]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/mtd/nand/atmel_nand.c
Merge branch 'master' of git://www.denx.de/git/u-boot-cfi-flash
[karo-tx-uboot.git] / drivers / mtd / nand / atmel_nand.c
1 /*
2  * (C) Copyright 2007-2008
3  * Stelian Pop <stelian@popies.net>
4  * Lead Tech Design <www.leadtechdesign.com>
5  *
6  * (C) Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
7  *
8  * Add Programmable Multibit ECC support for various AT91 SoC
9  *     (C) Copyright 2012 ATMEL, Hong Xu
10  *
11  * SPDX-License-Identifier:     GPL-2.0+
12  */
13
14 #include <common.h>
15 #include <asm/arch/hardware.h>
16 #include <asm/arch/gpio.h>
17 #include <asm/arch/at91_pio.h>
18
19 #include <nand.h>
20 #include <watchdog.h>
21
22 #ifdef CONFIG_ATMEL_NAND_HWECC
23
24 /* Register access macros */
25 #define ecc_readl(add, reg)                             \
26         readl(AT91_BASE_SYS + add + ATMEL_ECC_##reg)
27 #define ecc_writel(add, reg, value)                     \
28         writel((value), AT91_BASE_SYS + add + ATMEL_ECC_##reg)
29
30 #include "atmel_nand_ecc.h"     /* Hardware ECC registers */
31
32 #ifdef CONFIG_ATMEL_NAND_HW_PMECC
33
34 struct atmel_nand_host {
35         struct pmecc_regs __iomem *pmecc;
36         struct pmecc_errloc_regs __iomem *pmerrloc;
37         void __iomem            *pmecc_rom_base;
38
39         u8              pmecc_corr_cap;
40         u16             pmecc_sector_size;
41         u32             pmecc_index_table_offset;
42
43         int             pmecc_bytes_per_sector;
44         int             pmecc_sector_number;
45         int             pmecc_degree;   /* Degree of remainders */
46         int             pmecc_cw_len;   /* Length of codeword */
47
48         /* lookup table for alpha_to and index_of */
49         void __iomem    *pmecc_alpha_to;
50         void __iomem    *pmecc_index_of;
51
52         /* data for pmecc computation */
53         int16_t pmecc_smu[(CONFIG_PMECC_CAP + 2) * (2 * CONFIG_PMECC_CAP + 1)];
54         int16_t pmecc_partial_syn[2 * CONFIG_PMECC_CAP + 1];
55         int16_t pmecc_si[2 * CONFIG_PMECC_CAP + 1];
56         int16_t pmecc_lmu[CONFIG_PMECC_CAP + 1]; /* polynomal order */
57         int     pmecc_mu[CONFIG_PMECC_CAP + 1];
58         int     pmecc_dmu[CONFIG_PMECC_CAP + 1];
59         int     pmecc_delta[CONFIG_PMECC_CAP + 1];
60 };
61
62 static struct atmel_nand_host pmecc_host;
63 static struct nand_ecclayout atmel_pmecc_oobinfo;
64
65 /*
66  * Return number of ecc bytes per sector according to sector size and
67  * correction capability
68  *
69  * Following table shows what at91 PMECC supported:
70  * Correction Capability        Sector_512_bytes        Sector_1024_bytes
71  * =====================        ================        =================
72  *                2-bits                 4-bytes                  4-bytes
73  *                4-bits                 7-bytes                  7-bytes
74  *                8-bits                13-bytes                 14-bytes
75  *               12-bits                20-bytes                 21-bytes
76  *               24-bits                39-bytes                 42-bytes
77  */
78 static int pmecc_get_ecc_bytes(int cap, int sector_size)
79 {
80         int m = 12 + sector_size / 512;
81         return (m * cap + 7) / 8;
82 }
83
84 static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
85         int oobsize, int ecc_len)
86 {
87         int i;
88
89         layout->eccbytes = ecc_len;
90
91         /* ECC will occupy the last ecc_len bytes continuously */
92         for (i = 0; i < ecc_len; i++)
93                 layout->eccpos[i] = oobsize - ecc_len + i;
94
95         layout->oobfree[0].offset = 2;
96         layout->oobfree[0].length =
97                 oobsize - ecc_len - layout->oobfree[0].offset;
98 }
99
100 static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
101 {
102         int table_size;
103
104         table_size = host->pmecc_sector_size == 512 ?
