]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - arch/arm/cpu/armv7/omap-common/emif-common.c
NET: fec_mxc: fix MDIO clock prescaler calculation
[karo-tx-uboot.git] / arch / arm / cpu / armv7 / omap-common / emif-common.c
1 /*
2  * EMIF programming
3  *
4  * (C) Copyright 2010
5  * Texas Instruments, <www.ti.com>
6  *
7  * Aneesh V <aneesh@ti.com>
8  *
9  * SPDX-License-Identifier:     GPL-2.0+
10  */
11
12 #include <common.h>
13 #include <asm/emif.h>
14 #include <asm/arch/clock.h>
15 #include <asm/arch/sys_proto.h>
16 #include <asm/omap_common.h>
17 #include <asm/utils.h>
18 #include <linux/compiler.h>
19
20 static int emif1_enabled = -1, emif2_enabled = -1;
21
22 void set_lpmode_selfrefresh(u32 base)
23 {
24         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
25         u32 reg;
26
27         reg = readl(&emif->emif_pwr_mgmt_ctrl);
28         reg &= ~EMIF_REG_LP_MODE_MASK;
29         reg |= LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT;
30         reg &= ~EMIF_REG_SR_TIM_MASK;
31         writel(reg, &emif->emif_pwr_mgmt_ctrl);
32
33         /* dummy read for the new SR_TIM to be loaded */
34         readl(&emif->emif_pwr_mgmt_ctrl);
35 }
36
37 void force_emif_self_refresh()
38 {
39         set_lpmode_selfrefresh(EMIF1_BASE);
40         set_lpmode_selfrefresh(EMIF2_BASE);
41 }
42
43 inline u32 emif_num(u32 base)
44 {
45         if (base == EMIF1_BASE)
46                 return 1;
47         else if (base == EMIF2_BASE)
48                 return 2;
49         else
50                 return 0;
51 }
52
53 static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
54 {
55         u32 mr;
56         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
57
58         mr_addr |= cs << EMIF_REG_CS_SHIFT;
59         writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
60         if (omap_revision() == OMAP4430_ES2_0)
61                 mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
62         else
63                 mr = readl(&emif->emif_lpddr2_mode_reg_data);
64         debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
65               cs, mr_addr, mr);
66         if (((mr & 0x0000ff00) >>  8) == (mr & 0xff) &&
67             ((mr & 0x00ff0000) >> 16) == (mr & 0xff) &&
68             ((mr & 0xff000000) >> 24) == (mr & 0xff))
69                 return mr & 0xff;
70         else
71                 return mr;
72 }
73
74 static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
75 {
76         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
77
78         mr_addr |= cs << EMIF_REG_CS_SHIFT;
79         writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
80         writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
81 }
82
83 void emif_reset_phy(u32 base)
84 {
85         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
86         u32 iodft;
87
88         iodft = readl(&emif->emif_iodft_tlgc);
89         iodft |= EMIF_REG_RESET_PHY_MASK;
90         writel(iodft, &emif->emif_iodft_tlgc);
91 }
92
93 static void do_lpddr2_init(u32 base, u32 cs)
94 {
95         u32 mr_addr;
96         const struct lpddr2_mr_regs *mr_regs;
97
98         get_lpddr2_mr_regs(&mr_regs);
99         /* Wait till device auto initialization is complete */
100         while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
101                 ;
102         set_mr(base, cs, LPDDR2_MR10, mr_regs->mr10);
103         /*
104          * tZQINIT = 1 us
105          * Enough loops assuming a maximum of 2GHz
106          */
107
108         sdelay(2000);
109
110         set_mr(base, cs, LPDDR2_MR1, mr_regs->mr1);
111         set_mr(base, cs, LPDDR2_MR16, mr_regs->mr16);
112
113         /*
114          * Enable refresh along with writing MR2
115          * Encoding of RL in MR2 is (RL - 2)
116          */
117         mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
118         set_mr(base, cs, mr_addr, mr_regs->mr2);
119
120         if (mr_regs->mr3 > 0)
121                 set_mr(base, cs, LPDDR2_MR3, mr_regs->mr3);
122 }
123
124 static void lpddr2_init(u32 base, const struct emif_regs *regs)
125 {
126         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
127
128         /* Not NVM */
129         clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);
130
131         /*
132          * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
133          * when EMIF_SDRAM_CONFIG register is written
134          */
135         setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
136
137         /*
138          * Set the SDRAM_CONFIG and PHY_CTRL for the
139          * un-locked frequency & default RL
140          */
141         writel(regs->sdram_config_init, &emif->emif_sdram_config);
142         writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
143
144         do_ext_phy_settings(base, regs);
145
146         do_lpddr2_init(base, CS0);
147         if (regs->sdram_config & EMIF_REG_EBANK_MASK)
148                 do_lpddr2_init(base, CS1);
149
150         writel(regs->sdram_config, &emif->emif_sdram_config);
151         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
152
153         /* Enable refresh now */
154         clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
155
156         }
157
158 __weak void do_ext_phy_settings(u32 base, const struct emif_regs *regs)
159 {
160 }
161
162 void emif_update_timings(u32 base, const struct emif_regs *regs)
163 {
164         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
165
166         writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
167         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
168         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
169         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
170         if (omap_revision() == OMAP4430_ES1_0) {
171                 /* ES1 bug EMIF should be in force idle during freq_update */
172                 writel(0, &emif->emif_pwr_mgmt_ctrl);
173         } else {
174                 writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
175                 writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
176         }
177         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
178         writel(regs->zq_config, &emif->emif_zq_config);
179         writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
180         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
181
182         if ((omap_revision() >= OMAP5430_ES1_0) ||
183                                 (omap_revision() == DRA752_ES1_0)) {
184                 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
185                         &emif->emif_l3_config);
186         } else if (omap_revision() >= OMAP4460_ES1_0) {
187                 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
188                         &emif->emif_l3_config);
189         } else {
190                 writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
191                         &emif->emif_l3_config);
192         }
193 }
194
195 static void omap5_ddr3_leveling(u32 base, const struct emif_regs *regs)
196 {
197         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
198
199         /* keep sdram in self-refresh */
200         writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT)
201                 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
202         __udelay(130);
203
204         /*
205          * Set invert_clkout (if activated)--DDR_PHYCTRL_1
206          * Invert clock adds an additional half cycle delay on the
207          * command interface.  The additional half cycle, is usually
208          * meant to enable leveling in the situation that DQS is later
209          * than CK on the board.It also helps provide some additional
210          * margin for leveling.
