]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - arch/arm/cpu/armv7/omap-common/emif-common.c
Merge branch 'u-boot-imx/master' into 'u-boot-arm/master'
[karo-tx-uboot.git] / arch / arm / cpu / armv7 / omap-common / emif-common.c
1 /*
2  * EMIF programming
3  *
4  * (C) Copyright 2010
5  * Texas Instruments, <www.ti.com>
6  *
7  * Aneesh V <aneesh@ti.com>
8  *
9  * See file CREDITS for list of people who contributed to this
10  * project.
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of
15  * the License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
25  * MA 02111-1307 USA
26  */
27
28 #include <common.h>
29 #include <asm/emif.h>
30 #include <asm/arch/clocks.h>
31 #include <asm/arch/sys_proto.h>
32 #include <asm/omap_common.h>
33 #include <asm/utils.h>
34 #include <linux/compiler.h>
35
36 static int emif1_enabled = -1, emif2_enabled = -1;
37
38 void set_lpmode_selfrefresh(u32 base)
39 {
40         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
41         u32 reg;
42
43         reg = readl(&emif->emif_pwr_mgmt_ctrl);
44         reg &= ~EMIF_REG_LP_MODE_MASK;
45         reg |= LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT;
46         reg &= ~EMIF_REG_SR_TIM_MASK;
47         writel(reg, &emif->emif_pwr_mgmt_ctrl);
48
49         /* dummy read for the new SR_TIM to be loaded */
50         readl(&emif->emif_pwr_mgmt_ctrl);
51 }
52
53 void force_emif_self_refresh()
54 {
55         set_lpmode_selfrefresh(EMIF1_BASE);
56         set_lpmode_selfrefresh(EMIF2_BASE);
57 }
58
59 inline u32 emif_num(u32 base)
60 {
61         if (base == EMIF1_BASE)
62                 return 1;
63         else if (base == EMIF2_BASE)
64                 return 2;
65         else
66                 return 0;
67 }
68
69 /*
70  * Get SDRAM type connected to EMIF.
71  * Assuming similar SDRAM parts are connected to both EMIF's
72  * which is typically the case. So it is sufficient to get
73  * SDRAM type from EMIF1.
74  */
75 u32 emif_sdram_type()
76 {
77         struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
78
79         return (readl(&emif->emif_sdram_config) &
80                 EMIF_REG_SDRAM_TYPE_MASK) >> EMIF_REG_SDRAM_TYPE_SHIFT;
81 }
82
83 static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
84 {
85         u32 mr;
86         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
87
88         mr_addr |= cs << EMIF_REG_CS_SHIFT;
89         writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
90         if (omap_revision() == OMAP4430_ES2_0)
91                 mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
92         else
93                 mr = readl(&emif->emif_lpddr2_mode_reg_data);
94         debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
95               cs, mr_addr, mr);
96         if (((mr & 0x0000ff00) >>  8) == (mr & 0xff) &&
97             ((mr & 0x00ff0000) >> 16) == (mr & 0xff) &&
98             ((mr & 0xff000000) >> 24) == (mr & 0xff))
99                 return mr & 0xff;
100         else
101                 return mr;
102 }
103
104 static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
105 {
106         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
107
108         mr_addr |= cs << EMIF_REG_CS_SHIFT;
109         writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
110         writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
111 }
112
113 void emif_reset_phy(u32 base)
114 {
115         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
116         u32 iodft;
117
118         iodft = readl(&emif->emif_iodft_tlgc);
119         iodft |= EMIF_REG_RESET_PHY_MASK;
120         writel(iodft, &emif->emif_iodft_tlgc);
121 }
122
123 static void do_lpddr2_init(u32 base, u32 cs)
124 {
125         u32 mr_addr;
126         const struct lpddr2_mr_regs *mr_regs;
127
128         get_lpddr2_mr_regs(&mr_regs);
129         /* Wait till device auto initialization is complete */
130         while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
131                 ;
132         set_mr(base, cs, LPDDR2_MR10, mr_regs->mr10);
133         /*
134          * tZQINIT = 1 us
135          * Enough loops assuming a maximum of 2GHz
136          */
137
138         sdelay(2000);
139
140         set_mr(base, cs, LPDDR2_MR1, mr_regs->mr1);
141         set_mr(base, cs, LPDDR2_MR16, mr_regs->mr16);
142
143         /*
144          * Enable refresh along with writing MR2
145          * Encoding of RL in MR2 is (RL - 2)
146          */
147         mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
148         set_mr(base, cs, mr_addr, mr_regs->mr2);
149
150         if (mr_regs->mr3 > 0)
151                 set_mr(base, cs, LPDDR2_MR3, mr_regs->mr3);
152 }
153
154 static void lpddr2_init(u32 base, const struct emif_regs *regs)
155 {
156         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
157
158         /* Not NVM */
159         clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);
160
161         /*
162          * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
163          * when EMIF_SDRAM_CONFIG register is written
164          */
165         setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
166
167         /*
168          * Set the SDRAM_CONFIG and PHY_CTRL for the
169          * un-locked frequency & default RL
170          */
171         writel(regs->sdram_config_init, &emif->emif_sdram_config);
172         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
173
174         do_ext_phy_settings(base, regs);
175
176         do_lpddr2_init(base, CS0);
177         if (regs->sdram_config & EMIF_REG_EBANK_MASK)
178                 do_lpddr2_init(base, CS1);
179
180         writel(regs->sdram_config, &emif->emif_sdram_config);
181         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
182
183         /* Enable refresh now */
184         clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
185
186         }
187
188 __weak void do_ext_phy_settings(u32 base, const struct emif_regs *regs)
189 {
190 }
191
192 void emif_update_timings(u32 base, const struct emif_regs *regs)
193 {
194         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
195
196         writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
197         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
198         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
199         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
200         if (omap_revision() == OMAP4430_ES1_0) {
201                 /* ES1 bug EMIF should be in force idle during freq_update */
202                 writel(0, &emif->emif_pwr_mgmt_ctrl);
203         } else {
204                 writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
