp;
932
933         mr = get_mr(base, cs, LPDDR2_MR0);
934         if (mr > 0xFF) {
935                 /* Mode register value bigger than 8 bit */
936                 return 0;
937         }
938
939         temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
940         if (temp) {
941                 /* Not SDRAM */
942                 return 0;
943         }
944         temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
945
946         if (temp) {
947                 /* DNV supported - But DNV is only supported for NVM */
948                 return 0;
949         }
950
951         mr = get_mr(base, cs, LPDDR2_MR4);
952         if (mr > 0xFF) {
953                 /* Mode register value bigger than 8 bit */
954                 return 0;
955         }
956
957         mr = get_mr(base, cs, LPDDR2_MR5);
958         if (mr > 0xFF) {
959                 /* Mode register value bigger than 8 bit */
960                 return 0;
961         }
962
963         if (!get_lpddr2_manufacturer(mr)) {
964                 /* Manufacturer not identified */
965                 return 0;
966         }
967         lpddr2_device->manufacturer = mr;
968
969         mr = get_mr(base, cs, LPDDR2_MR6);
970         if (mr >= 0xFF) {
971                 /* Mode register value bigger than 8 bit */
972                 return 0;
973         }
974
975         mr = get_mr(base, cs, LPDDR2_MR7);
976         if (mr >= 0xFF) {
977                 /* Mode register value bigger than 8 bit */
978                 return 0;
979         }
980
981         mr = get_mr(base, cs, LPDDR2_MR8);
982         if (mr >= 0xFF) {
983                 /* Mode register value bigger than 8 bit */
984                 return 0;
985         }
986
987         temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
988         if (!get_lpddr2_type(temp)) {
989                 /* Not SDRAM */
990                 return 0;
991         }
992         lpddr2_device->type = temp;
993
994         temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
995         if (temp > LPDDR2_DENSITY_32Gb) {
996                 /* Density not supported */
997                 return 0;
998         }
999         lpddr2_device->density = temp;
1000
1001         temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
1002         if (!get_lpddr2_io_width(temp)) {
1003                 /* IO width unsupported value */
1004                 return 0;
1005         }
1006         lpddr2_device->io_width = temp;
1007
1008         /*
1009          * If all the above tests pass we should
1010          * have a device on this chip-select
1011          */
1012         return 1;
1013 }
1014
1015 struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
1016                         struct lpddr2_device_details *lpddr2_dev_details)
1017 {
1018         u32 phy;
1019         u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE;
1020
1021         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1022
1023         if (!lpddr2_dev_details)
1024                 return NULL;
1025
1026         /* Do the minimum init for mode register accesses */
1027         if (!(running_from_sdram() || warm_reset())) {
1028                 phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
1029                 writel(phy, &emif->emif_ddr_phy_ctrl_1);
1030         }
1031
1032         if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
1033                 return NULL;
1034
1035         display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
1036
1037         return lpddr2_dev_details;
1038 }
1039 #endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */
1040
1041 static void do_sdram_init(u32 base)
1042 {
1043         const struct emif_regs *regs;
1044         u32 in_sdram, emif_nr;
1045
1046         debug(">>do_sdram_init() %x\n", base);
1047
1048         in_sdram = running_from_sdram();
1049         emif_nr = (base == EMIF1_BASE) ? 1 : 2;
1050
1051 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1052         emif_get_reg_dump(emif_nr, &regs);
1053         if (!regs) {
1054                 debug("EMIF: reg dump not provided\n");
1055                 return;
1056         }
1057 #else
1058         /*
1059          * The user has not provided the register values. We need to
1060          * calculate it based on the timings and the DDR frequency
1061          */
1062         struct emif_device_details dev_details;
1063         struct emif_regs calculated_regs;
1064
1065         /*
1066          * Get device details:
1067          * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
1068          * - Obtained from user otherwise
1069          */
1070         struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
1071         emif_reset_phy(base);
1072         dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
1073                                                 &cs0_dev_details);
1074         dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
1075                                                 &cs1_dev_details);
1076         emif_reset_phy(base);
1077
1078         /* Return if no devices on this EMIF */
1079         if (!dev_details.cs0_device_details &&
1080             !dev_details.cs1_device_details) {
1081                 return;
1082         }
1083
1084         /*
1085          * Get device timings:
1086          * - Default timings specified by JESD209-2 if
1087          *   CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
1088          * - Obtained from user otherwise
1089          */
1090         emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
1091                                 &dev_details.cs1_device_timings);
1092
1093         /* Calculate the register values */
1094         emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs);
1095         regs = &calculated_regs;
1096 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
1097
1098         /*
1099          * Initializing the LPDDR2 device can not happen from SDRAM.