211          */
212         writel(regs->emif_ddr_phy_ctlr_1,
213                &emif->emif_ddr_phy_ctrl_1);
214
215         writel(regs->emif_ddr_phy_ctlr_1,
216                &emif->emif_ddr_phy_ctrl_1_shdw);
217         __udelay(130);
218
219         writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT)
220                & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
221
222         /* Launch Full leveling */
223         writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
224
225         /* Wait till full leveling is complete */
226         readl(&emif->emif_rd_wr_lvl_ctl);
227               __udelay(130);
228
229         /* Read data eye leveling no of samples */
230         config_data_eye_leveling_samples(base);
231
232         /*
233          * Launch 8 incremental WR_LVL- to compensate for
234          * PHY limitation.
235          */
236         writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT,
237                &emif->emif_rd_wr_lvl_ctl);
238
239         __udelay(130);
240
241         /* Launch Incremental leveling */
242         writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl);
243                __udelay(130);
244 }
245
246 static void dra7_ddr3_leveling(u32 base, const struct emif_regs *regs)
247 {
248         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
249
250         u32 fifo_reg;
251
252         fifo_reg = readl(&emif->emif_ddr_fifo_misaligned_clear_1);
253         writel(fifo_reg | 0x00000100,
254                &emif->emif_ddr_fifo_misaligned_clear_1);
255
256         fifo_reg = readl(&emif->emif_ddr_fifo_misaligned_clear_2);
257         writel(fifo_reg | 0x00000100,
258                &emif->emif_ddr_fifo_misaligned_clear_2);
259
260         /* Launch Full leveling */
261         writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
262
263         /* Wait till full leveling is complete */
264         readl(&emif->emif_rd_wr_lvl_ctl);
265               __udelay(130);
266
267         /* Read data eye leveling no of samples */
268         config_data_eye_leveling_samples(base);
269
270         /*
271          * Disable leveling. This is because if leveling is kept
272          * enabled, then PHY triggers a false leveling during
273          * EMIF-idle scenario which results in wrong delay
274          * values getting updated. After this the EMIF becomes
275          * unaccessible. So disable it after the first time
276          */
277         writel(0x0, &emif->emif_rd_wr_lvl_rmp_ctl);
278 }
279
280 static void ddr3_leveling(u32 base, const struct emif_regs *regs)
281 {
282         if (is_omap54xx())
283                 omap5_ddr3_leveling(base, regs);
284         else
285                 dra7_ddr3_leveling(base, regs);
286 }
287
288 static void ddr3_init(u32 base, const struct emif_regs *regs)
289 {
290         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
291
292         /*
293          * Set SDRAM_CONFIG and PHY control registers to locked frequency
294          * and RL =7. As the default values of the Mode Registers are not
295          * defined, contents of mode Registers must be fully initialized.
296          * H/W takes care of this initialization
297          */
298         writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
299
300         /* Update timing registers */
301         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
302         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
303         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
304
305         writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
306         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
307
308         /*
309          * The same sequence should work on OMAP5432 as well. But strange that
310          * it is not working
311          */
312         if (omap_revision() == DRA752_ES1_0) {
313                 do_ext_phy_settings(base, regs);
314                 writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
315                 writel(regs->sdram_config_init, &emif->emif_sdram_config);
316         } else {
317                 writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
318                 writel(regs->sdram_config_init, &emif->emif_sdram_config);
319                 do_ext_phy_settings(base, regs);
320         }
321
322         /* enable leveling */
323         writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
324
325         ddr3_leveling(base, regs);
326 }
327
328 #ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
329 #define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
330
331 /*
332  * Organization and refresh requirements for LPDDR2 devices of different
333  * types and densities. Derived from JESD209-2 section 2.4
334  */
335 const struct lpddr2_addressing addressing_table[] = {
336         /* Banks tREFIx10     rowx32,rowx16      colx32,colx16  density */
337         {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
338         {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
339         {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
340         {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
341         {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
342         {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
343         {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
344         {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
345         {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
346         {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
347 };
348
349 static const u32 lpddr2_density_2_size_in_mbytes[] = {
350         8,                      /* 64Mb */
351         16,                     /* 128Mb */
352         32,                     /* 256Mb */
353         64,                     /* 512Mb */
354         128,                    /* 1Gb   */
355         256,                    /* 2Gb   */
356         512,                    /* 4Gb   */
357         1024,                   /* 8Gb   */
358         2048,                   /* 16Gb  */
359         4096                    /* 32Gb  */
360 };
361
362 /*
363  * Calculate the period of DDR clock from frequency value and set the
364  * denominator and numerator in global variables for easy access later
365  */
366 static void set_ddr_clk_period(u32 freq)
367 {
368         /*
369          * period = 1/freq
370          * period_in_ns = 10^9/freq
371          */
372         *T_num = 1000000000;
373         *T_den = freq;
374         cancel_out(T_num, T_den, 200);
375
376 }
377
378 /*
379  * Convert time in nano seconds to number of cycles of DDR clock
380  */
381 static inline u32 ns_2_cycles(u32 ns)
382 {
383         return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
384 }
385
386 /*