205                 writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
206         }
207         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
208         writel(regs->zq_config, &emif->emif_zq_config);
209         writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
210         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
211
212         if (omap_revision() >= OMAP5430_ES1_0) {
213                 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
214                         &emif->emif_l3_config);
215         } else if (omap_revision() >= OMAP4460_ES1_0) {
216                 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
217                         &emif->emif_l3_config);
218         } else {
219                 writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
220                         &emif->emif_l3_config);
221         }
222 }
223
224 static void ddr3_leveling(u32 base, const struct emif_regs *regs)
225 {
226         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
227
228         /* keep sdram in self-refresh */
229         writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT)
230                 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
231         __udelay(130);
232
233         /*
234          * Set invert_clkout (if activated)--DDR_PHYCTRL_1
235          * Invert clock adds an additional half cycle delay on the command
236          * interface.  The additional half cycle, is usually meant to enable
237          * leveling in the situation that DQS is later than CK on the board.It
238          * also helps provide some additional margin for leveling.
239          */
240         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
241         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
242         __udelay(130);
243
244         writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT)
245                 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
246
247         /* Launch Full leveling */
248         writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
249
250         /* Wait till full leveling is complete */
251         readl(&emif->emif_rd_wr_lvl_ctl);
252         __udelay(130);
253
254         /* Read data eye leveling no of samples */
255         config_data_eye_leveling_samples(base);
256
257         /* Launch 8 incremental WR_LVL- to compensate for PHY limitation */
258         writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT, &emif->emif_rd_wr_lvl_ctl);
259         __udelay(130);
260
261         /* Launch Incremental leveling */
262         writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl);
263         __udelay(130);
264 }
265
266 static void ddr3_init(u32 base, const struct emif_regs *regs)
267 {
268         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
269
270         /*
271          * Set SDRAM_CONFIG and PHY control registers to locked frequency
272          * and RL =7. As the default values of the Mode Registers are not
273          * defined, contents of mode Registers must be fully initialized.
274          * H/W takes care of this initialization
275          */
276         writel(regs->sdram_config_init, &emif->emif_sdram_config);
277
278         writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
279
280         /* Update timing registers */
281         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
282         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
283         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
284
285         writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
286         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
287
288         do_ext_phy_settings(base, regs);
289
290         /* enable leveling */
291         writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
292
293         ddr3_leveling(base, regs);
294 }
295
296 #ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
297 #define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
298
299 /*
300  * Organization and refresh requirements for LPDDR2 devices of different
301  * types and densities. Derived from JESD209-2 section 2.4
302  */
303 const struct lpddr2_addressing addressing_table[] = {
304         /* Banks tREFIx10     rowx32,rowx16      colx32,colx16  density */
305         {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
306         {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
307         {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
308         {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
309         {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
310         {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
311         {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
312         {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
313         {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
314         {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
315 };
316
317 static const u32 lpddr2_density_2_size_in_mbytes[] = {
318         8,                      /* 64Mb */
319         16,                     /* 128Mb */
320         32,                     /* 256Mb */
321         64,                     /* 512Mb */
322         128,                    /* 1Gb   */
323         256,                    /* 2Gb   */
324         512,                    /* 4Gb   */
325         1024,                   /* 8Gb   */
326         2048,                   /* 16Gb  */
327         4096                    /* 32Gb  */
328 };
329
330 /*
331  * Calculate the period of DDR clock from frequency value and set the
332  * denominator and numerator in global variables for easy access later
333  */
334 static void set_ddr_clk_period(u32 freq)
335 {
336         /*
337          * period = 1/freq
338          * period_in_ns = 10^9/freq
339          */
340         *T_num = 1000000000;
341         *T_den = freq;
342         cancel_out(T_num, T_den, 200);
343
344 }
345
346 /*
347  * Convert time in nano seconds to number of cycles of DDR clock
348  */
349 static inline u32 ns_2_cycles(u32 ns)
350 {
351         return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
352 }
353
354 /*
355  * ns_2_cycles with the difference that the time passed is 2 times the actual
356  * value(to avoid fractions). The cycles returned is for the original value of
357  * the timing parameter
358  */
359 static inline u32 ns_x2_2_cycles(u32 ns)
360 {
361         return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
362 }
363
364 /*
365  * Find addressing table index based on the device's type(S2 or S4) and
366  * density
367  */
