]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/ddr/fsl/lc_common_dimm_params.c
arm: mx5: Add fuse supply enable in fsl_iim
[karo-tx-uboot.git] / drivers / ddr / fsl / lc_common_dimm_params.c
1 /*
2  * Copyright 2008-2012 Freescale Semiconductor, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * Version 2 as published by the Free Software Foundation.
7  */
8
9 #include <common.h>
10 #include <fsl_ddr_sdram.h>
11
12 #include <fsl_ddr.h>
13
14 #if defined(CONFIG_SYS_FSL_DDR3)
15 static unsigned int
16 compute_cas_latency_ddr3(const dimm_params_t *dimm_params,
17                          common_timing_params_t *outpdimm,
18                          unsigned int number_of_dimms)
19 {
20         unsigned int i;
21         unsigned int taamin_ps = 0;
22         unsigned int tckmin_x_ps = 0;
23         unsigned int common_caslat;
24         unsigned int caslat_actual;
25         unsigned int retry = 16;
26         unsigned int tmp;
27         const unsigned int mclk_ps = get_memory_clk_period_ps();
28
29         /* compute the common CAS latency supported between slots */
30         tmp = dimm_params[0].caslat_x;
31         for (i = 1; i < number_of_dimms; i++) {
32                 if (dimm_params[i].n_ranks)
33                         tmp &= dimm_params[i].caslat_x;
34         }
35         common_caslat = tmp;
36
37         /* compute the max tAAmin tCKmin between slots */
38         for (i = 0; i < number_of_dimms; i++) {
39                 taamin_ps = max(taamin_ps, dimm_params[i].taa_ps);
40                 tckmin_x_ps = max(tckmin_x_ps, dimm_params[i].tckmin_x_ps);
41         }
42         /* validate if the memory clk is in the range of dimms */
43         if (mclk_ps < tckmin_x_ps) {
44                 printf("DDR clock (MCLK cycle %u ps) is faster than "
45                         "the slowest DIMM(s) (tCKmin %u ps) can support.\n",
46                         mclk_ps, tckmin_x_ps);
47         }
48         /* determine the acutal cas latency */
49         caslat_actual = (taamin_ps + mclk_ps - 1) / mclk_ps;
50         /* check if the dimms support the CAS latency */
51         while (!(common_caslat & (1 << caslat_actual)) && retry > 0) {
52                 caslat_actual++;
53                 retry--;
54         }
55         /* once the caculation of caslat_actual is completed
56          * we must verify that this CAS latency value does not
57          * exceed tAAmax, which is 20 ns for all DDR3 speed grades
58          */
59         if (caslat_actual * mclk_ps > 20000) {
60                 printf("The choosen cas latency %d is too large\n",
61                         caslat_actual);
62         }
63         outpdimm->lowest_common_SPD_caslat = caslat_actual;
64
65         return 0;
66 }
67 #endif
68
69 /*
70  * compute_lowest_common_dimm_parameters()
71  *
72  * Determine the worst-case DIMM timing parameters from the set of DIMMs
73  * whose parameters have been computed into the array pointed to
74  * by dimm_params.
75  */
76 unsigned int
77 compute_lowest_common_dimm_parameters(const dimm_params_t *dimm_params,
78                                       common_timing_params_t *outpdimm,
79                                       const unsigned int number_of_dimms)
80 {
81         unsigned int i, j;
82
83         unsigned int tckmin_x_ps = 0;
84         unsigned int tckmax_ps = 0xFFFFFFFF;
85         unsigned int tckmax_max_ps = 0;
86         unsigned int trcd_ps = 0;
87         unsigned int trp_ps = 0;
88         unsigned int tras_ps = 0;
89         unsigned int twr_ps = 0;
90         unsigned int twtr_ps = 0;
91         unsigned int trfc_ps = 0;
92         unsigned int trrd_ps = 0;
93         unsigned int trc_ps = 0;
94         unsigned int refresh_rate_ps = 0;
95         unsigned int extended_op_srt = 1;
96         unsigned int tis_ps = 0;
97         unsigned int tih_ps = 0;
98         unsigned int tds_ps = 0;
99         unsigned int tdh_ps = 0;
100         unsigned int trtp_ps = 0;
101         unsigned int tdqsq_max_ps = 0;
102         unsigned int tqhs_ps = 0;
103
104         unsigned int temp1, temp2;
105         unsigned int additive_latency = 0;
106 #if !defined(CONFIG_SYS_FSL_DDR3)
107         const unsigned int mclk_ps = get_memory_clk_period_ps();
108         unsigned int lowest_good_caslat;
109         unsigned int not_ok;
110
111         debug("using mclk_ps = %u\n", mclk_ps);
112 #endif
113
114         temp1 = 0;
115         for (i = 0; i < number_of_dimms; i++) {
116                 /*
117                  * If there are no ranks on this DIMM,
118                  * it probably doesn't exist, so skip it.
