]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - arch/powerpc/cpu/mpc8xx/i2c.c
Merge branch 'master' of git://git.denx.de/u-boot-ppc4xx
[karo-tx-uboot.git] / arch / powerpc / cpu / mpc8xx / i2c.c
1 /*
2  * (C) Copyright 2000
3  * Paolo Scaffardi, AIRVENT SAM s.p.a - RIMINI(ITALY), arsenio@tin.it
4  *
5  * (C) Copyright 2000 Sysgo Real-Time Solutions, GmbH <www.elinos.com>
6  * Marius Groeger <mgroeger@sysgo.de>
7  *
8  * See file CREDITS for list of people who contributed to this
9  * project.
10  *
11  * This program is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License as
13  * published by the Free Software Foundation; either version 2 of
14  * the License, or (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
24  * MA 02111-1307 USA
25  *
26  * Back ported to the 8xx platform (from the 8260 platform) by
27  * Murray.Jensen@cmst.csiro.au, 27-Jan-01.
28  */
29
30 #include <common.h>
31
32 #ifdef CONFIG_HARD_I2C
33
34 #include <commproc.h>
35 #include <i2c.h>
36 #ifdef CONFIG_LWMON
37 #include <watchdog.h>
38 #endif
39
40 DECLARE_GLOBAL_DATA_PTR;
41
42 /* define to enable debug messages */
43 #undef  DEBUG_I2C
44
45 /* tx/rx timeout (we need the i2c early, so we don't use get_timer()) */
46 #define TOUT_LOOP 1000000
47
48 #define NUM_RX_BDS 4
49 #define NUM_TX_BDS 4
50 #define MAX_TX_SPACE 256
51 #define I2C_RXTX_LEN 128        /* maximum tx/rx buffer length */
52
53 typedef struct I2C_BD
54 {
55   unsigned short status;
56   unsigned short length;
57   unsigned char *addr;
58 } I2C_BD;
59 #define BD_I2C_TX_START 0x0400  /* special status for i2c: Start condition */
60
61 #define BD_I2C_TX_CL    0x0001  /* collision error */
62 #define BD_I2C_TX_UN    0x0002  /* underflow error */
63 #define BD_I2C_TX_NAK   0x0004  /* no acknowledge error */
64 #define BD_I2C_TX_ERR   (BD_I2C_TX_NAK|BD_I2C_TX_UN|BD_I2C_TX_CL)
65
66 #define BD_I2C_RX_ERR   BD_SC_OV
67
68 typedef void (*i2c_ecb_t)(int, int);    /* error callback function */
69
70 /* This structure keeps track of the bd and buffer space usage. */
71 typedef struct i2c_state {
72         int             rx_idx;         /* index   to next free Rx BD */
73         int             tx_idx;         /* index   to next free Tx BD */
74         void            *rxbd;          /* pointer to next free Rx BD */
75         void            *txbd;          /* pointer to next free Tx BD */
76         int             tx_space;       /* number  of Tx bytes left   */
77         unsigned char   *tx_buf;        /* pointer to free Tx area    */
78         i2c_ecb_t       err_cb;         /* error callback function    */
79 } i2c_state_t;
80
81
82 /* flags for i2c_send() and i2c_receive() */
83 #define I2CF_ENABLE_SECONDARY   0x01    /* secondary_address is valid           */
84 #define I2CF_START_COND         0x02    /* tx: generate start condition         */
85 #define I2CF_STOP_COND          0x04    /* tx: generate stop  condition         */
86
87 /* return codes */
88 #define I2CERR_NO_BUFFERS       0x01    /* no more BDs or buffer space          */
89 #define I2CERR_MSG_TOO_LONG     0x02    /* tried to send/receive to much data   */
90 #define I2CERR_TIMEOUT          0x03    /* timeout in i2c_doio()                */
91 #define I2CERR_QUEUE_EMPTY      0x04    /* i2c_doio called without send/receive */
92
93 /* error callback flags */
94 #define I2CECB_RX_ERR           0x10    /* this is a receive error              */
95 #define     I2CECB_RX_ERR_OV    0x02    /* receive overrun error                */
96 #define     I2CECB_RX_MASK      0x0f    /* mask for error bits                  */
97 #define I2CECB_TX_ERR           0x20    /* this is a transmit error             */
98 #define     I2CECB_TX_CL        0x01    /* transmit collision error             */
99 #define     I2CECB_TX_UN        0x02    /* transmit underflow error             */
100 #define     I2CECB_TX_NAK       0x04    /* transmit no ack error                */
101 #define     I2CECB_TX_MASK      0x0f    /* mask for error bits                  */
102 #define I2CECB_TIMEOUT          0x40    /* this is a timeout error              */
103
104 #ifdef DEBUG_I2C
105 #define PRINTD(x) printf x
106 #else
107 #define PRINTD(x)
108 #endif
109
110 /*
111  * Returns the best value of I2BRG to meet desired clock speed of I2C with
112  * input parameters (clock speed, filter, and predivider value).
