]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/mtd/nand/atmel_nand.c
mtd: resync with Linux-3.7.1
[karo-tx-uboot.git] / drivers / mtd / nand / atmel_nand.c
1 /*
2  * (C) Copyright 2007-2008
3  * Stelian Pop <stelian@popies.net>
4  * Lead Tech Design <www.leadtechdesign.com>
5  *
6  * (C) Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
7  *
8  * Add Programmable Multibit ECC support for various AT91 SoC
9  *     (C) Copyright 2012 ATMEL, Hong Xu
10  *
11  * See file CREDITS for list of people who contributed to this
12  * project.
13  *
14  * This program is free software; you can redistribute it and/or
15  * modify it under the terms of the GNU General Public License as
16  * published by the Free Software Foundation; either version 2 of
17  * the License, or (at your option) any later version.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22  * GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with this program; if not, write to the Free Software
26  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
27  * MA 02111-1307 USA
28  */
29
30 #include <common.h>
31 #include <asm/arch/hardware.h>
32 #include <asm/arch/gpio.h>
33 #include <asm/arch/at91_pio.h>
34
35 #include <nand.h>
36 #include <watchdog.h>
37
38 #ifdef CONFIG_ATMEL_NAND_HWECC
39
40 /* Register access macros */
41 #define ecc_readl(add, reg)                             \
42         readl(AT91_BASE_SYS + add + ATMEL_ECC_##reg)
43 #define ecc_writel(add, reg, value)                     \
44         writel((value), AT91_BASE_SYS + add + ATMEL_ECC_##reg)
45
46 #include "atmel_nand_ecc.h"     /* Hardware ECC registers */
47
48 #ifdef CONFIG_ATMEL_NAND_HW_PMECC
49
50 struct atmel_nand_host {
51         struct pmecc_regs __iomem *pmecc;
52         struct pmecc_errloc_regs __iomem *pmerrloc;
53         void __iomem            *pmecc_rom_base;
54
55         u8              pmecc_corr_cap;
56         u16             pmecc_sector_size;
57         u32             pmecc_index_table_offset;
58
59         int             pmecc_bytes_per_sector;
60         int             pmecc_sector_number;
61         int             pmecc_degree;   /* Degree of remainders */
62         int             pmecc_cw_len;   /* Length of codeword */
63
64         /* lookup table for alpha_to and index_of */
65         void __iomem    *pmecc_alpha_to;
66         void __iomem    *pmecc_index_of;
67
68         /* data for pmecc computation */
69         int16_t pmecc_smu[(CONFIG_PMECC_CAP + 2) * (2 * CONFIG_PMECC_CAP + 1)];
70         int16_t pmecc_partial_syn[2 * CONFIG_PMECC_CAP + 1];
71         int16_t pmecc_si[2 * CONFIG_PMECC_CAP + 1];
72         int16_t pmecc_lmu[CONFIG_PMECC_CAP + 1]; /* polynomal order */
73         int     pmecc_mu[CONFIG_PMECC_CAP + 1];
74         int     pmecc_dmu[CONFIG_PMECC_CAP + 1];
75         int     pmecc_delta[CONFIG_PMECC_CAP + 1];
76 };
77
78 static struct atmel_nand_host pmecc_host;
79 static struct nand_ecclayout atmel_pmecc_oobinfo;
80
81 /*
82  * Return number of ecc bytes per sector according to sector size and
83  * correction capability
84  *
85  * Following table shows what at91 PMECC supported:
86  * Correction Capability        Sector_512_bytes        Sector_1024_bytes
87  * =====================        ================        =================
88  *                2-bits                 4-bytes                  4-bytes
89  *                4-bits                 7-bytes                  7-bytes
90  *                8-bits                13-bytes                 14-bytes
91  *               12-bits                20-bytes                 21-bytes
92  *               24-bits                39-bytes                 42-bytes
93  */
94 static int pmecc_get_ecc_bytes(int cap, int sector_size)
95 {
96         int m = 12 + sector_size / 512;
97         return (m * cap + 7) / 8;
98 }
99
100 static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
101         int oobsize, int ecc_len)
102 {
103         int i;
104
105         layout->eccbytes = ecc_len;
106
107         /* ECC will occupy the last ecc_len bytes continuously */
108         for (i = 0; i < ecc_len; i++)
109                 layout->eccpos[i] = oobsize - ecc_len + i;
110
111         layout->oobfree[0].offset = 2;
112         layout->oobfree[0].length =
113                 oobsize - ecc_len - layout->oobfree[0].offset;
114 }
115
116 static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
117 {
118         int table_size;
119
120         table_size = host->pmecc_sector_size == 512 ?