387  * ns_2_cycles with the difference that the time passed is 2 times the actual
388  * value(to avoid fractions). The cycles returned is for the original value of
389  * the timing parameter
390  */
391 static inline u32 ns_x2_2_cycles(u32 ns)
392 {
393         return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
394 }
395
396 /*
397  * Find addressing table index based on the device's type(S2 or S4) and
398  * density
399  */
400 s8 addressing_table_index(u8 type, u8 density, u8 width)
401 {
402         u8 index;
403         if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
404                 return -1;
405
406         /*
407          * Look at the way ADDR_TABLE_INDEX* values have been defined
408          * in emif.h compared to LPDDR2_DENSITY_* values
409          * The table is layed out in the increasing order of density
410          * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
411          * at the end
412          */
413         if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
414                 index = ADDR_TABLE_INDEX1GS2;
415         else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
416                 index = ADDR_TABLE_INDEX2GS2;
417         else
418                 index = density;
419
420         debug("emif: addressing table index %d\n", index);
421
422         return index;
423 }
424
425 /*
426  * Find the the right timing table from the array of timing
427  * tables of the device using DDR clock frequency
428  */
429 static const struct lpddr2_ac_timings *get_timings_table(const struct
430                         lpddr2_ac_timings const *const *device_timings,
431                         u32 freq)
432 {
433         u32 i, temp, freq_nearest;
434         const struct lpddr2_ac_timings *timings = 0;
435
436         emif_assert(freq <= MAX_LPDDR2_FREQ);
437         emif_assert(device_timings);
438
439         /*
440          * Start with the maximum allowed frequency - that is always safe
441          */
442         freq_nearest = MAX_LPDDR2_FREQ;
443         /*
444          * Find the timings table that has the max frequency value:
445          *   i.  Above or equal to the DDR frequency - safe
446          *   ii. The lowest that satisfies condition (i) - optimal
447          */
448         for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
449                 temp = device_timings[i]->max_freq;
450                 if ((temp >= freq) && (temp <= freq_nearest)) {
451                         freq_nearest = temp;
452                         timings = device_timings[i];
453                 }
454         }
455         debug("emif: timings table: %d\n", freq_nearest);
456         return timings;
457 }
458
459 /*
460  * Finds the value of emif_sdram_config_reg
461  * All parameters are programmed based on the device on CS0.
462  * If there is a device on CS1, it will be same as that on CS0 or
463  * it will be NVM. We don't support NVM yet.
464  * If cs1_device pointer is NULL it is assumed that there is no device
465  * on CS1
466  */
467 static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
468                                 const struct lpddr2_device_details *cs1_device,
469                                 const struct lpddr2_addressing *addressing,
470                                 u8 RL)
471 {
472         u32 config_reg = 0;
473
474         config_reg |=  (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
475         config_reg |=  EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
476                         EMIF_REG_IBANK_POS_SHIFT;
477
478         config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;
479
480         config_reg |= RL << EMIF_REG_CL_SHIFT;
481
482         config_reg |= addressing->row_sz[cs0_device->io_width] <<
483                         EMIF_REG_ROWSIZE_SHIFT;
484
485         config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;
486
487         config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
488                         EMIF_REG_EBANK_SHIFT;
489
490         config_reg |= addressing->col_sz[cs0_device->io_width] <<
491                         EMIF_REG_PAGESIZE_SHIFT;
492
493         return config_reg;
494 }
495
496 static u32 get_sdram_ref_ctrl(u32 freq,
497                               const struct lpddr2_addressing *addressing)
498 {
499         u32 ref_ctrl = 0, val = 0, freq_khz;
500         freq_khz = freq / 1000;
501         /*
502          * refresh rate to be set is 'tREFI * freq in MHz
503          * division by 10000 to account for khz and x10 in t_REFI_us_x10
504          */
505         val = addressing->t_REFI_us_x10 * freq_khz / 10000;
506         ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;
507
508         return ref_ctrl;
509 }
510
511 static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
512                                const struct lpddr2_min_tck *min_tck,
513                                const struct lpddr2_addressing *addressing)
514 {
515         u32 tim1 = 0, val = 0;
516         val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
517         tim1 |= val << EMIF_REG_T_WTR_SHIFT;
518
519         if (addressing->num_banks == BANKS8)
520                 val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
521                                                         (4 * (*T_num)) - 1;
522         else
523                 val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
524
525         tim1 |= val << EMIF_REG_T_RRD_SHIFT;
526
527         val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
528         tim1 |= val << EMIF_REG_T_RC_SHIFT;
529
530         val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
531         tim1 |= val << EMIF_REG_T_RAS_SHIFT;
532
533         val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
534         tim1 |= val << EMIF_REG_T_WR_SHIFT;
535
536         val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
537         tim1 |= val << EMIF_REG_T_RCD_SHIFT;
538
539         val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
540         tim1 |= val << EMIF_REG_T_RP_SHIFT;
541
542         return tim1;
543 }
544
545 static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
546                                const struct lpddr2_min_tck *min_tck)
547 {
548         u32 tim2 = 0, val = 0;
549         val = max(min_tck->tCKE, timings->tCKE) - 1;
550         tim2 |= val << EMIF_REG_T_CKE_SHIFT;
551
552         val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
553         tim2 |= val << EMIF_REG_T_RTP_SHIFT;
554
555         /*
556          * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
557          * same value
558          */
559         val = ns_2_cycles(timings->tXSR) - 1;
560         tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