105                 PMECC_INDEX_TABLE_SIZE_512 : PMECC_INDEX_TABLE_SIZE_1024;
106
107         /* the ALPHA lookup table is right behind the INDEX lookup table. */
108         return host->pmecc_rom_base + host->pmecc_index_table_offset +
109                         table_size * sizeof(int16_t);
110 }
111
112 static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
113 {
114         struct nand_chip *nand_chip = mtd->priv;
115         struct atmel_nand_host *host = nand_chip->priv;
116         int i;
117         uint32_t value;
118
119         /* Fill odd syndromes */
120         for (i = 0; i < host->pmecc_corr_cap; i++) {
121                 value = readl(&host->pmecc->rem_port[sector].rem[i / 2]);
122                 if (i & 1)
123                         value >>= 16;
124                 value &= 0xffff;
125                 host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
126         }
127 }
128
129 static void pmecc_substitute(struct mtd_info *mtd)
130 {
131         struct nand_chip *nand_chip = mtd->priv;
132         struct atmel_nand_host *host = nand_chip->priv;
133         int16_t __iomem *alpha_to = host->pmecc_alpha_to;
134         int16_t __iomem *index_of = host->pmecc_index_of;
135         int16_t *partial_syn = host->pmecc_partial_syn;
136         const int cap = host->pmecc_corr_cap;
137         int16_t *si;
138         int i, j;
139
140         /* si[] is a table that holds the current syndrome value,
141          * an element of that table belongs to the field
142          */
143         si = host->pmecc_si;
144
145         memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
146
147         /* Computation 2t syndromes based on S(x) */
148         /* Odd syndromes */
149         for (i = 1; i < 2 * cap; i += 2) {
150                 for (j = 0; j < host->pmecc_degree; j++) {
151                         if (partial_syn[i] & (0x1 << j))
152                                 si[i] = readw(alpha_to + i * j) ^ si[i];
153                 }
154         }
155         /* Even syndrome = (Odd syndrome) ** 2 */
156         for (i = 2, j = 1; j <= cap; i = ++j << 1) {
157                 if (si[j] == 0) {
158                         si[i] = 0;
159                 } else {
160                         int16_t tmp;
161
162                         tmp = readw(index_of + si[j]);
163                         tmp = (tmp * 2) % host->pmecc_cw_len;
164                         si[i] = readw(alpha_to + tmp);
165                 }
166         }
167 }
168
169 /*
170  * This function defines a Berlekamp iterative procedure for
171  * finding the value of the error location polynomial.
172  * The input is si[], initialize by pmecc_substitute().
173  * The output is smu[][].
174  *
175  * This function is written according to chip datasheet Chapter:
176  * Find the Error Location Polynomial Sigma(x) of Section:
177  * Programmable Multibit ECC Control (PMECC).
178  */
179 static void pmecc_get_sigma(struct mtd_info *mtd)
180 {
181         struct nand_chip *nand_chip = mtd->priv;
182         struct atmel_nand_host *host = nand_chip->priv;
183
184         int16_t *lmu = host->pmecc_lmu;
185         int16_t *si = host->pmecc_si;
186         int *mu = host->pmecc_mu;
187         int *dmu = host->pmecc_dmu;     /* Discrepancy */
188         int *delta = host->pmecc_delta; /* Delta order */
189         int cw_len = host->pmecc_cw_len;
190         const int16_t cap = host->pmecc_corr_cap;
191         const int num = 2 * cap + 1;
192         int16_t __iomem *index_of = host->pmecc_index_of;
193         int16_t __iomem *alpha_to = host->pmecc_alpha_to;
194         int i, j, k;
195         uint32_t dmu_0_count, tmp;
196         int16_t *smu = host->pmecc_smu;
197
198         /* index of largest delta */
199         int ro;
200         int largest;
201         int diff;
202
203         /* Init the Sigma(x) */
204         memset(smu, 0, sizeof(int16_t) * ARRAY_SIZE(smu));
205
206         dmu_0_count = 0;
207
208         /* First Row */
209
210         /* Mu */
211         mu[0] = -1;
212
213         smu[0] = 1;
214
215         /* discrepancy set to 1 */
216         dmu[0] = 1;
217         /* polynom order set to 0 */
218         lmu[0] = 0;
219         /* delta[0] = (mu[0] * 2 - lmu[0]) >> 1; */
220         delta[0] = -1;
221
222         /* Second Row */
223
224         /* Mu */
225         mu[1] = 0;
226         /* Sigma(x) set to 1 */
227         smu[num] = 1;
228
229         /* discrepancy set to S1 */
230         dmu[1] = si[1];
231
232         /* polynom order set to 0 */
233         lmu[1] = 0;
234
235         /* delta[1] = (mu[1] * 2 - lmu[1]) >> 1; */
236         delta[1] = 0;
237
238         for (i = 1; i <= cap; i++) {
239                 mu[i + 1] = i << 1;
240                 /* Begin Computing Sigma (Mu+1) and L(mu) */
241                 /* check if discrepancy is set to 0 */
242                 if (dmu[i] == 0) {
243                         dmu_0_count++;
244
245                         tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
246                         if ((cap - (lmu[i] >> 1) - 1) & 0x1)
247                                 tmp += 2;
248                         else
249                                 tmp += 1;
250
251                         if (dmu_0_count == tmp) {