121                 PMECC_INDEX_TABLE_SIZE_512 : PMECC_INDEX_TABLE_SIZE_1024;
122
123         /* the ALPHA lookup table is right behind the INDEX lookup table. */
124         return host->pmecc_rom_base + host->pmecc_index_table_offset +
125                         table_size * sizeof(int16_t);
126 }
127
128 static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
129 {
130         struct nand_chip *nand_chip = mtd->priv;
131         struct atmel_nand_host *host = nand_chip->priv;
132         int i;
133         uint32_t value;
134
135         /* Fill odd syndromes */
136         for (i = 0; i < host->pmecc_corr_cap; i++) {
137                 value = readl(&host->pmecc->rem_port[sector].rem[i / 2]);
138                 if (i & 1)
139                         value >>= 16;
140                 value &= 0xffff;
141                 host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
142         }
143 }
144
145 static void pmecc_substitute(struct mtd_info *mtd)
146 {
147         struct nand_chip *nand_chip = mtd->priv;
148         struct atmel_nand_host *host = nand_chip->priv;
149         int16_t __iomem *alpha_to = host->pmecc_alpha_to;
150         int16_t __iomem *index_of = host->pmecc_index_of;
151         int16_t *partial_syn = host->pmecc_partial_syn;
152         const int cap = host->pmecc_corr_cap;
153         int16_t *si;
154         int i, j;
155
156         /* si[] is a table that holds the current syndrome value,
157          * an element of that table belongs to the field
158          */
159         si = host->pmecc_si;
160
161         memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
162
163         /* Computation 2t syndromes based on S(x) */
164         /* Odd syndromes */
165         for (i = 1; i < 2 * cap; i += 2) {
166                 for (j = 0; j < host->pmecc_degree; j++) {
167                         if (partial_syn[i] & (0x1 << j))
168                                 si[i] = readw(alpha_to + i * j) ^ si[i];
169                 }
170         }
171         /* Even syndrome = (Odd syndrome) ** 2 */
172         for (i = 2, j = 1; j <= cap; i = ++j << 1) {
173                 if (si[j] == 0) {
174                         si[i] = 0;
175                 } else {
176                         int16_t tmp;
177
178                         tmp = readw(index_of + si[j]);
179                         tmp = (tmp * 2) % host->pmecc_cw_len;
180                         si[i] = readw(alpha_to + tmp);
181                 }
182         }
183 }
184
185 /*
186  * This function defines a Berlekamp iterative procedure for
187  * finding the value of the error location polynomial.
188  * The input is si[], initialize by pmecc_substitute().
189  * The output is smu[][].
190  *
191  * This function is written according to chip datasheet Chapter:
192  * Find the Error Location Polynomial Sigma(x) of Section:
193  * Programmable Multibit ECC Control (PMECC).
194  */
195 static void pmecc_get_sigma(struct mtd_info *mtd)
196 {
197         struct nand_chip *nand_chip = mtd->priv;
198         struct atmel_nand_host *host = nand_chip->priv;
199
200         int16_t *lmu = host->pmecc_lmu;
201         int16_t *si = host->pmecc_si;
202         int *mu = host->pmecc_mu;
203         int *dmu = host->pmecc_dmu;     /* Discrepancy */
204         int *delta = host->pmecc_delta; /* Delta order */
205         int cw_len = host->pmecc_cw_len;
206         const int16_t cap = host->pmecc_corr_cap;
207         const int num = 2 * cap + 1;
208         int16_t __iomem *index_of = host->pmecc_index_of;
209         int16_t __iomem *alpha_to = host->pmecc_alpha_to;
210         int i, j, k;
211         uint32_t dmu_0_count, tmp;
212         int16_t *smu = host->pmecc_smu;
213
214         /* index of largest delta */
215         int ro;
216         int largest;
217         int diff;
218
219         /* Init the Sigma(x) */
220         memset(smu, 0, sizeof(int16_t) * ARRAY_SIZE(smu));
221
222         dmu_0_count = 0;
223
224         /* First Row */
225
226         /* Mu */
227         mu[0] = -1;
228
229         smu[0] = 1;
230
231         /* discrepancy set to 1 */
232         dmu[0] = 1;
233         /* polynom order set to 0 */
234         lmu[0] = 0;
235         /* delta[0] = (mu[0] * 2 - lmu[0]) >> 1; */
236         delta[0] = -1;
237
238         /* Second Row */
239
240         /* Mu */
241         mu[1] = 0;
242         /* Sigma(x) set to 1 */
243         smu[num] = 1;
244
245         /* discrepancy set to S1 */
246         dmu[1] = si[1];
247
248         /* polynom order set to 0 */
249         lmu[1] = 0;
250
251         /* delta[1] = (mu[1] * 2 - lmu[1]) >> 1; */
252         delta[1] = 0;
253
254         for (i = 1; i <= cap; i++) {
255                 mu[i + 1] = i << 1;
256                 /* Begin Computing Sigma (Mu+1) and L(mu) */
257                 /* check if discrepancy is set to 0 */
258                 if (dmu[i] == 0) {
259                         dmu_0_count++;
260
261                         tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
262                         if ((cap - (lmu[i] >> 1) - 1) & 0x1)
263                                 tmp += 2;
264                         else
265                                 tmp += 1;
266
267                         if (dmu_0_count == tmp) {