368 s8 addressing_table_index(u8 type, u8 density, u8 width)
369 {
370         u8 index;
371         if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
372                 return -1;
373
374         /*
375          * Look at the way ADDR_TABLE_INDEX* values have been defined
376          * in emif.h compared to LPDDR2_DENSITY_* values
377          * The table is layed out in the increasing order of density
378          * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
379          * at the end
380          */
381         if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
382                 index = ADDR_TABLE_INDEX1GS2;
383         else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
384                 index = ADDR_TABLE_INDEX2GS2;
385         else
386                 index = density;
387
388         debug("emif: addressing table index %d\n", index);
389
390         return index;
391 }
392
393 /*
394  * Find the the right timing table from the array of timing
395  * tables of the device using DDR clock frequency
396  */
397 static const struct lpddr2_ac_timings *get_timings_table(const struct
398                         lpddr2_ac_timings const *const *device_timings,
399                         u32 freq)
400 {
401         u32 i, temp, freq_nearest;
402         const struct lpddr2_ac_timings *timings = 0;
403
404         emif_assert(freq <= MAX_LPDDR2_FREQ);
405         emif_assert(device_timings);
406
407         /*
408          * Start with the maximum allowed frequency - that is always safe
409          */
410         freq_nearest = MAX_LPDDR2_FREQ;
411         /*
412          * Find the timings table that has the max frequency value:
413          *   i.  Above or equal to the DDR frequency - safe
414          *   ii. The lowest that satisfies condition (i) - optimal
415          */
416         for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
417                 temp = device_timings[i]->max_freq;
418                 if ((temp >= freq) && (temp <= freq_nearest)) {
419                         freq_nearest = temp;
420                         timings = device_timings[i];
421                 }
422         }
423         debug("emif: timings table: %d\n", freq_nearest);
424         return timings;
425 }
426
427 /*
428  * Finds the value of emif_sdram_config_reg
429  * All parameters are programmed based on the device on CS0.
430  * If there is a device on CS1, it will be same as that on CS0 or
431  * it will be NVM. We don't support NVM yet.
432  * If cs1_device pointer is NULL it is assumed that there is no device
433  * on CS1
434  */
435 static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
436                                 const struct lpddr2_device_details *cs1_device,
437                                 const struct lpddr2_addressing *addressing,
438                                 u8 RL)
439 {
440         u32 config_reg = 0;
441
442         config_reg |=  (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
443         config_reg |=  EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
444                         EMIF_REG_IBANK_POS_SHIFT;
445
446         config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;
447
448         config_reg |= RL << EMIF_REG_CL_SHIFT;
449
450         config_reg |= addressing->row_sz[cs0_device->io_width] <<
451                         EMIF_REG_ROWSIZE_SHIFT;
452
453         config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;
454
455         config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
456                         EMIF_REG_EBANK_SHIFT;
457
458         config_reg |= addressing->col_sz[cs0_device->io_width] <<
459                         EMIF_REG_PAGESIZE_SHIFT;
460
461         return config_reg;
462 }
463
464 static u32 get_sdram_ref_ctrl(u32 freq,
465                               const struct lpddr2_addressing *addressing)
466 {
467         u32 ref_ctrl = 0, val = 0, freq_khz;
468         freq_khz = freq / 1000;
469         /*
470          * refresh rate to be set is 'tREFI * freq in MHz
471          * division by 10000 to account for khz and x10 in t_REFI_us_x10
472          */
473         val = addressing->t_REFI_us_x10 * freq_khz / 10000;
474         ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;
475
476         return ref_ctrl;
477 }
478
479 static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
480                                const struct lpddr2_min_tck *min_tck,
481                                const struct lpddr2_addressing *addressing)
482 {
483         u32 tim1 = 0, val = 0;
484         val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
485         tim1 |= val << EMIF_REG_T_WTR_SHIFT;
486
487         if (addressing->num_banks == BANKS8)
488                 val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
489                                                         (4 * (*T_num)) - 1;
490         else
491                 val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
492
493         tim1 |= val << EMIF_REG_T_RRD_SHIFT;
494
495         val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
496         tim1 |= val << EMIF_REG_T_RC_SHIFT;
497
498         val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
499         tim1 |= val << EMIF_REG_T_RAS_SHIFT;
500
501         val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
502         tim1 |= val << EMIF_REG_T_WR_SHIFT;
503
504         val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
505         tim1 |= val << EMIF_REG_T_RCD_SHIFT;
506
507         val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
508         tim1 |= val << EMIF_REG_T_RP_SHIFT;
509
510         return tim1;
511 }
512
513 static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
514                                const struct lpddr2_min_tck *min_tck)
515 {
516         u32 tim2 = 0, val = 0;
517         val = max(min_tck->tCKE, timings->tCKE) - 1;
518         tim2 |= val << EMIF_REG_T_CKE_SHIFT;
519
520         val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
521         tim2 |= val << EMIF_REG_T_RTP_SHIFT;
522
523         /*
524          * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
525          * same value
526          */
527         val = ns_2_cycles(timings->tXSR) - 1;
528         tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
529         tim2 |= val << EMIF_REG_T_XSNR_SHIFT;
530
531         val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
532         tim2 |= val << EMIF_REG_T_XP_SHIFT;
533
534         return tim2;
535 }
536
537 static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
538                                const struct lpddr2_min_tck *min_tck,