561         tim2 |= val << EMIF_REG_T_XSNR_SHIFT;
562
563         val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
564         tim2 |= val << EMIF_REG_T_XP_SHIFT;
565
566         return tim2;
567 }
568
569 static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
570                                const struct lpddr2_min_tck *min_tck,
571                                const struct lpddr2_addressing *addressing)
572 {
573         u32 tim3 = 0, val = 0;
574         val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
575         tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;
576
577         val = ns_2_cycles(timings->tRFCab) - 1;
578         tim3 |= val << EMIF_REG_T_RFC_SHIFT;
579
580         val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
581         tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;
582
583         val = ns_2_cycles(timings->tZQCS) - 1;
584         tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;
585
586         val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
587         tim3 |= val << EMIF_REG_T_CKESR_SHIFT;
588
589         return tim3;
590 }
591
592 static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
593                              const struct lpddr2_addressing *addressing,
594                              u8 volt_ramp)
595 {
596         u32 zq = 0, val = 0;
597         if (volt_ramp)
598                 val =
599                     EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
600                     addressing->t_REFI_us_x10;
601         else
602                 val =
603                     EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
604                     addressing->t_REFI_us_x10;
605         zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;
606
607         zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;
608
609         zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;
610
611         zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;
612
613         /*
614          * Assuming that two chipselects have a single calibration resistor
615          * If there are indeed two calibration resistors, then this flag should
616          * be enabled to take advantage of dual calibration feature.
617          * This data should ideally come from board files. But considering
618          * that none of the boards today have calibration resistors per CS,
619          * it would be an unnecessary overhead.
620          */
621         zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;
622
623         zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;
624
625         zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;
626
627         return zq;
628 }
629
630 static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
631                                  const struct lpddr2_addressing *addressing,
632                                  u8 is_derated)
633 {
634         u32 alert = 0, interval;
635         interval =
636             TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
637         if (is_derated)
638                 interval *= 4;
639         alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;
640
641         alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;
642
643         alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;
644
645         alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;
646
647         alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;
648
649         alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;
650
651         return alert;
652 }
653
654 static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
655 {
656         u32 idle = 0, val = 0;
657         if (volt_ramp)
658                 val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
659         else
660                 /*Maximum value in normal conditions - suggested by hw team */
661                 val = 0x1FF;
662         idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;
663
664         idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;
665
666         return idle;
667 }
668
669 static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
670 {
671         u32 phy = 0, val = 0;
672
673         phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;
674
675         if (freq <= 100000000)
676                 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
677         else if (freq <= 200000000)
678                 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
679         else
680                 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
681         phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
682
683         /* Other fields are constant magic values. Hardcode them together */
684         phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
685                 EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
686
687         return phy;
688 }
689
690 static u32 get_emif_mem_size(u32 base)
691 {
692         u32 size_mbytes = 0, temp;
693         struct emif_device_details dev_details;
694         struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
695         u32 emif_nr = emif_num(base);
696
697         emif_reset_phy(base);
698         dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
699                                                 &cs0_dev_details);
700         dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
701                                                 &cs1_dev_details);
702         emif_reset_phy(base);
703
704         if (dev_details.cs0_device_details) {
705                 temp = dev_details.cs0_device_details->density;
706                 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
707         }
708
709         if (dev_details.cs1_device_details) {
710                 temp = dev_details.cs1_device_details->density;
711                 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
712         }
713         /* convert to bytes */
714         return size_mbytes << 20;
715 }
716
717 /* Gets the encoding corresponding to a given DMM section size */
718 u32 get_dmm_section_size_map(u32 section_size)
719 {
720         /*
721          * Section size mapping:
722          * 0x0: 16-MiB section
723          * 0x1: 32-MiB section
724          * 0x2: 64-MiB section
725          * 0x3: 128-MiB section
726          * 0x4: 256-MiB section
727          * 0x5: 512-MiB section
728          * 0x6: 1-GiB section
729          * 0x7: 2-GiB section
730          */
731         section_size >>= 24; /* divide by 16 MB */
732         return log_2_n_round_down(section_size);
733 }
734
735 static void emif_calculate_regs(
736                 const struct emif_device_details *emif_dev_details,
737                 u32 freq, struct emif_regs *regs)
738 {