268                                 for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
269                                         smu[(cap + 1) * num + j] =
270                                                         smu[i * num + j];
271
272                                 lmu[cap + 1] = lmu[i];
273                                 return;
274                         }
275
276                         /* copy polynom */
277                         for (j = 0; j <= lmu[i] >> 1; j++)
278                                 smu[(i + 1) * num + j] = smu[i * num + j];
279
280                         /* copy previous polynom order to the next */
281                         lmu[i + 1] = lmu[i];
282                 } else {
283                         ro = 0;
284                         largest = -1;
285                         /* find largest delta with dmu != 0 */
286                         for (j = 0; j < i; j++) {
287                                 if ((dmu[j]) && (delta[j] > largest)) {
288                                         largest = delta[j];
289                                         ro = j;
290                                 }
291                         }
292
293                         /* compute difference */
294                         diff = (mu[i] - mu[ro]);
295
296                         /* Compute degree of the new smu polynomial */
297                         if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
298                                 lmu[i + 1] = lmu[i];
299                         else
300                                 lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
301
302                         /* Init smu[i+1] with 0 */
303                         for (k = 0; k < num; k++)
304                                 smu[(i + 1) * num + k] = 0;
305
306                         /* Compute smu[i+1] */
307                         for (k = 0; k <= lmu[ro] >> 1; k++) {
308                                 int16_t a, b, c;
309
310                                 if (!(smu[ro * num + k] && dmu[i]))
311                                         continue;
312                                 a = readw(index_of + dmu[i]);
313                                 b = readw(index_of + dmu[ro]);
314                                 c = readw(index_of + smu[ro * num + k]);
315                                 tmp = a + (cw_len - b) + c;
316                                 a = readw(alpha_to + tmp % cw_len);
317                                 smu[(i + 1) * num + (k + diff)] = a;
318                         }
319
320                         for (k = 0; k <= lmu[i] >> 1; k++)
321                                 smu[(i + 1) * num + k] ^= smu[i * num + k];
322                 }
323
324                 /* End Computing Sigma (Mu+1) and L(mu) */
325                 /* In either case compute delta */
326                 delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
327
328                 /* Do not compute discrepancy for the last iteration */
329                 if (i >= cap)
330                         continue;
331
332                 for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
333                         tmp = 2 * (i - 1);
334                         if (k == 0) {
335                                 dmu[i + 1] = si[tmp + 3];
336                         } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
337                                 int16_t a, b, c;
338                                 a = readw(index_of +
339                                                 smu[(i + 1) * num + k]);
340                                 b = si[2 * (i - 1) + 3 - k];
341                                 c = readw(index_of + b);
342                                 tmp = a + c;
343                                 tmp %= cw_len;
344                                 dmu[i + 1] = readw(alpha_to + tmp) ^
345                                         dmu[i + 1];
346                         }
347                 }
348         }
349 }
350
351 static int pmecc_err_location(struct mtd_info *mtd)
352 {
353         struct nand_chip *nand_chip = mtd->priv;
354         struct atmel_nand_host *host = nand_chip->priv;
355         const int cap = host->pmecc_corr_cap;
356         const int num = 2 * cap + 1;
357         int sector_size = host->pmecc_sector_size;
358         int err_nbr = 0;        /* number of error */
359         int roots_nbr;          /* number of roots */
360         int i;
361         uint32_t val;
362         int16_t *smu = host->pmecc_smu;
363         int timeout = PMECC_MAX_TIMEOUT_US;
364
365         writel(PMERRLOC_DISABLE, &host->pmerrloc->eldis);
366
367         for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
368                 writel(smu[(cap + 1) * num + i], &host->pmerrloc->sigma[i]);
369                 err_nbr++;
370         }
371
372         val = PMERRLOC_ELCFG_NUM_ERRORS(err_nbr - 1);
373         if (sector_size == 1024)
374                 val |= PMERRLOC_ELCFG_SECTOR_1024;
375
376         writel(val, &host->pmerrloc->elcfg);
377         writel(sector_size * 8 + host->pmecc_degree * cap,
378                         &host->pmerrloc->elen);
379
380         while (--timeout) {
381                 if (readl(&host->pmerrloc->elisr) & PMERRLOC_CALC_DONE)
382                         break;
