]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/mtd/nand/atmel_nand.c
Merge branch 'master' of git://www.denx.de/git/u-boot-imx
[karo-tx-uboot.git] / drivers / mtd / nand / atmel_nand.c
1 /*
2  * (C) Copyright 2007-2008
3  * Stelian Pop <stelian@popies.net>
4  * Lead Tech Design <www.leadtechdesign.com>
5  *
6  * (C) Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
7  *
8  * Add Programmable Multibit ECC support for various AT91 SoC
9  *     (C) Copyright 2012 ATMEL, Hong Xu
10  *
11  * SPDX-License-Identifier:     GPL-2.0+
12  */
13
14 #include <common.h>
15 #include <asm/gpio.h>
16 #include <asm/arch/gpio.h>
17
18 #include <malloc.h>
19 #include <nand.h>
20 #include <watchdog.h>
21
22 #ifdef CONFIG_ATMEL_NAND_HWECC
23
24 /* Register access macros */
25 #define ecc_readl(add, reg)                             \
26         readl(AT91_BASE_SYS + add + ATMEL_ECC_##reg)
27 #define ecc_writel(add, reg, value)                     \
28         writel((value), AT91_BASE_SYS + add + ATMEL_ECC_##reg)
29
30 #include "atmel_nand_ecc.h"     /* Hardware ECC registers */
31
32 #ifdef CONFIG_ATMEL_NAND_HW_PMECC
33
34 #ifdef CONFIG_SPL_BUILD
35 #undef CONFIG_SYS_NAND_ONFI_DETECTION
36 #endif
37
38 struct atmel_nand_host {
39         struct pmecc_regs __iomem *pmecc;
40         struct pmecc_errloc_regs __iomem *pmerrloc;
41         void __iomem            *pmecc_rom_base;
42
43         u8              pmecc_corr_cap;
44         u16             pmecc_sector_size;
45         u32             pmecc_index_table_offset;
46
47         int             pmecc_bytes_per_sector;
48         int             pmecc_sector_number;
49         int             pmecc_degree;   /* Degree of remainders */
50         int             pmecc_cw_len;   /* Length of codeword */
51
52         /* lookup table for alpha_to and index_of */
53         void __iomem    *pmecc_alpha_to;
54         void __iomem    *pmecc_index_of;
55
56         /* data for pmecc computation */
57         int16_t *pmecc_smu;
58         int16_t *pmecc_partial_syn;
59         int16_t *pmecc_si;
60         int16_t *pmecc_lmu; /* polynomal order */
61         int     *pmecc_mu;
62         int     *pmecc_dmu;
63         int     *pmecc_delta;
64 };
65
66 static struct atmel_nand_host pmecc_host;
67 static struct nand_ecclayout atmel_pmecc_oobinfo;
68
69 /*
70  * Return number of ecc bytes per sector according to sector size and
71  * correction capability
72  *
73  * Following table shows what at91 PMECC supported:
74  * Correction Capability        Sector_512_bytes        Sector_1024_bytes
75  * =====================        ================        =================
76  *                2-bits                 4-bytes                  4-bytes
77  *                4-bits                 7-bytes                  7-bytes
78  *                8-bits                13-bytes                 14-bytes
79  *               12-bits                20-bytes                 21-bytes
80  *               24-bits                39-bytes                 42-bytes
81  */
82 static int pmecc_get_ecc_bytes(int cap, int sector_size)
83 {
84         int m = 12 + sector_size / 512;
85         return (m * cap + 7) / 8;
86 }
87
88 static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
89         int oobsize, int ecc_len)
90 {
91         int i;
92
93         layout->eccbytes = ecc_len;
94
95         /* ECC will occupy the last ecc_len bytes continuously */
96         for (i = 0; i < ecc_len; i++)
97                 layout->eccpos[i] = oobsize - ecc_len + i;
98
99         layout->oobfree[0].offset = 2;
100         layout->oobfree[0].length =
101                 oobsize - ecc_len - layout->oobfree[0].offset;
102 }
103
104 static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
105 {
106         int table_size;
107
108         table_size = host->pmecc_sector_size == 512 ?
109                 PMECC_INDEX_TABLE_SIZE_512 : PMECC_INDEX_TABLE_SIZE_1024;
110
111         /* the ALPHA lookup table is right behind the INDEX lookup table. */
112         return host->pmecc_rom_base + host->pmecc_index_table_offset +
113                         table_size * sizeof(int16_t);
114 }
115
116 static void pmecc_data_free(struct atmel_nand_host *host)
117 {
118         free(host->pmecc_partial_syn);
119         free(host->pmecc_si);
120         free(host->pmecc_lmu);
121         free(host->pmecc_smu);
122         free(host->pmecc_mu);
123         free(host->pmecc_dmu);
124         free(host->pmecc_delta);
125 }
126
127 static int pmecc_data_alloc(struct atmel_nand_host *host)
128 {
129         const int cap = host->pmecc_corr_cap;
130         int size;
131
132         size = (2 * cap + 1) * sizeof(int16_t);
133         host->pmecc_partial_syn = malloc(size);
134         host->pmecc_si = malloc(size);
135         host->pmecc_lmu = malloc((cap + 1) * sizeof(int16_t));
136         host->pmecc_smu = malloc((cap + 2) * size);
137
138         size = (cap + 1) * sizeof(int);
139         host->pmecc_mu = malloc(size);
140         host->pmecc_dmu = malloc(size);
141         host->pmecc_delta = malloc(size);
142
143         if (host->pmecc_partial_syn &&
144                         host->pmecc_si &&
145                         host->pmecc_lmu &&
146                         host->pmecc_smu &&
147                         host->pmecc_mu &&
148                         host->pmecc_dmu &&
149                         host->pmecc_delta)
150                 return 0;
151
152         /* error happened */
153         pmecc_data_free(host);
154         return -ENOMEM;
155
156 }
157
158 static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
159 {
160         struct nand_chip *nand_chip = mtd->priv;
161         struct atmel_nand_host *host = nand_chip->priv;
162         int i;
163         uint32_t value;
164
165         /* Fill odd syndromes */
166         for (i = 0; i < host->pmecc_corr_cap; i++) {
167                 value = readl(&host->pmecc->rem_port[sector].rem[i / 2]);
168                 if (i & 1)
169                         value >>= 16;
170                 value &= 0xffff;
171                 host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
172         }
173 }
174
175 static void pmecc_substitute(struct mtd_info *mtd)
176 {
177         struct nand_chip *nand_chip = mtd->priv;
178         struct atmel_nand_host *host = nand_chip->priv;
179         int16_t __iomem *alpha_to = host->pmecc_alpha_to;
180         int16_t __iomem *index_of = host->pmecc_index_of;
181         int16_t *partial_syn = host->pmecc_partial_syn;
182         const int cap = host->pmecc_corr_cap;
183         int16_t *si;
184         int i, j;
185
186         /* si[] is a table that holds the current syndrome value,
187          * an element of that table belongs to the field
188          */
189         si = host->pmecc_si;
190
191         memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
192
193         /* Computation 2t syndromes based on S(x) */
194         /* Odd syndromes */
195         for (i = 1; i < 2 * cap; i += 2) {
196                 for (j = 0; j < host->pmecc_degree; j++) {
197                         if (partial_syn[i] & (0x1 << j))
198                                 si[i] = readw(alpha_to + i * j) ^ si[i];
199                 }
200         }
201         /* Even syndrome = (Odd syndrome) ** 2 */
202         for (i = 2, j = 1; j <= cap; i = ++j << 1) {
203                 if (si[j] == 0) {
204                         si[i] = 0;
205                 } else {
206                         int16_t tmp;
207
208                         tmp = readw(index_of + si[j]);
209                         tmp = (tmp * 2) % host->pmecc_cw_len;
210                         si[i] = readw(alpha_to + tmp);
211                 }
212         }
213 }
214
215 /*
216  * This function defines a Berlekamp iterative procedure for
217  * finding the value of the error location polynomial.
