]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - arch/arm/cpu/tegra20-common/warmboot_avp.c
Prepare v2014.04
[karo-tx-uboot.git] / arch / arm / cpu / tegra20-common / warmboot_avp.c
1 /*
2  * (C) Copyright 2010 - 2011
3  * NVIDIA Corporation <www.nvidia.com>
4  *
5  * SPDX-License-Identifier:     GPL-2.0+
6  */
7
8 #include <common.h>
9 #include <asm/io.h>
10 #include <asm/arch/clock.h>
11 #include <asm/arch/flow.h>
12 #include <asm/arch/pinmux.h>
13 #include <asm/arch/tegra.h>
14 #include <asm/arch-tegra/ap.h>
15 #include <asm/arch-tegra/clk_rst.h>
16 #include <asm/arch-tegra/pmc.h>
17 #include <asm/arch-tegra/warmboot.h>
18 #include "warmboot_avp.h"
19
20 #define DEBUG_RESET_CORESIGHT
21
22 void wb_start(void)
23 {
24         struct pmux_tri_ctlr *pmt = (struct pmux_tri_ctlr *)NV_PA_APB_MISC_BASE;
25         struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
26         struct flow_ctlr *flow = (struct flow_ctlr *)NV_PA_FLOW_BASE;
27         struct clk_rst_ctlr *clkrst =
28                         (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
29         union osc_ctrl_reg osc_ctrl;
30         union pllx_base_reg pllx_base;
31         union pllx_misc_reg pllx_misc;
32         union scratch3_reg scratch3;
33         u32 reg;
34
35         /* enable JTAG & TBE */
36         writel(CONFIG_CTL_TBE | CONFIG_CTL_JTAG, &pmt->pmt_cfg_ctl);
37
38         /* Are we running where we're supposed to be? */
39         asm volatile (
40                 "adr    %0, wb_start;"  /* reg: wb_start address */
41                 : "=r"(reg)             /* output */
42                                         /* no input, no clobber list */
43         );
44
45         if (reg != NV_WB_RUN_ADDRESS)
46                 goto do_reset;
47
48         /* Are we running with AVP? */
49         if (readl(NV_PA_PG_UP_BASE + PG_UP_TAG_0) != PG_UP_TAG_AVP)
50                 goto do_reset;
51
52 #ifdef DEBUG_RESET_CORESIGHT
53         /* Assert CoreSight reset */
54         reg = readl(&clkrst->crc_rst_dev[TEGRA_DEV_U]);
55         reg |= SWR_CSITE_RST;
56         writel(reg, &clkrst->crc_rst_dev[TEGRA_DEV_U]);
57 #endif
58
59         /* TODO: Set the drive strength - maybe make this a board parameter? */
60         osc_ctrl.word = readl(&clkrst->crc_osc_ctrl);
61         osc_ctrl.xofs = 4;
62         osc_ctrl.xoe = 1;
63         writel(osc_ctrl.word, &clkrst->crc_osc_ctrl);
64
65         /* Power up the CPU complex if necessary */
66         if (!(readl(&pmc->pmc_pwrgate_status) & PWRGATE_STATUS_CPU)) {
67                 reg = PWRGATE_TOGGLE_PARTID_CPU | PWRGATE_TOGGLE_START;
68                 writel(reg, &pmc->pmc_pwrgate_toggle);
69                 while (!(readl(&pmc->pmc_pwrgate_status) & PWRGATE_STATUS_CPU))
70                         ;
71         }
72
73         /* Remove the I/O clamps from the CPU power partition. */
74         reg = readl(&pmc->pmc_remove_clamping);
75         reg |= CPU_CLMP;
76         writel(reg, &pmc->pmc_remove_clamping);
77
78         reg = EVENT_ZERO_VAL_20 | EVENT_MSEC | EVENT_MODE_STOP;
79         writel(reg, &flow->halt_cop_events);
80
81         /* Assert CPU complex reset */
82         reg = readl(&clkrst->crc_rst_dev[TEGRA_DEV_L]);
83         reg |= CPU_RST;
84         writel(reg, &clkrst->crc_rst_dev[TEGRA_DEV_L]);
85
86         /* Hold both CPUs in reset */
87         reg = CPU_CMPLX_CPURESET0 | CPU_CMPLX_CPURESET1 | CPU_CMPLX_DERESET0 |
88               CPU_CMPLX_DERESET1 | CPU_CMPLX_DBGRESET0 | CPU_CMPLX_DBGRESET1;
89         writel(reg, &clkrst->crc_cpu_cmplx_set);
90
91         /* Halt CPU1 at the flow controller for uni-processor configurations */
92         writel(EVENT_MODE_STOP, &flow->halt_cpu1_events);
93
94         /*
95          * Set the CPU reset vector. SCRATCH41 contains the physical
96          * address of the CPU-side restoration code.
97          */
98         reg = readl(&pmc->pmc_scratch41);
99         writel(reg, EXCEP_VECTOR_CPU_RESET_VECTOR);
100
101         /* Select CPU complex clock source */
102         writel(CCLK_PLLP_BURST_POLICY, &clkrst->crc_cclk_brst_pol);
103
104         /* Start the CPU0 clock and stop the CPU1 clock */
105         reg = CPU_CMPLX_CPU_BRIDGE_CLKDIV_4 | CPU_CMPLX_CPU0_CLK_STP_RUN |
106               CPU_CMPLX_CPU1_CLK_STP_STOP;
107         writel(reg, &clkrst->crc_clk_cpu_cmplx);
108
109         /* Enable the CPU complex clock */
110         reg = readl(&clkrst->crc_clk_out_enb[TEGRA_DEV_L]);
111         reg |= CLK_ENB_CPU;
112         writel(reg, &clkrst->crc_clk_out_enb[TEGRA_DEV_L]);
113
114         /* Make sure the resets were held for at least 2 microseconds */
115         reg = readl(TIMER_USEC_CNTR);
116         while (readl(TIMER_USEC_CNTR) <= (reg + 2))
117                 ;
118
119 #ifdef DEBUG_RESET_CORESIGHT
120         /*
121          * De-assert CoreSight reset.