383                 WATCHDOG_RESET();
384                 udelay(1);
385         }
386
387         if (!timeout) {
388                 printk(KERN_ERR "atmel_nand : Timeout to calculate PMECC error location\n");
389                 return -1;
390         }
391
392         roots_nbr = (readl(&host->pmerrloc->elisr) & PMERRLOC_ERR_NUM_MASK)
393                         >> 8;
394         /* Number of roots == degree of smu hence <= cap */
395         if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
396                 return err_nbr - 1;
397
398         /* Number of roots does not match the degree of smu
399          * unable to correct error */
400         return -1;
401 }
402
403 static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
404                 int sector_num, int extra_bytes, int err_nbr)
405 {
406         struct nand_chip *nand_chip = mtd->priv;
407         struct atmel_nand_host *host = nand_chip->priv;
408         int i = 0;
409         int byte_pos, bit_pos, sector_size, pos;
410         uint32_t tmp;
411         uint8_t err_byte;
412
413         sector_size = host->pmecc_sector_size;
414
415         while (err_nbr) {
416                 tmp = readl(&host->pmerrloc->el[i]) - 1;
417                 byte_pos = tmp / 8;
418                 bit_pos  = tmp % 8;
419
420                 if (byte_pos >= (sector_size + extra_bytes))
421                         BUG();  /* should never happen */
422
423                 if (byte_pos < sector_size) {
424                         err_byte = *(buf + byte_pos);
425                         *(buf + byte_pos) ^= (1 << bit_pos);
426
427                         pos = sector_num * host->pmecc_sector_size + byte_pos;
428                         printk(KERN_INFO "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
429                                 pos, bit_pos, err_byte, *(buf + byte_pos));
430                 } else {
431                         /* Bit flip in OOB area */
432                         tmp = sector_num * host->pmecc_bytes_per_sector
433                                         + (byte_pos - sector_size);
434                         err_byte = ecc[tmp];
435                         ecc[tmp] ^= (1 << bit_pos);
436
437                         pos = tmp + nand_chip->ecc.layout->eccpos[0];
438                         printk(KERN_INFO "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
439                                 pos, bit_pos, err_byte, ecc[tmp]);
440                 }
441
442                 i++;
443                 err_nbr--;
444         }
445
446         return;
447 }
448
449 static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
450         u8 *ecc)
451 {
452         struct nand_chip *nand_chip = mtd->priv;
453         struct atmel_nand_host *host = nand_chip->priv;
454         int i, err_nbr, eccbytes;
455         uint8_t *buf_pos;
456
457         eccbytes = nand_chip->ecc.bytes;
458         for (i = 0; i < eccbytes; i++)
459                 if (ecc[i] != 0xff)
460                         goto normal_check;
461         /* Erased page, return OK */
462         return 0;
463
464 normal_check:
465         for (i = 0; i < host->pmecc_sector_number; i++) {
466                 err_nbr = 0;
467                 if (pmecc_stat & 0x1) {
468                         buf_pos = buf + i * host->pmecc_sector_size;
469
470                         pmecc_gen_syndrome(mtd, i);
471                         pmecc_substitute(mtd);
472                         pmecc_get_sigma(mtd);
473
474                         err_nbr = pmecc_err_location(mtd);
475                         if (err_nbr == -1) {
476                                 printk(KERN_ERR "PMECC: Too many errors\n");
477                                 mtd->ecc_stats.failed++;
478                                 return -EIO;
479                         } else {
480                                 pmecc_correct_data(mtd, buf_pos, ecc, i,
481                                         host->pmecc_bytes_per_sector, err_nbr);
482                                 mtd->ecc_stats.corrected += err_nbr;
483                         }
484                 }
485                 pmecc_stat >>= 1;
486         }
487
488         return 0;
489 }
490
491 static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
492         struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
493 {
494         struct atmel_nand_host *host = chip->priv;
495         int eccsize = chip->ecc.size;
496         uint8_t *oob = chip->oob_poi;
497         uint32_t *eccpos = chip->ecc.layout->eccpos;
498         uint32_t stat;
499         int timeout = PMECC_MAX_TIMEOUT_US;
500
501         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
502         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
503         pmecc_writel(host->pmecc, cfg, ((pmecc_readl(host->pmecc, cfg))
504                 & ~PMECC_CFG_WRITE_OP) | PMECC_CFG_AUTO_ENABLE);
505
506         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
507         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
508
509         chip->read_buf(mtd, buf, eccsize);
510         chip->read_buf(mtd, oob, mtd->oobsize);
511
512         while (--timeout) {
513                 if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
514                         break;