539                                const struct lpddr2_addressing *addressing)
540 {
541         u32 tim3 = 0, val = 0;
542         val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
543         tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;
544
545         val = ns_2_cycles(timings->tRFCab) - 1;
546         tim3 |= val << EMIF_REG_T_RFC_SHIFT;
547
548         val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
549         tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;
550
551         val = ns_2_cycles(timings->tZQCS) - 1;
552         tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;
553
554         val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
555         tim3 |= val << EMIF_REG_T_CKESR_SHIFT;
556
557         return tim3;
558 }
559
560 static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
561                              const struct lpddr2_addressing *addressing,
562                              u8 volt_ramp)
563 {
564         u32 zq = 0, val = 0;
565         if (volt_ramp)
566                 val =
567                     EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
568                     addressing->t_REFI_us_x10;
569         else
570                 val =
571                     EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
572                     addressing->t_REFI_us_x10;
573         zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;
574
575         zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;
576
577         zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;
578
579         zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;
580
581         /*
582          * Assuming that two chipselects have a single calibration resistor
583          * If there are indeed two calibration resistors, then this flag should
584          * be enabled to take advantage of dual calibration feature.
585          * This data should ideally come from board files. But considering
586          * that none of the boards today have calibration resistors per CS,
587          * it would be an unnecessary overhead.
588          */
589         zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;
590
591         zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;
592
593         zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;
594
595         return zq;
596 }
597
598 static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
599                                  const struct lpddr2_addressing *addressing,
600                                  u8 is_derated)
601 {
602         u32 alert = 0, interval;
603         interval =
604             TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
605         if (is_derated)
606                 interval *= 4;
607         alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;
608
609         alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;
610
611         alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;
612
613         alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;
614
615         alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;
616
617         alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;
618
619         return alert;
620 }
621
622 static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
623 {
624         u32 idle = 0, val = 0;
625         if (volt_ramp)
626                 val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
627         else
628                 /*Maximum value in normal conditions - suggested by hw team */
629                 val = 0x1FF;
630         idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;
631
632         idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;
633
634         return idle;
635 }
636
637 static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
638 {
639         u32 phy = 0, val = 0;
640
641         phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;
642
643         if (freq <= 100000000)
644                 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
645         else if (freq <= 200000000)
646                 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
647         else
648                 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
649         phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
650
651         /* Other fields are constant magic values. Hardcode them together */
652         phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
653                 EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
654
655         return phy;
656 }
657
658 static u32 get_emif_mem_size(u32 base)
659 {
660         u32 size_mbytes = 0, temp;
661         struct emif_device_details dev_details;
662         struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
663         u32 emif_nr = emif_num(base);
664
665         emif_reset_phy(base);
666         dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
667                                                 &cs0_dev_details);
668         dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
669                                                 &cs1_dev_details);
670         emif_reset_phy(base);
671
672         if (dev_details.cs0_device_details) {
673                 temp = dev_details.cs0_device_details->density;
674                 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
675         }
676
677         if (dev_details.cs1_device_details) {
678                 temp = dev_details.cs1_device_details->density;
679                 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
680         }
681         /* convert to bytes */
682         return size_mbytes << 20;
683 }
684
685 /* Gets the encoding corresponding to a given DMM section size */
686 u32 get_dmm_section_size_map(u32 section_size)
687 {
688         /*
689          * Section size mapping:
690          * 0x0: 16-MiB section
691          * 0x1: 32-MiB section
692          * 0x2: 64-MiB section
693          * 0x3: 128-MiB section
694          * 0x4: 256-MiB section
695          * 0x5: 512-MiB section
696          * 0x6: 1-GiB section
697          * 0x7: 2-GiB section
698          */
699         section_size >>= 24; /* divide by 16 MB */
700         return log_2_n_round_down(section_size);
701 }
702
703 static void emif_calculate_regs(
704                 const struct emif_device_details *emif_dev_details,
705                 u32 freq, struct emif_regs *regs)
706 {
707         u32 temp, sys_freq;
708         const struct lpddr2_addressing *addressing;
709         const struct lpddr2_ac_timings *timings;
710         const struct lpddr2_min_tck *min_tck;