252                                 for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
253                                         smu[(cap + 1) * num + j] =
254                                                         smu[i * num + j];
255
256                                 lmu[cap + 1] = lmu[i];
257                                 return;
258                         }
259
260                         /* copy polynom */
261                         for (j = 0; j <= lmu[i] >> 1; j++)
262                                 smu[(i + 1) * num + j] = smu[i * num + j];
263
264                         /* copy previous polynom order to the next */
265                         lmu[i + 1] = lmu[i];
266                 } else {
267                         ro = 0;
268                         largest = -1;
269                         /* find largest delta with dmu != 0 */
270                         for (j = 0; j < i; j++) {
271                                 if ((dmu[j]) && (delta[j] > largest)) {
272                                         largest = delta[j];
273                                         ro = j;
274                                 }
275                         }
276
277                         /* compute difference */
278                         diff = (mu[i] - mu[ro]);
279
280                         /* Compute degree of the new smu polynomial */
281                         if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
282                                 lmu[i + 1] = lmu[i];
283                         else
284                                 lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
285
286                         /* Init smu[i+1] with 0 */
287                         for (k = 0; k < num; k++)
288                                 smu[(i + 1) * num + k] = 0;
289
290                         /* Compute smu[i+1] */
291                         for (k = 0; k <= lmu[ro] >> 1; k++) {
292                                 int16_t a, b, c;
293
294                                 if (!(smu[ro * num + k] && dmu[i]))
295                                         continue;
296                                 a = readw(index_of + dmu[i]);
297                                 b = readw(index_of + dmu[ro]);
298                                 c = readw(index_of + smu[ro * num + k]);
299                                 tmp = a + (cw_len - b) + c;
300                                 a = readw(alpha_to + tmp % cw_len);
301                                 smu[(i + 1) * num + (k + diff)] = a;
302                         }
303
304                         for (k = 0; k <= lmu[i] >> 1; k++)
305                                 smu[(i + 1) * num + k] ^= smu[i * num + k];
306                 }
307
308                 /* End Computing Sigma (Mu+1) and L(mu) */
309                 /* In either case compute delta */
310                 delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
311
312                 /* Do not compute discrepancy for the last iteration */
313                 if (i >= cap)
314                         continue;
315
316                 for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
317                         tmp = 2 * (i - 1);
318                         if (k == 0) {
319                                 dmu[i + 1] = si[tmp + 3];
320                         } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
321                                 int16_t a, b, c;
322                                 a = readw(index_of +
323                                                 smu[(i + 1) * num + k]);
324                                 b = si[2 * (i - 1) + 3 - k];
325                                 c = readw(index_of + b);
326                                 tmp = a + c;
327                                 tmp %= cw_len;
328                                 dmu[i + 1] = readw(alpha_to + tmp) ^
329                                         dmu[i + 1];
330                         }
331                 }
332         }
333 }
334
335 static int pmecc_err_location(struct mtd_info *mtd)
336 {
337         struct nand_chip *nand_chip = mtd->priv;
338         struct atmel_nand_host *host = nand_chip->priv;
339         const int cap = host->pmecc_corr_cap;
340         const int num = 2 * cap + 1;
341         int sector_size = host->pmecc_sector_size;
342         int err_nbr = 0;        /* number of error */
343         int roots_nbr;          /* number of roots */
344         int i;
345         uint32_t val;
346         int16_t *smu = host->pmecc_smu;
347         int timeout = PMECC_MAX_TIMEOUT_US;
348
349         writel(PMERRLOC_DISABLE, &host->pmerrloc->eldis);
350
351         for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
352                 writel(smu[(cap + 1) * num + i], &host->pmerrloc->sigma[i]);
353                 err_nbr++;
354         }
355
356         val = PMERRLOC_ELCFG_NUM_ERRORS(err_nbr - 1);
357         if (sector_size == 1024)
358                 val |= PMERRLOC_ELCFG_SECTOR_1024;
359
360         writel(val, &host->pmerrloc->elcfg);
361         writel(sector_size * 8 + host->pmecc_degree * cap,
362                         &host->pmerrloc->elen);
363
364         while (--timeout) {
365                 if (readl(&host->pmerrloc->elisr) & PMERRLOC_CALC_DONE)
366                         break;