515                 WATCHDOG_RESET();
516                 udelay(1);
517         }
518
519         if (!timeout) {
520                 printk(KERN_ERR "atmel_nand : Timeout to read PMECC page\n");
521                 return -1;
522         }
523
524         stat = pmecc_readl(host->pmecc, isr);
525         if (stat != 0)
526                 if (pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]) != 0)
527                         return -EIO;
528
529         return 0;
530 }
531
532 static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
533                 struct nand_chip *chip, const uint8_t *buf,
534                 int oob_required)
535 {
536         struct atmel_nand_host *host = chip->priv;
537         uint32_t *eccpos = chip->ecc.layout->eccpos;
538         int i, j;
539         int timeout = PMECC_MAX_TIMEOUT_US;
540
541         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
542         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
543
544         pmecc_writel(host->pmecc, cfg, (pmecc_readl(host->pmecc, cfg) |
545                 PMECC_CFG_WRITE_OP) & ~PMECC_CFG_AUTO_ENABLE);
546
547         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
548         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
549
550         chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
551
552         while (--timeout) {
553                 if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
554                         break;
555                 WATCHDOG_RESET();
556                 udelay(1);
557         }
558
559         if (!timeout) {
560                 printk(KERN_ERR "atmel_nand : Timeout to read PMECC status, fail to write PMECC in oob\n");
561                 goto out;
562         }
563
564         for (i = 0; i < host->pmecc_sector_number; i++) {
565                 for (j = 0; j < host->pmecc_bytes_per_sector; j++) {
566                         int pos;
567
568                         pos = i * host->pmecc_bytes_per_sector + j;
569                         chip->oob_poi[eccpos[pos]] =
570                                 readb(&host->pmecc->ecc_port[i].ecc[j]);
571                 }
572         }
573         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
574 out:
575         return 0;
576 }
577
578 static void atmel_pmecc_core_init(struct mtd_info *mtd)
579 {
580         struct nand_chip *nand_chip = mtd->priv;
581         struct atmel_nand_host *host = nand_chip->priv;
582         uint32_t val = 0;
583         struct nand_ecclayout *ecc_layout;
584
585         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
586         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
587
588         switch (host->pmecc_corr_cap) {
589         case 2:
590                 val = PMECC_CFG_BCH_ERR2;
591                 break;
592         case 4:
593                 val = PMECC_CFG_BCH_ERR4;
594                 break;
595         case 8:
596                 val = PMECC_CFG_BCH_ERR8;
597                 break;
598         case 12:
599                 val = PMECC_CFG_BCH_ERR12;
600                 break;
601         case 24:
602                 val = PMECC_CFG_BCH_ERR24;
603                 break;
604         }
605
606         if (host->pmecc_sector_size == 512)
607                 val |= PMECC_CFG_SECTOR512;
608         else if (host->pmecc_sector_size == 1024)
609                 val |= PMECC_CFG_SECTOR1024;
610
611         switch (host->pmecc_sector_number) {
612         case 1:
613                 val |= PMECC_CFG_PAGE_1SECTOR;
614                 break;
615         case 2:
616                 val |= PMECC_CFG_PAGE_2SECTORS;
617                 break;
618         case 4:
619                 val |= PMECC_CFG_PAGE_4SECTORS;
620                 break;
621         case 8:
622                 val |= PMECC_CFG_PAGE_8SECTORS;
623                 break;
624         }
625
626         val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
627                 | PMECC_CFG_AUTO_DISABLE);
628         pmecc_writel(host->pmecc, cfg, val);
629
630         ecc_layout = nand_chip->ecc.layout;
631         pmecc_writel(host->pmecc, sarea, mtd->oobsize - 1);
632         pmecc_writel(host->pmecc, saddr, ecc_layout->eccpos[0]);
633         pmecc_writel(host->pmecc, eaddr,
634                         ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
635         /* See datasheet about PMECC Clock Control Register */
636         pmecc_writel(host->pmecc, clk, PMECC_CLK_133MHZ);
637         pmecc_writel(host->pmecc, idr, 0xff);
638         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
639 }
640
641 static int atmel_pmecc_nand_init_params(struct nand_chip *nand,
642                 struct mtd_info *mtd)
643 {
644         struct atmel_nand_host *host;
645         int cap, sector_size;
646
647         host = nand->priv = &pmecc_host;
648
649         nand->ecc.mode = NAND_ECC_HW;
650         nand->ecc.calculate = NULL;
651         nand->ecc.correct = NULL;
652         nand->ecc.hwctl = NULL;
653
654         cap = host->pmecc_corr_cap = CONFIG_PMECC_CAP;
655         sector_size = host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;
656         host->pmecc_index_table_offset = CONFIG_PMECC_INDEX_TABLE_OFFSET;
657
658         MTDDEBUG(MTD_DEBUG_LEVEL1,