711         const struct lpddr2_device_details *cs0_dev_details =
712                                         emif_dev_details->cs0_device_details;
713         const struct lpddr2_device_details *cs1_dev_details =
714                                         emif_dev_details->cs1_device_details;
715         const struct lpddr2_device_timings *cs0_dev_timings =
716                                         emif_dev_details->cs0_device_timings;
717
718         emif_assert(emif_dev_details);
719         emif_assert(regs);
720         /*
721          * You can not have a device on CS1 without one on CS0
722          * So configuring EMIF without a device on CS0 doesn't
723          * make sense
724          */
725         emif_assert(cs0_dev_details);
726         emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
727         /*
728          * If there is a device on CS1 it should be same type as CS0
729          * (or NVM. But NVM is not supported in this driver yet)
730          */
731         emif_assert((cs1_dev_details == NULL) ||
732                     (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
733                     (cs0_dev_details->type == cs1_dev_details->type));
734         emif_assert(freq <= MAX_LPDDR2_FREQ);
735
736         set_ddr_clk_period(freq);
737
738         /*
739          * The device on CS0 is used for all timing calculations
740          * There is only one set of registers for timings per EMIF. So, if the
741          * second CS(CS1) has a device, it should have the same timings as the
742          * device on CS0
743          */
744         timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
745         emif_assert(timings);
746         min_tck = cs0_dev_timings->min_tck;
747
748         temp = addressing_table_index(cs0_dev_details->type,
749                                       cs0_dev_details->density,
750                                       cs0_dev_details->io_width);
751
752         emif_assert((temp >= 0));
753         addressing = &(addressing_table[temp]);
754         emif_assert(addressing);
755
756         sys_freq = get_sys_clk_freq();
757
758         regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
759                                                         cs1_dev_details,
760                                                         addressing, RL_BOOT);
761
762         regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
763                                                 cs1_dev_details,
764                                                 addressing, RL_FINAL);
765
766         regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
767
768         regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
769
770         regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
771
772         regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
773
774         regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
775
776         regs->temp_alert_config =
777             get_temp_alert_config(cs1_dev_details, addressing, 0);
778
779         regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
780                                             LPDDR2_VOLTAGE_STABLE);
781
782         regs->emif_ddr_phy_ctlr_1_init =
783                         get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
784
785         regs->emif_ddr_phy_ctlr_1 =
786                         get_ddr_phy_ctrl_1(freq, RL_FINAL);
787
788         regs->freq = freq;
789
790         print_timing_reg(regs->sdram_config_init);
791         print_timing_reg(regs->sdram_config);
792         print_timing_reg(regs->ref_ctrl);
793         print_timing_reg(regs->sdram_tim1);
794         print_timing_reg(regs->sdram_tim2);
795         print_timing_reg(regs->sdram_tim3);
796         print_timing_reg(regs->read_idle_ctrl);
797         print_timing_reg(regs->temp_alert_config);
798         print_timing_reg(regs->zq_config);
799         print_timing_reg(regs->emif_ddr_phy_ctlr_1);
800         print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
801 }
802 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
803
804 #ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
805 const char *get_lpddr2_type(u8 type_id)
806 {
807         switch (type_id) {
808         case LPDDR2_TYPE_S4:
809                 return "LPDDR2-S4";
810         case LPDDR2_TYPE_S2:
811                 return "LPDDR2-S2";
812         default:
813                 return NULL;
814         }
815 }
816
817 const char *get_lpddr2_io_width(u8 width_id)
818 {
819         switch (width_id) {
820         case LPDDR2_IO_WIDTH_8:
821                 return "x8";
822         case LPDDR2_IO_WIDTH_16:
823                 return "x16";
824         case LPDDR2_IO_WIDTH_32:
825                 return "x32";
826         default:
827                 return NULL;
828         }
829 }
830
831 const char *get_lpddr2_manufacturer(u32 manufacturer)
832 {
833         switch (manufacturer) {
834         case LPDDR2_MANUFACTURER_SAMSUNG:
835                 return "Samsung";
836         case LPDDR2_MANUFACTURER_QIMONDA:
837                 return "Qimonda";
838         case LPDDR2_MANUFACTURER_ELPIDA:
839                 return "Elpida";
840         case LPDDR2_MANUFACTURER_ETRON:
841                 return "Etron";
842         case LPDDR2_MANUFACTURER_NANYA:
843                 return "Nanya";
844         case LPDDR2_MANUFACTURER_HYNIX:
845                 return "Hynix";
846         case LPDDR2_MANUFACTURER_MOSEL:
847                 return "Mosel";
848         case LPDDR2_MANUFACTURER_WINBOND:
849                 return "Winbond";
850         case LPDDR2_MANUFACTURER_ESMT:
851                 return "ESMT";
852         case LPDDR2_MANUFACTURER_SPANSION:
853                 return "Spansion";
854         case LPDDR2_MANUFACTURER_SST:
855                 return "SST";
856         case LPDDR2_MANUFACTURER_ZMOS:
857                 return "ZMOS";
858         case LPDDR2_MANUFACTURER_INTEL:
859                 return "Intel";
860         case LPDDR2_MANUFACTURER_NUMONYX:
861                 return "Numonyx";
862         case LPDDR2_MANUFACTURER_MICRON:
863                 return "Micron";
864         default:
865                 return NULL;
866         }
867 }
868
869 static void display_sdram_details(u32 emif_nr, u32 cs,
870                                   struct lpddr2_device_details *device)
871 {
872         const char *mfg_str;
873         const char *type_str;
874         char density_str[10];
875         u32 density;
876
877         debug("EMIF%d CS%d\t", emif_nr, cs);
878
879         if (!device) {
880                 debug("None\n");
881                 return;
882         }
883
