]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - arch/arm/cpu/tegra20-common/warmboot_avp.c
Merge branch 'u-boot/master'
[karo-tx-uboot.git] / arch / arm / cpu / tegra20-common / warmboot_avp.c
1 /*
2  * (C) Copyright 2010 - 2011
3  * NVIDIA Corporation <www.nvidia.com>
4  *
5  * SPDX-License-Identifier:     GPL-2.0+
6  */
7
8 #include <common.h>
9 #include <asm/io.h>
10 #include <asm/arch/clock.h>
11 #include <asm/arch/flow.h>
12 #include <asm/arch/pinmux.h>
13 #include <asm/arch/tegra.h>
14 #include <asm/arch-tegra/ap.h>
15 #include <asm/arch-tegra/apb_misc.h>
16 #include <asm/arch-tegra/clk_rst.h>
17 #include <asm/arch-tegra/pmc.h>
18 #include <asm/arch-tegra/warmboot.h>
19 #include "warmboot_avp.h"
20
21 #define DEBUG_RESET_CORESIGHT
22
23 void wb_start(void)
24 {
25         struct apb_misc_pp_ctlr *apb_misc =
26                                 (struct apb_misc_pp_ctlr *)NV_PA_APB_MISC_BASE;
27         struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
28         struct flow_ctlr *flow = (struct flow_ctlr *)NV_PA_FLOW_BASE;
29         struct clk_rst_ctlr *clkrst =
30                         (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
31         union osc_ctrl_reg osc_ctrl;
32         union pllx_base_reg pllx_base;
33         union pllx_misc_reg pllx_misc;
34         union scratch3_reg scratch3;
35         u32 reg;
36
37         /* enable JTAG & TBE */
38         writel(CONFIG_CTL_TBE | CONFIG_CTL_JTAG, &apb_misc->cfg_ctl);
39
40         /* Are we running where we're supposed to be? */
41         asm volatile (
42                 "adr    %0, wb_start;"  /* reg: wb_start address */
43                 : "=r"(reg)             /* output */
44                                         /* no input, no clobber list */
45         );
46
47         if (reg != NV_WB_RUN_ADDRESS)
48                 goto do_reset;
49
50         /* Are we running with AVP? */
51         if (readl(NV_PA_PG_UP_BASE + PG_UP_TAG_0) != PG_UP_TAG_AVP)
52                 goto do_reset;
53
54 #ifdef DEBUG_RESET_CORESIGHT
55         /* Assert CoreSight reset */
56         reg = readl(&clkrst->crc_rst_dev[TEGRA_DEV_U]);
57         reg |= SWR_CSITE_RST;
58         writel(reg, &clkrst->crc_rst_dev[TEGRA_DEV_U]);
59 #endif
60
61         /* TODO: Set the drive strength - maybe make this a board parameter? */
62         osc_ctrl.word = readl(&clkrst->crc_osc_ctrl);
63         osc_ctrl.xofs = 4;
64         osc_ctrl.xoe = 1;
65         writel(osc_ctrl.word, &clkrst->crc_osc_ctrl);
66
67         /* Power up the CPU complex if necessary */
68         if (!(readl(&pmc->pmc_pwrgate_status) & PWRGATE_STATUS_CPU)) {
69                 reg = PWRGATE_TOGGLE_PARTID_CPU | PWRGATE_TOGGLE_START;
70                 writel(reg, &pmc->pmc_pwrgate_toggle);
71                 while (!(readl(&pmc->pmc_pwrgate_status) & PWRGATE_STATUS_CPU))
72                         ;
73         }
74
75         /* Remove the I/O clamps from the CPU power partition. */
76         reg = readl(&pmc->pmc_remove_clamping);
77         reg |= CPU_CLMP;
78         writel(reg, &pmc->pmc_remove_clamping);
79
80         reg = EVENT_ZERO_VAL_20 | EVENT_MSEC | EVENT_MODE_STOP;
81         writel(reg, &flow->halt_cop_events);
82
83         /* Assert CPU complex reset */
84         reg = readl(&clkrst->crc_rst_dev[TEGRA_DEV_L]);
85         reg |= CPU_RST;
86         writel(reg, &clkrst->crc_rst_dev[TEGRA_DEV_L]);
87
88         /* Hold both CPUs in reset */
89         reg = CPU_CMPLX_CPURESET0 | CPU_CMPLX_CPURESET1 | CPU_CMPLX_DERESET0 |
90               CPU_CMPLX_DERESET1 | CPU_CMPLX_DBGRESET0 | CPU_CMPLX_DBGRESET1;
91         writel(reg, &clkrst->crc_cpu_cmplx_set);
92
93         /* Halt CPU1 at the flow controller for uni-processor configurations */
94         writel(EVENT_MODE_STOP, &flow->halt_cpu1_events);
95
96         /*
97          * Set the CPU reset vector. SCRATCH41 contains the physical
98          * address of the CPU-side restoration code.