739         u32 temp, sys_freq;
740         const struct lpddr2_addressing *addressing;
741         const struct lpddr2_ac_timings *timings;
742         const struct lpddr2_min_tck *min_tck;
743         const struct lpddr2_device_details *cs0_dev_details =
744                                         emif_dev_details->cs0_device_details;
745         const struct lpddr2_device_details *cs1_dev_details =
746                                         emif_dev_details->cs1_device_details;
747         const struct lpddr2_device_timings *cs0_dev_timings =
748                                         emif_dev_details->cs0_device_timings;
749
750         emif_assert(emif_dev_details);
751         emif_assert(regs);
752         /*
753          * You can not have a device on CS1 without one on CS0
754          * So configuring EMIF without a device on CS0 doesn't
755          * make sense
756          */
757         emif_assert(cs0_dev_details);
758         emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
759         /*
760          * If there is a device on CS1 it should be same type as CS0
761          * (or NVM. But NVM is not supported in this driver yet)
762          */
763         emif_assert((cs1_dev_details == NULL) ||
764                     (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
765                     (cs0_dev_details->type == cs1_dev_details->type));
766         emif_assert(freq <= MAX_LPDDR2_FREQ);
767
768         set_ddr_clk_period(freq);
769
770         /*
771          * The device on CS0 is used for all timing calculations
772          * There is only one set of registers for timings per EMIF. So, if the
773          * second CS(CS1) has a device, it should have the same timings as the
774          * device on CS0
775          */
776         timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
777         emif_assert(timings);
778         min_tck = cs0_dev_timings->min_tck;
779
780         temp = addressing_table_index(cs0_dev_details->type,
781                                       cs0_dev_details->density,
782                                       cs0_dev_details->io_width);
783
784         emif_assert((temp >= 0));
785         addressing = &(addressing_table[temp]);
786         emif_assert(addressing);
787
788         sys_freq = get_sys_clk_freq();
789
790         regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
791                                                         cs1_dev_details,
792                                                         addressing, RL_BOOT);
793
794         regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
795                                                 cs1_dev_details,
796                                                 addressing, RL_FINAL);
797
798         regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
799
800         regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
801
802         regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
803
804         regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
805
806         regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
807
808         regs->temp_alert_config =
809             get_temp_alert_config(cs1_dev_details, addressing, 0);
810
811         regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
812                                             LPDDR2_VOLTAGE_STABLE);
813
814         regs->emif_ddr_phy_ctlr_1_init =
815                         get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
816
817         regs->emif_ddr_phy_ctlr_1 =
818                         get_ddr_phy_ctrl_1(freq, RL_FINAL);
819
820         regs->freq = freq;
821
822         print_timing_reg(regs->sdram_config_init);
823         print_timing_reg(regs->sdram_config);
824         print_timing_reg(regs->ref_ctrl);
825         print_timing_reg(regs->sdram_tim1);
826         print_timing_reg(regs->sdram_tim2);
827         print_timing_reg(regs->sdram_tim3);
828         print_timing_reg(regs->read_idle_ctrl);
829         print_timing_reg(regs->temp_alert_config);
830         print_timing_reg(regs->zq_config);
831         print_timing_reg(regs->emif_ddr_phy_ctlr_1);
832         print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
833 }
834 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
835
836 #ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
837 const char *get_lpddr2_type(u8 type_id)
838 {
839         switch (type_id) {
840         case LPDDR2_TYPE_S4:
841                 return "LPDDR2-S4";
842         case LPDDR2_TYPE_S2:
843                 return "LPDDR2-S2";
844         default:
845                 return NULL;
846         }
847 }
848
849 const char *get_lpddr2_io_width(u8 width_id)
850 {
851         switch (width_id) {
852         case LPDDR2_IO_WIDTH_8:
853                 return "x8";
854         case LPDDR2_IO_WIDTH_16:
855                 return "x16";
856         case LPDDR2_IO_WIDTH_32:
857                 return "x32";
858         default:
859                 return NULL;
860         }
861 }
862
863 const char *get_lpddr2_manufacturer(u32 manufacturer)
864 {
865         switch (manufacturer) {
866         case LPDDR2_MANUFACTURER_SAMSUNG:
867                 return "Samsung";
868         case LPDDR2_MANUFACTURER_QIMONDA:
869                 return "Qimonda";
870         case LPDDR2_MANUFACTURER_ELPIDA:
871                 return "Elpida";
872         case LPDDR2_MANUFACTURER_ETRON:
873                 return "Etron";
874         case LPDDR2_MANUFACTURER_NANYA:
875                 return "Nanya";
876         case LPDDR2_MANUFACTURER_HYNIX:
877                 return "Hynix";
878         case LPDDR2_MANUFACTURER_MOSEL:
879                 return "Mosel";
880         case LPDDR2_MANUFACTURER_WINBOND:
881                 return "Winbond";
882         case LPDDR2_MANUFACTURER_ESMT:
883                 return "ESMT";
884         case LPDDR2_MANUFACTURER_SPANSION:
885                 return "Spansion";
886         case LPDDR2_MANUFACTURER_SST:
887                 return "SST";
888         case LPDDR2_MANUFACTURER_ZMOS:
889                 return "ZMOS";
890         case LPDDR2_MANUFACTURER_INTEL:
891                 return "Intel";
892         case LPDDR2_MANUFACTURER_NUMONYX:
893                 return "Numonyx";
894         case LPDDR2_MANUFACTURER_MICRON:
895                 return "Micron";
896         default:
897                 return NULL;
898         }
899 }
900
901 static void display_sdram_details(u32 emif_nr, u32 cs,
902                                   struct lpddr2_device_details *device)
903 {
904         const char *mfg_str;
905         const char *type_str;
906         char density_str[10];
907         u32 density;
908
909         debug("EMIF%d CS%d\t", emif_nr, cs);
910
911         if (!device) {