1100          * Changing the timing registers in EMIF can happen(going from one
1101          * OPP to another)
1102          */
1103         if (!(in_sdram || warm_reset())) {
1104                 if (emif_sdram_type() == EMIF_SDRAM_TYPE_LPDDR2)
1105                         lpddr2_init(base, regs);
1106                 else
1107                         ddr3_init(base, regs);
1108         }
1109         if (warm_reset() && (emif_sdram_type() == EMIF_SDRAM_TYPE_DDR3)) {
1110                 set_lpmode_selfrefresh(base);
1111                 emif_reset_phy(base);
1112                 ddr3_leveling(base, regs);
1113         }
1114
1115         /* Write to the shadow registers */
1116         emif_update_timings(base, regs);
1117
1118         debug("<<do_sdram_init() %x\n", base);
1119 }
1120
1121 void emif_post_init_config(u32 base)
1122 {
1123         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1124         u32 omap_rev = omap_revision();
1125
1126         /* reset phy on ES2.0 */
1127         if (omap_rev == OMAP4430_ES2_0)
1128                 emif_reset_phy(base);
1129
1130         /* Put EMIF back in smart idle on ES1.0 */
1131         if (omap_rev == OMAP4430_ES1_0)
1132                 writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
1133 }
1134
1135 void dmm_init(u32 base)
1136 {
1137         const struct dmm_lisa_map_regs *lisa_map_regs;
1138         u32 i, section, valid;
1139
1140 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1141         emif_get_dmm_regs(&lisa_map_regs);
1142 #else
1143         u32 emif1_size, emif2_size, mapped_size, section_map = 0;
1144         u32 section_cnt, sys_addr;
1145         struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
1146
1147         mapped_size = 0;
1148         section_cnt = 3;
1149         sys_addr = CONFIG_SYS_SDRAM_BASE;
1150         emif1_size = get_emif_mem_size(EMIF1_BASE);
1151         emif2_size = get_emif_mem_size(EMIF2_BASE);
1152         debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
1153
1154         if (!emif1_size && !emif2_size)
1155                 return;
1156
1157         /* symmetric interleaved section */
1158         if (emif1_size && emif2_size) {
1159                 mapped_size = min(emif1_size, emif2_size);
1160                 section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
1161                 section_map |= 0 << EMIF_SDRC_ADDR_SHIFT;
1162                 /* only MSB */
1163                 section_map |= (sys_addr >> 24) <<
1164                                 EMIF_SYS_ADDR_SHIFT;
1165                 section_map |= get_dmm_section_size_map(mapped_size * 2)
1166                                 << EMIF_SYS_SIZE_SHIFT;
1167                 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1168                 emif1_size -= mapped_size;
1169                 emif2_size -= mapped_size;
1170                 sys_addr += (mapped_size * 2);
1171                 section_cnt--;
1172         }
1173
1174         /*
1175          * Single EMIF section(we can have a maximum of 1 single EMIF
1176          * section- either EMIF1 or EMIF2 or none, but not both)
1177          */
1178         if (emif1_size) {
1179                 section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
1180                 section_map |= get_dmm_section_size_map(emif1_size)
1181                                 << EMIF_SYS_SIZE_SHIFT;
1182                 /* only MSB */
1183                 section_map |= (mapped_size >> 24) <<
1184                                 EMIF_SDRC_ADDR_SHIFT;
1185                 /* only MSB */
1186                 section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT;
1187                 section_cnt--;
1188         }
1189         if (emif2_size) {
1190                 section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
1191                 section_map |= get_dmm_section_size_map(emif2_size) <<
1192                                 EMIF_SYS_SIZE_SHIFT;
1193                 /* only MSB */
1194                 section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT;
1195                 /* only MSB */
1196                 section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT;
1197                 section_cnt--;
1198         }
1199
1200         if (section_cnt == 2) {
1201                 /* Only 1 section - either symmetric or single EMIF */
1202                 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1203                 lis_map_regs_calculated.dmm_lisa_map_2 = 0;
1204                 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1205         } else {
1206                 /* 2 sections - 1 symmetric, 1 single EMIF */