99          */
100         reg = readl(&pmc->pmc_scratch41);
101         writel(reg, EXCEP_VECTOR_CPU_RESET_VECTOR);
102
103         /* Select CPU complex clock source */
104         writel(CCLK_PLLP_BURST_POLICY, &clkrst->crc_cclk_brst_pol);
105
106         /* Start the CPU0 clock and stop the CPU1 clock */
107         reg = CPU_CMPLX_CPU_BRIDGE_CLKDIV_4 | CPU_CMPLX_CPU0_CLK_STP_RUN |
108               CPU_CMPLX_CPU1_CLK_STP_STOP;
109         writel(reg, &clkrst->crc_clk_cpu_cmplx);
110
111         /* Enable the CPU complex clock */
112         reg = readl(&clkrst->crc_clk_out_enb[TEGRA_DEV_L]);
113         reg |= CLK_ENB_CPU;
114         writel(reg, &clkrst->crc_clk_out_enb[TEGRA_DEV_L]);
115
116         /* Make sure the resets were held for at least 2 microseconds */
117         reg = readl(TIMER_USEC_CNTR);
118         while (readl(TIMER_USEC_CNTR) <= (reg + 2))
119                 ;
120
121 #ifdef DEBUG_RESET_CORESIGHT
122         /*
123          * De-assert CoreSight reset.
124          * NOTE: We're leaving the CoreSight clock on the oscillator for
125          *      now. It will be restored to its original clock source
126          *      when the CPU-side restoration code runs.
127          */
128         reg = readl(&clkrst->crc_rst_dev[TEGRA_DEV_U]);
129         reg &= ~SWR_CSITE_RST;
130         writel(reg, &clkrst->crc_rst_dev[TEGRA_DEV_U]);
131 #endif
132
133         /* Unlock the CPU CoreSight interfaces */
134         reg = 0xC5ACCE55;
135         writel(reg, CSITE_CPU_DBG0_LAR);
136         writel(reg, CSITE_CPU_DBG1_LAR);
137
138         /*
139          * Sample the microsecond timestamp again. This is the time we must
140          * use when returning from LP0 for PLL stabilization delays.
141          */
142         reg = readl(TIMER_USEC_CNTR);
143         writel(reg, &pmc->pmc_scratch1);
144
145         pllx_base.word = 0;
146         pllx_misc.word = 0;
147         scratch3.word = readl(&pmc->pmc_scratch3);
148
149         /* Get the OSC. For 19.2 MHz, use 19 to make the calculations easier */
150         reg = (readl(TIMER_USEC_CFG) & USEC_CFG_DIVISOR_MASK) + 1;
151
152         /*
153          * According to the TRM, for 19.2MHz OSC, the USEC_DIVISOR is 0x5f, and
154          * USEC_DIVIDEND is 0x04. So, if USEC_DIVISOR > 26, OSC is 19.2 MHz.