113  * It returns computer speed value and the difference between it and desired
114  * speed.
115  */
116 static inline int
117 i2c_roundrate(int hz, int speed, int filter, int modval,
118                 int *brgval, int *totspeed)
119 {
120     int moddiv = 1 << (5-(modval & 3)), brgdiv, div;
121
122     PRINTD(("\t[I2C] trying hz=%d, speed=%d, filter=%d, modval=%d\n",
123         hz, speed, filter, modval));
124
125     div = moddiv * speed;
126     brgdiv = (hz + div - 1) / div;
127
128     PRINTD(("\t\tmoddiv=%d, brgdiv=%d\n", moddiv, brgdiv));
129
130     *brgval = ((brgdiv + 1) / 2) - 3 - (2*filter);
131
132     if ((*brgval < 0) || (*brgval > 255)) {
133           PRINTD(("\t\trejected brgval=%d\n", *brgval));
134           return -1;
135     }
136
137     brgdiv = 2 * (*brgval + 3 + (2 * filter));
138     div = moddiv * brgdiv ;
139     *totspeed = hz / div;
140
141     PRINTD(("\t\taccepted brgval=%d, totspeed=%d\n", *brgval, *totspeed));
142
143     return  0;
144 }
145
146 /*
147  * Sets the I2C clock predivider and divider to meet required clock speed.
148  */
149 static int
150 i2c_setrate (int hz, int speed)
151 {
152         immap_t         *immap = (immap_t *) CONFIG_SYS_IMMR;
153         volatile i2c8xx_t *i2c = (i2c8xx_t *) & immap->im_i2c;
154         int             brgval,
155                         modval,         /* 0-3 */
156                         bestspeed_diff = speed,
157                         bestspeed_brgval = 0,
158                         bestspeed_modval = 0,
159                         bestspeed_filter = 0,
160                         totspeed,
161                         filter = 0;     /* Use this fixed value */
162
163         for (modval = 0; modval < 4; modval++) {
164                 if (i2c_roundrate(hz,speed,filter,modval,&brgval,&totspeed) == 0) {
165                         int diff = speed - totspeed;
166
167                         if ((diff >= 0) && (diff < bestspeed_diff)) {
168                                 bestspeed_diff = diff;
169                                 bestspeed_modval = modval;
170                                 bestspeed_brgval = brgval;
171                                 bestspeed_filter = filter;
172                         }
173                 }
174         }
175
176         PRINTD (("[I2C] Best is:\n"));
177         PRINTD (("[I2C] CPU=%dhz RATE=%d F=%d I2MOD=%08x I2BRG=%08x DIFF=%dhz\n",
178                 hz,
179                 speed,
180                 bestspeed_filter,
181                 bestspeed_modval,
182                 bestspeed_brgval,
183                 bestspeed_diff));
184
185         i2c->i2c_i2mod |= ((bestspeed_modval & 3) << 1) | (bestspeed_filter << 3);
186         i2c->i2c_i2brg = bestspeed_brgval & 0xff;
187
188         PRINTD (("[I2C] i2mod=%08x i2brg=%08x\n", i2c->i2c_i2mod,
189                          i2c->i2c_i2brg));
190
191         return 1;
192 }
193
194 void
195 i2c_init(int speed, int slaveaddr)
196 {
197         volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR ;
198         volatile cpm8xx_t *cp = (cpm8xx_t *)&immap->im_cpm;
199         volatile i2c8xx_t *i2c  = (i2c8xx_t *)&immap->im_i2c;
200         volatile iic_t *iip = (iic_t *)&cp->cp_dparam[PROFF_IIC];