119                  */
120                 if (dimm_params[i].n_ranks == 0) {
121                         temp1++;
122                         continue;
123                 }
124                 if (dimm_params[i].n_ranks == 4 && i != 0) {
125                         printf("Found Quad-rank DIMM in wrong bank, ignored."
126                                 " Software may not run as expected.\n");
127                         temp1++;
128                         continue;
129                 }
130
131                 /*
132                  * check if quad-rank DIMM is plugged if
133                  * CONFIG_CHIP_SELECT_QUAD_CAPABLE is not defined
134                  * Only the board with proper design is capable
135                  */
136 #ifndef CONFIG_FSL_DDR_FIRST_SLOT_QUAD_CAPABLE
137                 if (dimm_params[i].n_ranks == 4 && \
138                   CONFIG_CHIP_SELECTS_PER_CTRL/CONFIG_DIMM_SLOTS_PER_CTLR < 4) {
139                         printf("Found Quad-rank DIMM, not able to support.");
140                         temp1++;
141                         continue;
142                 }
143 #endif
144                 /*
145                  * Find minimum tckmax_ps to find fastest slow speed,
146                  * i.e., this is the slowest the whole system can go.
147                  */
148                 tckmax_ps = min(tckmax_ps, dimm_params[i].tckmax_ps);
149
150                 /* Either find maximum value to determine slowest
151                  * speed, delay, time, period, etc */
152                 tckmin_x_ps = max(tckmin_x_ps, dimm_params[i].tckmin_x_ps);
153                 tckmax_max_ps = max(tckmax_max_ps, dimm_params[i].tckmax_ps);
154                 trcd_ps = max(trcd_ps, dimm_params[i].trcd_ps);
155                 trp_ps = max(trp_ps, dimm_params[i].trp_ps);
156                 tras_ps = max(tras_ps, dimm_params[i].tras_ps);
157                 twr_ps = max(twr_ps, dimm_params[i].twr_ps);
158                 twtr_ps = max(twtr_ps, dimm_params[i].twtr_ps);
159                 trfc_ps = max(trfc_ps, dimm_params[i].trfc_ps);
160                 trrd_ps = max(trrd_ps, dimm_params[i].trrd_ps);
161                 trc_ps = max(trc_ps, dimm_params[i].trc_ps);
162                 tis_ps = max(tis_ps, dimm_params[i].tis_ps);
163                 tih_ps = max(tih_ps, dimm_params[i].tih_ps);
164                 tds_ps = max(tds_ps, dimm_params[i].tds_ps);
165                 tdh_ps = max(tdh_ps, dimm_params[i].tdh_ps);
166                 trtp_ps = max(trtp_ps, dimm_params[i].trtp_ps);
167                 tqhs_ps = max(tqhs_ps, dimm_params[i].tqhs_ps);
168                 refresh_rate_ps = max(refresh_rate_ps,
169                                       dimm_params[i].refresh_rate_ps);
170                 /* extended_op_srt is either 0 or 1, 0 having priority */
171                 extended_op_srt = min(extended_op_srt,
172                                       dimm_params[i].extended_op_srt);
173
174                 /*
175                  * Find maximum tdqsq_max_ps to find slowest.
176                  *
177                  * FIXME: is finding the slowest value the correct
178                  * strategy for this parameter?