122          * NOTE: We're leaving the CoreSight clock on the oscillator for
123          *      now. It will be restored to its original clock source
124          *      when the CPU-side restoration code runs.
125          */
126         reg = readl(&clkrst->crc_rst_dev[TEGRA_DEV_U]);
127         reg &= ~SWR_CSITE_RST;
128         writel(reg, &clkrst->crc_rst_dev[TEGRA_DEV_U]);
129 #endif
130
131         /* Unlock the CPU CoreSight interfaces */
132         reg = 0xC5ACCE55;
133         writel(reg, CSITE_CPU_DBG0_LAR);
134         writel(reg, CSITE_CPU_DBG1_LAR);
135
136         /*
137          * Sample the microsecond timestamp again. This is the time we must
138          * use when returning from LP0 for PLL stabilization delays.
139          */
140         reg = readl(TIMER_USEC_CNTR);
141         writel(reg, &pmc->pmc_scratch1);
142
143         pllx_base.word = 0;
144         pllx_misc.word = 0;
145         scratch3.word = readl(&pmc->pmc_scratch3);
146
147         /* Get the OSC. For 19.2 MHz, use 19 to make the calculations easier */
148         reg = (readl(TIMER_USEC_CFG) & USEC_CFG_DIVISOR_MASK) + 1;
149
150         /*
151          * According to the TRM, for 19.2MHz OSC, the USEC_DIVISOR is 0x5f, and
152          * USEC_DIVIDEND is 0x04. So, if USEC_DIVISOR > 26, OSC is 19.2 MHz.
153          *
154          * reg is used to calculate the pllx freq, which is used to determine if
155          * to set dccon or not.
156          */
157         if (reg > 26)
158                 reg = 19;
159
160         /* PLLX_BASE.PLLX_DIVM */
161         if (scratch3.pllx_base_divm == reg)
162                 reg = 0;
163         else
164                 reg = 1;
165
166         /* PLLX_BASE.PLLX_DIVN */
167         pllx_base.divn = scratch3.pllx_base_divn;
168         reg = scratch3.pllx_base_divn << reg;
169
170         /* PLLX_BASE.PLLX_DIVP */
171         pllx_base.divp = scratch3.pllx_base_divp;
172         reg = reg >> scratch3.pllx_base_divp;
173
174         pllx_base.bypass = 1;
175
176         /* PLLX_MISC_DCCON must be set for pllx frequency > 600 MHz. */
177         if (reg > 600)
178                 pllx_misc.dccon = 1;
179
180         /* PLLX_MISC_LFCON */
181         pllx_misc.lfcon = scratch3.pllx_misc_lfcon;
182
183         /* PLLX_MISC_CPCON */
184         pllx_misc.cpcon = scratch3.pllx_misc_cpcon;
185
186         writel(pllx_misc.word, &clkrst->crc_pll_simple[SIMPLE_PLLX].pll_misc);
187         writel(pllx_base.word, &clkrst->crc_pll_simple[SIMPLE_PLLX].pll_base);
188
189         pllx_base.enable = 1;
190         writel(pllx_base.word, &clkrst->crc_pll_simple[SIMPLE_PLLX].pll_base);
191         pllx_base.bypass = 0;
192         writel(pllx_base.word, &clkrst->crc_pll_simple[SIMPLE_PLLX].pll_base);
193
194         writel(0, flow->halt_cpu_events);
195
196         reg = CPU_CMPLX_CPURESET0 | CPU_CMPLX_DBGRESET0 | CPU_CMPLX_DERESET0;
197         writel(reg, &clkrst->crc_cpu_cmplx_clr);
198
199         reg = PLLM_OUT1_RSTN_RESET_DISABLE | PLLM_OUT1_CLKEN_ENABLE |
200               PLLM_OUT1_RATIO_VAL_8;
201         writel(reg, &clkrst->crc_pll[CLOCK_ID_MEMORY].pll_out[0]);
202
203         reg = SCLK_SWAKE_FIQ_SRC_PLLM_OUT1 | SCLK_SWAKE_IRQ_SRC_PLLM_OUT1 |
204               SCLK_SWAKE_RUN_SRC_PLLM_OUT1 | SCLK_SWAKE_IDLE_SRC_PLLM_OUT1 |
205               SCLK_SYS_STATE_IDLE;
206         writel(reg, &clkrst->crc_sclk_brst_pol);
207
208         /* avp_resume: no return after the write */
209         reg = readl(&clkrst->crc_rst_dev[TEGRA_DEV_L]);
210         reg &= ~CPU_RST;
211         writel(reg, &clkrst->crc_rst_dev[TEGRA_DEV_L]);
212
213         /* avp_halt: */
214 avp_halt:
215         reg = EVENT_MODE_STOP | EVENT_JTAG;
216         writel(reg, flow->halt_cop_events);
217         goto avp_halt;
218
219 do_reset:
220         /*
221          * Execution comes here if something goes wrong. The chip is reset and
222          * a cold boot is performed.
223          */
224         writel(SWR_TRIG_SYS_RST, &clkrst->crc_rst_dev[TEGRA_DEV_L]);
225         goto do_reset;
226 }
227
228 /*
229  * wb_end() is a dummy function, and must be directly following wb_start(),
230  * and is used to calculate the size of wb_start().
231  */
232 void wb_end(void)
233 {
234 }