218  * The input is si[], initialize by pmecc_substitute().
219  * The output is smu[][].
220  *
221  * This function is written according to chip datasheet Chapter:
222  * Find the Error Location Polynomial Sigma(x) of Section:
223  * Programmable Multibit ECC Control (PMECC).
224  */
225 static void pmecc_get_sigma(struct mtd_info *mtd)
226 {
227         struct nand_chip *nand_chip = mtd->priv;
228         struct atmel_nand_host *host = nand_chip->priv;
229
230         int16_t *lmu = host->pmecc_lmu;
231         int16_t *si = host->pmecc_si;
232         int *mu = host->pmecc_mu;
233         int *dmu = host->pmecc_dmu;     /* Discrepancy */
234         int *delta = host->pmecc_delta; /* Delta order */
235         int cw_len = host->pmecc_cw_len;
236         const int16_t cap = host->pmecc_corr_cap;
237         const int num = 2 * cap + 1;
238         int16_t __iomem *index_of = host->pmecc_index_of;
239         int16_t __iomem *alpha_to = host->pmecc_alpha_to;
240         int i, j, k;
241         uint32_t dmu_0_count, tmp;
242         int16_t *smu = host->pmecc_smu;
243
244         /* index of largest delta */
245         int ro;
246         int largest;
247         int diff;
248
249         /* Init the Sigma(x) */
250         memset(smu, 0, sizeof(int16_t) * ARRAY_SIZE(smu));
251
252         dmu_0_count = 0;
253
254         /* First Row */
255
256         /* Mu */
257         mu[0] = -1;
258
259         smu[0] = 1;
260
261         /* discrepancy set to 1 */
262         dmu[0] = 1;
263         /* polynom order set to 0 */
264         lmu[0] = 0;
265         /* delta[0] = (mu[0] * 2 - lmu[0]) >> 1; */
266         delta[0] = -1;
267
268         /* Second Row */
269
270         /* Mu */
271         mu[1] = 0;
272         /* Sigma(x) set to 1 */
273         smu[num] = 1;
274
275         /* discrepancy set to S1 */
276         dmu[1] = si[1];
277
278         /* polynom order set to 0 */
279         lmu[1] = 0;
280
281         /* delta[1] = (mu[1] * 2 - lmu[1]) >> 1; */
282         delta[1] = 0;
283
284         for (i = 1; i <= cap; i++) {
285                 mu[i + 1] = i << 1;
286                 /* Begin Computing Sigma (Mu+1) and L(mu) */
287                 /* check if discrepancy is set to 0 */
288                 if (dmu[i] == 0) {
289                         dmu_0_count++;
290
291                         tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
292                         if ((cap - (lmu[i] >> 1) - 1) & 0x1)
293                                 tmp += 2;
294                         else
295                                 tmp += 1;
296
297                         if (dmu_0_count == tmp) {
298                                 for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
299                                         smu[(cap + 1) * num + j] =
300                                                         smu[i * num + j];
301
302                                 lmu[cap + 1] = lmu[i];
303                                 return;
304                         }
305
306                         /* copy polynom */
307                         for (j = 0; j <= lmu[i] >> 1; j++)
308                                 smu[(i + 1) * num + j] = smu[i * num + j];
309
310                         /* copy previous polynom order to the next */
311                         lmu[i + 1] = lmu[i];
312                 } else {
313                         ro = 0;
314                         largest = -1;
315                         /* find largest delta with dmu != 0 */
316                         for (j = 0; j < i; j++) {
317                                 if ((dmu[j]) && (delta[j] > largest)) {
318                                         largest = delta[j];
319                                         ro = j;
320                                 }
321                         }
322
323                         /* compute difference */
324                         diff = (mu[i] - mu[ro]);
325
326                         /* Compute degree of the new smu polynomial */
327                         if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
328                                 lmu[i + 1] = lmu[i];
329                         else
330                                 lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
331
332                         /* Init smu[i+1] with 0 */
333                         for (k = 0; k < num; k++)
334                                 smu[(i + 1) * num + k] = 0;
335
336                         /* Compute smu[i+1] */
337                         for (k = 0; k <= lmu[ro] >> 1; k++) {
338                                 int16_t a, b, c;
339
340                                 if (!(smu[ro * num + k] && dmu[i]))
341                                         continue;
342                                 a = readw(index_of + dmu[i]);
343                                 b = readw(index_of + dmu[ro]);
344                                 c = readw(index_of + smu[ro * num + k]);
345                                 tmp = a + (cw_len - b) + c;
346                                 a = readw(alpha_to + tmp % cw_len);
347                                 smu[(i + 1) * num + (k + diff)] = a;
348                         }
349
350                         for (k = 0; k <= lmu[i] >> 1; k++)
351                                 smu[(i + 1) * num + k] ^= smu[i * num + k];
352                 }
353
354                 /* End Computing Sigma (Mu+1) and L(mu) */
355                 /* In either case compute delta */
356                 delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
357
358                 /* Do not compute discrepancy for the last iteration */
359                 if (i >= cap)
360                         continue;
361
362                 for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
363                         tmp = 2 * (i - 1);
364                         if (k == 0) {
365                                 dmu[i + 1] = si[tmp + 3];
366                         } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
367                                 int16_t a, b, c;
368                                 a = readw(index_of +
369                                                 smu[(i + 1) * num + k]);
370                                 b = si[2 * (i - 1) + 3 - k];
371                                 c = readw(index_of + b);
372                                 tmp = a + c;
373                                 tmp %= cw_len;
374                                 dmu[i + 1] = readw(alpha_to + tmp) ^