367                 WATCHDOG_RESET();
368                 udelay(1);
369         }
370
371         if (!timeout) {
372                 printk(KERN_ERR "atmel_nand : Timeout to calculate PMECC error location\n");
373                 return -1;
374         }
375
376         roots_nbr = (readl(&host->pmerrloc->elisr) & PMERRLOC_ERR_NUM_MASK)
377                         >> 8;
378         /* Number of roots == degree of smu hence <= cap */
379         if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
380                 return err_nbr - 1;
381
382         /* Number of roots does not match the degree of smu
383          * unable to correct error */
384         return -1;
385 }
386
387 static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
388                 int sector_num, int extra_bytes, int err_nbr)
389 {
390         struct nand_chip *nand_chip = mtd->priv;
391         struct atmel_nand_host *host = nand_chip->priv;
392         int i = 0;
393         int byte_pos, bit_pos, sector_size, pos;
394         uint32_t tmp;
395         uint8_t err_byte;
396
397         sector_size = host->pmecc_sector_size;
398
399         while (err_nbr) {
400                 tmp = readl(&host->pmerrloc->el[i]) - 1;
401                 byte_pos = tmp / 8;
402                 bit_pos  = tmp % 8;
403
404                 if (byte_pos >= (sector_size + extra_bytes))
405                         BUG();  /* should never happen */
406
407                 if (byte_pos < sector_size) {
408                         err_byte = *(buf + byte_pos);
409                         *(buf + byte_pos) ^= (1 << bit_pos);
410
411                         pos = sector_num * host->pmecc_sector_size + byte_pos;
412                         printk(KERN_INFO "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
413                                 pos, bit_pos, err_byte, *(buf + byte_pos));
414                 } else {
415                         /* Bit flip in OOB area */
416                         tmp = sector_num * host->pmecc_bytes_per_sector
417                                         + (byte_pos - sector_size);
418                         err_byte = ecc[tmp];
419                         ecc[tmp] ^= (1 << bit_pos);
420
421                         pos = tmp + nand_chip->ecc.layout->eccpos[0];
422                         printk(KERN_INFO "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
423                                 pos, bit_pos, err_byte, ecc[tmp]);
424                 }
425
426                 i++;
427                 err_nbr--;
428         }
429
430         return;
431 }
432
433 static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
434         u8 *ecc)
435 {
436         struct nand_chip *nand_chip = mtd->priv;
437         struct atmel_nand_host *host = nand_chip->priv;
438         int i, err_nbr, eccbytes;
439         uint8_t *buf_pos;
440
441         eccbytes = nand_chip->ecc.bytes;
442         for (i = 0; i < eccbytes; i++)
443                 if (ecc[i] != 0xff)
444                         goto normal_check;
445         /* Erased page, return OK */
446         return 0;
447
448 normal_check:
449         for (i = 0; i < host->pmecc_sector_number; i++) {
450                 err_nbr = 0;
451                 if (pmecc_stat & 0x1) {
452                         buf_pos = buf + i * host->pmecc_sector_size;
453
454                         pmecc_gen_syndrome(mtd, i);
455                         pmecc_substitute(mtd);
456                         pmecc_get_sigma(mtd);
457
458                         err_nbr = pmecc_err_location(mtd);
459                         if (err_nbr == -1) {
460                                 printk(KERN_ERR "PMECC: Too many errors\n");
461                                 mtd->ecc_stats.failed++;
462                                 return -EIO;
463                         } else {
464                                 pmecc_correct_data(mtd, buf_pos, ecc, i,
465                                         host->pmecc_bytes_per_sector, err_nbr);
466                                 mtd->ecc_stats.corrected += err_nbr;
467                         }
468                 }
469                 pmecc_stat >>= 1;
470         }
471
472         return 0;
473 }
474
475 static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
476         struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
477 {
478         struct atmel_nand_host *host = chip->priv;
479         int eccsize = chip->ecc.size;
480         uint8_t *oob = chip->oob_poi;
481         uint32_t *eccpos = chip->ecc.layout->eccpos;
482         uint32_t stat;
483         int timeout = PMECC_MAX_TIMEOUT_US;
484
485         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
486         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
487         pmecc_writel(host->pmecc, cfg, ((pmecc_readl(host->pmecc, cfg))
488                 & ~PMECC_CFG_WRITE_OP) | PMECC_CFG_AUTO_ENABLE);
489
490         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
491         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
492
493         chip->read_buf(mtd, buf, eccsize);
494         chip->read_buf(mtd, oob, mtd->oobsize);
495
496         while (--timeout) {
497                 if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
498                         break;