884         mfg_str = get_lpddr2_manufacturer(device->manufacturer);
885         type_str = get_lpddr2_type(device->type);
886
887         density = lpddr2_density_2_size_in_mbytes[device->density];
888         if ((density / 1024 * 1024) == density) {
889                 density /= 1024;
890                 sprintf(density_str, "%d GB", density);
891         } else
892                 sprintf(density_str, "%d MB", density);
893         if (mfg_str && type_str)
894                 debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
895 }
896
897 static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
898                                   struct lpddr2_device_details *lpddr2_device)
899 {
900         u32 mr = 0, temp;
901
902         mr = get_mr(base, cs, LPDDR2_MR0);
903         if (mr > 0xFF) {
904                 /* Mode register value bigger than 8 bit */
905                 return 0;
906         }
907
908         temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
909         if (temp) {
910                 /* Not SDRAM */
911                 return 0;
912         }
913         temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
914
915         if (temp) {
916                 /* DNV supported - But DNV is only supported for NVM */
917                 return 0;
918         }
919
920         mr = get_mr(base, cs, LPDDR2_MR4);
921         if (mr > 0xFF) {
922                 /* Mode register value bigger than 8 bit */
923                 return 0;
924         }
925
926         mr = get_mr(base, cs, LPDDR2_MR5);
927         if (mr > 0xFF) {
928                 /* Mode register value bigger than 8 bit */
929                 return 0;
930         }
931
932         if (!get_lpddr2_manufacturer(mr)) {
933                 /* Manufacturer not identified */
934                 return 0;
935         }
936         lpddr2_device->manufacturer = mr;
937
938         mr = get_mr(base, cs, LPDDR2_MR6);
939         if (mr >= 0xFF) {
940                 /* Mode register value bigger than 8 bit */
941                 return 0;
942         }
943
944         mr = get_mr(base, cs, LPDDR2_MR7);
945         if (mr >= 0xFF) {
946                 /* Mode register value bigger than 8 bit */
947                 return 0;
948         }
949
950         mr = get_mr(base, cs, LPDDR2_MR8);
951         if (mr >= 0xFF) {
952                 /* Mode register value bigger than 8 bit */
953                 return 0;
954         }
955
956         temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
957         if (!get_lpddr2_type(temp)) {
958                 /* Not SDRAM */
959                 return 0;
960         }
961         lpddr2_device->type = temp;
962
963         temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
964         if (temp > LPDDR2_DENSITY_32Gb) {
965                 /* Density not supported */
966                 return 0;
967         }
968         lpddr2_device->density = temp;
969
970         temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
971         if (!get_lpddr2_io_width(temp)) {
972                 /* IO width unsupported value */
973                 return 0;
974         }
975         lpddr2_device->io_width = temp;
976
977         /*
978          * If all the above tests pass we should
979          * have a device on this chip-select
980          */
981         return 1;
982 }
983
984 struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
985                         struct lpddr2_device_details *lpddr2_dev_details)
986 {
987         u32 phy;
988         u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE;
989
990         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
991
992         if (!lpddr2_dev_details)
993                 return NULL;
994
995         /* Do the minimum init for mode register accesses */
996         if (!(running_from_sdram() || warm_reset())) {
997                 phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
998                 writel(phy, &emif->emif_ddr_phy_ctrl_1);
999         }
1000
1001         if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
1002                 return NULL;
1003
1004         display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
1005
1006         return lpddr2_dev_details;
1007 }
1008 #endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */
1009
1010 static void do_sdram_init(u32 base)
1011 {
1012         const struct emif_regs *regs;
1013         u32 in_sdram, emif_nr;
1014
1015         debug(">>do_sdram_init() %x\n", base);
1016
1017         in_sdram = running_from_sdram();
1018         emif_nr = (base == EMIF1_BASE) ? 1 : 2;
1019
1020 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1021         emif_get_reg_dump(emif_nr, &regs);
1022         if (!regs) {
1023                 debug("EMIF: reg dump not provided\n");
1024                 return;
1025         }
1026 #else
1027         /*
1028          * The user has not provided the register values. We need to
1029          * calculate it based on the timings and the DDR frequency
1030          */
1031         struct emif_device_details dev_details;
1032         struct emif_regs calculated_regs;
1033
1034         /*
1035          * Get device details:
1036          * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
1037          * - Obtained from user otherwise
1038          */
1039         struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
1040         emif_reset_phy(base);
1041         dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
1042                                                 &cs0_dev_details);
1043         dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
1044                                                 &cs1_dev_details);
1045         emif_reset_phy(base);
1046
1047         /* Return if no devices on this EMIF */
1048         if (!dev_details.cs0_device_details &&
1049             !dev_details.cs1_device_details) {
1050                 return;
1051         }
1052
1053         /*
1054          * Get device timings:
1055          * - Default timings specified by JESD209-2 if
1056          *   CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
1057          * - Obtained from user otherwise
1058          */
1059         emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
1060                                 &dev_details.cs1_device_timings);
1061
1062         /* Calculate the register values */
1063         emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs);
1064         regs = &calculated_regs;
1065 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
1066
1067         /*
1068          * Initializing the LPDDR2 device can not happen from SDRAM.