912                 debug("None\n");
913                 return;
914         }
915
916         mfg_str = get_lpddr2_manufacturer(device->manufacturer);
917         type_str = get_lpddr2_type(device->type);
918
919         density = lpddr2_density_2_size_in_mbytes[device->density];
920         if ((density / 1024 * 1024) == density) {
921                 density /= 1024;
922                 sprintf(density_str, "%d GB", density);
923         } else
924                 sprintf(density_str, "%d MB", density);
925         if (mfg_str && type_str)
926                 debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
927 }
928
929 static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
930                                   struct lpddr2_device_details *lpddr2_device)
931 {
932         u32 mr = 0, temp;
933
934         mr = get_mr(base, cs, LPDDR2_MR0);
935         if (mr > 0xFF) {
936                 /* Mode register value bigger than 8 bit */
937                 return 0;
938         }
939
940         temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
941         if (temp) {
942                 /* Not SDRAM */
943                 return 0;
944         }
945         temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
946
947         if (temp) {
948                 /* DNV supported - But DNV is only supported for NVM */
949                 return 0;
950         }
951
952         mr = get_mr(base, cs, LPDDR2_MR4);
953         if (mr > 0xFF) {
954                 /* Mode register value bigger than 8 bit */
955                 return 0;
956         }
957
958         mr = get_mr(base, cs, LPDDR2_MR5);
959         if (mr > 0xFF) {
960                 /* Mode register value bigger than 8 bit */
961                 return 0;
962         }
963
964         if (!get_lpddr2_manufacturer(mr)) {
965                 /* Manufacturer not identified */
966                 return 0;
967         }
968         lpddr2_device->manufacturer = mr;
969
970         mr = get_mr(base, cs, LPDDR2_MR6);
971         if (mr >= 0xFF) {
972                 /* Mode register value bigger than 8 bit */
973                 return 0;
974         }
975
976         mr = get_mr(base, cs, LPDDR2_MR7);
977         if (mr >= 0xFF) {
978                 /* Mode register value bigger than 8 bit */
979                 return 0;
980         }
981
982         mr = get_mr(base, cs, LPDDR2_MR8);
983         if (mr >= 0xFF) {
984                 /* Mode register value bigger than 8 bit */
985                 return 0;
986         }
987
988         temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
989         if (!get_lpddr2_type(temp)) {
990                 /* Not SDRAM */
991                 return 0;
992         }
993         lpddr2_device->type = temp;
994
995         temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
996         if (temp > LPDDR2_DENSITY_32Gb) {
997                 /* Density not supported */
998                 return 0;
999         }
1000         lpddr2_device->density = temp;
1001
1002         temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
1003         if (!get_lpddr2_io_width(temp)) {
1004                 /* IO width unsupported value */
1005                 return 0;
1006         }
1007         lpddr2_device->io_width = temp;
1008
1009         /*
1010          * If all the above tests pass we should
1011          * have a device on this chip-select
1012          */
1013         return 1;
1014 }
1015
1016 struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
1017                         struct lpddr2_device_details *lpddr2_dev_details)
1018 {
1019         u32 phy;
1020         u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE;
1021
1022         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1023
1024         if (!lpddr2_dev_details)
1025                 return NULL;
1026
1027         /* Do the minimum init for mode register accesses */
1028         if (!(running_from_sdram() || warm_reset())) {
1029                 phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
1030                 writel(phy, &emif->emif_ddr_phy_ctrl_1);
1031         }
1032
1033         if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
1034                 return NULL;
1035
1036         display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
1037
1038         return lpddr2_dev_details;
1039 }
1040 #endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */
1041
1042 static void do_sdram_init(u32 base)
1043 {
1044         const struct emif_regs *regs;
1045         u32 in_sdram, emif_nr;
1046
1047         debug(">>do_sdram_init() %x\n", base);
1048
1049         in_sdram = running_from_sdram();
1050         emif_nr = (base == EMIF1_BASE) ? 1 : 2;
1051
1052 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1053         emif_get_reg_dump(emif_nr, &regs);
1054         if (!regs) {
1055                 debug("EMIF: reg dump not provided\n");
1056                 return;
1057         }
1058 #else
1059         /*
1060          * The user has not provided the register values. We need to
1061          * calculate it based on the timings and the DDR frequency
1062          */
1063         struct emif_device_details dev_details;
1064         struct emif_regs calculated_regs;
1065
1066         /*
1067          * Get device details:
1068          * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
1069          * - Obtained from user otherwise
1070          */
1071         struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
1072         emif_reset_phy(base);
1073         dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
1074                                                 &cs0_dev_details);
1075         dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
1076                                                 &cs1_dev_details);
1077         emif_reset_phy(base);
1078
1079         /* Return if no devices on this EMIF */
1080         if (!dev_details.cs0_device_details &&
1081             !dev_details.cs1_device_details) {
1082                 return;
1083         }
1084
1085         /*
1086          * Get device timings:
1087          * - Default timings specified by JESD209-2 if
1088          *   CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
1089          * - Obtained from user otherwise
1090          */
1091         emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
1092                                 &dev_details.cs1_device_timings);
1093
1094         /* Calculate the register values */
1095         emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs);
1096         regs = &calculated_regs;
1097 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
1098
1099         /*
1100          * Initializing the LPDDR2 device can not happen from SDRAM.