499                 WATCHDOG_RESET();
500                 udelay(1);
501         }
502
503         if (!timeout) {
504                 printk(KERN_ERR "atmel_nand : Timeout to read PMECC page\n");
505                 return -1;
506         }
507
508         stat = pmecc_readl(host->pmecc, isr);
509         if (stat != 0)
510                 if (pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]) != 0)
511                         return -EIO;
512
513         return 0;
514 }
515
516 static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
517                 struct nand_chip *chip, const uint8_t *buf,
518                 int oob_required)
519 {
520         struct atmel_nand_host *host = chip->priv;
521         uint32_t *eccpos = chip->ecc.layout->eccpos;
522         int i, j;
523         int timeout = PMECC_MAX_TIMEOUT_US;
524
525         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
526         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
527
528         pmecc_writel(host->pmecc, cfg, (pmecc_readl(host->pmecc, cfg) |
529                 PMECC_CFG_WRITE_OP) & ~PMECC_CFG_AUTO_ENABLE);
530
531         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
532         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
533
534         chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
535
536         while (--timeout) {
537                 if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
538                         break;
539                 WATCHDOG_RESET();
540                 udelay(1);
541         }
542
543         if (!timeout) {
544                 printk(KERN_ERR "atmel_nand : Timeout to read PMECC status, fail to write PMECC in oob\n");
545                 goto out;
546         }
547
548         for (i = 0; i < host->pmecc_sector_number; i++) {
549                 for (j = 0; j < host->pmecc_bytes_per_sector; j++) {
550                         int pos;
551
552                         pos = i * host->pmecc_bytes_per_sector + j;
553                         chip->oob_poi[eccpos[pos]] =
554                                 readb(&host->pmecc->ecc_port[i].ecc[j]);
555                 }
556         }
557         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
558 out:
559         return 0;
560 }
561
562 static void atmel_pmecc_core_init(struct mtd_info *mtd)
563 {
564         struct nand_chip *nand_chip = mtd->priv;
565         struct atmel_nand_host *host = nand_chip->priv;
566         uint32_t val = 0;
567         struct nand_ecclayout *ecc_layout;
568
569         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
570         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
571
572         switch (host->pmecc_corr_cap) {
573         case 2:
574                 val = PMECC_CFG_BCH_ERR2;
575                 break;
576         case 4:
577                 val = PMECC_CFG_BCH_ERR4;
578                 break;
579         case 8:
580                 val = PMECC_CFG_BCH_ERR8;
581                 break;
582         case 12:
583                 val = PMECC_CFG_BCH_ERR12;
584                 break;
585         case 24:
586                 val = PMECC_CFG_BCH_ERR24;
587                 break;
588         }
589
590         if (host->pmecc_sector_size == 512)
591                 val |= PMECC_CFG_SECTOR512;
592         else if (host->pmecc_sector_size == 1024)
593                 val |= PMECC_CFG_SECTOR1024;
594
595         switch (host->pmecc_sector_number) {
596         case 1:
597                 val |= PMECC_CFG_PAGE_1SECTOR;
598                 break;
599         case 2:
600                 val |= PMECC_CFG_PAGE_2SECTORS;
601                 break;
602         case 4:
603                 val |= PMECC_CFG_PAGE_4SECTORS;
604                 break;
605         case 8:
606                 val |= PMECC_CFG_PAGE_8SECTORS;
607                 break;
608         }
609
610         val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
611                 | PMECC_CFG_AUTO_DISABLE);
612         pmecc_writel(host->pmecc, cfg, val);
613
614         ecc_layout = nand_chip->ecc.layout;
615         pmecc_writel(host->pmecc, sarea, mtd->oobsize - 1);
616         pmecc_writel(host->pmecc, saddr, ecc_layout->eccpos[0]);
617         pmecc_writel(host->pmecc, eaddr,
618                         ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
619         /* See datasheet about PMECC Clock Control Register */
620         pmecc_writel(host->pmecc, clk, PMECC_CLK_133MHZ);
621         pmecc_writel(host->pmecc, idr, 0xff);
622         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
623 }
624
625 static int atmel_pmecc_nand_init_params(struct nand_chip *nand,
626                 struct mtd_info *mtd)
627 {
628         struct atmel_nand_host *host;
629         int cap, sector_size;
630
631         host = nand->priv = &pmecc_host;
632
633         nand->ecc.mode = NAND_ECC_HW;
634         nand->ecc.calculate = NULL;
635         nand->ecc.correct = NULL;
636         nand->ecc.hwctl = NULL;
637
638         cap = host->pmecc_corr_cap = CONFIG_PMECC_CAP;
639         sector_size = host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;
640         host->pmecc_index_table_offset = CONFIG_PMECC_INDEX_TABLE_OFFSET;
641
642         MTDDEBUG(MTD_DEBUG_LEVEL1,