659                 "Initialize PMECC params, cap: %d, sector: %d\n",
660                 cap, sector_size);
661
662         host->pmecc = (struct pmecc_regs __iomem *) ATMEL_BASE_PMECC;
663         host->pmerrloc = (struct pmecc_errloc_regs __iomem *)
664                         ATMEL_BASE_PMERRLOC;
665         host->pmecc_rom_base = (void __iomem *) ATMEL_BASE_ROM;
666
667         /* ECC is calculated for the whole page (1 step) */
668         nand->ecc.size = mtd->writesize;
669
670         /* set ECC page size and oob layout */
671         switch (mtd->writesize) {
672         case 2048:
673         case 4096:
674                 host->pmecc_degree = PMECC_GF_DIMENSION_13;
675                 host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
676                 host->pmecc_sector_number = mtd->writesize / sector_size;
677                 host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes(
678                         cap, sector_size);
679                 host->pmecc_alpha_to = pmecc_get_alpha_to(host);
680                 host->pmecc_index_of = host->pmecc_rom_base +
681                         host->pmecc_index_table_offset;
682
683                 nand->ecc.steps = 1;
684                 nand->ecc.bytes = host->pmecc_bytes_per_sector *
685                                        host->pmecc_sector_number;
686                 if (nand->ecc.bytes > mtd->oobsize - 2) {
687                         printk(KERN_ERR "No room for ECC bytes\n");
688                         return -EINVAL;
689                 }
690                 pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
691                                         mtd->oobsize,
692                                         nand->ecc.bytes);
693                 nand->ecc.layout = &atmel_pmecc_oobinfo;
694                 break;
695         case 512:
696         case 1024:
697                 /* TODO */
698                 printk(KERN_ERR "Unsupported page size for PMECC, use Software ECC\n");
699         default:
700                 /* page size not handled by HW ECC */
701                 /* switching back to soft ECC */
702                 nand->ecc.mode = NAND_ECC_SOFT;
703                 nand->ecc.read_page = NULL;
704                 nand->ecc.postpad = 0;
705                 nand->ecc.prepad = 0;
706                 nand->ecc.bytes = 0;
707                 return 0;
708         }
709
710         nand->ecc.read_page = atmel_nand_pmecc_read_page;
711         nand->ecc.write_page = atmel_nand_pmecc_write_page;
712         nand->ecc.strength = cap;
713
714         atmel_pmecc_core_init(mtd);
715
716         return 0;
717 }
718
719 #else
720
721 /* oob layout for large page size
722  * bad block info is on bytes 0 and 1
723  * the bytes have to be consecutives to avoid
724  * several NAND_CMD_RNDOUT during read
725  */
726 static struct nand_ecclayout atmel_oobinfo_large = {
727         .eccbytes = 4,
728         .eccpos = {60, 61, 62, 63},
729         .oobfree = {
730                 {2, 58}
731         },
732 };
733
734 /* oob layout for small page size
735  * bad block info is on bytes 4 and 5
736  * the bytes have to be consecutives to avoid
737  * several NAND_CMD_RNDOUT during read
738  */
739 static struct nand_ecclayout atmel_oobinfo_small = {
740         .eccbytes = 4,
741         .eccpos = {0, 1, 2, 3},
742         .oobfree = {
743                 {6, 10}
744         },
745 };
746
747 /*
748  * Calculate HW ECC
749  *
750  * function called after a write
751  *
752  * mtd:        MTD block structure
753  * dat:        raw data (unused)
754  * ecc_code:   buffer for ECC
755  */
756 static int atmel_nand_calculate(struct mtd_info *mtd,
757                 const u_char *dat, unsigned char *ecc_code)
758 {
759         unsigned int ecc_value;
760
761         /* get the first 2 ECC bytes */
762         ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR);
763
764         ecc_code[0] = ecc_value & 0xFF;
765         ecc_code[1] = (ecc_value >> 8) & 0xFF;
766
767         /* get the last 2 ECC bytes */
768         ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, NPR) & ATMEL_ECC_NPARITY;
769
770         ecc_code[2] = ecc_value & 0xFF;
771         ecc_code[3] = (ecc_value >> 8) & 0xFF;
772
773         return 0;
774 }
775
776 /*
777  * HW ECC read page function
778  *
779  * mtd:        mtd info structure
780  * chip:       nand chip info structure
781  * buf:        buffer to store read data
782  * oob_required:    caller expects OOB data read to chip->oob_poi
783  */
784 static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
785                                 uint8_t *buf, int oob_required, int page)
786 {
787         int eccsize = chip->ecc.size;
788         int eccbytes = chip->ecc.bytes;
789         uint32_t *eccpos = chip->ecc.layout->eccpos;
790         uint8_t *p = buf;
791         uint8_t *oob = chip->oob_poi;
792         uint8_t *ecc_pos;
793         int stat;
794
795         /* read the page */
796         chip->read_buf(mtd, p, eccsize);
797
798         /* move to ECC position if needed */
799         if (eccpos[0] != 0) {
800                 /* This only works on large pages
801                  * because the ECC controller waits for
802                  * NAND_CMD_RNDOUTSTART after the
803                  * NAND_CMD_RNDOUT.