201         ulong rbase, tbase;
202         volatile I2C_BD *rxbd, *txbd;
203         uint dpaddr;
204
205 #ifdef CONFIG_SYS_I2C_INIT_BOARD
206         /* call board specific i2c bus reset routine before accessing the   */
207         /* environment, which might be in a chip on that bus. For details   */
208         /* about this problem see doc/I2C_Edge_Conditions.                  */
209         i2c_init_board();
210 #endif
211
212 #ifdef CONFIG_SYS_I2C_UCODE_PATCH
213         iip = (iic_t *)&cp->cp_dpmem[iip->iic_rpbase];
214 #else
215         /* Disable relocation */
216         iip->iic_rpbase = 0;
217 #endif
218
219 #ifdef CONFIG_SYS_ALLOC_DPRAM
220         dpaddr = iip->iic_rbase;
221         if (dpaddr == 0) {
222             /* need to allocate dual port ram */
223             dpaddr = dpram_alloc_align(
224                 (NUM_RX_BDS * sizeof(I2C_BD)) + (NUM_TX_BDS * sizeof(I2C_BD)) +
225                 MAX_TX_SPACE, 8);
226         }
227 #else
228         dpaddr = CPM_I2C_BASE;
229 #endif
230
231         /*
232          * initialise data in dual port ram:
233          *
234          * dpaddr->rbase -> rx BD         (NUM_RX_BDS * sizeof(I2C_BD) bytes)
235          *         tbase -> tx BD         (NUM_TX_BDS * sizeof(I2C_BD) bytes)
236          *                  tx buffer     (MAX_TX_SPACE bytes)
237          */
238
239         rbase = dpaddr;
240         tbase = rbase + NUM_RX_BDS * sizeof(I2C_BD);
241
242         /* Initialize Port B I2C pins. */
243         cp->cp_pbpar |= 0x00000030;
244         cp->cp_pbdir |= 0x00000030;
245         cp->cp_pbodr |= 0x00000030;
246
247         /* Disable interrupts */
248         i2c->i2c_i2mod = 0x00;
249         i2c->i2c_i2cmr = 0x00;
250         i2c->i2c_i2cer = 0xff;
251         i2c->i2c_i2add = slaveaddr;
252
253         /*
254          * Set the I2C BRG Clock division factor from desired i2c rate
255          * and current CPU rate (we assume sccr dfbgr field is 0;
256          * divide BRGCLK by 1)
257          */
258         PRINTD(("[I2C] Setting rate...\n"));
259         i2c_setrate (gd->cpu_clk, CONFIG_SYS_I2C_SPEED) ;
260
261         /* Set I2C controller in master mode */
262         i2c->i2c_i2com = 0x01;
263
264         /* Set SDMA bus arbitration level to 5 (SDCR) */
265         immap->im_siu_conf.sc_sdcr = 0x0001 ;
266
267         /* Initialize Tx/Rx parameters */
268         iip->iic_rbase = rbase;
269         iip->iic_tbase = tbase;
270         rxbd = (I2C_BD *)((unsigned char *)&cp->cp_dpmem[iip->iic_rbase]);
271         txbd = (I2C_BD *)((unsigned char *)&cp->cp_dpmem[iip->iic_tbase]);
272
273         PRINTD(("[I2C] rbase = %04x\n", iip->iic_rbase));
274         PRINTD(("[I2C] tbase = %04x\n", iip->iic_tbase));
275         PRINTD(("[I2C] rxbd = %08x\n", (int)rxbd));
276         PRINTD(("[I2C] txbd = %08x\n", (int)txbd));
277
278         /* Set big endian byte order */
279         iip->iic_tfcr = 0x10;
280         iip->iic_rfcr = 0x10;
281
282         /* Set maximum receive size. */
283         iip->iic_mrblr = I2C_RXTX_LEN;
284
285 #ifdef CONFIG_SYS_I2C_UCODE_PATCH
286         /*
287          *  Initialize required parameters if using microcode patch.