375                                         dmu[i + 1];
376                         }
377                 }
378         }
379 }
380
381 static int pmecc_err_location(struct mtd_info *mtd)
382 {
383         struct nand_chip *nand_chip = mtd->priv;
384         struct atmel_nand_host *host = nand_chip->priv;
385         const int cap = host->pmecc_corr_cap;
386         const int num = 2 * cap + 1;
387         int sector_size = host->pmecc_sector_size;
388         int err_nbr = 0;        /* number of error */
389         int roots_nbr;          /* number of roots */
390         int i;
391         uint32_t val;
392         int16_t *smu = host->pmecc_smu;
393         int timeout = PMECC_MAX_TIMEOUT_US;
394
395         writel(PMERRLOC_DISABLE, &host->pmerrloc->eldis);
396
397         for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
398                 writel(smu[(cap + 1) * num + i], &host->pmerrloc->sigma[i]);
399                 err_nbr++;
400         }
401
402         val = PMERRLOC_ELCFG_NUM_ERRORS(err_nbr - 1);
403         if (sector_size == 1024)
404                 val |= PMERRLOC_ELCFG_SECTOR_1024;
405
406         writel(val, &host->pmerrloc->elcfg);
407         writel(sector_size * 8 + host->pmecc_degree * cap,
408                         &host->pmerrloc->elen);
409
410         while (--timeout) {
411                 if (readl(&host->pmerrloc->elisr) & PMERRLOC_CALC_DONE)
412                         break;
413                 WATCHDOG_RESET();
414                 udelay(1);
415         }
416
417         if (!timeout) {
418                 dev_err(host->dev, "atmel_nand : Timeout to calculate PMECC error location\n");
419                 return -1;
420         }
421
422         roots_nbr = (readl(&host->pmerrloc->elisr) & PMERRLOC_ERR_NUM_MASK)
423                         >> 8;
424         /* Number of roots == degree of smu hence <= cap */
425         if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
426                 return err_nbr - 1;
427
428         /* Number of roots does not match the degree of smu
429          * unable to correct error */
430         return -1;
431 }
432
433 static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
434                 int sector_num, int extra_bytes, int err_nbr)
435 {
436         struct nand_chip *nand_chip = mtd->priv;
437         struct atmel_nand_host *host = nand_chip->priv;
438         int i = 0;
439         int byte_pos, bit_pos, sector_size, pos;
440         uint32_t tmp;
441         uint8_t err_byte;
442
443         sector_size = host->pmecc_sector_size;
444
445         while (err_nbr) {
446                 tmp = readl(&host->pmerrloc->el[i]) - 1;
447                 byte_pos = tmp / 8;
448                 bit_pos  = tmp % 8;
449
450                 if (byte_pos >= (sector_size + extra_bytes))
451                         BUG();  /* should never happen */
452
453                 if (byte_pos < sector_size) {
454                         err_byte = *(buf + byte_pos);
455                         *(buf + byte_pos) ^= (1 << bit_pos);
456
457                         pos = sector_num * host->pmecc_sector_size + byte_pos;
458                         dev_dbg(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
459                                 pos, bit_pos, err_byte, *(buf + byte_pos));
460                 } else {
461                         /* Bit flip in OOB area */
462                         tmp = sector_num * host->pmecc_bytes_per_sector
463                                         + (byte_pos - sector_size);
464                         err_byte = ecc[tmp];
465                         ecc[tmp] ^= (1 << bit_pos);
466
467                         pos = tmp + nand_chip->ecc.layout->eccpos[0];
468                         dev_dbg(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
469                                 pos, bit_pos, err_byte, ecc[tmp]);
470                 }
471
472                 i++;
473                 err_nbr--;
474         }
475
476         return;
477 }
478
479 static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
480         u8 *ecc)
481 {
482         struct nand_chip *nand_chip = mtd->priv;
483         struct atmel_nand_host *host = nand_chip->priv;
484         int i, err_nbr, eccbytes;
485         uint8_t *buf_pos;
486
487         eccbytes = nand_chip->ecc.bytes;
488         for (i = 0; i < eccbytes; i++)
489                 if (ecc[i] != 0xff)
490                         goto normal_check;
491         /* Erased page, return OK */
492         return 0;
493
494 normal_check:
495         for (i = 0; i < host->pmecc_sector_number; i++) {
496                 err_nbr = 0;
497                 if (pmecc_stat & 0x1) {
498                         buf_pos = buf + i * host->pmecc_sector_size;
499
500                         pmecc_gen_syndrome(mtd, i);
501                         pmecc_substitute(mtd);
502                         pmecc_get_sigma(mtd);
503
504                         err_nbr = pmecc_err_location(mtd);
505                         if (err_nbr == -1) {
506                                 dev_err(host->dev, "PMECC: Too many errors\n");
507                                 mtd->ecc_stats.failed++;
508                                 return -EIO;
509                         } else {
510                                 pmecc_correct_data(mtd, buf_pos, ecc, i,
511                                         host->pmecc_bytes_per_sector, err_nbr);
512                                 mtd->ecc_stats.corrected += err_nbr;
513                         }
514                 }
515                 pmecc_stat >>= 1;
516         }
517
518         return 0;
519 }
520
521 static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
522         struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
523 {
524         struct atmel_nand_host *host = chip->priv;
525         int eccsize = chip->ecc.size;
526         uint8_t *oob = chip->oob_poi;
527         uint32_t *eccpos = chip->ecc.layout->eccpos;
528         uint32_t stat;
529         int timeout = PMECC_MAX_TIMEOUT_US;
530
531         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
532         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
533         pmecc_writel(host->pmecc, cfg, ((pmecc_readl(host->pmecc, cfg))
534                 & ~PMECC_CFG_WRITE_OP) | PMECC_CFG_AUTO_ENABLE);
535
536         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
537         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
538
539         chip->read_buf(mtd, buf, eccsize);