804                  * anyway, for small pages, the eccpos[0] == 0
805                  */
806                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
807                                 mtd->writesize + eccpos[0], -1);
808         }
809
810         /* the ECC controller needs to read the ECC just after the data */
811         ecc_pos = oob + eccpos[0];
812         chip->read_buf(mtd, ecc_pos, eccbytes);
813
814         /* check if there's an error */
815         stat = chip->ecc.correct(mtd, p, oob, NULL);
816
817         if (stat < 0)
818                 mtd->ecc_stats.failed++;
819         else
820                 mtd->ecc_stats.corrected += stat;
821
822         /* get back to oob start (end of page) */
823         chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
824
825         /* read the oob */
826         chip->read_buf(mtd, oob, mtd->oobsize);
827
828         return 0;
829 }
830
831 /*
832  * HW ECC Correction
833  *
834  * function called after a read
835  *
836  * mtd:        MTD block structure
837  * dat:        raw data read from the chip
838  * read_ecc:   ECC from the chip (unused)
839  * isnull:     unused
840  *
841  * Detect and correct a 1 bit error for a page
842  */
843 static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
844                 u_char *read_ecc, u_char *isnull)
845 {
846         struct nand_chip *nand_chip = mtd->priv;
847         unsigned int ecc_status;
848         unsigned int ecc_word, ecc_bit;
849
850         /* get the status from the Status Register */
851         ecc_status = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, SR);
852
853         /* if there's no error */
854         if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
855                 return 0;
856
857         /* get error bit offset (4 bits) */
858         ecc_bit = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_BITADDR;
859         /* get word address (12 bits) */
860         ecc_word = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_WORDADDR;
861         ecc_word >>= 4;
862
863         /* if there are multiple errors */
864         if (ecc_status & ATMEL_ECC_MULERR) {
865                 /* check if it is a freshly erased block
866                  * (filled with 0xff) */
867                 if ((ecc_bit == ATMEL_ECC_BITADDR)
868                                 && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
869                         /* the block has just been erased, return OK */
870                         return 0;
871                 }
872                 /* it doesn't seems to be a freshly
873                  * erased block.
874                  * We can't correct so many errors */
875                 printk(KERN_WARNING "atmel_nand : multiple errors detected."
876                                 " Unable to correct.\n");
877                 return -EIO;
878         }
879
880         /* if there's a single bit error : we can correct it */
881         if (ecc_status & ATMEL_ECC_ECCERR) {
882                 /* there's nothing much to do here.
883                  * the bit error is on the ECC itself.
884                  */
885                 printk(KERN_WARNING "atmel_nand : one bit error on ECC code."
886                                 " Nothing to correct\n");
887                 return 0;
888         }
889
890         printk(KERN_WARNING "atmel_nand : one bit error on data."
891                         " (word offset in the page :"
892                         " 0x%x bit offset : 0x%x)\n",
893                         ecc_word, ecc_bit);
894         /* correct the error */
895         if (nand_chip->options & NAND_BUSWIDTH_16) {
896                 /* 16 bits words */
897                 ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
898         } else {
899                 /* 8 bits words */
900                 dat[ecc_word] ^= (1 << ecc_bit);
901         }
902         printk(KERN_WARNING "atmel_nand : error corrected\n");
903         return 1;
904 }
905
906 /*
907  * Enable HW ECC : unused on most chips
908  */
909 static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
910 {
911 }
912
913 int atmel_hwecc_nand_init_param(struct nand_chip *nand, struct mtd_info *mtd)
914 {
915         nand->ecc.mode = NAND_ECC_HW;
916         nand->ecc.calculate = atmel_nand_calculate;
917         nand->ecc.correct = atmel_nand_correct;
918         nand->ecc.hwctl = atmel_nand_hwctl;
919         nand->ecc.read_page = atmel_nand_read_page;
920         nand->ecc.bytes = 4;
921
922         if (nand->ecc.mode == NAND_ECC_HW) {
923                 /* ECC is calculated for the whole page (1 step) */
924                 nand->ecc.size = mtd->writesize;
925
926                 /* set ECC page size and oob layout */
927                 switch (mtd->writesize) {
928                 case 512:
929                         nand->ecc.layout = &atmel_oobinfo_small;