1207                 lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
1208                 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1209         }
1210
1211         /* TRAP for invalid TILER mappings in section 0 */
1212         lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
1213
1214         if (omap_revision() >= OMAP4460_ES1_0)
1215                 lis_map_regs_calculated.is_ma_present = 1;
1216
1217         lisa_map_regs = &lis_map_regs_calculated;
1218 #endif
1219         struct dmm_lisa_map_regs *hw_lisa_map_regs =
1220             (struct dmm_lisa_map_regs *)base;
1221
1222         writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
1223         writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
1224         writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
1225         writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
1226
1227         writel(lisa_map_regs->dmm_lisa_map_3,
1228                 &hw_lisa_map_regs->dmm_lisa_map_3);
1229         writel(lisa_map_regs->dmm_lisa_map_2,
1230                 &hw_lisa_map_regs->dmm_lisa_map_2);
1231         writel(lisa_map_regs->dmm_lisa_map_1,
1232                 &hw_lisa_map_regs->dmm_lisa_map_1);
1233         writel(lisa_map_regs->dmm_lisa_map_0,
1234                 &hw_lisa_map_regs->dmm_lisa_map_0);
1235
1236         if (lisa_map_regs->is_ma_present) {
1237                 hw_lisa_map_regs =
1238                     (struct dmm_lisa_map_regs *)MA_BASE;
1239
1240                 writel(lisa_map_regs->dmm_lisa_map_3,
1241                         &hw_lisa_map_regs->dmm_lisa_map_3);
1242                 writel(lisa_map_regs->dmm_lisa_map_2,
1243                         &hw_lisa_map_regs->dmm_lisa_map_2);
1244                 writel(lisa_map_regs->dmm_lisa_map_1,
1245                         &hw_lisa_map_regs->dmm_lisa_map_1);
1246                 writel(lisa_map_regs->dmm_lisa_map_0,
1247                         &hw_lisa_map_regs->dmm_lisa_map_0);
1248         }
1249
1250         /*
1251          * EMIF should be configured only when
1252          * memory is mapped on it. Using emif1_enabled
1253          * and emif2_enabled variables for this.
1254          */
1255         emif1_enabled = 0;
1256         emif2_enabled = 0;
1257         for (i = 0; i < 4; i++) {
1258                 section = __raw_readl(DMM_BASE + i*4);
1259                 valid = (section & EMIF_SDRC_MAP_MASK) >>
1260                         (EMIF_SDRC_MAP_SHIFT);
1261                 if (valid == 3) {
1262                         emif1_enabled = 1;
1263                         emif2_enabled = 1;
1264                         break;
1265                 } else if (valid == 1) {
1266                         emif1_enabled = 1;
1267                 } else if (valid == 2) {
1268                         emif2_enabled = 1;
1269                 }
1270         }
1271
1272 }
1273
1274 static void do_bug0039_workaround(u32 base)
1275 {
1276         u32 val, i, clkctrl;
1277         struct emif_reg_struct *emif_base = (struct emif_reg_struct *)base;
1278         const struct read_write_regs *bug_00339_regs;
1279         u32 iterations;
1280         u32 *phy_status_base = &emif_base->emif_ddr_phy_status[0];
1281         u32 *phy_ctrl_base = &emif_base->emif_ddr_ext_phy_ctrl_1;
1282
1283         if (is_dra7xx())
1284                 phy_status_base++;
1285
1286         bug_00339_regs = get_bug_regs(&iterations);
1287
1288         /* Put EMIF in to idle */
1289         clkctrl = __raw_readl((*prcm)->cm_memif_clkstctrl);
1290         __raw_writel(0x0, (*prcm)->cm_memif_clkstctrl);
1291
1292         /* Copy the phy status registers in to phy ctrl shadow registers */
1293         for (i = 0; i < iterations; i++) {
1294                 val = __raw_readl(phy_status_base +
1295                                   bug_00339_regs[i].read_reg - 1);
1296
1297                 __raw_writel(val, phy_ctrl_base +
1298                              ((bug_00339_regs[i].write_reg - 1) << 1));
1299
1300                 __raw_writel(val, phy_ctrl_base +
1301                              (bug_00339_regs[i].write_reg << 1) - 1);
1302         }
1303
1304         /* Disable leveling */
1305         writel(0x0, &emif_base->emif_rd_wr_lvl_rmp_ctl);
1306
1307         __raw_writel(clkctrl,  (*prcm)->cm_memif_clkstctrl);
1308 }
1309
1310 /*
1311  * SDRAM initialization:
1312  * SDRAM initialization has two parts:
1313  * 1. Configuring the SDRAM device
1314  * 2. Update the AC timings related parameters in the EMIF module
1315  * (1) should be done only once and should not be done while we are
1316  * running from SDRAM.