540         chip->read_buf(mtd, oob, mtd->oobsize);
541
542         while (--timeout) {
543                 if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
544                         break;
545                 WATCHDOG_RESET();
546                 udelay(1);
547         }
548
549         if (!timeout) {
550                 dev_err(host->dev, "atmel_nand : Timeout to read PMECC page\n");
551                 return -1;
552         }
553
554         stat = pmecc_readl(host->pmecc, isr);
555         if (stat != 0)
556                 if (pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]) != 0)
557                         return -EIO;
558
559         return 0;
560 }
561
562 static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
563                 struct nand_chip *chip, const uint8_t *buf,
564                 int oob_required)
565 {
566         struct atmel_nand_host *host = chip->priv;
567         uint32_t *eccpos = chip->ecc.layout->eccpos;
568         int i, j;
569         int timeout = PMECC_MAX_TIMEOUT_US;
570
571         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
572         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
573
574         pmecc_writel(host->pmecc, cfg, (pmecc_readl(host->pmecc, cfg) |
575                 PMECC_CFG_WRITE_OP) & ~PMECC_CFG_AUTO_ENABLE);
576
577         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
578         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
579
580         chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
581
582         while (--timeout) {
583                 if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
584                         break;
585                 WATCHDOG_RESET();
586                 udelay(1);
587         }
588
589         if (!timeout) {
590                 dev_err(host->dev, "atmel_nand : Timeout to read PMECC status, fail to write PMECC in oob\n");
591                 goto out;
592         }
593
594         for (i = 0; i < host->pmecc_sector_number; i++) {
595                 for (j = 0; j < host->pmecc_bytes_per_sector; j++) {
596                         int pos;
597
598                         pos = i * host->pmecc_bytes_per_sector + j;
599                         chip->oob_poi[eccpos[pos]] =
600                                 readb(&host->pmecc->ecc_port[i].ecc[j]);
601                 }
602         }
603         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
604 out:
605         return 0;
606 }
607
608 static void atmel_pmecc_core_init(struct mtd_info *mtd)
609 {
610         struct nand_chip *nand_chip = mtd->priv;
611         struct atmel_nand_host *host = nand_chip->priv;
612         uint32_t val = 0;
613         struct nand_ecclayout *ecc_layout;
614
615         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
616         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
617
618         switch (host->pmecc_corr_cap) {
619         case 2:
620                 val = PMECC_CFG_BCH_ERR2;
621                 break;
622         case 4:
623                 val = PMECC_CFG_BCH_ERR4;
624                 break;
625         case 8:
626                 val = PMECC_CFG_BCH_ERR8;
627                 break;
628         case 12:
629                 val = PMECC_CFG_BCH_ERR12;
630                 break;
631         case 24:
632                 val = PMECC_CFG_BCH_ERR24;
633                 break;
634         }
635
636         if (host->pmecc_sector_size == 512)
637                 val |= PMECC_CFG_SECTOR512;
638         else if (host->pmecc_sector_size == 1024)
639                 val |= PMECC_CFG_SECTOR1024;
640
641         switch (host->pmecc_sector_number) {
642         case 1:
643                 val |= PMECC_CFG_PAGE_1SECTOR;
644                 break;
645         case 2:
646                 val |= PMECC_CFG_PAGE_2SECTORS;
647                 break;
648         case 4:
649                 val |= PMECC_CFG_PAGE_4SECTORS;
650                 break;
651         case 8:
652                 val |= PMECC_CFG_PAGE_8SECTORS;
653                 break;
654         }
655
656         val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
657                 | PMECC_CFG_AUTO_DISABLE);
658         pmecc_writel(host->pmecc, cfg, val);
659
660         ecc_layout = nand_chip->ecc.layout;
661         pmecc_writel(host->pmecc, sarea, mtd->oobsize - 1);
662         pmecc_writel(host->pmecc, saddr, ecc_layout->eccpos[0]);
663         pmecc_writel(host->pmecc, eaddr,
664                         ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
665         /* See datasheet about PMECC Clock Control Register */
666         pmecc_writel(host->pmecc, clk, PMECC_CLK_133MHZ);
667         pmecc_writel(host->pmecc, idr, 0xff);
668         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
669 }
670
671 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
672 /*
673  * get_onfi_ecc_param - Get ECC requirement from ONFI parameters
674  * @ecc_bits: store the ONFI ECC correct bits capbility
675  * @sector_size: in how many bytes that ONFI require to correct @ecc_bits
676  *
677  * Returns -1 if ONFI parameters is not supported. In this case @ecc_bits,
678  * @sector_size are initialize to 0.
679  * Return 0 if success to get the ECC requirement.
680  */
681 static int get_onfi_ecc_param(struct nand_chip *chip,
682                 int *ecc_bits, int *sector_size)
683 {
684         *ecc_bits = *sector_size = 0;
685
686         if (chip->onfi_params.ecc_bits == 0xff)
687                 /* TODO: the sector_size and ecc_bits need to be find in
688                  * extended ecc parameter, currently we don't support it.
689                  */
690                 return -1;
691
692         *ecc_bits = chip->onfi_params.ecc_bits;
693
694         /* The default sector size (ecc codeword size) is 512 */
695         *sector_size = 512;
696
697         return 0;
698 }
699
700 /*
701  * pmecc_choose_ecc - Get ecc requirement from ONFI parameters. If
702  *                    pmecc_corr_cap or pmecc_sector_size is 0, then set it as
703  *                    ONFI ECC parameters.
704  * @host: point to an atmel_nand_host structure.
705  *        if host->pmecc_corr_cap is 0 then set it as the ONFI ecc_bits.
706  *        if host->pmecc_sector_size is 0 then set it as the ONFI sector_size.
707  * @chip: point to an nand_chip structure.
708  * @cap: store the ONFI ECC correct bits capbility
709  * @sector_size: in how many bytes that ONFI require to correct @ecc_bits
710  *
711  * Return 0 if success. otherwise return the error code.