288          */
289         iip->iic_rbptr  = iip->iic_rbase;
290         iip->iic_tbptr  = iip->iic_tbase;
291         iip->iic_rstate = 0;
292         iip->iic_tstate = 0;
293 #else
294         cp->cp_cpcr = mk_cr_cmd(CPM_CR_CH_I2C, CPM_CR_INIT_TRX) | CPM_CR_FLG;
295         do {
296                 __asm__ __volatile__ ("eieio");
297         } while (cp->cp_cpcr & CPM_CR_FLG);
298 #endif
299
300         /* Clear events and interrupts */
301         i2c->i2c_i2cer = 0xff;
302         i2c->i2c_i2cmr = 0x00;
303 }
304
305 static void
306 i2c_newio(i2c_state_t *state)
307 {
308         volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR ;
309         volatile cpm8xx_t *cp = (cpm8xx_t *)&immap->im_cpm;
310         volatile iic_t *iip = (iic_t *)&cp->cp_dparam[PROFF_IIC];
311
312         PRINTD(("[I2C] i2c_newio\n"));
313
314 #ifdef CONFIG_SYS_I2C_UCODE_PATCH
315         iip = (iic_t *)&cp->cp_dpmem[iip->iic_rpbase];
316 #endif
317         state->rx_idx = 0;
318         state->tx_idx = 0;
319         state->rxbd = (void*)&cp->cp_dpmem[iip->iic_rbase];
320         state->txbd = (void*)&cp->cp_dpmem[iip->iic_tbase];
321         state->tx_space = MAX_TX_SPACE;
322         state->tx_buf = (uchar*)state->txbd + NUM_TX_BDS * sizeof(I2C_BD);
323         state->err_cb = NULL;
324
325         PRINTD(("[I2C] rxbd = %08x\n", (int)state->rxbd));
326         PRINTD(("[I2C] txbd = %08x\n", (int)state->txbd));
327         PRINTD(("[I2C] tx_buf = %08x\n", (int)state->tx_buf));
328
329         /* clear the buffer memory */
330         memset((char *)state->tx_buf, 0, MAX_TX_SPACE);
331 }
332
333 static int
334 i2c_send(i2c_state_t *state,
335          unsigned char address,
336          unsigned char secondary_address,
337          unsigned int flags,
338          unsigned short size,
339          unsigned char *dataout)
340 {
341         volatile I2C_BD *txbd;
342         int i,j;
343
344         PRINTD(("[I2C] i2c_send add=%02d sec=%02d flag=%02d size=%d\n",
345                         address, secondary_address, flags, size));
346
347         /* trying to send message larger than BD */
348         if (size > I2C_RXTX_LEN)
349           return I2CERR_MSG_TOO_LONG;
350
351         /* no more free bds */
352         if (state->tx_idx >= NUM_TX_BDS || state->tx_space < (2 + size))
353           return I2CERR_NO_BUFFERS;
354
355         txbd = (I2C_BD *)state->txbd;
356         txbd->addr = state->tx_buf;
357
358         PRINTD(("[I2C] txbd = %08x\n", (int)txbd));
359
360         if (flags & I2CF_START_COND) {
361                 PRINTD(("[I2C] Formatting addresses...\n"));
362                 if (flags & I2CF_ENABLE_SECONDARY) {
363                         txbd->length = size + 2;  /* Length of msg + dest addr */
364                         txbd->addr[0] = address << 1;
365                         txbd->addr[1] = secondary_address;
366                         i = 2;
367                 } else {
368                         txbd->length = size + 1;  /* Length of msg + dest addr */
369                         txbd->addr[0] = address << 1;  /* Write dest addr to BD */
370                         i = 1;
371                 }
372         } else {
373                 txbd->length = size;  /* Length of message */
374                 i = 0;
375         }
376
377         /* set up txbd */
378         txbd->status = BD_SC_READY;
379         if (flags & I2CF_START_COND)
380           txbd->status |= BD_I2C_TX_START;
381         if (flags & I2CF_STOP_COND)
382           txbd->status |= BD_SC_LAST | BD_SC_WRAP;
383
384         /* Copy data to send into buffer */
385         PRINTD(("[I2C] copy data...\n"));
386         for(j = 0; j < size; i++, j++)
387           txbd->addr[i] = dataout[j];
388