930                         ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
931                                         ATMEL_ECC_PAGESIZE_528);
932                         break;
933                 case 1024:
934                         nand->ecc.layout = &atmel_oobinfo_large;
935                         ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
936                                         ATMEL_ECC_PAGESIZE_1056);
937                         break;
938                 case 2048:
939                         nand->ecc.layout = &atmel_oobinfo_large;
940                         ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
941                                         ATMEL_ECC_PAGESIZE_2112);
942                         break;
943                 case 4096:
944                         nand->ecc.layout = &atmel_oobinfo_large;
945                         ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
946                                         ATMEL_ECC_PAGESIZE_4224);
947                         break;
948                 default:
949                         /* page size not handled by HW ECC */
950                         /* switching back to soft ECC */
951                         nand->ecc.mode = NAND_ECC_SOFT;
952                         nand->ecc.calculate = NULL;
953                         nand->ecc.correct = NULL;
954                         nand->ecc.hwctl = NULL;
955                         nand->ecc.read_page = NULL;
956                         nand->ecc.postpad = 0;
957                         nand->ecc.prepad = 0;
958                         nand->ecc.bytes = 0;
959                         break;
960                 }
961         }
962
963         return 0;
964 }
965
966 #endif /* CONFIG_ATMEL_NAND_HW_PMECC */
967
968 #endif /* CONFIG_ATMEL_NAND_HWECC */
969
970 static void at91_nand_hwcontrol(struct mtd_info *mtd,
971                                          int cmd, unsigned int ctrl)
972 {
973         struct nand_chip *this = mtd->priv;
974
975         if (ctrl & NAND_CTRL_CHANGE) {
976                 ulong IO_ADDR_W = (ulong) this->IO_ADDR_W;
977                 IO_ADDR_W &= ~(CONFIG_SYS_NAND_MASK_ALE
978                              | CONFIG_SYS_NAND_MASK_CLE);
979
980                 if (ctrl & NAND_CLE)
981                         IO_ADDR_W |= CONFIG_SYS_NAND_MASK_CLE;
982                 if (ctrl & NAND_ALE)
983                         IO_ADDR_W |= CONFIG_SYS_NAND_MASK_ALE;
984
985 #ifdef CONFIG_SYS_NAND_ENABLE_PIN
986                 at91_set_gpio_value(CONFIG_SYS_NAND_ENABLE_PIN,
987                                     !(ctrl & NAND_NCE));
988 #endif
989                 this->IO_ADDR_W = (void *) IO_ADDR_W;
990         }
991
992         if (cmd != NAND_CMD_NONE)
993                 writeb(cmd, this->IO_ADDR_W);
994 }
995
996 #ifdef CONFIG_SYS_NAND_READY_PIN
997 static int at91_nand_ready(struct mtd_info *mtd)
998 {
999         return at91_get_gpio_value(CONFIG_SYS_NAND_READY_PIN);
1000 }
1001 #endif
1002
1003 #ifndef CONFIG_SYS_NAND_BASE_LIST
1004 #define CONFIG_SYS_NAND_BASE_LIST { CONFIG_SYS_NAND_BASE }
1005 #endif
1006 static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE];
1007 static ulong base_addr[CONFIG_SYS_MAX_NAND_DEVICE] = CONFIG_SYS_NAND_BASE_LIST;
1008
1009 int atmel_nand_chip_init(int devnum, ulong base_addr)
1010 {
1011         int ret;
1012         struct mtd_info *mtd = &nand_info[devnum];
1013         struct nand_chip *nand = &nand_chip[devnum];
1014
1015         mtd->priv = nand;
1016         nand->IO_ADDR_R = nand->IO_ADDR_W = (void  __iomem *)base_addr;
1017
1018         nand->ecc.mode = NAND_ECC_SOFT;
1019 #ifdef CONFIG_SYS_NAND_DBW_16
1020         nand->options = NAND_BUSWIDTH_16;
1021 #endif
1022         nand->cmd_ctrl = at91_nand_hwcontrol;
1023 #ifdef CONFIG_SYS_NAND_READY_PIN
1024         nand->dev_ready = at91_nand_ready;
1025 #endif
1026         nand->chip_delay = 20;
1027
1028         ret = nand_scan_ident(mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL);
1029         if (ret)
1030                 return ret;
1031
1032 #ifdef CONFIG_ATMEL_NAND_HWECC
1033 #ifdef CONFIG_ATMEL_NAND_HW_PMECC
1034         ret = atmel_pmecc_nand_init_params(nand, mtd);
1035 #else
1036         ret = atmel_hwecc_nand_init_param(nand, mtd);
1037 #endif
1038         if (ret)
1039                 return ret;
1040 #endif
1041
1042         ret = nand_scan_tail(mtd);
1043         if (!ret)
1044                 nand_register(devnum);
1045
1046         return ret;
1047 }
1048
1049 void board_nand_init(void)
1050 {
1051         int i;
1052         for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++)
1053                 if (atmel_nand_chip_init(i, base_addr[i]))
1054                         printk(KERN_ERR "atmel_nand: Fail to initialize #%d chip",
1055                                 i);
1056 }