712  */
713 static int pmecc_choose_ecc(struct atmel_nand_host *host,
714                 struct nand_chip *chip,
715                 int *cap, int *sector_size)
716 {
717         /* Get ECC requirement from ONFI parameters */
718         *cap = *sector_size = 0;
719         if (chip->onfi_version) {
720                 if (!get_onfi_ecc_param(chip, cap, sector_size)) {
721                         MTDDEBUG(MTD_DEBUG_LEVEL1, "ONFI params, minimum required ECC: %d bits in %d bytes\n",
722                                 *cap, *sector_size);
723                 } else {
724                         dev_info(host->dev, "NAND chip ECC reqirement is in Extended ONFI parameter, we don't support yet.\n");
725                 }
726         } else {
727                 dev_info(host->dev, "NAND chip is not ONFI compliant, assume ecc_bits is 2 in 512 bytes");
728         }
729         if (*cap == 0 && *sector_size == 0) {
730                 /* Non-ONFI compliant or use extended ONFI parameters */
731                 *cap = 2;
732                 *sector_size = 512;
733         }
734
735         /* If head file doesn't specify then use the one in ONFI parameters */
736         if (host->pmecc_corr_cap == 0) {
737                 /* use the most fitable ecc bits (the near bigger one ) */
738                 if (*cap <= 2)
739                         host->pmecc_corr_cap = 2;
740                 else if (*cap <= 4)
741                         host->pmecc_corr_cap = 4;
742                 else if (*cap <= 8)
743                         host->pmecc_corr_cap = 8;
744                 else if (*cap <= 12)
745                         host->pmecc_corr_cap = 12;
746                 else if (*cap <= 24)
747                         host->pmecc_corr_cap = 24;
748                 else
749                         return -EINVAL;
750         }
751         if (host->pmecc_sector_size == 0) {
752                 /* use the most fitable sector size (the near smaller one ) */
753                 if (*sector_size >= 1024)
754                         host->pmecc_sector_size = 1024;
755                 else if (*sector_size >= 512)
756                         host->pmecc_sector_size = 512;
757                 else
758                         return -EINVAL;
759         }
760         return 0;
761 }
762 #endif
763
764 static int atmel_pmecc_nand_init_params(struct nand_chip *nand,
765                 struct mtd_info *mtd)
766 {
767         struct atmel_nand_host *host;
768         int cap, sector_size;
769
770         host = nand->priv = &pmecc_host;
771
772         nand->ecc.mode = NAND_ECC_HW;
773         nand->ecc.calculate = NULL;
774         nand->ecc.correct = NULL;
775         nand->ecc.hwctl = NULL;
776
777 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
778         host->pmecc_corr_cap = host->pmecc_sector_size = 0;
779
780 #ifdef CONFIG_PMECC_CAP
781         host->pmecc_corr_cap = CONFIG_PMECC_CAP;
782 #endif
783 #ifdef CONFIG_PMECC_SECTOR_SIZE
784         host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;
785 #endif
786         /* Get ECC requirement of ONFI parameters. And if CONFIG_PMECC_CAP or
787          * CONFIG_PMECC_SECTOR_SIZE not defined, then use ecc_bits, sector_size
788          * from ONFI.
789          */
790         if (pmecc_choose_ecc(host, nand, &cap, &sector_size)) {
791                 dev_err(host->dev, "The NAND flash's ECC requirement(ecc_bits: %d, sector_size: %d) are not support!",
792                                 cap, sector_size);
793                 return -EINVAL;
794         }
795
796         if (cap > host->pmecc_corr_cap)
797                 dev_info(host->dev, "WARNING: Using different ecc correct bits(%d bit) from Nand ONFI ECC reqirement (%d bit).\n",
798                                 host->pmecc_corr_cap, cap);
799         if (sector_size < host->pmecc_sector_size)
800                 dev_info(host->dev, "WARNING: Using different ecc correct sector size (%d bytes) from Nand ONFI ECC reqirement (%d bytes).\n",
801                                 host->pmecc_sector_size, sector_size);
802 #else   /* CONFIG_SYS_NAND_ONFI_DETECTION */
803         host->pmecc_corr_cap = CONFIG_PMECC_CAP;
804         host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;
805 #endif
806
807         cap = host->pmecc_corr_cap;
808         sector_size = host->pmecc_sector_size;
809
810         /* TODO: need check whether cap & sector_size is validate */
811
812         if (host->pmecc_sector_size == 512)
813                 host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_512;
814         else
815                 host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_1024;
816
817         MTDDEBUG(MTD_DEBUG_LEVEL1,
818                 "Initialize PMECC params, cap: %d, sector: %d\n",
819                 cap, sector_size);
820
821         host->pmecc = (struct pmecc_regs __iomem *) ATMEL_BASE_PMECC;
822         host->pmerrloc = (struct pmecc_errloc_regs __iomem *)
823                         ATMEL_BASE_PMERRLOC;
824         host->pmecc_rom_base = (void __iomem *) ATMEL_BASE_ROM;
825
826         /* ECC is calculated for the whole page (1 step) */
827         nand->ecc.size = mtd->writesize;
828
829         /* set ECC page size and oob layout */
830         switch (mtd->writesize) {
831         case 2048:
832         case 4096:
833         case 8192:
834                 host->pmecc_degree = (sector_size == 512) ?
835                         PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14;
836                 host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
837                 host->pmecc_sector_number = mtd->writesize / sector_size;
838                 host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes(
839                         cap, sector_size);
840                 host->pmecc_alpha_to = pmecc_get_alpha_to(host);
841                 host->pmecc_index_of = host->pmecc_rom_base +
842                         host->pmecc_index_table_offset;
843
844                 nand->ecc.steps = 1;
845                 nand->ecc.bytes = host->pmecc_bytes_per_sector *
846                                        host->pmecc_sector_number;
847
848                 if (nand->ecc.bytes > MTD_MAX_ECCPOS_ENTRIES_LARGE) {
849                         dev_err(host->dev, "too large eccpos entries. max support ecc.bytes is %d\n",
850                                         MTD_MAX_ECCPOS_ENTRIES_LARGE);
851                         return -EINVAL;
852                 }
853
854                 if (nand->ecc.bytes > mtd->oobsize - 2) {
855                         dev_err(host->dev, "No room for ECC bytes\n");
856                         return -EINVAL;
857                 }
858                 pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
859                                         mtd->oobsize,
860                                         nand->ecc.bytes);
861                 nand->ecc.layout = &atmel_pmecc_oobinfo;
862                 break;
863         case 512:
864         case 1024:
865                 /* TODO */