1069          * Changing the timing registers in EMIF can happen(going from one
1070          * OPP to another)
1071          */
1072         if (!(in_sdram || warm_reset())) {
1073                 if (emif_sdram_type() == EMIF_SDRAM_TYPE_LPDDR2)
1074                         lpddr2_init(base, regs);
1075                 else
1076                         ddr3_init(base, regs);
1077         }
1078
1079         /* Write to the shadow registers */
1080         emif_update_timings(base, regs);
1081
1082         debug("<<do_sdram_init() %x\n", base);
1083 }
1084
1085 void emif_post_init_config(u32 base)
1086 {
1087         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1088         u32 omap_rev = omap_revision();
1089
1090         /* reset phy on ES2.0 */
1091         if (omap_rev == OMAP4430_ES2_0)
1092                 emif_reset_phy(base);
1093
1094         /* Put EMIF back in smart idle on ES1.0 */
1095         if (omap_rev == OMAP4430_ES1_0)
1096                 writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
1097 }
1098
1099 void dmm_init(u32 base)
1100 {
1101         const struct dmm_lisa_map_regs *lisa_map_regs;
1102         u32 i, section, valid;
1103
1104 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1105         emif_get_dmm_regs(&lisa_map_regs);
1106 #else
1107         u32 emif1_size, emif2_size, mapped_size, section_map = 0;
1108         u32 section_cnt, sys_addr;
1109         struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
1110
1111         mapped_size = 0;
1112         section_cnt = 3;
1113         sys_addr = CONFIG_SYS_SDRAM_BASE;
1114         emif1_size = get_emif_mem_size(EMIF1_BASE);
1115         emif2_size = get_emif_mem_size(EMIF2_BASE);
1116         debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
1117
1118         if (!emif1_size && !emif2_size)
1119                 return;
1120
1121         /* symmetric interleaved section */
1122         if (emif1_size && emif2_size) {
1123                 mapped_size = min(emif1_size, emif2_size);
1124                 section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
1125                 section_map |= 0 << EMIF_SDRC_ADDR_SHIFT;
1126                 /* only MSB */
1127                 section_map |= (sys_addr >> 24) <<
1128                                 EMIF_SYS_ADDR_SHIFT;
1129                 section_map |= get_dmm_section_size_map(mapped_size * 2)
1130                                 << EMIF_SYS_SIZE_SHIFT;
1131                 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1132                 emif1_size -= mapped_size;
1133                 emif2_size -= mapped_size;
1134                 sys_addr += (mapped_size * 2);
1135                 section_cnt--;
1136         }
1137
1138         /*
1139          * Single EMIF section(we can have a maximum of 1 single EMIF
1140          * section- either EMIF1 or EMIF2 or none, but not both)
1141          */
1142         if (emif1_size) {
1143                 section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
1144                 section_map |= get_dmm_section_size_map(emif1_size)
1145                                 << EMIF_SYS_SIZE_SHIFT;
1146                 /* only MSB */
1147                 section_map |= (mapped_size >> 24) <<
1148                                 EMIF_SDRC_ADDR_SHIFT;
1149                 /* only MSB */
1150                 section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT;
1151                 section_cnt--;
1152         }
1153         if (emif2_size) {
1154                 section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
1155                 section_map |= get_dmm_section_size_map(emif2_size) <<
1156                                 EMIF_SYS_SIZE_SHIFT;
1157                 /* only MSB */
1158                 section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT;
1159                 /* only MSB */
1160                 section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT;
1161                 section_cnt--;
1162         }
1163
1164         if (section_cnt == 2) {
1165                 /* Only 1 section - either symmetric or single EMIF */
1166                 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1167                 lis_map_regs_calculated.dmm_lisa_map_2 = 0;
1168                 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1169         } else {
1170                 /* 2 sections - 1 symmetric, 1 single EMIF */
1171                 lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
1172                 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1173         }
1174
1175         /* TRAP for invalid TILER mappings in section 0 */
1176         lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
1177
1178         lisa_map_regs = &lis_map_regs_calculated;
1179 #endif
1180         struct dmm_lisa_map_regs *hw_lisa_map_regs =
1181             (struct dmm_lisa_map_regs *)base;
1182
1183         writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
1184         writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
1185         writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
1186         writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
1187
1188         writel(lisa_map_regs->dmm_lisa_map_3,
1189                 &hw_lisa_map_regs->dmm_lisa_map_3);
1190         writel(lisa_map_regs->dmm_lisa_map_2,
1191                 &hw_lisa_map_regs->dmm_lisa_map_2);
1192         writel(lisa_map_regs->dmm_lisa_map_1,
1193                 &hw_lisa_map_regs->dmm_lisa_map_1);
1194         writel(lisa_map_regs->dmm_lisa_map_0,
1195                 &hw_lisa_map_regs->dmm_lisa_map_0);
1196
1197         if (lisa_map_regs->is_ma_present) {
1198                 hw_lisa_map_regs =
1199                     (struct dmm_lisa_map_regs *)MA_BASE;
1200
1201                 writel(lisa_map_regs->dmm_lisa_map_3,
1202                         &hw_lisa_map_regs->dmm_lisa_map_3);
1203                 writel(lisa_map_regs->dmm_lisa_map_2,
1204                         &hw_lisa_map_regs->dmm_lisa_map_2);
1205                 writel(lisa_map_regs->dmm_lisa_map_1,
1206                         &hw_lisa_map_regs->dmm_lisa_map_1);
1207                 writel(lisa_map_regs->dmm_lisa_map_0,
1208                         &hw_lisa_map_regs->dmm_lisa_map_0);
1209         }
1210
1211         /*
1212          * EMIF should be configured only when
1213          * memory is mapped on it. Using emif1_enabled
1214          * and emif2_enabled variables for this.