155          *
156          * reg is used to calculate the pllx freq, which is used to determine if
157          * to set dccon or not.
158          */
159         if (reg > 26)
160                 reg = 19;
161
162         /* PLLX_BASE.PLLX_DIVM */
163         if (scratch3.pllx_base_divm == reg)
164                 reg = 0;
165         else
166                 reg = 1;
167
168         /* PLLX_BASE.PLLX_DIVN */
169         pllx_base.divn = scratch3.pllx_base_divn;
170         reg = scratch3.pllx_base_divn << reg;
171
172         /* PLLX_BASE.PLLX_DIVP */
173         pllx_base.divp = scratch3.pllx_base_divp;
174         reg = reg >> scratch3.pllx_base_divp;
175
176         pllx_base.bypass = 1;
177
178         /* PLLX_MISC_DCCON must be set for pllx frequency > 600 MHz. */
179         if (reg > 600)
180                 pllx_misc.dccon = 1;
181
182         /* PLLX_MISC_LFCON */
183         pllx_misc.lfcon = scratch3.pllx_misc_lfcon;
184
185         /* PLLX_MISC_CPCON */
186         pllx_misc.cpcon = scratch3.pllx_misc_cpcon;
187
188         writel(pllx_misc.word, &clkrst->crc_pll_simple[SIMPLE_PLLX].pll_misc);
189         writel(pllx_base.word, &clkrst->crc_pll_simple[SIMPLE_PLLX].pll_base);
190
191         pllx_base.enable = 1;
192         writel(pllx_base.word, &clkrst->crc_pll_simple[SIMPLE_PLLX].pll_base);
193         pllx_base.bypass = 0;
194         writel(pllx_base.word, &clkrst->crc_pll_simple[SIMPLE_PLLX].pll_base);
195
196         writel(0, flow->halt_cpu_events);
197
198         reg = CPU_CMPLX_CPURESET0 | CPU_CMPLX_DBGRESET0 | CPU_CMPLX_DERESET0;
199         writel(reg, &clkrst->crc_cpu_cmplx_clr);
200
201         reg = PLLM_OUT1_RSTN_RESET_DISABLE | PLLM_OUT1_CLKEN_ENABLE |
202               PLLM_OUT1_RATIO_VAL_8;
203         writel(reg, &clkrst->crc_pll[CLOCK_ID_MEMORY].pll_out[0]);
204
205         reg = SCLK_SWAKE_FIQ_SRC_PLLM_OUT1 | SCLK_SWAKE_IRQ_SRC_PLLM_OUT1 |
206               SCLK_SWAKE_RUN_SRC_PLLM_OUT1 | SCLK_SWAKE_IDLE_SRC_PLLM_OUT1 |
207               SCLK_SYS_STATE_IDLE;
208         writel(reg, &clkrst->crc_sclk_brst_pol);
209
210         /* avp_resume: no return after the write */
211         reg = readl(&clkrst->crc_rst_dev[TEGRA_DEV_L]);
212         reg &= ~CPU_RST;
213         writel(reg, &clkrst->crc_rst_dev[TEGRA_DEV_L]);
214
215         /* avp_halt: */
216 avp_halt:
217         reg = EVENT_MODE_STOP | EVENT_JTAG;
218         writel(reg, flow->halt_cop_events);
219         goto avp_halt;
220
221 do_reset:
222         /*
223          * Execution comes here if something goes wrong. The chip is reset and
224          * a cold boot is performed.
225          */
226         writel(SWR_TRIG_SYS_RST, &clkrst->crc_rst_dev[TEGRA_DEV_L]);
227         goto do_reset;
228 }
229
230 /*
231  * wb_end() is a dummy function, and must be directly following wb_start(),
232  * and is used to calculate the size of wb_start().
233  */
234 void wb_end(void)
235 {
236 }