179                  */
180                 tdqsq_max_ps = max(tdqsq_max_ps, dimm_params[i].tdqsq_max_ps);
181         }
182
183         outpdimm->ndimms_present = number_of_dimms - temp1;
184
185         if (temp1 == number_of_dimms) {
186                 debug("no dimms this memory controller\n");
187                 return 0;
188         }
189
190         outpdimm->tckmin_x_ps = tckmin_x_ps;
191         outpdimm->tckmax_ps = tckmax_ps;
192         outpdimm->tckmax_max_ps = tckmax_max_ps;
193         outpdimm->trcd_ps = trcd_ps;
194         outpdimm->trp_ps = trp_ps;
195         outpdimm->tras_ps = tras_ps;
196         outpdimm->twr_ps = twr_ps;
197         outpdimm->twtr_ps = twtr_ps;
198         outpdimm->trfc_ps = trfc_ps;
199         outpdimm->trrd_ps = trrd_ps;
200         outpdimm->trc_ps = trc_ps;
201         outpdimm->refresh_rate_ps = refresh_rate_ps;
202         outpdimm->extended_op_srt = extended_op_srt;
203         outpdimm->tis_ps = tis_ps;
204         outpdimm->tih_ps = tih_ps;
205         outpdimm->tds_ps = tds_ps;
206         outpdimm->tdh_ps = tdh_ps;
207         outpdimm->trtp_ps = trtp_ps;
208         outpdimm->tdqsq_max_ps = tdqsq_max_ps;
209         outpdimm->tqhs_ps = tqhs_ps;
210
211         /* Determine common burst length for all DIMMs. */
212         temp1 = 0xff;
213         for (i = 0; i < number_of_dimms; i++) {
214                 if (dimm_params[i].n_ranks) {
215                         temp1 &= dimm_params[i].burst_lengths_bitmask;
216                 }
217         }
218         outpdimm->all_dimms_burst_lengths_bitmask = temp1;
219
220         /* Determine if all DIMMs registered buffered. */
221         temp1 = temp2 = 0;
222         for (i = 0; i < number_of_dimms; i++) {
223                 if (dimm_params[i].n_ranks) {
224                         if (dimm_params[i].registered_dimm) {
225                                 temp1 = 1;
226 #ifndef CONFIG_SPL_BUILD
227                                 printf("Detected RDIMM %s\n",
228                                         dimm_params[i].mpart);
229 #endif
230                         } else {
231                                 temp2 = 1;
232 #ifndef CONFIG_SPL_BUILD
233                                 printf("Detected UDIMM %s\n",
234                                         dimm_params[i].mpart);
235 #endif
236                         }
237                 }
238         }
239
240         outpdimm->all_dimms_registered = 0;
241         outpdimm->all_dimms_unbuffered = 0;
242         if (temp1 && !temp2) {
243                 outpdimm->all_dimms_registered = 1;
244         } else if (!temp1 && temp2) {
245                 outpdimm->all_dimms_unbuffered = 1;
246         } else {
247                 printf("ERROR:  Mix of registered buffered and unbuffered "
248                                 "DIMMs detected!\n");
249         }
250
251         temp1 = 0;
252         if (outpdimm->all_dimms_registered)
253                 for (j = 0; j < 16; j++) {
254                         outpdimm->rcw[j] = dimm_params[0].rcw[j];
255                         for (i = 1; i < number_of_dimms; i++) {
256                                 if (!dimm_params[i].n_ranks)
257                                         continue;
258                                 if (dimm_params[i].rcw[j] != dimm_params[0].rcw[j]) {
259                                         temp1 = 1;
260                                         break;
261                                 }
262                         }
263                 }
264
265         if (temp1 != 0)
266                 printf("ERROR: Mix different RDIMM detected!\n");
267
268 #if defined(CONFIG_SYS_FSL_DDR3)
269         if (compute_cas_latency_ddr3(dimm_params, outpdimm, number_of_dimms))
270                 return 1;
271 #else
272         /*
273          * Compute a CAS latency suitable for all DIMMs
274          *
275          * Strategy for SPD-defined latencies: compute only
276          * CAS latency defined by all DIMMs.
277          */
278
279         /*
280          * Step 1: find CAS latency common to all DIMMs using bitwise
281          * operation.
282          */
283         temp1 = 0xFF;
284         for (i = 0; i < number_of_dimms; i++) {
285                 if (dimm_params[i].n_ranks) {
286                         temp2 = 0;
287                         temp2 |= 1 << dimm_params[i].caslat_x;
288                         temp2 |= 1 << dimm_params[i].caslat_x_minus_1;
289                         temp2 |= 1 << dimm_params[i].caslat_x_minus_2;
290                         /*
291                          * FIXME: If there was no entry for X-2 (X-1) in
292                          * the SPD, then caslat_x_minus_2
293                          * (caslat_x_minus_1) contains either 255 or
294                          * 0xFFFFFFFF because that's what the glorious
295                          * __ilog2 function returns for an input of 0.
296                          * On 32-bit PowerPC, left shift counts with bit
297                          * 26 set (that the value of 255 or 0xFFFFFFFF
298                          * will have), cause the destination register to
299                          * be 0.  That is why this works.