866                 dev_err(host->dev, "Unsupported page size for PMECC, use Software ECC\n");
867         default:
868                 /* page size not handled by HW ECC */
869                 /* switching back to soft ECC */
870                 nand->ecc.mode = NAND_ECC_SOFT;
871                 nand->ecc.read_page = NULL;
872                 nand->ecc.postpad = 0;
873                 nand->ecc.prepad = 0;
874                 nand->ecc.bytes = 0;
875                 return 0;
876         }
877
878         /* Allocate data for PMECC computation */
879         if (pmecc_data_alloc(host)) {
880                 dev_err(host->dev, "Cannot allocate memory for PMECC computation!\n");
881                 return -ENOMEM;
882         }
883
884         nand->ecc.read_page = atmel_nand_pmecc_read_page;
885         nand->ecc.write_page = atmel_nand_pmecc_write_page;
886         nand->ecc.strength = cap;
887
888         atmel_pmecc_core_init(mtd);
889
890         return 0;
891 }
892
893 #else
894
895 /* oob layout for large page size
896  * bad block info is on bytes 0 and 1
897  * the bytes have to be consecutives to avoid
898  * several NAND_CMD_RNDOUT during read
899  */
900 static struct nand_ecclayout atmel_oobinfo_large = {
901         .eccbytes = 4,
902         .eccpos = {60, 61, 62, 63},
903         .oobfree = {
904                 {2, 58}
905         },
906 };
907
908 /* oob layout for small page size
909  * bad block info is on bytes 4 and 5
910  * the bytes have to be consecutives to avoid
911  * several NAND_CMD_RNDOUT during read
912  */
913 static struct nand_ecclayout atmel_oobinfo_small = {
914         .eccbytes = 4,
915         .eccpos = {0, 1, 2, 3},
916         .oobfree = {
917                 {6, 10}
918         },
919 };
920
921 /*
922  * Calculate HW ECC
923  *
924  * function called after a write
925  *
926  * mtd:        MTD block structure
927  * dat:        raw data (unused)
928  * ecc_code:   buffer for ECC
929  */
930 static int atmel_nand_calculate(struct mtd_info *mtd,
931                 const u_char *dat, unsigned char *ecc_code)
932 {
933         unsigned int ecc_value;
934
935         /* get the first 2 ECC bytes */
936         ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR);
937
938         ecc_code[0] = ecc_value & 0xFF;
939         ecc_code[1] = (ecc_value >> 8) & 0xFF;
940
941         /* get the last 2 ECC bytes */
942         ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, NPR) & ATMEL_ECC_NPARITY;
943
944         ecc_code[2] = ecc_value & 0xFF;
945         ecc_code[3] = (ecc_value >> 8) & 0xFF;
946
947         return 0;
948 }
949
950 /*
951  * HW ECC read page function
952  *
953  * mtd:        mtd info structure
954  * chip:       nand chip info structure
955  * buf:        buffer to store read data
956  * oob_required:    caller expects OOB data read to chip->oob_poi
957  */
958 static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
959                                 uint8_t *buf, int oob_required, int page)
960 {
961         int eccsize = chip->ecc.size;
962         int eccbytes = chip->ecc.bytes;
963         uint32_t *eccpos = chip->ecc.layout->eccpos;
964         uint8_t *p = buf;
965         uint8_t *oob = chip->oob_poi;
966         uint8_t *ecc_pos;
967         int stat;
968
969         /* read the page */
970         chip->read_buf(mtd, p, eccsize);
971
972         /* move to ECC position if needed */
973         if (eccpos[0] != 0) {
974                 /* This only works on large pages
975                  * because the ECC controller waits for
976                  * NAND_CMD_RNDOUTSTART after the
977                  * NAND_CMD_RNDOUT.
978                  * anyway, for small pages, the eccpos[0] == 0
979                  */
980                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
981                                 mtd->writesize + eccpos[0], -1);
982         }
983
984         /* the ECC controller needs to read the ECC just after the data */
985         ecc_pos = oob + eccpos[0];
986         chip->read_buf(mtd, ecc_pos, eccbytes);
987
988         /* check if there's an error */
989         stat = chip->ecc.correct(mtd, p, oob, NULL);
990
991         if (stat < 0)
992                 mtd->ecc_stats.failed++;
993         else
994                 mtd->ecc_stats.corrected += stat;
995
996         /* get back to oob start (end of page) */
997         chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
998
999         /* read the oob */
1000         chip->read_buf(mtd, oob, mtd->oobsize);
1001
1002         return 0;
1003 }
1004
1005 /*
1006  * HW ECC Correction
1007  *
1008  * function called after a read
1009  *
1010  * mtd:        MTD block structure
1011  * dat:        raw data read from the chip
1012  * read_ecc:   ECC from the chip (unused)
1013  * isnull:     unused
1014  *
1015  * Detect and correct a 1 bit error for a page
1016  */
1017 static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
1018                 u_char *read_ecc, u_char *isnull)
1019 {
1020         struct nand_chip *nand_chip = mtd->priv;
1021         unsigned int ecc_status;
1022         unsigned int ecc_word, ecc_bit;
1023
1024         /* get the status from the Status Register */
1025         ecc_status = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, SR);
1026
1027         /* if there's no error */
1028         if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
1029                 return 0;
1030
1031         /* get error bit offset (4 bits) */
1032         ecc_bit = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_BITADDR;
1033         /* get word address (12 bits) */
1034         ecc_word = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_WORDADDR;
1035         ecc_word >>= 4;
1036
1037         /* if there are multiple errors */
1038         if (ecc_status & ATMEL_ECC_MULERR) {
1039                 /* check if it is a freshly erased block
1040                  * (filled with 0xff) */
1041                 if ((ecc_bit == ATMEL_ECC_BITADDR)
1042                                 && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
1043                         /* the block has just been erased, return OK */
1044                         return 0;
1045                 }
1046                 /* it doesn't seems to be a freshly
1047                  * erased block.
1048                  * We can't correct so many errors */
1049                 dev_warn(host->dev, "atmel_nand : multiple errors detected."
1050                                 " Unable to correct.\n");
1051                 return -EIO;
1052         }
1053
1054         /* if there's a single bit error : we can correct it */
1055         if (ecc_status & ATMEL_ECC_ECCERR) {
1056                 /* there's nothing much to do here.
1057                  * the bit error is on the ECC itself.
1058                  */
1059                 dev_warn(host->dev, "atmel_nand : one bit error on ECC code."
1060                                 " Nothing to correct\n");
1061                 return 0;
1062         }
1063
1064         dev_warn(host->dev, "atmel_nand : one bit error on data."