389         PRINTD(("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
390                    txbd->length,
391                    txbd->status,
392                    txbd->addr[0],
393                    txbd->addr[1]));
394
395         /* advance state */
396         state->tx_buf += txbd->length;
397         state->tx_space -= txbd->length;
398         state->tx_idx++;
399         state->txbd = (void*)(txbd + 1);
400
401         return 0;
402 }
403
404 static int
405 i2c_receive(i2c_state_t *state,
406             unsigned char address,
407             unsigned char secondary_address,
408             unsigned int flags,
409             unsigned short size_to_expect,
410             unsigned char *datain)
411 {
412         volatile I2C_BD *rxbd, *txbd;
413
414         PRINTD(("[I2C] i2c_receive %02d %02d %02d\n", address, secondary_address, flags));
415
416         /* Expected to receive too much */
417         if (size_to_expect > I2C_RXTX_LEN)
418           return I2CERR_MSG_TOO_LONG;
419
420         /* no more free bds */
421         if (state->tx_idx >= NUM_TX_BDS || state->rx_idx >= NUM_RX_BDS
422                  || state->tx_space < 2)
423           return I2CERR_NO_BUFFERS;
424
425         rxbd = (I2C_BD *)state->rxbd;
426         txbd = (I2C_BD *)state->txbd;
427
428         PRINTD(("[I2C] rxbd = %08x\n", (int)rxbd));
429         PRINTD(("[I2C] txbd = %08x\n", (int)txbd));
430
431         txbd->addr = state->tx_buf;
432
433         /* set up TXBD for destination address */
434         if (flags & I2CF_ENABLE_SECONDARY) {
435                 txbd->length = 2;
436                 txbd->addr[0] = address << 1;   /* Write data */
437                 txbd->addr[1] = secondary_address;  /* Internal address */
438                 txbd->status = BD_SC_READY;
439         } else {
440                 txbd->length = 1 + size_to_expect;
441                 txbd->addr[0] = (address << 1) | 0x01;
442                 txbd->status = BD_SC_READY;
443                 memset(&txbd->addr[1], 0, txbd->length);
444         }
445
446         /* set up rxbd for reception */
447         rxbd->status = BD_SC_EMPTY;
448         rxbd->length = size_to_expect;
449         rxbd->addr = datain;
450
451         txbd->status |= BD_I2C_TX_START;
452         if (flags & I2CF_STOP_COND) {
453                 txbd->status |= BD_SC_LAST | BD_SC_WRAP;
454                 rxbd->status |= BD_SC_WRAP;
455         }
456
457         PRINTD(("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
458                    txbd->length,
459                    txbd->status,
460                    txbd->addr[0],
461                    txbd->addr[1]));
462         PRINTD(("[I2C] rxbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
463                    rxbd->length,
464                    rxbd->status,
465                    rxbd->addr[0],
466                    rxbd->addr[1]));
467
468         /* advance state */
469         state->tx_buf += txbd->length;
470         state->tx_space -= txbd->length;
471         state->tx_idx++;
472         state->txbd = (void*)(txbd + 1);
473         state->rx_idx++;
474         state->rxbd = (void*)(rxbd + 1);
475
476         return 0;
477 }
478
479
480 static int i2c_doio(i2c_state_t *state)
481 {
482         volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR ;
483         volatile cpm8xx_t *cp = (cpm8xx_t *)&immap->im_cpm;
484         volatile i2c8xx_t *i2c  = (i2c8xx_t *)&immap->im_i2c;
485         volatile iic_t *iip = (iic_t *)&cp->cp_dparam[PROFF_IIC];
486         volatile I2C_BD *txbd, *rxbd;
487         volatile int j = 0;
488
489         PRINTD(("[I2C] i2c_doio\n"));
490
491 #ifdef CONFIG_SYS_I2C_UCODE_PATCH
492         iip = (iic_t *)&cp->cp_dpmem[iip->iic_rpbase];
493 #endif
494
495         if (state->tx_idx <= 0 && state->rx_idx <= 0) {