300                          */
301                         temp1 &= temp2;
302                 }
303         }
304
305         /*
306          * Step 2: check each common CAS latency against tCK of each
307          * DIMM's SPD.
308          */
309         lowest_good_caslat = 0;
310         temp2 = 0;
311         while (temp1) {
312                 not_ok = 0;
313                 temp2 =  __ilog2(temp1);
314                 debug("checking common caslat = %u\n", temp2);
315
316                 /* Check if this CAS latency will work on all DIMMs at tCK. */
317                 for (i = 0; i < number_of_dimms; i++) {
318                         if (!dimm_params[i].n_ranks) {
319                                 continue;
320                         }
321                         if (dimm_params[i].caslat_x == temp2) {
322                                 if (mclk_ps >= dimm_params[i].tckmin_x_ps) {
323                                         debug("CL = %u ok on DIMM %u at tCK=%u"
324                                             " ps with its tCKmin_X_ps of %u\n",
325                                                temp2, i, mclk_ps,
326                                                dimm_params[i].tckmin_x_ps);
327                                         continue;
328                                 } else {
329                                         not_ok++;
330                                 }
331                         }
332
333                         if (dimm_params[i].caslat_x_minus_1 == temp2) {
334                                 unsigned int tckmin_x_minus_1_ps
335                                         = dimm_params[i].tckmin_x_minus_1_ps;
336                                 if (mclk_ps >= tckmin_x_minus_1_ps) {
337                                         debug("CL = %u ok on DIMM %u at "
338                                                 "tCK=%u ps with its "
339                                                 "tckmin_x_minus_1_ps of %u\n",
340                                                temp2, i, mclk_ps,
341                                                tckmin_x_minus_1_ps);
342                                         continue;
343                                 } else {
344                                         not_ok++;
345                                 }
346                         }
347
348                         if (dimm_params[i].caslat_x_minus_2 == temp2) {
349                                 unsigned int tckmin_x_minus_2_ps
350                                         = dimm_params[i].tckmin_x_minus_2_ps;
351                                 if (mclk_ps >= tckmin_x_minus_2_ps) {
352                                         debug("CL = %u ok on DIMM %u at "
353                                                 "tCK=%u ps with its "
354                                                 "tckmin_x_minus_2_ps of %u\n",
355                                                temp2, i, mclk_ps,
356                                                tckmin_x_minus_2_ps);
357                                         continue;
358                                 } else {
359                                         not_ok++;
360                                 }
361                         }
362                 }
363
364                 if (!not_ok) {
365                         lowest_good_caslat = temp2;
366                 }
367
368                 temp1 &= ~(1 << temp2);
369         }
370
371         debug("lowest common SPD-defined CAS latency = %u\n",
372                lowest_good_caslat);
373         outpdimm->lowest_common_SPD_caslat = lowest_good_caslat;
374
375
376         /*
377          * Compute a common 'de-rated' CAS latency.
378          *
379          * The strategy here is to find the *highest* dereated cas latency
380          * with the assumption that all of the DIMMs will support a dereated
381          * CAS latency higher than or equal to their lowest dereated value.
382          */
383         temp1 = 0;
384         for (i = 0; i < number_of_dimms; i++) {
385                 temp1 = max(temp1, dimm_params[i].caslat_lowest_derated);
386         }
387         outpdimm->highest_common_derated_caslat = temp1;
388         debug("highest common dereated CAS latency = %u\n", temp1);
389 #endif /* #if defined(CONFIG_SYS_FSL_DDR3) */
390
391         /* Determine if all DIMMs ECC capable. */
392         temp1 = 1;
393         for (i = 0; i < number_of_dimms; i++) {
394                 if (dimm_params[i].n_ranks &&
395                         !(dimm_params[i].edc_config & EDC_ECC)) {
396                         temp1 = 0;
397                         break;
398                 }
399         }
400         if (temp1) {
401                 debug("all DIMMs ECC capable\n");
402         } else {
403                 debug("Warning: not all DIMMs ECC capable, cant enable ECC\n");
404         }
405         outpdimm->all_dimms_ecc_capable = temp1;
406
407 #ifndef CONFIG_SYS_FSL_DDR3
408         /* FIXME: move to somewhere else to validate. */
409         if (mclk_ps > tckmax_max_ps) {
410                 printf("Warning: some of the installed DIMMs "
411                                 "can not operate this slowly.\n");
412                 return 1;
413         }
414 #endif
415         /*
416          * Compute additive latency.
417          *
418          * For DDR1, additive latency should be 0.