1215          */
1216         emif1_enabled = 0;
1217         emif2_enabled = 0;
1218         for (i = 0; i < 4; i++) {
1219                 section = __raw_readl(DMM_BASE + i*4);
1220                 valid = (section & EMIF_SDRC_MAP_MASK) >>
1221                         (EMIF_SDRC_MAP_SHIFT);
1222                 if (valid == 3) {
1223                         emif1_enabled = 1;
1224                         emif2_enabled = 1;
1225                         break;
1226                 } else if (valid == 1) {
1227                         emif1_enabled = 1;
1228                 } else if (valid == 2) {
1229                         emif2_enabled = 1;
1230                 }
1231         }
1232
1233 }
1234
1235 /*
1236  * SDRAM initialization:
1237  * SDRAM initialization has two parts:
1238  * 1. Configuring the SDRAM device
1239  * 2. Update the AC timings related parameters in the EMIF module
1240  * (1) should be done only once and should not be done while we are
1241  * running from SDRAM.
1242  * (2) can and should be done more than once if OPP changes.
1243  * Particularly, this may be needed when we boot without SPL and
1244  * and using Configuration Header(CH). ROM code supports only at 50% OPP
1245  * at boot (low power boot). So u-boot has to switch to OPP100 and update
1246  * the frequency. So,
1247  * Doing (1) and (2) makes sense - first time initialization
1248  * Doing (2) and not (1) makes sense - OPP change (when using CH)
1249  * Doing (1) and not (2) doen't make sense
1250  * See do_sdram_init() for the details
1251  */
1252 void sdram_init(void)
1253 {
1254         u32 in_sdram, size_prog, size_detect;
1255         u32 sdram_type = emif_sdram_type();
1256
1257         debug(">>sdram_init()\n");
1258
1259         if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
1260                 return;
1261
1262         in_sdram = running_from_sdram();
1263         debug("in_sdram = %d\n", in_sdram);
1264
1265         if (!(in_sdram || warm_reset())) {
1266                 if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2)
1267                         bypass_dpll((*prcm)->cm_clkmode_dpll_core);
1268                 else
1269                         writel(CM_DLL_CTRL_NO_OVERRIDE, (*prcm)->cm_dll_ctrl);
1270         }
1271
1272         if (!in_sdram)
1273                 dmm_init(DMM_BASE);
1274
1275         if (emif1_enabled)
1276                 do_sdram_init(EMIF1_BASE);
1277
1278         if (emif2_enabled)
1279                 do_sdram_init(EMIF2_BASE);
1280
1281         if (!(in_sdram || warm_reset())) {
1282                 if (emif1_enabled)
1283                         emif_post_init_config(EMIF1_BASE);
1284                 if (emif2_enabled)
1285                         emif_post_init_config(EMIF2_BASE);
1286         }
1287
1288         /* for the shadow registers to take effect */
1289         if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2)
1290                 freq_update_core();
1291
1292         /* Do some testing after the init */
1293         if (!in_sdram) {
1294                 size_prog = omap_sdram_size();
1295                 size_prog = log_2_n_round_down(size_prog);
1296                 size_prog = (1 << size_prog);
1297
1298                 size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
1299                                                 size_prog);
1300                 /* Compare with the size programmed */
1301                 if (size_detect != size_prog) {
1302                         printf("SDRAM: identified size not same as expected"
1303                                 " size identified: %x expected: %x\n",
1304                                 size_detect,
1305                                 size_prog);
1306                 } else
1307                         debug("get_ram_size() successful");
1308         }
1309
1310         debug("<<sdram_init()\n");
1311 }