1065                         " (word offset in the page :"
1066                         " 0x%x bit offset : 0x%x)\n",
1067                         ecc_word, ecc_bit);
1068         /* correct the error */
1069         if (nand_chip->options & NAND_BUSWIDTH_16) {
1070                 /* 16 bits words */
1071                 ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
1072         } else {
1073                 /* 8 bits words */
1074                 dat[ecc_word] ^= (1 << ecc_bit);
1075         }
1076         dev_warn(host->dev, "atmel_nand : error corrected\n");
1077         return 1;
1078 }
1079
1080 /*
1081  * Enable HW ECC : unused on most chips
1082  */
1083 static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
1084 {
1085 }
1086
1087 int atmel_hwecc_nand_init_param(struct nand_chip *nand, struct mtd_info *mtd)
1088 {
1089         nand->ecc.mode = NAND_ECC_HW;
1090         nand->ecc.calculate = atmel_nand_calculate;
1091         nand->ecc.correct = atmel_nand_correct;
1092         nand->ecc.hwctl = atmel_nand_hwctl;
1093         nand->ecc.read_page = atmel_nand_read_page;
1094         nand->ecc.bytes = 4;
1095
1096         if (nand->ecc.mode == NAND_ECC_HW) {
1097                 /* ECC is calculated for the whole page (1 step) */
1098                 nand->ecc.size = mtd->writesize;
1099
1100                 /* set ECC page size and oob layout */
1101                 switch (mtd->writesize) {
1102                 case 512:
1103                         nand->ecc.layout = &atmel_oobinfo_small;
1104                         ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1105                                         ATMEL_ECC_PAGESIZE_528);
1106                         break;
1107                 case 1024:
1108                         nand->ecc.layout = &atmel_oobinfo_large;
1109                         ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1110                                         ATMEL_ECC_PAGESIZE_1056);
1111                         break;
1112                 case 2048:
1113                         nand->ecc.layout = &atmel_oobinfo_large;
1114                         ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1115                                         ATMEL_ECC_PAGESIZE_2112);
1116                         break;
1117                 case 4096:
1118                         nand->ecc.layout = &atmel_oobinfo_large;
1119                         ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1120                                         ATMEL_ECC_PAGESIZE_4224);
1121                         break;
1122                 default:
1123                         /* page size not handled by HW ECC */
1124                         /* switching back to soft ECC */
1125                         nand->ecc.mode = NAND_ECC_SOFT;
1126                         nand->ecc.calculate = NULL;
1127                         nand->ecc.correct = NULL;
1128                         nand->ecc.hwctl = NULL;
1129                         nand->ecc.read_page = NULL;
1130                         nand->ecc.postpad = 0;
1131                         nand->ecc.prepad = 0;
1132                         nand->ecc.bytes = 0;
1133                         break;
1134                 }
1135         }
1136
1137         return 0;
1138 }
1139
1140 #endif /* CONFIG_ATMEL_NAND_HW_PMECC */
1141
1142 #endif /* CONFIG_ATMEL_NAND_HWECC */
1143
1144 static void at91_nand_hwcontrol(struct mtd_info *mtd,
1145                                          int cmd, unsigned int ctrl)
1146 {
1147         struct nand_chip *this = mtd->priv;
1148
1149         if (ctrl & NAND_CTRL_CHANGE) {
1150                 ulong IO_ADDR_W = (ulong) this->IO_ADDR_W;
1151                 IO_ADDR_W &= ~(CONFIG_SYS_NAND_MASK_ALE
1152                              | CONFIG_SYS_NAND_MASK_CLE);
1153
1154                 if (ctrl & NAND_CLE)
1155                         IO_ADDR_W |= CONFIG_SYS_NAND_MASK_CLE;
1156                 if (ctrl & NAND_ALE)
1157                         IO_ADDR_W |= CONFIG_SYS_NAND_MASK_ALE;
1158
1159 #ifdef CONFIG_SYS_NAND_ENABLE_PIN
1160                 gpio_set_value(CONFIG_SYS_NAND_ENABLE_PIN, !(ctrl & NAND_NCE));
1161 #endif
1162                 this->IO_ADDR_W = (void *) IO_ADDR_W;
1163         }
1164
1165         if (cmd != NAND_CMD_NONE)
1166                 writeb(cmd, this->IO_ADDR_W);
1167 }
1168
1169 #ifdef CONFIG_SYS_NAND_READY_PIN
1170 static int at91_nand_ready(struct mtd_info *mtd)
1171 {
1172         return gpio_get_value(CONFIG_SYS_NAND_READY_PIN);
1173 }
1174 #endif
1175
1176 #ifdef CONFIG_SPL_BUILD
1177 /* The following code is for SPL */
1178 static nand_info_t mtd;
1179 static struct nand_chip nand_chip;
1180
1181 static int nand_command(int block, int page, uint32_t offs, u8 cmd)
1182 {
1183         struct nand_chip *this = mtd.priv;
1184         int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
1185         void (*hwctrl)(struct mtd_info *mtd, int cmd,
1186                         unsigned int ctrl) = this->cmd_ctrl;
1187
1188         while (this->dev_ready(&mtd))
1189                 ;
1190
1191         if (cmd == NAND_CMD_READOOB) {
1192                 offs += CONFIG_SYS_NAND_PAGE_SIZE;
1193                 cmd = NAND_CMD_READ0;
1194         }
1195
1196         hwctrl(&mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1197
1198         if ((this->options & NAND_BUSWIDTH_16) && !nand_opcode_8bits(cmd))
1199                 offs >>= 1;
1200
1201         hwctrl(&mtd, offs & 0xff, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
1202         hwctrl(&mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE);
1203         hwctrl(&mtd, (page_addr & 0xff), NAND_CTRL_ALE);
1204         hwctrl(&mtd, ((page_addr >> 8) & 0xff), NAND_CTRL_ALE);
1205 #ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
1206         hwctrl(&mtd, (page_addr >> 16) & 0x0f, NAND_CTRL_ALE);
1207 #endif
1208         hwctrl(&mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
1209
1210         hwctrl(&mtd, NAND_CMD_READSTART, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1211         hwctrl(&mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
1212
1213         while (this->dev_ready(&mtd))
1214                 ;
1215
1216         return 0;
1217 }
1218
1219 static int nand_is_bad_block(int block)
1220 {
1221         struct nand_chip *this = mtd.priv;
1222
1223         nand_command(block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB);
1224
1225         if (this->options & NAND_BUSWIDTH_16) {
1226                 if (readw(this->IO_ADDR_R) != 0xffff)
1227                         return 1;
1228         } else {
1229                 if (readb(this->IO_ADDR_R) != 0xff)
1230                         return 1;
1231         }
1232