1101          * Changing the timing registers in EMIF can happen(going from one
1102          * OPP to another)
1103          */
1104         if (!(in_sdram || warm_reset())) {
1105                 if (emif_sdram_type() == EMIF_SDRAM_TYPE_LPDDR2)
1106                         lpddr2_init(base, regs);
1107                 else
1108                         ddr3_init(base, regs);
1109         }
1110         if (warm_reset() && (emif_sdram_type() == EMIF_SDRAM_TYPE_DDR3)) {
1111                 set_lpmode_selfrefresh(base);
1112                 emif_reset_phy(base);
1113                 ddr3_leveling(base, regs);
1114         }
1115
1116         /* Write to the shadow registers */
1117         emif_update_timings(base, regs);
1118
1119         debug("<<do_sdram_init() %x\n", base);
1120 }
1121
1122 void emif_post_init_config(u32 base)
1123 {
1124         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1125         u32 omap_rev = omap_revision();
1126
1127         /* reset phy on ES2.0 */
1128         if (omap_rev == OMAP4430_ES2_0)
1129                 emif_reset_phy(base);
1130
1131         /* Put EMIF back in smart idle on ES1.0 */
1132         if (omap_rev == OMAP4430_ES1_0)
1133                 writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
1134 }
1135
1136 void dmm_init(u32 base)
1137 {
1138         const struct dmm_lisa_map_regs *lisa_map_regs;
1139         u32 i, section, valid;
1140
1141 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1142         emif_get_dmm_regs(&lisa_map_regs);
1143 #else
1144         u32 emif1_size, emif2_size, mapped_size, section_map = 0;
1145         u32 section_cnt, sys_addr;
1146         struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
1147
1148         mapped_size = 0;
1149         section_cnt = 3;
1150         sys_addr = CONFIG_SYS_SDRAM_BASE;
1151         emif1_size = get_emif_mem_size(EMIF1_BASE);
1152         emif2_size = get_emif_mem_size(EMIF2_BASE);
1153         debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
1154
1155         if (!emif1_size && !emif2_size)
1156                 return;
1157
1158         /* symmetric interleaved section */
1159         if (emif1_size && emif2_size) {
1160                 mapped_size = min(emif1_size, emif2_size);
1161                 section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
1162                 section_map |= 0 << EMIF_SDRC_ADDR_SHIFT;
1163                 /* only MSB */
1164                 section_map |= (sys_addr >> 24) <<
1165                                 EMIF_SYS_ADDR_SHIFT;
1166                 section_map |= get_dmm_section_size_map(mapped_size * 2)
1167                                 << EMIF_SYS_SIZE_SHIFT;
1168                 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1169                 emif1_size -= mapped_size;
1170                 emif2_size -= mapped_size;
1171                 sys_addr += (mapped_size * 2);
1172                 section_cnt--;
1173         }
1174
1175         /*
1176          * Single EMIF section(we can have a maximum of 1 single EMIF
1177          * section- either EMIF1 or EMIF2 or none, but not both)
1178          */
1179         if (emif1_size) {
1180                 section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
1181                 section_map |= get_dmm_section_size_map(emif1_size)
1182                                 << EMIF_SYS_SIZE_SHIFT;
1183                 /* only MSB */
1184                 section_map |= (mapped_size >> 24) <<
1185                                 EMIF_SDRC_ADDR_SHIFT;
1186                 /* only MSB */
1187                 section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT;
1188                 section_cnt--;
1189         }
1190         if (emif2_size) {
1191                 section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
1192                 section_map |= get_dmm_section_size_map(emif2_size) <<
1193                                 EMIF_SYS_SIZE_SHIFT;
1194                 /* only MSB */
1195                 section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT;
1196                 /* only MSB */
1197                 section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT;
1198                 section_cnt--;
1199         }
1200
1201         if (section_cnt == 2) {
1202                 /* Only 1 section - either symmetric or single EMIF */
1203                 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1204                 lis_map_regs_calculated.dmm_lisa_map_2 = 0;
1205                 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1206         } else {
1207                 /* 2 sections - 1 symmetric, 1 single EMIF */
1208                 lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
1209                 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1210         }
1211
1212         /* TRAP for invalid TILER mappings in section 0 */
1213         lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
1214
1215         if (omap_revision() >= OMAP4460_ES1_0)
1216                 lis_map_regs_calculated.is_ma_present = 1;
1217
1218         lisa_map_regs = &lis_map_regs_calculated;
1219 #endif
1220         struct dmm_lisa_map_regs *hw_lisa_map_regs =
1221             (struct dmm_lisa_map_regs *)base;
1222
1223         writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
1224         writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
1225         writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
1226         writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
1227
1228         writel(lisa_map_regs->dmm_lisa_map_3,
1229                 &hw_lisa_map_regs->dmm_lisa_map_3);
1230         writel(lisa_map_regs->dmm_lisa_map_2,
1231                 &hw_lisa_map_regs->dmm_lisa_map_2);
1232         writel(lisa_map_regs->dmm_lisa_map_1,
1233                 &hw_lisa_map_regs->dmm_lisa_map_1);
1234         writel(lisa_map_regs->dmm_lisa_map_0,
1235                 &hw_lisa_map_regs->dmm_lisa_map_0);
1236
1237         if (lisa_map_regs->is_ma_present) {
1238                 hw_lisa_map_regs =
1239                     (struct dmm_lisa_map_regs *)MA_BASE;
1240
1241                 writel(lisa_map_regs->dmm_lisa_map_3,
1242                         &hw_lisa_map_regs->dmm_lisa_map_3);
1243                 writel(lisa_map_regs->dmm_lisa_map_2,
1244                         &hw_lisa_map_regs->dmm_lisa_map_2);
1245                 writel(lisa_map_regs->dmm_lisa_map_1,
1246                         &hw_lisa_map_regs->dmm_lisa_map_1);
1247                 writel(lisa_map_regs->dmm_lisa_map_0,
1248                         &hw_lisa_map_regs->dmm_lisa_map_0);
1249         }
1250
1251         /*
1252          * EMIF should be configured only when
1253          * memory is mapped on it. Using emif1_enabled
1254          * and emif2_enabled variables for this.