643                 "Initialize PMECC params, cap: %d, sector: %d\n",
644                 cap, sector_size);
645
646         host->pmecc = (struct pmecc_regs __iomem *) ATMEL_BASE_PMECC;
647         host->pmerrloc = (struct pmecc_errloc_regs __iomem *)
648                         ATMEL_BASE_PMERRLOC;
649         host->pmecc_rom_base = (void __iomem *) ATMEL_BASE_ROM;
650
651         /* ECC is calculated for the whole page (1 step) */
652         nand->ecc.size = mtd->writesize;
653
654         /* set ECC page size and oob layout */
655         switch (mtd->writesize) {
656         case 2048:
657         case 4096:
658                 host->pmecc_degree = PMECC_GF_DIMENSION_13;
659                 host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
660                 host->pmecc_sector_number = mtd->writesize / sector_size;
661                 host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes(
662                         cap, sector_size);
663                 host->pmecc_alpha_to = pmecc_get_alpha_to(host);
664                 host->pmecc_index_of = host->pmecc_rom_base +
665                         host->pmecc_index_table_offset;
666
667                 nand->ecc.steps = 1;
668                 nand->ecc.bytes = host->pmecc_bytes_per_sector *
669                                        host->pmecc_sector_number;
670                 if (nand->ecc.bytes > mtd->oobsize - 2) {
671                         printk(KERN_ERR "No room for ECC bytes\n");
672                         return -EINVAL;
673                 }
674                 pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
675                                         mtd->oobsize,
676                                         nand->ecc.bytes);
677                 nand->ecc.layout = &atmel_pmecc_oobinfo;
678                 break;
679         case 512:
680         case 1024:
681                 /* TODO */
682                 printk(KERN_ERR "Unsupported page size for PMECC, use Software ECC\n");
683         default:
684                 /* page size not handled by HW ECC */
685                 /* switching back to soft ECC */
686                 nand->ecc.mode = NAND_ECC_SOFT;
687                 nand->ecc.read_page = NULL;
688                 nand->ecc.postpad = 0;
689                 nand->ecc.prepad = 0;
690                 nand->ecc.bytes = 0;
691                 return 0;
692         }
693
694         nand->ecc.read_page = atmel_nand_pmecc_read_page;
695         nand->ecc.write_page = atmel_nand_pmecc_write_page;
696         nand->ecc.strength = cap;
697
698         atmel_pmecc_core_init(mtd);
699
700         return 0;
701 }
702
703 #else
704
705 /* oob layout for large page size
706  * bad block info is on bytes 0 and 1
707  * the bytes have to be consecutives to avoid
708  * several NAND_CMD_RNDOUT during read
709  */
710 static struct nand_ecclayout atmel_oobinfo_large = {
711         .eccbytes = 4,
712         .eccpos = {60, 61, 62, 63},
713         .oobfree = {
714                 {2, 58}
715         },
716 };
717
718 /* oob layout for small page size
719  * bad block info is on bytes 4 and 5
720  * the bytes have to be consecutives to avoid
721  * several NAND_CMD_RNDOUT during read
722  */
723 static struct nand_ecclayout atmel_oobinfo_small = {
724         .eccbytes = 4,
725         .eccpos = {0, 1, 2, 3},
726         .oobfree = {
727                 {6, 10}
728         },
729 };
730
731 /*
732  * Calculate HW ECC
733  *
734  * function called after a write
735  *
736  * mtd:        MTD block structure
737  * dat:        raw data (unused)
738  * ecc_code:   buffer for ECC
739  */
740 static int atmel_nand_calculate(struct mtd_info *mtd,
741                 const u_char *dat, unsigned char *ecc_code)
742 {
743         unsigned int ecc_value;
744
745         /* get the first 2 ECC bytes */
746         ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR);
747
748         ecc_code[0] = ecc_value & 0xFF;
749         ecc_code[1] = (ecc_value >> 8) & 0xFF;
750
751         /* get the last 2 ECC bytes */
752         ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, NPR) & ATMEL_ECC_NPARITY;
753
754         ecc_code[2] = ecc_value & 0xFF;
755         ecc_code[3] = (ecc_value >> 8) & 0xFF;
756
757         return 0;
758 }
759
760 /*
761  * HW ECC read page function
762  *
763  * mtd:        mtd info structure
764  * chip:       nand chip info structure
765  * buf:        buffer to store read data
766  * oob_required:    caller expects OOB data read to chip->oob_poi
767  */
768 static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
769                                 uint8_t *buf, int oob_required, int page)
770 {
771         int eccsize = chip->ecc.size;
772         int eccbytes = chip->ecc.bytes;
773         uint32_t *eccpos = chip->ecc.layout->eccpos;
774         uint8_t *p = buf;
775         uint8_t *oob = chip->oob_poi;
776         uint8_t *ecc_pos;
777         int stat;
778
779         /* read the page */
780         chip->read_buf(mtd, p, eccsize);
781
782         /* move to ECC position if needed */
783         if (eccpos[0] != 0) {
784                 /* This only works on large pages
785                  * because the ECC controller waits for
786                  * NAND_CMD_RNDOUTSTART after the
787                  * NAND_CMD_RNDOUT.