1233         return 0;
1234 }
1235
1236 #ifdef CONFIG_SPL_NAND_ECC
1237 static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS;
1238 #define ECCSTEPS (CONFIG_SYS_NAND_PAGE_SIZE / \
1239                   CONFIG_SYS_NAND_ECCSIZE)
1240 #define ECCTOTAL (ECCSTEPS * CONFIG_SYS_NAND_ECCBYTES)
1241
1242 static int nand_read_page(int block, int page, void *dst)
1243 {
1244         struct nand_chip *this = mtd.priv;
1245         u_char ecc_calc[ECCTOTAL];
1246         u_char ecc_code[ECCTOTAL];
1247         u_char oob_data[CONFIG_SYS_NAND_OOBSIZE];
1248         int eccsize = CONFIG_SYS_NAND_ECCSIZE;
1249         int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
1250         int eccsteps = ECCSTEPS;
1251         int i;
1252         uint8_t *p = dst;
1253         nand_command(block, page, 0, NAND_CMD_READ0);
1254
1255         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1256                 if (this->ecc.mode != NAND_ECC_SOFT)
1257                         this->ecc.hwctl(&mtd, NAND_ECC_READ);
1258                 this->read_buf(&mtd, p, eccsize);
1259                 this->ecc.calculate(&mtd, p, &ecc_calc[i]);
1260         }
1261         this->read_buf(&mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
1262
1263         for (i = 0; i < ECCTOTAL; i++)
1264                 ecc_code[i] = oob_data[nand_ecc_pos[i]];
1265
1266         eccsteps = ECCSTEPS;
1267         p = dst;
1268
1269         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1270                 this->ecc.correct(&mtd, p, &ecc_code[i], &ecc_calc[i]);
1271
1272         return 0;
1273 }
1274 #else
1275 static int nand_read_page(int block, int page, void *dst)
1276 {
1277         struct nand_chip *this = mtd.priv;
1278
1279         nand_command(block, page, 0, NAND_CMD_READ0);
1280         atmel_nand_pmecc_read_page(&mtd, this, dst, 0, page);
1281
1282         return 0;
1283 }
1284 #endif /* CONFIG_SPL_NAND_ECC */
1285
1286 int nand_spl_load_image(uint32_t offs, unsigned int size, void *dst)
1287 {
1288         unsigned int block, lastblock;
1289         unsigned int page;
1290
1291         block = offs / CONFIG_SYS_NAND_BLOCK_SIZE;
1292         lastblock = (offs + size - 1) / CONFIG_SYS_NAND_BLOCK_SIZE;
1293         page = (offs % CONFIG_SYS_NAND_BLOCK_SIZE) / CONFIG_SYS_NAND_PAGE_SIZE;
1294
1295         while (block <= lastblock) {
1296                 if (!nand_is_bad_block(block)) {
1297                         while (page < CONFIG_SYS_NAND_PAGE_COUNT) {
1298                                 nand_read_page(block, page, dst);
1299                                 dst += CONFIG_SYS_NAND_PAGE_SIZE;
1300                                 page++;
1301                         }
1302
1303                         page = 0;
1304                 } else {
1305                         lastblock++;
1306                 }
1307
1308                 block++;
1309         }
1310
1311         return 0;
1312 }
1313
1314 int at91_nand_wait_ready(struct mtd_info *mtd)
1315 {
1316         struct nand_chip *this = mtd->priv;
1317
1318         udelay(this->chip_delay);
1319
1320         return 0;
1321 }
1322
1323 int board_nand_init(struct nand_chip *nand)
1324 {
1325         int ret = 0;
1326
1327         nand->ecc.mode = NAND_ECC_SOFT;
1328 #ifdef CONFIG_SYS_NAND_DBW_16
1329         nand->options = NAND_BUSWIDTH_16;
1330         nand->read_buf = nand_read_buf16;
1331 #else
1332         nand->read_buf = nand_read_buf;
1333 #endif
1334         nand->cmd_ctrl = at91_nand_hwcontrol;
1335 #ifdef CONFIG_SYS_NAND_READY_PIN
1336         nand->dev_ready = at91_nand_ready;
1337 #else
1338         nand->dev_ready = at91_nand_wait_ready;
1339 #endif
1340         nand->chip_delay = 20;
1341
1342 #ifdef CONFIG_ATMEL_NAND_HWECC
1343 #ifdef CONFIG_ATMEL_NAND_HW_PMECC
1344         ret = atmel_pmecc_nand_init_params(nand, &mtd);
1345 #endif
1346 #endif
1347
1348         return ret;
1349 }
1350
1351 void nand_init(void)
1352 {
1353         mtd.writesize = CONFIG_SYS_NAND_PAGE_SIZE;
1354         mtd.oobsize = CONFIG_SYS_NAND_OOBSIZE;
1355         mtd.priv = &nand_chip;
1356         nand_chip.IO_ADDR_R = (void __iomem *)CONFIG_SYS_NAND_BASE;
1357         nand_chip.IO_ADDR_W = (void __iomem *)CONFIG_SYS_NAND_BASE;
1358         board_nand_init(&nand_chip);
1359
1360 #ifdef CONFIG_SPL_NAND_ECC
1361         if (nand_chip.ecc.mode == NAND_ECC_SOFT) {
1362                 nand_chip.ecc.calculate = nand_calculate_ecc;
1363                 nand_chip.ecc.correct = nand_correct_data;
1364         }
1365 #endif
1366
1367         if (nand_chip.select_chip)
1368                 nand_chip.select_chip(&mtd, 0);
1369 }
1370
1371 void nand_deselect(void)
1372 {
1373         if (nand_chip.select_chip)
1374                 nand_chip.select_chip(&mtd, -1);
1375 }
1376
1377 #else
1378
1379 #ifndef CONFIG_SYS_NAND_BASE_LIST
1380 #define CONFIG_SYS_NAND_BASE_LIST { CONFIG_SYS_NAND_BASE }
1381 #endif
1382 static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE];
1383 static ulong base_addr[CONFIG_SYS_MAX_NAND_DEVICE] = CONFIG_SYS_NAND_BASE_LIST;
1384
1385 int atmel_nand_chip_init(int devnum, ulong base_addr)
1386 {
1387         int ret;
1388         struct mtd_info *mtd = &nand_info[devnum];
1389         struct nand_chip *nand = &nand_chip[devnum];
1390
1391         mtd->priv = nand;
1392         nand->IO_ADDR_R = nand->IO_ADDR_W = (void  __iomem *)base_addr;
1393
1394 #ifdef CONFIG_NAND_ECC_BCH
1395         nand->ecc.mode = NAND_ECC_SOFT_BCH;
1396 #else
1397         nand->ecc.mode = NAND_ECC_SOFT;
1398 #endif
1399 #ifdef CONFIG_SYS_NAND_DBW_16
1400         nand->options = NAND_BUSWIDTH_16;
1401 #endif
1402         nand->cmd_ctrl = at91_nand_hwcontrol;
1403 #ifdef CONFIG_SYS_NAND_READY_PIN
1404         nand->dev_ready = at91_nand_ready;
1405 #endif
1406         nand->chip_delay = 75;
1407
1408         ret = nand_scan_ident(mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL);
1409         if (ret)
1410                 return ret;
1411
1412 #ifdef CONFIG_ATMEL_NAND_HWECC
1413 #ifdef CONFIG_ATMEL_NAND_HW_PMECC
1414         ret = atmel_pmecc_nand_init_params(nand, mtd);
1415 #else
1416         ret = atmel_hwecc_nand_init_param(nand, mtd);
1417 #endif
1418         if (ret)
1419                 return ret;
1420 #endif
1421
1422         ret = nand_scan_tail(mtd);
1423         if (!ret)
1424                 nand_register(devnum);
1425
1426         return ret;
1427 }
1428
1429 void board_nand_init(void)
1430 {
1431         int i;
1432         for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++)
1433                 if (atmel_nand_chip_init(i, base_addr[i]))
1434                         dev_err(host->dev, "atmel_nand: Fail to initialize #%d chip",
1435                                 i);
1436 }
1437 #endif /* CONFIG_SPL_BUILD */