1255          */
1256         emif1_enabled = 0;
1257         emif2_enabled = 0;
1258         for (i = 0; i < 4; i++) {
1259                 section = __raw_readl(DMM_BASE + i*4);
1260                 valid = (section & EMIF_SDRC_MAP_MASK) >>
1261                         (EMIF_SDRC_MAP_SHIFT);
1262                 if (valid == 3) {
1263                         emif1_enabled = 1;
1264                         emif2_enabled = 1;
1265                         break;
1266                 } else if (valid == 1) {
1267                         emif1_enabled = 1;
1268                 } else if (valid == 2) {
1269                         emif2_enabled = 1;
1270                 }
1271         }
1272
1273 }
1274
1275 static void do_bug0039_workaround(u32 base)
1276 {
1277         u32 val, i, clkctrl;
1278         struct emif_reg_struct *emif_base = (struct emif_reg_struct *)base;
1279         const struct read_write_regs *bug_00339_regs;
1280         u32 iterations;
1281         u32 *phy_status_base = &emif_base->emif_ddr_phy_status[0];
1282         u32 *phy_ctrl_base = &emif_base->emif_ddr_ext_phy_ctrl_1;
1283
1284         if (is_dra7xx())
1285                 phy_status_base++;
1286
1287         bug_00339_regs = get_bug_regs(&iterations);
1288
1289         /* Put EMIF in to idle */
1290         clkctrl = __raw_readl((*prcm)->cm_memif_clkstctrl);
1291         __raw_writel(0x0, (*prcm)->cm_memif_clkstctrl);
1292
1293         /* Copy the phy status registers in to phy ctrl shadow registers */
1294         for (i = 0; i < iterations; i++) {
1295                 val = __raw_readl(phy_status_base +
1296                                   bug_00339_regs[i].read_reg - 1);
1297
1298                 __raw_writel(val, phy_ctrl_base +
1299                              ((bug_00339_regs[i].write_reg - 1) << 1));
1300
1301                 __raw_writel(val, phy_ctrl_base +
1302                              (bug_00339_regs[i].write_reg << 1) - 1);
1303         }
1304
1305         /* Disable leveling */
1306         writel(0x0, &emif_base->emif_rd_wr_lvl_rmp_ctl);
1307
1308         __raw_writel(clkctrl,  (*prcm)->cm_memif_clkstctrl);
1309 }
1310
1311 /*
1312  * SDRAM initialization:
1313  * SDRAM initialization has two parts:
1314  * 1. Configuring the SDRAM device
1315  * 2. Update the AC timings related parameters in the EMIF module
1316  * (1) should be done only once and should not be done while we are
1317  * running from SDRAM.
1318  * (2) can and should be done more than once if OPP changes.
1319  * Particularly, this may be needed when we boot without SPL and
1320  * and using Configuration Header(CH). ROM code supports only at 50% OPP
1321  * at boot (low power boot). So u-boot has to switch to OPP100 and update
1322  * the frequency. So,
1323  * Doing (1) and (2) makes sense - first time initialization
1324  * Doing (2) and not (1) makes sense - OPP change (when using CH)
1325  * Doing (1) and not (2) doen't make sense
1326  * See do_sdram_init() for the details
1327  */
1328 void sdram_init(void)
1329 {
1330         u32 in_sdram, size_prog, size_detect;
1331         u32 sdram_type = emif_sdram_type();
1332
1333         debug(">>sdram_init()\n");
1334
1335         if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
1336                 return;
1337
1338         in_sdram = running_from_sdram();
1339         debug("in_sdram = %d\n", in_sdram);
1340
1341         if (!in_sdram) {
1342                 if ((sdram_type == EMIF_SDRAM_TYPE_LPDDR2) && !warm_reset())
1343                         bypass_dpll((*prcm)->cm_clkmode_dpll_core);
1344                 else if (sdram_type == EMIF_SDRAM_TYPE_DDR3)
1345                         writel(CM_DLL_CTRL_NO_OVERRIDE, (*prcm)->cm_dll_ctrl);
1346         }
1347
1348         if (!in_sdram)
1349                 dmm_init(DMM_BASE);
1350
1351         if (emif1_enabled)
1352                 do_sdram_init(EMIF1_BASE);
1353
1354         if (emif2_enabled)
1355                 do_sdram_init(EMIF2_BASE);
1356
1357         if (!(in_sdram || warm_reset())) {
1358                 if (emif1_enabled)
1359                         emif_post_init_config(EMIF1_BASE);
1360                 if (emif2_enabled)
1361                         emif_post_init_config(EMIF2_BASE);
1362         }
1363
1364         /* for the shadow registers to take effect */
1365         if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2)
1366                 freq_update_core();
1367
1368         /* Do some testing after the init */
1369         if (!in_sdram) {
1370                 size_prog = omap_sdram_size();
1371                 size_prog = log_2_n_round_down(size_prog);
1372                 size_prog = (1 << size_prog);
1373
1374                 size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
1375                                                 size_prog);
1376                 /* Compare with the size programmed */
1377                 if (size_detect != size_prog) {
1378                         printf("SDRAM: identified size not same as expected"
1379                                 " size identified: %x expected: %x\n",
1380                                 size_detect,
1381                                 size_prog);
1382                 } else
1383                         debug("get_ram_size() successful");
1384         }
1385
1386         if (sdram_type == EMIF_SDRAM_TYPE_DDR3 &&
1387             (!in_sdram && !warm_reset())) {
1388                 do_bug0039_workaround(EMIF1_BASE);
1389                 do_bug0039_workaround(EMIF2_BASE);
1390         }
1391
1392         debug("<<sdram_init()\n");
1393 }