496                 PRINTD(("[I2C] No I/O is queued\n"));
497                 return I2CERR_QUEUE_EMPTY;
498         }
499
500         iip->iic_rbptr = iip->iic_rbase;
501         iip->iic_tbptr = iip->iic_tbase;
502
503         /* Enable I2C */
504         PRINTD(("[I2C] Enabling I2C...\n"));
505         i2c->i2c_i2mod |= 0x01;
506
507         /* Begin transmission */
508         i2c->i2c_i2com |= 0x80;
509
510         /* Loop until transmit & receive completed */
511
512         if (state->tx_idx > 0) {
513                 txbd = ((I2C_BD*)state->txbd) - 1;
514                 PRINTD(("[I2C] Transmitting...(txbd=0x%08lx)\n", (ulong)txbd));
515                 while((txbd->status & BD_SC_READY) && (j++ < TOUT_LOOP)) {
516                         if (ctrlc()) {
517                                 return (-1);
518                         }
519                         __asm__ __volatile__ ("eieio");
520                 }
521         }
522
523         if ((state->rx_idx > 0) && (j < TOUT_LOOP)) {
524                 rxbd = ((I2C_BD*)state->rxbd) - 1;
525                 PRINTD(("[I2C] Receiving...(rxbd=0x%08lx)\n", (ulong)rxbd));
526                 while((rxbd->status & BD_SC_EMPTY) && (j++ < TOUT_LOOP)) {
527                         if (ctrlc()) {
528                                 return (-1);
529                         }
530                         __asm__ __volatile__ ("eieio");
531                 }
532         }
533
534         /* Turn off I2C */
535         i2c->i2c_i2mod &= ~0x01;
536
537         if (state->err_cb != NULL) {
538                 int n, i, b;
539
540                 /*
541                  * if we have an error callback function, look at the
542                  * error bits in the bd status and pass them back
543                  */
544
545                 if ((n = state->tx_idx) > 0) {
546                         for (i = 0; i < n; i++) {
547                                 txbd = ((I2C_BD*)state->txbd) - (n - i);
548                                 if ((b = txbd->status & BD_I2C_TX_ERR) != 0)
549                                         (*state->err_cb)(I2CECB_TX_ERR|b, i);
550                         }
551                 }
552
553                 if ((n = state->rx_idx) > 0) {
554                         for (i = 0; i < n; i++) {
555                                 rxbd = ((I2C_BD*)state->rxbd) - (n - i);
556                                 if ((b = rxbd->status & BD_I2C_RX_ERR) != 0)
557                                         (*state->err_cb)(I2CECB_RX_ERR|b, i);
558                         }
559                 }
560
561                 if (j >= TOUT_LOOP)
562                         (*state->err_cb)(I2CECB_TIMEOUT, 0);
563         }
564
565         return (j >= TOUT_LOOP) ? I2CERR_TIMEOUT : 0;
566 }
567
568 static int had_tx_nak;
569
570 static void
571 i2c_test_callback(int flags, int xnum)
572 {
573         if ((flags & I2CECB_TX_ERR) && (flags & I2CECB_TX_NAK))
574                 had_tx_nak = 1;
575 }
576
577 int i2c_probe(uchar chip)
578 {
579         i2c_state_t state;
580         int rc;
581         uchar buf[1];
582
583         i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
584
585         i2c_newio(&state);
586
587         state.err_cb = i2c_test_callback;
588         had_tx_nak = 0;
589
590         rc = i2c_receive(&state, chip, 0, I2CF_START_COND|I2CF_STOP_COND, 1, buf);
591
592         if (rc != 0)
593                 return (rc);
594
595         rc = i2c_doio(&state);
596
597         if ((rc != 0) && (rc != I2CERR_TIMEOUT))
598                 return (rc);
599
600         return (had_tx_nak);
601 }
602
603 int i2c_read(uchar chip, uint addr, int alen, uchar *buffer, int len)
604 {
605         i2c_state_t state;
606         uchar xaddr[4];