788                  * anyway, for small pages, the eccpos[0] == 0
789                  */
790                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
791                                 mtd->writesize + eccpos[0], -1);
792         }
793
794         /* the ECC controller needs to read the ECC just after the data */
795         ecc_pos = oob + eccpos[0];
796         chip->read_buf(mtd, ecc_pos, eccbytes);
797
798         /* check if there's an error */
799         stat = chip->ecc.correct(mtd, p, oob, NULL);
800
801         if (stat < 0)
802                 mtd->ecc_stats.failed++;
803         else
804                 mtd->ecc_stats.corrected += stat;
805
806         /* get back to oob start (end of page) */
807         chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
808
809         /* read the oob */
810         chip->read_buf(mtd, oob, mtd->oobsize);
811
812         return 0;
813 }
814
815 /*
816  * HW ECC Correction
817  *
818  * function called after a read
819  *
820  * mtd:        MTD block structure
821  * dat:        raw data read from the chip
822  * read_ecc:   ECC from the chip (unused)
823  * isnull:     unused
824  *
825  * Detect and correct a 1 bit error for a page
826  */
827 static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
828                 u_char *read_ecc, u_char *isnull)
829 {
830         struct nand_chip *nand_chip = mtd->priv;
831         unsigned int ecc_status;
832         unsigned int ecc_word, ecc_bit;
833
834         /* get the status from the Status Register */
835         ecc_status = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, SR);
836
837         /* if there's no error */
838         if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
839                 return 0;
840
841         /* get error bit offset (4 bits) */
842         ecc_bit = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_BITADDR;
843         /* get word address (12 bits) */
844         ecc_word = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_WORDADDR;
845         ecc_word >>= 4;
846
847         /* if there are multiple errors */
848         if (ecc_status & ATMEL_ECC_MULERR) {
849                 /* check if it is a freshly erased block
850                  * (filled with 0xff) */
851                 if ((ecc_bit == ATMEL_ECC_BITADDR)
852                                 && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
853                         /* the block has just been erased, return OK */
854                         return 0;
855                 }
856                 /* it doesn't seems to be a freshly
857                  * erased block.
858                  * We can't correct so many errors */
859                 printk(KERN_WARNING "atmel_nand : multiple errors detected."
860                                 " Unable to correct.\n");
861                 return -EIO;
862         }
863
864         /* if there's a single bit error : we can correct it */
865         if (ecc_status & ATMEL_ECC_ECCERR) {
866                 /* there's nothing much to do here.
867                  * the bit error is on the ECC itself.
868                  */
869                 printk(KERN_WARNING "atmel_nand : one bit error on ECC code."
870                                 " Nothing to correct\n");
871                 return 0;
872         }
873
874         printk(KERN_WARNING "atmel_nand : one bit error on data."
875                         " (word offset in the page :"
876                         " 0x%x bit offset : 0x%x)\n",
877                         ecc_word, ecc_bit);
878         /* correct the error */
879         if (nand_chip->options & NAND_BUSWIDTH_16) {
880                 /* 16 bits words */
881                 ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
882         } else {
883                 /* 8 bits words */
884                 dat[ecc_word] ^= (1 << ecc_bit);
885         }
886         printk(KERN_WARNING "atmel_nand : error corrected\n");
887         return 1;
888 }
889
890 /*
891  * Enable HW ECC : unused on most chips
892  */
893 static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
894 {
895 }
896
897 int atmel_hwecc_nand_init_param(struct nand_chip *nand, struct mtd_info *mtd)
898 {
899         nand->ecc.mode = NAND_ECC_HW;
900         nand->ecc.calculate = atmel_nand_calculate;
901         nand->ecc.correct = atmel_nand_correct;
902         nand->ecc.hwctl = atmel_nand_hwctl;
903         nand->ecc.read_page = atmel_nand_read_page;
904         nand->ecc.bytes = 4;
905
906         if (nand->ecc.mode == NAND_ECC_HW) {
907                 /* ECC is calculated for the whole page (1 step) */
908                 nand->ecc.size = mtd->writesize;
909
910                 /* set ECC page size and oob layout */
911                 switch (mtd->writesize) {
912                 case 512:
913                         nand->ecc.layout = &atmel_oobinfo_small;
914                         ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
915                                         ATMEL_ECC_PAGESIZE_528);
916                         break;
917                 case 1024:
918                         nand->ecc.layout = &atmel_oobinfo_large;
919                         ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
920                                         ATMEL_ECC_PAGESIZE_1056);
921                         break;
922                 case 2048:
923                         nand->ecc.layout = &atmel_oobinfo_large;
924                         ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
925                                         ATMEL_ECC_PAGESIZE_2112);
926                         break;
927                 case 4096:
928                         nand->ecc.layout = &atmel_oobinfo_large;
929                         ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
930                                         ATMEL_ECC_PAGESIZE_4224);
931                         break;
932                 default:
933                         /* page size not handled by HW ECC */
934                         /* switching back to soft ECC */
935                         nand->ecc.mode = NAND_ECC_SOFT;
936                         nand->ecc.calculate = NULL;
937                         nand->ecc.correct = NULL;
938                         nand->ecc.hwctl = NULL;
939                         nand->ecc.read_page = NULL;
940                         nand->ecc.postpad = 0;
941                         nand->ecc.prepad = 0;
942                         nand->ecc.bytes = 0;
943                         break;
944                 }
945         }
946
947         return 0;
948 }
949
950 #endif /* CONFIG_ATMEL_NAND_HW_PMECC */
951
952 #endif /* CONFIG_ATMEL_NAND_HWECC */
953
954 static void at91_nand_hwcontrol(struct mtd_info *mtd,
955                                          int cmd, unsigned int ctrl)
956 {
957         struct nand_chip *this = mtd->priv;
958
959         if (ctrl & NAND_CTRL_CHANGE) {
960                 ulong IO_ADDR_W = (ulong) this->IO_ADDR_W;
961                 IO_ADDR_W &= ~(CONFIG_SYS_NAND_MASK_ALE
962                              | CONFIG_SYS_NAND_MASK_CLE);
963
964                 if (ctrl & NAND_CLE)
965                         IO_ADDR_W |= CONFIG_SYS_NAND_MASK_CLE;
966                 if (ctrl & NAND_ALE)
967                         IO_ADDR_W |= CONFIG_SYS_NAND_MASK_ALE;
968
969 #ifdef CONFIG_SYS_NAND_ENABLE_PIN
970                 at91_set_gpio_value(CONFIG_SYS_NAND_ENABLE_PIN,
971                                     !(ctrl & NAND_NCE));
972 #endif
973                 this->IO_ADDR_W = (void *) IO_ADDR_W;
974         }
975
976         if (cmd != NAND_CMD_NONE)
977                 writeb(cmd, this->IO_ADDR_W);
978 }
979
980 #ifdef CONFIG_SYS_NAND_READY_PIN
981 static int at91_nand_ready(struct mtd_info *mtd)
982 {
983         return at91_get_gpio_value(CONFIG_SYS_NAND_READY_PIN);
984 }
985 #endif
986
987 #ifndef CONFIG_SYS_NAND_BASE_LIST
988 #define CONFIG_SYS_NAND_BASE_LIST { CONFIG_SYS_NAND_BASE }
989 #endif
990 static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE];
991 static ulong base_addr[CONFIG_SYS_MAX_NAND_DEVICE] = CONFIG_SYS_NAND_BASE_LIST;
992
993 int atmel_nand_chip_init(int devnum, ulong base_addr)
994 {
995         int ret;
996         struct mtd_info *mtd = &nand_info[devnum];
997         struct nand_chip *nand = &nand_chip[devnum];
998
999         mtd->priv = nand;
1000         nand->IO_ADDR_R = nand->IO_ADDR_W = (void  __iomem *)base_addr;
1001
1002         nand->ecc.mode = NAND_ECC_SOFT;
1003 #ifdef CONFIG_SYS_NAND_DBW_16
1004         nand->options = NAND_BUSWIDTH_16;
1005 #endif
1006         nand->cmd_ctrl = at91_nand_hwcontrol;
1007 #ifdef CONFIG_SYS_NAND_READY_PIN
1008         nand->dev_ready = at91_nand_ready;
1009 #endif
1010         nand->chip_delay = 20;
1011
1012         ret = nand_scan_ident(mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL);
1013         if (ret)
1014                 return ret;
1015
1016 #ifdef CONFIG_ATMEL_NAND_HWECC
1017 #ifdef CONFIG_ATMEL_NAND_HW_PMECC
1018         ret = atmel_pmecc_nand_init_params(nand, mtd);
1019 #else
1020         ret = atmel_hwecc_nand_init_param(nand, mtd);
1021 #endif
1022         if (ret)
1023                 return ret;
1024 #endif
1025
1026         ret = nand_scan_tail(mtd);
1027         if (!ret)
1028                 nand_register(devnum);
1029
1030         return ret;
1031 }
1032
1033 void board_nand_init(void)
1034 {
1035         int i;
1036         for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++)
1037                 if (atmel_nand_chip_init(i, base_addr[i]))
1038                         printk(KERN_ERR "atmel_nand: Fail to initialize #%d chip",
1039                                 i);
1040 }