1317  * (2) can and should be done more than once if OPP changes.
1318  * Particularly, this may be needed when we boot without SPL and
1319  * and using Configuration Header(CH). ROM code supports only at 50% OPP
1320  * at boot (low power boot). So u-boot has to switch to OPP100 and update
1321  * the frequency. So,
1322  * Doing (1) and (2) makes sense - first time initialization
1323  * Doing (2) and not (1) makes sense - OPP change (when using CH)
1324  * Doing (1) and not (2) doen't make sense
1325  * See do_sdram_init() for the details
1326  */
1327 void sdram_init(void)
1328 {
1329         u32 in_sdram, size_prog, size_detect;
1330         u32 sdram_type = emif_sdram_type();
1331
1332         debug(">>sdram_init()\n");
1333
1334         if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
1335                 return;
1336
1337         in_sdram = running_from_sdram();
1338         debug("in_sdram = %d\n", in_sdram);
1339
1340         if (!in_sdram) {
1341                 if ((sdram_type == EMIF_SDRAM_TYPE_LPDDR2) && !warm_reset())
1342                         bypass_dpll((*prcm)->cm_clkmode_dpll_core);
1343                 else if (sdram_type == EMIF_SDRAM_TYPE_DDR3)
1344                         writel(CM_DLL_CTRL_NO_OVERRIDE, (*prcm)->cm_dll_ctrl);
1345         }
1346
1347         if (!in_sdram)
1348                 dmm_init(DMM_BASE);
1349
1350         if (emif1_enabled)
1351                 do_sdram_init(EMIF1_BASE);
1352
1353         if (emif2_enabled)
1354                 do_sdram_init(EMIF2_BASE);
1355
1356         if (!(in_sdram || warm_reset())) {
1357                 if (emif1_enabled)
1358                         emif_post_init_config(EMIF1_BASE);
1359                 if (emif2_enabled)
1360                         emif_post_init_config(EMIF2_BASE);
1361         }
1362
1363         /* for the shadow registers to take effect */
1364         if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2)
1365                 freq_update_core();
1366
1367         /* Do some testing after the init */
1368         if (!in_sdram) {
1369                 size_prog = omap_sdram_size();
1370                 size_prog = log_2_n_round_down(size_prog);
1371                 size_prog = (1 << size_prog);
1372
1373                 size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
1374                                                 size_prog);
1375                 /* Compare with the size programmed */
1376                 if (size_detect != size_prog) {
1377                         printf("SDRAM: identified size not same as expected"
1378                                 " size identified: %x expected: %x\n",
1379                                 size_detect,
1380                                 size_prog);
1381                 } else
1382                         debug("get_ram_size() successful");
1383         }
1384
1385         if (sdram_type == EMIF_SDRAM_TYPE_DDR3 &&
1386             (!in_sdram && !warm_reset())) {
1387                 if (emif1_enabled)
1388                         do_bug0039_workaround(EMIF1_BASE);
1389                 if (emif2_enabled)
1390                         do_bug0039_workaround(EMIF2_BASE);
1391         }
1392
1393         debug("<<sdram_init()\n");
1394 }