607         int rc;
608
609 #ifdef CONFIG_LWMON
610         WATCHDOG_RESET();
611 #endif
612
613         xaddr[0] = (addr >> 24) & 0xFF;
614         xaddr[1] = (addr >> 16) & 0xFF;
615         xaddr[2] = (addr >>  8) & 0xFF;
616         xaddr[3] =  addr        & 0xFF;
617
618 #ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW
619         /*
620          * EEPROM chips that implement "address overflow" are ones like
621          * Catalyst 24WC04/08/16 which has 9/10/11 bits of address and the
622          * extra bits end up in the "chip address" bit slots.  This makes
623          * a 24WC08 (1Kbyte) chip look like four 256 byte chips.
624          *
625          * Note that we consider the length of the address field to still
626          * be one byte because the extra address bits are hidden in the
627          * chip address.
628          */
629          chip |= ((addr >> (alen * 8)) & CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW);
630 #endif
631
632         i2c_newio(&state);
633
634         rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen, &xaddr[4-alen]);
635         if (rc != 0) {
636                 if (gd->have_console)
637                         printf("i2c_read: i2c_send failed (%d)\n", rc);
638                 return 1;
639         }
640
641         rc = i2c_receive(&state, chip, 0, I2CF_STOP_COND, len, buffer);
642         if (rc != 0) {
643                 if (gd->have_console)
644                         printf("i2c_read: i2c_receive failed (%d)\n", rc);
645                 return 1;
646         }
647
648         rc = i2c_doio(&state);
649         if (rc != 0) {
650                 if (gd->have_console)
651                         printf("i2c_read: i2c_doio failed (%d)\n", rc);
652                 return 1;
653         }
654         return 0;
655 }
656
657 int i2c_write(uchar chip, uint addr, int alen, uchar *buffer, int len)
658 {
659         i2c_state_t state;
660         uchar xaddr[4];
661         int rc;
662
663         xaddr[0] = (addr >> 24) & 0xFF;
664         xaddr[1] = (addr >> 16) & 0xFF;
665         xaddr[2] = (addr >>  8) & 0xFF;
666         xaddr[3] =  addr        & 0xFF;
667
668 #ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW
669         /*
670          * EEPROM chips that implement "address overflow" are ones like
671          * Catalyst 24WC04/08/16 which has 9/10/11 bits of address and the
672          * extra bits end up in the "chip address" bit slots.  This makes
673          * a 24WC08 (1Kbyte) chip look like four 256 byte chips.
674          *
675          * Note that we consider the length of the address field to still
676          * be one byte because the extra address bits are hidden in the
677          * chip address.
678          */
679          chip |= ((addr >> (alen * 8)) & CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW);
680 #endif
681
682         i2c_newio(&state);
683
684         rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen, &xaddr[4-alen]);
685         if (rc != 0) {
686                 if (gd->have_console)
687                         printf("i2c_write: first i2c_send failed (%d)\n", rc);
688                 return 1;
689         }
690
691         rc = i2c_send(&state, 0, 0, I2CF_STOP_COND, len, buffer);
692         if (rc != 0) {
693                 if (gd->have_console)
694                         printf("i2c_write: second i2c_send failed (%d)\n", rc);
695                 return 1;
696         }
697
698         rc = i2c_doio(&state);
699         if (rc != 0) {
700                 if (gd->have_console)
701                         printf("i2c_write: i2c_doio failed (%d)\n", rc);
702                 return 1;
703         }
704         return 0;
705 }
706
707 #endif  /* CONFIG_HARD_I2C */