419          *
420          * For DDR2, with ODT enabled, use "a value" less than ACTTORW,
421          *      which comes from Trcd, and also note that:
422          *          add_lat + caslat must be >= 4
423          *
424          * For DDR3, we use the AL=0
425          *
426          * When to use additive latency for DDR2:
427          *
428          * I. Because you are using CL=3 and need to do ODT on writes and
429          *    want functionality.
430          *    1. Are you going to use ODT? (Does your board not have
431          *      additional termination circuitry for DQ, DQS, DQS_,
432          *      DM, RDQS, RDQS_ for x4/x8 configs?)
433          *    2. If so, is your lowest supported CL going to be 3?
434          *    3. If so, then you must set AL=1 because
435          *
436          *       WL >= 3 for ODT on writes
437          *       RL = AL + CL
438          *       WL = RL - 1
439          *       ->
440          *       WL = AL + CL - 1
441          *       AL + CL - 1 >= 3
442          *       AL + CL >= 4
443          *  QED
444          *
445          *  RL >= 3 for ODT on reads
446          *  RL = AL + CL
447          *
448          *  Since CL aren't usually less than 2, AL=0 is a minimum,
449          *  so the WL-derived AL should be the  -- FIXME?
450          *
451          * II. Because you are using auto-precharge globally and want to
452          *     use additive latency (posted CAS) to get more bandwidth.
453          *     1. Are you going to use auto-precharge mode globally?
454          *
455          *        Use addtivie latency and compute AL to be 1 cycle less than
456          *        tRCD, i.e. the READ or WRITE command is in the cycle
457          *        immediately following the ACTIVATE command..
458          *
459          * III. Because you feel like it or want to do some sort of
460          *      degraded-performance experiment.
461          *     1.  Do you just want to use additive latency because you feel
462          *         like it?
463          *
464          * Validation:  AL is less than tRCD, and within the other
465          * read-to-precharge constraints.
466          */
467
468         additive_latency = 0;
469
470 #if defined(CONFIG_SYS_FSL_DDR2)
471         if (lowest_good_caslat < 4) {
472                 additive_latency = (picos_to_mclk(trcd_ps) > lowest_good_caslat)
473                         ? picos_to_mclk(trcd_ps) - lowest_good_caslat : 0;
474                 if (mclk_to_picos(additive_latency) > trcd_ps) {
475                         additive_latency = picos_to_mclk(trcd_ps);
476                         debug("setting additive_latency to %u because it was "
477                                 " greater than tRCD_ps\n", additive_latency);
478                 }
479         }
480
481 #elif defined(CONFIG_SYS_FSL_DDR3)
482         /*
483          * The system will not use the global auto-precharge mode.
484          * However, it uses the page mode, so we set AL=0
485          */
486         additive_latency = 0;
487 #endif
488
489         /*
490          * Validate additive latency
491          * FIXME: move to somewhere else to validate
492          *
493          * AL <= tRCD(min)
494          */
495         if (mclk_to_picos(additive_latency) > trcd_ps) {
496                 printf("Error: invalid additive latency exceeds tRCD(min).\n");
497                 return 1;
498         }
499
500         /*
501          * RL = CL + AL;  RL >= 3 for ODT_RD_CFG to be enabled
502          * WL = RL - 1;  WL >= 3 for ODT_WL_CFG to be enabled
503          * ADD_LAT (the register) must be set to a value less
504          * than ACTTORW if WL = 1, then AL must be set to 1
505          * RD_TO_PRE (the register) must be set to a minimum
506          * tRTP + AL if AL is nonzero
507          */
508
509         /*
510          * Additive latency will be applied only if the memctl option to
511          * use it.
512          */
513         outpdimm->additive_latency = additive_latency;
514
515         debug("tCKmin_ps = %u\n", outpdimm->tckmin_x_ps);
516         debug("trcd_ps   = %u\n", outpdimm->trcd_ps);
517         debug("trp_ps    = %u\n", outpdimm->trp_ps);
518         debug("tras_ps   = %u\n", outpdimm->tras_ps);
519         debug("twr_ps    = %u\n", outpdimm->twr_ps);
520         debug("twtr_ps   = %u\n", outpdimm->twtr_ps);
521         debug("trfc_ps   = %u\n", outpdimm->trfc_ps);
522         debug("trrd_ps   = %u\n", outpdimm->trrd_ps);
523         debug("trc_ps    = %u\n", outpdimm->trc_ps);
524
525         return 0;
526 }